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Abstract

The problem of designing a family of pseudoran-
dom number generators for cryptographic applica-
tions, called key stream generators, is considered for
word-oriented CPU platforms. A novel key stream
generator, together with a new application of linear
cellular automata over GF(g), is proposed. Construc-
tion of the generator is based on the use of very re-
cently published results on cellular automata theory
and its applications in cryptography, as well as on
core principles employed in a number of existing key
stream generators. Analysis indicates that the pro-
posed generator satisfies standard minimal security
requirements including a large period and good sta-
tistical properties, and that it is secure against all
known attacks. An important feature of the proposed
generator is that it is compact and suitable for high
speed applications.

1 Introduction

Cryptographic techniques play an important role in
information protection, and stream ciphers are an im-
portant class of encryption algorithms (see [28], [30]
and [18]). A stream cipher encrypts one individual
character in a plaintext message at a time, using
an encryption transformation which varies with time.
Such a cipher is typically implemented by the use of
a so-called pseudorandom number generator or a key
stream generator which expands a short secret key
into a long running key sequence. Mathematically,
a key stream generator is equivalent to a finite state
machine that, based on a secret key, generates a key
stream for controlling an encryption transformation.
Let x;, yi, 2z;, and s; denote the plaintext digit, the
ciphertext digit, key stream digit, and the internal
state of the finite state machine at time 4, and k de-
notes the secret key. Then the encryption procedure
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of the stream cipher can be described by the follow-
ing: y; = x; + zi, z; = f(k,si), ¢ > 1, where {z;} is
the key stream or running key sequence, f(-) is the
next state function of the key stream generator, and
”+” denotes a modulo addition.

According to [18], [30], and [28], for example, there
is a vast body of theoretical knowledge on stream ci-
phers, and various design principles for stream ciphers
have been proposed and extensively analyzed. How-
ever, there are relatively few fully-specified stream
cipher algorithms in the open literature. This unde-
sirable state of affairs can be partially explained by
the fact that most stream ciphers used in practice
tend to be proprietary and confidential [18]. By con-
trast, numerous concrete block cipher proposals have
been published, some of which have been standard-
ized or placed in public domain. Nevertheless, be-
cause of their significant advantages, stream ciphers
are widely used today, and one can expect an increas-
ing number of concrete proposals in the coming years,
[18]. This paper represents a contribution to this line
of research.

In this paper the main lines of a novel stream cipher
are given which can be used as a tool for constructing
particular stream ciphers appropriate to given condi-
tions. Main aim of this paper is to propose a novel
building block for stream cipher and to point out a
possibility for combining reported design principles to
obtain a new more secure and more efficient scheme.

The published proposals for key stream generators
which can be used on theirs own to expand a short se-
cret key into a long key stream or as a building blocks
for more complex generators, include the following:
nonlinear filter generator (see [31], [28], [30] and [18],
for example), generators with time-variant tables in-
cluding the alleged RC4 algorithm, (see [15], [9], [30]-
[27], for example), shrinking and self-shrinking gen-
erators (see [6], and [17], for example) and cellular
automata based key stream generators (see [32], [25],



for example). On the other hand, according to the re-
ported results, it appears that all of these proposals
also have certain weaknesses.

An aim of this paper is to propose a key stream
generator which employs the good characteristics of
published structures and overcome theirs weaknesses.

Note that, despite the weaknesses of certain pro-
posed cryptographic applications of cellular automata
(CAs), they appear to be a promising building block
for cryptographic systems with certain advantages
over linear feedback shift registers (LFSRs). CA is a
more general linear finite state machine than a LFSR,
and a LFSR can be considered as a particular CA.
Also, CA is a means for fast generation of streams
with good statistical characteristics and a large pe-
riod. Finally, the CA can be considered as a more
cryptographically secure generator than a LFSR, as a
number of methods for LFSR initial state reconstruc-
tion based on certain LFSR output sequence can not
work on the corresponding CA problem.

In this paper, the construction of a novel family of
key stream generators is proposed and discussed.

Section 2 points out the relevant background. The
novel key stream generator is proposed in Section 3.
Its security together with efficiency is discussed in
Section 4. Some concluding remarks are made in Sec-
tion 5.

2 Background

This section summarize previous main works and re-
sults relevant for this paper. As the first, basic prop-
erties of the linear cellular automata over GF(q) are
presented. Then, four classes of the key stream gener-
ators are pointed out, each of which employs certain
design principle relevant for this work.

2.1 Linear Cellular Automata over
GF(q)

A linear finite state machine (LFSM) is a realization
or an implementation of certain linear operator. Lin-
ear feedback shift registers (LFSRs) and Linear Cellu-
lar Automata (CAs) are particular LFSMs. Following
[3] this section summarize the main characteristics of
the CA over GF(q).

A null-boundary linear hybrid cellular automata
is a LFSM composed of a one-dimensional array of
n cells with the following characteristics. Each cell
consists of a single memory element capable of stor-
ing a member of GF(¢), and a next-state compu-
tation function. We consider a situation when the
communication between cells is nearest-neighbor, so
that each cell is connected to only its left and right
neighbors. The leftmost and rightmost cells behave

as though their left and right neighbors, respectively,
are in state 0, and this make the CA null-boundary.
At each time step ¢, cell ¢ has a state sgt) (that is
a member of GF(gq)). The next-state function of a
cell is its computation rule, or just rule. A linear CA
employs the linear next-state functions.

For time step t + 1, each cell ¢ computes its new
state s( + ), using its next-state function f;. In a
CA, thls function can depend on only the informa-
tion available to the cell, and in the here consid-
ered case, it is the states of cells ¢ — 1, 4, and 7 + 1
at the time ¢. Since we require that f; be linear,

st = fisiy s sih) = cosy +disl +bisll),
and b;, d;, and ¢; are constants dependent on the
particular machine. The multiplication and addition
operations are performed in the field GF(q).

We define the state of a CA at time t to
be the m-tuple formed from the states of the in-
dividual cells, s® = [\ . s].  The next-
state function of the CA is computed as stt1) =
[f1(0, sg), (t)), . fi(s lt 1 gt),sgl),...] . Since each
fi is a linear function, f is also a linear function,
mapping n-tuples to n-tuples. Linearity implies that
f has an n by n matrix formulation A, so that the pre-
vious expression can be rewritten as a matrix-vector
product

s = f(s0) = As®) W

where A is the transition matrix for the CA, and the
product is a matrix-vector multiplication over GF(q).

Because the CA communication is restricted to
nearest-neighbor, the matrix A is tridiagonal. The
sub-diagonal contains the multipliers on the left in-
puts of the cells; likewise, the super-diagonal contains
the right-input multipliers. The main diagonal con-
sists of the self-input multipliers, and the rest of the
matrix is 0:

d b 0 .. 0 0
Cy d2 b2 0
A = 0 C3 d3 (2)
0 v dp—1 bp—a
0 0 .. ... «c¢p dp

A CA has a maximum length cycle if the sequence
of states s(9, s s 50 includes all ¢" — 1
nonzero states for any nonzero starting state s(o),
and its characteristic polynomial is primitive if and
only if the CA has a maximal length cycle. In [3],
the underlying theoretical results which are required
for the design and analysis of linear hybrid CA over
GF(q) are derived, and a probabilistic algorithm is
proposed for obtaining a CA with a given charac-
teristic polynomial. The algorithm provides a good



practical method to the finding of any required max-
imal length CA.

2.2 Certain Key Stream Generators

This subsection summarizes relevant results on con-
structions of the key stream generators from which
the novel proposal originates.

2.2.1 Cellular Automata Based Generators

The first cryptographic application of a cellular au-
tomata was published in [32]. Two key stream gen-
erators based on the linear cellular automata over
GF(2), called PCA with ROM and Two Stage PCA
were proposed in [25] (also see [5]). The weaknesses
oh these generators have been reported in [16], [13],
[22], [23],[24], and [2]. Recently, an improved key
stream generator based on PCA with ROM was pro-
posed and analyzed in [24] assuming operations over
GF(2). Note that no one cryptographic application
of CA over GF(q), ¢ > 2, has been reported yet.

2.3 Nonlinear Filter Generator

The nonlinear filter generator (NLFQ) is a well known
type of key stream generators. The NLFG consists of
a single regularly clocked binary linear feedback shift
register (LFSR) and a nonlinear Boolean function f
of n input variables. The key stream is generated by
applying f to the output of n stages of the LFSR.
The weaknesses of NFLG have been reported in [31],
(8], [1], [11], [14], and [29], for example.

2.3.1 Generators with Time-Variant Tables

A well known method for combining certain pseudo-
random sub-generators to obtain a key stream gener-
ator is the shuffler [15]. One pseudorandom generator
is used to produce the values for the final key stream
sequence, but the values are first saved in a table. The
second generator is used to produce pointers into the
table. At each cycle, the pointer generator produces a
new pointer into table, and the value at that location
is output. Then the value generator produces a new
value, which is inserted into the table, replacing the
value that was just removed. The random delaying
of the values in the table has the effect of shuffling
the sequence elements. A variant of this approach is
reported in [9].

Another type of time-variant table is employed in
the alleged RC4 key stream generator [27], [30]. Ac-
cording to [30] the internal state of RC4 at time ¢
consists of a table Sy = (S; (Z))gifl of 2™ n-bit words
and two pointer n-bit words i; and j;. Let initially
i9 = jo = 0. The next-state and output functions of
RC4 are for every ¢t > 1 defined by i =iz 1+ 1, j: =

Ji—1 4+ Se—1(ir), Se(ir) = Se—1(Je) » Se(de) = Se—1(ir),
Zy = Si(St(ir) + Si(jr)), where all the additions are
modulo 2". It is assumed that all the words except
for the swapped ones remain the same (swapping it-
self is effective only if i; # j;). The output n-bit word
sequence is Z = (Z;)$2,. Note that the time-variant
table in alleged RC4 is a slowly-varying one.

Certain weaknesses of the generators based on
time-variant tables have been reported in [26], [20],
and [12].

2.3.2 The Shrinking Generators

Construction of a key stream generator, called the
shrinking generator is proposed in [6] (noting that
the same idea in a cryptanalytic context is consid-
ered in [19]). The construction uses two sources of
pseudorandom bits to create a third source of pseu-
dorandom bits of (potentially) better quality than the
original sources. Here quality stands for difficulty of
predicting the pseudorandom sequence. The resulting
sequence is a subsequence from the first source where
the subsequence elements are chosen according to the
positions of ”1” in the the second source. Therefore
the resultant sequence is a ”shrunken” version of the
first one.

A key stream generator based on the shrinking
principle and called self-shrinking generator was pro-
posed and considered in [17]. The self-shrinking gen-
erator employs only one linear feedback shift register
(LFSR) and the generator output is produced from
the LFSR output sequence according to the following:
If a pair happens to take value ”10” or ”11”, this pair
is taken to produce the pseudorandom bit ”0” or 717,
depending on the second bit of the pair. On the other
hand, if pair happens to be 701”7 or 700”7, it will be
discarded.

Certain weaknesses of the shrinking generators
have been reported in [19], [6], [17], [21], and [10].

3 Novel Key Stream Generator

3.1 Underlying Design Criteria

Intention of any construction of a key stream gener-
ator is to obtain an efficient and secure scheme. Key
stream generators are required to be practically se-
cure with the respect to computationally bounded
cryptanalytic attacks in the known/ciphertext sce-
nario. Accordingly, the practical security criterion
for a key stream generator is the key stream unpre-
dictability criterion which means that without know-
ing the secret key it should be computationally infea-
sible to reconstruct a key stream sequence from its
portions.



In practice, the key stream generator security is
checked only with respect to particular cryptanalytic
attacks, and the required immunity to these attacks
gives rise to various practical design criteria. In gen-
eral, insisting on satisfying or optimizing certain par-
ticularly chosen design criteria does not appear to be
a good strategy, as the key stream generator may then
become vulnerable to other cryptanalytic attacks.

Cryptanalytic attacks can be classified into three
general types. The attacks of the first type use sta-
tistical weaknesses of the key stream sequence for the
prediction, and the resulting design criteria is require-
ment for good statistical properties of the the key
stream sequence. The attacks of the second type aim
at reconstructing the key stream sequence by using an
equivalent key stream generator of a simple structure
and typically much larger internal state size whose
parameters have to be defined from known portions
of the key stream sequence. The corresponding de-
sign criteria include long period of the key stream se-
quence and the high complexity measures of various
kinds. The attacks of the third type aim at recon-
structing the secret key and they are the most dan-
gerous. Accordingly, the corresponding design crite-
ria include the resistance on all known approaches for
secret key reconstruction.

3.2 Main Ideas for Construction

The novel generator is designed based on the follow-
ing principles:

e finite state machine principle employing linear

CA over GF(q),

e nonlinear filter principle with time variant map-
ping - filter function,

e a variant of the self shrinking principle.

Also, the underlying idea for the novel construction
could be considered in the following way: Generate
the key stream starting from two appropriate sources
of pseudorandom patterns defined by the following.
The sequences of states of both sources should have
good statistical properties, and each source should
control the another one in certain manner such that
the key stream has better cryptographic quality than
the sequences of patterns generated by the sources,
assuming that quality stands for difficulty of predict-
ing the key stream.

3.3 The Generator Algorithm

The novel generator is a finite state machine which
operates according certain clock and generates a se-
quence with elements from GF(q).

The main components of the generator are the fol-
lowing:

1. linear CA over GF(q), ¢ prime, with L cells, and
primitive characteristic polynomial;

2. RAM with ¢ cells for a permutation of all ele-
ments from GF(q);

3. control logic.

The secret key determines the CA initial state and
the RAM initial state. Also, we assume that for a
particular application, an appropriate selection of CA
state-transition matrix could be done based on [3].

In order to minimize the coast of generator realiza-
tion we restrict the construction on employment the
CA transition matrix (2) assuming the following con-
straint set.

Constraint 1: (i) b; =1,1<i<n-1, (ii) ¢; = -1,
2 <i<mn, (i) d; € {0,1},1 <4 < n, and (iv) the
number of d;, 1 < i <n that are 1 is minimal.

The field size q is restricted to be prime, since any CA
that has first three properties over non-prime field is
reducible, [3].

We assume the following notation:

- CA; is content of the ith CA cell which is an ele-
ment of GF(q), i =1,2,...,L;

- RAM (a;) is a content of the RAM cell at address
a;i,1=0,1,....,q - 1;

- SWAPP(RAM((a;), RAM (a;)) denotes operation
of exchanging the contents of RAM locations at ad-
dress a; and a;.

After each clock, the generator realizes the follow-
ing steps, and generates an output symbol.

The Generator Clock Cycle

1. transition from the current CA state into the
next one;

2. redefining of the RAM according to the follow-
ing, for each i =1,2,...,L/2:

SWAPP(RAM(CA;), RAM(CAirr2))  (3)
(assuming that L is an even integer);
3. calculation of a value S:
I
S=Y RAM(CAi) , (4)
i=1

where Y denotes modulo ¢ addition and I, A
are certain constants, A < L ;

e repeat the Step 1if S is greater than certain
threshold & = Spyez/2, where Spq, is the
biggest element of GF(q);



4. calculation of a value ADS:

L
ADS =) CA, , (5)
(=1

where )" denotes modulo ¢ addition;

e the generator output at the end of current
cycle is the RAM content at the address
ADS.

4 Discussion of the Generator
Characteristics

This section points out main characteristics of the
proposed key stream generator. The analysis implies
that the generator is a cryptographically secure one,
and that it can be efficiently realized.

4.1 Cryptographic Security

4.1.1 Period and Statistical Characteristics

Basic requirements on a key stream generator include
large period, high complexity, and good statistical
properties of the key stream sequence. Deriving the
period and complexity of a pseudorandom sequence is
generally a difficult algebraic problem which seems to
be tractable only for relatively simple sequences and
under special constraints. Due to the unpredictability
criterion, key stream sequence should not have simple
structure and, accordingly, its basic characteristics of
period, complexity and statistical properties are un-
likely easy to be established in practical schemes. The
generator proposed in previous section does not be-
long to a class of simple schemes, so that, accord-
ing to the results known so far, it seems unlikely
that certain characteristics of the output sequences
can be derived in a deterministic manner, and only
probabilistic results could be expected. These proba-
bilistic results should be based on relevant underlying
assumptions formulated according to the well estab-
lished results regarding to the random mappings as
well as the characteristics of sequences generated by
the cellular automata.

Period. Following [7] and [12], it can be shown that
the state diagram of the proposed generator consists
of cycles only, which can be expected to have average
length approximately equal to 29/092¢+Llogza—1

Statistical Characteristics. Assumption that CA
with primitive characteristic polynomial generate se-
quences with good statistical properties (which is a
reasonable one, see [5], for example), and following
the appropriate statistical model imply that the key
stream sequences generated by the novel scheme have
good statistical properties over GF(q).

4.1.2 Resistance on Known Attacks

A main criterion for the security evaluation is resis-
tance against the known cryptanalytic attacks. Ac-
cordingly note that it can be directly shown that the
proposed generator is resistant against all the crypt-
analytic approaches reported so far, and particularly
it is resistant against:

e all the attacks on cellular automata based struc-
tures (see [16], [13], [22], [23],[24], [2], for exam-
ple),

e all the attacks on nonlinear filter generators (see
[31], [8], [1], [11], [14], [29], for example),

e all the attacks on the generators based on time-
variant tables (see [26], [20], [12], [30], [18], for
example), and

e all the attacks on the shrinking based generators
(see [19], [6], [17], [21], [10], [18], for example).

Accordingly, the novel generator is resistant against
all cryptanalytic attacks published so far, and its ef-
fective key size is equal to its formal size.

4.2 Complexity of Realization

Recall that the generator construction is restricted on
linear CA with transition matrix (2) with the Con-
straint 1. Counting the operations required for re-
alization of the each generator clock cycle yields the
following upper bound on complexity C' of generating
a key stream symbol:
C < 8L(modq add.) + L(read/write op.) .
Accordingly, the complexity of a bit generation is up-
per bounded by C/logaq.

Note that the generator structure can be efficiently
implemented in both: software and/or hardware, not-
ing that the VLSI CA chips are available (see [25]).

5 Conclusions

In this paper, the construction for a novel family of
key stream generators is proposed and discussed.

The proposal is based on certain recently intro-
duced approaches which enable design of secure and
efficient key stream generators. These approaches in-
clude employment of the linear cellular automata over
GF(q), time variant nonlinear mapping / filtering,
and the shrinking principle.

It is pointed out that the novel construction sat-
isfies the standard - basic requirements for the cryp-
tographic security and it ensures fast generation of
the key stream. The proposed scheme generates key
stream sequences of period exponential with the main



generator parameters and with good statistical char-
acteristics. The novel generator is resistant against
all up-to now known attacks, and its effective key-
size length is equal to its formal length. Also, the
proposed scheme can be used as a building block for

more complex systems.

Finally, note that the pro-

posed generator is a regular and compact structure
suitable for high speed applications.
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