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The Sibling Intractable Function Family (SIFF):
Notion, Construction and Applications
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SUMMARY This paper presents a new concept in crypto-
graphy called the sibling intractable function family (SIFF)
which has the property that given a set of initial strings colliding
with one another, it is computationally infeasible to find another
string that would collide with the initial strings. The various
concepts behind SIFF are presented together with a construction
of SIFF from any one-way function. Applications of SIFF to
many practical problems are also discussed. These include the
hierarchical access control problem which is a long-standing
open problem induced by a paper of Akl and Taylor about ten
years ago, the shared mail box problem, access control in dis-
tributed systems and the multiple message authentication prob-
lem.
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1. Introduction

This paper presents a new concept in cryptography
called the sibling intractable function family (SIFF).
SIFF is a generalization of the concept of the universal
one-way hash function family introduced in Ref.(13),
and it has the property that given a set of initial strings
colliding with one another, it is computationally infea-
sible to find another string that would collide with the
initial strings. We also present a simple method for
transforming any universal one-way hash function
family into a SIFF. As Rompel has proved that
universal one-way hash function family can be con-
structed from any one-way function,'® we obtain the
theoretically optimal result that SIFF also can be
constructed from any one-way function.

SIFF has many nice features, and can be applied
to a number of cryptographic problems. We will
describe in detail a solution to the hierarchical access
control problem, which includes a way to generate and
update keys for a hierarchical organization. In a
hierarchical organization it is assumed that authority is
arranged in a hierarchical manner, where higher level
members of the organization have access to resources
and data classified at a lower level. In this way we
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solve, under the weakest assumption of the existence of
any one-way function, a long-standing open problem
induced. by a paper of Akl and Taylor about ten years
ago.!’ Applications of SIFF to other three problems,
namely the shared mail box problem, access control in
distributed systems and the multiple message authenti-
cation problem, will also be discussed.

The remainder of the paper is organized as fol-
lows. In Sect. 2, we give basic definitions for one-way
functions, pseudo-random function families and uni-
versal hash function families. In the same section we
also introduce the new notion of SIFF. In Sect. 3, we
show a method for transforming any universal one-way
hash function family into a SIFF. As a corollary, we
obtain the theoretically optimal result that SIFF can
be constructed from any one-way function. In Sect. 4,
we give a formal definition for the security of a key
generation scheme for hierarchical organizations, and
present a solution to the hierarchical access control
problem by the use of SIFF and pseudo-random func-
tion families. We describe in detail the following three
aspects of the solution: key generation, key updating
and proof of security. In Sect. 5, we suggest three other
applications of SIFF to show its usefulness. The first
application is to the shared mail box problem, the
second to the access control in distributed systems and
the third to the multiple message authentication prob-
lem. Section 6 closes the paper with a summary of the
results and a suggestion for further research.

2. Basic Definitions

In this section we introduce the definitions for
one-way functions, pseudo-random function families,
universal hash function families and sibling intractable
function families.

2.1 Pseudo-Random Function Families

Denote by A4 the set of all positive integers, » the
security parameter, 3 the alphabet {0, 1} and #S the
number of elements in a set S. By x &S we mean that
x is chosen randomly and uniformly from the set S.
The composition of two functions f and ¢ is defined as
feog(x)=f (g(x)). Throughout the paper / and m
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will be used to denote polynomials from 4 to AN.
First we give our formal definition of one-way func-
tions.

Definition 1: Let f: D — R be a polynomial time
computable function, where D={J,>""” and R=
U.Z™™,  f is a one-way function if for each
probabilistic polynomial time algorithm M, for each
polynomial Q and for all sufficiently large n, Pr{f,(x)
=f(M(f,(x)))}<1/Q(n), where x€xZ"™ and f,
denotes the restriction of f on 3™,

Let F={F,/nE/} be an infinite family of func-
tions, where F,={f|f: Y'™->3™"}  Call F a func-
tion family mapping / (n)-bit input to m (n)-bit out-
put strings. F is polynomial time computable if there
is a polynomial time algorithm (in n) computing all
fEF, and samplable if there is a probabilistic
polynomial time algorithm that on input n€E N out-
puts uniformly at random a description of fEF;,.
(Note: following the tradition in the field, when
the security parameter » is an input to an algo-
rithm, it will actually be represented by the all-1
string 1”& X".) In addition, we call F a one-way
family of functions if the function f defined by f,
€ rF, is a one-way function.

Now we introduce the definition of pseudo-

random function families®® which will be applied
in Sect. 4.2. Intuitively, F={F,|nE /} is a pseudo-
random function family if to a probabilistic
polynomial time Turing machine (algorithm), the
output of a function f choesen randomly and uni-
formly from F,, whose description is unknown to
the Turing machine, appears to be totally uncor-
related to the input of f, even if the algorithm can
choose input for f. The formal definition is
described in terms of (uniform) statistical tests for
functions. A (uniform) statistical test for functions
is a probabilistic polynomial time Turing machine
T that, given » as input and access to an oracle Oy
for a function f: J“"—X"" outputs a bit 0 or 1.
T can query the oracle only by writing on a special
tape some x& X' and will read the oracle answer
f(x) on a separate answer-tape. The oracle prints
its answer in one step.
Definition 2: Let F={F,/nE N} be an infinite
family of functions, where F,={f]|f:
Yim_ymm) - Assume that F is both polynomial
time computable and samplable. F is a pseudo-
random function family iff for any statistical test T,
for-any polynomial Q, and for all sufficiently large
n,

lpi—pil<1/Q(n),

where p; denotes the probability that T outputs 1
on input » and access to an oracle Oy for f EzF,

and p; the probability that T outputs 1 on input »
and access to an oracle O, for a function » chosen
randomly and uniformly from the set of all func-
tions from XY™ to Y™™, The probabilities are
computed over all the possible choices of f, » and
the internal coin tosses of T.

In Ref.(5), it has been shown that pseudo-
random function families can be constructed from
pseudo-random string generators. By the result of
Ref.(10),(11), the existence of one-way functions is
sufficient for the construction of pseudo-random
function families.

2.2 Universal Hash Function Families

Universal hash function familes, first introduced
in Ref.(3) and then developed in Ref.(18), play an
essential role in many recent major results in cryptogra-
phy and theoretical computer science. (See for exam-
ple Refs.(10), (11), (16).) Let U=\J,U, be a family
of functions mapping /(»)-bit input into m(n)-bit
output strings. For two strings x, y€ 3" with x=*y,
we say that x and y collide with each other under u&
U, or x and y are siblings under uE Uy, if u(x)=
u(y).

Definition 33 Let U=\J,U, be a family of functions
that is polynomial time computable, samplable and
maps / (n)-bit input into m (»)-bit output strings. Let
D,={x€X'™|3uc U,IyeI™™ such that u(x)=
y} and R,={yeI™™|Juc U,, 3x€I"™ such that
y=u(x)}. Let k=2 be a positive integer. U is a
(strongly) k-universal hash function family if for all »,
for all k (distinct) strings xi, Xz, '+, xx D, and all &
strings i, y2, ***, Y»E Ry, there are # U,/ (#R,)* func-
tions in U, that map x; to y, Xz t0 Js, **+, and X tO Vs.

An equivalent definition for the (strongly) k-

universal hash function family is that for all £ distinct
strings xi, Xz, ***, X»E Dy, when £ is chosen uniformly
at random from U,, the concatenation of the k resul-
tant strings y=h(x1), y=h(xz), =, yp=h(xs) is
distributed randomly and uniformly over the k-fold
Cartesian product R; of R,. The following collision
accessibility property is a useful one.
Definition 4 Let U ={J,U, be a family of functions
that is polynomial time computable, samplable and
maps / (n)-bit input into m(n)-bit output strings. Let
k=1 be a positive integer. U has the k-collision
accessibility property, or simply the collision accessi-
bility property, if for all n and for all 1=/<k, given
aset X={xi, xz, -, x;} of i initial strings in 3™, it is
possible in probabilistic polynomial time to select
randomly and uniformly functions from U;*, where U
C Uy, is the set of all functions in U, that map xi, xz,
.-+, and x; to the same strings in ™™,

k-universal hash function families with the colli-
sion accessibility property can be obtained from



polynomials over finite fields.®>'® Denote by P, the
collection of all polynomials over GF (2“™) with
degrees less than £, i.e.,

Pn:{ao+a1x+"'+ak-l-xk_1|a(), ay, **t, Ar-1
€ GF (2'™)}.

For each pE Py, let u, be the function obtained from
p by chopping the first / (n) —m (n)-bits of the output
of p whenever /(n) 2m(n), or by appending a fixed
m(n) —1(n)-bit string to the output of p whenever
I[(n)<m(n). Let Uy={up|pE Py}, and U=U,U,.
Then U is a (strongly) k-universal hash function
family, which maps /(n)-bit input into m(n)-bit
output strings and has the collision accessibility prop-
erty.

2.3 Sibling Intractable Function Families

Let k=k (n) be a polynomial with k=1. Let H
={H,|lnE N}, where H,={h|h: Z*P—I™™} be an
infinite family of functions that is one-way,
polynomial time computable and samplable, and that
has the collision accessibility property. Also let X =
{x1, X2, -++, x;} be a set of i initial strings in 2™, where
1=i<k, and A be a function in H, that maps x;, X,
-+, X; to the same string. Let F, called a sibling finder,
be a probabilistic polynomial time algorithm that on
input X and 4, outputs either “?” (“I cannot find”) or
a string x’€X'™ such that X' X and A(x) =h(x) =
h(x;)=++=h(x;). Informally, H is a k-sibling intrac-
table function family, or k-SIFF for short, if for any
1=i=k, for any sibling finder F, the probability that
F outputs an x’ is negligible. More precisely:
Definition 5 Let k=k (n) be a polynomial with k=
1. Let H={H,neN}, where H,={hlh: 3'"—
Y™™} be a family of functions that is one-way,
polynomial time computable and samplable, and that
has the collision accessibility property. Also let X =
{x1, X2,-+*, x;} be any set of i initial strings, where 1<
i=k. H isa k-sibling intractable function family, or
simply k-SIFF, if for each 1<i=<k, for each sibling
finder F, for each polynomial @, and for all
sufficiently large n,

Pr{F (X, h) £2}<1/Q(n),

where 4 is chosen randomly and uniformly from H;C
H,, the set of all functions in H, that map x;, xz, -,
and x; to the same strings in X", and the probability
Pr{F (X, h) +7} is computed over H; and the sample
space of all finite strings of coin flips that F could have
tossed.

Here are several remarks on SIFF which follow
directly from the definition of SIFF:
1. If H={H,|lnE N} is a k-SIFF for some k=1, then
the function f defined by f,&ErH, is a one-way func-
tion.
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2. A one-way one-to-one function is a 1-SIFF.
3. A universal one-way hash function family
introduced in Ref.(13) is a 1-SIFF.
4. If H={H,\nEN?} is a k-SIFF, then it is also an
i-SIFF for any 1=5i<k.

In the next section we give an explicit construction
of SIFF from any one-way function.

3. Construction of SIFF

In Ref.(16), Rompel showed that universal one-

way hash function families, that is, 1-SIFF, can be
constructed from any one-way function. Rompel’s
result is the starting point of our construction of
k-SIFF. The following theorem shows that 1-SIFF
can be transformed into 2°-SIFF for any s=0 (log n).
This result is general enough owing to the fact that a
k-SIFF is also an (-SIFF for any 1=i<k.
Theorem 1: Let /, m" and m be polynomials with
m'(n) —m(n) =0 (log n). Let k=2™""m"_ Assume
that H'={Hy/nE ¥} is a 1-SIFF mapping /(n)-bit
input to m' (n)-bit output strings, and U={U,|nE ¥}
a k-universal hash function family that has the colli-
sion accessibility property and maps m’(n)-bit input
to m(n)-bit output strings. Let

H,={uch'|h'EHy, ucs Uy,}

and H={H,\JnE/N}. Then H is a k-SIFF mapping
[ (n)-bit input into m(n)-bit output strings.

Proof: First we observe that H has the collision
accessibility property, simply because that H’ is sam-
plable and that U has the collision accessibility prop-
erty.

Now assume for contradiction that there exists a
sibling finder F that, for infinitely many », on input
some X ={xi, x5, **-, x;} and AErH,X where 1< i<k,
outputs with probability at least 1/Q(n) a string x' €
4™ such that x'€ X collides with all strings in X,
where Q is a polynomial and H,* is the set of all
functions in H, that map xi, Xz, -**, and x; to the same
strings in Y™™, We show a contradiction to the
assumption that H' is a 1-SIFF. More specifically, we
construct a probabilistic polynomial time algorithm
M that uses F as an oracle and succeeds with probabil-
ity 1/(2kQ(n)) in either of the following two actions.
The first action is to find a string colliding with x; for
some 1< =i, and the second action is, when i<k, to
obtain the inverse of some string from p;s1, Yit2, ***, Vu
with respect to a function A’ chosen uniformly at
random from H,, where each y;, i+ 1< j <k, is generat-
ed by first picking randomly an element from 3™ and
then evaluating the function A’ at the random point.

Given F, X, {Ji+1, Yi+2, ***, y»} and A’, M runs
according to the following steps:

1. Choose z&zX™",
2. Choose randomly u& U, such that u () =u(y.) =
cr=u(y:) =u(pin) ==u(ye) =z, where y;=h"(x;)
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for all 1=<j<i.
3. Call F with X and A=uch" as input.
output of F be x'.

Note that for #'E zH,, the probability that y;, = yj,
for some I=<j+j,=<k is negligible. Otherwise
H'={H,\nE ¥/} would not be a 1-SIFF. In the follow-
ing discussion, we will assume that yi, y,, **+, y. are all
distinct.

The function A=uch’ is clearly a random element
of H}, as U is a k-universal hash function family with
the collision accessibility property, and 4’, z and u are
all chosen randomly. Denote by S; the set of all the
siblings of xi, x2, -+, x; and by S, the set of the inverses
of yi+1, Vitz, ***, Y, both with respect to 4. Note that
Sy and S, are disjoint sets when i, ), **+, y. are all
distinct, and that x'==? iff x’€ S, or x’€ S;. Therefore,
we have

Pr{x'#?}=Pr{x'€ S} +Pr{x'€ S:}.

Let the

By assumption we have
Pr{x'+2%=1/0(n).

This implies that either
Pr{x'€8)=1/20(n)

or (when i<k)
Pr{x'€S:}=1/2Q (n).

Pr{x'€8}=1/2Q(n) implies that x’ collides,
with probability at least 1/(2iQ(n))=21/(2kQ(n)),
with x; for some 1=j=1i under the randomly chosen
function 4. This contradicts our assumption that H’
isa I-SIFF. On the other hand, when i <k, Pr{x'€ S}
=1/2Q(n) implies that with probability at least 1/(2
(k—=i)Q(n))=1/(2kQ(n)), x is the inverse of y; for
some [+ 1=j<k with respect to 4'EgH,, which con-
tredicts the fact that if A is a 1-SIFF then the function
defined by choosing A’ zH, is a one-way function. In
summary, Pr{x'#?}=1/0 (n) is a contradiction to the
assumption that H' is a 1-SIFF. This completes the
proof. ]

Combining Theorem | with Rompel’s result that
universal one-way hash function families, i.e., 1-SIFF,
can be obtained from any one-way function, and with
the fact that a 2°-SIFF is also an i-SIFF for all 1=i<
2%, we have:

Theorem 2: k-SIFF can be constructed from any
one-way function.

In the following section we will apply the results
of this section to the hierarchical access control prob-
lem and provide a solution based on SIFF.

4. The Hierarchical Access Control Problem
In today’s modern society, hierarchical structures

exist in various forms, from business corporations to
government departments, each resembling a directed

graph (such as a tree) in its figurative shape, with a
particular node of the graph the highest point of
command. In mathematical terms, such a hierarchy
usually take the form of a partially ordered set with
the highest point of command being the maximal
node. The various positions throughout the hierarchi-
cal structure are then represented as internal nodes,
each being the point of command over its underlying
sub-graph, consisting also of nodes.

In a hierarchical organization which deals with
some amount of sensitive information, the security of
certain pieces of information must often be maintained
at a certain level which corresponds to a particular
depth in the hierarchical organization represented by
the graph. A typical case would be that of a banking
corporation where the manager deals with private and
sensitive data. Such data should not be accessible to
company members with positions and authority lower
than the manager. However, the opposite condition is
often required to be fulfilled. The manager should be
able to access data belonging to employees working
underneath him/her in the hierarchical organization.

In past years cryptography has often been used to
ensure the security of sensitive data. Of more recent
interest, however, is the problem of organizing crypto-
graphic keys in a hierarchical manner to mirror the
structure of the organization employing the cryptogra-
phic techniques for security. The problem of generat-
ing and updating keys for a hierarchical organization,
called the hierarchical access control problem, was first
posed by Akl and Taylor in 1982.%9 Since then many
solutions or partial solutions to the problem have been
proposed. @ EEM02,040 A common drawback with
these schemes is that all of them are based on a single
cryptographic assumption, that is the (supposed)
difficulty of breaking the RSA cryptosystem,*® and
make heavy use of the underlying algebraic properties
of the crypto-function.

In Ref. (17), Sandhu gave a solution to the special
case when an organization has a tree structure, using a
set of one-way functions. However, the problem of
solving the general case of partially ordered sets under
the weakest assumption of the existence of one-way
functions, remains an interesting open problem. In this
section we give a simple solution to the open problem.
Incorporated into our solution are the idea of Sandhu
for the tree structure and an elegant use of SIFF. A
remarkable feature of our solution is that each node in
the hierarchical structure needs to keep only one secret
key.

The problem of access control in hierarchical
organizations is described more formally in Sect. 4.1.
A definition for security of key generation schemes is
introduced in the same section. This is followed by a
detailed description of the key generation scheme and
a proof of its security in Sect. 4.2 and Sect. 4.3 respec-
tively. An improvement of the scheme is presented in



Sect. 4.4 and several issues on updating keys are briefly
discussed in Sect. 4.5.

4.1 Preliminaries

Usually, an organization G consists of a set of
P(n) members together with a hierarchical relation
among the members, here P is a polynomial and the
computational power of all members in the organiza-
tion is bounded by probabilistic polynomial time.
Such a hierarchical organization can be well modeled
by an algebraic system called a partially ordered set.
Let S={N,, Nz, -**, Np.(n)} be a set of P(n) nodes, each
of which represents a member of the organization.
Denote by = the hierarchical relation within the
organization. Then G is determined by the pair of S
and =. In mathematical terms, the organization G is
called a partially ordered set or poset for short. For
convenience, in the following discussions we will
sometimes interchange the terms (hierarchical) organi-
zation and poset, and the terms member and node.

Every poset has some nodes called maximal
nodes. Each maximal node N; has the property that
there is no node N;E S such that N;=N; and N;=+ N;.
In this paper, we will only be concerned with such a
hierarchical organization that has only one maximal
node Ny. Results in this paper can be readily general-
ized to the case where a hierarchical organization has
multiple maximal nodes. Assume that N; and N, are
two different nodes in S. A, is called an ancestor of N;
(or equivalently, N; is a descendant of N;) if N;= N;.
N; is called a parent of N; (or equivalently, N; is a
child of N;) if N; is an ancestor of N; and there is no
other node N,& S with N;= N,= N,. Now assume that
S'C S is a subset of S. S” induces a sub-poset that
consists of the set ®(S’) and the partial order rela-
tion =, where @ (S’) consists of both the nodes in S’
and the nodes which are descendants of nodes in S".

A Hasse diagram of an organization is a figure
consisting of nodes, with an arrow directed downwards
from N; to N; whenever N; is a parent of N;. As the
correspondence between an organization and its Hasse
diagram is obvious, in the following discussions we
will not distinguish between an organization and its
Hasse diagram. In particular, we will not distinguish
between a node in S and the member of the organiza-
tion represented by the node.

The hierarchical access control problem for an
organization G essentially reduces to the problem of
generating a key K, for each node ¥, in such a way that
for any nodes N; and N;, the node A, is able to derive
from K; the key K; of N, iff N;=N,. Related to this is
the problem of key updates of the nodes. Key updating
is required when the structure of the organization is
modified. Typical changes to the structure includes the
deletion and addition of nodes. Key updating is also
required when some keys are lost or when the duration
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of validity of the keys has expired.

Next we discuss the definition of security of a key

generation scheme for a hierarchical organization.
Any key generation scheme should at least fulfill the
requirement that it is computationally difficult for
members of the organization, represented by a subset
S’ of S, to find by collaboration the key K; of a node
N; not in @(S’), where ®@(S’) consists of both the
nodes in S" and the nodes which are descendants of
nodes in §'. When N, is an internal node or the
maximal node N,, which implies that N; has at least
one child, the following more general requirement
should be fulfilled. That is, it is computationally
difficult for S’ to simulate N;’s procedure for generat-
ing the key of a child of N;. Note that S’ may or may
not be able to find the key of N; and that the child of
N; may or may not be in @(S’). The reason for
considering the general requirement is that N,’s proce-
dure for generating the key of the child, even if the
child is in @ (S’), is a privilege of N,, and the privilege
should not be shared by any other node that is not an
ancestor of N;. The following is a formal definition of
security of a key generation scheme.
Definition 6: Let G be a hierarchical organization
with P(n) nodes (members). Denote by S the set of
the P(n) nodes. A key generation scheme for a
hierarchical organization is secure if for any S'C S, for
any node N;& ©(S’), for any polynomial Q and for all
sufficiently large #, the probability that the nodes in S’
are able to find by collaboration the key K; of the nede
N; whenever N; has no child, or to simulate N,'s
procedure for generating the key of a child of A,
whenever »; is an internal node or the maximal node
Ny, is less than 1/Q(n).

4.2 Key Generation

Denote by ID, the identity of the node N,
Assume that every ID; can be described by an / (n)-bit
string, where / is a polynomial. Let F={F,|lnE /} be
a pseudo-random function family, where F,={fx|fx:
JWoxyn KeXx") and each function fxEF, is
specified by an n-bit string K. Let H={H,|nE N} be
a k-SIFF mapping n-bit input to n-bit output strings.
Also assume that & is sufficiently large so that no nodes
could have more than k parents. The following key
generation procedure can be done either by a trusted
third party or by the maximal node itself.

First a random string Ko&Ex2" is chosen for the
maximal node N,. For the nodes without a key, either
with one or more parents, the following two steps
should be completed until all the nodes in S have been
assigled keys.

1. Nodes with a single parent

Given a node N; with its parent N; which has
already been assigned a key K, the key to be assigned
to N; is the n-bit string
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Kl':fo(IDi) (1)

2. Nodes with two or more parents

Given a node N; with all its p parents N;,, N,,, *+,
N, having been assigned keys K;,, K, -+, Kj,, the key
K; for N, is chosen as a random string K;&E¢Y". From
H, a function A; is chosen randomly and uniformly
such that fx,, (ID;), fx,,(ID;), =, fx,, (ID;) are mapped
to K;. That is,

hi (fol (IDI)) :hi (ijz(IDz') ) =
= h(fx,, (ID;)) =K; (2)

The function A; is then made public, making all
the ancestors of N; aware of A,.

It is clear that if N;= N, then K; can be derived
from K;. When N; is a parent of N;,, K; can be
computed via either K;=fy,(ID;) if N; is the single
parent of N, or K,=h;(fx,(ID;)) if N; has other
parents. When A is not a parent of N;, all keys in the
path from N; to N; are computed downwards and K; is
obtained in the final stage.

4.3 Security of the Key Generation Scheme

This section proves that the key generation scheme
is secure. A corollary of the result is that secure key
generation schemes for hierarchical organizations can
be obtained from any one-way function. We will only
provide the sketch of the proof for the security, as it is
a relatively straightforward procedure to translate the
less formal proof into a formal one.

Theorem 3: The key generation scheme for a hierar-
chical organization is secure.

Proof (Sketch): Let S be a subset of S,ie. S'CS,
and let ©(S’) be the set of the descendants of nodes in
S’ plus the nodes in S’. Also let N; be a node not in
O(S'),ie N;&EO(S’). According to the definition for
security (Definition 6), we need to consider the follow-
ing two cases:

Case 1: N, has no child and S’ can directly find the
key K,‘ of Ni.
Case 2: N; has one or more children and S’ can

simulate N,’s procedure for generating the key K; of
some child N; of N;.

First we discuss Case 1 where N, has no child.
Note that the key K; of N; is constrained either by the
Eq. (1) when N; has only a single parent, or by the Eq.
(2) when N; has two or more parents. In other words,
K; is derived from the key(s) of the parent(s) of N; by
the use of the pseudo-random function family. There-
fore, obtaining K; by S’ implies that S’ is able to
predict the output of the pseudo-random function
family, which is a contradiction.

Now we consider Case 2 where N; is an internal
node or the maximal node N, and S’ can simulate N;’s
procedure for generating the key K of some child N; of
N;. Note that N; may or may not be a member of

®(S’). For our key generation scheme, being able to
simulate N,’s procedure for generating the key K; of
the child N, of N; implies being able to get either K;
when N; is the single parent of N}, or fx,(ID;) when N;
has other parents than N;. Also note that getting K, or
Jx;(ID;) means getting the keys of all the descendants
of N; besides the key K; of N;. Thus there are only two
situations to be considered when S’ is able to get K; or
Jx:(ID;) but fails to mimic any of the parents of N,.
These two situations are:
Situation 1: N; is an ancestor of some node(s) in
o(S).
Situation 2:
e(S).
Consider Situation 1 first. Since N; is an ancestor
of a node in @ (S"), there is a path from N, to the node
in ®(S’). N; can derive the key of the node in @ (S")
by evaluating the pseudo-random function family and
(instances of) the sibling intractable function family
which appear in the path. Therefore, getting the key
K; of N; or fx,(ID;) by S’ implies that S can do at
least one of the following three actions: invert the
pseudo-random function family, find a collision string
for (instances of) the sibling intractable function fam-
ily (appearing in the path from N; to the node in
®(S")), or invert (instances of) the sibling intractable
function family. The success of any of these actions
with a high probability is a contradiction. Compared
to Situation 1, Situation 2 is easier to analyze. Since
N; is not the ancestor of any node in @ (S”), there is no
path from a node in ®(S’) to N;. Thus getting K; or
fx.(ID;) by ©(S’) implies that @ (S’) can predict the
output of the pseudo-random function family. This is
also a contradiction.

N; is not the ancestor of any node in

4.4 Improvement of the Key Generation Scheme

A problem with the above key generation scheme
is that a node must pass through a number of interme-
diate descendants in order to arrive at a given distant
(non-child) descendant node. This may be an incon-
venience to the members of the hierarchical organiza-
tion. This traversal down the structure requires the use
of the sibling intractable function family and the
pseudo-random function associated with each node
along the traversed path in order to find the keys of the
intermediate nodes.

A solution to the problem consists of a
modification to the key generation phase. For a given
node N; with ¢ ancestors (including the parents) Ny,
N, -+, and Nj, the generation of the key of N;
involves the selection of a random string K, E %" and
the selection of h;& H, randomly and uniformly such
that fx, (ID;), fx;,,(ID;), ---, and fx,(ID;) are all
mapped to K;:

hi (fKn (IDI)) :hi (fK/z(IDi)):”'



:ht(fk,»q(]Di)):Ki (3)

In this way any ancestor of N; which was involved in
the generation of K, can access A, directly without the
need to pass any intermediate nodes. An extensive
treatment of this issue together with other solutions to
the hierarchical access control problem is presented in
Ref. (19).

4.5 Key Updating

It is natural to expect that the structure of an
organization (i.e., the shape of the corresponding
Hasse diagram) will change throughout time, and thus
the keys of the nodes will also need to be updated.
Some typical changes include the addition and dele-
tion of nodes, and the establishment and removal of
links between nodes. Another reason for the renewal
of the keys is the replacement of one member of the
organization with another, without involving any
change to the structure (Hasse diagram) itself. The
arrival of a new member to the organization implies
the creation of a new identity information for that
member. Key updating is also required when some
keys are lost or when the duration of validity of some
keys has expired. In this section we will consider
briefly three of the most typical problems related to the
maintenance of the internal nodes of the hierarchical
structure. These are the addition and deletion of
nodes, and the replacement of the identification infor-
mation of nodes. The case of leaf nodes is trivial and
will not be discussed.

4.5.1 Addition and Deletion of Nodes

When nodes are added or deleted there are a
number of possibilities as to how the subposets affected
by the change should be maintained. When a new
node N, is added between node N; and its parent node
N;, N becomes the new parent of N,, and N, the parent
of N,. The descendants of N, which includes N, are
effectively shifted one level down in the organization
(Hasse diagram). Tt is clear that the addition of a new
node followed by a shift down of all its descendants
requires the generation of new keys for that node and
its descendants. Only the new node requires a new
identity information.

In the case of the deletion of a node, its descen-
dants becomes the descendants of its parent(s) and
new keys must be generated for the descendants. This
corresponds to an upward shift by one level of these
descendants in the organization.

4.5.2 Replacement of an Identity

The replacement of the identity information of a
node can be due to a number of changes in the organi-
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zation. A member at a node can be replaced by
another current member or by a new member from
outside the organization. Often, the identity of a node
simply needs to be changed following some organi-
zational decision. In all these cases the keys for all the
descendants of that node need to be generated again.
The node itself is assigned a new key which is used to
generate and assign the keys of its children nodes.

5. Other Applications of SIFF

There are numerous ways that SIFF can be
applied. In the following, three other applications of
SIFF are briefly discussed. The first application is to
the shared mail box problem, the second to the access
control in distributed systems, and the third to the
multiple message authentication problem. A further
application of SIFF to database authentication is
presented in Ref.(7).

5.1 The Shared Mail Box Problem

Suppose that there is a group consisting of &k users
Ui, Us, -+, U,. Each user U, has a private mail box B;.
Assume also that there is a shared mail box B;. The
shared mail box problem consists of the design of a
cryptographic system for the group that has the follow-
ing features:

1. Each user U, holds just one secret key K; ot » bits,
for some nE .

2. For each 1=i<k, the mail box B; can only be
opened by the user U; who possesses the secret key K.
3. The shared mail box B; can be opened by every user
in the group, but not by any outsider.

4. Even when k—1 users conspire together, it is
computationally difficult for the k —1 users to open the
other user’s private mail box.

This problem represents an abstraction of many
practical applications where the determination of
access rights to various resources is required. The
traditional way for solving the access problem with the
private and shared mail boxes is to let each user hold
two keys, one for his or her private mail box and the
other for the shared mail box. The traditional solution
becomes very impractical when the user is a member of
a number of different groups, and hence has to hold as
many keys for shared mail boxes as the total number of
groups he or she belongs to. We present a simple
solution to the problem by the use of a SIFF and a
secure secret-key block cipher, both of which can be
constructed from any one-way function. First of all,
we, a trusted third party, choose a secure secret-key
block cipher for the purpose of locking the private and
shared mail boxes. Then we choose a (k—1)-SIFF H
={H,/nE ¥} that maps n-bit input to n-bit output
strings. The following is the key generation procedure
for the group.
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» Choose for each user U; a random n-bit string K, as
his or her secret key.

» Choose a random n-bit string K, for the shared mail
box Bs.

* Select from H, a random function 4 such that all
private keys K, K,, .-, K, are mapped to K, i.e.,
h(K,)=h(K;)=-+=h(K,;) =K. Then make 4 pub-
lic.

It is easy to see that the scheme fulfills all the four
requirements. In particular, each user U; can apply the
secure block cipher with K; as a key to open or lock
his or her private mail box B;, and with A(K;), which
is mapped to K, as a key to open or lock the shared
mail box Bs.

5.2 Access Control in Distributed Systems

SIFF can also be used to control access of data in
a distributed system which are geographically dis-
persed. Each site in the system would have two levels
of access, the first being applied to the site as a whole,
while the second to control access to resources and
data stored at that site.

In the first access level, the access by one site to
another is determined using SIFF. Hence, a given site
can determine which other sites that may have access to
it. This, in effect, classifies sites according to their
sensitivity, and may be governed by various perfor-
mance and practical necessities. In the second access
level, which assumes the granting of access in the first
level, transactions that access multilevel resources and
data can be controlled also using SIFF.

5.3 The Multiple Message Authentication Problem

Message authentication is an important part of
information security. A common method is to append
to a message to be authenticated a short tag such as a
checksum, by using a modification detection code. In
some cases, we have many (independent) messages to
be authenticated. Two usual methods are for each
message to be given a tag independent of one another,
and for the concatenation of all the messages to be
given a single common tag. In the first method the
resulting number of tags may prove too impractical to
be maintained, while in the second method the valida-
tion of one message requires the use of all other
(unrelated) messages in the re-calculation of the tag.

A preferred method would be one that employs a
single common tag for all the messages in such a way
that a message can be verified individually without
involving other messages. This can be achieved by
using SIFF in which all messages are represented as
strings of /(n)-bit long (with padding if required).
The common tag is m(n)-bits long and the integer &
must be larger than the number of all messages for
which the common tag is to be created. A k-SIFF H
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={H,|nE N} is then chosen that maps / (n)-bit input
to m(n)-bit output strings. In general the application
of the k-SIFF is restricted to those situations that
require a common tag for all input messages. Two
conceivable simple situations that may arise and that
may gain advantage from using a common tag instead
of individual tags are the following.

The first situation is the case where a software
company produces a large number of software prod-
ucts which can function together as an integrated
system or which can function independently as a stand-
alone program. A customer may purchase any single
component, and later gradually purchase the entire
collection of components to create the integrated sys-
tem. The customer must also be satisfied that the
products being bought are authentic from the software
company and have not been tampered with illegally or
infected by computer viruses. In such a situation it
may be preferable if the company issues a common tag
t and function 4 for all its products to a customer
when that customer makes a first-time purchase. For
subsequent purchases the company need only send the
newly-purchased component without the need to gen-
erate or send an accompanying individual tag for that
component. The customer can verify the authenticity
of each component using ¢ and A.

In order to achieve this effect the company must
first choose a random m (n)-bit tag ¢. All softwares to
be purchased are assumed to be encrypted for their
security during transportation. The company then
chooses randomly and uniformly from H, a function A
that maps all the encrypted softwares of the company
and the cryptographic keys to the same tag . For a
first-time purchase, the company issues the tag ¢ and
the function 4 in a secure manner to the customer. For
subsequent purchases the company can send the prod-
uct to the customer over insecure communications line
since any corruption to the encrypted product during
its transit will be detected by the customer. Note that
the tag ¢ and the function 4 need not be maintained
secret. They can in fact be published publicly, which
then allows any party to authenticate any (encrypted)
software from the company. This basic form of au-
thenticating a product only satisfies the requirement
that the customer receives the product in its original
form. The approach can be somewhat augmented by
providing each customer with a different tag ¢ and
function 4. The approach does not address the issue of
software piracy by customers.

The second situation is related to the first, and it
concerns the authentication of a set of software compo-
nents by a Trusted Verification and Certification
Authority (TVCA). In this situation a group of
competing companies agree to produce a given inte-
grated system where each company produces one or
more of the components of the system. After the
companies complete their products, the TVCA evalu-
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ates the trustworthiness of each component and the
trustworthiness of the integrated system as a whole.
When the TVCA is satisfied it provides a ratings for
each component and for the total integrated system.
The TVCA then chooses randomly a tag ¢ and chooses
randomly and uniformly from H, a function 4 that
maps all the certified components to the tag. Cus-
tomers that seek a trustworthy system can purchase the
versions of the components prescribed by the TVCA
and check the authenticity of each component by using
t and A. This approach gives some guarantee to the
customer that the components being purchased are
indeed those verified and rated by the TVCA. This
approach also prevents one company from undermin-
ing the integrity of second company by producing
different versions of a component that reduces the
security level achieved by the components of the sec-
ond company. Each subsequent versions of compo-
nents must be re-evaluated by the TVCA who repeats
the above process of authenticating the products.

In general only certain situations warrant the use
of a k-SIFF, and such cases must be evaluated from the
points of view of security, the required computation
and the convenience to the users. The above examples
show that SIFF has potential for many areas of appli-
cation.

6. Conclusion and Further Work

We have introduced the notion of SIFF which
includes as a special case the notion of the universal
one-way hash function family defined Naor and Yung
in Ref.(13). We have also shown a simple method for
transforming any universal one-way hash function
family into a SIFF. Putting together this and
Rompel’s results, we have obtained the theoretically
optimal result that SIFF can be constructed from any
one-way function. To illustrate the potentials of SIFF
we have presented a key generation scheme for hierar-
chical organizations, and suggested solutions to the
shared mail box problem, access control in distributed
systems and the multiple message authentication prob-
lem.

The applicability of a solution based on SIFF to
a practical problem is largely determined by the com-
pactness of SIFF. An improvement in the compactness
of SIFF results directly in the improvement in the
efficiency of a solution based on SIFF. For the con-
struction of k-SIFF presented in Theorem 1, the length
of a description of a function in H, is of order
O(Ly(n)+ Ly(n)), where Li(n) and L,(n) are the
lengths of a description of a function in U, and in H,
respectively. Searching for more compact construc-
tions of SIFF from one-way functions, together with
other applications of SIFF, is an interesting subject for
further research.
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