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Abstract

This letter presents a simple yet effective method for transforming Boolean functions that do not satisfy the strict
avalanche criterion (SAC) into ones that satisfy the criterion. Such a method has a wide range of applications in
designing cryptographically strong functions, including substitution boxes (S-boxes) employed by common key block

encryption algorithms.
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1. The strict avalanche criterion

A (Boolean) function on V,,, where ¥, denotes
the vector space of n-tuples of elements from
GF(2), is said to satisfy the strict avalanche crite-
rion (SAC) if complementing a single bit in its
input results in the output of the function being
complemented half the time over all the input
vectors. The SAC is a very important requirement
for cryptographic functions. The formal definition
for the SAC seems to appear first in the open
literature in 1985 [16,17];

Definition 1. Let f be a function on V. f is said
to satisfy the SAC if f(x) ® f(x ® a) assumes the
values zero and one an equal number of times, or
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simply, f(x) ® f(x ® @) is balanced, for every a €
V, with W(a)=1, where x=(x,...,x,) and
W(a) denotes the number of ones in (or the
Hamming weight of) the vector a.

A closely related concept is propagation crite-
rion [1,12,11]:

Definition 2. Let f be a function on V. We say
that f satisfies

(1) the propagation criterion with respect to a
non-zero vector a in V, if f(x)@f(x®a) is a
balanced function,

(2) the propagation criterion of degree k if it
satisfies the propagation criterion with respect to
all @ v, with 1 < W(a) <k.

As the SAC is equivalent to the propagation
criterion of degree 1, the latter can be viewed as
a generalization of the former. In another direc-
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tion, the SAC has been generalized to higher
order SAC. This work is represented by [5]. In
this letter we shall not pursue further the devel-
opments in these two directions. Instead we shall
focus our attention on how to transform functions
which do not satisfy the SAC into ones that
satisfy the criterion.

2. Single functions

First we introduce the following basic theo-
rem.

Theorem 3. Let f be a function on V,,, and A be a
nondegenerate matrix of order n whose entries are
from GF(2). Suppose that f(x) ® f(x ® ;) is bal-
anced for each row vy; of A, where i =1,...,n and
x =(xy,...,x,). Namely f satisfies the propagation
criterion with respect to all rows of A. Then y(x) =
f(xA) satisfies the SAC.

Proof. Let 6, be a vector in V, whose entries,
except the ith, are all zero. Note that W(§,) =1
and 8,4 =1y, i=1,...,n. Then we have y(x) ®

P(x®8)=f(xA) @ f(x ®8)A)=f(w) & f(ud ),

where u =xA. Since A is nondegenerate, u runs
through V,, while x does. By assumption, f(u) ®
f(u & v,) runs through the values zero and one an
equal number of times while u runs through V.
Consequently ¢(x) ® (x ® §,) runs through the
values zero and one an equal number of times
while x runs through V,. That is, (x) satisfies
the SAC. O

Note that the algebraic degree, the nonlinear-
ity and the balancedness of a function is un-
changed under a nondegenerate linear transfor-
mation of coordinates [6,13]. In addition the
number of nonzero vectors with respect to which
the function satisfies the propagation criterion is
also invariant under the transformation [13]. In
the case of S-boxes (tuples of functions), the
profile of its difference distribution table, which
measures the strength against the differential
cryptanalysis [3,4], also remains invariant under
such a transformation [15). Thus Theorem 3 pro-

vides us with a very useful tool to improve the
strict avalanche characteristics of cryptographic
functions. In the following we consider two appli-
cations of the theorem.

Application 4. Our first application shows that a
SAC-fulfilling function on a higher dimensional
space can be easily obtained from a SAC-fulfill-
ing function on a lower dimensional space.

Let g(y,...,¥,) be a function on V, that
satisfies the SAC. Adding ¢ dummy-coordinates

Xy..., %, into g, we obtain a function f on V,_,,
namely,
(Y1 Vo Xee s X)) =8(Vireees ¥s)-

The ¢ newly added coordinates have no influence
on the output of f. Hence f does not satisfy the
SAC.

Let A be a nondegenerate matrix of order
s +¢. Assume that each row vy, of A can be
written as y; = (B;, a;), where W(B,)=1, B, €V,
and @, €V,. Let x=(xp,...,x,), y=(y;,...,¥,.)
and z=(y, x). Then we have f(z)®f(z @y, =
g(y) ® g(y @ B;). This shows that f(z) @ f(z @ y,)
is balanced for vy, i=1,...,s +t. By Theorem 3,
¥(z) = f(zA) satisfies the SAC.

An example of the matrices that satisfy the
requirements is as follows,

IS OSX!
4 [Qm ) ] M
where I denotes the identity matrix, 0 denotes
the zero matrix, and Q is a matrix that contains
precisely a one in each of its rows.

¢ and f have the same nonlinearity, algebraic
degree, and balancedness as f(z) does. The two
functions also have the same number of nonzero
vectors with respect to which they satisfy the
propagation criterion. The net gain of ¢ over f is
the SAC. However, it should be pointed out that
for this particular example, the resulting function
¢ does not satisfy the propagation criterion with
respect to vectors whose entries are zeros except
in the first and the (s +j)th, where 1 <j <¢. This
property might be undesirable in certain applica-
tions. We can get around the problem by select-
ing a nondegenerate matrix A that introduces
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more inter-dependencies among the coordinates.
Here is such a matrix,

A_ Is Os><t Is Bs><t
QIXS It OIX: 1t
Is Bs
- A (2)
Qt><s Ql)(s sXt t

where B is an arbitrary matrix whose entries are
taken from GF(2).

Application 5. Let g, and g, be functions on V.
Then

F(yis X150005%,)
=(1®y)go(x1---,%,) @y 18(Xy,..., X,)

is a function on V, ;. The truth table of f can be
obtained by concatenating the truth tables of g,
and g,. For this reason, we say that f is the
concatenation of g, and g,. Similarly, we can
define the concatenation of 2° functions on V,.
The result is a function on V. To simplify the
representation of the concatenation of 2° func-
tions, we introduce the following notation.

For each vector 8 = (iy,...,i,) € V,, we define
a function D; on V, by

Ds(y)=(y1$fl)...(ys®fs),

where y =(y,,...,y,) and i denotes the binary
complement of i, namely { = 1 @ i. For instance,
when s =2 we have D (y;, y,)=(y, ® Iy, ®
1), and when s=3 we have D, (y,, y,, ¥3) =
vy, ® 1y,. Note that Dy(y) =1 if and only if
y=24.

Using this notation, the concatenation of 2°
functions on V,, g, .. 0, 8. .1>---»81...1» €aN
be written as

f(y, x) -9 [Ds(y)gs(x)], (3)

.....

where x =(x,,...,x,). Note that each g5 is a
function on V, and is indexed by a vector in V.
Of particular interest is the concatenation of lin-
ear functions on V,. In Theorems 4 and 5 of [14],
the following result is proved:

Lemma 6. When t>s and all g5, 6 €V, are
distinct nonzero linear functions on V,, the function

f constructed by (3) is highly nonlinear and bal-
anced. In addition, f satisfies the propagation cri-
terion with respect to all vy =(B, a), where B is a
nonzero vector in V, and « is an arbitrary vector in
|

t

Let A be a nondegenerate matrix of order
s +t. Suppose that the ith row y, of A can be
written as y, = (B8;, ;) with B, # 0, where B, €V,
and «,€V,. From Lemma 6 we know that f
satisfies the propagation criterion with respect to
all rows of A. By Theorem 3, y(z) = f(zA4) satis-
fies the SAC. Note that the matrix A4 defined by
(1) or (2) satisfies the requirements.

These discussions also hold for the more gen-
eral case where f is defined by

f(y, x) = BEBV [Ds(y)gs(x)] @r(y)

where r is an arbitrary function on V.

3. A set of functions

In computer security practice, such as the de-
sign of S-boxes, we often consider a set of func-
tions. It is desirable that all component functions
in a set simultaneously satisfy the SAC. From
Theorem 3 we can see that given a set of func-
tions on V,, {f,,..., f,.), if A is a nondegenerate
matrix of order n such that f(x)® f(x @7y, is
balanced for every function f; and every row vy,
in A, then g,(x) =f(xA4),..., g,(x) =, (xA) all
satisfy the SAC. The following theorem gives a
sufficient condition for the existence of such a
nondegenerate matrix.

Theorem 7. Let f,,...,f, be functions on V,.
Denote by B the set of nonzero vectors vy in V,, such
that f(x)®f(x®y) is not balanced for some
1<j<m, and by | B| the number of vectors in B.
If | B| <2"71, then there exists a nondegenerate
matrix A of order n with entries from GF(2) such
that each y(x) = f(xA) satisfies the SAC.

Proof. We show how to construct a nondegener-
ate matrix A of order n, under the condition that
| B| <2"~1. Denote by Se,....a, the set of vec-

..... a
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tors consisting of all the linear combinations of
VeCtors ay,..., Q.

The first row of A, vy,, is selected from V,
excluding those in B and the zero vector, i.e.,
from the vector set V,, — B — S,. There are 2" —
| B| —2° different choices for y,. The second row
of A, vy,, is selected from the vector set V, — B —
S,,- This guarantees that vy, is linearly indepen-
dent of y,. We have 2"— |B|—2' different
choices for vy,.

In general, once the first k£ — 1 linearly inde-
pendent rows y,,...,y,_; of A are selected, the
kth row v,, k<n, will be selected from the
vector set V, —B—S§, . . This process en-
sures that y,,..., 7y, are all linearly independent.

The number of choices for the last row v, is
2" — |B|—2""1=2""1— | B| > 0. Therefore,
we can always find a nondegenerate matrix A
such that f(x) @ f,(x ®y,) is balanced for every
1<i<m and 1<j<n. By Theorem 3, ¢,(x) =
fixA), ... b, (x)=f,(xA) all satisfy the SAC.
O

As is discussed in Section 2, the transforma-
tion technique does not affect the nonlinearity,
the algebraic degree and the balancedness of the
component functions of an S-box. The profile of
the difference distribution table of the S-box, and
the number of nonzero vectors with respect to
which the component functions satisfy the propa-
gation criterion are not altered either. This tech-
nique has been successfully applied in [15] to
design S-boxes that possess many desirable cryp-
tographic properties, which include the high non-
linearity, the SAC, the balancedness and the ro-
bustness against differential cryptanalysis. As is
shown below, the technique can also be applied
to other approaches to the construction of S-
boxes.

Application 8. S-boxes based on permutation
polynomials are studied in [2,7-10]. In general,
these permutations do not satisfy the SAC. Em-
ploying the transformation technique discussed
above, the strict avalanche characteristics of these
permutations can be improved. In particular, with
the permutations constructed by the “cubing”
method [8-10], each component function f; satis-

fies the propagation criterion with respect to all
but one nonzero vectors in V,, where n >3 is
odd. Note that | B| <n. A component function
fails to satisfy the SAC if the Hamming weight of
the nonzero vector with respect to which the
propagation criterion is not satisfied is one. If this
is the case, by Theorem 7 we can use a nondegen-
erate matrix to transform the component func-
tions of such a permutation so that they all satisfy
the SAC.

4. A final remark

In [13], we have constructed highly nonlinear
balanced functions on V,,.; that satisfy the
propagation criterion of degree 2k, and highly
nonlinear balanced functions on V,, that satisfy
the propagation criterion of degree %k. A trans-
formation technique similar to that presented in
this letter has played an important role in the
constructions.
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