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Abstract

The focus of this paper is to formalize the concept of 

identity-based threshold signature and give the first 
provably secure scheme based on the bilinear pairings. 

An important feature of our scheme is that a private 

key associated with an identity rather than a master 
key of the Public Key Generator is shared among 

signature generation servers, which is more desirable 

in practice. Another interesting aspect of our results is 
that the security of one of the verifiable secret sharing 

schemes used to construct the identity-based threshold 

signature scheme is relative to a slightly modified 
version of the Generalized Tate Inversion problem 

recently proposed by Joux.  

Keywords: Identity-based threshold signature, Bilinear 

Pairing, Verifiable secret-sharing, Generalized Bilinear 

Problem, Chosen message attack   

1. Introduction 

Motivation. Threshold signature is a useful tool for 

decentralizing the power to sign a message. A major 

motivation for identity (ID)-based signature originally 

proposed by Shamir [15] is to authenticate messages 

without the need of exchanging public keys or keeping 

public key directories. A major advantage of ID-based 

signature is that it allows one to sign a message in such 

a way that any user can verify the signature using the 

signer's identifier such as email address instead of 

using his/her digital certificate. Combining these two 

concepts to realize “ID-based threshold signature” is 

the focus of this paper. 

  A practical application of ID-based threshold 

signature scheme can be considered in the following 

situation. Suppose that Alice, as a president of a 

company, has created an identity which represents the 

company and has a private key associated with the 

identity. Using the private key, she is able to sign any 

documents. But (concerning about, e.g, the situation 

where she is away) she wants to delegate this power to 

a number of signature-generation servers so that a 

signature on a given message is jointly generated by 

those servers and anyone can successfully verify the 

signature using the company's published identity if, 

and only if, he/she obtains a certain number of partial 

signatures from the signature-generation servers. 

 Due to the page limit, discussions on related work, 

security notions and analyses of the various verifiable 

secret-sharing and ID-based threshold signature 

schemes are brief. Readers are referred to [2] for full 

details. 

Related Work. In the non-ID-based setting, research on 

threshold signature schemes has been quite active.  The 

notable contributions in this line of research especially 

focused on the formalizations of threshold signature 

and its security include the works of Cerecedo, 

Matsumoto and Imai [5] and those of  Gennaro, 

Jarecki, Krawczyk, and Rabin’s [9].  

  Since Boneh and Franklin [4] used the bilinear 

pairings to construct the first functional ID-based 

encryption scheme, several ID-based signature 

schemes based on the bilinear pairings including Cha 

and Cheon's scheme [6] and Hess’ scheme [11] have 

been proposed. The authors of [6] and [11] gave a 

formal definition of the unforgeability of ID-based 

signature schemes against chosen message attack, and 

proved their schemes are secure in the random oracle 

model [3] assuming the Computational Diffie-Hellman 

(CDH) problem is intractable. 

  However, to our knowledge, ID-based threshold 

signature has not been treated in the literature.  

Our Contribution. In this paper, we present a formal 

security notion for ID-based threshold signature and 

give a concrete scheme whose unforgeability against 

chosen message attack is based on the CDH problem. 

Interestingly, the security of one of the verifiable secret 

sharing schemes that is used to construct our ID-based 

threshold scheme is relative to a variant of the 
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Generalized Tate Inversion (GTI) problem. Joux asked 

the question whether the problem can be used to 

construct cryptographic protocols [12]. Our results 

answer the question in an affirmative way. 

2. Security Notion of ID-Based Threshold 

Signature

Generic ID-based Threshold Signature. We first 

describe a generic (t, n) ID-based threshold signature 

scheme, which we call “IDTHS”. IDTHS consists of 

algorithms GC, EX, DK, S, and V.

  The common parameter generation algorithm GC is 

run by the trusted Private Key Generator (PKG) to 

generate its master/public key pair and all the 

necessary common parameters. The PKG's public key 

and the common parameters are given to every 

interested party. 

  On receiving a user's private key extraction request 

which consists of an identity, the PKG then runs the 

private key extraction algorithm EX to generate the 

private key associated with the requested identity. 

  An authorized dealer who possesses a private key 

associated with an identity runs the private key 

distribution algorithm DK to distribute the private key 

to n signature generation servers. The entity that runs 

DK can be either a normal user (such as Alice in the 

example given in Section 1) or the PKG, depending on 

cryptographic services that the PKG can offer. Namely, 

if the PKG is able to organize threshold signature, the 

PKG can run DK, but if the PKG has the only 

functionality of generating private keys for users, the 

entity running DK would be a trusted normal user. 

Note that like the ID-based threshold decryption 

scheme proposed in [1], the private key associated with 

an identity is shared in our ID-based threshold 

signature scheme. According to [1], this approach is 

more practical than Boneh and Franklin [4]’s approach 

that distributes the master key of the PKG to a number 

of other PKGs (called “Distributed PKGs”) to perform 

cryptographic operations such as threshold decryption 

or signature generation, since the latter approach 

requires the distributed PKGs to be involved on-line in 

performing the cryptographic operations. Obviously, 

this creates a bottleneck on the PKGs and also violates 

one of the basic requirements of an ID-based 

encryption scheme, “the PKG can be closed after key 

generation”, which was envisioned by Shamir in his 

original proposal of ID-based cryptography [15]. 

Moreover, it introduces a scalability problem when the 

number of available distributed PKGs is not matched 

against the number of decryption servers required, say, 

there are only 3 available PKGs while a certain 

application requires 5 signature generation servers. 

  Given a set of common parameters generated by GC,

a share of a private key associated with an identity, and 

a message, n signature generation servers jointly 

generate a signature for the given message by running 

the signature generation algorithm S.

  The validity of the signature can be checked by 

running the signature verification algorithm V.

3. Computational Assumptions 

Bilinear Pairing. We briefly review the admissible 

bilinear pairing [4], which we call the “Bilinear 

pairing” for short. The Bilinear pairing ê is defined 

over two groups of the same prime-order q denoted by 

G and F. (By G* and Zq*, we denote G-{O} where O

denotes the identity element of G, and Zq*-{0} 

respectively.) We will use an additive notation to 

describe the operation in G while we will use a 

multiplicative notation for the operation in F. In 

practice, the group G will be implemented using a 

group of points on certain supersingular elliptic curves 

and the group F will be implemented using a subgroup 

of the multiplicative group of a finite field. The 

Bilinear pairing ê:G ×G F has the following 

properties [4]. 

- Bilinear: ê(aR1, bR2)= ê(R1,R2)
ab, where R1, R2 G and a,

b Zq*.

- Non-degenerate: ê does not send all pairs of points in G × 

G  to the identity in F. (Hence, if R is a generator of G then 

ê(R, R) is a generator of F.)

- Computable: For all R1, R2 G, the pairing ê(R1, R2) is 

efficiently computable. 

CDH Problem in the group G. Informally, the CDH 

problem in the group G refers to the following 

computational problem: Given (G, q, P, aP, bP) for 

random a, b Zq* , compute abP G.

   It is believed that the CDH problem in the group G is 

computationally intractable. However, it should be 

noted that the Decisional Diffe-Hellman (DDH) 

problem in this group can be solved in polynomial time 

with the help of the Bilinear pairing. 

Modified Generalized Bilinear Inversion Problem.

Recently, Joux [12] proposed a new computational 

problem related to the Tate pairing, called the 

Generalized Tate Inversion (GTI) problem. Informally,

the GTI problem refers to the computational problem 

in which an attacker tries, given random h F, to find 

a pair (S, T) G × G such that e(S, T) = h, where e

denotes the Tate pairing.

   We slightly modify the above GTI problem and 

obtain a new computational problem, which we call a 
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“modified Generalized Bilinear Inversion (mGBI)” 

problem”. The newly modified computational problem 

is described as follows: Given random h F and the 

generator P of G, compute S G  such that ê(S, P) = h.

    We note that the mGBI assumption (that is, the 

mGBI problem is computationally intractable) is 

weaker than the GBI (Generalized Bilinear Inversion) 

assumption which is naturally derived from the GTI 

assumption by replacing the Tate pairing by the 

admissible bilinear pairing, as sketched below: Assume 

(G, ê, h), where h F, is given to an attacker A
GBI

 for 

the GBI problem. First, A
GBI

 chooses a generator P of 

G. It then runs an attacker A
mGBI

 for the mGBI problem 

providing (G, ê, h, P) as input. When A
mGBI

 outputs S,

A
GBI

 sets T=P and returns (S, T).

4. Building Blocks for Our ID-based 

Threshold Signature Scheme 

Review of “Secret-Sharing over G”. In order to share a 

private key which is associated with an identity, we 

need the following technique of sharing a point on G

presented in [1]. 
Distribution Phase: Let q be a prime order of a group G of 

points on some elliptic curve. Let S G * be a secret (point) 

to share. Suppose that we have chosen integers t and n 

satisfying 1  t  n <q.

First, we pick F1, F2,…, Ft-1 uniformly at random from G*.

Then, we define a polynomial-like function F: N  {0} G,

which we call “PLF” throughout this paper, such that              

                            
1

1

)(
t

l

l

l FxSxF .

Define t-1 as a “degree”. Now, we compute Si = F(i) G for 

i = 1,…,n and send (i, Si) to the i-th member of the group of 

cardinality n. Note that when i=0, we obtain the secret itself, 

that is, S=F(0).

Reconstruction Phase: Let  {1,…,n} be a set such that 

| | t, where |  | denotes the cardinality of a given set. The 

function F(x) can be reconstructed by computing           

               
j

j

xj SxF )(  where

j
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j
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Note that *

qxj Z  is the Lagrange interpolation coefficient 

used in Shamir's secret sharing scheme. 

Computationally Secure Verifiable Secret Sharing 

Scheme Based on the Bilinear Pairing. Verifiable 

Secret-Sharing (VSS) is a useful tool for providing 

threshold signature schemes with robustness. 

   Since our ID-based threshold signature scheme is of 

Discrete Logarithm (DL)-type, various DL-type VSS 

schemes, e.g., [7, 13] can be considered as building 

blocks for our scheme. However, we modify those 

schemes as the base secret-sharing scheme presented in 

the previous section, which is different from Shamir's 

original secret-sharing scheme, and the Bilinear pairing 

should be employed in our ID-based threshold 

signature scheme. 

   Our first VSS scheme, which we call 

“Computationally secure Verifiable secret-sharing 

scheme based on the Bilinear Pairing (CVSSBP)”, is 

motivated by Feldman's VSS scheme [7]. This scheme 

will be used to distribute a private key associated with 

an identity into a number of signature generation 

servers. 

Description of CVSSBP Let (G, q, P, ê) be a set of 

parameters, as defined previously. Suppose that a 

threshold t and the number of servers n satisfy 1  t 

n<q. To share a secret S G* out among n parties, a 

dealer performs the following steps. 
1. Choose F1, F2,…, Ft-1 uniformly at random from G*,

construct a PLF F(x)= F(x)= S + xF1+ + xt-1Ft-1 for x N

 {0} and compute Si = F(i) for i = 0,…, n. Note that 

S0=S.

2. Send Si to party i for i = 1,…,n secretly. Broadcast 0 = 

ê(S, P) and j = ê(Fj, P) for j =1,…,t-1.

3. Each party i  then checks whether its share Si is valid by 

computing

                      ê (Si, P) =

1

0

t

j

i

j

j

                                (1) 

Note that the security of CVSSBP is based on the 

mGBI problem introduced in Section 3. (Readers are 

referred  to [2] for a detailed proof.) 

Unconditionally Secure Verifiable Secret Sharing 

Scheme Based on the Bilinear Pairing. Our second 

VSS scheme based on the Bilinear pairing, which we 

call a “Unconditionally-secure VSS based on the 

Bilinear Pairing (UVSSBP)”, will be served as a base 

scheme for the new distributed key generation protocol 

based on the Bilinear pairing  that will be in our ID-

based threshold signature scheme. We first define a 

new commitment scheme. 

New Commitment Scheme Let (G, q, P, ê) be the 

common parameters, as defined previously. Suppose 

that random elements G, H G*, and the common 

parameters are given to a dealer. (We assume that no 

party knows a, b Zq* such that G = aP and H = bP.

These values can be chosen by a trusted third party or 

interested parties using a coin-flipping protocol.) The 

dealer then chooses r Zq* uniformly at random and 

computes 

                Comm(S, r) = ê (S, P)ê(G, H)r.

Description of UVSSBP Suppose that the threshold t 

and the number of parties n satisfy 1  t  n < q. To 

share a secret S G* out among n parties, a dealer 

performs the following steps.  
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1. Publish 0 = Comm(S, r), a commitment to S, where r is 

chosen uniformly at random from Zq*. (We assume that the 

dealer has used the random elements G, H G* for input 

parameters for the commitment.) 

2. Choose F1,…,Ft-1 uniformly at random from G*,

construct a PLF F(x)=S+ xF1 + + xt-1Ft-1 for x N  {0}

and compute Si = F(i) for i = 0,…,n. (Note that S0 = S.)

3. Choose f1,…, ft-1 uniformly at random from Zq*,

construct a polynomial f(x)=r+ f1x +  +ft-1x
t-1 for x N

{0} and compute ri = f(i) for i = 0,…,n.  (Note that r0 =r.)

4. Send (Si, ri) to party i for i = 1,…, n secretly. Broadcast 

and j = Comm(Fj, fj) for j = 1,…, t-1.

5. Each party i  then checks whether its share (Si, ri) is 

valid by computing 

                   Comm(Si, ri)=

1

0

t

j

i

j

j

.                                (2) 

Distributed Key Generation Protocol Based on the 

Bilinear Pairing. We are now ready to construct a 

distributed key generation protocol, whereby a number 

of parties without a dealer can jointly generate a secret 

K G* and its corresponding public value  = ê(K, P).

We call this protocol “Distributed Key generation 

Protocol Based on the Bilinear Pairing (DKPBP)”. 

Notice that the aim of DKPBP is analogous to Gennaro 

et al.'s [9] distributed key generation protocol for 

discrete-logarithm based cryptosystem in which a 

number of parties can generate a secret k Zq and its 

corresponding public value gk Zp* jointly, where g is 

a generator of Zp* and the primes p and q satisfy q|p-1.

   To build up DKPBP, we need a distributed-version of 

the UVSSBP scheme, which we call “Distributed 

Unconditionally-secure Verifiable secret-sharing 

scheme based on the Bilinear Pairing (DUVSSBP)”. 

With this protocol, a secret S G * can be generated 

jointly by participating parties without a dealer. Due to 

lack of space, we refer readers to [2] for the details of 

DKPBP.

5. Our ID-based Threshold Signature 

Scheme

Description of the Scheme. Combining the various 

building blocks presented in the previous section and 

employing Hess’ ID-based signature scheme [11] as a 

base scheme, we now construct the ID-based threshold 

signature scheme based on the Bilinear pairing, which 

we call “IDTHSBP” as follows. (For simplicity, we 

omit the details of sub-algorithms CVSSBP and 

DKPBP, and only describe the significant values 

resulted from them.) 

• A common parameter algorithm GC(k): The PKG 

runs this algorithm to generate its private/public key 

pair and all the necessary common parameters. 

Precisely, the PKG performs the following. 
- Choose a group G of prime order q and its generator 

P. Specify the Bilinear pairing ê: G× G F.

- Pick a master key s uniformly at random from  Zp*

and compute Ppub= sP.

- Choose two hash functions H1: {0,1}*  G and H2:

{0,1}* × F Zp*.

- Keep the master key s as secret and return the common 

parameter cp = (G, q, P, ê, Ppub, H1, H2).

• A private key extraction algorithm EX(cp, ID): On 

receiving a private key extraction query ID from any 

user, the PKG performs the following. 
- Compute QID = H1 (ID) and DID= sQID.

- Return DID.

• A private key distribution algorithm DK(cp, DID, t, 

n):  A trusted dealer (as discussed in Section 1, this 

user could be the PKG itself) who possesses a private 

key DID associated with an identity ID performs the 

following. 
- Run CVSSBP taking (G, q, P, ê, Ppub, H1, t, n, DID) as 

input to share DID among n signature generation servers, 

denoted by 1,…, n. By Di
ID for i = 1,…, n, denote each 

of the private key share of DID held by i. By k for for k = 

0,…,t-1, where t is a threshold, denote the public 

verification information output at the end of the execution 

of CVSSBP.

• A signature generation algorithm S(cp, Di
ID, M)

where 1  i  n: Each signature generation server i

performs the following to jointly generate a signature 

on a given message M.
- Run DKPBP taking (G, P, t, n) as input to jointly generate 

a secret value K and a public value  =ê(K, P).

*Denote the resulting share of the sever i by Ki, for i = 

1,…, n. By k=

QUALi

ik
 for k = 0,…,t-1, denote the public 

verification information output at the end of the execution 

of DKPBP. (Note that 0 = ê(K, P) = . Note also that i’s

are the public values output from DKPBP. See [2] for more 

details.) 

- Compute v=H2(M, ). 

- Broadcast Ui= vDi
ID +Ki. (If i does not broadcast a 

value, we set Ui to null.)

- For server i where i QUAL, verify that 

           ê(Ui, P) =
1

0

1

0

t

k

i

k

v
t

k

i

k

kk

                          (3) 

  - Construct U by computing U =
iiU where i denotes 

the Lagrange coefficient for the set  such that | | t.

  - Return  = (U, v). 

• A verification algorithm V(cp, ID, M, ): Any user 

who wants to verify a signature  = (U, v) on a 

message M performs the following. 
- Compute  = ê(U, P)ê(QID,-Ppub)

v, where QID =H1(ID).
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- If H1(M, ) = v then return “Accept”, otherwise return 

“Reject”. 

Remarks on Design. We remark that although DK uses 

CVSSBP whose security is based on the mGBI 

problem, the security of DK is not relative to the mGBI 

problem but the CDH problem since the values Ppub

and QID are given as additional inputs. 

  Also, we remark that although the validity of the 

shares of DID and K are checked during the executions 

of CVSSBP and DKPBP, whether the partial signatures 

on the message M do reconstruct the original signature 

is not ensured. To resolve this problem, we have 

adopted Cerecedo et al. [5]’s technique in which the 

publicly available values output by CVSSBP and 

DKPBP are aggregated and the partial signatures are 

checked against them as presented in equation (3). 

Providing Non-Repudiation. One criticism of ID-

based signature schemes is that “non-repudiation”, 

which is a very important property that signature 

schemes should possess, is not provided in the ID-

based signature schemes due to the fact that the PKG 

always knows the user's private key and is capable of 

sign any messages at will. As discussed in [4, 11], the 

problem can be settled by distributing the PKG’s 

master key into a number of multiple PKGs. Our 

scheme IDTHSBP can also be incorporated with this 

technique as follows. First, the master key s is jointly 

generated by the multiple PKGs using the technique of 

[14]. Holding a share si of s, each of the multiple PKGs 

then responds to the trusted user who is supposed to 

run the private key distribution algorithm DK of 

IDTHSBP's private key extraction query with Di
ID =

siQID then the user collects these shares and recovers 

the private key DID. Having recovered DID, the user 

can run DK.

Security Analysis. It is proven in [2] that IDTHSBP is 

secure in the UF-IDTHS-CMA (Unforgeability of ID-

based Threshold Signature against Chosen Message 

Attack) sense in the random oracle model assuming the 

CDH problem is computationally intractable. (Note 

that the UF-IDTHS-CMA notion which is an 

adaptation of the “unforgeability of a signature scheme 

against chosen message attack [10]” notion to the ID-

based threshold signature setting is precisely defined in 

[2].) 

6. References 
[1] J. Baek and, Y. Zheng, “Identity-Based Threshold 

Decryption”, to appear in Proc. of PKC 2004.

[2] J. Baek and, Y. Zheng, “Identity-Based Threshold 

Signature Scheme from the Bilinear Pairings”, full version, 

available at http://phd.netcomp.monash.edu.au/joonsang. 

[3] M. Bellare and P. Rogaway, “Random Oracles are 

Practical: A Paradigm for Designing Efficient Protocols”, 

Proc. of the First ACM CCCS, pp 62-73, ACM Press, 1993. 

[4] D. Boneh and M. Franklin, “Identity-Based Encryption 

from the Weil Pairing”, Proc. of CRYPTO 2001, LNCS 

2139,  pp 213-229, Springer-Verlag, 2001. 

[5] M. Cerecedo, M. Matsumoto and H. Imai, “Efficient and 

Secure Multiparty Generation of Digital Signatures Based on 

Discrete Logarithms”, IEICE Trans. Fundamentals., Vol. 

E76-A, pp 532-545,1IEICE, 1993. 

[6] J. Cha and J. Cheon, “An Identity-Based Signature from 

Gap Diffie-Hellman Groups”, Proc. of PKC 2003, LNCS 

2567, pp 18-30, Springer-Verlag, 2003. 

[7] P. Feldman, “A Practical Scheme for Non-Interactive 

Verifiable Secret Sharing”, Proc. of the FOCS, pp 427-437, 

IEEE, 1987. 

[8] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, 

“Robust Threshold DSS Signatures”, Proc. of EUROCRYPT 

’96, LNCS 1070, pp 354-371, Springer-Verlag, 1996. 

[9] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, 

“Secure Distributed Key Generation for Discrete-Log Based 

Cryptosystem”, Proc. of EUROCRYPT ’99, LNCS 1592, pp 

295-310, Springer-Verlag, 1999. 

[10] S. Goldwasser, S. Micali and R. Rivest, “A Digital 

Signature Scheme Secure Against Adaptive Chosen-Message 

Attacks”, SIAM Journal on Computing, 17, 2, pp 281-308, 

1988.

[11] F. Hess, “Efficient Identity Based Signature Schemes 

Based on Pairings”, Proc. of SAC 2002, LNCS 2595, pp 310-

324, Springer-Verlag, 2002. 

[12] A. Joux, “The Weil and Tate Pairings as Building 

Blocks for Public Key Cryptosystems”, Proc. of ANTS-V, 

LNCS 2369, pp 20-32, Springer-Verlag, 2002. 

[13] T. P. Pedersen, “Non-Interactive and Information-

Theoretic Secure Verifiable Secret Sharing”, Proc. of 

EUROCRYPT ’91, LNCS 576, pp 129-140, Springer-

Verlag,1992. 

[14] A. Shamir, “How to Share a Secret”, Communications 

of the ACM, Vol. 22,  pp 612—613, 1979. 

[15] A. Shamir, “Identity-based Cryptosystems and Signature 

Schemes”, Proc. of CRYPTO ’84, LNCS 196, pp 47-53, 

Springer-Verlag, 1984. 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47


