Introduction

- Heavy metals (HMs) are one of the major perceived poisons for general prosperity, plants, and animals.
- Airborne heavy metal (Pb, Ni, Cd, As, Cu, Cr, Hg, Mn, Zn, etc.) pollution results from human activities like industrial processes, mining, and vehicular emissions.
- Exposure to airborne heavy metals has been linked to a wide range of diseases, including cardiovascular and respiratory diseases and lung cancer.
- Heavy metals can persist in the atmosphere for extended periods and travel long distances before settling into soil and water bodies.
- Filters are essential for airborne heavy metal remediation because they can effectively capture and remove toxic heavy metal particles from the air.
- We aim to utilize an activated carbon fiber mat (ACF 1800) and low-temperature plasma process to achieve improved heavy metal adsorptive removal efficiency from aerosol.

Results and Discussion

- The surface-modified ACF 1800 mats were used for filtration efficiency experiments using Mn aerosols.
- Figure 4 shows the adsorbed particles and changes in the morphology of the ACF nano-microfibers after the adsorptive removal of Mn.

Materials and Methodology

- The commercially available ACF 1800 grade mats were cut into disc shapes to fit in the custom-built filtration chamber.
- The mats were surface modified with plasma surface treatment using Air, VP, MCE, Thiophene, Pyrrole, and THF as precursors.
- The ACF mats were extensively characterized at different stages of modifications to examine the effect of various plasma treatments using SEM, XPS, and 3D imaging.
- The aerosol was prepared from MnCl₂ solution using a particle generator.
- The effect of various plasmas on the filtration efficiency of the mats was examined using a custom-built filtration system (Figure 2).

XPS results of various plasma-modified ACF mats after filtration experiments from Mn aerosol.

<table>
<thead>
<tr>
<th>Elements (%)</th>
<th>Pristine</th>
<th>VP</th>
<th>THF</th>
<th>Thiophene</th>
<th>Pyrrole</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (C)</td>
<td>92.0</td>
<td>74.9</td>
<td>93.5</td>
<td>78.8</td>
<td>52.9</td>
<td>71.1</td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>7.6</td>
<td>20.4</td>
<td>6</td>
<td>15.4</td>
<td>32.8</td>
<td>25.3</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>0.3</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>13.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>0.1</td>
<td>1.2</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Summary

Various plasma modifications have significant effects on the adsorption efficiency of the ACF mats. Plasma processing requires much less chemicals and retains the bulk properties of materials. Before and after filtration, the plasma-modified ACF mats were examined physico-chemically with SEM, XPS, and Keyence. The thickness of the mat was measured as 2667.65 μm. The filtration efficiency of the mats was examined using a custom-built experimental setup. VP plasma-modified ACF 1800 mats noted the highest filtration efficiency, followed by Air, THF, Pyrrole, and Thiophene. Since the LTP treatment is green and easy, the processing is highly recommended for the ACF mats to be used as a household or industrial filter.

Acknowledgements

I would like to especially thank and acknowledge Dr. Vinoy Thomas and Renjith Pillai from UAB Materials Engineering Department for their immense guidance and contribution to this project and the support provided by the National Science Foundation (Grant # -2148653 – Future Technologies and Enabling Plasma Process (FTPP)).

References