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Abstract— Robot-assisted gait training is becoming increas-
ingly common to support recovery of walking function after
neurological injury. How to formulate controllers capable of
promoting desired features in gait, i.e. goals, is complicated by
the limited understanding of the human response to robotic
input. A possible method to formulate controllers for goal-
oriented gait training is based on the analysis of the joint
torques applied by healthy subjects to modulate such goals.
The objective of this work is to understand how sagittal plane
joint torque is affected by two important gait parameters:
gait speed (GS) and stride length (SL). We here present the
results obtained from healthy subjects walking on a treadmill at
different speeds, and asked to modulate stride length via visual
feedback. Via principal component analysis, we extracted the
global effects of the two factors on the peak-to-peak amplitude
of joint torques. Next, we used a torque pulse approximation
analysis to determine optimal timing and amplitude of torque
pulses that approximate the SL-specific difference in joint
torque profiles measured at different values of GS. Our results
show a strong effect of GS on the torque profiles in all joints
considered. In contrast, SL mostly affects the torque produced
at the knee joint at early and late stance, with smaller effects on
the hip and ankle joints. Our analysis generated a set of torque
assistance profiles that can be experimentally tested using gait
training robots.

I. INTRODUCTION

Stroke is a leading cause of long-term disability, with
roughly 30% of survivors requiring walking assistance [1].
Current approaches to gait training are based on repetitive
movement exercise. Most gait rehabilitation protocols are
focused on increasing self-selected gait speed (ss-GS), as
it is a powerful indicator of walking function [2]. Walking
speed is correlated with propulsive force at push off [3],
which is mostly determined by ankle moment and by the
posture of the trailing limb at push-off [4]. Push-off leg
posture can be described by the trailing limb angle (TLA),
i.e. the angle between the vertical axis and the vector between
the hip joint and the center of pressure at the instant of
maximum anterior ground reaction force. TLA was shown to
be highly correlated to propulsive forces during locomotion
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in both healthy and post-stroke individuals [4]. Although a
relationship between TLA and propulsive forces has been
determined, the clinical significance of this observation for
post-stroke gait training has yet to be demonstrated.

Robot-aided gait training has been pursued in neuroreha-
bilitation since the mid-90s, with initial attempts providing
non-convincing results [5]. While the initial approaches
lacked interaction control capabilities, later work presented
assistance schemes based on the Assist-As-Needed (AAN)
principle [6]–[8]. To provide adaptability, algorithms for
desired trajectory definition have been proposed based on
walking speed [9], and also included on-line assistance adap-
tation schemes based on adaptive frequency oscillators [10],
or inter-limb synchronization [11]. Proper implementation of
controllers for continuous gait assistance requires explicit
estimation of gait cycle phase, difficult to predict reliably
[12], or phase locking with synchronous kinematic variables,
which are however associated with the gait cycle phase with
substantial within-subject variability [13]. Simpler assistance
schemes, such as those provided by repetitive pulses of
torque applied to lower extremity joints, have the advantage
of not constraining gait to follow prescribed trajectories,
while inducing desirable effects such as entrainment and
modulation of spatio-temporal gait parameters [14]. Being
defined by a limited set of parameters, these approaches
are amenable to systematic experimental investigations to
determine when and how to apply pulses of torque to
effectively modulate clinically meaningful gait parameters.

Given the clinical relevance of ss-GS, and the mechanistic
relationship between GS and TLA, a gait training controller

Fig. 1. (left) Experimental setup - shown in ss-GS, ss-SL conditions,
and (right) visual feedback modes indicating color coding of measured SL
(green indicates SL within 10% of the desired value).



capable of directly modulating TLA could have a high
clinical value in neurorehabilitation. To formulate TLA-
oriented robot-assisted training, we seek to gain knowledge
about the joint torques applied by healthy subjects walking
at different gait speeds to modulate TLA. Using a robot to
apply the torque used by healthy subjects to modulate TLA
during gait might be an effective method to modulate TLA
in individuals who may retain this gait characteristic, and
ultimately improve walking function. As a first step in our
approach to goal-oriented, robot-assisted gait training, in this
paper, we study the effect of a factorial modulation of gait
speed (GS) and stride length (SL) on the resulting moments
about the hip, knee and ankle joint in healthy subjects.

II. METHODS

A. Subjects

Ten healthy adults (6 males, 4 females), naive to the
purpose of the study, participated in the experiment. All
subjects — age (mean ± std) 21± 2 yo, height 1750±90
mm, body mass 70±11 kg — were free of orthopaedic
and neurological disorders affecting walking function. The
experimental protocol was approved by the University of
Delaware IRB, and all subjects gave informed consent. Sub-
jects were required to wear their own comfortable sneakers
and lightweight athletic gear for the walking experiment.

B. Setup

Subjects walked on an instrumented split-belt treadmill
(Bertec Corp., Columbus OH, USA), while wearing reflective
spherical markers (diameter 9.5 mm). A total of 36 markers
(4 on the pelvis, 4 on each thigh, 4 on each shank, 2 on
each knee, and 6 on each ankle/foot) were placed on body
segments anatomical landmarks. An eight camera Raptor-
4 passive motion capture system (Motion Analysis Corp.,
Santa Rosa CA, USA) was used to measure the 3D position
of markers in space. Marker data were acquired at 100 Hz,
while the analog force/torque data were synchronously ac-
quired at 2000 Hz. In biofeedback sessions, subjects walked
while watching a 24-in screen placed at approximately 1.5 m
distance from the center of the treadmill. The screen provided
visual feedback about the stride length (SL) at the previous
gait cycle, and was updated immediately after each right heel
strike. In this experiment, SL for cycle k was defined based
on the anteroposterior (AP) coordinate of right heel strike
in the lab frame xH , accounting for the treadmill constant
velocity vt and for the displacement introduced in a gait
cycle of duration ∆T :

SL(k) = x
(k+1)
H − x

(k)
H + vt∆T (1)

Visual feedback of the most recent SL value was provided
in terms of the height of a bar. The desired SL was displayed
as a horizontal line with dashed lines indicating ± 10 %
of the desired value. The bar indicating measured SL was
color coded to indicate whether SL(k) was within the ±10%
range (Fig. 1). During biofeedback sessions, subjects were
instructed to modify their SL to achieve the target range,
while walking at treadmill-imposed speeds.

C. Experimental procedures

We exposed subjects to a total of fifteen experimental
conditions, determined as the combinations of two factors:
i) gait speed (GS), with five conditions, and ii) stride length
(SL), with three conditions. To account for inter-subject
variability in gait parameters, and for the correlation between
GS and SL [15], we defined factors of all conditions (i.e.
values of GS and SL) as percent variation relative to subject-
specific self-selected (ss) parameters.

1) Self-selected speed: A preliminary trial was conducted
to calculate the subject’s self-selected speed (ss-GS). Sub-
jects were asked to walk on the treadmill moving initially at
low speed, with the treadmill speed gradually increased by
0.03 m/s, and to indicate when ss-GS was reached. The same
procedure was repeated by starting with treadmill speed 0.4
m/s above the previous value, and decreasing treadmill speed
in steps of 0.03 m/s, until subjects would indicate that ss-GS
had been reached. ss-GS was defined as the average between
the two values defined above.

2) Non-biofeedback conditions: After determination of ss-
GS, five walking trials were conducted in the absence of
biofeedback. In each trial, treadmill speed was imposed at
[80% 90% 100% 110% 120%] of the subject ss-GS, with
order randomized for each subject. For each GS, self-selected
SL (ss-SL) was calculated as the average of SL values
measured at each treadmill speed. ss-SL values measured at
each speed were used for the definition of subsequent desired
SL values at each GS.

3) Biofeedback conditions: After determination of ss-
SL for all five GS conditions, ten additional trials were
conducted, two for each treadmill speed value, using biofeed-
back to cue a desired SL. For each GS, the desired SL was
set to be either 17% greater or 17% smaller than the ss-
SL at that GS, with random sequence. Each trial lasted for
approximately two minutes. When the experimenter assessed
that the subject could comply with the protocol and match
the cued SL condition at each gait speed, data collection was
initiated. Data collection lasted for approximately 2 minutes
per trial, allowing a measurement of a minimum of 25 strides
for each experimental condition and each subject.

D. Data analysis

1) Pre-processing: Marker position and force plate data
were fed into a standard Visual3D pre-processing pipeline,
which included i) low-pass filtering of marker and force
plate data (Butterworth filter at 6 Hz and 30 Hz cut-off
frequency, respectively), ii) interpolation of missing marker
data with a third order polynomial fit for a maximum gap
size of five samples, iii) application of the subject-specific
model for calculation of joint angles and moments based on
inverse kinematics and inverse dynamics algorithms, iv) low-
pass filtering of extracted joint angles and moments with a
2nd order low-pass zero-shift Butterworth filter with cut-off
frequency of 15 Hz. Hip, knee, and ankle joint angles and
moments for the right leg in the sagittal plane were extracted,
and gait cycles segmented between subsequent heel strike
events, defined as the instant where the vertical ground force
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Fig. 2. (left) Distribution of Froude numbers at the different treadmill
imposed GS, referred to ss-GS. Whiskers extend to the 95% estimated
confidence interval. (right) Normalized stride lengths (SL0 measured at
different speeds, and different biofeedback conditions. The box plot shows
the median as a horizontal line, and the box at 25% and 75% percentiles,
with whiskers extending to ±3σ.

exceeded a threshold of 20 N and remained above this
threshold for at least 400 ms. Because events such as marker
occlusion or stepping on both force plates occurred in some
cases, acquired data were manually screened and some gait
cycles were excluded from the analysis. A minimum of 25
gait cycles per subject, for each experimental condition, were
obtained with this procedure.

Joint torques extracted via inverse dynamics were non-
dimensionalized for subsequent group analysis. In agreement
with [16], the non-dimensional joint torque τ̃ was calculated
for each joint as τ̃(t) = τ(t)

WLl
, with τ the measured joint

torque in N·m, W is body weight in N, and Ll is leg length,
measured from the hip joint center and the malleolus with a
straight knee.

Segmented profiles for hip, knee, and ankle joint angles
and non-dimensional moments were linearly resampled in
the [0,100] domain for synchronization with the gait cycle
percentage variable (t̃). Finally, subject- and condition- spe-
cific average joint torque profiles τ̄(t̃) were calculated by
averaging all of the available single-stride profiles for each
experimental condition, and subject. The resulting profiles
underwent statistical analysis and inference via two different
methods, as described in the following sections. Because of
malfunctioning of the force plate during several sessions
involving Subject 9, all kinetics collected from Subject
9 were discarded, leaving effectively N=9 in subsequent
statistical analyses.

2) Protocol validation: A non-dimensional GS was de-
fined as the Froude number Fr = GS√

Lg
, where L is a repre-

sentative length, and g is the acceleration of gravity. In this
work, L corresponds to the leg length Ll. Although several
other factors such as body mass and athletic fitness condition
account for the variability in ss-GS across individuals [17],
the Froude number has been extensively used to describe
the conditions underlying the transition from walking to
running in several species [18]. As such, we used the Froude
number as an index of across-subject dynamic similarity
in ss-GS: a smaller variance of Froude numbers within a
group of individuals should reflect consistent gait kinetics.
We calculated the coefficient of variation CVFr = σFr

µFr
as

the ratio between the standard deviation and the mean of
Froude numbers corresponding to the ss-GS condition, and

compared it to alternative indices, CVss-GS = σss-GS
µss-GS

that uses
ss-GS, and CVss-GS0 =

σss-GS0
µss-GS0

that uses ss-GS normalized by
leg length.

Two gait parameters were also calculated; SL was mea-
sured using eq. (1), while the trailing limb angle (TLA) was
calculated as the angle relative to the vertical axis of the
line connecting the hip joint center and the position of the
center of pressure at the instant of maximum anterior ground
reaction force [4]. We conducted a linear correlation between
normalized SL (SL0 = SL/Ll) and TLA to validate our
protocol as suitable to inform the design of TLA-oriented
robot-aided training protocols.

3) PCA analysis: We sought to determine whether the
effect of the two factors, GS and SL, on the resulting
joint torque profiles τ̄(t̃) was that of proportionally scaling
and translating along the vertical axis a constant, nominal
profile. As such, we used principal component analysis
(PCA) to decompose the fifteen subject-specific joint torque
profiles τ̄i(t̃), i = 1, 2, ..., 15, into a sum of fifteen principal
components Pj(t̃), each explaining a progressively smaller
amount of variance in the input signal, as:

τ̄i(t̃) =

15∑
j=1

aijPj(t̃) + bi (2)

Since the first principal component P1(t̃) explained more
than 95% of the variance in τ̄i(t̃) for all joints and all
subjects, only coefficients ai1 have been used for statisti-
cal analysis. Since the arbitrary scaling of a coefficients
extracted by PCA would prevent across-subject comparisons,
we obtained normalized ã coefficients as follows:

ãi = ai1
max[P1(t̃)] − min[P1(t̃)]

max[τ̄8(t̃)] − min[τ̄8(t̃)]
, (3)

where 8 is the index corresponding to the ss-GS, ss-SL
condition. Since the term in the numerator describes the
peak-to-peak signal of the first principal component, while
the term in the denominator describes the peak-to-peak joint
torque in self-selected condition, coefficients ãi quantify the
ratio of the peak-to-peak variation of the offset-removed
approximated signal τ̄i1(t̃) = ai1P1(t̃), for condition i,
relative to the self-selected condition.

The coefficients ãi extracted for all joints and all subjects
were used as input to three 2-way repeated measures ANOVA
tests, one per joint, implemented using SPSS (Ver. 24.0,
IBM), which tested the null hypothesis of no significant
effect of either factor, nor of their interaction, on PCA scores
ãi. The two factors, GS and SL were exhaustively spanned
with only one repetition of factor combination per subject.
Since data collected from Subject 2 in one condition were
corrupt, the missing coefficient was replaced by the mean
coefficient measured for the same condition in the other
8 subjects. Post-hoc pairwise comparisons between scores
extracted in modulated SL conditions and scores extracted in
ss-SL conditions were conducted, at each speed, using two-
tailed t-tests assuming a type-I error rate α = 0.05, corrected
for multiple comparisons using a conservative Bonferroni
correction.



Fig. 3. Effect of gait speed (GS) and stride length (SL) modulation on the normalized joint torques τ̄ for the group of 9 healthy subjects. Joints are
organized by row, GS are organized by columns, relative to the subject-specific ss-GS. Conditions corresponding to cued SL values are superimposed on
each plot. Lines indicate the group mean, with the shaded region indicating the group standard deviation. Two GS conditions (i.e. GS=±10% of ssGS)
are not reported for clarity of representation.

4) Torque pulse approximation: We sought to approxi-
mate the effect of modulation of SL on joint torque profiles
with a series of N rectangular torque pulses P (t̃) defined
as:

Q(t̃) =

N∑
l=1

Alrect
(
t̃− αl

0.1

)
(4)

with constant duration (10% of the gait cycle) and variable
time of application αl and amplitude Al. Specifically, we
extracted the difference ∆τ(t̃) of average joint torque profiles
τ̄(t̃) between conditions at increased SL, and ss SL, at each
gait speed j as:

∆τ (j)(t̃) = τ̄
(j)
+SL(t̃) − τ̄

(j)
ss-SL(t̃). (5)

For this specific work, we approximated the function
∆τ (j)(t̃) with only one pulse N = 1, and used nonlinear
constrained optimization using MatLab (The MathWorks,
Inc.) function fmincon to find the values of parameters
A1 and α1 that minimize the norm of residuals Q(t̃) − ∆τ .
The set of parameters A1 measured for different gait speeds
and subjects across different joints (i.e. three groups, one
per joint, with each group including 45 measurements)
underwent pairwise t-tests to test the null hypothesis that the
distribution of normalized torque pulse amplitude in different
joints had the same mean. Moreover, we sought to quantify
how narrow was the distribution of the optimal pulse location
α1 in different joints. As such, we performed three separate
pairwise Levene’s tests for equality of variances to test the
null hypothesis that parameters α1 in different joints are
sampled from distributions with equal variances.

III. RESULTS

A. Protocol validation

The use of the Froude number slightly reduced the across-
subject variability in ss-GS, with CVFr = 0.048, smaller
than CVss-GS = 0.057, and CVss-GS0

= 0.059. All differences
account for an effect size that can be considered very small.

To assess whether biofeedback could effectively modulate
SL in healthy subjects, we inspected the distribution of SL0

values at different gait speeds, reported in Fig. 2. The change
in mean SL0 values at each speed was equal to ±14% in
the modulated SL biofeedback conditions, close to the cued
±17% value. Since the maximum standard deviation of the
distribution of SL0 values within each biofeedback condition
was relatively small (σMAX = 7% of the ss-SL0 values),
we concluded that the conducted protocol could significantly
modulate values of GS and SL to allow subsequent statistical
analysis.

We found a strong relationship (r = 0.9) between SL and
TLA, which demonstrates that, although not explicitly asked
to modulate TLA, subjects did indeed modulate also TLA
to match biofeedback-cued SL data. Group analysis of joint
torques measured in different SL and GS conditions is shown
in Fig. 3.

B. PCA analysis

GS had a strong effect on overall normalized PCA scores
ãi (p < 0.001 for all joints), while SL had a significant effect
only on the hip (F(2,16) = 4.205, p = 0.034), and knee
(F(2,16) = 28.650, p < 0.001) joint, while no significant
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Fig. 4. Distribution of normalized PCA coefficients, as a function of GS, for different SL conditions. Dots in the error bars indicate group mean, with
whiskers extending one standard deviation above and below. Asterisks indicate pairwise comparisons between scores extracted at each GS and modulated
SL, and scores extracted at the same GS, ss-SL, which are significant at the uncorrected p < 0.05 significance level.

effect on the PCA scores was measured for the ankle joint
(F(2,16) = 2.175, p = 0.146). The interaction between
SL and GS was significant for the knee joint (F(8,64) =
2.248, p = 0.035) and the ankle joint (F(8,64) = 3.062,
= p−0.006), while not significant for the hip joint (F(8,64) =
0.695, p = 0.694). Mean and standard deviation of ã
parameters calculated for each combination of GS and SL are
reported in Fig. 4. Pairwise comparisons between ãi scores
measured in self-selected and modulated SL conditions, for
all joints, at each speed, yield statistically significant values
in 12 out of 20 cases, 7 for the positive modulation of SL,
and 5 for the negative modulation of SL. Four comparisons
of PCA scores for a positive modulation of SL involve the
knee joint, all showing an increase in PCA scores related to
an increase in SL (Fig. 4, center). All pairwise comparisons
significant for the hip joint are for a positive increase in
SL, and show a reduction in hip PCA scores following an
increase of SL, all at low speed (Fig. 4, left). The remaining
two significant comparisons involve the ankle joint, all at GS
values higher than self-selected (Fig. 4, right).

C. Torque pulse approximation

The distributions of parameters pulse time α and pulse
amplitude A for each joint are shown in Fig. 5. The most
consistent effects of SL were observed in the knee joint, with
70% of pulses occurring between 10% and 20% of the gait
cycle. This yielded a distribution of α values for the knee
joint whose standard deviation was significantly smaller than
the one measured for parameters referring to both the hip
and the ankle joint (σα,hip = 30% σα,knee = 13%, σα,ankle =
15%; Levene’s test F = 15.036, p < 0.001 for the hip vs.
knee comparison, F = 36.138, p < 0.001 for the knee vs.
ankle comparison). Analysis of the distribution of parameters
A showed the strongest effect on the knee joint (µA,hip =
0.07, µA,knee = 0.26, µA,ankle = −0.02), with both pairwise
comparisons with the knee joint significant at the p < 0.05
level.

IV. DISCUSSION AND CONCLUSIONS

We used inverse-dynamics to estimate lower extremity
joint torques in individuals exposed to a factorial modulation
of gait speed (GS), and stride length (SL). Our analysis

focused on the estimate of the effect of SL at different values
of GS, and showed that the factor SL has a strong effect on
the joint torque applied about the knee joint, and a smaller
effect about the hip and ankle joint.

Via our PCA analysis and our torque pulse approximation
method, we estimated that the primary effect of SL modula-
tion on the knee joint torque profile was that of greater knee
flexion torque applied at early stance, i.e. between 10% and
20% of the gait cycle. A secondary effect of SL on knee
joint torque was that of an increased knee extension torque
during the double support phase of stance. Both effects
imply a positive relationship between the increase in knee
joint torque applied during normal walking, in those two
phases, and the modulation in SL. As such, the knee joint
torque in SL-amplified or attenuated conditions is obtained,
respectively, by amplifying or attenuating the knee joint
torque profile measuring during self-selected (ss) conditions.
This effect was captured by PCA of the knee joint torque
profile, and by the strong positive effect of SL on knee PCA
scores (Fig. 4, center).

An effect of SL was observed at the hip joint. While
the reduced SL condition did not result in hip joint torque
profiles that differed significantly from the natural SL condi-
tion, the PCA scores extracted in the increased SL condition
were smaller than in the other two conditions. As such, it
appears that increases in SL are obtained by attenuation of
the nominal hip joint torque profile, although this effect was
statistically significant only at low speeds (Fig. 4 - left).
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A strong effect of SL on hip joint torque was observed at
early swing (Fig. 3). Since torques during swing are smaller
in amplitude than those measured during stance, analysis
methods such as PCA and torque pulse approximation are
not sensitive enough to capture the effect of any factor on
joint torques measured during swing. Continuum analysis
methods, such as the one recently developed in [20], could
instead test the statistical significance of the effect of SL on
the hip joint torque at early swing, as appears from visual
inspection of (Fig. 3, top row central column). As in the case
of knee joint torque during stance, the effect of SL on the
hip joint torque during early swing was that of a positive
increase in hip joint torque with positive increases in SL.

Surprisingly, while ankle torque was strongly modulated
by GS, the effect of SL was small, and mostly affecting
the negative power, shock absorption phase at early stance.
During the instant of peak plantarflexion torque, instead,
slight differences in torque profiles were measured, and
mostly caused by the −17% SL condition requiring smaller
ankle torque compared to the other two conditions. Our
finding is in agreement with a previous observation showing
that push-off posture is strictly related to propulsive force,
and more so than ankle torque at push-off [4].

While we are interested in the development of TLA-
oriented robotic gait training strategies, we here investigated
joint torques occurring during the modulation of GS and SL,
not of GS and TLA. Our analysis showed a strong correlation
(r = 0.9) between SL and TLA, which demonstrated that,
in our protocol, subjects indirectly modulated TLA, even
without being explicitly cued to do so.

A limitation of this study resides in the analysis methods
used. While PCA and the pulse torque approximation de-
scribe the overall effect of an experimental factor (in this case
SL), they are not sufficiently fine-grained to capture local
effects, i.e. modulation of joint torque profiles in selected
phases of the gait cycle. In our future work, we will extend
our analysis methods to 1D continuum analysis techniques
that allow statistically accurate instant-by-instant comparison
of the measured joint torque profiles. Based on the results of
these techniques, we will be able to tell when, within a gait
cycle, the effect of SL on the torque measured in a given joint
is greatest, and whether the effect is statistically significant.

Analysis of biofeedback-modulated gait of healthy sub-
jects can only provide inspiration for the design of robotic
assistance strategies for gait training. The response of in-
dividuals to robotic perturbations, such as those extracted
with the pulse torque approximation analysis described in
this paper, can not be predicted accurately given the limited
understanding of the neuromuscular response to perturba-
tions during gait. Future work will involve human-in-the-loop
experiments which will seek to determine which of the ex-
tracted robotic perturbation strategies effectively modulates
SL and TLA in healthy subjects, as well as in individuals
with chronic stroke-induced hemiparesis.
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