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Abstract— Robots are increasingly designed to physically in-
teract with humans in unstructured environments, and as such
must operate both accurately and safely. Leveraging compliant
actuation, typically in the form of series elastic actuators (SEAs),
can guarantee this required level of safety. To date, a number of
frequency domain techniques have been proposed which yield
effective SEA torque and impedance control; however, these
methods are accompanied by undesirable stability constraints.
In this paper, we instead focus on a time domain approach to
the control of SEAs, and adapt two existing control techniques
for SEA platforms. First, a model reference adaptive controller
is developed which requires no prior knowledge of system
parameters and can specify desired closed-loop torque charac-
teristics. Second, the time domain passivity approach is modified
to control desired impedances in a manner that temporarily
allows the SEA to passively render impedances greater than
the actuator’s intrinsic stiffness. This approach also provides
conditions for passivity when augmenting any stable SEA torque
controller with an arbitrary impedance. The resultant techniques
are experimentally validated on a custom prototype SEA.

I. INTRODUCTION

As robots transition from factory floors to human environ-
ments, the importance of safety and torque control becomes
increasingly paramount. Manipulators developed for surgical,
rehabilitation, haptic, service, and other physically interactive
applications must strive for the often contradictory goals of
guaranteeing safety during contact while ensuring accurate,
precise performance. Path planning, sensory feedback, and
control strategies can all be used to mitigate unwanted torques
perceived by the human user; however, these methods fail
to reduce the severity of sudden impacts within unmod-
eled workspaces. On the other hand, physical compliance—
elasticity between actuator and end-effector—offers a widely
accepted means to fundamentally improve a manipulator’s
reflected dynamics, and is frequently incorporated in the
design of inherently safe robots [1], [2]. Physical compliance
is also well-suited for torque control because it converts input
flows into output efforts, implicitly measures applied torques,
and allows greater control gains than stiff manipulators [3].

Series elastic actuators (SEAs), originally introduced by [4],
replace the traditionally rigid connection between transmission
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Fig. 1. Schematic of an SEA within an interaction control hierarchy.
We propose using time domain functions, such as parameter adaption and
interaction energy, to address both SEA torque or force control and the
passivity of SEA impedance control.

and load with an elastic component of non-adjustable stiffness.
Advantages to series elastic actuators include increasing shock
tolerance and lowering output impedance across the frequency
spectrum—SEAs therefore provide desirable hardware plat-
forms for human-robot interaction, especially in regards to
rehabilitation devices [5], [6]. As such, a burgeoning body
of research has been published concerning the control of
SEAs; torque control [3], [7]–[16] and the effects of interaction
schemes [17]–[20] have received particular attention. SEA
torque control and interaction schemes have been predomi-
nately researched in the frequency domain [3], [7]–[11], [13]–
[15], [17]–[20]. By contrast, this work alters time domain
controller theories developed for rigid manipulators so they
can be correspondingly applied within SEAs (see Fig. 1).

SEA torque control, which can also be deemed actuator
position control, strives to attain commanded spring displace-
ments. Motor trajectories here don’t directly determine the
robot’s path, but alternatively regulate the effort applied to con-
tacting objects over time. Work by Pratt et al. [7] and Wyeth
[8] demonstrated the effectiveness of cascaded torque control
with an inner velocity loop and PI controllers. This linear
scheme—among the most prevalent in the SEA literature—can
be simply implemented using the conditions developed within
[9], and offers a valuable platform for passivity analysis.
Tuning is straightforward since theoretical closed-loop perfor-
mance improves with increases in PI controller magnitude, but
controller gains are practically limited by saturation, noise, and
instability induced by discretization.

Subsequent research has attempted to outperform cascaded
torque-velocity control via more advanced techniques. Robust



[10], [11], nonlinear [12], and optimal [13]–[15] control ap-
proaches have all been leveraged; theory and implementation
demonstrate that each method can better eliminate distur-
bances than do cascaded torque-velocity controllers. Gains
in performance, however, have generally increased controller
complexity and added potential sources for instability. Apply-
ing the small-gain theorem, the stability of robust schemes can
be shown to depend upon the magnitude of modeling errors.
Nonlinear control introduces a trade-off between chattering
and approximation, neither of which is desirable. The proposed
optimal control techniques are “optimal” only in the sense of
nominal models—errors increase with modeling uncertainty.
Summarily, performance and knowledge have been directly
correlated: to obtain better, stable results, more thorough
identification experiments must be conducted.

Adaptive control, which promises the ability to safely
dictate closed-loop torque control characteristics without re-
quiring knowledge of system parameters, resolves this conflict.
A modified model reference adaptive controller (MRAC) has
recently been implemented on flexible joint manipulators [21],
where it addressed modeling errors and parameter uncertain-
ties while offering stability guarantees [22]. Calanca et al.
[16] similarly developed a modified MRAC specifically for
SEAs coupled to human operators; although their approach
provides ultimately bounded stability when human behavior
matches a simplified model, stability cannot be proven if the
given dynamic equations are incomplete. In this paper, we
instead derive an MRAC for SEAs which relies upon known
manipulator dynamics without modeling human interaction,
yet still specifies closed-loop characteristics. We will demon-
strate both that the proposed MRAC drives the SEA to behave
like some desired model—despite unknown parameters—and
that this behavior is achieved with Lyapunov stability.

Once a method for obtaining desired torques is selected,
subsequent steps often involve regulating the effort/flow ex-
change between user and SEA; this enables the SEA to display
virtual environments, and provides structure to human-robot
interaction. Vallery et al. [17] concluded that when SEAs
render a pure stiffness with cascaded torque-velocity control,
passivity can only be assured if the desired stiffness is less than
or equal to the spring’s actual stiffness. Tagliamonte and Ac-
coto [18] extended Vallery’s result, evaluating passivity when
displaying series and parallel spring-damper systems by means
of cascaded torque-velocity control. Mosadeghzad et al. [19]
compared impedance schemes with inner velocity, torque, or
position control loops. Finally, previous work from our lab [20]
demonstrated that lead-lag compensators in conjunction with
cascaded torque-velocity control could be leveraged to render
stiffnesses greater than the spring stiffness; however, this non-
passive behavior is only achieved with coupled stability for
certain environments.

Thus far, studies of SEA interaction passivity have been
restricted to linear torque controllers and limited impedance
ranges. Accordingly, we here develop an impedance control
method—inspired by the time domain passivity approach
[23]—where energy measurements are utilized to overcome
these restrictions. Ferraguti et al. [24] recently introduced
an energy tank-based method in order to render fluctuating

stiffnesses with rigid manipulators; analogously, when the
energy stored by an SEA exceeds some threshold, we seek
to adjust the virtual environment and display non-passive
desired impedances. In this paper, we show that our proposed
impedance passivity controller both regulates SEA interactions
while maintaining at least input-to-state stability, and also
safely enables previously inaccessible combinations of torque
controllers and desired impedances.

This work reformulates time domain techniques for SEA
torque and impedance control. In Section II we derive an
MRAC for SEAs which estimates system parameters, specifies
closed-loop behavior, and favorably compares with state-of-
the-art techniques. We then utilize network theory in Section
III to evaluate the stability of impedance control schemes, and
describe an energy method which can be used to determine the
passivity of any SEA torque controller in conjunction with
an arbitrary virtual environment. We also propose a novel
impedance controller which temporarily allows the SEA to
passively render impedances greater than its intrinsic stiffness.
Finally, in Section IV we experimentally validate both the
adaptive torque controller and impedance passivity controller
using an SEA prototype.

II. ADAPTIVE TORQUE CONTROL OF SEAS

As explained by [3] and depicted in Fig. 2, the reduced sec-
ond order model of an electromagnetic motor and transmission
in series with a torsional spring is given by

τL = K(θA − θL)

θ̈A = −BA

JA
θ̇A −

1

JA
τL +

1

JA
τA

(1)

Or, re-written with Laplace variables

θA =
τA +KθL

JAs2 +BAs+K
(2)

where JA is the actuator inertia, BA is the actuator damping,
K is the torsional spring constant, θA is the actuator position,
τA is the actuator torque, θL is the load position, and τL is
the load torque. When the spring constant is known, sensing
actuator and load positions implicitly measures the load torque.

Throughout this work we will assume that the above model
completely describes SEA plant behavior. This requires the
motor to be linear, and potentially ignores the effects of non-
linear friction, backlash, or saturation terms. We will also
assume that motor and load velocities can be obtained without

Fig. 2. Schematic of an SEA. Torques applied at the actuator affect spring
displacement, which in turn both measures and determines load torques. The
actuator, which may include the motor and transmission, is modeled as an
inertia with driving torques and viscous damping.



significant time delay; this assumption is fairly common within
SEA control, and may be alleviated by employing observers
and/or filters operating at a much higher frequency than
the physical system. The limitations of these assumptions—
and their impacts on system stability—will be addressed in
following sections. Although we will focus on rotary systems,
our analysis can also be applied to translational configurations.
Hence, references to SEA torque and force control should be
regarded as interchangeable.

When designing a torque-controlled SEA for haptic appli-
cations, ideal closed-loop relationships are given by

τL(s)

τL,d(s)
= 1,

τL(s)

θL(s)
= 0 (3)

where τL,d is the desired load torque. Noting that the spring
element converts this torque control problem into a position
control problem, we may analogously state

θA(s)

θA,d(s)
= 1,

θA(s)

θL(s)
= 0 (4)

where θA,d is the desired actuator position corresponding to
a desired load torque. In essence, controllers should strive (a)
to quickly achieve a desired actuator position with minimal
steady-state error, and (b) to decouple actuator and load
positions as much as possible.

A. MRAC for SEA Torque Control

Several SEA torque controllers have been recently proposed
which better achieve the aforementioned goals than do tradi-
tional cascaded torque-velocity controllers [10]–[15]; however,
these new approaches also require accurate identification of
system parameters. In order to both provide desired perfor-
mance and autonomously identify system parameters, we here
introduce a model reference adaptive controller (MRAC) for
SEA torque control. Our derivation of an MRAC follows the
overview presented in [25], and applies this well-established
control theory to SEA mechanisms. MRAC—an adaptive
servo system—selects parameters such that the plant tracks a
reference model, which in turn provides the desired response to
an input signal (see Fig. 3). In Section III we will describe an
additional algorithm to ensure this MRAC maintains stability
when coupled to any passive system via impedance control.

The open-loop SEA plant described by (1) can be rearranged
in the following state space form[

θ̇A
θ̈A

]
=

[
0 1
− K

JA
−BA

JA

] [
θA
θ̇A

]
+

[
0
1
JA

](
τA − µ1f1(θ̇A)

− µ2f2(θ̇A) +KθL

)
Ẋ = AX +B(τA − µ1f1(θ̇A)− µ2f2(θ̇A) +KθL) (5)

where the states (X) and exogenous input (θL) are known;
actuator and load positions are of course necessarily measured
in SEAs, and we have already listed the assumption that their
derivatives can be quickly obtained. In order to better account
for any asymmetric Coulomb friction, we have added terms
µ1f1 and µ2f2, where µ1 and µ2 are the Coulomb friction
parameters. Nonlinear functions f1 and f2 approximate the
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Fig. 3. Block diagram of our MRAC for SEA torque control. Desired
load torques are first converted into desired actuator positions, θA,d, which
then become command signals for the MRAC. The torque resulting from
load position (KθL) serves as a known disturbance; the MRAC attempts to
reject this disturbance with a feed-forward term. Using measured states and
parameters identified by integrating the adaption law, the control law generates
a signal which drives the plant to behave like a reference model. Note that
θA, the ultimate output of the MRAC subsystem, can be simply extracted
from X , the SEA state vector.

sign of actuator velocity while maintaining continuity at θ̇A =
0 via hyperbolic tangents.

We next choose the desired closed-loop response to be a
generic 2nd order transfer function, noting that this reference
model is analogous to the feed-forward terms in [10] and [11][

θ̇A,m

θ̈A,m

]
=

[
0 1
−ω2

n −2ζωn

] [
θA,m

θ̇A,m

]
+

[
0
ω2
n

]
θA,d(t)

Ẋm = AmXm +BmθA,d (6)

Here θA,d is the command signal, and subscript m indicates
“model.” The natural frequency (ωn) and damping ratio (ζ)
should be picked to correspond with desired closed-loop poles
and bandwidth; it is possible that these criteria will change
depending on the assigned task. This form implies θA,m(s) ≈
θA,d(s) over sufficiently low frequencies, while exclusion of
θL from the reference model decouples actuator and load
position—hence, the given reference model can be tuned to
meet our SEA performance objectives. We will assume that
users select a stable Am.

A control law with which it is possible to make the open-
loop system behave like the closed-loop reference model is
given by

τA = −LX +MθA,d + µ̂1f1(θ̇A) + µ̂2f2(θ̇A)− K̂θL (7)

where L and M contain the estimated inertia, viscous damp-
ing, and stiffness such that

L =
[
L1, L2

]
=
[
ĴAω

2
n − K̂, 2ĴAζωn − B̂A

]
M = ĴAω

2
n

(8)

We note that L and M specify ĴA, B̂A, and K̂, and that K̂
can be extracted from (8) using K̂ = M − L1. Substituting



this control law (7) into our SEA plant (5), the closed-loop
system then becomes

Ẋ = (A−BL)X +BMθA,d +BY (9)

Y = (µ̂1 − µ1)f1(θ̇A) + (µ̂2 − µ2)f2(θ̇A)− (K̂ −K)θL

Consider an idealized case where Y = 0 due to perfect
estimation of µ1, µ2, and K. Since the columns of A−Am and
Bm are linear combinations of the vector B, there exist some
“true” parameter values L∗ and M∗ for which (9) equals (6);
i.e., Am = A−BL∗ and Bm = BM∗. As such, the proposed
control law can yield accurate tracking of the reference model.

Let error between the plant and model states be defined as
e = X − Xm. Taking the derivative of e before plugging in
(9) and (6), we arrive at

ė = −AmXm + (A−BL)X+ (BM −Bm)θA,d +BY (10)

By adding and subtracting AmX , the above expression can be
more conveniently rearranged as

ė = Ame+(A−BL−Am)X+(BM−Bm)θA,d+BY (11)

Recall that Y is linearly parameterizable; given the existence
of L∗ and M∗, the second and third terms in (11) are likewise
parametrized to B(−XT )(L − L∗)T and BθA,d(M −M∗).
Accordingly,

ė = Ame+ Ψ(φ− φ∗) (12)

Ψ = B
[
−θA + θL −θ̇A θA,d − θL f1(θ̇A) f2(θ̇A)

]
where Ψ is the regressor matrix, φ = (L,M, µ̂1, µ̂2)T , and
superscript ∗ still denotes “true” parameter values. We here
utilized the dependence of K̂ on M and L1 to maintain the di-
mensionality of the parameter space. During implementation,
JA, and therefore B, are unknown—however, using a scaled
B̂ = cB affects adaption rates but does not alter stability.
Stable error dynamics ė = Ame are obtained if φ = φ∗.

In order to derive the parameter adaption law, we propose a
Lyapunov candidate function that minimizes error magnitude
subject to the constraint condition φ = φ∗

V (t) =
1

2
γeTPe+

1

2
(φ− φ∗)T (φ− φ∗) (13)

P is symmetric positive definite, and a corresponding symmet-
ric positive definite Q can be found per the Lyapunov equation
and Kalman-Yakubovich lemma [25]. Scalar γ is a weighting
term that influences the speed with which (13) converges,
or, correspondingly, the rate of parameter adaption. The time
derivative of V is given by

V̇ (t) =
1

2
γeTP

(
Ame+ Ψ(φ− φ∗)

)
+

1

2
γ
(
eTAT

m + (φ− φ∗)T ΨT
)
Pe+ (φ− φ∗)T φ̇ (14)

where ė has been replaced by (12). Manipulating this equation,
we obtain

V̇ (t) =
1

2
γeT (AT

mP + PAm)e

+ γ(φ− φ∗)T ΨTPe+ (φ− φ∗)T φ̇ (15)

Now applying Q, whose existence is here guaranteed by the
Lyapunov equation, the time derivative of V becomes

V̇ (t) = −1

2
γeTQe+ (φ− φ∗)T

[
φ̇+ γΨTPe

]
(16)

With the archetypal parameter adaption law

φ̇ = −γΨTPe (17)

V̇ is negative semi-definite, and hence the closed-loop system
is Lyapunov stable. Recognizing both that e ∈ L2 and ė is
bounded, we can apply Barbalat’s Lemma to prove e(t)→ 0
as t → ∞. We therefore conclude that the proposed control
(7) and adaption (17) laws provide a stable MRAC which
can be used to drive the open-loop SEA plant (5) to behave
like some desired closed-loop reference model (6). No prior
parameter identification is necessary so long as the SEA can
be described with (5); rather, estimates of JA, BA, K, µ1, and
µ2 are iteratively updated by our parameter adaption law.

Consider an ideal case where the plant’s closed-loop re-
sponse is dictated by the MRAC reference model (i.e., e = 0).
Since the reference model (6) is a low-pass filter in the Laplace
domain, Qf (s), we can write θA = Qf (s)θA,d. Substituting
this expression into (1), we find

τL = K
(
Qf (s)θA,d − θL

)
(18)

Relating desired actuator positions and desired load torques,
i.e., θA,d = K−1τL,d + θL, it can be shown that

τL = Qf (s)τL,d +K
(
Qf (s)− 1

)
θL (19)

A cursory examination of the frequency response τL(jω)
complements both our intuition and the objectives outlined in
(3). As the frequency decreases, Qf (jω)→ 1, and the desired
torque is realized with minimal impedance. On the other hand,
as the frequency increases, Qf (jω) → 0, and the impedance
approaches the physical spring’s stiffness. Use of the final
value theorem further demonstrates that step changes in load
position do not initiate steady-state errors in load torque.

Although state error convergence is a property of the
controller, parameter estimation error is largely determined
by the input signal. Because V̇ is bounded, φ − φ∗ is also
bounded; if certain input conditions are met—such as persis-
tent excitation—then φ→ φ∗ as t→∞, and plant parameters
can be accurately estimated. Fortunately, parameter estimation
is here of secondary importance—we are unconcerned by how
“correct” the parameters are, so long as the controller functions
satisfactorily.

B. Comparison of Adaptive and Robust SEA Torque Control

We have thus far assumed that the linear model in (1)
describes our SEA plant. Now we relax that assumption
and consider the effects of model variation, which can be
interpreted as an unknown multiplicative perturbation ∆. If
we rewrite the open-loop SEA plant as

θA =
τA +KθL

JAs2 +Bas+K

(
1 + ∆(s)

)
(20)



a constraint guaranteeing stability of the closed-loop plant is
given by∣∣∣∣JAs2 + (L∗2 +BA)s+ (L∗1 +K)

L∗2s+ L∗1

∣∣∣∣ > |∆(s)| (21)

L1 and L2, originally defined in (8), are parameters directly
associated with the difference between A, the plant dynamics,
and Am, the reference model dynamics, via the equation
Am = A−BL∗. Reference models similar to the actual plant
are therefore more robust to unmodeled behavior; generally,
the magnitude of ∆ should be less than one over a relevant
frequency range. As explained in [26], ∆ also introduces an
additional term to the error equation (12)—which in the worst
case induces instability via unbounded adaption parameter
drift, and in the best case causes small tracking errors and
bounded adaption parameters. Without precise knowledge of
∆, however, stability and global adaption parameter bounded-
ness cannot be evaluated [26].

While our adaption law effectively makes system stability
more susceptible to unmodeled behavior, we selected an
adaptive controller because the principal sources of unmod-
eled behavior are here largely eliminated. Since the MRAC
determines plant parameters and spring deflection measures
external disturbances, ∆ arises purely from unmodeled motor
dynamics. Use of adaptive control therefore transforms the
parameter estimation problem into a modeling problem; this is
advantageous because (a) DC motor dynamics are well studied
and (b) each model applies to a larger class of devices than
would a specific parameter set.

The proposed adaptive controller strongly resembles robust
controller methods presented in [10] and [11]. MRAC desired
closed-loop response is given by a reference model—for
DOB control, the desired closed-loop response is given by
a feed-forward filter. Our unmodeled behavior stems solely
from unmodeled dynamics, while robust plant uncertainties
incorporate parameter and modeling errors. Finally, neither
controller can guarantee stability without explicitly knowing
∆—although DOBs by and large provide stronger stability
assurances than MRACs. We conclude that the tradeoff be-
tween these SEA control approaches revolves around model
accuracy; in cases where the stated dynamics roughly apply,
the outlined MRAC offers similar performance and stability
with no prerequisite parameter knowledge. We experimentally
demonstrate in Section IV that parameter uncertainty does
not alter MRAC long-term performance, but can destabilize
comparable DOB methods. Practically, it may be logical to
first test an adaptive approach before investing time in the
identification experiments requisite for robust controllers.

III. PASSIVE IMPEDANCE CONTROL OF SEAS

Impedance control—as explained by Hogan [27]—regulates
interactions between robot and environment by specifying the
relationship between input flow and output effort. Let the
impedance control law be defined as

τL,d = Zd(θ̇L,d − θ̇L) (22)

where Zd is the desired impedance and θL,d is the reference
path; generalized output torques τ = {τL,d, τL} are accord-
ingly functions of both θ̇L,d and −θ̇L. To differentiate between
torques stemming from the task trajectory and those caused
by environmental interaction, we will indicate torques which
result purely from −θ̇L as

τ ′ = τ − τref (23)

Here τref , a known quantity which can be determined from
the controller and/or plant, represents output torques as a
function of the reference path. Under this notation, an SEA’s
impedance transfer function defines the relationship between
input velocity −θ̇L and corresponding output torque τ ′L.

Since impedance shapes energy exchanges, passivity is
frequently used to evaluate impedance controller stability [28].
Loosely speaking, a system is passive if it dissipates or
conserves energy; i.e., the quantity of released energy must be
less than or equal to the amount of supplied energy. An inter-
connected system of passive networks is necessarily passive—
the concept of passivity therefore allows us to conclude global
stability by assessing each constituent’s energy exchange. If a
robot is known to be passive, coupling that robot with any
passive environment—such as a passive human operator—
results in stable interaction, and does not require extensive
modeling or parameterization of the environment.

A. SEA Impedance Control

Impedance control and passivity have recieved particular
attention in relation to SEAs [17]–[20]. Prior research has
focused on cascaded torque controllers, in part because the
passivity of linear time-invariant systems can be straightfor-
wardly tested. Should the impedance transfer function be
positive real (PR), the amount of dissipated energy must
be greater than or equal to zero; evaluating the positive
realness of impedance therefore offers a frequency domain
determination of device passivity. Consider, for example, an
idealized impedance transfer function obtained by combining
(19) and (22)

Z(s) =
τ ′L
−θLs

=
K +

(
Zd(s)s−K

)
Qf (s)

s
(24)

Given a stable transfer function G(s) = A(s)/B(s) whose
poles upon the imaginary axis are simple, G(s) is PR if and
only if its real part is nonnegative along the jω axis. One
check for this criterion follows from the equation

Re
(
G(jω)

)
= Re

A(jω)

B(jω)
= Re

A(jω)B(−jω)

B(jω)B(−jω)
(25)

so at frequencies where Re
(
A(jω)B(−jω)

)
≥ 0, we can

conclude G(s) is PR. Applying this test to (24) and letting
Zds = Kd, we again find Kd ≤ K to be the requisite
condition for passivity. The range of virtual impedances is thus
limited even for a best-case controller—restrictions ultimately
stem from mechanical time delays induced by the spring, but
may differ amongst controllers.

Although the described PR property can evaluate linear
controller passivity, this method (a) requires each desired



Fig. 4. Network model of an SEA with impedance control. The two-port
torque-controlled SEA is terminated by passive environments, and energies at
these connecting ports can be calculated from the corresponding effort/flow
pairs. The reference trajectory—and its effect on output torques—is omitted
in order to purely study interaction energies. Note that while the “torque-
controlled SEA” block could refer to the method depicted in Fig. 3, other
torque control approaches, such as those presented in [8] or [10], may also
be implemented here.

class of impedances to be individually examined and (b)
cannot be simply used by time-variant controllers. In order to
determine the passivity of any stable SEA torque controller in
conjunction with an arbitrary desired impedance, we introduce
the time domain passivity approach (TDPA) for SEAs. The
TDPA is less conservative than comparable frequency domain
tests; a signal non-passive over any frequency range may be
output passively during certain time-spans. Indeed, we will
find that the described TDPA enables temporarily rendering
virtual stiffnesses above the plant’s natural stiffness—relaxing
conditions established by the literature [17]–[20].

B. Energy Analysis Using TDPA

An SEA interface with impedance control can be interpreted
as interconnected one- and two-port networks: physical envi-
ronment, torque-controlled plant, and affixed virtual environ-
ment (see Fig. 4). Users move the SEA end-effector with some
velocity θ̇L that is measured in the plant and transmitted to
the virtual environment; the virtual environment specifies a
corresponding torque τ ′L,d which is returned to the torque-
controlled plant—and, after a time delay, τ ′L is finally output
to the user. Network theory has been extensively applied to
examine energy flows through rigid haptic interfaces [29] as
well as during bilateral teleoperation [30], a related topic
within the field of human-robot interaction.

Viewed across the lenses of network theory, the total energy
of a system is equivalent to the sum of the energies supplied
by each port plus the network’s initial energy; for the sake of
simplicity, however, we will omit this initial term. The energy
of an SEA torque-controlled plant is thus written

E(t) = EP (t)− EV (t) (26)

where energy across physical (EP ) and virtual (EV ) interac-
tion ports is given by

EP (t) =

∫ t

0

τ ′L(λ)
(
− θ̇L(λ)

)
dλ (27)

EV (t) =

∫ t

0

τ ′L,d(λ)
(
− θ̇L(λ)

)
dλ (28)

Recalling fundamental assumptions of both physical and vir-
tual environment passivity, our SEA network is guaranteed
passive if the two-port torque-controlled plant is also passive—
i.e., E(t) ≥ 0 ∀t. One safe criteria for passivity is τ ′L(t) ≥
τ ′L,d(t) ∀t, or Z(s) ≥ Zd(s) ∀s in the frequency domain;
since Z(s)s → K as s → ∞, we may alternatively write
K ≥ Zd(s)s as the requisite condition for energy dissipation.
The passivity of any desired impedance and stable torque
controller can therefore be confirmed by iteratively measuring
(27) and (28)—and, at times when EP < EV , altering τ ′L,d to
satisfy the listed inequalities.

With an aim to instrument and dissipate energy in the
time domain, Hannaford and Ryu [23] developed passivity
observers (POs) and passivity controllers (PCs). These tech-
niques assume both that effort and flow variables are sampled
at a much faster rate than the system dynamics, and that torque
and velocity fluctuations between testing periods are slight; as
such, they are suited to SEA applications where θL changes
continuously over low frequencies. POs consist of a discrete-
time implementation of the energy equation at relevant ports—
PCs are time-varying dampers selected to impose a lower
bound on energy. By means of POs and PCs we can modify
τ ′L,d such that (26) is always nonnegative, yielding a simple
yet versatile assurance of SEA passivity.

We have described how the TDPA can be utilized to ensure
SEA torque controllers are passive; however, this condition is
unnecessarily strict. The amount of stored or released energy
within an arbitrarily connected network system is determined
by effort and flow variables at each open-ended port [23].
Passivity of an entire SEA robot—torque-controlled plant and
virtual environment—can therefore be evaluated using only
EP ; individual blocks need not be dissipative so long as
the network system is passive with respect to the physical
interaction port. Incidentally, determining passivity by measur-
ing EP provides the time domain corollary to the previously
mentioned frequency domain PR tests.

C. TDPA for SEAs

A coupled SEA plant, torque controller, and impedance con-
troller are passive with respect to environmental interactions
at time t if and only if EP (t) is nonnegative. Given that
spring displacement measures τL, the controllers dictate τref ,
and filtered differentiation obtains θ̇L with negligible delays,
EP can be observed in real time by implementing (27). Our
assumption that τref is known requires plant parameterization;
however, this information was already necessary to construct
the torque controllers enumerated in Section II, and the fol-
lowing algorithm includes a safety factor which accounts for
τ ′L errors. Bearing in mind the TDPA previously presented, it
seems τ ′L can be similarly adjusted to guarantee EP passivity.

Unfortunately, changing load torque entails shifting actuator
position. Rearranging (1)

τL =
τA − (JAs

2 +BAs)θL
JA

K s2 + BA

K s+ 1
(29)

it is evident that decreasing K increases a mechanical time de-
lay between actuator and load torques. The compliant element



therefore prevents us from treating SEA motors as transparent
effort sources; this contrasts the rigid haptic manipulators stud-
ied by [23], [24], offers challenges dissimilar to communica-
tion time delays, and prohibits the straightforward use of a PC.
Since τA can be instantaneously varied and the plant (29) is
passive, a secondary solution involves directly modulating the
commanded controller torque to maintain interaction passivity.
Yet mechanical time delays again disrupt the suggested plan—
present actuator torques have an effect on future load torques,
and hence upcoming input velocities would be required to
evaluate current torque selection. Moreover, discontinuously
switching the controller signal may excite spring oscillations
and nonintuitively affect load torques.

In order to promise passivity despite mechanical time de-
lays, we here introduce an impedance passivity controller
(iPC) which autonomously adjusts the desired impedance
based on physical interaction energy. When EP approaches
zero, the iPC should alter Zd such that the SEA dissipates
energy; on the other hand, when EP is above some threshold,
our iPC ought to faithfully output the desired impedance. This
algorithm, analogous to that used in [24], is formalized below

Z ′d = Zd + f(EP )(Z∗d − Zd)

f(EP ) =


0 if EP ≥ EU

1 if EP ≤ EL

EU−EP

EU−EL
otherwise

(30)

where EL and EU define the lower and upper limits of the
interpolation region, and Z∗d is a predefined impedance such
that Z ≥ Z∗d . If EP ≤ EL, the iPC renders Z∗d , and thereby
imposes a nondecreasing lower bound on physical interaction
energy. Accordingly, energy generated by an SEA with the
proposed iPC is necessarily bounded by some finite value:
EP ≥ −α, where α < ∞. Since the iPC restricts energy
injection, it can be demonstrated that this SEA system is
dissipative and at least input-to-state stable [31]. Consider the
user input θ̇L as well as the robot states θA and θL; input-to-
state stability guarantees that as time increases, the states are
bounded by some function of the input [32]. We can further
show there always exists a set of EU , EL, and Z∗d which
ensures passivity; given a trajectory θL(t), the lower bound
on physical interaction energy is directly correlated to EL,
so increasing EL decreases α. In the worst case, iPCs bound
the growth of SEA states; after sufficient tuning, iPCs assure
passivity of the SEA interface.

Specifying iPC parameters Z∗d , EL, EU , and the function f
requires some degree of information about the target applica-
tion; the SEA’s compliance K, the desired impedance Zd, and
the anticipated range of interaction energies should be known.
First, we choose a value of Z∗d that can always be passively
rendered—for the case of cascaded torque controllers, it has
been shown that this condition is satisfied when rendering a
pure stiffness less than or equal to K [17]. Moreover, because
Z∗d will be displayed near equilibrium, users should pick an
acceptable impedance for small displacements during the given
application. Next, we iteratively find the upper and lower limits
of the interpolation region, where, as a rule of thumb, EL and
EU are initialized at 1/4 and 1/2 of the anticipated maximum

(a)

(b)

(c)

(d)

Fig. 5. Simulation of an SEA with our iPC. We attempt to render Zds =
2K using cascaded torque-velocity control. Plant parameters are identical
to those given for the flexion/extension knee joint of the LOPES [17], while
controller gains match those enumerated by [9]. The human input is sinusoidal,
oscillating spring output θL with 0.5 Hz frequency and 10◦ amplitude. No
reference trajectory was provided, θL,d = 0. (a) Interaction energy; horizontal
lines mark lower (EL = 0.1 J) and upper (EU = 1.5 J) bounds of the iPC
transition region. (b) Load torques. (c) iPC impedance; Z∗ds was initialized
to K/4. (d) Load torques vs. spring displacement; each bar represents the
mean difference between load torques with and without an iPC—shown in
(b)—over 1◦ intervals of spring displacement.



energy, and then adjusted between trials based on resulting
performance. Upper limit EU must be less than the maximum
energy, and lower limit EL must be greater than zero. Finally,
while other monotonic functions are viable, f was chosen to
affect a linear interpolation between Zd and Z∗d , since this
affords an intuitive interpretation of the impedance rendered
throughout the transition region. So long as Z∗d can always be
rendered passively, the iPC guarantees at least input-to-state
stability, regardless of the other parameter selections. To better
demonstrate an SEA with iPC, example simulation results are
provided in Fig. 5.

IV. EXPERIMENTAL VALIDATION

We performed the subsequent experiments on a single
degree-of-freedom linear SEA [33]. Our device—along with
its enumerated components—is shown in Fig. 6. A brushed
DC motor (Maxon Motor, RE 30) and rotary incremental
encoder (Maxon Motor, HEDL 5540) are mounted to the
ground frame; this motor drives a cable-wrapped pulley to
control the translational slider’s motion. An elastic element,
which has been characterized to have stiffness K = 1075 N/m,
lies between the slider and load and consists of a compactly-
housed bidirectional spring together with a linear incremental
encoder (US Digital, EM1-0-500-I) that directly measures
spring deflection. Our experimental platform was designed for
two load conditions: a fixed output for studying SEA force
control, and a backdrivable mode for testing SEA interaction
control. When varying load position, we employed another
identical motor and transmission unit rigidly attached to the
spring output. This second motor was treated as a pure velocity
source, and resulting load positions were measured by sub-
tracting spring deflection from actuator position. Controllers
were executed using MATLAB/Simulink, and data acquisition
at a sampling rate of 1 kHz was realized by QuaRC.

A. Demonstration of MRAC for SEAs

We here seek to experimentally verify that the proposed
MRAC for SEAs can provide desired force performance
despite errors in the initial parameter estimates. During this
test we rigidly attached our linear SEA output to the ground
frame such that xL was fixed; accordingly, actuator translation
directly corresponded to load forces, FL = KxA. The system
attempted to track a sinusoidal desired load force FL,d with
0.5 Hz frequency and an amplitude oscillating between ±15
N—due to the proportionality of load force and actuator
position, this equated to an appropriately scaled desired ac-
tuator trajectory xA,d. In picking the second order transfer
function for the reference model (6), we selected a natural
frequency of 10 Hz and a critical damping ratio. Given that
the resultant reference poles are twenty times faster than the
signal frequency, Qf (s) ≈ 1, and the desired load force can
be accurately output with low impedance (19).

Recall that the parameter vector φ contains estimates of JA,
BA, K, µ1, and µ2. We purposely initialized φ to be different
from φ∗, the “true” parameter values, to demonstrate that
errors in ĴA, B̂A, K̂, µ̂1, and µ̂2 can be accommodated under
MRAC for SEAs. Practically, these intentional mistakes were

Fig. 6. Experimental linear SEA test-bed: (1) actuator-side DC motor, (2)
translational slider, (3) bidirectional spring, (4) incremental encoder, (5) load-
side DC motor.

(a)

(b)

Fig. 7. Example force control performance using MRAC for SEAs. (a)
Comparison of reference model and actuator position: error, which is defined
as the difference between xA and xA,m, decreases in amplitude as xA
converges to xA,m. (b) Parameter adaption for an unknown plant: the
estimated plant parameters converge from erroneous initial conditions to yield
desired closed-loop behavior. Prior to this test, we identified M = 0.5 kg,
BA = 10 N·s/m, and K = 1075 N/m.

meant to simulate a situation in which the plant had not been
exactly identified, or where its properties had changed over
time. The parameter estimate φ was updated in real time by
integrating the adaption law (17). When constructing the con-
trol law (7), we determined the sign of velocity via continuous
sat(tanh(·)) functions for f1 and f2. The symmetric positive
definite matrix P was chosen using the Kalman-Yakubovich
lemma such that errors in actuator position were weighted
significantly higher than errors in actuator velocity; moreover,
the scalar gain γ was tuned so convergence could be observed
over the test’s 30 s length.

Fig. 7 depicts the results of this experiment, both in terms of
actuator position and parameter estimates—these plots allow



us to evaluate MRAC stability and parameter convergence.
From Fig. 7(a) it is evident that xA more closely resembles
xA,m as t increases; furthermore, performance improvements
temporally correspond to the parameter adjustments. Position
error does not converge to zero, however, which we believe
stems from an unknown and repeated model variation, possibly
motor backlash. Turning our attention to Fig. 7(b), we observe
that the parameters desirably change so that FA induces
model following, but do not necessarily converge to their true
values—e.g., M̂A settles near 2MA. This behavior again aligns
with previously stated theoretical expectations, particularly
since the input signal is not persistently exciting. Although
Coulomb friction parameters grew throughout the given time
scale, they converged during longer tests.

B. Comparison of DOB and MRAC for SEAs

The following experiment endeavors to exhibit overarching
stability and convergence trends for both robust and adaptive
SEA force controllers, and focuses on the consequences of
parameter uncertainty. Our goal here is not to claim one ap-
proach is “better,” but rather to demonstrate that, unlike DOB
methods, MRAC for SEAs is stable under arbitrary parameter
uncertainty. We employed the robust controller described by
[10]—which includes a filter Q(s), a PD controller C(s), and
a nominal plant Pn(s)—together with our proposed MRAC
for SEAs. The spring output was again rigidly attached to
the ground frame, and each controller attempted to track a
sinusoidal load force of 10 N amplitude and 0.5 Hz frequency
for 10 s. Before performing any testing, we experimentally
identified our SEA. The estimated plant parameters, along with
reference model parameters, DOB control gains, and MRAC
control gains, are enumerated in Table I. By inserting these
values into the controller developed within Section II, as well
as the DOB block diagram introduced in [10], the following
experimental results can be replicated through simulation.

While we kept other initial parameters at their true value, we
increased the estimated spring constant K̂ by 0.5K after each
pair of trials. Of course, changing K̂ introduced parameter es-
timation error and provided a straightforward means to monitor
the influence of system knowledge on controller behavior. A
total of 8 trials were performed—4 with each controller—and
the experimental results are plotted in Fig. 8. Norm position
error here refers to the L2-norm of the difference between xA
and xA,m taken over 2 s intervals. Note that the DOB method

TABLE I
PLANT PARAMETERS AND CONTROLLER GAINS

Plant Pn(s) Model Q(s)

MA 0.5 kg ωn 10 Hz
BA 10 N·s/m ζ 1
K 1075 N/m

µ1, µ2 0

DOB Gains C(s) MRAC Gains

KP 100 N/m Q 106(I2)
KD 10 N·s/m γ 104

Fig. 8. Performance of DOB and MRAC during SEA force control while
parameter estimation errors are present. When K̂/K = 2.5 the DOB
approach becomes rapidly unstable.

quickly becomes unstable when K̂ = 2.5K; hence, its norm
position error is uniquely calculated at 0.2 s increments.

Two general trends can be extracted from Fig. 8: (a) the
robust controller offered consistent performance throughout
individual tests, while adaptive controller performance con-
verged toward a common behavior, and (b) parameter un-
certainty incurred instability in the robust controller, yet did
not alter the long-term tracking of our adaptive controller.
Increasing estimated parameter error augments the magnitude
of a multiplicative perturbation ∆ for DOB, but has no effect
on ∆ within MRAC; as shown, when ∆→∞, DOB perfor-
mance degrades (K̂/K = 2) and eventually becomes unstable
(K̂/K = 2.5). The plot also suggests that MRACs provide
better performance even in the absence of parameter error—
potential gain variations and model inaccuracies, however,
prevent us from inferring an underlying advantage.

C. Impact of iPC Settings on SEA Performance

We next endeavored to heuristically establish how different
iPC parameter selections altered the behavior of an SEA under
impedance control. During this test load position xL was
methodically varied by a second actuator, which attempted
to follow a 0.5 Hz frequency and 4.25 mm amplitude cosine
wave that had a −4.25 mm offset bias; simultaneously, our
SEA interface sought to passively render Zds = 2K. We
performed 9 trials, each 120 s in duration. With the intention
of providing a consistent means for comparison, we first
conducted a “baseline” case where the SEA used cascaded
force control, the iPC upper energy bound EU equaled 0.05
J, and the iPC passive impedance Z∗ds was defined as 0.1K.
Subsequent trials changed one parameter—whether that be the
controller, EU , or Z∗d—with respect to this baseline case.
Control gains, EL, and other variables were held constant
throughout.

Plots of averaged load force vs. load displacement are
shown in Fig. 9. The slope of these curves corresponds
to Zs, the stiffness rendered at the SEA output. Near low
energy states the system renders stiffnesses less than 2K;
however, as displacement increases, stiffnesses approaching
the desired 2K were observed during each trial. We found that
smaller values of EU and K∗d yield worse performance around



(a)

(b)

(c)

Fig. 9. Average load force as a function of load displacement while using
different iPC parameter values. The baseline case, denoted by a blue line
with square markers, is constant across each plot. Dashed gray and black
lines correspond to the actual spring stiffness and desired output stiffness,
respectively. (a) Application of different force control schemes. (b) Effects of
varying the lower bound of the interpolation region. (c) Effects of varying
the passive impedance; dashed colored lines indicate the addition of damping
within Z∗d .

equilibrium, but caused more rapid transitions to the desired
stiffness. Increasing B∗d enables higher perceived stiffnesses
across the spectrum of displacement—since damping induces
energy dissipation, this result matches expectation.

Numerical outcomes of Fig. 9 are summarized in Table II.
Each row corresponds to a unique trial, while the first column
denotes the modified parameter; tests should be contrasted
with analogous trials—those varying the same parameter—
as well as the baseline case. Let x̄L indicate the mean load
path across all trials; then xL normalized error, a scaled
metric of input deviation, was calculated as ‖xL− x̄L‖/‖x̄L‖.
The amount of dissipated interaction energy was simply EP

measured at a trial’s completion. The variable f is defined in
(30), and dictates desired impedance. Perceived SEA stiffness

Fig. 10. Bode magnitude plot of normalized perceived stiffnesses for an SEA
under impedance control. Cases without the iPC are shown in solid lines, while
those with an iPC use dotted lines. Note that rendering Zds = 1.5K without
the iPC was not passive.

was computed according to Zs = −FL/xL, and singular data
points where xL → 0 were discarded. Finally, recalling that
FL,d = −ZdxLs, load force normalized error was calculated
as ‖FL − FL,d‖/‖FL,d‖.

Due to the presence of the proposed iPC, every listed trial
maintained passivity throughout the experiment; in another
novel result, the iPC worked successfully with linear, robust,
and adaptive SEA force controllers. We found that increasing
EU unsurprisingly led to greater EP —i.e., a more conservative
system—but harmed other performance metrics. On the other
hand, decreasing EU instigated more aggressive behavior:
EP decreased, Zs ≥ 1.5K more often, and normalized
FL error diminished. Varying K∗d produced a similar trade-
off, where augmenting K∗d reduced EP but improved the
remaining metrics; increasing the disparity between Kd and
K∗d , however, facilitated more accurate rendering during large
xL displacements at the expense of lower Z near equilib-
rium. The addition of B∗d substantially increased both EP

and overall performance—but the use of B∗d is sensitive to
measurement delays and controller properties, and may not
always be possible.

D. Effect of iPCs on SEA Bandwidth

In our final experiment, we studied the manner in which
iPCs changed the high frequency behavior of impedance
controlled SEAs. An actuator modulated load position such
that xL tracked a Schroeder multisine; this input had a flat
frequency spectrum in the range 0.1−8 Hz, and was scaled to a
maximum amplitude of 5 mm. For the first 3 trials—performed
without an iPC—the SEA attempted to render virtual stiff-
nesses 0.5K, K, and 1.5K. Throughout the next 5 trials—now
including the iPC—the SEA sought to render Zds = 1.5K;
here Z∗ds = 0.5K, and only the initial interaction energy
EP (0) varied between tests. A cascaded force controller was
leveraged, along with iPC parameters given for the previous
section’s baseline case. We identified Z(s)s by the MATLAB
function tfestimate using measured input −xL and output
FL; all estimates had a coherence function above 0.9 across
relevant frequencies.

The frequency responses of SEA virtual stiffness transfer
functions are depicted in Fig. 10. For trials where EP (0) ≥ 0,
the iPC maintained passivity, and for the test where EP (0) <



TABLE II
EFFECT OF CONTROLLER, TRANSITION REGION, AND Z∗d ON SEA PERFORMANCE WHILE Zds = 2K

xL Norm. Error EP Dissipated [J] f Mean f Std. % Time Zs ≥ 1.5K FL Norm. Error

Baseline 0.0136 0.0128 0.4768 0.3060 30.32 0.2905

DOB 0.0164 0.0157 0.3519 0.2830 40.35 0.2291
MRAC 0.0170 0.0154 0.4519 0.3061 32.61 0.2759

EU = 0.1 0.0337 0.0354 0.5021 0.1853 15.77 0.3688
EU = 0.01 0.0262 0.0008 0.4009 0.4264 52.11 0.1769

Z∗d = 0.5K/s 0.0121 0.0068 0.5283 0.3398 32.59 0.2466
Z∗d = 0.1K/s+ 50 0.0184 0.0206 0.3265 0.2655 42.55 0.1771
Z∗d = 0.5K/s+ 50 0.0135 0.0166 0.3901 0.3010 42.37 0.1653
Z∗d = K/s+ 50 0.0131 0.0033 0.5160 0.3578 43.21 0.1515

0, the iPC dissipated energy. We conclude that—when using
an iPC—the Bode magnitude plot of Z(s)s is bounded by
the frequency responses of strictly rendering Zds, the de-
sired stiffness, and Z∗ds, our secondary impedance. The iPC
system displayed a range of stiffnesses between Zds and
Z∗ds at a given frequency; since Z ′d is dependent on EP ,
this phenomenon stems from the time domain nature of our
solution. Hypothetically, any behavior contained within the
envelope described by Zds and Z∗ds is therefore possible.
We finally note that Z(s)s converged to K as ω → ∞,
demonstrating that the proposed iPC both works throughout
a reasonable frequency range, and preserves underlying SEA
high-frequency behavior.

V. DISCUSSION AND CONCLUSION

This article addressed compliant actuator control issues
in the context of time domain theory, and focused on the
fundamental tasks of stable SEA torque control and passive
SEA impedance control. A model reference adaptive controller
was first developed for SEAs, and was subsequently shown
to track desired closed-loop behavior with Lyapunov stabil-
ity. MRAC provides requested performance characteristics by
continuously estimating the system’s inertia, damping, spring
stiffness, and Coulomb friction; we theoretically and exper-
imentally demonstrated that our adaptive approach is stable
despite parameter uncertainty, while state-of-the-art SEA dis-
turbance observers may suffer parameter-induced instability.
Moreover, unlike prior adaptive controllers for SEAs, the
proposed formulation does not involve user dynamics, and can
be safely integrated into an interaction control scheme using
the described energy analysis method.

We next applied network theory—and, in particular, the
time domain passivity approach—to ensure the safety of
SEAs under impedance control schemes. Frequency domain
tests such as the positive real property can determine linear
controller passivity; however, each potential impedance/torque
controller combination must be individually evaluated, and
results cannot be extended to time-varying systems. On the
other hand, by placing SEAs under impedance control in
the context of network models, energy can be measured
using passivity observers and dissipated through passivity
controllers. We formulated the energy conditions for passivity

when augmenting any stable torque controller with an arbi-
trary impedance, and developed a novel impedance passivity
controller which enabled SEAs to passively render stiffnesses
above their natural stiffness. It was interesting to note that
compliant actuation necessarily introduces a mechanical time
delay between commanded and actual end effector torque,
which demands a different solution than the communication
time delays common within haptic and bilateral teleoperation
systems. Experiments highlighted the effects of the iPC tran-
sition region on performance metrics and the influences of an
iPC on bandwidth.

Our methodical approach to compliant actuation under the
lenses of time domain theory yielded a new torque control
technique for this application, and more versatile impedance
passivity assessments than were previously available. By
means of these gains in compliant actuator control, we hope
to increase the prevalence and effectiveness of elastic and safe
manipulator designs for human-robot interaction. Although
this work focused on SEAs—the most fundamental case of
compliant actuation—many of the same concepts may be ex-
tended to variable stiffness actuators (VSAs), as well as other
elastic actuator designs. Next steps involve incorporating our
results within applications for compliant actuation, studying
the potentially limiting properties of discrete time controller
implementations, and more directly investigating VSAs while
exploiting the proposed time domain techniques.
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