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Abstract

This paper addresses the problem of accuracy and coupled stability of stiffness-

controlled series elastic actuators, where the motor is modeled as a non-backdrivable

velocity source, and the desired value of virtual stiffness is above the physical

stiffness of the compliant element. We first demonstrate that, within the men-

tioned conditions, no linear outer-loop force control action can be applied on

the velocity-sourced motor to passify the system. Relaxing the constraint of

passivity, we exhaustively search the control design space defined by parametric

force and stiffness controllers, expressed in a general lead-lag form, and define

a lead-type stiffness compensator that results in acceptable conditions for both

coupled stability and accuracy. We also address the effect of a non-ideality in

the velocity control loop, such as limited-bandwidth velocity control, and derive

relationships between the value of the inner velocity loop time constant and

parameters of the stiffness compensator that provide the best performance in

terms of both stability and accuracy of haptic display, and test our optimized

controller both through numerical simulations and through experiments with

the MR-SEA II.

We show that the parameters of a simple outer-loop stiffness compensator

can be optimized to result in a stable and accurate display of virtual envi-

ronments with stiffness values in a large range, that also comprises values of

virtual stiffness higher than the physical stiffness of the compliant element. A
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requirement for coupled stability is that the actuator is designed such that the

minimum value of inertia connected to the compliant actuator load is higher

than a control-defined threshold. Finally, we extensively analyze how the mini-

mum value of interaction mass for coupled stability can be minimized through

modulation of the stiffness compensator zeros and poles, considering realistic

limitations in the velocity control bandwidth of non-backdrivable motors. Our

analysis, validated through both numerical simulations and experiments, opens

the possibility for alternative approaches to the design of compliant actuators,

whereby rendering of high stiffness is possible if the load mass is always higher

than a determined threshold.

Keywords: Compliant actuators, haptics, coupled stability, force

control

1. Background

The possibility of safe physical interaction and successful cooperation with2

humans is among the most promising and exciting frontiers of robotics. Several

new scenarios such as rehabilitation robotics [1, 2, 3], human augmentation4

robotics [4], surgical robotics [5, 6] and haptics have rapidly transitioned from

science-fiction, to research laboratories to flourishing industries. In all those6

scenarios, a common underlying feature is the need of regulating the physical

interaction between a human and a robot.8

In order to achieve this goal, interaction control approaches, as described

in the impedance control framework [7], have extensively been implemented,10

and their effectiveness demonstrated in several applications requiring physical

interaction with humans. In the case of simple impedance control [7], [8], the12

controller is defined in impedance causality, and the mechanism is modeled as

a pure source of effort variables. Successful implementation of this type of14

impedance controller has been demonstrated mostly in the case of robots with

negligible intrinsic dynamical properties or whose motion is approximated by16

quasi-static movements [1, 9, 3].
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The problem of accurately regulating interaction becomes more difficult in18

the case of manipulators with complex dynamics, with high inertia, and/or with

highly non-transparent actuation systems [10]. When robots are intended for20

applications requiring substantial assistance to humans during load-intensive

tasks, manipulators are indeed not pure effort sources, due to the lack of actu-22

ation systems that allow achievement of high force density without substantial

increase of task-space dynamic loading. In this case, model-based dynamic24

compensation schemes for impedance control can be adopted [11], but often

do not fully guarantee accurate interaction control. In general, effectiveness of26

model-based schemes is limited by neglect of higher order or nonlinear dynami-

cal effects, and by issues related to sensorization and practical limitations in the28

capabilities of full state feedback, required for compensation of inertial loads.

Force feedback, an approach pursued since the late 1970s [12], can enable30

the accurate regulation of interaction also in non-transparent manipulators. In

such architectures, an explicit measurement of the force of interaction between32

the manipulator and the environment is used to generate a command signal,

that ultimately regulates interaction with the environment. Since then, several34

forms have been proposed for the force controller, such as proportional control,

pure integral control, proportional-integral (PI) control [11], and controllers36

with inner motion-control loops ([13, 14] for compliant joints, and [15] for rigid

actuators).38

1.1. Passivity for force-feedback systems

Real-world implementations of interaction control through force-feedback do40

not succeed in achieving arbitrary impedance values. In practice, when a con-

troller attempts to emulate dynamics that differ significantly from those of the42

hardware, the risk of instability increases [16]. The stability limits in force-

feedback controlled systems have been approached through the concept of pas-44

sivity, a concept adapted from classical theory of electrical networks [16]. It has

been proved that when two stable systems with passive impedance port function46

are coupled together, the coupled system, that results from the connection of
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the two systems, is stable. Instead, if a robot is stable but non-passive, there48

will be at least a passive environment that, during interaction, will destabilize

the controlled system [16, 17]. Proving passivity of a controlled system ensures50

stability for a wide range of interaction environments that include human dy-

namics, that are generally modeled as a passive, non linear, first- or second-52

order system. Also, passivity can be proved for a simplified model, that in-

cludes only the controlled system, and do not require detailed knowledge of the54

environment. Despite the introduced simplicity, this approach allows derivation

of strong conclusions on the stability properties of the robot, when coupled to56

an extremely large and useful set of environments.

Requiring passivity has also drawbacks. Colgate showed that if endpoint58

force feedback is used to compensate for also the distal mass, the system becomes

non-passive [17]. This limitation results from the often unavoidable presence of60

dynamics between the force sensor and the actuator, that can severely limit the

performance of force and impedance controllers. Achievement of global passiv-62

ity properties for a controller (i.e. passivity for all frequencies) is considered

an important requirement for human-interacting robots; yet, at the same time,64

it is also acknowledged to be quite conservative [18]. It is indeed recognized

that the frequency-domain passivity requirement often poses excessive limita-66

tions on performance. Examples of approaches violating the frequency-domain

passivity requirement without limitations of coupled stability are time-domain68

passivity controllers [18], also implemented in teleoperation systems [19], and

force-feedback controllers for wrist robots[20].70

1.2. Inclusion of physical compliance for interaction control

An alternative approach to improving the reflected dynamics of manipula-72

tors requires considerable changes to actuators design, as done in Series Elastic

Actuators (SEA)[21, 22], where a compliant element is introduced in series be-74

tween the actuator and the load and its deflection measured. This measurement

enables estimation of the interaction forces exchanged between the actuator and76

the environment, and ultimately of the interaction forces between the human
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and the robot.78

SEAs were originally proposed for their mechanical advantages over stiff

actuators, such as shock tolerance and increased power capabilities [21, 23, 24].80

In later years, several research groups showed that Series Elastic Actuators

can be successfully employed for accurate implementation of interaction control82

approaches with actuation systems that could not be modeled as low-impedance

effort sources [25, 26, 27]. From a control perspective, the primary advantage of84

series elasticity over stiff force feedback is that the compliant force sensor reduces

the physical gain of the feedforward path in the force control loop. In this way,86

the control gain can be proportionally increased to maintain the overall loop

gain of the actuator, resulting in the same stability margins with higher control88

gains [22]. SEAs can then display a lower output impedance than the one of the

actuator alone, without imposing the same stringent limits on the maximum90

reduction of endpoint inertia as is the case for systems with stiff force-feedback.

In fact, this scheme allows simultaneous adoption of high-geared motors and92

achievement of low apparent load inertia, since motor inertia is decoupled from

the load through the series elastic element.94

Though the requirement on minimum reflected inertia for coupled stability

does not apply to SEAs, it has been demonstrated that, if inner velocity loops are96

introduced in the control architecture, the SEA is not passive if it attempts to

regulate a behavior corresponding to a pure spring with elastic constant higher98

than that of the physical compliant element [14]. In the following, we will refer

to this case as “virtual stiffness control”, in which it is desired to regulate the100

force of interaction Fi, in a way that it is proportional to the error between the

measured position x and a desired position xdes through a constant Kdes, named102

virtual stiffness, so that Fi = Kdes(xdes − x). Although different passivity con-

ditions are obtained through alternative controllers types, the presence of inner104

velocity loops is often mandatory. This is certainly the case of non-backdrivable

actuators which can be more suitably modeled in admittance causality, such106

as piezoelectric actuators. For this class of actuators, cascaded force-velocity

represents the most direct implementation of an interaction controller. Unfor-108
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tunately, the limit on passivity (achieved only for Kdes ≤ ks) poses a stringent

limitation on the maximum stiffness that can be accurately rendered through110

a compliant actuator that includes a non-backdrivable motor. Practical exam-

ples of such velocity-sourced motors are ultrasonic piezoelectric motors, such112

as the one commercialized by Shinsei and utilized in MR-compatible robotics

applications [28, 29].114

This paper investigates the consequences arising from the violation of the

passivity requirement, when the actuated system is controlled to render a pure116

virtual stiffness with elastic constant higher than the physical spring of the

SEA. The analysis is conducted for non-backdrivable motors that are modeled118

as ideal velocity sources, for which it is possible to derive the parameters of a

stiffness compensator capable of achieving coupled stability with a wide range of120

passive environments. The approach is finally validated through both numerical

simulations and experiments in a 1-DOF test bench.122

2. Modeling and problem definition

The schematic of a SEA is presented in Fig. 1, in which an actuator drives124

the output mass through a spring-mass-damper system. The compliant actuator

regulates the force of interaction with the environment FL through measurement126

of xM and xL, representing motor and load displacements, respectively. Assum-

ing knowledge of the spring elastic constant ks, FL is estimated through Hook128

law: FL = ks(xL − xM ).

Figure 1: Mechanical schematic of a Series Elastic Actuator. A motor is connected to

the load through a spring, whose deflection is measured, thus allowing measurement

of the interaction force FL.
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Figure 2: Block diagram of the controlled system. A non-backdrivable motor is con-

trolled to be a velocity source, and an outer loop is closed on the measured force of

interaction with the environment. A velocity control disturbance transfer function can

be defined to describe the effect of interaction force on error in velocity control. This

function will be neglected, assuming negligible admittance for the velocity controlled

motor.

The goal is to develop a controller which is able to regulate the apparent130

impedance ZL = FL

ẋL
= ks(xL−xM )

ẋL
of the system at the port of interaction with

the environment, (i.e. at coordinate xL), through only measurement of the132

two positions xL and xM . In particular, we are interested in the possibility

of rendering the behavior of a pure spring, with virtual constant Kdes higher134

than that of the physical spring, ks. The environment is defined by the mass

mL in the figure, but it could be any linear passive environment, (i.e. any136

combination of spring and mass). To this aim, we will investigate whether there

are control actions that guarantee passivity of the transfer function ZL, that138

would consequently imply stability of the system when coupled to any passive

environment.140

3. Cascaded force-velocity control

Several control approaches have been proposed for force control of SEAs,142

including direct feedback force controllers with feedforward compensation [30],

nonlinear compensators capable of reducing the effects of friction and variabil-144

ity of interaction dynamics [31] and cascaded linear force-position [32] or force-

velocity control [33, 13, 34]. In the specific case of SEAs designed to improve146

the interaction control performance of non-backdrivable or high impedance ac-
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tuators, the latter two controllers are of particular interest, since they effectively148

allow the conversion of a force control problem into simpler position or velocity

control problems, thereby enabling the implementation of interaction controllers150

for non-transparent motors. The cascaded force and velocity control scheme was

demonstrated to be passive [34] for a wide range of desired impedance values.152

This holds true even in the absence of viscous friction, which is not generally

the case of direct force/torque feedback control [35].154

Fig. 2 reports a general block diagram of the cascaded force-velocity con-

troller for an SEA in the Laplace domain, CZ and CF being the transfer func-156

tions of the stiffness and force controller, respectively. The inner velocity loop

can be modeled by the superposition of two contributions, one describing ve-158

locity control performance, and the other describing the degradation of velocity

control due to the interaction with the environment:160

VM (s) = Hv(s)Vdes(s) +Dv(s)FL(s), (1)

where Hv is the velocity control closed loop transfer function, in the absence of

torque disturbance, and Dv describes the effect of torque disturbance on velocity162

control output.

For non-backdrivable motors, within their linear range, the effect of veloc-164

ity reduction provided by interaction with the environment is negligible. Such

simplification is accurate for a class of actuators such as piezoelectric actua-166

tors, which have a very small intrinsic admittance both in their unpowered and

in their velocity-controlled modes [36]. In order to model this effect, we will168

assume perfect disturbance rejection from the velocity controller, and we will

assume that the term Dv(s)FL(s) is negligible compared to the first term in170

(1), implying no effect deriving from load torque on the motor velocity control

performance.172

Under the mentioned assumptions, the velocity-controlled ultrasonic motor

has been modeled as an ideal velocity source, as described in the block diagram174

shown in Fig. 2, assuming that Dv = 0. In order to regulate interaction, an

outer loop is then closed on the measurement of the load position xL, which is176
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compared to the desired load position, in order to define a desired force value

Fdes, determined as a stiffness force field converging towards the desired position178

xdes. In interaction control, it is often desired to regulate mechanical interaction

between subjects and the robot by specifying different values of virtual stiffness180

Kdes, thereby regulating the level of mechanical assistance towards the equilib-

rium position provided by the robot. In the following, we will analyze which are182

the limits of virtual stiffness values that can be rendered in a stable manner,

and design control actions to improve stability and accuracy of stiffness control.184

3.1. Limitations of pure stiffness control through cascaded force-velocity control

The most straightforward way to implement a stiffness controller through

the block diagram shown in Fig. 2 is to impose CZ = 1. Correspondingly,

the outer stiffness loop will be commanding elastic desired interaction forces,

displaying a force field proportional to the difference between the desired load

position and the measured load position, with an arbitrary stiffness constant

Kdes. In this case, using a proportional controller as force compensator (i.e.

CF = kp,f ), the impedance of the controlled system ZL can be calculated as:

ZL =
kss+ (Kdeskp,fks)

s2 + (kp,fks)s
(2)

Analysis of the passivity of the controlled system impedance transfer function

allows determining the coupled stability during interaction with passive environ-

ments. In order for the controlled system to be passive, the impedance transfer

function ZL needs to be stable and to satisfy the condition Re(ZL(ω)) > 0,∀ω ∈

R. Through symbolic calculation, assuming s = jω, we can calculate the real

part of the ZL transfer function, and evaluate conditions for it to be positive,

hence concluding on the passivity of the system. We obtain

Re(ZL(jω)) =
kskp,f (ks −Kdes)

ω2 + (k2
pf
k2
s)

, (3)

which is clearly positive only for ks > Kdes, for all values of the force compen-186

sator gain. The same result can be derived for a force compensator that includes

a proportional-integral controller, as the one proposed for passive interaction188
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control of SEAs [14]. Hence, the system is not passive if it is commanded to

render a virtual spring with stiffness higher than that of the physical spring.190

4. Coupled stability and performance during display of high-stiffness

environments192

The analysis of the Bode plot of the impedance transfer function of the

controlled system is shown in Fig. 3. It can be seen that when Kdes > ks, the194

impedance transfer function approximates a pure spring at low frequencies, and

becomes a non-passive transfer function (with phase lower than -90 deg) above196

a certain frequency value, that can be modulated through action on the force

feedback compensator gain.198
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Figure 3: Bode diagram of the apparent impedance of the system, when controlled

through the proportional impedance compensator, Fdes = −Kdes(xL − xdes), with a

proportional force feedback compensator CF = kp,f .

In order to guarantee stability during rendering of a high-impedance envi-

ronment, we relax the constraints on the specific form of force and stiffness200

compensators, and conduct an analysis in which we will assume them to be

generic, causal compensators CF (for the force compensator), and KdesCZ (for202

the stiffness compensator), and consider a causal rational polynomial expres-
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sion for the velocity control transfer function Hv. The virtual impedance ZL204

rendered at the load side, is given by:

ZL(s) =
ks
s

s+KdesCFHvCZ
s+ ksCFHv

=
ks
s
K(s) (4)

Analysis of (4) provides significant insight on the behavior of the system. In206

particular, the first term defines the physical properties of the system reflected

to the output: a pure spring with stiffness ks. In contrast, the second term,208

labeled as K(s), is a transfer function that describes how the physical stiffness

is modulated to be displayed to the output. If K(s) = 1, the system displays210

a stiffness exactly equal to that of the physical spring. Modulations in the

amplitude of K(s) allow regulation of different stiffness values. If the phase of212

K(s) is positive, this will add damping to the system, whereas if the phase

of K(s) is negative, this will contribute to further decreasing the phase of the214

impedance transfer function ZL below its value of -90 deg dictated by the pure

integral action of the spring. In particular, it should be noted that, unlike the216

case of servo controls, the transfer function of force and impedance compensators

do not enter linearly into the open-loop transfer function ZLYe (that determines218

stability of the system when coupled to the environment with admittance Ye),

nor into the transfer function ZL (that determines performance of the haptic220

display). This limitation is, in general, inherent to interaction controllers [10]

that operate without a specific model of the environment. This makes design222

of a controller aimed at regulating interaction with an unknown environment a

difficult task that cannot be addressed with traditional methods borrowed from224

the servo controllers literature.

It is useful to analyze how the conditions for accuracy and passivity translate226

into requirements for the K(s) transfer function. For pure stiffness control, it is

desired to render a pure spring, with stiffness Kdes. In this case, the performance228

condition is:

ZL(ω) =
Kdes

jω
, ω ∈ Ωc, (5)

11



where Ωc is a range of frequencies of interest, for which it is desired to accurately

regulate interaction. The condition for passivity of the haptic display dictates

that the apparent stiffness fraction K(s) needs to satisfy the following relation,

∀ ω:

0 < argK(ω) < π (6)

We now evaluate how the choice of compensators CF and CZ allows ful-230

fillment of coupled stability during interaction with the environment. We will

focus on the case Kdes > ks, which is a challenging condition for which to ensure232

coupled stability. In fact, it can be intuitively demonstrated that no choice of

causal, finite-magnitude compensators CF and CZ allows fulfillment of the pas-234

sivity requirement with the cascaded force-velocity control scheme. In fact, if CF

and CZ have finite magnitude response at all frequencies, lim
s→∞

K(s) = 1, which236

implies that at high frequencies, the apparent stiffness of the system reduces

to the physical stiffness of the series elastic element. However, for the case in238

which the desired stiffness is higher than the physical stiffness of the spring (i.e.

Kdes > ks), the modulus of the stiffness transfer function |K|, within the range240

of frequencies Ωc will be such that |K(ω1)| > |K(ω)|, ∀ω1 ∈ Ωc, ω > max(Ωc).

Hence, for Kdes > ks, the imposition of the performance requirement implies242

that K(s) is required to have a flat, zero-phase region at low frequencies, with

amplitude Kdes/ks > 1, and a second flat, zero-phase region (above the fre-244

quency band Ωc where performance is specified), of unitary amplitude. Due

to a fundamental property of Bode plots, the two zero-phase regions (higher246

amplitude at lower frequencies and lower amplitude at higher frequencies) can

not be simultaneously present in a system, without the phase diagram having248

at least one point with negative phase. It is thus not possible, with the re-

ported control approach, to render accurate, zero damping, haptic display, with250

stiffness Kdes > ks, respecting the passivity requirement. The mentioned limi-

tation has profound consequences: from the analysis of the closed-loop transfer252

function ZLYe, it can be demonstrated that, subject to proportional force con-

trol CF = kp,f and to the implementation of pure stiffness control (CZ = 1),254
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the system is unstable when coupled to any environment consisting of a mass

me > 0 (i.e. the worst possible coupled stability result).256

4.1. Role of force compensator on coupled stability

Not every choice of force and stiffness compensators CF and CZ implies

coupled instability with every value of environment mass. We will demonstrate

this through two separate analyses that consider different choices of compen-

sators CF and CZ . Let us first assume the following structure for the force

compensator:

CF = kp,f
s+ zF
s+ pF

(7)

Through this expression, the force compensator is expressed by a transfer func-

tion with one zero and one pole that can take the form of a lead compensator

(for zF < pF ), a lag compensator (for zF > pF ), a proportional controller

pF = zF , a proportional-integral action (for pF → 0) and a causal derivative

action (for zF → 0). For this controller, the impedance transfer function ZfL

obtained under the effect of the force compensator is:

ZfL(s) =
kss

2 + (kspf +Kdeskp,fks)s+Kdeskp,fkszf
s3 + (pf + kp,fks)s2 + (kp,fkszf )s

, (8)

which, in agreement with the general demonstration presented in section 4, is258

not passive for any choice of the control parameters kp,f , pf and zf , when

Kdes > ks. It is interesting to observe the coupled instability of the system,260

when it is interacting with its most destabilizing environment. It can be veri-

fied that for this stiffness controlled system, the most destabilizing environment262

is a pure mass, i.e. the admittance Ye = 1
mes

. In this condition, the closed-loop

system is unstable for every value of interacting load mass me > 0, for every264

value of the controller parameters. In fact, through calculation of the char-

acteristic polynomial CLP = 1 + ZfLYe and application of the Routh-Hurwitz266

stability criterion to the coefficients of its numerator, it is possible to simplify

the resulting system of inequalities to the simple expression: Kdes ≤ ks.268

This demonstrates that coupled stability can be obtained only for values

of desired stiffness less than or equal to the stiffness of the physical spring,270
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regardless of the specific choice of the force feedback compensator (i.e. a lead

or lag compensator, PI controller or compensator with a derivative action), for272

every value of interacting mass.

4.2. Coupled stability through stiffness compensator274

The simplest method to guarantee stability of the system is through an ex-

plicit damping action by the controller, that can be expressed in the form of276

a velocity-dependent action of the stiffness compensator CZ . This can be ob-

tained, for example, by employing proportional force feedback, and considering278

the following form for the stiffness controller: CZ = 1 + Bdes

Kdes
s. In this case, the

resulting system can be made passive for certain values of desired stiffness Kdes.280

In fact, the impedance transfer function ZbL, under the action of the damping

action is:282

ZbL =
(ks +Bdeskp,fks)s+Kdeskp,fks

s2 + kp,fkss
, (9)

which is passive also when Kdes > ks, if the controller is introducing an amount

of damping higher than the threshold B?, defined as

B? =
Kdes − ks
kp,fks

. (10)

Some practical limitations arise from the adoption of this controller. Fist, if

no direct measurement of velocity is assumed, the anti-causal damping action284

cannot be practically implemented in real systems. Practically, the damping

term will be implemented as a causal derivative action, which behaves as a286

pure differentiator1 at low frequencies, and reduces to a proportional gain at

higher frequencies, as provided by the causal differentiator transfer function288

G = Ns
s+N . Introducing the non-ideal differentiator transfer function in the

impedance compensator, we then lose again the possibility of proving passivity290

for the impedance-controlled system for every Kdes > ks. Indeed, the effect

1We are neglecting the effect of the required low-pass filtering and delay that is needed to

differentiate digital position signals deriving from encoders, that are affected by quantization.
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of a non-ideal compensation term is significant. Because of the introduction292

of the damping Bdes, it can be shown that for every finite value of N , coupled

instability will occur for every value of environment mass me > 0, i.e. the worst-294

possible coupled stability result. This issue can be mitigated by introducing

damping in the system in excess, compared to what is required in theory in296

(10). However, this solution would reduce the accuracy of haptic display also

at low frequencies, where in theory no damping action would really be needed298

for coupled stability. In order to address the limitations of this pure damping

action, we will then investigate the effect of the introduction of lead and lag in300

the stiffness compensator, by defining it in the form2:

CZ =
p

z

s+ z

s+ p
(11)

In this case, the resulting impedance transfer function, under the effect of the

stiffness compensator, ZkL is:

ZkL(s) =
kszs

2 + (kspz +Kdeskp,fksp)s+Kdeskp,fkspz

zs3 + (pz + kp,fksz)s2 + (kp,fkspz)s
(12)

Again, the introduction of an amplitude-bounded causal compensator CZ ,302

acting on the error between measured and desired load position, results in an

impedance transfer function that is passive only if Kdes ≤ ks. However, an304

analysis of coupled stability of this controller provides results that allow for

margins in controller design. In fact, through evaluation of the closed loop306

polynomial during interaction with the most destabilizing environment (again,

a pure mass), and application of the Routh-Hurwitz stability criterion, it can be308

seen that coupled stability can be obtained for a wide range of interacting mass

values, that can be modified by a proper choice of controller gains. Reduction of310

the Routh-Hurwitz determinants provides the following conditions for coupled

stability (me > 0):312

2The symbolic form of the compensator CZ is similar to the one chosen for CF , but an

amplitude normalization factor p
z

has been introduced, so as to guarantee that the stiffness

displayed at low frequencies matches the desired stiffness Kdes.

15



1) me < m?AND p <
ksz

Kdes
AND

[
kp,f 6=

Kdesz − ksz
Kdesks

]
2) me > m?AND p >

Kdeskp,fksz

Kdeskp,fks −Kdesz + ksz

with m? =
ks(Kdeskp,f + z)(Kdesp− ksz)

z(kp,fks + p)[pzks +Kdes(kp,fks(p− z)− pz)]

(13)

showing that coupled stability can be obtained as a function of a threshold load

mass value m?. Though this controller cannot be proved stable with arbitrary314

values of environment mass me, it allows modulation of the value of m? to

ensure that the value of admissible environment mass me is always within the316

stability range defined by (13). In particular, the value of m? can be reduced to

guarantee that the second inequality shown in (13) is respected in all operating318

conditions. Through this control design method, it is possible to guarantee

that the system is stable for values of interacting mass higher than a certain320

threshold.

This approach can be surprisingly useful, since in most SEA designs, the322

minimum value of interacting mass me is never equal to zero due to inherent

design constraints (e.g. a linear SEA will have a load plate that will be used324

to connect to a load; a rotary SEA will be necessarily connected to some out-

put link, whose inertia adds to the load inertia). Moreover, for applications326

that involve wearable human-interacting robots, such as rehabilitation or hu-

man augmentation, the minimum value of mass connected to the load is often328

significant. For example, the mass might consist of the inertia of the hand for

a wrist exoskeleton, or of the inertia of the lower leg for a knee exoskeleton.330

Using a constant gain controller, the system can be made stable with masses

whose value can be seen in Fig. 4, parameterized in terms of force feedback332

gain and desired stiffness value. It can be seen that this control approach al-

lows achievement of coupled stability with a limited set of environments, that334

can be regulated through control parameters, in a way that the range of ad-

missible values for coupled stability is well contained in the range of interacting336

environments that can be considered in a given application.
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We now investigate which values of minimum and maximum interacting mass338

m? that guarantee coupled stability can be obtained with feasible combinations

of control parameters. In particular, we conduct this analysis by assuming340

a fixed value for the force compensator control gain, and investigate the de-

pendency of m? on the characteristics of the impedance compensator gain, for342

different values of desired stiffness.

The results of this analysis are shown in Fig. 4, where the regions of com-344

pensator values resulting in minimum and maximum values of interacting mass

that guarantee coupled stability are contoured by dashed lines. In particular, it346

can be seen that pure stiffness control p = z would result in coupled instability

for every value of interacting mass (dark red region interposed between the two348

colormap regions where stability is possible for some values of mass).

From the coupled stability standpoint, it would seem that the best choice of350

CZ could either be that of a lead-compensator, with one pole and one zero in

the high frequency range, or that of a lag compensator, with low-frequency pole352

and zero. In fact, in the first case (z < p), coupled stability is achieved for values

of environment mass higher than a threshold, that can be decreased through354

control gains (i.e. moving p towards higher frequencies and increasing the force-

feedback compensator gain kp,f ). In the second case (p < z), coupled stability356

is achieved for values of environment mass lower than a threshold, which can be

again increased through control design (i.e. moving z towards lower frequencies358

and increasing the force-feedback compensator gain).

Stability is not the only requirement in the design of interaction controllers.360

Although the stiffness compensator CZ can be designed to have unitary magni-

tude and zero phase at low frequencies (resulting in an accurate, pure-stiffness362

interaction behavior at those frequencies), controller parameters can influence

the upper limit of this frequency region. To this aim, we define a measure of364

interaction controller accuracy, as described in [10], and include this measure-

ment within an optimization framework. The framework would optimize the366

combination of control parameters so as to maximize both performance and

stability, that for this specific controller could be defined by the range of masses368
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me<m*
me>m*

(a)

(b)

me<m* me<m*
me>m* me>m*

me>m* me>m*
me<m* me<m*

Figure 4: Logarithmic color maps showing values of threshold environment mass m?, for

coupled stability during stiffness control at different values of Kdes (columns), for different

values of force compensator gains, kp,f = 1 (a), and kp,f = 10 (b). Use of lag compensators

(p < z - upper-left triangular section of the p− z plane) result in coupled stability for values

of interacting mass me < m?, while lead compensators (p > z - lower-right triangular section

of the p − z plane), result in coupled stability for values of interacting mass me > m?. The

region where coupled stability is not guaranteed for any value of interacting mass is separated

by the dashed line-contoured regions and is reported in dark red.

that result in a stable interaction.

Under the “ideal non-backdriveability, ideal velocity control” hypothesis

stated so far, the system has been simplified to the point that it lends itself

to an intuitive, straightforward and informative performance analysis. In fact,

from the analysis of the K(s) transfer function, it can be seen that the effect of

the impedance compensator is to introduce a phase lead or lag starting at the

frequency where the lowest frequency pole or zero of the impedance compensator

is located. This can be seen also from the analysis of the impedance transfer

function, parameterized as a function of the specific value of compensator gains
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Figure 5: Resulting impedance transfer function Zk
L, when p = 1 and for different values of

z, for a unitary force feedback compensator gain and a desired stiffness Kdes = 2ks. Circled

points are those in which the magnitude of the modulated stiffness transfer function K(s) is

attenuated by 3 dB. The frequencies in which this situation occurs are in correspondence with

the minimum pole or zero of the impedance compensator.

(that change from a lead compensator to a lag compensator). The analysis can

be conducted by keeping the pole location constant, and observing the effect on

the resulting impedance transfer function, as a function of the zero location, as

reported in Fig. 5. It can be seen that accurate impedance rendering is obtained

for ω ∈ (−∞,min(p, z)], i.e. up to a frequency that depends on the minimum

value zero or pole introduced in the compensator. A very simple performance

measure can be introduced for this system, as given by the two-dimensional

function acc, defined as:

acc = min(p, z), (14)

with its colormap reported in Fig. 6.370

From an intersection analysis between the two plots, it is now clear that

an acceptable compromise between stability and performance is provided only372

by a control action of a lead-compensator type (i.e. p > z). In fact, this

controller allows achievement of accurate interaction up to a frequency ωc = z,374

and guarantees coupled stability for interaction masses higher than a certain

threshold, that can be reduced through control action to values that are largely376
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Figure 6: Measure of accuracy for the interaction controller implemented through the

impedance compensator CZ , determined as max(p, z), in a logarithmic scale. The plotted

function represents a quarter of a square pyramid (the lower-left quarter of the pyramid, from

the top view shown in the colormap), cut through two orthogonal planes that contain the

pyramid axis and one of the axes defined by the basis edge, respectively. The pyramid vertex,

i.e. the point p = pMAX , z = p, corresponds to the point with highest accuracy.

lower than the realistic values associated with a given application.

In these conditions, it can be verified by inspection of Eq. (13) that the378

value of minimum mass required for a stable interaction is linear with the value

of virtual stiffness. This means that, once control gains have been tuned, the380

higher the value of desired stiffness Kdes, the higher the minimum load mass in

order to achieve coupled stability.382

4.3. Effect of a non ideal inner velocity loop

We now address the effect of model non-idealities, introducing a high-frequency

attenuation in velocity control performance, modeling the velocity control trans-

fer function Hv as a low-pass filter 1
sτ+1 . We describe the effect of τ on both the

accuracy and performance of interaction control. First, we analyze the effect of

the inner velocity loop transfer function on the selection of the optimal controller

gains that maximize stability and evaluate the effect on the haptic display accu-

racy. For every set of controller gain values, the minimum value of interacting

mass for coupled stability is computed through a root locus analysis, analyzing
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the interaction with the most destabilizing environment (a pure mass). This can

be done by calculating the minimum value of me that results in the admittance

environment transfer function Ye = 1
mes

such that the polynomial CLP , that

describes the stability of the coupled system, with

CLP = 1 + ZLYe (15)

has roots in left half complex plane. Also, for every set of controller gain values, a

measure of impedance control accuracy is introduced as in [10], as the reciprocal

of the cost function, calculated in a logarithmically-spaced set of frequencies of

interest Ω = {ω1, ω2, ..., ωn}, ω1 = 10−3, ωn = 103:

C(ω) =

n∑
i=1

| log |ZL(jωi)| − log |Zdes(jωi)||, (16)

that compares the amplitude of the resulting impedance transfer function ZL384

to the desired impedance Zdes. The analysis is reported in Fig. 7 for specific

values of Kdes and τ , varying controller gains. The analysis shows that the386

region of controller gains that maximizes accuracy is, in agreement with the

results obtained in the ideal velocity control case, the upper-right corner of the388

p−z plane, i.e. the region that maximizes p and z, with p > z. The introduction

of the non-ideal velocity controller slightly modifies the optimality conditions390

for coupled stability. In fact, minimization of the environment mass for coupled

stability is obtained when the compensator zeros/poles are in a lower frequency392

range. The specific value of the upper limit of this frequency range will depend

on the value of the velocity loop transfer function time constant.394

To further investigate the issue of optimal zero-pole location in the impedance

compensator Cz, we addressed both stability and accuracy, and evaluated how396

such properties vary as a function of inner velocity loop time constant τ . Once

the controller parameters pτopt and zτopt that yield the minimum value of interact-398

ing mass for coupled stability are determined for every value of τ , the accuracy

measure 1/Cτopt of the impedance-controlled system is calculated, and reported400

(see Fig. 8; labeled as Optτ ). Similar analysis was conducted for the ideal

compensator gains obtained for the ideal velocity loop case (labeled as Opt),402
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Figure 7: Effect of stiffness compensator parameters on the minimum value of interacting mass

for coupled stability (me,MIN , shown in the top plots) and on the accuracy of the impedance

transfer function, defined as 1/C - lower plots, for frequencies logarithmically spaced between

10−3 rad/s and 103 rad/s. An inner velocity loop modeled as a first-order low-pass filter

with time constant τ = 0.01 is considered in this analysis, and the value of the force-feedback

compensator gain is set to 1 (left) and 10 (right).

and for the cases in which the minimum damping B?, as expressed in eq. (10),

is introduced in the compensator (labeled as B?), or increased damping equal404

to 2B? was introduced, labeled as 2B?. The analysis is graphically reported

in Fig. 8, and enables description of the achievable trade-off between stabil-406

ity and accuracy of high-stiffness impedance control in compliant robots with

non-backdrivable actuators, controlled as velocity sources, as a function of the408

responsiveness of the inner velocity loop.

First, it can be seen that the accuracy and coupled stability requirements are410
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Figure 8: Effect of different inner velocity loop time constant τ on the accuracy and stability

of the impedance controlled compliant actuator. Circle-marked dashed lines represent the

performance measure in the left logarithmic scale, while diamond-marked continuous lines

represent the stability measure, in the right logarithmic scale.

both negatively influenced by slower inner velocity loops. For all considered con-

trollers, a faster inner velocity loop is able to simultaneously provide increased412

accuracy within the considered frequency range, and lower values of minimum

interacting mass for coupled stability (increased stability performance).414

A full quantitative comparison between the designed compensator and the

system controlled through a pure damping action where the minimum damping416

B? is injected in the system is not possible, due to the fact that such a controller

results in an unstable system, for all values of interacting mass me > 0 (due418

to consideration of frequency-bounded controller derivative action). For this

reason, it is not possible to define a measure of stability of this controller.420

From a comparison between the results achievable with the two different

controllers (i.e. Opt vs. Optτ ), it can be seen that the solution found through422

separate optimization for different values of τ (Optτ ) provides the best coupled
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stability results for every value of τ , compared to the controller designed for the424

ideal velocity loop case (Opt). The amount of reduction in values of minimum

mass that provides coupled stability (∆me) allowed by the Optτ controller is426

very small at low values of τ , (∆me

me
≤ 5%, τ ≤ 0.01), and becomes more signifi-

cant while τ increases, settling to ∆me = me, for the case in which τ = 1.428

It can be seen that at low values of velocity control time constant (τ < 0.01),

coupled stability can be achieved with very low values of interacting mass, at430

the expense of haptic display accuracy (the minimum value of interaction mass

is reduced in the Opt and Optτ controllers to less than half of what is allowed432

with the 2B? controller, but accuracy is reduced by a similar amount). This

results from the fact that the range in which control parameters p and z are434

sought is [10−3 103] rad/s, representing realistic hardware limitations in real-

time control applications. In general, it is shown that the performance obtained436

through the controller determined for the ideal velocity loop case (Opt) looses

its optimality when the region in the frequency domain in which poles and zeros438

of the outer loop compensator are sought ([10−3 103] rad/s) overlaps with the

region at which the velocity control performance degrades.440

5. Model validation

The feasibility of the developed controller is validated through numerical442

non-linear modeling and simulations, as well as through experiments in a com-

pliant actuator (MR-SEA II) that includes a non-backdrivable traveling-wave444

ultrasonic motor, a cable transmission and two pre-loaded extension springs.

5.1. System description and modeling446

The 1 DOF actuator prototype (MR-SEA II) was developed for an MR-

compatible haptics application [36] and comprises a rotary ultrasonic piezoce-448

ramic motor (5W Shinsei ESR60-E3N), a threaded pulley on the motor shaft, a

cable transmission, pre-extended phosphor bronze extension springs, a custom-450

designed Delrin carriage and a linear ceramic balls bearing, supporting the
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Figure 9: MR-SEA II. (1) phosphor bronze extension spring, (2) ceramic linear ball bearings,

(3) piezoceramic motor, (4) rotary optical encoder, used to measure xM , (5) linear encoder,

used to measure xL, (6) cable transmission, (7) slider, with plastic eyebolts.

carriage. As shown in the companion design paper [36], the motor is non-452

backdrivable and when controlled through its own factory-tuned velocity con-

troller can be modeled as a low admittance velocity source, and compensated to454

regulate velocity linearly (i.e. without amplitude dependence, except for its low

velocity region) within its operating frequency and amplitude range (see Table456

1). A numerical model is implemented in Simulink (the Mathworks Inc.), and

run with an ODE 45 solver at a fixed step of 1 ms, to validate the theoretical458

analysis assessing the effects of model non-linearities on the closed-loop stabil-

ity of the system. In the model, the actuator is controlled to display a stiffness460

Kdes through the action of the impedance compensator CZ acting on the cas-

caded force-velocity controller, with desired position xL = 0. This controller462

action responds to a load force perturbation, modeled as a step with amplitude

of 4 N (20% of the actuator force capabilities). The case of force perturbation464

when the compliant actuator is interacting with an environmental mass me is

chosen because it closely matches the task conducted during the experimental466

characterization, and because we have demonstrated that it corresponds to the
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Table 1: MR-SEA performance

Property Value

ine Maximum continuous force 20 N

Spring stiffness 3.8 N/mm

Maximum velocity 0.1 m/s

Velocity control frequency range 0 - 10 Hz

Motor encoder quantization 1.3·10−2 mm

Load encoder quantization 1·10−2 mm

Load mass 100 g

most destabilizing environment for the stiffness-controlled actuator3. To sepa-468

rate the effects of model non-idealities, the red blocks in Fig. 10 are introduced

sequentially in the analysis.470

+
-

Kdes +
-

xL,des CZ HV
1
s

+
+

-
1

mes2

ks

FL

ks

+
-

kpf

FS

vdes vM xM xLFdes

Figure 10: Block diagram of the numerical model used to validate the theoretical analysis

of coupled stability. The blocks describing the plant non-idealities are shown in red, and

introduced sequentially in the numerical analysis.

3The choice of a particular form of perturbation (e.g. load force perturbation, load velocity

perturbation, desired load position) does not change the coupled stability properties of linear

systems, since the poles of the closed-loop transfer function are independent of the selected

form of perturbation
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5.1.1. Effect of plant non-idealities through numerical simulations

After checking through fixed-step numerical integration that our theoretical472

analysis accurately predicts the value of interaction mass resulting in coupled

stability, for the lead-lag compensator, and that no proportional stiffness con-474

troller can obtain coupled stability for any value of environment mass me > 0,

when Kdes > ks, we introduce plant non linearities in the numerical model.476

Firstly, we introduce the saturation block that models the amplitude-dependent

limit of velocity control. We determine through a linear search procedure the478

values of controller parameters that result in coupled stability with the lowest-

possible environment mass msat
e,MIN . We then analyze what is the effect of the480

inclusion of two other non-idealities, i.e. the HV transfer function (resulting in

a minimum value of interaction mass mfreq
th for coupled stability) and, finally, of482

encoders quantization (resulting in the value of interaction mass mq
e,MIN that

provides coupled stability). The results of this analysis are reported in Table484

2. When the value of environment mass reduces to only the mass of the slider,

it is theoretically possible to achieve coupled stability for values of Kdes up to486

1.75ks
4, for the MR-SEA II load mass. The presence of the plant non-idealities,

and predominantly of the amplitude- and frequency limitation in the actuator488

inner velocity loop, further increases the minimum value of interaction mass

for coupled stability. Given the effect of the limitations of the experimental490

prototype used to validate this model, only the cases of Kdes = 1.25ks and

Kdes = 1.5ks are considered for the experimental validation.492

5.1.2. Experimental validation in the MR-SEA

The optimized control action was implemented in the MR-SEA, using values

of desired stiffness Kdes 25% and 50% higher than the physical stiffness of the

spring. The p and z gains from Table 2 corresponding to the lowest-possible

4Although a higher range of stable stiffness regulation can be achieved by increasing the

value of the force feedback control gain kp,f , this case is not considered because the prototype

is unstable for higher values of kp,f , when Kdes < ks, due to unmodeled higher-order dynamics
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Table 2: Numerical model results - Minimum environment mass for coupled stability

Kdes

p zbest me,MIN msat
e,MIN mfreq

e,MIN mq
e,MIN

[1/s] [1/s] [kg] [kg] [kg] [kg]

ine

2ks

500 150 0.12 0.23 0.54 0.54

250 100 0.23 0.34 0.66 0.67

100 50 0.58 0.60 0.93 0.94

ine

1.75ks

500 160 0.10 0.17 0.43 0.43

250 105 0.19 0.26 0.53 0.53

100 52 0.48 0.48 0.75 0.76

ine

1.5ks

500 180 0.07 0.12 0.31 0.31

250 115 0.15 0.19 0.40 0.40

100 55 0.37 0.37 0.57 0.58

ine

1.25ks

500 220 0.05 0.07 0.20 0.20

250 133 0.10 0.11 0.25 0.25

100 62 0.26 0.26 0.40 0.40

value of interaction mass for coupled stability, in the worst case, are chosen (i.e.

p = 500 for both cases and z = 220, 180 for Kdes = 1.25ks and Kdes = 1.5ks,

respectively). The stability of the system for these gains is proved in the most

destabilizing case, i.e. the application of a constant force to the slider, with

instantaneous load removal. In this case, the expected behavior is that of a

sustained oscillation of the resulting spring-mass system (note that the stiffness

compensator makes no attempt at reducing the load mass), but the energy dissi-

pated through the control action (introduced in order to have the desired stabil-

ity margins) provides the asymptotic convergence of the slider position - see Fig.

11(a). During high-stiffness display, the MR-SEA was commanded a reference

position that was either constant xL,des = 0 or oscillating xL(t) = A sin(2πf0t) -

A = 10 mm, f0 = 0.5 Hz, Fig. 11(b). During the experiment, the subject alter-

nated between the application of a continuous, roughly sinusoidal displacement
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to the slider and the application of impulsive, impact-like displacement5. The

stiffness transfer function Kv(f) was estimated using non-parametric system

identification, via the Welch method, using the following relation:

K̂v(f) =
Pyu(f)

Puu(f)
, (17)

with Pyu(f) the cross-spectral density between the input (u) and output (y)494

and Puu(f) is the auto-spectral density of the input. To estimate the stiffness

transfer function, the load position error xL,des− xL was selected as input, and496

the spring force Fs = ks(xL−xM ) was selected as output. The estimated trans-

fer function was resampled in a 51-elements, logarithmically spaced frequency498

vector ([0.01 - 100] Hz), and normalized dividing by Kdes, obtaining Kv(f).

Values of coherence higher than 0.8 were obtained up to approximately 6-7 Hz500

for both cases of xL,des, and a Bode plot of the estimated normalized transfer

function is shown in Fig. 11(c).502

In the low-frequency range the system behaves as a pure spring, with elastic

constant matching the desired value. The error in virtual stiffness approaches is504

higher than 3 dB up to a frequency that corresponds to 5-6 Hz, beyond which

low coherence values are obtained and the transfer function estimate is no longer506

reliable. The phase of the estimated transfer function is negative, confirming

the non-passivity of the system when Kdes > ks.508

6. Discussion and conclusions

This paper investigates the range of virtual stiffness values that can be stably510

and accurately displayed by a stiffness-controlled series elastic actuator (SEA),

in which the motor is a non backdrivable velocity source. As previously shown in512

the literature [14], a velocity-sourced SEA can be passively stiffness-controlled

to display a virtual stiffness Kdes, only if Kdes ≤ ks, with ks being the physical514

stiffness of the compliant element. In our paper, we start by generalizing this

5This was done in the attempt to excite the system also at frequencies higher than the

ones possible through manual perturbation at high stiffness
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Figure 11: Experimental validation of the controller in the MR-SEA. (a) Application of an

increasing load on the stiffness-controlled MR-SEA (Kdes = 1.5ks) with instantaneous load

removal, resulting in decaying oscillations of the slider. (b) Perturbation of the MR-SEA slider

when commanded a sinusoidal position tracking (Kdes = 1.5ks). After the initial transient,

the force error is below 1 N before the subject applies perturbation forces to the slider (after

10 s). The desired force is calculated as −KdesxL, and is compared with the measured force,

i.e. ks(xL − xM ). (c) Bode plot of the estimated normalized stiffness transfer functions, for

two values of virtual stiffness and for both position tracking cases.

finding, demonstrating that, in the context of linear control theory and with516

availability of only position information, no outer-loop force control action can

be applied on the velocity-sourced system to result in a passive system, when a518

stiffness value Kdes > ks is desired.

We then analyze the effects on coupled stability of a stiffness controller (com-520

manded to impose Kdes > ks), resulting in a non-passive impedance transfer

function. We show that a frequency-limited lead action in the outer-loop stiff-522

ness controller results in the best accuracy and coupled stability performance,

provided that the system is interacting with a load with inertia higher than a524

threshold m∗. Through our analysis, we derive the analytical expression that
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provides the minimum environment mass for stable coupled interaction, when526

a generic stiffness Kdes is desired, as a function of the physical stiffness in the

actuator and of the controller gains. Our analysis demonstrates that, when528

Kdes > ks, the value of minimum environment inertia required for a stable in-

teraction increases with Kdes with the scaling factor dependent on the choice of530

the controller gains.

Using a similar methodology, we address the effect of a non-ideal inner ve-532

locity loop on haptic display performance and stability. In particular, we inves-

tigate how the minimum value of interaction mass resulting in coupled stability534

can be minimized through placement of the stiffness compensator zeros and

poles, considering realistic limitations in the bandwidth of velocity control, for536

non-backdrivable motors such as those used in [28] for haptic display of MR-

compatible robots. We showed that with knowledge of the frequency limitations538

of the velocity inner loop (in our case knowledge of the time constant τ of a first-

order low pass filter), it is possible to further optimize the stability properties, by540

significantly reducing the value of minimum mass for a stable interaction, when

the pole or zero at higher frequency is one decade below the cut-off frequency542

of the inner velocity loop.

We finally validate our model through numerical simulations and experi-544

ments in the MR-SEA II, a compliant actuator that includes a non-backdrivable

piezoceramic motor as a velocity source, demonstrating capabilities for stable546

rendering of virtual stiffness 50% higher than the physical spring stiffness.

The main result of our analysis is that coupled stability of a stiffness-548

controlled compliant actuator can be obtained when the actuator is controlled

to display a spring with elastic constant Kdes, with Kdes > ks, provided that the550

minimum value of mass connected to the series elastic element is higher than a

threshold, even in absence of friction. This finding is in contrast with an implicit552

assumption that has guided the development of most compliant actuators for

human interaction developed so far. Indeed, in most cases [14, 37, 38, 32, 39],554

the series elastic element has been designed to be substantially stiff, with the

idea of then controlling the actuator to display a lower virtual stiffness. The556
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choice of “stiff” springs for SEAs poses challenges on the selection of sensors

used to infer interaction force, since they are usually required to have very high558

resolution, in order to minimize quantization errors in the measurement of in-

teraction forces. Consequently, some of the anticipated benefits deriving from560

elimination of a traditional force sensor, in terms of reduction in costs and size,

can be lost in the attempt of incorporating the sensor(s) required to measure562

the deflection of the compliant elements.

The results of the presented analysis reveal opportunities for alternative de-564

signs of compliant actuators. Given a range of virtual stiffness values that need

to be implemented through control, it is not necessary to design the compliant566

element so that is stiffer than the stiffest-possible virtual environment for a given

application. Instead, the results of this analysis show that the coupled system568

will be stable if the system is designed so that it includes a minimum amount of

inertia that is connected to the compliant element in all operating conditions.570

Limitations to this approach can be provided by backlash, or in general of non

co-located dynamics, between the series elastic element and the load. In the572

presence of backlash, the value of load mass instantaneously decreases, poten-

tially to a value that is lower than the threshold for coupled stability, until the574

control action responds. The energy introduced in the system during impacts,

coupled with delays in the position measurement and with velocity saturation576

of the plant, is a major source of instability in the experimental implementation

of SEAs.578
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