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Abstract— Objective: To develop a quantitative set of meth-
ods for testing the fMRI compatibility of an electrically-active
mechatronic device developed to support sensorimotor protocols
during fMRI. Methods: The set of methods includes phantom
and in vivo experiments to measure the effect of a progres-
sively broader set of noise sources potentially introduced by
the device. Phantom experiments measure the radio-frequency
(RF) noise and temporal noise-to-signal ratio (tNSR) introduced
by the device. The in vivo experiment assesses the effect of
the device on measured brain activation for a human subject
performing a representative sensorimotor task. The proposed
protocol was validated via experiments using a 3T MRI scanner
operated under nominal conditions and with the inclusion of
an electrically-active mechatronic device — the MR-SoftWrist
— as the equipment under test (EUT). Results: Quantitative
analysis of RF noise data allows detection of active RF noise
sources both in controlled RF noise conditions, and in conditions
resembling improper filtering of the EUT’s electrical signals.
In conditions where no RF noise was detectable, the presence
and operation of the EUT did not introduce any significant
increase in tNSR. A quantitative analysis conducted on in vivo
measurements of the number of active voxels in visual and
motor areas further showed no significant difference between
EUT and baseline conditions. Conclusion and significance: The
proposed set of quantitative methods supports the development
and troubleshooting of electrically-active mechatronic devices for
use in sensorimotor protocols with fMRI, and may be used for
future testing of such devices.

Keywords – MR-compatible mechatronics; Signal-to-Noise
Ratio; fMRI; Robotics; Sensorimotor learning; RF interference

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) has been
used extensively to study functional brain processes [1], [2],
enabling localization of task-related brain activation [3], the
analysis of intrinsic and/or task-related fluctuations [4], [5] and

FS (corresponding author - fabs@udel.edu), AJF, AZ are with the Human
Robotics Laboratory, Department of Biomedical Engineering, University of
Delaware, Newark DE, 19713 USA.

AE and MKOM are with the Mechatronics and Haptic Interfaces Labora-
tory, Department of Mechanical Engineering, Rice University, Houston TX,
77005 USA.

CLJ is with the Department of Biomedical Engineering, University of
Delaware, Newark DE, 19713 USA.

DR is with the Department of Neuroscience, Baylor College of Medicine,
Houston, TX, 77020 USA.

This work was supported in part by a TIRR Memorial Hermann Pilot
Projects Grant, by NSF CNS-1135916, by the NSF GRFP under Grant No.
0940902, H133P0800007-NIDRR-ARRT fellowship, and the University of
Delaware Research Foundation grant no. 16A01402.

causal coupling among brain signals [6] or, more recently, as a
tool to provide on-line feedback on neural activity to improve
task learning [7]. Tasks studied through fMRI include primary
sensory functions, attention and recognition, word processing,
and motor tasks [8].

Every brain process that is compatible with a subject laying
with their head very still within a 60-70 cm diameter scanner
bore can be studied through fMRI. However, only some motor
tasks belong to this category. The space constraints of the MRI
scanner, coupled with the stringent requirements for tolerable
head movements and movement-generated scanner magnetic
field distortion, make only very simplified motor protocols
amenable to investigation through fMRI. Previously studied
protocols include finger tapping [9], wrist pointing [10], grip
force control [11], shoulder and elbow movement [12], and
stepping [13].

In motor control, an advancement in the analysis of the
neural control of movements has been provided by the com-
bination of accurate motion tracking techniques with robotic
devices capable of systematic kinesthetic or tactile feedback
to assist, resist, augment, or perturb human movements. Such
studies, coupled with computational models of motor control
and motor learning, have led to an improved understanding of
the criteria for motion planning and execution [14], adaptation
to a new dynamic environment [15], modulation of mechanical
impedance to stabilize unstable tasks [16], and processing
of motor error information [17]. In addition to basic motor
control research, the analysis of motor learning during human-
robot interaction is very important for robot-aided neuroreha-
bilitation [18], performance augmentation [19], and surgery
[20].

In the pursuit of combining accurate kinesthetic feedback
during sensorimotor protocols with simultaneous observation
of brain activity via fMRI, researchers have endeavored to
build MR-compatible haptic devices to support unconstrained
hand movements [12], [21]–[23], hand/finger grasp [7], [24],
[25], and foot movements [13], [26]. Such devices need to
adhere to strict requirements for MR-compatibility, such as i)
avoiding the use of magnetic materials to prevent distortion
of the static magnetic field, ii) minimizing electromagnetic
signals in both the radio-frequency (RF) and audible range
to avoid interference with the RF-transceiver and gradients
subsystems used in MRI, and iii) limiting use of in-bore
electrical conductors to avoid coupling of eddy currents and
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Fig. 1. Overview of the developed procedure for testing the fMRI compatibility of a mechatronic device, the MR-SoftWrist. The schematic emphasizes the
role of the three sequential tests described in this paper, and of the decision blocks based on comparisons with ”normal” signal and noise values, measured
in the same scanner/coil configuration, and in a baseline condition which does include the mechatronic device under testing.

consequent bi-directional compatibility issues, as extensively
discussed in [27].

MR-compatibility of a mechatronic device can be demon-
strated experimentally, by measuring noise levels in different
conditions of operation of the device. Experimental validation
of the MR-compatibility of mechatronic devices has been
performed by adapting techniques used for diagnostic scan
purposes, and extensively used in surgical robotics [28], [29].
Standard tests for MR-compatibility of mechatronic devices
quantify possible degradations in image quality introduced by
the devices, such as the image signal-to-noise ratio, geometric
distortion, slice thickness, position accuracy, and image uni-
formity, and use visual inspection to check for interference
patterns (e.g., corduroy artifacts) [30], [31]. All these tests are
designed to check for the different types of image degradation
that can be introduced by magnetic materials, eddy currents
in conductive materials, or electromagnetic interference in the
radio-frequency or audible range. Such tests are routinely used
for MRI image quality assurance; a device is qualified as MR-
compatible if there is no detectable degradation in any measure
of image quality.

However, when using mechatronic devices for fMRI, it
is necessary to consider also the temporal stability of the
measured signal, which could be affected by dynamic noise
sources that do not necessarily result in image degradation.
Since fMRI experiments measure signal changes on the order
of 1%, it is important to ascertain that the temporal fluctuations
of the fMRI signal are not altered by the presence of an
electrically active mechatronic device. This aspect is usually
quantified by the temporal signal-to-noise ratio (tSNR) [32].
Routine fMRI image quality assurance protocols address this
aspect by analyzing the temporal structure of noise [32]–[35],
but are not appropriate for conducting statistical inference
to determine the effect of a given experimental condition.
In the MR-compatible robotics literature, tSNR analysis has
been previously performed in either a representative subset
of the entire scanning volume [13], [27], or in repeated
measurements in multiple slices [36]. However, previous work
did not provide a method to establish fMRI-compatibility
based on rigorous inference testing, capable of controlling
for the false-positive rate. Moreover, a limitation of the tSNR
measure is that it is an aggregate measure of noise, which
makes it hard to understand which aspect of the device is
causing interference problems in case of a positive result of a
tSNR test.

In this paper, we present a set of methods that evolved
during the development and testing of an fMRI-compatible
mechatronic device, the MR-SoftWrist, designed to study wrist
pointing under force feedback during fMRI. In distinction
from longitudinal and multi-center quality assurance protocols
developed for fMRI [32]–[35], the described approach is
composed of a series of tests that gradually increase in exper-
imental complexity to measure an increasing range of noise
sources potentially introduced by the device (see Fig. 1). As
such, the pursued approach is practically useful for identifying
and troubleshooting potential sources of noise and interference
caused by electrically-active mechatronic devices operating in
MRI scanners. Moreover, we present a quantitative analysis on
the set of developed metrics, which makes it possible to apply
rigorous statistical inference to test whether the introduction of
a mechatronic device has a significant effect on image quality
and fMRI statistical parametric maps.

The developed set of methods includes three tests: RF noise,
temporal noise-to-signal ratio (tNSR) and an in vivo validation.
These metrics are ordered by decreasing specificity to noise
sources, and by increasing experimental complexity and dura-
tion. The first test, RF noise, is a test for RF-interference (RFI)
in the useful bandwidth around the nuclear magnetic resonance
frequency, which tests whether the Equipment Under Test
(EUT) emits any RFI, and whether its use couples RFI into the
shield enclosure of the MR scanner. The second test, tNSR, is
an aggregate measure of noise effects such as RFI and gradient
coupling to conductors in the EUT. Finally, the third test is an
in vivo measurement of fMRI contrast during a simple blocked
sensorimotor task, conceived to provide a final validation of
the compatibility of the device for a sensorimotor protocol.

Fig. 2. Left: Picture of the MR-SoftWrist and Right: 3D CAD rendering
showing its operational location during robot-assisted wrist pointing move-
ments during fMRI.
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II. MATERIALS

We conducted experiments using a 60 channel head coil on
the Siemens Prisma 3T scanner at the University of Delaware,
Center for Biomedical and Brain Imaging. The RF Noise and
tNSR tests were conducted using a Siemens D165 spherical
phantom. The phantom, composed of distilled H2O doped with
1.25g NiSO4x6H2O per 1kg H2O, had relaxation properties
that resemble those of the cerebral cortex. The in vivo ex-
periment was conducted on a healthy right-handed subject,
and was regulated by the University of Delaware Institutional
Review Board (protocol no. 906215).

The MR-SoftWrist, shown in Fig. 2, is a robot developed to
study wrist pointing movements under force-feedback during
fMRI [37], [38]. The robot, used in this study as the EUT,
includes several electrically active components: three rotary
piezoelectric ultrasonic motors (Shinsei Corp. USR60-E3NT,
powered by voltages on the order of 110 Vrms at 40-45
kHz), and six optical encoders. Through a parallel manipulator
design, the MR-SoftWrist supports wrist flexion-extension and
radial-ulnar deviation movements while locating its active
components outside the scanner bore, at a distance (along
the scanner z-axis) slightly longer than 1 m from the scanner
isocenter for a subject of standard height. Tripolar twisted-pair
cables, with an additional outer shield, were used for encoder
lines. The cable shield, as well as metallic components, were
connected to the electrical ground provided by the scanner
penetration panel to the control room. To ensure decoupling
of the signal references and to avoid bidirectional noise issues,
encoder and motor power lines were low-pass filtered using
5600 pF and 1300 pF capacitive filters, respectively, with the
filter frames connected to the penetration panel. To artificially
introduce RFI with the EUT for one of the experimental
conditions reported below, the encoder lines were not low-
pass filtered, but connected through the penetration panel.

To generate controllable RF noise in the scanner, we used a
custom Voltage Controlled Oscillator (VCO), with a variable
output frequency in the range of 70-200 MHz (controlled by
a voltage input), and +10 dBm output power. To generate
controllable RFI, the VCO output was attenuated by 50 Ω

RF attenuators (AIM-Cambridge RF, 27-9300-20), cascaded
to provide a desired attenuation level down to −80 dB. The
generated signal was a sinusoid with 3 dB bandwidth below
100 kHz. The VCO output was connected to the scanner
room through a BNC cable input on the penetration panel
on the control room side. A 40 cm antenna (gain: 2.15 dBi,
impedance: 50 Ω) was connected to the VCO via a BNC
connector on the scanner room side. During MRI operation, we
observed fluctuations in the frequency of the generated signal
up to ± 100 kHz. This setup allowed generation of controllable
sources of RFI at frequencies close to the MR resonant
frequency for the 3T Siemens scanner, and assessment of the
ability of the developed techniques to detect the presence of
RFI.

III. RF NOISE TEST

The RF noise test is a standard quality assurance test
provided as a utility in commercial MRI scanners, used here

to check whether the presence or operation of the EUT has an
effect on the RF noise level in the scanner room, quantified
directly by the MRI receiver. The RF noise test uses the MRI
receiver as a spectrometer to capture any RF noise present
when no RF excitation is generated by the scanner transmitter;
gradient systems are also quiescent. In this test, the receiver
is set to record the power of RF signal detected by the RF
head coil at its center frequency. The receiver coil’s center
frequency is gradually increased, with a step ∆ f , across the
full intermediate-frequency band centered around the scanner’s
proton nuclear magnetic resonance frequency. During a 6-
minute RF noise test, the receiver takes M repeated measures
of the RF signal intensity at n linearly sampled frequencies.
We will refer to si, j as the ith measurement (i = 1, ...,M) at the
jth frequency ( j = 1, ...,n).In the conditions used for this work,
the receiver acquired multiple (M = 256) signal intensities at
n = 12750 linearly increasing frequencies centered around the
3 T resonant frequency fres = 123.25MHz and spanning a
range fres±250 kHz, with a spacing of ∆ f = 39.2 Hz.

The RF signal intensities si, j, measured in arbitrary dig-
ital units, are expected to have a Rayleigh distribution, be-
cause RF noise should be characterized as a random process
with positive-definite values. However, due to the frequency-
dependency of the RF coils used, this fit is only approximate
(Fig. 3A), requiring careful analysis to extract peaks of RF
signal intensity that would indicate narrowband RF noise. For
each frequency sampled, the M measurements of RF signal
intensity are averaged together to produce a spectrum of mean
signal intensities s̄ j. Analysis of s̄ j shows a dependency of
the measured RF signal on frequency, which is influenced by
the shape and electrical parameters of the specific coil used,
resulting in a variable frequency response (Fig. 3B). For our
system, the dependency was approximated by a second-order
polynomial model ŝ j = s0 + s1 f j + s2 f 2

j . When this quadratic
trend is removed, the detrended average signal intensities,
s̆ j = s̄ j − ŝ j, have a symmetric distribution (Fig. 3C). The
standard deviation of the distribution of s̆ j is a measure of
the intrinsic noise levels of the scanner receiver and coil
combination. However, the large number of samples in s̆ j
reduce the sensitivity of the distribution parameters (mean and
standard deviation) to narrowband RF noise sources, limiting
their efficacy in identifying noise introduced by an electrically
active mechatronic device. Additionally, it is not possible to
assume that measurements of s̆ j are all independent. This
complicates the definition of a threshold of detrended signal
intensity values that separates a region of normal variability
of RF signal measurement from a region of ”excessive”
RF signal, such as RF noise introduced by an EUT, while
controlling for the false positive rate of such a decision. To
define such a threshold, we conducted repeated measurements
in a baseline condition to empirically derive a 95% confidence
interval for the measurement of peak s̆ j values that served to
characterize ”excessive” RF noise.

We validated the RF noise metric in three separate ex-
periments. Experiment 0 established the distribution of the
maximum detrended signal intensity of the 3T scanner in
normal operating conditions, which controlled for the false
positive rate of identification of RF noise introduced by an
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Fig. 3. Top Left: Distribution of signal intensities si, j for the RF noise test, described by the intensity data histogram and fitted Rayleigh distribution
(estimated distribution mode is 40.61± 0.02). Both functions are scaled to have unitary maximum. Top Right: Averaged signal intensity as a function of
frequency for the RF noise test. The increasing trend is modeled by a second-order polynomial model, with overlaid parametric bounds corresponding to
p < 0.003 uncorrected (region half width equal to three times the standard deviation of the detrended signal intensities), and the empirical 95% confidence
interval (±Aσ ). No intensity value is outside the 95% confidence interval range. Bottom Left: Distribution of detrended signal intensities s̆. The bar plot
reports the measured data, plotted as histogram of bins with unitary width, while the red line reports the probability density function of the fitted normal
distribution (estimated parameters µ = 0, σ = 1.25). Bottom Right: Empirical cumulative distribution function of maximum signal intensity values (Sk) for
20 repeated baseline experiments, with the cumulative distribution function of the normal distribution fitting Sk (µ = 4.9, σ = 0.5) overlaid in red.

EUT. Experiment 1 established the validity of the test by
demonstrating its capability to detect RF noise peaks in two
cases where they were artificially introduced, using our voltage
controlled RF signal generator. Experiment 2 established the
sensitivity of the test with respect to conditions of operation of
a mechatronic device, by quantifying the RF noise measured
in different conditions of signal filtering for the electrically
active components of the EUT.

A. Experiment 0 – Characterization of nominal RF noise
We conducted experiment 0 to characterize the nominal

range of RF signal measured by the scanner, and to calculate
a threshold of RF noise that controls for false positive rates
when testing for RFI introduced by the EUT. Instances of
RFI generated by an EUT can only increase the RF signal
intensity recorded by the receiver and are thus captured as
increases in the mean signal intensity. Characterization of the
maximal signal intensity under baseline conditions allows for
identification of instances of RFI introduced by the EUT that
would fall above this threshold. Such RFI analyses therefore
assume positive-definite noise statistics.

1) Methods: To determine a threshold of maximal RF noise
in baseline conditions, we conducted a quantitative analysis
of RF noise levels measured in 20 repeated scans performed
at baseline (BL) conditions. The maximum detrended signal
intensity was calculated for each experiment k, producing the
set Sk = max(s̆ j), k = 1, ...,20. Given the normality of the
measurements Sk (a Kolmogrov-Smirnov test failed to reject
the null hypothesis that they are normally distributed with
p=0.60), we fit a normal distribution to the measured data.
Based on the estimated normal distribution, we calculated

a threshold of nominal peak signal intensity corresponding
to a 5% false positive rate using the cumulative distribution
function of the normal distribution. We used this threshold
to create a 95% confidence interval for baseline RF signal
intensity, which we then applied to distributions of detrended
signal intensity, s̆ j.

2) Results: The fitted normal distribution Nµ,σ had pa-
rameters µ = 4.9 for the mean, and σ = 0.5 for the standard
deviation (Fig. 3D). We determined the threshold of detrended
signal intensity corresponding to a 5% false positive rate by
finding the value of X such that P(Sk ≤ X) = 0.95, which
yielded the threshold of detrended signal intensity X = 5.66
(Fig. 3D). To calculate the coefficient A, such that ±Aσ defines
the 95% confidence interval of maximum nominal signal
intensity for any RF distribution measured on the scanner, we
divided X by the average standard deviation of s̆ j, resulting in
A= 4.56. The coefficient A was used in all following RF noise
tests to define the threshold at which values of greater signal
intensity could be deemed to be introduced by an outside noise
source with 5% chance of a false positive result.

A graphical example of the confidence interval used for
RF noise analysis is shown in Fig. 3B, where the averaged
signal intensities are plotted as a function of frequency, with
the second-order polynomial regression line overlaid, and the
±3σ and the ±Aσ 95% confidence intervals. The presence of
one voxel outside the 95% confidence interval would imply
the presence of a peak of signal intensity that is unlikely to
occur by chance, thereby demonstrating an RF noise problem
at that specific frequency. The establishment of the value of
coefficient A that achieves a false positive rate (FPR) of 5%
allows for sensitive detection of narrowband RF noise, as
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Fig. 4. RF noise images (first row) and corresponding EPI scans (second row) in the conditions studied in Experiment 1 (left column: baseline condition;
center column: -70 dBm condition; right column: -40 dBm condition). First row: In the RF noise images, columns represent signal intensities measured at
different frequencies, while rows represent repeated measurements of signal intensity at a given frequency. Second row: Below each RF noise images is a slice
of the EPI volume for the spherical phantom imaged in the same experimental condition. The presence of RF interference in the phantom image is visible
through white lines as are shown in the right phantom image. Third row: The spectrum of the averaged signal intensity over frequency shows the points of
RF intensity values outside the ±AσBL for the RFI conditions. Black ellipses highlight representative peaks in the RFI conditions, with corresponding RF
noise images. The central peaks of signal intensity for both RFI conditions are out of range. Bottom row: A histogram of detrended signal intensities, s̆ j . The
insert shows the number of intensity values detected outside the ±AσBL in the -70 dBm and -40 dBm condition.

detailed in the following experiments 1 and 2.

B. Experiment 1 – Validation of the RF noise test

We conducted experiment 1 to establish validity of the RF
noise test, i.e. its ability to detect the presence of RFI in

conditions where it was purposely introduced by the Voltage
Controlled Oscillator (VCO) described in section II.

1) Methods: We conducted an analysis of RF noise levels
in the following experimental conditions:

1) Baseline (BL), without the robot;
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Fig. 5. Distributions of the detrended signal intensities (s̆) of RF noise for
all conditions tested in Experiment 2. None of the experimental conditions
involving the use of the MR-SoftWrist introduce significant noise at RF fre-
quencies when the signal lines are properly shielded and grounded, as shown
from the absence of peaks outside the ±AσBL range. In the two conditions
where the manipulator signal cables were incorrectly shielded, peaks of signal
intensity outside this range were measured at specific frequencies (shown in
RF noise image inserts).

2) RFI -70 dBm (-70 dBm), where artificial RFI at 70 dBm
(100 pW) was generated by connecting the VCO (output
amplitude +10 dBm) to the antenna through an 80 dBm
attenuator network. The VCO was set to generate a
signal with center frequency within the scanner receiver
bandwidth (123.5 ± 0.25 MHz ).

3) RFI -40 dBm (-40 dBm), where artificial RFI at 40 dBm
(100 nW) was generated by connecting the VCO to the
antenna through a 50 dBm attenuator network. The VCO
was set to generate a signal with center frequency within
the scanner receiver bandwidth (123.5 ± 0.25 MHz )

We calculated the detrended signal intensity spectra for
conditions 2) and 3), to assess whether peaks of detrended
signal intensities fell within or outside the 95% confidence
interval defined by the distribution of the BL condition, using
the A coefficient defined in Sec. IIIA.2, and the standard
deviation σBL measured in the BL condition.

2) Results: Visual inspection of the averaged signal in-
tensity spectrum reveals a central peak of high intensity RF
noise in the −70 dBm condition, and multiple peaks in the
−40 dBm condition (Fig. 4). The histogram of detrended
signal intensities shows that the previous determination of the
95% confidence interval for “nominal” maximum detrended
signal intensity avoids any false positive results for the baseline
condition, while still providing sensitivity to detect RFI intro-
duced in both the −70 dBm and the −40 dBm RFI conditions.

Additionally, these results demonstrate the greater sensi-
tivity of the RF noise metric in detecting noisy conditions
compared to visual inspection of EPI images, which are
shown in the second row of Fig. 4. In fact, from qualitative
analysis of the phantom images, we can see that while the
RF noise test captured RF interference for both −70 dBm and
−40 dBm input power to the antenna, no visibly detectable
image corruption could be observed in EPI images in the
−70 dBm condition. Consequently, the RF noise metric can
be seen to provide a strict check on the presence of RF noise
sources.

C. Experiment 2 – Effect of the EUT on RF noise

We conducted an additional experiment to establish sensi-
tivity of the RF noise test with respect to operating conditions
of an electrically active mechatronic device.

1) Methods: We conducted the RF noise test in the follow-
ing experimental conditions:

1) BL, i.e. without the robot;
2) IN, with the EUT in its operational condition, powered

on and properly connected for operation;
3) MVT, with the EUT position controlled to move its end

effector through a sinusoidal trajectory (peak-to-peak
amplitude: 1 cm, frequency: 0.5 Hz);

4) IN-RFI, with the EUT in the same position as in con-
dition 2), but with the encoder lines directly connected
to the penetration panel - i.e. without using capacitive
low-pass filters on the EUT’s encoder lines;

5) MVT-RFI, with the EUT performing the same move-
ment as in condition 3), but with the encoder lines
directly connected to the penetration panel.

As done in Experiment 1, we proceeded to calculate the
detrended signal intensity spectra in conditions 2) – 5), and
assessed whether peaks of detrended signal intensities lie
within or outside the 95% confidence interval defined by the
BL condition, using the A coefficient defined in Sec. IIIA.2.

2) Results: Based on the previously determined 95% con-
fidence interval, none of the conditions in which the robot
was properly connected and operated (IN and MVT) show
elements outside the nominal range (Fig. 5). Instead, in the two
conditions with improper signal filtering (i.e. conditions IN-
RFI and MVT-RFI), there are several elements with intensity
values outside the nominal range, suggesting that there might
be elements inducing abnormal RF noise at those specific
frequencies. The identification of these abnormal peaks of RF
signal intensity demonstrate a high sensitivity of this analysis,
as it detects patterns of RF noise hardly visible in the RF noise
images (see inserts in Fig. 5).

This analysis demonstrates that there are configurations for
the MR-SoftWrist that do not result in significantly different
distributions of signal intensities relative to the BL condition.
These configurations are considered not to have introduced
corrupting RF noise, and, as such, are used for further exper-
imental characterization and validation with the tNSR and in
vivo experiments.

IV. TEMPORAL NOISE-TO-SIGNAL RATIO (TNSR)

We calculated tNSR using procedures similar to those previ-
ously described in [32], with a phantom providing temporally
and spatially constant signal when imaged using standard
fMRI acquisition sequences. To extract the tNSR, a Region
Of Interest (ROI) is defined near the center of the phantom,
and signal intensity is measured from each voxel i in the ROI
and concatenated in a time series si, with mean signal intensity
s̄i. To increase specificity to rapid signal fluctuations, such as
those generated by intermittent noise sources, the time-series
si is detrended with a second-order polynomial to obtain the
timeseries s̆i. Noise ni is calculated as the standard deviation
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of the detrended signal intensity s̆i. Finally, tNSR is calculated
in percentage terms as:

tNSRi =
ni

s̄i
×100. (1)

Via analysis of tNSR values, we quantify the possible
relation between an experimental condition (i.e. the presence
or operation of a mechatronic device inside the scanner) and
the increase in fluctuations of the fMRI signal compared to a
baseline condition. Low tNSR values indicate that the signal
is temporally stable in the absence of task-related changes in
brain activity. A low tNSR thus enables detection of signal
changes that arise in task-related fMRI protocols with full
statistical power. This is a crucial aspect of fMRI since the
effects of interest measured through increase in blood oxygen
level-dependent (BOLD) signal are within 1% in magnitude
[2].

Previous uses of tNSR (or its reciprocal, tSNR) in the field
of MR-compatible mechatronics involved inference testing to
compare the distributions of tNSR in two or more experimental
conditions by using an ANOVA or a Kruskal-Wallis test. Use
of these statistical tests to establish confidence intervals and
determine significant change in tNSR due to a given experi-
mental condition assumes the independence of the measured
data (i.e. tNSR values of different voxels). Unfortunately, it
is well known that such an assumption is strongly violated
in MRI and fMRI [32], [34], due to spatial and temporal
correlations in the signal and noise levels measured in different
voxels. Moreover, it is unclear how many voxels should be
considered in the analysis of tNSR values, with previous
studies using from 49 voxels [13], to 5376 voxels [37], or
simply implementing slice-wise comparisons [35], [36].

We have conducted two experiments to develop our quanti-
tative approach in determining fMRI-compatibility of mecha-
tronic devices based on tNSR measurements; one (Experiment
3) that aimed to evaluate the validity of whole-volume infer-
ence analysis based on tNSR data, and one (Experiment 4)
that aimed to quantify the effect of the EUT on tNSR levels.

A. Experiment 3 – Volume inference based on tNSR values

We conducted Experiment 3 to test the effect of number of
voxels in the analysis of whole-volume tNSR analysis.

1) Methods: We conducted seven repeated scans to es-
timate the mean tNSR in a spherical phantom (see Sec.
II), with the scanner in normal operating condition. Imaging
parameters included: single-shot Echo Planar Imaging (EPI);
2.04x2.04x3.00 mm voxel size; 34 slices with 0.75mm gaps;
image size: 94x94 px; 192x192x102 mm3 total imaging vol-
ume; 90 degree flip angle, TE=30 ms, TR=2030 ms, bandwidth
per pixel=2315 Hz/pixel, receiver gain: high. For each scan,
i= 1, ...,7, we selected a cuboid ROI in the center of the phan-
tom including V = 18×22×22 = 8712 voxels, and calculated
the tNSR for all voxels within the ROI. The resulting tNSR
values were ordered by the voxel x, then y, then z coordinates,
from which subsets of tNSR data were obtained through spatial
(re)sampling to produce the sets Ai,∆:

Ai,∆ = {tNSR1, tNSR1+∆, tNSR1+2∆, ...}, (2)

where i is the scan repetition and ∆ is the spatial sampling
period. Sets of Ai,∆ were created using the sampling periods
∆ = [1,2,3,5,10,50,100,200] voxels, which correspond to
the inclusion of tNSR values from N=[8712, 4356, 2904,
1742, 871, 174, 87, 43] voxels. 95% confidence intervals
for the mean tNSR were estimated for each set as tNSRi±
t0.05,N−1σi/

√
N, with tNSRi as the sample mean and σi the

standard deviation of the sample.

As we assume that the scanner is ideally stable during
the seven repeated experiments, any pairwise comparison
between the means estimated in two sets with the same ∆

(i.e. between A1,∆ and A2,∆), which provides a statistically
significant difference at the 95% level is to be considered
a false positive. A FPR can be defined as the number of
comparisons that produce a statistically significant difference,
divided by the total number of possible pairwise comparisons,
c=

(7
2

)
= 21. In ideal, independent conditions, the FPR should

be close to 0.05 for multiple comparisons of distributions with
no significant difference between repeated runs.

2) Results: Analysis of the sets of tNSR data showed that
the measured FPR depends on the number of voxels, N, used to
determine the 95% confidence intervals of mean tNSR (where
N ∝

1
∆

). Pairwise comparisons between the confidence inter-
vals generated from the sets of tNSR data identified several
conditions in which the FPR is much higher than the desired
5%. Comparisons between sets with ∆< 10 (N > 871) resulted
in FPRs that were 28% or higher. In these conditions, the
95% confidence intervals are very narrow due to an excessive
number of voxels considered in the whole-volume analysis,
which violates the assumption of independence of samples due
to the spatial proximity of the voxels included. Conversely,
in cases where a lower number of voxels in the volume are
considered (when ∆ > 100, N < 87), the FPR dropped to zero.
In these cases the 95% confidence intervals were expanded to
widths of 4% tNSR. To determine the sensitivity of these large
confidence intervals in detecting meaningful changes of signal
to noise (SNR) measured during an activation experiment, we
used the parameters s̄i and ni calculated from the tNSR set,
and the definition of SNR

SNRact =
∆S
ni

=
∆S
s̄i
· s̄i

ni
(3)

with ∆S equal to the change in BOLD signal. Considering
an optimistic 2% increase in BOLD signal due to neural
activation, and using the N = 43 tNSR results, the SNRact
values at the extremes of the interval range between 4.25
and 3.77, or 4.01± 6%. As a result, in the worst-possible
condition considered in this example (i.e. including only 43
voxels), pairwise comparison is not capable of discriminating
between experimental conditions that would result in a 6%
drop of SNRact during fMRI activation tests. In this case, it
is likely that the power of the test to detect a true positive is
reduced, leading to the false conclusion that a condition was
not significantly altering tNSR data, when in fact this could
have been the case.
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B. Experiment 4 – Effect of the EUT on tNSR

Based on the observation that the FPR of inference tests
applied to whole-volume tNSR measurements depends on
arbitrary parameters such as the number of voxels, we sought
to develop a paradigm to quantify the fMRI-compatibility
of a mechatronic device based on tNSR values, such that
inference testing can be performed with strict control on FPR
and significance levels. In our new approach, we extract the
mean tNSR for the whole volume ROI as measured in multiple
repeated scans. We then use the non-parametric method of
bootstrapping to create 95% confidence intervals of mean
tNSR from the resulting mean tNSR values. By repeating the
measurement multiple times for each experimental condition
and using bootstrapping of the obtained measurements, we
calculate the distribution of the mean tNSR in a given ex-
perimental condition and its confidence interval at a specific
significance level without violating the statistical assumptions
detailed in Experiment 3. We can then conduct statistical
inference to test the effect of a given experimental condition
on tNSR (i.e. the presence or movement of a mechatronic
device during fMRI) by comparing the estimated mean tNSR
confidence intervals.

1) Methods: In Experiment 4, we used the same phantom
and EPI sequence used in Experiment 3 to acquire seven re-
peated scans for each of the following experimental conditions
related to the status of the EUT:

1) BL1, first baseline condition without the EUT;
2) IN, with the EUT in its operational condition, powered

on and properly connected for operation;
3) MVT, with the EUT position-controlled to move its end

effector through a sinusoidal trajectory (peak-to-peak
amplitude: 1 cm, frequency: 0.5 Hz);

4) BL2, a second baseline condition, after removing the
EUT from the scanner, to evaluate the test-retest error
of the procedure.

For each condition, we extracted the 18 central slices
of the phantom and defined a 22x22 voxels square ROI
to obtain a cubiod ROI spanning a volume of 136 cm3,
comprised of 8,712 voxels. We computed the tNSR volume
mean, and resampled through bootstrapping (n = 1 ·104) the 7
repetitions for each experimental mode to compute confidence
intervals and perform subsequent pairwise hypothesis testing.
Through pairwise comparisons between i) the ensemble of
repeated baseline conditions and ii) the IN condition and MVT
condition respectively, we sought to determine whether the
distribution of tNSR values was significantly altered in the IN
and MVT condition relative to baseline.

2) Experiment 4 - Results: Pairwise comparisons between
both the IN and MVT conditions with the combined baseline
conditions fail to reject the null hypothesis at the p < 0.05
level, demonstrating that the presence of the MR-SoftWrist
does not have a significant effect on noise levels during
fMRI. The distributions of tNSR values measured in the seven
repetitions for each experimental mode are shown in Fig. 6.
Additional validation of the method presented in Experiment
4 is detailed in the supplementary material.

Experimental condition Experimental condition
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Fig. 6. Left: Bootstrapped confidence intervals for mean tNSR in the ROI
volume for each condition at the p < 0.05 level, and Right: The distribution
of tNSR for all repeated measures (seven for each experimental condition)
ordered in terms of acquisition time.

Fig. 7. Screenshot describing the visual stimulus, with black and white
moving dots over a gray background, with the blue fixation dot in the center.

V. IN VIVO VALIDATION

The quality of statistical parametric maps obtained dur-
ing an fMRI experiment is a function of both the noise
intensities measured in the absence of activation, as well as
the signal change measured in the transition between two
or more experimental conditions. Although experiments in
homogeneous phantoms do enable rigorous analysis of the
spatial and temporal noise characteristics of the measured
signal, tNSR alone does not account for the many noise and
nuisance processes associated with the signal derived from
task-related activation. Instead, the effect of any experimental
condition on such a measure can be quantified by measuring
concurrently the task-related signal change and its fluctuation,
which can be done in a human experiment.

A. Experiment 5 – Effect of the EUT on task-related activa-
tions

We conducted a block design experiment to check whether
the presence and operation of the EUT significantly affects the
contrast of fMRI activation measured during a representative
sensorimotor task.

1) Methods: We developed a visuomotor task, where a
subject laying in a standard supine position in the MRI scanner
is asked to visually fixate on a static dot in the center of a
screen, while radially moving dots appear on the left side of
the visual field (see Fig. 7). Dot direction changes repeatedly
from centripetal to centrifugal during the task, and the subject
is asked to tap their ipsilateral hand every time that a direction
change is detected. The task alternates between active blocks,
described above, and rest blocks, where the subject is asked to
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fixate on a single center dot with a stationary background. The
change of dot movement direction occurs every ∆T seconds,
with ∆T values pre-computed from a bimodal distribution,
obtained through superposition of two normal distributions
with means at 0.5 s and 1 s and standard deviation of
0.25 s, and adjusted so as to result in a prescribed number
of dot movement direction changes, and thus cued finger
taps, for each constant-duration block. Through this pseudo-
random stimulus, the effects of task learning or habituation
are minimized, enabling comparisons between multiple runs of
the same stimulus. By extracting the distributions of measured
brain activation from the statistical parametric maps calculated
for each repeated measurement, and comparing the distribu-
tions deriving from different experimental conditions (such as
the operation of the EUT in the scanner room), it is possible to
quantify the possible signal corruption introduced by a given
experimental condition.

In this block design task, the subject was cued to execute
16 finger taps with his left hand in each of the four 12-second
long active blocks, which separated five 12-second long rest
blocks, for a total task duration of 114 s. The task was repeated
seven times for each of the following experimental conditions:

1) BL1, a first baseline condition without the EUT;
2) MVT, with the EUT position controlled to move its

end effector through a sinusoidal trajectory (peak-to-
peak amplitude: 1 cm, frequency: 0.5 Hz). The robot
was placed next to the subject in its normal operating
position, but did not physically interact with the subject.

3) BL2, a second baseline condition, after removing the
EUT from the scanner, to enable evaluation of the test-
retest reliability of the procedure.

The total duration of the experiment was approximately 90
minutes, including 20 minutes for system setup and removal
from the scanner room, and the seven scans per condition were
executed consecutively.

Functional images were acquired using the same EPI fMRI
sequence used in Experiment 3. The measured images were
processed in the native fMRI space using only realignment to
the first image of the BL2 session, using SPM12 realignment
function, with options quality = 95%, separation 2.5 mm.
A general linear model was constructed, using the block
variable (stimulus on/off), convolved with SPM12 canonical
hemodynamic response function, as a regressor. Model es-
timation yielded one t-map for each repeated run for the
contrast (active-rest > 0). We defined a task-specific functional
mask by averaging the activation maps from two random
scans in each condition (i.e. two for BL1, two for MVT,
two for BL2), and thresholding at the p < 0.05 uncorrected
significance level. The resulting functional mask was restricted
to anatomically defined visual and motor areas contralateral to
the presentation of the visual stimulus and the hand performing
the task. Anatomical masking was accomplished using the
Juelich Anatomical Atlas, with thresholds set at 50%. The
anatomic visual mask was defined as the union of contralateral
primary and secondary visual cortices V1 and V2, and the
motor mask was defined as the union of primary motor
cortex BA4 anterior and posterior and premotor cortex BA6.

The resulting intersection between the task-specific functional
mask and the anatomic visual and motor masks were used as
the functionally-defined visual ROI (”Right V1”) and motor
ROI (”Right M1”) in all subsequent analysis. The functionally-
defined visual ROI contained 419 voxels and the motor ROI
contained 204 voxels.

To estimate the effect of different experimental conditions
on measured activation at the ROI level, we calculated the
mean t-score in the functionally defined ROIs for each scan,
and used bootstrapping (n = 1 · 104) to estimate 95% con-
fidence intervals for the mean t-score from the resulting
sample (seven runs for BL1, MVT, and BL2). To estimate
the effect of different experimental conditions on activation at
the voxel level, we calculated the mean t-score for all voxels
within the functionally-defined ROIs across the seven repeated
measures taken in each experimental condition, and computed
the difference in mean t-score distributions relative to BL1.
One distribution (MVT−BL1) quantified the effect caused by
the EUT, and the other (BL2−BL1) quantified the test-retest
error of the task. To compare the effect of the EUT on voxel
activation to the test-retest error of the measurement, we used
a Kolmogorov-Smirnov test to test the null hypothesis that the
two samples, MVT−BL1 and BL2−BL1, are taken from the
same distribution.

2) Results: Analysis of the seven repeated runs of condition
BL1, thresholded at the p < 0.05 uncorrected significance
level, showed that the number of active voxels within the ROIs
was (mean±standard deviation) 320±61 voxels (5.0±0.96
cm3) in the visual ROI, and 155±31 voxels (2.4±0.49 cm3) in
the motor ROI. Robustness of activation, a feature depending
only on the selected task, is determined by the relatively low
variability of the number of active voxels.

Pairwise comparisons of the estimated 95% confidence
intervals of mean t-scores show that no experimental condition
results in statistically significant difference at the p < 0.05
significance level in either ROI (Fig. 8, top panels). Through
this analysis, we demonstrate that the experimental condition
(MVT) does not introduce significant degradation of activation
contrast in visual or motor areas for the task considered.

A Kolmogorov-Smirnov test failed to reject the null hy-
pothesis in the Visual ROI (p = 0.43), but not in the Motor
ROI (p = 0.003). The resulting distributions are displayed in
Fig. 8, bottom panels. Surprisingly, in the Motor ROI, the
MVT−BL1 t-scores distribution was more closely clustered
around zero than the BL2−BL1 distribution, suggesting that
the variation in activation between the EUT and BL1 condition
was no greater than the in test-retest error of the measurement
(mean of MVT−BL1 t-scores distribution: 0.074, mean of the
BL2−BL1 t-scores distribution: -0.279). The effect size of
the difference in means between conditions is characterized
as “small”, with a Cohen’s d of .25.

These results are qualitatively reflected in the similarity of
the two activation maps presented in Fig. 9. The thresholded
surface reconstructions show the average activation measured
in the repeated runs of both BL conditions and in the MVT
condition, together with the anatomical ROIs used to extract
the distribution of region-specific statistical parameters.
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Fig. 8. Top Row: Distribution of the mean t-scores in the two functionally
defined ROIs, represented by the distribution mean (red dot) and whiskers
indicating the 95% confidence interval. Pairwise comparisons for both ROIs
are not statistically significant at the p < 0.05 level, indicating no significant
effect for the experimental condition. Bottom: Histogram of the between-
condition change in t-score measured for each voxel in the ROI.
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ROIs

Fig. 9. Top: Thresholded (p < 0.05, uncorrected) activation regions for
all BL conditions (left) and MVT (right), overlaid on the subjects cortical
surface reconstruction. Bottom: ROIs describing the two anatomical Juelich
masks used to compute the distribution of statistical parameters in the different
experimental conditions.

VI. DISCUSSION

We presented a set of quantitative methods, which include
experimental and analytical techniques used to quantify the
fMRI-compatibility of a mechatronic device designed for
operation in sensorimotor protocols during fMRI. Although
several quantitative metrics have been proposed for charac-
terizing scanner performance for fMRI studies [21], [32],
[33], and quality assurance protocols have been developed
for multicenter studies [32], [34], [35], [39], the presented
methods have been conceived to support identification and
troubleshooting of possible sources of noise and interference

caused by mechatronic devices operating in MRI scanners. The
developed approach utilizes experiments that are progressively
less specific with respect to noise sources, and involve a
gradually increasing level of experimental sophistication, and
adherence to real-world application conditions. The developed
set of methods can be conducted in parallel to standard MR
quality assurance protocols that are required for anatomical
MRI images, and focus on assessing image quality [30], [31].

Our approach, developed specifically for fMRI-
compatibility analysis, combines three metrics and their
related experimental procedures and analysis techniques.
None of the metrics included in the presented approach
are absolutely new in the field of MRI quality assurance;
however, previous metrics were introduced without explicit
reference to a numerical criterion to quantify the effect of
the measured values on image or contrast degradation. With
our work, we have provided a framework for performing
statistical inference testing to determine if the introduction
of a mechatronic device has a significant effect on image
quality and fMRI statistical parametric maps. This aspect of
our protocol is crucial in providing quantitative assessment
of the devices being developed for use with fMRI and to
understand their effect on experimental results. We discuss
the significance of the presented methods and results below.

A. RF noise metric

The RF noise metric is a conservative test for RF noise
present in the useful bandwidth of the scanner. For this
metric, we have presented a quantitative method for automatic
detection of RF interference, which results in a rapid test
for a source of possible fMRI image degradation. This is an
improvement over previous methods of RF noise detection,
which were conducted by qualitative visual inspection of the
RF noise spectra generated using standard quality assurance
protocols. To the best of our knowledge, a qualitative analysis
of RF noise results has been reported in only one case in the
MR-compatible mechatronics literature [40]. Our quantitative
method is particularly useful for troubleshooting possible
sources of RF interference due to an EUT and its operation,
both during the development phase and for regular quality
assurance of the device. Our analysis demonstrated that the
RF noise test, coupled with an empirically determined 95%
confidence interval for the distribution of detrended signal
intensities, resulted in a sensitive test for RF interference, as
demonstrated via visual comparison with phantom images.
Furthermore, while this metric tests specifically for RFI,
we found that for the MR-SoftWrist, filtering and shielding
configurations identified by the RF noise test to introduce neg-
ligible levels of RF interference also resulted in no significant
difference in tNSR or in measurable activation for functional
images. As such, we highlight the usefulness of the RF noise
test as part of a device validation protocol, and –given the
relatively short duration of an RF noise measurement (ap-
proximately 6-7 minutes) and that it only requires a phantom
scan– we recommend using the RF noise test to confirm proper
filtering and shielding of cabling connecting electrically-active
elements in the imaging room.
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B. tNSR

tNSR during phantom experiments is sensitive to reductions
in signal quality potentially introduced by the presence or
operation of an EUT in the scanner room. Our analysis
demonstrated that an arbitrary choice, such as the number of
voxels considered for whole-volume analysis of tNSR data,
significantly affects the false positive rate of inference tests,
and consequently may result in poorly controlled levels of
false negatives when establishing the MR-compatibility of a
mechatronic device. Previous papers reporting on the MR-
compatibility of mechatronic devices (e.g. [13]) used a low
number of voxels to test the tNSR changes introduced by the
presence or movement of a mechatronic system in the scanner.
Our analysis shows that some of those studies might have
incorrectly concluded the MR-compatibility of the presented
devices based on consideration of tNSR data in too small a
subset of voxels.

To avoid the unwanted dependence of the result of inference
tests on the selected number of voxels, we developed an
alternative analytical and experimental protocol. We based our
analysis on repeated measurements of the mean tNSR within
a selected ROI in interleaved experimental conditions, and
estimation of the confidence interval through bootstrapping to
allow subsequent pairwise comparisons between experimental
conditions. The developed protocol quantifies the test-retest
error of the metric obtained in different repetitions of the
baseline condition, for comparison with the tNSR change
deriving from the introduction of the EUT. Application of this
method with the MR-SoftWrist demonstrated no significant
difference in tNSR, between either the IN or MVT condition
and the BL conditions.

C. In vivo validation

In the validation experiment with a human subject, we
did not observe significant changes in either spatial extent
or amplitude of task-related activation in the presence of the
EUT, compared to the baseline condition. This result is not
surprising, since the in vivo experiment is less specific with
respect to noise sources relative to phantom experiments, and
the EUT did not show any significant effects in the phan-
tom experiments. In previous experiments conducted using a
different scanner and coil (see Supplementary Material), we
measured a significant 1.8% increase of tNSR in conditions of
operation of the EUT, while the in vivo validation experiment
did not show any effects. The significance of the in vivo
experiment is to provide an indication as to what extent
increases of tNSR values – measured with high specificity
in phantom experiments – are capable of inducing significant
degradations in the statistical parametric maps, to the point
that they modify the extracted activations in human subjects.
In our previous study, we observed that the 1.8% increase of
tNSR is not sufficient to modify the amplitude and spatial
extent of sensorimotor task-related activations.

Testing mechatronic devices in conditions that closely re-
semble those of operation during experiments is crucial. Vali-
dation of mechatronic devices via human experiments should
always be performed as an intermediate step in the device

development process to prove consistency and applicability
to the intended application. Measurement of contrast during
a human experiment is useful because it involves realistic
conditions observed during real experiments in fMRI.

D. Study limitations

Results obtained to demonstrate the MR-compatibility of a
specific mechatronic device operating during fMRI are highly
specific to a given scanner, coil, and sequence combination. In
particular, the 95% confidence interval and some of the obser-
vations of the frequency dependency of the signal intensities
measured in the RF noise test are highly coil-specific, with
different relationships potentially measurable for coils with a
different number of channels or electrical configurations. Sim-
ilarly, temporal noise-to-signal values can change with the use
of a different sequence and phantom composition. To deal with
the issues above, the developed methodology is heavily based
on comparisons with matching control conditions, where the
effect of potentially confounding variables (i.e. scanner field,
coil type, sequence, room temperature, weather conditions) is
minimized by repeating measurements in the same conditions,
and interleaving temporally experimental conditions to avoid
thermal drifts, when possible. As an unavoidable consequence,
the banner ”fMRI-compatible” that we seek to attribute to a
given mechatronic device based on the presented methodology
can be conferred only with explicit reference to a very specific
configuration, defined by a given scanner field, coil type, and
sequence. As soon as one of parameters mentioned above are
changed, a subset of experiments within those presented in
this paper needs to be rerun to test fMRI-compatibility in the
modified conditions.

VII. CONCLUSIONS

We have presented a new quantitative set of methods to
support the development and troubleshooting of an electrically
active mechatronic device developed for use in sensorimotor
protocols with fMRI. With the developed methodology, we
have incidentally demonstrated that careful introduction of
non-magnetic metals and shielded electrically active compo-
nents do not result in significant degradation of signal contrast
for fMRI experiments, for the MR-SoftWrist, a wrist pointing
robot meant to operate just outside the scanner bore. The
developed methodology is useful for the objective assessment
of the fMRI-compatibility of future mechatronic devices devel-
oped for use in fMRI protocols. The methods are sufficiently
general that they could also be of use in the evaluation of
virtually all electrically active equipment that are intended for
use during fMRI.
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SUPPLEMENTARY MATERIAL

A. tNSR Validation

To confirm the validity of our proposed method in detecting
changes in tNSR (as detailed in Experiment 4), we applied
our analysis to a series of tNSR experiments in which noise
was intentionally introduced to the scanner environment by
the VCO, and through the operating conditions of the EUT.

1) Experiment S1: tNSR in presence of RFI: The proposed
tNSR method was used to estimate the change in mean
tNSR for phantom images collected in baseline and RFI
conditions— as detailed in Experiment 1. The image sequence
and definition of the ROI volume were consistent with the
methodology described in Experiment 3.

The 95% confidence intervals for all three conditions (BL,
RFI −70 dBm, RFI −40 dBm) are shown in Fig.S1. In
this experiment, the tNSR measure identified a significant
increase in mean tNSR for the -40 dBm condition, in which
slight artifacts could be detected by visual inspection of the
phantom images. The test showed no significant difference
between baseline and the -70 dBm condition, which were
also indistinguishable via visual inspection. This experiment
demonstrates both the validity and short-comings of the tNSR
metric— it is capable of detecting changes in tNSR where it
is known to exist (-70 dBm), but unable to detect instances of
RF noise below a certain threshold (-40 dBm). These results
highlight the usefulness of the RF noise metric in conducting
a strict check for instances of RFI that may otherwise be
undetectable.
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Fig. S1. Left: Bootstrapped confidence intervals for mean tNSR in the ROI
volume for all 3 conditions at the p < 0.05 level. Right: Pairwise comparison
between the 95% confidence intervals for BL and -70 dBm experimental
conditions shows no significant difference.

2) Experiment S2: tNSR in presence of EUT: We applied
our methodology to estimate the change in tNSR between
baseline and EUT conditions.

Dsata for this analysis were collected in 2015 using different
scanner hardware, but with the same EUT, the MR-Softwrist,
as detailed previously (Sec II: Methods). The 32-channel head
coil and Siemens Trio 3T scanner at the neuroimaging center,
Core for Advanced MRI, at the Baylor College of Medicine
were used to image a sherical phantom filled with agarose gel
doped with a 0.2mM Ni(NiO3)2 and 0.5wt% NaCl. Imaging
parameters included: single-shot Echo Planar Imaging (EPI);
2.5 mm isotropic voxel size; 38 slices with no gaps; image
size: 80x80 px; 200x200x95 mm3 total imaging volume; 78
degree flip angle, TE=35 ms, TR=2000 ms, bandwidth per
pixel=1453 Hz/pixel.
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Fig. S2. tNSR results of a previous fMRI compatibility experiment conducted
with the MR-Softwrist on a different MRI scanner. Left: Bootstrapped confi-
dence intervals for mean tNSR in the ROI volume for each condition at the
p < 0.05 level, and Right: The distribution of tNSR for all repeated measures
(seven for each experimental condition) ordered in terms of acquisition time

In this experiment, we acquired seven repeated scans for
each of the following experimental conditions related to the
status of the EUT:

1) BL1, first baseline condition without the EUT;
2) MVT, with the EUT position-controlled to move its end

effector through a sinusoidal trajectory (peak-to-peak
amplitude: 1 cm, frequency: 0.5 Hz);

3) BL2, a second baseline condition, after removing the
EUT from the scanner, to evaluate the test-retest relia-
bility of the procedure.

Pairwise comparisons between the MVT and both baseline
conditions are statistically significant at the p<0.05 level,
demonstrating that the presence of the MR-SoftWrist in the
experimental condition does indeed increase noise levels dur-
ing fMRI (Fig. S2). The increase in tNSR measured in the
active MVT condition is about 1.8% of the mean baseline
value, which is greater than the estimated test-retest reliability
of the measurement (estimated to be equal to 0.8%). This result
demonstrates that the developed methodology is capable of
quantifying an increase in tNSR introduced by the operation
of an EUT in the scanner.

In the more recent experimental results presented in Sec.
IV, we did not observe a significant increase in tNSR for
experimental modes in which the EUT was included in the
scanner environment. The discrepancy may be accounted
for by the differences in the scanner hardware or imaging
sequences used between the two experiments. These results
highlight the specificity of the presented fMRI compatibility
tests to the scanner and sequence under test, and the need to re-
validate the fMRI compatibility of the EUT in the experimental
conditions in which it is planned to operate.




