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Model-based estimation of individual muscle force
based on measurements of muscle activity in

forearm muscles during isometric tasks
Andrea Zonnino Student Member, IEEE and Fabrizio Sergi, Member, IEEE,

Abstract—Objective: Several forward dynamics estimation ap-
proaches have been proposed to estimate individual muscle force.
However, characterization of the estimation error that arises
when measurements are available only from a subset of the
muscles involved in the movement under analysis, as it is the
case of the forearm muscles, has been limited. Our objectives
were: 1) to quantify the accuracy of forward-dynamics muscle
force estimators for forearm muscles; 2) to develop a muscle force
estimator that is accurate even when measurements are available
only from a subset of muscles acting on a given joint or segment.

Methods: We developed a neuromusculoskeletal (NMSK) esti-
mator that integrates forward dynamics estimation with a neural
model of muscle co-contraction to estimate individual muscle
force during isometric contractions, suitable to operate when
measurements are not available for all muscles. We developed
a computational framework to assess the effect of physiological
variability in muscle co-contraction, cross-talk, and measurement
error on the estimator accuracy using a sensitivity analysis. We
thus compared the performance of our estimator with the per-
formance of a standard estimator that neglects the contribution
of unmeasured muscles.

Results: The NMSK estimator reduces the estimation error by
25% in average noise conditions. Moreover, the NMSK estimator
is robust against physiological variability in muscle co-contraction
and outperforms the standard estimator even when the validity
of the neural model is compromised.

Conclusion and Significance: In isometric tasks, the NMSK
estimator reduces muscle force estimation error compared to
a standard estimator, and may enable future applications in-
volving estimation of forearm muscle force during coordinated
movements.

Index Terms—muscle force estimation, forward dynamics es-
timation, surface EMG, wrist biomechanics

I. INTRODUCTION

It is currently not possible to non-invasively measure in-
dividual muscle forces from a complete set of muscles in-
vivo during tasks that require coordinated muscle co-activation
using non invasive protocols. Developing a technique capable
of overcoming this limitation would represent one of the
biggest breakthrough in biomechanics [1]. Such technique will
in fact give fundamental contributions both to answer many
open questions in basic neuromuscular physiology, motor
control and biomechanics and to obtain clinically relevant
insights in neurorehabilitation, orthopedics and gait analysis.
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For instance, in motor disorders, such as cerebral palsy, or
stroke, the possibility to determine how an external load is
shared between muscles would enable to directly identify
the set of muscles responsible for the abnormal activity thus
allowing more focused interventions. Similarly, in athletes
with recurring muscular and articular injuries, such a technique
would enable the examination of how the central nervous
system solves muscle redundancy and adapts the selection of
the contraction strategy in presence of fatigue or injuries. In
this way it would be possible to determine the role of each
muscle in the evolution of the injury.

Non-invasive approaches have been proposed to estimate
individual muscle force using estimation techniques [2], [3].
These methods rely on the evidence that muscle forces produce
joint movement and torque. However, since neither joint
position nor joint torque provide information at the individual
muscle level, these measurements need to be augmented via
estimators to quantify forces at the individual muscle level.

Current estimation algorithms can be grouped in two macro-
categories: inverse and forward dynamics approaches. Inverse
dynamics estimators use either the measured joint torque or
joint angle to estimate the contribution of different muscles to
the measured movement [4]–[7]. Cost-function minimization
is usually employed to address muscle redundancy [8]; unfor-
tunately, the assumption of a cost function that is generalizable
across tasks and subjects does not always hold, with the
estimated forces highly sensitive to the selection of such
function [9], [10].

Forward dynamics estimators [11]–[18], on the contrary,
make no assumption on the strategy adopted to solve the mus-
cle redundancy. They typically require knowledge of the limb’s
geometry, measurements of joint torque, and measurements of
muscle activity. While recently shear wave elastography has
been proposed to indirectly quantify muscle activity [19]–[21],
measurements of muscle activity are more commonly obtained
with surface electromyography (sEMG).

However, since sEMG can only measure the activity of
superficial muscles, current estimation approaches neglect the
contribution from non-superficial muscles to the joint torque.
This approximation might be appropriate when estimating
forces from the lower limbs muscles, however it is likely
to result in inaccurate estimates when applied to complex
body segments that have many muscles arranged in different
layers, such as the forearm muscles that control hand and wrist
movements. While most of the recent research done in the area
has focused on developing computationally efficient estimators
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that could work in dynamic conditions [13], [16] or in real-
time applications (e.g. brain-machine interfaces, biofeedback
control loops of robotic devices) [7], [18], these studies
have not addressed the problem of individual muscle force
estimation. As such, it is still not clear what is the accuracy of
the estimation process, even for isometric contractions, when
measurements of muscle activity are not available from all
muscles.

In this paper, we present a novel estimator that integrates a
forward dynamics estimation approach with a neuromuscular
model of muscle contraction, used to estimate the effect of
unmeasured muscle activity on joint torque. We hypothe-
sized that the novel estimator would be able to return more
accurate estimates of muscle force compared to a standard
musculoskeletal estimator, when both are used to estimate
forces of the forearm muscles during isometric tasks involving
the wrist. Since the true value of the muscle force is not
measurable through in-vivo procedures, it would be impossible
to quantify accuracy of any muscle force estimator using
purely experimental protocols. As such, we chose to simulate
measurements using a musculoskeletal model, which allowed
to run simulations to quantify the deviation between the
estimated and the assumed true values of muscle forces.
We thus developed a computational framework based on a
realistic musculoskeletal model [22] that simulates muscle
forces and virtual measurements of muscle activity during
isometric contractions. To test our hypothesis, we simulated
calibration experiments aimed at estimating individual muscle
force from a set of measurements of muscle activity under
a set of experimental conditions, when realistic conditions of
measurement noise and physiological variability are included.

A preliminary version of this work has been reported in
[23].

II. MATERIALS AND METHODS

A. Model
The computational framework presented in this paper is

based on the upper extremity musculoskeletal model (MSM)
presented by Saul et. al [22]. Only a subset of the objects in
the model are used for this analysis; specifically, the upper
arm is considered grounded, with motion allowed only for
the forearm and hand. As such, the reduced model has four
degrees of freedom (DOFs): elbow flexion/extension (eFE),
pronation/supination (PS), wrist flexion/extension (FE), and
wrist radio/ulnar deviation (RUD). A total of mtot = 15
muscles have been used for actuation of the MSM (Tab. I);
however, for some of the analyses presented, a further reduced
set of muscles will be considered.

Each muscle included in the MSM is modeled as a Hill-type
musculo-tendon (MT) unit in isometric conditions [24], [25].
For given values of muscle activation a and muscle length lm,
the musculo-tendon force fMT of each MT unit is determined
by:

fMT (lm, a) = Fmax(af̃A(lm) + f̃P (lm)) cos (α(lm)) (1)

where Fmax is the maximum isometric muscle force, α is the
muscle pennation angle, and f̃A and f̃P are the active and pas-
sive force multipliers, respectively [25]. Assuming the tendon

to be inextensible [26], the length of each muscle is directly
related to the posture of the wrist joint and independent from
muscle activation. As such, in a given posture the MT force
is linearly proportional to muscle activity.

To simulate indirect measurements of muscle activity, a
linear dependence is then assumed between the value of
activation a and the measurement M :

a = γM (2)

where γ is a muscle-specific scaling coefficient that needs
to be derived via a proper calibration procedure to estimate
activation and force from the measured values of M .

B. Muscle Force Estimation

In general, the relationship between muscle force and joint
torque is provided by:

τ = −JfMT (3)

As such, combining eq. (1) - (3), and using the bold notation
to refer to vector or matrix quantities, a linear relationship can
be derived between τ and M :

τ = −J cos (α)Fmax(f̃AMγ + f̃P), (4)

where J is the muscular Jacobian whose component rij
represents the moment arm of the muscle j with respect of
the joint angle i. Fmax, α, and f̃A are diagonal matrices that
contain the respective scalar parameters for each muscle. γ
and f̃P are vectors that contain the muscle-specific scaling
coefficient and passive force for each muscle, respectively.

From eq. (4), it can be seen that there is a linear relationship
between τ and M. As such, by measuring joint torque,
measuring the activation of all muscles producing torque about
a given joint, and accounting for the passive force of all such
muscles, all elements in the vector γ can be estimated with a
proper calibration procedure.

1) Musculoskeletal estimator (MSK): While the general
description reported above is theoretically correct, the assump-
tions included therein are almost never achievable in practice.
In fact, standard non-invasive muscle activation measurement
techniques, such as sEMG, can only provide a measurement
of the activation of superficial muscles. Usually, activation of
m < mtot muscles is available using sEMG. A standard ap-
proach to calibration, in these cases, neglects the contribution
of unmeasured muscles and of passive forces, simplifying eq.
(4) as

τ = −J cos (α)Fmaxf̃AMmγm (5)

where Mm and γm are the subsets of M and γ that pertain
to the measurable muscles.

Since eq. (5) is a linear equation of the form y = Xβ,
with proper experimental design, it is possible to define a
set of n tasks, defined as a set of joint torques applied
at different postures in isometric conditions, such that the
resulting experimental matrix X̄ := [X1; X2; ...; Xn] is of full
rank. When this condition is satisfied, it is possible to estimate
the vector β := γm using a standard least squares fit given
measurements of ȳ := [τ1; τ2; ...; τn].
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Fig. 1. A) Block diagram of the proposed estimator. (B) Block diagram of the computational framework implemented for the sensitivity analysis used to
quantify the accuracy of the proposed estimator. Parameters εA, εC εM represents the level of physiological variability, cross-talk, and measurement error,
respectively; mID is a vector that contains the set of measurable muscles, and Ex is a boolean variable that indicate if finger muscles are active or not.

2) Neuromusculoskeletal estimator (NMSK): We propose
a novel estimation algorithm capable of dealing with cases
where the approximations made within the MSK estimator
do not allow sufficient accuracy, due to unmeasured muscle
activations. Instead of neglecting the contribution of unmea-
sured muscles and of passive muscle forces, our new estimator
integrates quantities available through measurements with pa-
rameters extracted from a musculoskeletal model to improve
the accuracy of the estimation of vector γm. The estimator
extracts the contribution of unmeasured muscle forces using
a neural model that provides a solution for the muscle re-
dundancy problem. As such, we refer to our estimator as
neuromusculoskeletal estimator (NMSK).

A schematic of the NMSK estimator is shown in Fig.
1A. For a generic task, defined by a specific value of joint
angle and torque, static optimization is used to obtain the
optimal muscle activation vector, âopt, that minimizes the
Global Activation Level GAL =

∑
a2i [26]. The subset âm̄ of

âopt that correspond to unmeasured muscles are then included
in eq. (4), together with the model-estimated passive muscle
force:

τ =−J cos (α)Fmaxf̃P − Jm̄ cos (α)Fmaxf̃Aâm̄

−Jm cos (α)Fmaxf̃AMmγm

(6)

where the subcomponents of the Jacobian corresponding to
measured and unmeasured muscles, Jm and Jm̄ respectively,
have been decoupled.

Eq. (6) shows that the measured joint torque is the com-
pound effect of three terms: the first that represents the
contribution of the passive elastic component of all muscles in

the limb; the second and the third that represent, instead, the
contribution of the active component of the unmeasured and
measured muscles, respectively. As the tendons are assumed to
be inextensible, the length of the each MT unit, and thereby the
set of MT parameters, are unequivocally determined given the
value of joint angle. Given a value of joint torque, then, the
static optimizer will always converge to the same optimum,
making the optimal muscle activation vector unequivocally
related to the set of joint posture and joint angle. As such,
all the parameters in the first two terms can be obtained
from the neuromusculoskeletal model and are constant for
a set of joint torque and posture. Thus, if we define the
quantity τ̃ := −J cos (α)Fmaxf̃P − Jm̄ cos (α)Fmaxf̃Aam̄,
eq. (6) simplifies to:

τ − τ̃ = −Jm cos (α)Fmaxf̃AMmγm (7)

which is a linear equation of the form y = Xβ. Being eq. (7)
in the same form as eq. (5), the vector γm can be estimated
based on measurements of τ and Mm using the same process
described for the MSK estimator.

C. Model-based characterization of the estimators

To investigate the accuracy of our proposed estimator com-
pared to the standard estimation methods, we simulated virtual
calibration experiments, where the quantities Mm and τ are
measured for a given experimental protocol, composed of
N tasks (Fig. 1B, Sec. II-D). Each task is defined as an
isometric contraction, applied at a given joint posture under the
application of a given torque. For each contraction, the MSM
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Fig. 2. Schematic of the transverse section of the forearm. In order: 1.
Brachioradialis, 2. Extensor Carpi Radialis Longus, 3. Extensor Carpi Radialis
Brevis, 4. Pronator Teres, 5. Extensor Digitorum Communis, 6. Abductor
Pollicis Longus, 7. Extensor Digiti Minimi, 8. Extensor Pollicis Longus, 9.
Extensor Carpi Ulnaris, 10. Flexor Digitorum Profundus, 11. Flexor Carpi
Ulnaris, 12. Palmaris Longus, 13. Flexor Carpi Radialis, 14. Flexor Digitorum
Superficialis, 15. Flexor Pollicis Longus

produces simulated values of muscles activity for all muscles
using its standard solver [26], based on the minimization
of the global activation level (GAL=

∑
i a

2
i ). For a given

experimental design, the accuracy of the estimate will largely
depend on the validity of the estimator assumptions and on
the precision of the measurements. We have, then, introduced
several sources of non-ideality in our simulations to quantify
the effect of physiological variability and measurement error
under different experimental conditions on the accuracy of the
estimators.

1) Experimental conditions: An important factor that is
expected to affect the accuracy of the estimation relates to the
way the arm is constrained during the isometric contractions.
In the specific case of the forearm, finger muscles have
moment arm about the wrist, but they are not always accessible
using sEMG (see Fig. 2 and Tab. I). As such, unmeasured
activity from finger muscles could have an effect on calibration
procedures that relate measured activation to wrist joint torque.
Activity from finger muscles can be mediated by proper
experimental design: if the fingers are unconstrained and
subjects are instructed to apply wrist torque without moving
their fingers, we expect that finger muscles activations will be
much lower than if the fingers and palm are all constrained
in a single posture (e.g. using a rigid support for the hand).
In our framework, we implemented the possibility to include
or neglect the contribution of finger muscles when generating
virtual measurements for models that include a different total
number of muscles mtot (factor Ex).

2) Measurement properties: The quality of estimation cru-
cially depends on how measurements of muscle activity are
obtained, which is defined in terms of which muscles are
measured (Me1), and how much noise is included in these
measurements (Me2 and Me3).

We considered the effect of two cascaded sources of noise:
one related to the cross-talk between each muscle and those
surrounding it (Me2), and the other related to measurement

TABLE I
MUSCLE GROUPS IN THE MODEL

Group Muscle Name Abbreviation
Wrist Extensor Carpi Radialis Brevis ECRB

Extensor Carpi Radialis Longus ECRL
Extensor Carpi Ulnaris ECU
Flexor Carpi Radialis FCR
Flexor Carpi Ulnaris FCU

Palm Palmaris Longus PL
Thumb Extensor Pollicis Brevis EPB

Extensor Pollicis Longus EPL
Abductor Pollicis Longus APL

Flexor Pollicis Longus FPL
Finger Extensor Digirotum Communis* EDC

Extensor Indicis Proprius EIP
Extensor Digiti Minimi EDM

Flexor Digitorum Superficialis* FDS
Flexor Digitorum Profundus* FDP

* muscle composed of different segments, one per each
finger: Index (I), Middle (M), Ring (R), Little (L). Since the
model does not describe individual finger motion, a single
muscle including all these segments is considered in this
work.

error at the individual muscle level (Me3). To define levels of
factor Me2, we assumed that the measurement of the activation
for a given muscle is affected by the activity of surrounding
muscles as described by the equation:

M1 = (εCC + I)Mm (8)

where εC is a gain factor, I is the identity matrix, Mm = aγ−1
m

is the measurement corresponding to the true value of acti-
vation a, and C is a cross-correlation matrix that represents
how much the measurement M1 of one muscle is affected
by the activation of all other muscles in the limb. Since no
methods have been proposed to reliably estimate the crosstalk
between all muscles in the limb [27], and since the amount of
crosstalk highly depends on the relative position of the sEMG
electrodes [28], [29] it was not possible to extract the matrix
C purely from experimental data. As such we heuristically
defined its elements based on proximity and relative size
of the pairs of muscles (Fig. 2). To more closely resemble
the experimental observations obtained for the correlation
between two neighboring muscles in the forearm [29], we
have considered the correlation between two proximal muscles
to range between 0.3 and 0.6. For non-adjacent muscles,
we accounted for inter-muscle distance comparing it to a
characteristic length that, for forearm muscles, is equal to 1/8
of the forearm circumference, as shown in a computational
model of propagation of electrical signal in the forearm [30].
As such, we assigned weights of zeros for muscles that were
more than three characteristic lengths apart from each other
and heuristically scaled the weights for muscles that were,
instead, within three characteristic lengths. For proper scaling
of within- and between-muscle errors, the sum of the elements
for each row has unitary magnitude, with zeros in the diagonal
(Tab. II).

As for the measurement error, there are different factors
that concur in determining its magnitude [31] including the
contact impedance [32], the electrode shape and size [33],
and the location of the electrodes relative to the muscle [34].
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TABLE II
MUSCLE CROSS-CORRELATION MATRIX C

ECRB ECRL ECU FCR FCU PL EPL FPL APL FDS FDP EDC EIP EDM
ECRB 0 0.25 0 0 0 0 0 0.1 0.15 0.1 0 0.4 0 0
ECRL 0.5 0 0 0 0 0 0 0.1 0 0 0 0.4 0 0
ECU 0 0 0 0 0 0 0.2 0 0.1 0 0.5 0 0 0.2
FCR 0.1 0.05 0 0 0 0.3 0 0 0 0.55 0 0 0 0
FCU 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
PL 0 0 0 0.3 0.15 0 0 0 0 0.55 0 0 0 0
EPL 0 0 0.2 0 0 0 0 0 0.35 0 0.35 0 0 0.1
FPL 0 0 0 0 0 0 0 0 0.1 0.45 0.45 0 0 0
APL 0.15 0 0 0 0.05 0.15 0.15 0 0 0 0.4 0 0.1
FDS 0.05 0.05 0 0.1 0.2 0.1 0 0.1 0 0 0.4 0 0 0
FDP 0 0 0.1 0 0.25 0 0.1 0 0.1 0.45 0 0 0 0
EDC 0.3 0 0.05 0 0 0 0.05 0 0.4 0 0 0 0 0.2
EIP 0 0 0.2 0 0 0 0 0 0.1 0 0 0.5 0 0.2
EDM 0 0 0.2 0 0 0 0.2 0 0.3 0 0 0.3 0 0

Specifically Piervirgili et al. showed that the level of noise
is highly affected by the treatment of the skin prior to the
application of the electrodes, with the noise level of the “no
treatment” condition that is of the same order of magnitude of
the EMG measured during common activities of daily living.
As such, we considered that the muscle activity has an additive
independent noise, as defined by

M2 = max(M1 + εMM̄, 0) (9)

where M1 is the vector obtained using eq. (8) and M̄ is
the average value of the measurements M, simulated in the
optimal control strategy, across muscles and tasks. The gain
factor εM is a diagonal matrix. Since activation is a positive
quantity, and since EMG is accordingly rectified, we set the
lower bound of the quantity M2 to be 0.

3) Physiological variability: Physiological variability (Ph)
accounts for the intra-subject variability associated with the
selection of the contraction strategy for tasks that require
coordinated muscles activation [35], [36]. We modeled this
variability assuming that, when solving for activation values
compatible with the target joint torque, the virtual subject
selects a suboptimal solution (different from the optimal one),
whose suboptimality level is defined in term of percentage of
additional GAL used to complete the isometric task:∑

a2sub =
∑

a2opt + εAGALopt (10)

where GALopt is the average GALopt across the different
tasks, and εA a gain factor.

D. Sensitivity analysis

We conducted virtual calibration experiments (Fig. 1B)
where muscle activity was simulated under different levels
of the previously described factors to assess the robustness
of the two estimators to changes in experimental conditions,
measurement properties, and physiological variability.

Factor levels were defined as follows (Fig. 3). We
considered two levels of factor Ex, i.e. fingers uncon-
strained/constrained. In the unconstrained mode, we assumed
negligible the activation of finger muscles and their passive
forces. In the constrained mode, instead, the full model (in-
cluding forearm, hand, fingers muscles) was considered. Also

for the factor Me1 we considered two different levels: the
first level corresponding to the case where measurements are
available only from the five main wrist muscles (MeasWrist),
i.e. ECRL, ECRB, ECU, FCR, FCU, and the second level
corresponding to the case where measurements are available
from all muscles included in the model (MeasAll).

Values of factors representing a continuous source of
noise/variability (i.e. Me2, Me3, Ph) were, then, selected from
uniform distributions, εC ∈ [0, εCmax], εMi,i ∈ [−εMmax, ε

M
max],

εA ∈ [0, εAmax], with a different value selected for each
contraction. For all three factors, five levels of ε•max were
considered (ε•max = [0 0.1 0.25 0.5 1]).

This analysis resulted in a full factorial experimen-
tal design (5x5x5x2x2) composed of 500 combinations
(Fig. 3). For each combination, we simulated N =
25 virtual experiments, each composed of 25 isomet-
ric contractions, applied in five different wrist postures
([θFE , θRUD] ∈ {[−30, 0], [−15, 0], [0, 0], [15, 0], [30, 0]}),
when constant torque was applied along each of the four
cardinal directions (pure wrist FE and wrist RUD torque in
both directions), with unitary magnitude, followed by a rest
condition (zero joint torque). For each contraction, we simu-
lated measurements of muscle activity by assuming γm = 10
for all measured muscles.

For each experiment, we then estimated γ̂m using both MSK
and NMSK, and quantified the accuracy of each estimator as
the bias b̄, defined as the percent error in estimating γm for
the five main wrist muscles, averaged across muscles.

1) Statistical model fit: To establish the relationship be-
tween the factors and the outcome metric b̄, we fit a General
Linear Model (GLM) to the simulated data. Ph, Me2, and
Me3 were modeled as ordinal variables characterized by the
mean value of |ε•| across the 25 contractions. Ex and Me1
are instead modeled as categorical variables. Specifically, Ex
assumed the value of 0 if the fingers joint were constrained
and 1 if they were unconstrained, while Me1 assumed value of
0 if the measurements were available from all muscles and 1
if they were available only from the five main wrist muscles.
Moreover, a third categorical variable E was used to include
the factor ‘estimator’ in the GLM; we assigned the value of 0
to MSK and the value of 1 to NMSK.

To quantify the relationship between estimation bias (b̄),
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Fig. 3. Diagram of the factorial experimental design used for the sensitivity analysis. The columns, delineated by the dashed lines, represent the different
factors included in the analysis. Within each column, the different levels of the factor are displayed. The branching of the design is shown for a representative
combination, denoted by solid arrows crossing the dashed lines. The ‘...’ indicates that all downstream branches are replicated.

measurement error (Me2, Me3), and physiological variabil-
ity (Ph), under all possible experimental and measurement
conditions encoded by categorical variables (E, Ex, Me1),
we created a GLM that included all interactions between
the three categorical variables, as well as the interactions
between all combinations of categorical variables and Me2,
Me3, Ph, separately. This resulted in a model with 32 factors,
which included 3 four-way interaction terms, 10 three-way
interaction terms, 12 two-way interaction terms, in addition
to the linear contribution of the 6 factors and the intercept.
Statistically significant association between the metric b̄ and
each term in the GLM was considered for a type-I error rate
smaller than 0.05.

To allow for visualization and interpretation of effects,
for each significant term, we defined residual bias as the
difference between the simulated bias b̄, and the bias bother
calculated as the bias explained by all terms that do not
include any factor in the significant term (e.g. for the term
E·Me1, we would include in bother the components estimated
by the model that do not include factors E and Me1). This
operation was conducted assuming that all other factors in
the model were at their average level. This allowed to obtain
distributions of residual bias for each combination of factors
included in the significant term (2 for a main effect, 4 for a
two-way interaction, etc.), which could be visually checked
for model fit by comparing the distribution of b̄ − bother
with the corresponding model values, and to identify which
combination of factors contributes to the significance of the
term.

III. RESULTS

The results of the sensitivity analysis are graphically sum-
marized in Fig. 4, where each dot represents the average value
of the metric b̄ obtained for each set of factors in the 25
different repetitions. The GLM fit the simulated data with an
R2 = 0.96. The coefficients estimated for all model terms,
along with the standard error (SE), the test statistics (tStats)
and the level of significance (two-sided tests) are reported in
Tab. III.

TABLE III
RESULTS OF THE GENERAL LINEAL MODEL FITTING

Estimate SE tStats p
Intercept 0.0002 0.0052 0.0452 0.9639
E 0 0.0073 0 1
Ex 0.0033 0.0077 0.4351 0.6635
Me1 0.0297 0.0073 4.0318 <0.001
Ph 0.0014 0.0142 0.1026 0.9183
Me2 0.0002 0.0141 0.0155 0.9876
Me3 0.1052 0.0142 7.3982 <0.001
E ·Me1 -0.0236 0.0104 -2.2718 0.0233
E · Ex 0 0.0109 0 1
E · Ph 0 0.0209 0.0200 1
E · Me2 0 0.0200 0 1
E · Me3 0 0.0201 0 1
Ex · Me1 0.2772 0.0106 25.9370 <0.001
Ex · Ph 0.0680 0.0209 3.2462 0.0012
Ex · Me2 0.2723 0.0210 12.9150 <0.001
Ex · Me3 0.7847 0.0229 34.1810 <0.001
Me1 · Ph 0.0445 0.0200 2.2186 0.0267
Me1 · Me2 -0.0014 0.0200 -0.0696 0.9444
Me1 · Me3 -0.0656 0.0201 -3.2638 0.0011
E · Ex · Me1 -0.2785 0.0151 -18.433 <0.001
E · Ex · Ph 0 0.0296 0 1
E · Ex · Me2 0 0.0298 0 1
E · Ex · Me3 0 0.0324 0 1
E ·Me1 · Ph 0.0181 0.0284 0.6383 0.5234
E ·Me1 · Me2 0.0002 0.0282 0.0061 0.9950
E ·Me1 · Me3 0.0158 0.0284 0.5581 0.5769
Ex · Me1 · Ph 0.0053 0.0290 0.1833 0.8545
Ex · Me1 · Me2 -0.0644 0.0292 -2.2044 0.0277
Ex · Me1 · Me3 -0.8526 0.0305 -27.9280 <0.001
E · Ex · Me1 · Ph -0.0399 0.0411 -0.9692 0.8545
E · Ex · Me1 · Me2 0.0219 0.0412 0.5306 0.5957
E · Ex · Me1 · Me3 0.3096 0.0431 7.1730 <0.001

Model fit identified a significant main effect of only two of
the six factors, Me1 and Me3 (p <0.001 for both) (Fig. 5).
Specifically, the bias explained by only factor Me1, when all
other factors were in their average conditions, was significantly
smaller in the MeasAll condition than in the MeasWrist condi-
tion (mean ± 95% confidence interval - 0.11±0.01 MeasAll,
vs. 0.14±0.01 MeasWrist). For Me3, each unit increase in
measurement error εM resulted in an increase in residual bias
of 0.29 when all other factors were in their average conditions.
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Fig. 4. Values of metric b̄ obtained for all levels of all factors. The top three rows include results obtained in presence of finger muscles (Ex=1), while the
bottom three rows report the results obtained in the absence of finger muscles (Ex=0). The first two rows of each of subgroup report bias obtained when
measurements are available from only wrist muscles (Me1 = 1), while the third row reports results obtained when measurements are available from all muscles
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Seven two-way interaction terms had a statistically signif-
icant effect, i.e. E·Me1 (p = 0.0233), Ex·Me1 (p <0.001),
Ex·Ph (p = 0.0012), Ex·Me2 (p <0.001), Ex·Me3 (p <0.001),
Me1·Ph (p = 0.0267), Me1·Me3 (p = 0.0011). Further analysis
of the effects of the two-way interactions is excluded from
this section for the sake of space. All significant effects are
broken down in the interaction plots shown in Fig. 6, when
all other factors are in their average condition.

Model fit identified as statistically significant three three-
way interaction terms, i.e. E·Ex·Me1 (p <0.001), Ex·Me1·Me2
(p = 0.0277), Ex·Me1·Me3 (p <0.001) (Fig. 7), and one four-
way interaction term, E·Ex·Me1·Me3 (p <0.001) (Fig. 8). For
the interaction between E, Ex, and Me1 (Fig. 7, top row), the
NMSK estimator introduced a statistically significant decrease
in estimation bias over the MSK estimator in the MeasWrist
condition (0.05±0.01 MSK vs. 0.03±0.01 NMSK, fingers
passive; and 0.36±0.02 MSK vs. 0.12±0.02 NMSK, fingers
active), but the effect of the estimator was greater when fingers
were active than when fingers were passive (change in bias:

0.02 ± 0.01 fingers passive, vs. 0.24±0.03 fingers active).
As expected, no difference between the two estimators was
observed in the MeasAll condition; in that condition, bias was
greater when fingers were active than when they were passive
(0.2±0.02, fingers active vs. 0.02±0.02, fingers passive).

For the interaction between Me1, Ex, and Me2 (Fig. 7,
middle row), cross-talk introduced no significant effect on
bias when fingers were passive (slope: 0± 0.1 in both cases),
but bias significantly increased in the MeasWrist condition
(bias: 0.02±0.01 MeasWrist vs. 0.03±0.01 MeasAll). Instead,
when fingers were active, a significant effect of cross-talk was
measured in both the MeasAll and the MeasWrist condition
(slope: 0.22±0.08 for MeasWrist vs 0.27±0.09 for MeasAll).
However, no significant difference between the two slopes was
measured. In general, regardless of the value of cross-talk, in
the finger active condition, bias in the MeasWrist condition
was always larger than bias in the MeasAll condition (bias:
0.19±0.01 for MeasAll vs. 0.24±0.01 MeasWrist), as seen in
Fig. 6A, second row and Fig. 7.
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tasks.

For the interaction between Me1, Ex, and Me3 (Fig. 7, bot-
tom row), measurement error was significantly associated with
bias in all cases when fingers were active (0.96±0.11 MeasAll,
and 0.15±0.09 MeasWrist), while a significant association was
measured only in the MeasAll condition when fingers were
passive (slope: 0.1±0.08 MeasAll, 0.5±0.09 MeasWrist). The
association between measurement error and bias was signifi-
cantly modulated by factor Me1: in the MeasAll condition, the
slope was greater than in the MeastWrist condition (p < 0.05).

Lastly, for the three four-way interactions (Fig. 8), es-
timation bias obtained with the NMSK estimator was not
significantly different from the one obtained with the MSK
estimator in the absence of finger muscles, and in the MeasAll
condition when fingers are present. This was expected because
of the presence of a significant effect of E only in the
fingers active, MeasWrist condition. In this condition, further
breakdown of the three-way interaction by variability/noise
source showed that the three-way interaction is significant
because of a different effect of Me3, whereby the slope
between measurement error and bias is greater in the NMSK
estimator than in the MSK estimator, in the finger active,
MeasWrist condition (slope: 0.32±0.13 NMSK vs. -0.03±0.13
MSK). For physiological variability, instead, the slope between
these variables and bias did not change significantly between
estimators in the finger active, MeasWrist condition (slope:
0.10±0.12 NMSK vs. 0.12±0.12 MSK). Most notably, the
effect of Ph on bias was not significant for neither estimator
at the selected significance level. For cross-talk, instead, a
signifiant association with bias was observed for both estima-
tors (slope: 0.25±0.12 NMSK vs. 0.22±0.1 MSK), while no
significant difference in slope between estimators was detected
at the selected significance level.

IV. DISCUSSION

In this study, we proposed a novel neuromusculoskeletal
(NMSK) estimator that combines a standard forward dynamics
estimation approach with a neural model that determines the
activation of unmeasured muscles, using an optimization-
based redundancy solver. We hypothesized that this novel
estimator would be able to estimate individual muscle force
with greater accuracy compared to a standard musculoskeletal
(MSK) estimator, when measurements of muscle activity are
not available for all muscles.

To test our hypothesis, we ran a sensitivity analysis to
quantify the effect of a set of experimental, physiological,
and measurement conditions on the accuracy of muscle force
estimation, both for our NMSK estimator and for the MSK es-
timator. To this goal, we developed a computational framework
capable of simulating virtual measurements of muscle activity
under a variety of experimental conditions, physiological vari-
ability and measurement error. Then, by fitting the estimation
error to a general linear model, we established the association
between different experimental factors and the estimation bias
that characterize each estimator.

Overall, our statistical analysis demonstrated that the MSK
estimator, used in standard procedures to study control of the
wrist degrees of freedom [11], [29], produces biased estimates
of individual muscle force in presence of activity of finger
muscles. However, when measurements are available from
only the five main wrist muscles, the estimation bias obtained
with the NMSK estimator is significantly smaller than the
one obtained with the MSK estimator. Our statistical analysis
further demonstrated that the effect of cross-talk on bias is
greater when fingers are active compared to when fingers are
passive, for either estimator. Moreover, measurement error has
a greater effect on bias when fingers are active compared
to when fingers are passive, but the effect is greater when
measurements are obtained from all muscles. Finally, while
our NMSK estimator is heavily model-based, the lack of a
significantly different association between physiological vari-
ability and bias (in all conditions) provides an indication of the
robustness of the NMSK estimator with respect of violations
of its assumptions in the identification of the optimal solution
to muscle redundancy. A more detailed discussion of our main
findings is reported below.

A. Effect of estimator

Our analysis did not detect a main effect of factor estimator
(E). In fact, estimator type has a significant effect on bias only
under one condition: when measurements are taken only from
wrist muscles (MeasWrist) (Fig 7, see also Fig. SM1). This
was expected, because when measurements are available from
all muscles (MeasAll), the MSK and NMSK estimators are
identical. In the MeasWrist condition, the NMSK estimator
produced a statistically significant decrease (p <0.05) in the
amount of estimation error in 122 of the 125 simulation
conditions when the finger muscles were considered active,
and in all 125 conditions, when the finger were passive (Fig.
SM1). Overall, in average noise condition the NMSK estimator
reduces estimation bias over the MSK estimator (change in
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Fig. 6. Graphical representation of the statistically significant two-way interaction terms. In the top two rows the diamonds and the lines represents the model
estimates, while the simulated data reported in term of error bars or scattered dots. All plots are obtained in the average condition of noise for the unreported
variables. Columns A and B report the statistically significant two-interaction terms that involve the factors Me1 and Ex, respectively.

bias: 2±1% for finger passive, 24±3%for fingers active in
the average noise conditions). The greater effect seen in the
active condition is justified by the fact that in the fingers
active condition, the set of unmeasured muscles is composed
by n =10 muscles, while in the passive condition there is only
one unmeasured muscle (i.e. PL).

A second effect of factor estimator was observed in the
difference in slope of the relationship between measurement
error and bias measured in the finger active, MeasWrist
condition for the two estimators (slope: 32±13% NMSK vs
-3±13% MSK). While this result indicates that the NMSK
estimator is more sensitive to measurement error than the
MSK estimator, the bias obtained using the NMSK estimator
is smaller than the one obtained using the MSK estimator for
all values of measurement error in the considered range.

Notably, no interaction between estimator and physiological
variability was detected. As such, physiological variability
is not significantly associated with bias for either estimator
(slope: 10%±12%for NMSK vs. MSK 12%±12%). While
this effect was expected for the MSK estimator, this was
unexpected for the NMSK since this estimator is based on

a neural model of muscle activation, and physiological vari-
ability effectively quantifies the distance between the assumed
model and experimental conditions. The lack of a significant
difference between the slopes associated with the two esti-
mators indicates that the NMSK estimator does not provide
a worse estimation compared to the standard MSK estimator
even under strong violations of the validity of the assumed
neural model. This observation provides an indication of the
robustness of the NMSK estimator to changes in muscle co-
contraction strategy. This observation is justified by the fact
that also the assumption under the MSK estimator is an im-
plicit neural model, i.e. that all muscles that are not measurable
are inactive. This is a possibly inefficient solution to the
muscle redundancy problem. Our analysis demonstrates that
a model-based estimator that is based on a largely inaccurate
neural model outperforms the standard MSK estimator based
on such an implicit neural model.

B. Effect of number of measured muscles
Our analysis detected a main effect of the number of mea-

sured muscles (Me1). Unsurprisingly, estimation performed
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using the complete set of muscles yielded a smaller bias
compared to the one performed based on a restricted set of
muscles (bias: 11%±1 MeasAll vs. 14%±1 for MeasWrist).

Factor Me1 showed a significant interaction with cross-talk
and experimental condition (Fig. 7, middle row). Specifically,
the interaction showed that bias is associated with cross-
talk only if the finger muscles are in the active condition.
While this result certainly depends on the choice of the cross-
correlation matrix C, it confirms previous analyses [28], [29]
that suggested how the presence of finger muscles could
introduce significant cross-talk in sEMG calibration studies
from the forearm.

Factor Me1 showed a significant interaction with mea-
surement error and experimental condition (Fig. 7, bottom
row). Specifically, the interaction showed that bias is only
associated with measurement error if the finger muscles are
active. Interestingly, in this condition model fit lines intersect,
indicating that, in presence of high levels of measurement
error, the estimation error is lower when measurements are
available from a reduced set of muscles compared to when
measurements are available from the complete set of muscles.
We believe that this effect is attributable to the fact that in
presence of extremely high measurement error, the values
of activation estimated by the neural model become more
accurate than the ones obtained with the measurements. As
a consequence, the MeasAll condition is characterized by a
greater variability compared to the MeasWrist one, leading to
a greater estimation error.

C. Limitations

Some limitations of this study should be considered regard-
ing the selection of the parameters in the sensitivity analysis
and applicability of our novel neuromusculoskeletal estimator
to real experimental protocol. Ranges for the parameters that
define the non-idealities included in the sensitivity analysis–i.e.
measurement error, cross-talk, and physiological variability–
have been identified via analysis of the literature. Unfortu-
nately, the exact value of each of these parameters could not
be retrieved, since that would require the use of gold-standard
measurement methodologies to obtain the true value of muscle
force or activation for all muscles. However, using controlled
experimental conditions previous studies have quantified the
effect of the different noise sources in a way that they are
directly relevant for our analysis [28]–[36]. While it would
not be possible to quantify the accuracy of muscle force
estimators using purely experimental data, this simulation
study serves as a preliminary validation tool to investigate the
robustness of the estimators to variation of the noise levels in
the experimental data.

As for the applicability of our novel estimator to quantify
individual muscle force during real experimental data acquisi-
tion, additional work needs to be done to implement subject-
specific scaling of the MSM to subject’s anthropometry. [37],
[38]. This procedure is required for all model-based estimators
[13] and it is necessary due to te fact that the musculoskeletal
model, used to determine the parameters of the MT units,
represents the anthropometry of an average healthy individual.

Finally, while at the current state the proposed estimator can
only be employed to estimate muscle forces during isometric
tasks, this estimator can be extended to work also during dy-
namic tasks with some modifications. Specifically, an inverse
dynamic algorithm should be included in the ’redundancy
solver’ block of the estimator (Fig. 1A) to determine the
optimal time-varying muscle activation patterns that, for the
measured torque and position, minimize GAL while maintain-
ing continuity and smoothness constraints [26]. Moreover, eq.
(1) needs to be modified to model force-velocity dependence
that characterize musculotendon dynamics [13], [25]. The
presented calibration protocol can then be extended to dynamic
conditions to estimate the muscle-specific parameter γ.

V. CONCLUSION

Our analysis shows that estimating the forces applied by
the forearm muscles during isometric tasks that involve the
wrist joint can be challenging. In fact, by relying only on
the EMG measurements obtained from the five main wrist
muscles (i.e. MSK estimator), highly biased estimates of
individual muscle force are obtained when fingers are active
(average bias of 36±2%). Even though leaving the fingers
unconstrained decreases estimation bias, this procedure is not
always practically possible and it still requires to train subjects
to not activate finger muscles during data collection. Instead,
the integration in the estimator of a neural model of the
optimal muscle co-contraction strategy (i.e. NMSK estimator)
reduces the estimation bias by about 25% of the true value.
Moreover, even when the validity of the neural model used for
the NMSK estimator is compromised, the NMSK estimator
still outperforms the MSK estimator.
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Fig. SM1. Values of metric b̄ obtained for the NMSK estimator (in blue) and the MSK estimator (in black) when measurements are available only from
the wrist muscles (MeasWrist) and for all levels of other factors. The top five rows include results obtained in presence of finger muscles (Ex=1), while the
bottom five rows report the results obtained in the absence of finger muscles (Ex=0). In each subgroup rows encode levels of factor Me2 (cross-talk), columns
encode levels of factor Me3 (measurement error), while the x-axis of each plot encodes levels of factor Ph (physiological variability). Asterisks are included
in each condition if mean of the metric b̄ obtained for the NMSK estimator was significantly lower than the one obtained for the MSK estimator. Significance
level was set to be at 0.05 type I error rate.


