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Abstract— Combining functional magnetic resonance imag-
ing (fMRI) with models of neuromotor adaptation is useful for
identifying the function of different neuromotor control centers
in the brain. Current models of neuromotor adaptation to
force perturbations have been studied primarily in whole-arm
reaching tasks that are ill-suited for MRI. We have previously
developed the MR-SoftWrist, an fMRI-compatible wrist robot,
to study motor control during wrist adaptation. Because the
wrist joint has intrinsic dynamics dominated by stiffness, it is
unclear if these models will apply to the wrist.

Here, we characterize adaptation of the wrist to lateral forces
to determine if established adaptation models are valid for
wrist pointing. We recruited thirteen subjects to perform our
task using the MR-SoftWrist. Our task included a clockwise
(CW) – counterclockwise (CC) – error clamp schedule and
an alternating CW-CC force field schedule. To determine
applicability of previous models, we fit three candidate models
— a single-state, two-state, and context dependent multi-state
model — to behavioral data.

Our results indicate that features of sensorimotor adaptation
reported in the literature are present in the wrist, including
spontaneous recovery, and anterograde and retrograde inter-
ference between the learning of two oppositely directed force
fields. A two-state model best fit our behavioral data. Under
this model, adaptation was dominated by a fast learning state
with minor engagement of a slow learning state. Finally, all
adaptation models tested showed a consistent over-estimation
of performance error, suggesting that the control of the wrist
relies not only on internal models but likely other mechanisms,
like impedance control, to reject perturbations.

I. INTRODUCTION

Robot-mediated neurorehabilitation (RMN) uses robots as
tools to retrain upper extremity motor control in chronic
stroke patients. Currently, patient outcomes following RMN
are no better than those seen in traditional therapy [1]. To
advance RMN, the neurological basis for motor learning
using such robotic devices needs to be better understood.

Whole-brain techniques such as functional magnetic res-
onance imaging (fMRI) are well suited to study the dis-
tributed brain regions involved in motor function and learning
[2], [3]. Our group has developed the MR-SoftWrist, an
fMRI-compatible 3 degree of freedom (DOF) wrist robot,
to study neuromotor control in robot-assisted sensorimotor
tasks involving the wrist joint via fMRI [4], [5]. To identify
brain regions responsible for specific neuromotor control
mechanisms, we plan to combine models of sensorimotor
adaptation with fMRI measures of neural activity.

Previous studies show that the brain controls movement
in a feed-forward manner based on an internal model of
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the required task dynamics. When movements based on this
model result in movement error, the error is used to update
the internal model to generate corrected motor commands
for the next movement [2], [3]. Numerous computational
models have been proposed to describe how the brain updates
and selects these internal models, including single-state, two-
state, and multi-state models [6], [7]. These models have
been proposed to describe behavior in upper extremity tasks
involving the shoulder and elbow under force fields [6], [8]–
[10], and in visuomotor distortion tasks involving distal joints
such as the wrist and fingers [7], [11], [12]. In these studies,
the quantitative features of the modeled behavior varied with
the dynamics of the task performed. Moreover, as the wrist
has intrinsic dynamics dominated by stiffness, control of
wrist may rely on different mechanisms than control of the
shoulder and elbow [13], [14]. As such, we cannot assume
that previously proposed models will apply to dynamic wrist
pointing tasks.

To use models of adaptation to identify neural mechanisms
of motor control, we first need to determine if current models
of neuromotor control apply to the wrist. The validity of
different models can be tested using specific task sequences
capable of eliciting distinguishable behavior. An A-B-EC
task design, in which subjects adapt to an initial perturbation
(A), followed by brief exposure to an oppositely directed
perturbation (B), before having their errors clamped to zero
(EC), can elicit spontaneous recovery, a rebound of behavior
that reflects adaptation to the first perturbation (A) [6], [9].
Importantly, this behavior is only predicted by models with
more than one state that can account for savings of the initial
adaptation that drive the apparent “spontaneous recovery”.
An alternating A-B task design, in which two opposite
perturbations are presented in an alternating schedule, can
elicit interference or dual adaptation behaviors [7], [10], [15].
Interference can be described by a two-state model, with
one fast and one slow state, while dual adaptation is best
described by a multi-state model with a single fast state and
multiple context dependent slow states.

To our knowledge, we are the first group to study adap-
tation of the wrist in two DOFs to lateral force fields
[3]. To characterize the adaptive behavior of the wrist, we
recruited subjects to perform an A-B-EC task followed by
an alternating A-B task. We fit a single-state, two-state and
multi-state model to measured behavior to determine which
model, if any, best characterize adaptation of the wrist to
lateral force fields. The A-B-EC task schedule was used to
test for spontaneous recovery, and the A-B task was used to
test for the presence of interference and/or dual adaptation.



II. MATERIALS AND METHODS

A. Subjects

Thirteen subjects (8 male, aged 22-29) gave their informed
consent to participate in our study (IRBNet ID:906215-7).
Subjects performed the task with their dominant hand (3 left,
10 right). We excluded one subject (M, left) for performing
>50% of trials too slowly (>500 ms), and one (M, right)
due to hardware failure.

B. MR-SoftWrist

Our wrist pointing task was performed using the MR-
SoftWrist (Fig. 1, top). Subjects held the handle of the MR-
SoftWrist to move a cursor displayed on a monitor. Flexion-
extension (FE) of the wrist moved the cursor horizontally,
while radial-ulnar deviation (RUD) moved the cursor ver-
tically. Pronation-supination was prevented by a forearm
support. Subjects were cued to make alternating FE rotations
to move a cursor in a straight line to one of two targets
located at (±10, 0) degrees in FE, RUD respectively. Trial
onset was cued by a change in target color from black to
blue. At trial completion the reached target provided timing
feedback by turning red if movement duration was > 450 ms
or green if it was < 250 ms. Otherwise it remained black.

The robot acted in three operational conditions during
task performance; i) A no force condition, in which the
robot acts transparently to measure baseline performance
with minimal interaction forces (Fig.1, bottom left). ii) A
velocity-dependent force field condition, in which the robot
applies forces lateral to the direction of movement [2], [16].[
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Fig. 1. Top: MR-SoftWrist during task performance. [1] Visual display [2]
MR-SoftWrist [3] Forearm support. Bottom: Task force conditions

In eq. 1, θ̇ is the measured angular velocity of the wrist
(deg/s), while τ corresponds to the robot applied torques
about the wrist joint, shown in Fig.1, bottom right. Clockwise
and counter-clockwise force fields were achieved with α =
±250 mNms/deg, respectively. Finally, iii) An error-clamp
condition, in which the robot produces a force channel that
clamps trajectory error to zero, was used to measure subjects
lateral force profiles that reflect their expectation of required
task dynamics. Due to inherent compliance of our robot the
effective error clamp channel width was ± 0.5 degrees.

C. Task Design

To characterize adaptive behavior, an adaptation task needs
to 1) guarantee identifiability of all parameters in a given
model; and 2) be designed so that expected behavior from
each candidate model is maximally different to enable iden-
tification of the most plausible model from the measured
data.

To achieve both goals, we used an A-B-EC task and
an alternating A-B force field task. The A-B-EC task can
elicit spontaneous recovery, behavior that both the two-state
and multi-state model, but not the single-state model, can
adequately describe. The alternating A-B task can elicit
either dual adaptation behavior where subjects adapt to both
force fields simultaneously, or interference where learning
of one force field interferes with learning of the other. Dual
adaptation is best described by a multi-state model with
context-dependent slow states, while interference between
the two force fields is better predicted by a two-state model.

Our task is shown in Fig. 2. In part 1 subjects performed
wrist pointing in a no force condition; in part 2 subjects
performed the A-B-EC task; in part 3 they performed the
alternating A-B task. EC trials were dispersed throughout
with a 1/8 frequency in a psuedorandom manner that ensured
trials were > 4 and < 12 trials apart, except for the N3 and
N4 blocks of the A-B-EC task [6]. No visual or auditory cue
was given for subjects to distinguish between force field type.
Instead, contextual switching was assumed to occur after
exposure to error on the first trial of a any condition [7]. A
break was given between parts 1, 2, and 3 to reduce fatigue,
during which subjects remained in the forearm support and
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did not change physical orientation. To reduce environmental
distractions, subjects wore noise canceling headphones that
played white noise during each task.

D. Models of Motor Adaptation

Motor adaptation, an error driven learning process that
enables adjustment of movement to new demands, is an
important mechanism used by the central nervous system
(CNS) to control movement [2]. The CNS controls move-
ment, in part, in a feed-forward manner based on an internal
model of expected limb and environmental dynamics. The
CNS updates its internal model in response to changes in
task dynamics through error feedback; movement based on
the internal model that results in error is used to re-calibrate
the internal model and change subsequent motor output.

Adaptation to force perturbations has been extensively
studied during reaching using lateral force fields, and in 1
DOF tasks in the wrist using assistive and resistive force
fields [3], [6], [9], [10]. To our knowledge, no other group has
studied adaptation of the wrist in 2 DOFs using lateral force
fields. Therefore, we aim to determine if existing models of
dynamic adaptation appropriately characterize behavior of
the wrist. We have chosen three candidate models. The first
is a single state model, that is the simplest model capable of
describing salient features of adaptation.

e(n) = f(n)− x(n) (2)

x(n+ 1) = Ax(n) +Be(n) (3)

In this model, performance error e(n) is modeled as the dif-
ference between the applied force field f(n) and the subject’s
motor output x(n) (eq. 2). Here, x(n) represents the internal
model on trial n, that is combined with performance error
e(n) to determine control of the next movement x(n + 1)
(eq. 3). A is a constant that represents the retention of the
previous state (i.e. how much the current state contributes to
the next state), while B represents sensitivity to error (i.e.
how much performance error will update the next state). Both
model parameters are constrained between (0, 1).

The second model is a two-state model proposed by Smith
et al [6].

x(n) = xf (n) + xs(n) (4)

xf (n+ 1) = Afxf (n) +Bfe(n) (5)

xs(n+ 1) = Asxs(n) +Bse(n) (6)

In this model, (eq. 2) is complemented with eqs. (4-6).
The internal model state x(n) is the sum of two states (eq.
4), a fast learning state xf and a slow learning state xs. The
fast (eq. 5) and slow (eq. 6) states are updated on every trial
by performance error e(n) in proportion to their retention
(Af , and As) and update parameters (Bf and Bs). For these
parameters, Af < As and Bf > Bs, as the slow state retains
more from trial to trial and is less sensitive to error than the
fast state. All parameters are constrained between (0, 1).

The third model we tested is a context-dependent multi-
state model proposed by Lee et al [7].

xs(n+ 1) = Asxs(n) +Bse(n)·c(n) (7)

In this model, (eq. 6) of the two-state model is substituted
with equation 7. Here, the slow learning state is context
dependent and has N inner states equal to the number of
dynamic conditions included in the task. Each inner slow
state is updated by performance error e(n) only in its corre-
sponding task condition, and is engaged by the contextual
cue, c(n) (eq. 7). For our task, there are N = 2 inner
states, corresponding the clockwise and counter-clockwise
force fields (Fig. 2). We assume that slow states are switched
by c(n) after error experienced in the first trial of a given
perturbation condition. Parameters are related as Af < As

and Bf > Bs and constrained between (0,1).

E. Behavioral Analysis

In force field adaptation, the internal model, x(n), can
be estimated from two measurements: Trajectory error (TE)
measured on non-EC trials, or adaptation index (AI) mea-
sured on EC trials spread intermittently throughout the task.

TE was taken as the maximal perpendicular deviation from
the straight line connecting the start and end targets in the
first 150 ms after velocity onset (Fig. 3), normalized by initial
TE measured in the first perturbation trial (n=101). Velocity
onset was defined as the first instant that goal-directed
velocity exceeded 10% of the subject’s median maximum
velocity across all trials. In this way, TE is measured with
limited interference from online error correction processes
and most directly reflects the feed-forward commands based
on the current state of the internal model [17].

AI is measured during error clamp trials, in which lateral
trajectory errors are ‘clamped’ to 0 such that x(n) = f(n)
(eq. 2). In this condition, the robot measures the lateral
force profile produced by the subject f(n), which reflects
the subject’s expectation of required task dynamics. To
produce a normalized measure of x(n), AI was determined
by regression of the measured force profile onto the ideal
force profile necessary to counteract the perturbation, from
velocity onset to 150 ms after (Fig. 3) [6], [17]. In this way
AI estimation of the internal model is free from online error
corrections. Because subjects can reduce trajectory errors due
to muscle stiffening and not internal model formation, all
measures of adaptation were based on our measures of AI.
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To test for spontaneous recovery, we took the mean AI
measured for each subject in the EC block of the A-B-EC
task, and used a Wilcoxon signed rank test to determine if
the median AI measured across subjects was significantly
different from zero. To test for the presence of interference or
dual adaptation we performed two tests. In the first test, we
used a Kruskal-Wallis test to compare the mean AI measured
for each subject in the last 8 CW trials of the first alternating
force field block (trials 349-356) to the mean AI measured
in the last 8 CW trials of the last alternating force field block
(trials 541-548). A decrease in AI would indicate retrograde
interference, in which learning of the CC force field reduces
retention of the CW force field, while an increase in AI
would indicate dual adaptation. In the second test, we used
a Kruskal-Wallis test to compare AI achieved after exposure
to 160 trials of each force field, comparing the mean AI
measured in CW trials 253-260 with the mean AI measured
in CC trials 573-580 for each subject. CW AI greater than
CC would be indicative of anterograde interference, in which
prior learning of the CW force field reduces learning of
the CC, while no difference would be indicative of dual
adaptation.

F. Model Fitting

We used group data for model fitting, calculated as the
average AI measured across all subjects, excluding trials
with inappropriate trial duration or reversals in goal-directed
trajectories (<2% of trials). For each candidate model, model
parameters were estimated by fitting group averaged AI data
across the whole task. We also performed a cross-validation
analysis to determine how well model parameters estimated
from data measured in parts 1 and 2 explained behavior
measured in part 3 of the task.

We used the MATLAB fmincon function to estimate the
parameters A and B (single-state) and Af , As, Bf , and Bs

(two-state and multi-state) that minimized the mean squared
error between the measured average AI and model predic-
tions of x(n). To prevent our results from being subject to
local minima, we seeded fmincon with 500 unique initial pa-
rameter combinations generated from parameter distributions
reported in the literature. The range of initial parameters used
were as follows: µA/Af = µ=0.7518, [0.1289, 0.9973]; µAs =
0.9938, [0.9816, 0.9999]; µB/Bf= 0.2461, [0.0067, 0.5757];
µBs = 0.1021, [0.0022, 0.4129]. From these 500 parameter
estimations, the parameter estimates with the minimum mean
squared error were selected.

To evaluate goodness of fit, we calculated the R2 value
between model estimates of TE and AI for each candidate
model. To determine if the candidate models captured ex-
pected behavioral phenomena, we examined the residuals
in specific experimental phases. We defined 9 phases of
interest: one for the NF task, three in the A-B-EC task that
corresponded to the CW, CC and EC trials, and five in the A-
B task that correspond to the 5 repeated CW-CC alternations,
denoted as A1-A5 (Fig.2, bottom). We used a Wilcoxon
signed rank test to determine if the median residuals in any
phase were significantly different from zero, indicative of
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model estimation bias. To evaluate model performance in
the cross-validation analysis, we used a Kruskal-Wallis test
to compare the median squared residuals measured within
the 5 unfit blocks (A1-A5) of the alternating A-B task
to determine if estimation error was significantly different
between candidate models. We used a Bonferonni correction
to correct for multiple comparisons, so that significance was
set at p < 0.0021 for the whole task analysis and p < 0.0033
for the cross-validation analysis.

III. RESULTS

A. Behavioral Results

The Wilcoxon signed rank test showed that AI measured
in the EC block of the A-B-EC task (median ± s.e.m.: 0.09
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± 0.02) was significantly greater than zero (p < 0.001),
consistent with spontaneous recovery, as positive AI reflects
savings of the initial adaptation to the CW force field. In the
alternating force field task, AI measured in trials 349-356 of
the first CW block was significantly greater than AI measured
in trials 541-548 of the final CW block (0.18 ± 0.05 and 0.06
± 0.03 respectively, p = 0.039), consistent with retrograde
interference. The magnitude of AI measured in CW trials
253-260 of the A-B-EC task was significantly greater than
AI measured in CC trials 573-580 of the alternating A-B
task (0.43 ± 0.05 and -0.20 ± 0.07 respectively, p = 0.028),
consistent with anterograde interference.

B. Model Comparisons

Model fits to the measured data are shown in Fig. 4.
For the whole task, parameter estimates for the single state
model were A = 0.9709; B = 0.0154, and the model fit the
combined TE and AI data with an R2 = 0.901. For the two-
state model, parameter estimates were Af = 0.9194; As =
0.9987; Bf = 0.0265; Bs = 0.0016, with an R2 = 0.916.
For the multi-state model, parameter estimates were Af =
0.9705; As = 1.000; Bf = 0.0124; Bs = 0.0008, with an
R2 = 0.898.

In the cross validation analysis, parameter estimates for the
single state model were A = 0.9768; B = 0.0139, with an
R2 = 0.904. For the two-state model, parameter estimates
were Af = 0.9231; As = 0.9915; Bf = 0.0223; Bs =
0.0035, with an R2 = 0.913. Finally, for the multi-state
model parameter estimates were Af = 0.9452; As = 0.9991;
Bf = 0.0183; Bs = 0.0019 with an R2 = 0.879.

Residuals for each model fit to the whole task are shown
in Fig. 6, left. For the single-state model, AI estimation
bias in the EC and A2 blocks reached significance, as did
TE estimation bias in the CW, CC and A1-A2 blocks. For
the two-state model, AI estimation bias in the EC block
and TE estimation bias in the CW and A1 blocks reached

significance. For the multi-state model, AI estimation in the
EC and A2 blocks and TE estimation in the CW, CC and
A1 blocks reached significance.

The squared residuals for our cross validation analysis are
shown in Fig. 6, right. Model estimates derived from the first
half of the task explained behavior in the second half with
a m.s.e. below 0.05 for all models. The two-state model had
the smallest error across all task blocks, and the multi-state
model had significantly larger error compared to the single
and two-state models in blocks A4 and A5 for TE.

IV. DISCUSSION

Our analysis of AI in the alternating A-B task provided
evidence for interference, but not for dual adaptation. The
significant decrease in CW AI measured over the alternating
A-B task is consistent with retrograde interference, in that
learning of the CC force field reduced retention of adaptation
to the CW force field [6]. The significantly smaller magni-
tude of CC AI compared to CW AI measured after the same
number of trials is consistent with anterograde interference,
in that learning of the CW force field reduced learning of
the CC force field. Neither result is consistent with dual
adaptation, in which AI to both CW and CC force fields
should remain the same or increase with additional training.

Analysis of AI in our A-B-EC task showed significant
spontaneous recovery that is consistent with results reported
in the reaching literature. While our single state model was
able to capture the presence of after effects in the error
clamp block, the model predicts a decay in AI across the
EC block rather than the increase in AI seen over the course
of the EC block (Fig. 4 and 5). This misestimation resulted
in significant bias in AI residuals fit in the EC block in the
single-state model that a post-hoc Kruskal-Wallis test showed
was significantly greater than the other two candidate models
(Fig. 6, top left).

The multi-state model had the worst R2 fit in both analyses
and the greatest change in parameter estimates between anal-
yses. In the model fit to the whole task, the estimated slow
state parameters were As =1.000; Bs =0.0008. Because
each learning state starts at 0, these parameters result in
almost negligible contribution of the slow state, eliminating
any benefit of context dependent slow states in describing the
adaptive behavior. In fact, comparison between the single-
state and the multi-state model can be seen to be roughly
equivalent in Fig. 5, right. In the cross-validation analysis,
the slow state parameters became As =0.9413; Bs =0.0024.
The resulting increase in contribution of the context de-
pendent slow states decreased the overall model fit in the
alternating task schedule, seen both by the decrease in R2

and significantly greater squared residual error. These results
suggest that the multi-state model is less robust to describing
adaptive behavior of the wrist under multiple task schedules,
and particularly struggles to model the interference observed
in the alternating A-B task.

The model with the highest R2 value in both the whole
task estimation and in the cross validation experiment was
the two-state model. Moreover, this model had the least



estimation biases for both the AI and TE estimates. The
adaptive behavior of the wrist characterized by this model
differs from behavior of the whole arm and elbow in a few
important ways. The two-state model fit to our data suggests
that adaptation of the wrist is dominated by the fast learning
state, with less contribution from the slow learning state than
has previously been reported [6], [7]. Typically, by the end
of 100 trials, the internal model is dominated by the slow
state while the fast state decreases towards zero. Instead,
in our task the two states can see to be roughly equivalent
by the end of 180 trials (Fig. 5, left). Additionally, the end
magnitude of adaptation seen in the wrist is less than that
observed in reaching. Although subjects performed 180 trials
in the CW force field in the A-B-EC task, the average peak
adaptation index was just 0.40. In other adaptation tasks,
adaptation index is reported as reaching between 0.5-0.7 after
just 125 trials [6], [7], [9], [10].

Finally, all models (fit only to adaptation index) predicted
larger trajectory errors than were actually measured. This
may be due to the control strategy implemented by the
CNS to counteract the perturbations. While it is theoretically
possible for the CNS to counteract perturbations using purely
a feed-forward internal model, it is also possible to reject
perturbations through joint stiffening using an impedance
control strategy. The CNS has been shown to increase joint
stiffness in response to unstable force fields in wrist pointing
[3], [17]. While the force fields used in this study were
learnable, it is possible such learning is not worth the effort
for the low amplitude movements of our task when joint
stiffening rejects perturbations to a ”tolerable” magnitude.

Whether the results measured here reflect the true charac-
teristic of the wrist or are specific to our robotic exoskeleton
remains to be proven. In order to achieve MR-compatibility,
certain design constraints have increased the compliance of
our robot and reduced its ability to produce perfect error
clamp conditions. In future work, we plan to perform the
same tasks using a higher powered, less compliant wrist
robot, the UDiffWrist [18], to confirm that differences in
adaptive behavior of the wrist are not unduly influenced by
measurement limitations in our MR-compatible system.

V. CONCLUSION

In our study, we collected data from thirteen subjects
performing a wrist pointing task using our wrist robot, the
MR-SoftWrist, to characterize adaptation of the wrist to
lateral force perturbations. Our task included an A-B-EC
force field schedule that elicited spontaneous recovery, and
an alternating A-B force field schedule that showed evidence
of interference between the two oppositely directed force
fields. A two-state model of adaptation best fit behavioral
data across both task schedules, and showed that the adap-
tation process is largely dominated by the fast learning state
with lesser engagement of the slow-learning state. Behavioral
data provide evidence that the CNS uses internal models
to control wrist movements under lateral perturbations, in
conjunction with other perturbation rejection strategies.
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