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Abstract— We developed a novel fMRI-compatible wrist
robot, the MR-SoftWrist, to study the neural processes that
underlie dynamic adaptation. Here we present our first study on
thirty-four healthy young adults. Our results validate the MR-
SoftWrist as a tool for investigating dynamic adaptation of the
wrist during fMRI, and establish the behavioral characteristics
and neural activations associated with active motor control and
off-line neural processing of dynamic adaptation.

I. INTRODUCTION

Adaptation is a common framework used to study motor
learning in the laboratory setting [1]. Adaptation refers to
the error-driven process of adjusting ones motor actions to
changes in task dynamics. Following adaptation, behavioral
evidence suggests that adapted motor plans are consolidated
into motor memories that contribute to faster relearning on
re-exposure to the same dynamic condition.

Adaptation has been studied using visuomotor distortions
in 2-degree of freedom (DOF) wrist pointing tasks, and
using dynamic perturbations in whole arm reaching tasks,
but not in the context of dynamic perturbations in 2-DOF
wrist pointing. Moreover, due to restrictions imposed by
fMRI compatibility, few previous studies have investigated
the neural correlates of dynamic adaptation, and those that
did used large-movement amplitude tasks that can cause
confounds in the fMRI data [2].

To use fMRI to measure the neural correlates of dynamic
adaptation, our group has developed an fMRI-compatible
robot, the MR-SoftWrist, to apply dynamic perturbations
during low-movement amplitude wrist pointing tasks. Here,
we present the results of our first fMRI study on thirty-four
healthy young adults. Our results establish the behavioral
characteristics of dynamic adaptation of the wrist to a 2-DOF
curl-force field, and the neural correlates of active dynamic
adaptation and the ensuing off-line changes associated with
motor memory formation.

II. METHODS

A. MR-SoftWrist

The MR-SoftWrist (Fig. 1, top left) supports wrist flexion-
extension (FE) and radial-ulnar deviation (RUD) in a circular
workspace with a radius of 20 deg. The MR-SoftWrist has
a maximum output torque of 1.5 N·m, and measures end-
effector force, velocity and position at a rate of 1000 Hz.
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For an in-depth description of its design and control see [3],
and for its fMRI compatibility see [4].

B. Experimental protocol

Our protocol included three motor tasks interleaved with
three resting state scans (Fig. 1). Motor tasks were used to
assess neural activity associated with task performance, while
resting state scans were used to assess off-line changes in
functional activity associated with motor memory formation
[5]. For all motor tasks, participants held the handle of the
MR-SoftWrist with their dominant (right) hand to control
a cursor displayed on a screen that was visible during
fMRI. FE of the wrist moved the cursor horizontally, while
RUD moved the cursor vertically; radio-ulnar rotations were
prevented by a forearm support. Participants were cued to
make alternating FE rotations to move the cursor in a straight
path between two targets placed at (±10 FE, 0 RUD) deg.

The first motor task was a no force (NF) task, in which
the robot acted transparently to measure motor perfor-
mance with minimal interaction forces. The second task
was a curl-force (CF) task, in which the robot applied a
velocity-dependent torque, [τFE ,τRUD] = B[θ̇FE , θ̇RUD], B =
[0,2.5;−2.5,0] mN·m·s/rad, to apply perturbations lateral to
the direction of movement. The final task was a velocity
dependent resistive force (RF) task, with τ = Bθ̇ , B =
[−2.5,0;0,−2.5] mN·m·s/rad, such that impedance increased
in the direction of movement. In all tasks, error-clamp trials
were placed with a 1/8th frequency to sample subject gener-
ated forces without disrupting adaptation [?]. All tasks had
blocks of 24 trials with 15 sec. breaks between blocks. FMRI
data, with 2 mm3 resolution and 1 sec. TR, were collected
via a 64-channel head coil on a 3T Siemens scanner.

0 10 20 26 36 43 53 60
Time (min)

REST 1 REST 2 REST 3Structural NF CF RF

FE RUD
Error Clamp

FE [deg]

5

-10 0 10

Lateral Force

R
U

D
 [d

eg
]

0

FE [deg]
-10 0 10

Resistive Force

-10 0 10

No Force

-10 0 10

R
U

D
 [d

eg
]

0

Fig. 1. Top left: MR-SoftWrist in its operating condition. Top right: Task-
specific force conditions; robot applied force is shown in red, cursor velocity
in green. Bottom: fMRI task design. Rest conditions were 10 minutes each.
For each motor task, blocks are demarked by dashed lines; no force blocks
are shown in grey, curl force in blue, and resistive force in pink.



C. Data Analysis

1) Behavioral: Motor performance was quantified via tra-
jectory error (TE), defined as the internal angle between the
maximal deviation of the cursor and the start and end targets
within the first 150 ms of trial onset (counter-clockwise
positive). Change in force production, termed adaptation
index (AI), was quantified as β1 from the regression of the
measured force profile in EC trials onto the ideal compen-
satory curl-force profile: Factual(t) = β1Fideal(t)+β0(t)+ε(t)
[1]. We used one-way repeated measures ANOVAs to assess
the effect of task (NF, CF, RF) on TE and AI in each block.

2) fMRI data: All fMRI data were realigned and normal-
ized into standard (MNI) space. We used a blocked general
linear model to investigate the effect of each task (NF, CF,
RF) compared to rest, with head motion included as nuis-
sance regressors. To identify neural activity associated with
dynamic adaptation, we preformed a group-level contrast
between the CF-rest and NF-rest subject-level beta-maps. A
group level contrast between CF-rest and RF-rest was used
to control for neural activity associated with force.

We restricted our main resting state functional connectiv-
ity (rsFC) analysis to regions within the cortico-thalamic-
cerebellar (CTC) network, previously associated with motor
adaptation (Fig. 2, C) [1], [2], and performed an exploratory
analysis of rsFC between all anatomical regions with signifi-
cant curl force task related activation. Functional connectivity
was defined as the correlation of the average signal measured
in one brain region to another. Comparison of rsFC measured
in Rest 1 to Rest 3 was used to assess change associated
with off-line processing of dynamic adaptation. Comparison
of rsFC in Rest 1 to Rest 2 was used as a control for changes
in rsFC assocaited with motor performance.

III. RESULTS
A. Behavioral Metrics

The one-way ANOVA showed a significant effect of task
on TE and AI (p < 0.001). Post-hoc analysis of TE showed
characteristic effects of adaptation, including a significant
increase in initial errors in the CF task that significantly
decreased across the CF task, as well as signifcant after
effects (Fig. 2, A). Post-hoc analysis of AI showed significant
increases in AI in the CF task, indicative of adaptation. The
final magnitude of AI achieve in our study (0.34 ± 0.1) was
lower than is typically reported in the literature (>0.5) [1].
This difference may be due to the concurrent use of co-
contraction strategies to reject dynamic perturbations, or an
artifact of the MR-SoftWrist’s measurement capabilities.

B. fMRI Analysis

In all tasks, activations were predominantly localized in
the left motor cortex, left thalamus and right cerebellum, in
line with current knowledge on motor control. Activation in
the posterior parietal cortex, which is associated with predic-
tive planning of spatial and temporal aspects of movement,
was significant only in the CF task [1]. The contrast between
CF and NF tasks showed significantly greater activation in
the right sensorimotor areas and left anterior cerebellum (Fig.
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Fig. 2. A) Group average behavior measured across all motor tasks. B)
Axial slices of CF−rest > NF−rest group contrast (PFWE < 0.05). C) Main
rsFC analysis brain regions, and D) Rest 3-Rest 1 results. Dashed lines:
baseline rsFC; Curved lines: change in rsFC; Red: positive/increased rsFC;
Blue: decreased rsFC. E) Results of supplementary rsFC analysis, Rest 3-
Rest 1 (T > 3, PNBS,FDR < 0.05). Black spheres denote brain regions with
significant change, red lines: increased rsFC, blue lines: decreased rsFC.

2, B), that remained significant in the CF versus RF task
contrast. As such, curl-force adaptation may require greater
recruitment of non-dominant cortico-cerebellar pathways.

In both rsFC analyses, comparison of Rest 3 to Rest 1
showed significant increases in rsFC between the left cortical
motor areas and the right cerebellum, as well as a decrease in
interhemispheric rsFC between the motor cortices (Fig. 2, D-
E). No significant change was measured between Rest 2 and
Rest 1. These results suggest that the trained CTC network
is engaged in motor memory formation that is independent
from the untrained right cortical motor areas.

IV. CONCLUSIONS

Our behavioral results confirm that adaptation occurs in
response to curl-force perturbations applied during 2-DOF
wrist pointing, and our fMRI analysis established neural ac-
tivaitions and changes in rsFC that are unique to adaptation.
Future work will include validating our behavioral results
with another wrist robot, and investigating the relationship
between rsFC and behavioral measures of adaptation.
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