

Chem 634

Introduction to Transition Metal Catalysis

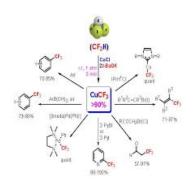
Reading: Heg Ch 1–2

CS-B 7.1, 8.2-8.3, 11.3

Grossman Ch 6

Announcements

- Problem Set 1 due Thurs, 9/24 at beginning of class
- Office Hour: Wed, 10:30-12, 220 BRL



Announcements

Fall 2015 Seminar Series

219 Brown Laboratory 4:00 pm, September 23, 2015

VLADIMIR GRUSHIN Ph.D.

Direct Cupration of Fluoroform:

From Waste to High-Value Trifluoromethylated Compounds

Trifluoromethylated building blocks and intermediates are in increasingly high demand for the synthesis of agrochemicals, pharmaceuticals, and specialty materials. Readily available fluoroform (CHF $_3$), a side-product of Teflon manufacturing, is by far the best CF $_3$ source for trifluoromethylation reactions. Chemoselective activation of highly inert fluoroform is, however, tremendously challenging. In recent years, a novel promising methodology has emerged for CHF $_3$ activation with transition metals. This presentation will focus on our contributions to the area, including (i) the first reactions of direct cupration and palladation of fluoroform to furnish CuCF $_3$ and PdCF $_3$ complexes in nearly quantitative yield; (ii) the development of new, low-cost, highly efficient, and selective fluoroalkylation methods with our CuR $_4$ (R $_4$ = CF $_5$, C2F $_5$) reagents prepared from CHF $_3$ and C $_2$ F $_5$ H $_5$. And (iii) remarkable mechanisms of the cupration of CHF $_5$ and aromatic trifluoromethylation reactions with CuCF $_4$.

College of Arts & Sciences

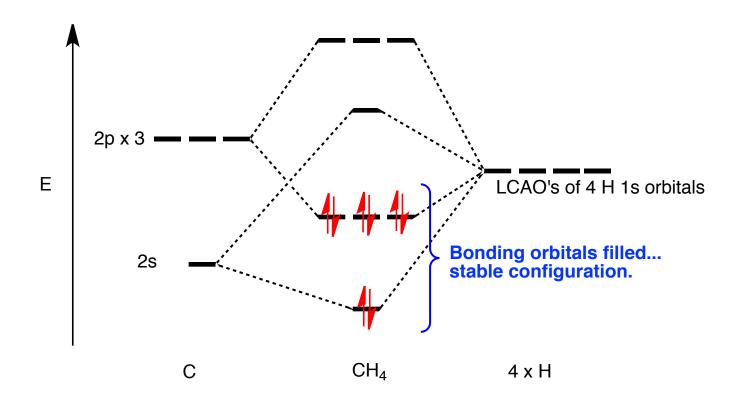
DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY

**Refreshments 3:45

Organometallic Complexes

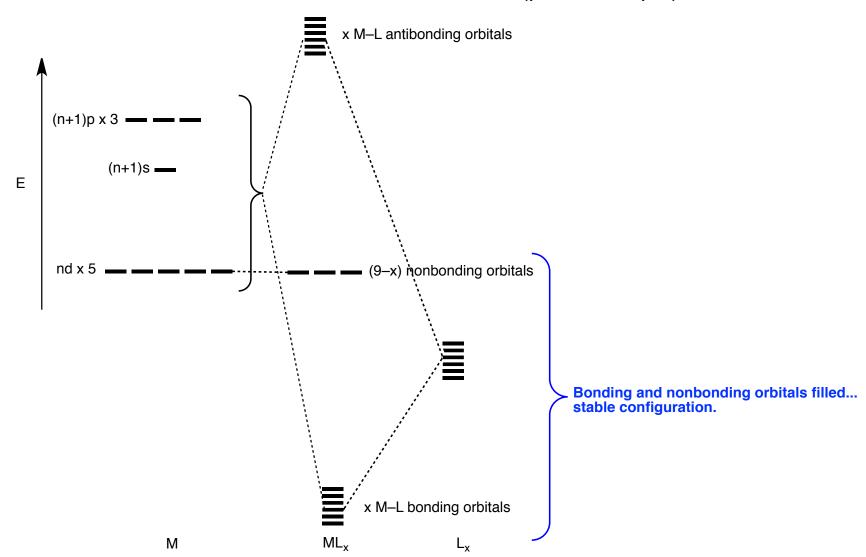
$$\begin{array}{c|c} & & & \\ &$$

M ⁰	III d ³	IV d ⁴	V d ⁵	VI d ⁶	VII d ⁷	VIII d ⁸	IX d ⁹	X d ¹⁰	XI d ¹⁰ s ¹	XII d ¹⁰ s ²
1 st row	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
2 nd row	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd
3 rd row	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg


early

dividing line

late


How Many Valence Electrons?

Consider CH₄... Recall the Octet Rule

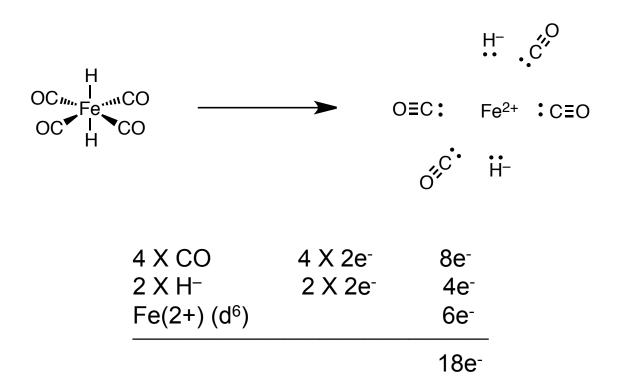
How Many Valence Electrons?

Transition metals have 5 d orbitals (plus s & 3 p's)!

Determining Electron Count of TM Complex

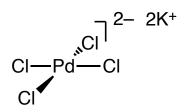
Ionic Method: All ligands are dissociated with their electrons.

L-type ligands = neutral, 2 e⁻ donor X-type ligands = anionic 2 e⁻ donor



mnemonic:

$$\begin{array}{ccc}
X & X & X \\
L-M-L & \longrightarrow & L-M^{+}-L \\
X & X & X^{-}
\end{array}$$


Electron counting is a formalism.

Example of Ionic Method Electron Counting

Note: Both Ionic and Neutral Methods give the same electron count, but differ in how they treat the metal center.

Charged Complexes

Oxidation State

- Formalism to account for "oxidation state" of metal center.
- This is only a formalism, in reality electrons (and thus charge) are shared over both the ligand and metal.
- Nonetheless, oxidation state guides understanding of metal reactivity.
- Using ionic method of electron counting arrives directly at metal oxidation state.
- Example:

OC I CO	4 X CO 2 X H ⁻ Fe(2+) (d ⁶)	4 X 2e ⁻ 2 X 2e ⁻	8e ⁻ 4e ⁻ 6e ⁻
Oxidation State = Fe(II)			18e-

Examples of X-type Ligands

Ligand	Complex	Disconnection	ligand charge	ligand e ⁻
hydride	М-Н	M++ :H	-1	2
halide	M-CI:	M+ + CI:	-1	2
alkyl	M-CR ₃	M+ + :CR ₃	-1	2
aryl (σ bound)	$M-\overline{\left\langle \begin{array}{c} \end{array} \right\rangle}$	M+ + :	-1	2
acetylide	M R	R	-1	2
silane	M-SiR ₃	- M++ :SiR ₃	-1	2
amido	M-NR ₂	$M^+ + NR_2$	-1	2
alkoxide	M-OR	M+ + :OR	-1	2

Examples of X-type Ligands (More Complex)

Ligand	Complex	Disconnection	ligand charge	ligand e ⁻
acetate (η1)	M-O Me	M+ + -: Me	-1	2
acetate (η3)	M Ne	M+ + - • • • • • • • • • • • • • • • • •	-1	4
allyl (η1)	M	M+ +	-1	2
allyl (η3)	M—>>	M+ + •	-1	4
cyclopentadienyl (Cp)	м—(M+ +	-1	6

• η (eta) denotes "hapticity" = how many atoms of ligand are bond to metal from single donor site.

Examples of 2e⁻ Donor "L"-type Ligands

Ligand	Complex	Disconnection	ligand charge	ligand e ⁻
phopshine	M-PPh ₃	M + :PPh ₃	0	2
amine	M-NEt ₃	M + :NEt ₃	0	2
nitrile	M-N≡CR	M + :N≡CR	0	2
sigma bond (H–H)	М — Н	M + H	0	2
sigma bond (C-H)	Н М — СR ₃	M + CR ₃	0	2
alkene	м—	M +	0	2
carbonyl	м-с≡о	M+ :C≡o:	0	2
ether	$M-\overset{\bullet}{O}R_2$	$M + : OR_2$	0	2

UNIVERSITY OF DELAWARE

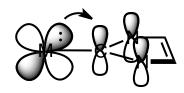
"L"-type Ligands Donating More than 2e-

Ligand	Complex	Disconnection	ligand charge	ligand e ⁻
diene	M	M +	0	4
arene (η6)	M	M +	0	6
arene (η2)	M-	M +	0	2
bisphosphine (κ^2)	Ph Ph M P Ph Ph	Ph Ph M + Ph Ph Ph Ph	0 2 X 2e– L	4 -type ligands
diamine (κ^2)	R R M P R R	$\begin{array}{c} R \\ \vdots \\ N \end{array}$ $M + \begin{array}{c} \vdots \\ N \\ R \end{array}$	0 2 X 2e-	4 L-type ligands

• κ (kappa) denotes "denticity" = how many binding sites of a polydentate ligand are bound .

X₂ Ligands

Ligand	Complex	Disconnection	ligand charge	ligand e⁻	
triplet carbenes (alkylidines)	M=CR ₂	2- M ²⁺ + :CR ₂	-2	4	
охо	M=O	M ²⁺ + :O:	-2	4	
imido (bent)	M=N. R	2- M ²⁺ + :NR	-2	4	


NHC-Ligands

Ligand	Complex	Disconnection	ligand charge	ligand e ⁻
N-heterocyclic carbenes	R, N → N → R	M + : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	2

Sigma Bond

 $\bigcirc C \stackrel{R}{\searrow} N \underline{ }$

Pi-Backbond

18 Electron "Rule"

Many, **but not all**, stable, isolatable TM complexes are 18e⁻ complexes.

NOTE: 18e⁻ "rule" is more of a suggestion. Many of the most interesting, i.e. reactive, complexes do not follow this "rule".

Basic Organometallic Mechanisms

- To understand transition metal catalysis, we need to understand something about the mechanisms by which the catalysts operate.
- Many TM catalyzed reactions proceed via a series of elementary steps.

Dissociative Ligand Substitution

common with:

- coordinately saturated
- 18e- complexes

Associative Ligand Substitution

common with:

- 16 e- complexes
- requires open coordination site

UNIVERSITY OF DELAWARE

Oxidative Addition

$$[M^n] \xrightarrow{R} \longrightarrow [M^{n+2}] \stackrel{R}{\swarrow}_X$$

- formal oxidation state of metal center increases by two
- favored by electron-rich metal centers

Reductive Elimination

$$[M^n] \stackrel{R}{\longleftarrow} [M^{n-2}] + R - R$$

- formal oxidation state of metal center decreases by two
- promoted by electron poor metal centers
- large ligands accelerate process
- microscopic reverse of oxidative addition

Transmetallation

$$[M^n] \stackrel{R}{\stackrel{M'-R'}{\longrightarrow}} [M^n] \stackrel{R}{\stackrel{H'}{\longrightarrow}} + M'-X$$

- Exchange of ligands between different metal centers
- No change in oxidation state at metals
- Exact mechanisms are complex, some are still unknown.

Migratory Insertion

$$[M^n] \stackrel{R}{\underset{X}{\longleftarrow}} [M^n] \stackrel{X}{\underset{X}{\longleftarrow}} R$$

- Ligand inserts into adjacent metal-ligand bond
- No net change of oxidation state at the metal

UNIVERSITY OF DELAWARE

β-Elimination

$$[M^n] \xrightarrow{R} \longrightarrow [M^n] \longrightarrow [M^n]$$

- Microscopic reverse of migratory insertion
- No net change of oxidation state at the metal
- Most often observed as β-hydride elimination from alkyl ligand
- Requires open coordination site on the metal center

β-Elimination

Note: most of the time, β -hydride elimination is superfacial. This is because the mechanism is inner-sphere, involving formation of a metal-hydride bond.

$$[Pd] \xrightarrow{H_1} H_2$$

$$Ph \xrightarrow{H_3} H_3$$

α-Elimination

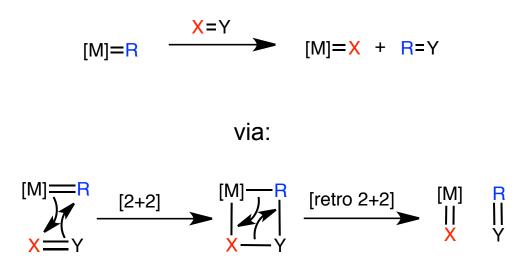
$$R'-[M^n] \stackrel{R}{\longleftarrow} [M^n] \stackrel{R}{\longrightarrow} [H^n] \stackrel{R}{\longrightarrow} [M^n] \stackrel{R}{$$

Via:

not common in organic synthesis

Oxidative Coupling/Cyclization

$$[M^n] \xrightarrow{\qquad} \left[[M^n] \right]^{\ddagger} \longrightarrow [M^{n+2}] \xrightarrow{\qquad}$$


σ–Bond Metathesis

$$[M]-R \xrightarrow{R'-R''} \xrightarrow{[M]-R'} + R-R''$$

Via:

Common mechanism of C-H bond activation.

π–Bond Metathesis

Common in alkene metathesis.