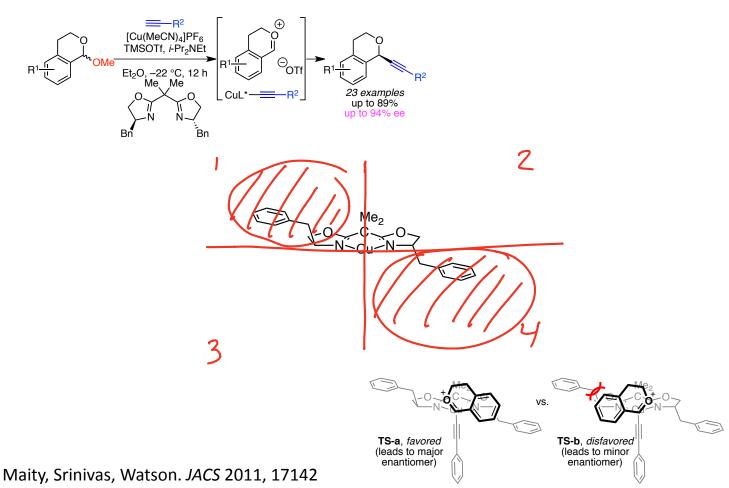
Lecture 22: Asymmetric Catalysis

Announcements

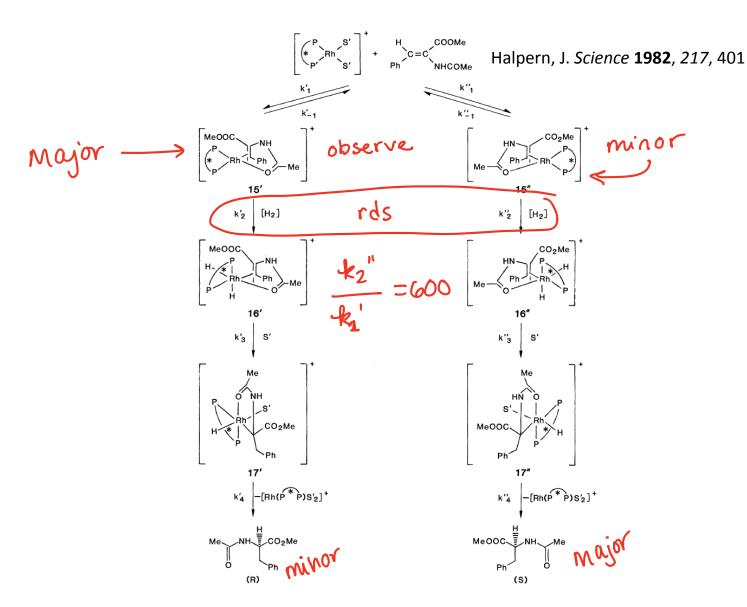
- Problem Set 6 is posted on the course website. Due Fri, 12/8 by 5pm to Mary's office (209 LDL)
- Extra practice problems also posted on course website (just 2).
- Online course evaluations: Fri, 12/1 Sun, 12/10: http://www.udel.edu/course-evals/
- · Seminars:
 - Biochem Faculty Candidate: Glen Liszczak, Fri, 10am, 219 BRL, Seq-ing answers: Decoding epigentic mechanisms with protein chemistry
 - Prof. Chris Jeffrey, Fri, 4pm, 219 BRL, Exploring natural products variation leads to chemical discoveries

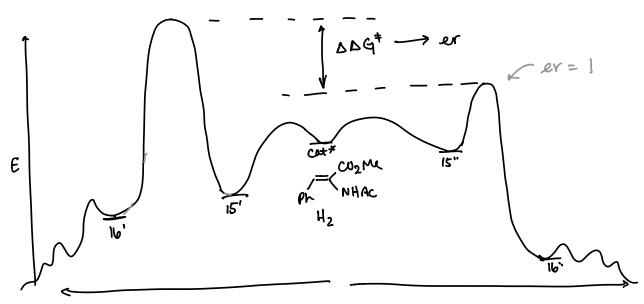
Today


- Asymmetric Catalysis
 - o Design principles
 - Kinetic considerations
- · Other mech experiments

Catalyst/Ligand Design L*-M or cat*

Design Principles:


1) Symmetry -> Often C2


Quadrant Formalism

and Design Principle: It's hard to depict TS's... so people often think about intermediates. This can be completely wrong.

Asymmetric Hydrogenation & Curtin-Hammett Situations

Curfin-Hammeth Situation:

- Rapid equilibration of intermediates before rds/enantiodeterminy step.

Minetic Considerations

kir + kis

$$rote_{R} = \frac{d(R)-P}{dt} + \frac{d(s)-P}{dt}$$

$$rote_{R} = \frac{k_{1R}k_{2R}k_{3R}...[cost^{*}]_{total}[SM][...]}{[t^{*}]_{t^{*}}[cost.SM]_{R}" + "[cost.SM]_{S}"}$$

Other Mechanistic Tools

Linear Free Energy Relationships (LFER's)

·probes substituent effects on kinetics or thermodynamics of a reaction

Hammett Plot

$$K_{X}$$
 vs. K_{H}
 K_{X} vs. K_{H}
 K_{Y} vs. K_{H}
 K_{Y} K_{Y}

I measure of substituent's ability to donate/withdraw e-density by induction

$$\sigma_p > \emptyset \Rightarrow X$$
 is better at stabilizing Θ than H

X = inductively electron-withdrawing

$$X = inductively$$
 electron-donating $X = inductively$ electron-donating

Table 8.2 for common substituents (A & D)

Position matters:

POSITION		
X	Op	Om
H3CO-{	-0.27	+0.10
40-}	-0.38	+0.13

no resonance

Why is this useful?

$$X = \frac{CO_2H}{V} + H_2O = \frac{CO_2^0}{V} + H_3O^0$$
 $X = \frac{V}{V_{Sub}} = \frac{V}{V$

Slope =
$$+0.55 = \rho$$

 $\Phi \rho \Rightarrow Build-up \ df \ dchange$
 $\Theta p \Rightarrow Build-up \ of \ dchange$
 $X \rightarrow D \rightarrow H_2 \rightarrow H_30 \rightarrow X \rightarrow D \rightarrow H_3 \rightarrow H_20 \rightarrow H_30 \rightarrow H_30$

Also applies to TS's!!

Also applies to TS's!!

Measure
$$\frac{k_x}{k_H}$$
. Plot or vs. $\log(\frac{k_x}{k_H})$

$$x - (1) c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$x - (1) c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$x - (1) c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$x - (1) c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$x - (1) c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$y - (1) c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{C1}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

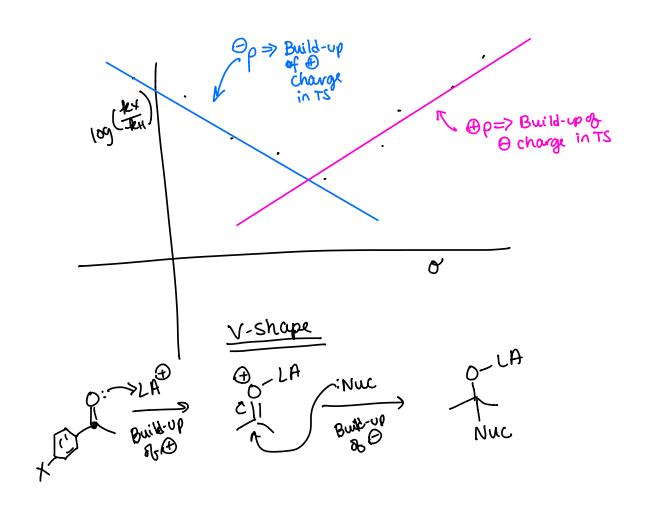
$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_2 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$


$$c_1 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_2 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_3 + H_{20} \longrightarrow x - (1) c_1 + H_{20}$$

$$c_4 + H_{20} \longrightarrow x - ($$

Other LFER's -> Steric -> Charton values

