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ABSTRACT

This thesis describes an algorithm developed to estimate water depths from
remotely sensed images of the water surface. A one-dimensional depth inversion
routine applicable to non-breaking waves is developed using extended Boussinesq
equations. Using spatial maps of surface elevation lagged in time, underlying depth
estimates and particle orbital velocities are obtained. Assuming the availability of
only orbital velocities instead of surface elevations, a parallel inversion method is
developed to calculate the bathymetry and surface elevation. In all cases, synthetic
input data is used. Computations to generate input data are done using a fully
nonlinear time-dependent, Boussinesq model (FUNWAVE), and snapshots lagged in
time are saved as discretized profiles of either surface elevations or wave orbital
velocities. Wave conditions including purely monochromatic and groupy waves are
simulated in the model.

A least squares method is formulated to estimate wave phase speed from
the time-lagged images. Spatial correlation methods are also analyzed and their
advantages and disadvantages in calculating wave celerity are discussed. Mean flow
effects are included in the inversion algorithm to account for currents. For this, input
data is obtained from a fully nonlinear Boussinesq model in which initial current
profiles can be specified.

Calculated depths obtained using the inversion routine are compared to initial
depths used to generate the synthetic images. A comparison of estimated and com-

puted water particle kinematics is also presented. The algorithm is seen to work well

viii



for both linearized and fully nonlinear Boussinesq equations. The inversion model
predicts underlying water depths for various wave conditions to reasonable accuracy.
An analysis of the possible sources of errors is presented and steps for their mini-
mization are suggested. For monochromatic waves in the presence of weak currents,
the modified algorithm (including mean flow effects) is seen to make marked im-
provements over the original formulation. Further extension of the present inversion
method to two horizontal dimensions, the inclusion of wave breaking and the effects

of strong currents and validation with field data are discussed.



Chapter 1

INTRODUCTION

The nearshore region of an ocean or sea is perhaps the most dynamically
active area considered in the study of hydrodynamic and other related coastal pro-
cesses. Even to a casual observer on the beach, the highly chaotic nature of the
wave field close to the coast is evidence enough of the complex nature of the prob-
lem. The physical variable which often dominates the cause of such variability in
the observable behavior of the water surface is the water depth. The bed topogra-
phy near the coast is itself always in a state of change due to an active interaction
befween sediment transport and hydrodynamic processes. An accurate knowledge
of the ocean floor, particularly in the nearshore region and over various spatial and
temporal scales, is thus very important in understanding such a complex interactive
regime.

Traditional surveying methods of quantifying the depth are inherently labour
intensive as they involve manual deployment of expensive instruments over the area
of interest. Even with the availability of sophisticated and accurate depth measur-
ing devices like sonic altimeters and global positioning satellite (GPS) units, the
surveying process still remains costly in terms of both time and money. It is thus
not feasible to use these methods to cover large spatial distances. A detailed study
of the variation of the bathymetry in time is also difficult to obtain. Wave breaking

and strong currents near the shore make in-situ measurements of the bathymetry a



hazardous task. Moreover, marine fouling, water turbidity and suspended sediments
limit the operation time scales of such instruments.

Since there already exists quite a significant amount of understanding of the
hydrodynamic coupling between the water depth and the wave kinematics, methods
which would determine the ocean bathymetry from remotely sensed images of the
water surface are likely candidates for further development. With the progressively
increasing accuracy and availability of remotely sensed radar and video images,
depth inversion, as it is commonly referred to in literature, has become one of the

most promising tools in this area of research.

1.1 Depth inversion

In practically all problems associated with water wave mechanics, the water
depth is assumed to be a known variable. The problem statement usually involves
predicting how the water mass would behave when subject to various forcing mech-
anisms such as gravity, surface wind stresses, etc. There exists a direct interaction
between the water depth and the water particle kinematics and dynamics of the
wave propagating over the particular bathymetry. Water depth is an important
parameter in influencing the kinematic and dynamic behavior of a wave. Wave
shoaling, refraction, diffraction and energy dissipation due to wave breaking are
only some of the direct physical effects evident in a wave train as it propagates over
a changing bottom. The regular or forward solution thus evaluates wave response to
changes in depth, either spatial or temporal or both. A large percentage of coastal
engineering problems study wave dynamics over a known or assumed bathymetry,
either analytically generated or constructed from in-situ measurements. Numerous
numerical models have also been developed, which require initial wave conditions
and then estimate wave transformation and wave induced currents over complex

topographies.



Depth inversion on the other hand does precisely the opposite task from a
hydrodynamic point of view. It is assumed that information about some of the
dynamics and/or kinematics of the wave is known. The problem remains to find the
water depth which would have caused that particular observable disturbance in the
wave field. This inversion is made possible by knowledge of the physical laws which
couple the available wave data (such as wave heights, orbital velocities, phase speed
ete¢) with the unknown depth. Several innovative depth inversion methods have
been developed to evaluate bathymetry from surface wave information. These can
broadly be classified into two approaches - Spatial inversion and time and frequency

domain inversion.

1.2 Time and frequency domain inversion

Depth inversion in the time or frequency domain essentially involves taking
time stacks of discretized surface elevation or particle velocity data, in one or two
horizontal dimensions, and then inferring the unknown depth by using either some
kind of physical functional dependence on one other (like the dispersion relation-
ship) or hydrodynamic equations governing wave propagation (such as the mass
conservation and momentum equations).

Very recently, Kennedy et al. (1999) have used a fully nonlinear time depen-
dent Boussinesq model(FUNWAVE) as a tool for inversion. The model contains
the fully nonlinear extended Boussinesq equations developed by Wei et al. (1995),
and further modified by Kennedy et al. (2000) and Chen et al. (2000) to include
the effects of wave breaking, run-up and wave-induced current effects. They assume
that time lagged spatial maps of both the surface wave height and orbital velocities
are available (the best case scenario in the context of data availability using remote
sensing techniques) as inputs to their algorithm for inverting depth. Synthetic data

comprising previous model generated outputs is used in place of remotely sensed
p BT g 1 I ¥



data, such as those obtained from video or radar units. An analytic depth is used to
run the FUNWAVE model with a specified initial wave climate. Since the model has
a time-stepping algorithm, two snapshots of surface elevation and particle velocities,
separated in time (a fraction of the input wave period) are stored. The first image
is then used to initialize the inversion routine (based on the same extended Boussi-
nesq equations as in FUNWAVE) with an assumed depth. A flat bed was used in
all their test cases as the starting depth estimate. The model is then run forward in
time to the time step when the second image was saved, and local phase speeds are
calculated using spatial cross-correlation techniques over the entire spatial domain.
The computed phase speed is compared to the true value of phase speed obtained
from the given second image. Based on the phase speed mismatch between the two
images, the depth is updated. Let the subscript 1 denote variables calculated for
assumed depths, and m the optimal or “rue” values obtained from the previously
saved data (the second image). h and C denote the local water depth and wave

celerity respectively, and g is the acceleration due to gravity. Then the relations

C, =V gh (1.1)

Cm -V gh’m (12)

give the result

Cm.
hm = h'l( C

)’ (1.3)

I

The optimal or true depth (h,,) can thus be related to the assumed depth (h)
through the ratio of estimated (C)) and true (C,,) phase speeds. Based on the
phase speed mismatch, the depth is iteratively updated, and the final converged
water depths showed good agreements with analytic depths for shallower water. For

deeper water, convergence was achieved when the exponent in the ratio of phase
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speeds in (1.3) was raised from 2 to 4. It was pointed out by the authors that
since absolute values of phase speeds are not required, but only the ratio of the
two, biased correlation methods proved suitable to estimate phase speeds. Local
phase speeds were obtained by subdividing the image into smaller finite windows,
about 3 wavelengths in the direction of dominant wave travel. The window size was
decreased when the depth iterations started to converge. Parabolic interpolation
methods were utilized to determine the cross-correlation matrix peak to sub-grid
accuracy. Two dimensional cubic B-splines were used to interpolate the depth across
the entire domain. To remove the ambiguity in the direction of wave travel (positive
and negative phase speeds), a time lag between images of a third of the wave period
or less proved to work well, and stable convergence was achieved. Plane slope
test cases were run in intermediate water depth range, with additional test cases
comprised of the Berkhoff shoal topography and a bar and channel topography
with strong currents and wave breaking on the bar and coastline. Though the
bar amplitude was under-predicted, overall depths were predicted accurately. The
smaller estimate of the bar amplitude was ascribed to strong wave breaking over
the bar (which had been observed in their plane slope tests to be a cause for over-
prediction of depth) as well as their limited spatial resolution of the bar geometry
(the bar dimensions were on the order of a wavelength, compared to a window size
three times that size). Wave irregularity and multi-directionality (in the shoal case)
led to a decrease in accuracy.

A novel method was developed to account for possible errors in measured
surface elevations or velocities (which led to the inclusion of spurious waves in the
Boussinesq model). These hypothetical errors were shown to directly affect the com-
putation of wave phase speed through cross-correlations, which in turn translated
to errors in the inverse bathymetry. Based on the observation that the elevation

and velocities of waves traveling in the positive z- direction have identical phase,



while the phases are opposite for a wave traveling in the negative z-direction, the
spurious waves were eliminated from the computations. Significant improvements
were noticed in the estimated bathymetry in deeper depths when the errors were
accounted for and the algorithm suitably modified.

There were several advantages to this algorithm over previous inversion meth-
ods. Current and wave breaking effects were incorporated into the inversion routine.
Errors in available data were accounted for, and, as the depth inversion was done
over a 2-D horizontal domain and verified to be accurate for the Berkhoff shoal
ase (which serves as a representative test for validating numerical wave models),
it is a practical tool for inverting bathymetries over the entire surf zone. However,
the assumption that both surface elevations and particle velocities be available for
inversion is a possible drawback, since remotely sensed measurements of both these
variables is indeed scarce as yet in either theory or practice. The model used side
walls and other boundary conditions, such as a minimum depth at the on-shore
end of the domain, which are not natural. Performing the fully time-dependent
Boussinesq inversion was burdensome in terms of computational time.

A much simpler precursor to the above method was developed by Dalrymple
et al. (1998), who used Hilbert transforms to estimate phase speeds from surface
maps of wave elevation. Gradients of the phase structure were then calculated to
determine the wave number. A big disadvantage of this method was the assumption

that wave period be known accurately. The linear dispersion relationship

w? = gk tanh(kh) (1.4)

was then used to invert depth. Here, w is the wave frequency w = ‘—5,,3, T the wave
period, k is the wave number k = 27“, L the wavelength, h is the local water depth

and ¢ the acceleration due to gravity.



Fourier smoothing techniques were applied to remove unnatural oscillations
in the depth estimate. For spectral sea states, another method was developed us-
ing lag-correlation techniques. Using Fourier analysis of sequential images taken
at short intervals of time, wave number spectra and associated phase speeds were
determined. The spectrum was assumed to be constant over a spatial map approxi-
mately two peak wavelengths long. Auto-correlation and cross-correlation matrices
were calculated from the images, and estimates of wavelength and phase speed
were respectively obtained. The extension to two horizontal dimensions was made
possible by a maximum entropy method, which used 2-D fast Fourier transforms
(FFTs) to find wave number spectra. The assumed depth was iterated until the
cross-correlation function from the maximum entropy function best matched the
measured function. Over-predictions of depth were observed, which were accounted
to nonlinearity (strong focusing effects took place behind the shoal test case) and/or
window size effects on correlation estimates.

Depth inversion with nearshore field data has till now not been extensively
researched, probably because of the lack of good quality and reliable remotely sensed
data. There exists the difficult problem of quantifying quite a few unknown param-
eters which would make remotely sensed images translatable to physical variables
such as water surface elevation or particle velocities. This is one of the principal
reasons that most researchers have utilized synthetically constructed data to per-
form their depth inversions. One of the few attempts at inverting depth based on
field data was done by Stockdon (1998). Video images were collected at field sites
located in Duck, North Carolina and Agate beach, Oregon. Using digital video
cameras, time stacks of pixel intensities at various cross-shore and long-shore arrays
were stored. A linear Modulation Transfer Function (MTF) was used to provide

spectral representations of relative amplitudes and phase information between the



input signal and the output. In the frequency domain,

G(f) =M(f)X(f) (1.5)

where X (f) is the input signal and G/(f) is the output, related by the linear transfer
function M(f), and f denotes the frequency component of the signal. After col-
lecting the pixel intensity time series over a single cross-shore array and multiple
long-shore arrays, smoothing was done with high pass (to get rid of low frequency
information) and low pass (to remove noise) filters. An average spectrum was calcu-
lated over all the cross-shore locations. The spectral peak of this average spectrum
then indicated the incident frequency with a prescribed frequency band width to

represent incoming waves. The spectral peak was calculated as

i St'. i
fr.:m = %‘ (16)

where the subscript em denotes the center of mass of the spectrum and ¢ the individ-
nal frequency component. The cross-shore wave number was then estimated using
a complex empirical orthogonal function (CEOF) analysis of data collected from
the cross-shore arrays. The phase function and the amplitudes were determined in
terms of the eigenvalues of the cross-spectral matrix. The first mode or complex

eigenvector (which represents the majority of the data variability) is given as
A = a(z) + ib(x) (1.7

where 7 is the imaginary number ¢ = /—1. The phase ©(z) and the amplitude A(z)

are then given at each cross-shore pixel location by

A(z) = ya(z)? + b(zx)? (1.8)

(1.9)



The cross-shore component of the wavenumber k(x), is then given by

o) =22 (1.10)

dx

Once the wave number and frequency have been obtained, the linear dispersion
relationship was used to invert the depth. Depths were significantly over-predicted
in shallow water and under-predicted in deep water. The errors were ascribed to
the simple shallow water formulation of phase speed (which neglected frequency and
amplitude dispersion effects), and the analysis of the video signal or the subsequent
phase speed extraction (neglecting the effects of surface drift currents, the undertow
and rip currents).

Radar images of the ocean surface have also interested researchers as feasible
data to invert the bathymetry. Synthetic Aperture Radar (SAR), Interferometric
SAR (INSAR) and X-Band radars can provide high-resolution images, which have
been used to extract wave information such as wave phase speeds. Dugan et al.
(1996) have used airborne imaging systems to collect sequential ocean surface maps,
and, using 3-D frequency-wavenumber spectra and the linear dispersion relation,
have inverted depth. Bell (1999) has demonstrated the usefulness of a sequence of
marine X-band radar images to invert shallow water bathymetry (the radar provided
144 seconds of data from 64 images, with a time interval of 2.25 seconds). The
inversion algorithm he used is essentially the linear dispersion relationship, with the
phase speed and the time period estimated from cross-correlation and frequency
spectra analysis respectively. A slight modification to the wave celerity calculation
was the inclusion of the whole time stack of images instead of just a single pair.
Detailed comparisons between true and estimated depths could not be made because
of lack of independent depth data. Due to possible ambiguities in the determination

of the frequency and cross-correlation peaks, the implementation of a simplified



inversion algorithm and the neglect of mean flow and nonlinear effects, the inversion

results were only qualitatively representative of the true bathymetry.

1.3 Spatial inversion

Linear inversion techniques though simple in implementation have severe
disadvantages in their application to shallow water regions. Amplitude dispersion
effects and nonlinear wave properties modify the wave characteristics significantly
as the waves shoal on entering shallower depths. Grilli (1998) devised two depth
inversion algorithms (DIAs) to include amplitude and frequency dispersion effects
in shallow water, when estimating depth from remotely sensed data. His compu-
tations were done on a fully nonlinear model based on potential flow theory and
the boundary element method. The properties of shoaling periodic regular waves
on monotonic and mildly sloping beach profiles were investigated and their prop-
erties used to invert depth. The inversion was thus in one horizontal dimension
and the waves were assumed to be long-crested in the long-shore direction, the -
axis being the cross-shore direction. Each individual crest and trough of a shoaling
wave was independently identified and tracked in space in time. Envelopes of wave
height, H (z) were thus obtained. The phase speed distribution over the domain was

estimated from

dx.(t)

giz) = =

(1.11)

where z.(t) is the instantaneous crest location for the particular wave. A mean
wavelength was also calculated geometrically by averaging over the crest to crest
wavelength L.(z) and the wavelength measured between successive troughs Ly ().

(g) = 2L+ 3]

! (1.12)

Once wave celerity and wavelength are known, the time period (T") of the wave

x L(x .
is calculated (T = F%) Data from previous model runs was used to relate the

10



wave celerity at an unknown depth to deep water wave characteristics involving
empirically determined coefficients. Linear wave theory was used to interpolate the
empirical relation for small incident wave steepness and shallower depths. These
are then solved iteratively till the wave heights and the depths converge to some
predetermined criterion.

A modified algorithm was developed for the case where only phase infor-
mation was available and no surface elevation data was given. Using empirically
fitted experimental data, a relationship between wave asymmetry (calculated from
wave steepness), wave period and water depth is determined. This is then inverted
through previously calculated wave period values, and an assumed depth is iterated
till convergence is obtained. The estimated values of phase speed and water depths
showed improvements over computed values from linear dispersion theory. Root
mean square (RMS) errors for depth prediction were on the order of 1.7 - 3.6 %
for the first algorithm and 2.1 - 5.7% for the second. These were significantly less
than the linear theory results, which had RMS errors (14.6 - 20.5%) an order of
magnitude higher.

There are disadvantages in such an inversion method, the primary one being
the assumption of a monotonic and mildly varying slope. Bars and troughs are
a common feature of interest close to the shoreline. The inability of the above
method to account for such changes in topography places a limitation in its area of
application. All test cases were done with periodic waves, where it was possible to
geometrically determine the wave period. This would prove to be difficult for the
case of groupy or random waves, in which several frequencies would be represented
in one wave form, as is the case in the real sea state. Waves were only analyzed up to
the breaking point and hence the inversion would be limited to the breaker line close
to the shore and not inside the surf zone. The marked improvements over linear

inversion predictions by the inclusion of nonlinear effects, however, demonstrate that
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any approach to depth inversion should inherently take into the complex nonlinear

dynamics of wave propagation.
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Chapter 2

PHASE SPEED ESTIMATION

Most of the depth inversion methods developed till date involve the calcula-
tion of the wave celerity from available information about either the phase structure
or the kinematics of the wave. As can be seen from the dispersion relationship (1.4),
the phase speed is a direct representation of the water depth. If linear and nonlinear
amplitude dispersion effects are neglected, it is readily apparent from the shallow

water approximation of the dispersion relation

C =+/gh (2.1)

that waves slow down with decreasing depth. The change in phase speed over space
thus quantifies a corresponding change in depth. Measuring wave phase speeds has
thus been historically the first and basic step towards inverting water depths. Fuchs
(1953) devised a simple technique to measure the speed of a traveling water wave,
by estimating visually the time taken for an identifiable feature on the wave train
(e.g the wave crest) to cross a certain fixed distance. Similar methods were applied
in airborne imaging of the sea surface to determine the celerity. Since then, more
sophisticated in-situ tools and remote sensing techniques have been employed. Using
cross-spectra data from spatially separated wave gauges perpendicular to the beach,
Thornton and Guza (1982) developed an estimate of the cross-shore component of

the phase speed as
2r fox
Co=—] 2.2
=0 —
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where 0z is the spatial separation between the gauges, f is the frequency and ¢(f)
the cross-spectral value at that particular frequency.

Using video images of the surf zone in the field, Lippmann and Holman (1991)
devised a method to estimate phase speeds of breaking waves. Using spatially sepa-
rated pixel intensity time series, wave speeds and wave directionality were obtained
by calculating the time it took for the wave to travel the distance between the two
pixel locations. In the frequency domain, (2.2) was used to calculate the cross-shore
phase speed. They hypothesized that this point calculation of celerity could be

rextended to required cross-shore distances by considering arrays of pixel locations.
From a more recent and sophisticated data acquisition point of view, Dugan et al.
(1996) used data collected from an airborne infrared system to estimate the ocean
wave dispersion surface. Phase speeds were calculated from the 3-D frequency-wave
number spectra constructed from the aerial snapshots of the water surface. Recently,
several other simple but innovative techniques have been developed to estimate the

local wave celerity from surface images.

2.1 Spatial correlations

In the video-based phase speed estimation discussed above, it is required that
long time series of pixel intensity be available. It is certainly possible and easy to
acquire such data when using a video camera, since automated cameras mounted
on towers and focussed on the region of interest can be made to run for as long
as desired and thereby provide continuous time stacks of images or pixel intensity.
Airborne systems on the other hand can collect only snapshots of the water surface
spaced in time, though radar units are capable of sampling the water surface at
discrete but closely spaced time intervals. For spatially dense images separated
in time (usually a fraction of a wave period), correlation formulas can be used to

calculate local phase speed over the entire domain.
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The spatial cross-correlation functions between two distinet stationary ran-

dom processes f(z) & g(x) are defined as

Ryy(€) = E[f(x)g(x + ) (2.3)

Ry;(€) = Elg(z) f(z +&)] (2.4)

where £ is the lag between the two processes, and E denotes the Ezpected value or

the Statistical expectation of and is defined as

BU@I= [ ol (2.5)

p([f) being the probability densily function of f(x). For stationary processes f(x)

and g(z),

Ryy(€) = Rys(=£) (2.6)

but in general, Ry, & R, are not the same, and unlike the autocorrelation function,
are not even in . These integral correlation functions must be estimated using
summations because only a finite length of data is available in discrete form in
practice. An unbiased cross-correlation between two discrete finite vectors f and g
whose length in space is N can be written as

N —|m|-1

Rjo(m) = N';M Z f(n)g*(n+m) (2.7)

n=I0
where m and n vary from 0 to N and are termed the spatial lags. The cross-
correlation matrix is 2N + 1 in length, since it is calculated for positive (1 to +N),
negative (—1 to —N) and zero lag. The phase speed is calculated by first identifying
the lag at which the maximum or peak value occurs in the correlation matrix. The

peak cross-correlation value can be thought of as the maximum overlap between
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Figure 2.1: Top: Wave surface snapshots lagged in time. Bottom: Cross-
correlation vector R(€) calculated at varying spatial lags (£).

the two images when the two signals are slid over each other. When considered in
the context of a moving waveform, the lag where the peak occurs (&4, ) simply
means the distance the wave has moved during the time interval separating the two

snapshots (0¢). The phase speed is then given by

E’-‘Hﬂ.fﬁ
S = 2.
ot (2:8)

where both &,,,, and 6t have been converted to physical units of distance and time
respectively.
Figure 2.1 shows an example calculation of phase speed from two given images

using spatial cross-correlations. The dashed and solid lines in the top panel are the
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surface elevation snapshots (the dashed line being the first image) of a propagating
wave with an analytic phase speed Cipoer = 2m/s, separated by a time interval §t =
0.5s. In the bottom panel is plotted the cross-correlation vector R(£) against the
spatial lag £. It should be noted that only half of the correlation vector (calculated
at positive lags) has been plotted, since it is known that the wave is propagating
in the positive x— direction. The lag at the first cross-correlation peak (&,,,,) has
been marked as an asterisk and &, = 4. Since the z-grid spacing was 0.25m, in
physical distance units, &, =4 x 0.25 = lm. The phase speed as calculated from
(2.8) is thus C,s = 2.0m/s which agrees with the analytic phase speed.

There are two conflicting requirements one faces while evaluating the phase
speeds at discretized positions in the spatial domain using correlation functions.
Ideally, one would get speed estimates at every point in the domain where surface
data is available. This would provide the best spatial resolution and indication of
changes in celerity over space. Cross-correlation calculations (because of the need
for computational efficiency) inherently require the use of fast Fourier transforms
(FFTs). The accuracy of Fourier transforms are directly proportional to the data
length. A periodic data set or an infinitely long (which can be assumed to have
an infinite period) record would recover the analytic result because of the harmonic
nature of the Fourier expansion. Given two finite surface signals however, the aim is
thus to determine the phase speed at closely spaced intervals in space, the separation
being small enough to resolve spatial variations and large enough to get reasonable
estimates from the cross-correlation vectors. The entire data is typically windowed
by subdividing the entire domain using finite windows of length W. The window
is shifted over the domain in small spatial shifts (ws) to get local estimates. The

cross-correlation function for a given window is then given by
() —1 o (2)g( ) )
Ril€) = / flx)g(z + &)dx 2.9
8 W=€J (
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The effect of a finite window size on the phase speed estimate can be seen analytically
by considering, for simplicity, two sinusoidal one-dimensional propagating waves
slightly differing in their phases (which can be interpreted as two snapshots of a
single waveform lagged in time by an amount §¢). Let the two signals be : f(z) =
acos(kz), g(z) = acos(kx — wdt). The phase lag between the two images is thus

wot. The definition of the cross-correlation function is

| W—¢
Ry (E) = W_¢ [ a® cos(kx) cos[k(x + &) — wdt]
g <8
a’ [Sin(ZkT/V — wit — k&) + sin(wdt — k&)
2(W —¢) 2k
+ (W =€) cos(wdt — k&)] (2.10)

To identify the lag at the cross-correlation peak (the maximum value of the
cross-correlation vector), we differentiate Ry,(&) with respect to the spatial lag &
and equate it to zero.

This gives

dR;_,,({)

Ghels) _
d&
k(W — &) cos(2kW — wét — k&) + sin(2kW — wdt — k&)
- 2k(W — €)?
k(W — &) cos(wdt — k&) + sin(wdt — kE)
. 2h(W — €)?
+ ksin(wdt — k&) (2.11)

Let the lag at the peak be & = &,,., which can be obtained from the definition of

the maximum spatial lag

w f?”-ﬂn’l':
k ot ( )
If we now substitute for £ = &4, in (2.11), we get
ot (2n+1) :
W=L=+—-= 2.13
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where n is any integer. Choosing a window size and the other parameters given
by (2.13), we would recover the exact analytic phase speed of the wave form. The
expression (2.13), however, shows that, even for two perfectly sinusoidal signals,
the window size is dependent upon the wavelength, the time-lag between the two
signals, the time period of the wave and the integer n. This is an unfortunate result
when applied to phase speed determination from two surface images for a variety of
reasons. The wavelength and the wave period are not known a priori. Real surface
images also will never contain purely monochromatic waves, and thus no unique
period or length of the wave-train can be determined, even if methods be available
to estimate the two. The determination of wavelengths from surface signals by
auto-correlation functions runs into the same problem of choosing a window size,
which in turn depends on the wavelength. The analytic results shown above were
computed numerically for a sine and cosine wave form with a wave period T" = 8s
and wave length L = 40m, which gives the true phase speed as Ceopor = 5.0m/s.
Two snapshots for each waveform were taken with a time interval 6t = % = 18
The spatial grid resolution was dz = 1m, which meant there were 40 points in a
wavelength. The results for the estimated phase speed (Cl.y) for various window
sizes (W) is shown in Figure 2.2.

The estimated celerities (the solid and dashed lines) plotted in Figure 2.2
have been determined from the correlation matrices to sub-grid accuracy by an ana-
lytic parabolic interpolation around the peak. The smallest window size shown here
is slightly larger than the wavelength. Window sizes smaller than the wavelength
have been seen to result in large errors, though theoretically W can be made as
small as desired. The calculated phase speed recovers the true value only at window
sizes defined by (2.13), which are plotted as *. The error for a window size which is
twice the wave length (W = 2L) is approximately 10 %, with the error decreasing

as the window size increases. The sine and cosine wave forms if taken together
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Figure 2.2: Effect of window size on estimation of phase speed by cross-correlation
method. Solid line : Estimated phase speed (C.y) for a sine wave
signal, Dashed line : Estimated phase speed (C.4) for a cosine wave
signal, * : Analytically determined window sizes for n = 2, n =
3,0 =21 frein {2:13)

would average out their respective errors. Spatial cross-correlations have been used
by Kennedy et al. (1999) in two horizontal dimensions to calculate wave direction-
ality and phase speeds, and good agreements have been reported for irregular wave
conditions.

Figure 2.3 shows example calculations for a monochromatic wave (H =
0.05m,T = 4.369s) propagating over a plane slope (slope = 1:30). The top panel

shows two snapshots of surface elevation at a time-lag of 6t = 0.5s, the dashed line
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Figure 2.3: Estimation of phase speed by cross-correlations for a wave propagating
over a plane slope. Top: Surface images, Bottom: Analytic (-) and
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being the first image in time. The surface images are obtained from the Boussinesq
model FUNWAVE by solving linearized versions of Nwogu’s equations (See Wei
et al. (1995) for a detailed description). The model grid spacings were dz = 0.25m
and dt = 0.02s. The deep water depth was 3.5m (kh = 0.98) and the shallow region
was 0.5m (kh = 0.33). The waves were thus propagating in intermediate water
depth. The images were collected at a time spacing 6t = 2.0s. The window size
for the cross-correlation method was arbitrarily chosen at W, = 25m. In terms of
numerical grid points (shown as iz in Figure 2.3) the size of the window W extends
from iz to iz+100. The dash-dot line is W, = 37.5m (ix to iz+150) and the dashed
line is W3 = 50m (iz to iz + 200). The deep water wavelength was Ly, = 22.43m
and in shallow water the wavelength was Ly, = 9.50m. The window shift for all the
windows was constant at 12.5m. Linear interpolation was done to evaluate the phase
speed at every point in the domain. The cross-correlation estimates are compared
to the analytic phase speed (the solid line). To calculate the analytic phase speed

for the given bathymetry, Nwogu’s linear dispersion relation was used.

1— (a+ (1/:;))2(.%4*;.,)‘3

C? = gh
gh 1 — a(kh)

] (2.14)

where a = 0.39.

In the shallower depths, where the wavelength decreases and the wave slows
down, the phase speed estimates are reasonably accurate irrespective of window size.
This is because at that depth, even the smallest window (W) = 25m) is almost, three
times the wavelength (L, = 9.50m). As was shown earlier, the absolute error in
the estimate phase speed decreases with an increasing window size. Another reason
for smaller errors in the shallower depths is that the wave phase speed in shallow
water is independent of wavelength and is only a function of the local depth (2.1).
The dependence of window size on wavelength thus becomes less and less important,

as the wave propagates into shallower water. In deeper water, it can be seen that
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as the window size increases, the error in the cross-correlation estimate of phase
speed also decreases, but still is relatively much larger than in shallower water. The
stronger dependence of the window size on the wavelength in the deeper region is

also obvious from the large oscillations in the estimated phase speed.

2.2 Least squares estimation

To avoid the pitfalls mentioned in the previous method, a simple least squares
based method was developed to calculate phase speeds from two time lagged surface
images. Let 7; and 7, be the given images. If the waveform is a perfect sinusoid,
the spatial shift which would minimize the error between the two images, divided
by the time-lag, would then give us the phase speed of the entire wave. Since real
ocean surface data consists of multiple waves with different frequencies, propagating
over a changing topography, local phase speeds have to be estimated.

We use finite windows as before to subsample the given image. Being based
upon purely geometric arguments, the window size does not depend on any of the
as yet undetermined wave parameters like the wavelength or time period. The only
concerns are spatial resolution (which would decrease with increasing W) and pro-
viding enough wave information within the window. The problem of a loss in spatial
resolution arising from a large window size can only be minimized by sacrificing wave
information within the window, as would be the case for a window size smaller than
the local wavelength.

Figure 2.4 (top) shows the wave images (for a purely sinusoidal propagating
wave) considered before for the cross-correlation case, with all parameters remaining
the same. The bottom plot shows the least square error plotted against the spatial
lags (which determine the overlap between the two images). Let 73 and 74 be the
windowed data from the two images 7, and 1), and each be W grid points in length.

In physical distance, the window size is therefore (W — 1)dx, where the grid spacing
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Figure 2.4: Top: Spatial maps of surface elevation separated in time. Bottom:
Least squares error between the two images as a function of spatial
lag.
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dux is in physical units of distance. The least squares error at a spatial lag £ is defined

as

Err(€) =) [(m(1: W = £&)* — (m(1+&: W))*] (2.15)

The error can be seen to trail off as the lags increase, since less and less of the
two images is available for comparison. As the spatial lags increase, the amount of
wave information for the two images also decreases. The first minimum in the error
vector is marked as a * in the plot, which occurs at a lag &,;,= 5. Since the time
lag between the two images (6t) is 1 sec, and the spatial resolution (dz) equal to 1

m the phase speed calculated from (2.16)

(grm'n d.’l? )

=

(2.16)

is 5.0 m/s, which agrees with the analytic phase speed. &, has been multiplied
here by dx to convert the numerical grid position for the minimum lag to a physical
distance.

The effect of window size on celerity calculations using least squares is plotted
in Figure 2.5. Considering the same wave parameters and images as in the cross-
correlation case, the analytic phase speed (solid line) is plotted along with the
estimated speed (dashed line) for various window sizes. It is to be noted that the
window size plotted along the z-axis is a physical quantity. It is essentially the
same as in (2.15), since here dz = 1.0. The error can be observed to decrease as W
increases, with the maximum error at the smallest window size about 0.2 % which is
almost two orders of magnitude smaller than that for the cross-correlation method
for the same window size. The oscillations in the least squares error as well as the
estimated phase speed are due to the strictly periodic nature of the input signal, but
are not a cause for major concern since the amplitude of the oscillations are small

and within acceptable error margins.
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To compare the phase speeds obtained by the cross-correlation and least
square method, calculations were done for the plane slope test case discussed in
section 2.1 with the wave and model parameters remaining the same. The dashed
line in the top panel of Figure 2.6 shows the first image and the solid line the second
image recorded after a time interval 6t = 2.0s. The images are the same as in Figure
2.3 (top panel), but are truncated here on either side of the slope to show a more
defailed comparison of the true and estimated phase speeds. In the bottom panel
are plotted the cross-correlation phase speed estimate (the dash-dot line), the least
squares estimate (the dashed line), and the linear analytic phase speed (solid line).
The window size for both estimates was W = 25m, and the window shift was 12.5m.
The analytic phase speed is predicted accurately by the least squares method (the
dashed line is almost indistinguishable from the solid line) except at sharp changes
in bathymetry (the land-ward and seaward toes of the slope), where the large and
finite window size smears the corresponding sharp change in phase speed. Linear
interpolation is used through the rest of this study based on the ease and simplicity
of implementation and the reasonable accuracy of results. The cross-correlation
estimate as is expected, shows larger errors in the deeper depths.

Figure 2.7 shows the phase speed estimated by the least squares method
for the same wave, but from velocity data instead of surface elevation data. As a
comparison both the estimated phase speeds are plotted along with the analytic
speed. There is hardly any difference between the two estimates. Spatial maps of
either surface elevation or particle velocity data could thus be used to predict the

celerity variation in space.
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Chapter 3

MATHEMATICAL FORMULATION

Linear or Airy wave theory, in describing wave propagation, is severely re-
stricted to a very narrow of wave conditions. The linear approximation states that
the ratio of wave height (H) to wavelength (L), the wave steepness parameter or
the wave slope (¢ = ka) be small, i.e, € << 1, where a is the wave amplitude and &
is the wavenumber (k = %’) Small amplitude waves are also characterized by the
relative wave height (6 = a/h) where h is the local water depth. Waves with e << 1
and & << 1 are thus called small amplitude or linear waves. When € or § ~ O(1),
the waves are called nonlinear waves owing to the large value of the scaled wave
amplitude. It is known that as waves approach from deeper water onto shallower
depths, the wave height increases in accordance with the decreasing water depth.
This phenomenon is known as shoaling and is derived from energy conservation
principles and geometric arguments (Snell’s law). Linear shoaling theory however,
significantly under-predicts the wave heights close to the beach.

As wave nonlinearity increases, and the limits of linear approximation are
crossed, large and unnatural discrepancies begin to show up between observations
and theory. These errors are because linear theory does not, include the generation
of higher harmonics associated with the fundamental wave, and which change the
shoaling wave profile, giving it sharper peaks and broader troughs. There are several
other nonlinear phenomena which cannot even be predicted by linear wave theory. In

the deep ocean on the other hand, where wave elevations are very small compared
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to their length, Airy theory provides a simple and reasonably accurate theory to
model various wave properties. To extend the range of applicability beyond the
linear limit, different wave theories have been developed by researchers, each having
its own share of advantages and disadvantages, but all of which have their own
domain of validity to within accepted levels of accuracy.

Two such wave theories or approximations to the exact solution of the water
wave boundary value problem, are the shallow water wave theory and the Boussi-
nesq equations. Since an accurate knowledge of depth is relatively of more impor-
tance in the shallow water regime, where the bottom topography undergoes frequent
and large scale transformations, the depth inversion algorithms developed here are
based on the above two wave theories. The shallow water equations, owing to their
simplicity are investigated first and the methodology extended to the more widely
applicable extended Boussinesq equations.

In the present inversion method, it is assumed that two surface images (either
spatial maps of surface elevation or particle velocity) lagged in time are given. All
computations are done in one horizontal dimension (the  direction). The images are
obtained from time-dependent models where discrete time stepping allows for the
storage of spatially dense images of elevation or velocities at separate instances of
time. The inversion model however requires the available hydrodynamic information
to be dense in space and not in time. The linearized wave equation is used to replace
all the time derivatives in the model equations by spatial derivatives, and hence

arrive at what will be called the time independent depth inversion equations.

3.1 Wave equation

The linearized frictionless long wave equations of motion are given by

% pg (81)
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FFor a horizontal bottom, upon cross-differentiating the above to eliminate u and v,

(3.2)

we arrive at the second order wave equation

2@, 0y _on (3.3)
ot By? ot?
where C' = y/gh is the shallow water phase speed.

For a periodic progressive wave form traveling in the positive 2— direction,
n = acos(kx — wt)

o . N won an
— =wasin(kz — wt) = b Gn _C(‘):::

ot
The wavenumber £ and the frequency w are implicitly assumed to be independent

(3.4)

of space (z) and time () respectively. This essentially states that the change in
position, in time, of a particle on the wave is equivalent to its spatial change in a
frame of reference moving with the speed of the wave. The functional dependency is
called the first order wave equation. Similarly, for a wave traveling in the negative

x— direction, 1 = acos(kz + wt), the wave equation is

%)
2 = sin(kz + wt) =

wdn _0n
ot “ e

kor O
The first and second order wave equations are used to transform the time-dependent
governing equations into the time-independent depth inversion equations to be used
in the depth inversion algorithm by replacing the time derivatives with the spatial

o : 5 g2 5 B2
derivatives (5 — C&, &5 — C?2

dx?

3.2 Linearized shallow water equations

In one horizontal dimension (z— direction), the linearized continuity equation

or the mass equation is given as

n & d(hu)

- = [ ;
Jt or . (3 6)
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The momentum equation is

ou @ B

ot TH dw e W)

If we consider the wave to be propagating in the positive x— direction, using (3.4)
we can replace the time derivatives with the spatial derivatives and arrive at the

shallow water depth inversion mass and momentum equations

on  d(hu)
—C— =) 3.8
dx * Ox (3-8)
ou on
—C— — = 3.9
C@:}: % e 9.}
If we now integrate along z— (assuming that C' is locally constant, i.c ¢ = 0) we
get,
—Cn+hu=A (3.10)
—Cu+gn=21B (3.11)

where A and B are arbitrary integration constants. If we consider pure wave prop-
agation without mean flow effects, then A = B = 0, since motion vanishes in the
absence of a wave. The case of non-zero values of the constants are discussed later in
section 3.5, where depth-uniform steady currents will be included into the inversion

algorithm.

3.3 Boussinesq equations

Standard Boussinesq models, in their derivation, assume that nonlinearity
and dispersion are small but not negligible, i.e O(p*) = O(§) < 1. This approxi-
mation to the long wave model thus includes an additional dispersive term. Ursell

(1953) defined a parameter, the Ursell number U,, as the ratio of nonlinearity to
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dispersion effects (U, = d/p?), which determines the validity of each model. If U, is
of O(1), nonlinearity and dispersion are of the same order and the Boussinesq model
is more valid than the shallow water model, though still being limited to relatively
shallow water areas. On the other hand, if U, >> 1, then the shallow water model
should be used.

The extended Boussinesq equations as derived by Madsen ef al. (1991) and
Madsen and Sgrensen (1992) included third order terms in the standard Boussinesq
momentum equations, and changed the linear dispersive and shoaling properties
in intermediate water. The linear dispersion is expressed by a rational polynomial
expansion (the Padé approximant) instead of a Taylor series expansion. By using
the horizontal velocities at a reference water depth (z,) as the dependent, variables,
Nwogu (1993) derived the extended Boussinesq equations with improved linear dis-
persion properties. He obtained the optimum value for the coefficient o = 0.39, and
the reference water depth of z, = —0.531h.

To extend the range of validity of the above modifications further, Wei ef al.
(1995) developed the fully nonlinear extended Boussinesq equations. Based on per-
turbation expansions, the velocity potential is expanded in a power series, where the
dependent variable is the potential at a reference depth. All the nonlinear terms in
the expansion are kept in the equations of motion. The resulting equations improve
the linear dispersion properties and other nonlinear properties such as wave shoaling.
The fully nonlinear time dependent equations have been programmed into a high
order numerical model based on finite differences, called FUNWAVE, developed at
the University of Delaware. Wave breaking, run-up and wave-induced currents have
been included into the original algorithm by Chen et al. (2000) and Kennedy et al.

(2000). The dimensional model equations are

= E(n,u,) +7Es(n, u,0) + f(2,9,1) (3.12)
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[U(U)]t = F('-’."a U, "”) I [Fl ('”)]-*- + 'Y[F2 (”s u, '”) + Ft(”; Uty ;Ut)] + By + B -+ Fsp
(3.13)

[V (v)]: = G(n,u,v) + [G1(w)], + Y[Ga(n, u,v) + G (1, ur, v,)] + G + Gy + G
(3.14)
where n(z,y,t) is the surface elevation, u(z,y,t) and v(z,y,t) are the horizontal
particle velocities at the reference water depth z = z, in the x and y directions
respectively. 7 is a control parameter determining the nonlinearity of the equations

to be used in the model, i.e, fully nonlinear(y = 1) and weakly nonlinear (y = 0).

The other quantities are defined as

= u+ hlbhugg + bo(hue) ] (3.15)
V. = v+ hlbthvyy, + ba(hv),,] (3.16)
= —[(h+n)ulz — [(h+n)v]y

—{alh.'a(u:,,x + Ugy) + agh?[(hu) g + (hv)ayl} 2

—{a1h® (uay + vyy) + ash?[(he) sy + (h)y, ]}y (3.17)

F = —gns— (vugs+ vuy) (3.18)

G = —gn— (uvy+vyy) (3.19)

Fy = —h[bihvgy + ba(hv)ay] (3.20)
G = —hlbihugy + ba(ht)ay] (3.21)



The higher order dispersive terms are defined as
2 1 o o
Ey, = —{[a1hn+ g?}(h. — %) (U + Vay) }

—{[aghn — %?;(h + )] [(ht) g + (hv) 4y ]}

. 1 .
~{[arh*n + 67?(;"2 —7°)] (tay + vyy) }y

~{lashn — gu(h+ )][(h)ay + ()]} (3.22)
Fy = {50~ m)ulus + v)s + (s + )y}

~{(ec = Ml () + (o) Je + ol -+ (b

— Al + (), + (e + )]} (3.23)
Go = —{50 =) [ulus + 1) + (a3},

(oo = Mul(h)e + () Ja + 0l(h)s + (b))},

[+ (o) + (s + )P, (3.24)
F*o= {rPl(ue + ]+ nllbu)ls + ol 1) (3.25)
G = {rPl(u)e+ (we)y] + i) + [Bou)] ]y (3.26)

Fy, and Gy, denote the wave breaking terms, F, and G} the terms due to bottom
friction and Fy, and G, are the sponge layer terms in the 2 and y directions respec-
tively. f(z,y,t) is the source function term used to generate waves internally in the

model,

1 1 - 4 I s _
a = §ﬁ2 — 5 h = B+ §,b| = 5,52,!;2 =4 (3.27)

where # = %= = —0.531.

36



3.4 Nwogu’s linearized equations

Nwogu’s weakly nonlinear Boussinesq equations in one horizontal dimension
(z) are found by setting v = 0 in (3.12-3.13). If we disregard the wave break-
ing, bottom friction, sponge layer and source function terms, linearize the resulting
equations, replace the time derivatives with the space derivatives, and integrate
along = as above, we arrive at the linearized time independent mass and momentum

inversion equations

C?,} = hu + ”-Ih-gum:n + ay h'z(h’?“')-"::“ (328)
%l = U+ h[bihtizs + ba(htt)zs] (3.29)

where the parameters a;,as,b;,and by are dimensionless parameters previously de-

fined in (3.27).

3.5 Fully nonlinear extended Boussinesq equations
Starting with the fully nonlinear extended equations of Wei et al. (1995) and
proceeding in a similar fashion, but keeping all the nonlinear terms, we get the fully

nonlinear inversion equations. The mass equation is

O
h, ‘:}ﬂ = Pu == CJ”'J: 21 R?‘r‘:y:r: (330)
where
= 1+ (—g + azh) he,

— 2(—;—? + a — 2hy)

TR
w i (_E + agh)h

R = ﬂ.|_h—2+ 9

The momentum equation is
Lu+ Mug + Nuge = S — gn (3.31)
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where

L = 1+4byhhy,

M = 2bhh, — nh,
2 2 0’
N = h%b + bh* — o= nh

?.‘,2

S = [_? - {%(zﬁ — )t} — { (20 — ) [u(h1e) ) }
— S+ ) — gl

where all the nonlinear convective terms have been collected in S.

3.6 Including mean flow effects

The inversion equations derived above cannot account for current effects,
since the integration constants involving the mean flow quantities were neglected.
Wave transformation such as shoaling and wave breaking and the associated nonlin-
ear effects in shallow water gives rise to several mean flow effects such as changes in
the mean water level (setup and setdown) and in velocities, giving rise to currents
(undertow, rip currents and mean drifts). Tidal currents may also be present near
river mouths and estuaries, which would modify the mean levels of the water mass
and change its velocity profile. The wave phase speed is also Doppler shifted by the
presence of a mean current. With respect to a stationary frame of reference, the
wave would appear to travel faster on a following current and slower on an opposing
current. This shift in the phase speed would be inferred as a corresponding (but
spurious) change in the bathymetry in the present depth inversion algorithm. Any
inversion procedure to determine the correct underlying bathymetry near the coast

has thus to take into account the effect of currents.
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The mean of a wave quantity, say ((z,t), is usually calculated by time aver-

aging (or wave averaging) over a wave period, and is defined mathematically as

T
Llpl= [ C(xz,t)dt (3.32)

In one horizontal dimension (), the nonlinear shallow water equations, after
replacing the time derivatives with the spatial derivatives, can be integrated along

2 to arrive at

—Cm + [ur(h+m)] = Ay (3.33)
Usy?
—Cug + T + gne = By (3.34)

where the subscripts 1 and 2 denote quantities in the mass and momentum equations
respectively. This convention will be followed throughout the rest of this thesis. We
can split the total surface elevation and orbital velocity into a pure wave part and

a wave averaged part
N="1y +1,U="1Uy+u (335)

where w denotes the oscillatory part and the over bar —, the mean part of a quantity.
Substituting in the mass and momentum equations (and dropping the subscripts 1

and 2 at present), we get

_C("}’m + 1) + U (h + 7 + ﬁ) + uh + un + un, = A (336)
e e+ '”sz b -
—C(U + uy) + (T + Utly) + 97 + g1 = B (3.37)

The integration constants A and B can be determined by considering the case when

waves are absent, in which case

A=uy(h+m) (3.38)
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Uz?

B =
2

+ 972 (3.39)

[t is obvious that when mean flows are present, the integration constants cannot
be neglected. Consider the case when total velocity data is available but not given
separately as wave and current parts. The elevation and depth are unknown. The
mean flow is a time averaged quantity by definition, but since time series of velocity
data are not available (only spatial information at two time instances is given), we
calculate the current from the total velocity by locally averaging in space over each
individual wavelength. This would be exact for a strictly periodic wave in space
and time. The first approximation in this formulation is thus to assume that the
spatial variation of current can be obtained by averaging the total velocity over the
local wavelength (which also changes in space). The local wavelengths similarly are
obtained by a zero crossing method for calculating 7. To calculate %, zero crossing
positions could not be identified because the total velocity at times remained either
positive or negative over large distances (more than the local wavelength). The
local wavelength was instead defined as the distance between two successive crest
positions in the velocity map. After calculating the mean quantities @ and 7, the
wave part of the elevation and velocity is calculated by subtracting from the total

variable,
Uy =U— Ty Moy =1 —T] (3.40)

If both the elevation and velocity variables are provided as data, A and B can be
evaluated from (3.38-3.39) using an assumed h and then an iterative procedure can
be developed till the depth converges. However, with the availability of only one
kind of data, two more approximations can be made to solve (3.36-3.37) including

mean flow effects. Let us consider the case when only total velocity is available and
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the current is assumed to be time invariant and depth uniform. It is obvious that

A and B cannot be determined, since 77 is unknown, and so is h. We assume that
] (3.41)

and so A =uh and B = Eji It is still difficult to calculate A, since the depth h is
unknown. To overcome the above difficulties, we formulate the problem in a slightly
different manner. Since (3.36 - 3.37) involve both the wave and mean parts of the
variables (because of which A; # 0 and B; # 0), we formulate the corresponding

equations valid only for the pure wave part

_Cﬂ?hm & i T-‘t'lw(h' + r"?Iw) =0 (342)

U J‘Z
_'C'[]T.f,z.u, A 2—2“' 3t gy = 0 (3"13)

where C' = Cyy + 1, is the Doppler shifted phase speed. The equations above are the
same nonlinear shallow water inversion equations (3.33-3.34), but are exact when
solving for pure wave motion (when the integration constants can be set to zero). It
is to be noted that A, and By have not been neglected but cancel out with the mean
quantities in the mass and momentum equations. The phase speed Cj in (3.42-3.43)
is the corrected phase speed which could be obtained in two different ways. It could
be estimated from the spatial maps of the pure wave part of the total velocity, or
by subtracting the Doppler shift effect, which is essentially the current, from the
phase speed estimated from the total velocity images. The mean velocity found by
averaging spatially over a local wavelength is subtracted from the total velocity and
the pure wave part is substituted into the above equations.

If on the other hand, mean flows are present and only surface elevation data
is given in the form of spatially dense images, the determination of the pure wave
quantities remains ambiguous. The mean currents cannot be determined from el-

evation data and neither can they be neglected in favor of the mean water level
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changes. The present modification for mean flow effects to the inversion method

can thus only be performed with total velocity data.

42






Chapter 4

INVERSION ALGORITHM

The estimation of local phase speeds from spatially discrete information in
the form of surface elevation or particle velocity has been formulated in chapter 2.
Since the available information is dense in space, but known only at two separate
time instances, we have developed the time-indendent inversion equations in chapter
3. In this chapter we describe how the inversion equations can be solved with
given surface data and computed phase speeds, to estimate the unknown depth and
the particle kinematics. Consider the time independent linearized shallow water

inversion equations as derived in section 3.2

—Cm + huy =0 (4.1)

—Cuy +gm2 =0 (4.2)

where the integration constants have been neglected. Let us begin by assuming that
only surface elevation data (7)) is available and no information about velocities is
given. The depth inversion problem remains to estimate the true depth (h) from
given surface elevation data and calculated phase speed C'. The ratio of the mass

and momentum equation velocities is

2
W _5Sm (4.3)

gy ghne
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Figure 4.1: Assumed depth hy (- -) compared to the actual depth h (-)

The first step in the inversion algorithm is to assume a starting depth, and in
every case considered here, a flat bottom of arbitrary depth throughout the domain is
fixed as a first guess. Let this be denoted as hy. Figure 4.1 shows both the assumed
depth and the actual depth plotted against the grid position in the z-direction
(). Since the grid spacing dz is 0.25m, in physical units, 7z = n corresponds
to a distance of (n — 1)dz from the origin. This discretization and notation will
be followed throughout the rest of this thesis. The flat bed here is taken to be
somewhere between the maximum and minimum actual depths. We then substitute
the elevation data into the mass and momentum equations so that n;, = 7. = n.
This essentially means that the data from a single image is substituted into both
the mass and momentum equations. The computed phase speed is expressed in
terms of the shallow water depth as C* = ghyy,, where the shallow water depth (h,)

is the first estimate in the inversion. C is calculated from the given true surface
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elevation data and is hence a correct representation of the true depth, and therefore,
the first estimate of depth (hg,) would be incorrect. On substituting for C' in terms

of hgy, into (4.3) we get

uy g

Ug - h—(} (44)

If the assumed depth (hg) is less than hg,, then u; > uy. Figure 4.2 shows the
mismatch in the velocities calculated from the mass and momentum equations. It
can be seen that wherever the assumed depth is less than the shallow water depth,
uy is greater than uy and vice versa. At a grid position of about iz = 1000 where
ho = hg,, the velocities are also equal. A new estimate of depth (h,e), which in
the first iteration is the shallow water depth (hpew = hg,), would be given (based

on this velocity mismatch) as

Uq
hrmw = h-(!_ (45)
Uy

The depth is iteratively updated until the ratio of velocities calculated from the
mass and momentum equations approaches unity and the estimated depth iterate
approaches the true depth (hpe — h).

Consider the parallel inversion case, when only particle velocity (u) is given
over the domain. The surface elevation 7 and depth A are unknown quantities. From
(4.3), the ratio of elevations from the two equations on eliminating the phase speed,
is

?'}_1 _ I
e he

(4.6)

where u; = uy = u. If the assumed depth is less than the shallow water depth (the

first estimate), 7 is also less than 7, and where the assumed depth is greater than
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Figure 4.2: Velocities calculated for the first estimate of depth (hpew = hgp).
w1 (——) and uy(—)

the shallow water depth, n, is greater than 7,. Starting from a flat bed, a new depth

estimate can thus be obtained from

h’nmu =1/ 0 ”_2 (4 7)

T

As before, the depth is updated till the ratio of surface elevations approaches unity.

4.1 Linearized inversion equations

The linearized inversion equations based on Nwogu’s linearized extended

Boussinesq equations are

huy 4 @y h3uy gy + ash?(haty) ge
= PTG KC o ° (huy ) (48)

n {‘“'2 + h’[blh’u'ﬁmm T 3)2(}3“2):“‘_]}0
2 —_—

p (4.9)
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Based on the type of data availability, we can differentiate two separate cases. CASE
I, when only surface elevation data () is given and the velocity and depth are
unknown quantities, and CASE II, when only particle velocity data (u) is given, the
elevation and depth being unknown.

Let us first consider the mathematically simpler CASE II. The right hand
side of both the mass and momentum equations can be calculated (the depth h
though being an assumed quantity, is known) by substitution of the variables and
their derivatives. Central finite differences are used to calculate the derivatives. 7,
and 7, are calculated over the entire spatial domain by solving the two equations.
It is to be noted that u; and uy here do not represent the data from two separate
images. The subscripts are merely used to differentiate the variable in the mass
and momentum equations. Although the phase speed C' is calculated from the two
given velocity images (say wg, and wugy), either image (ug, or ugy) can be used as
given data for both 4, and uy. The actual inversion (as opposed to the least squares
estimation of phase speed) is thus performed with only one image and the final
converged estimated elevation profile compared to that particular image data. The
domain is subdivided through finite size windows of size W. The window is shifted
across the domain over discrete distances to calculate a new estimate of depth

h’nl‘.m(.);) = h’ﬁ!d(.?)( t=j+W/2

Zi:j—w,fz | (4) |

where /3 is a kind of shallowness parameter, similar to the one used by Kennedy

(4.10)

et al. (1999) in their depth updating algorithm. f = 1 leads to the shallow water
estimate of the depth as would be obtained from (4.7). The effect of the shallowness
parameter in the convergence of the depth iterates is discussed in the next chapter.
i and 7 denote spatial grid positions. hgg = hy and Ay = hgy, in the first iteration
of depth. W is the window size over which the summation is done and has to be

approximately on the order of a wavelength to reduce numerical noise and provide
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enough wave information within the window. The absolute values of the surface
elevation are taken to prevent cancellation from positive and negative values within
a wavelength, which would cause the ratio to take on unnaturally large values.
Instead of the modulus, the squares of the surface elevation can also be used with
no perceptible changes in results. The summation is therefore done over W + 1 grid
points, and is defined at the center of the grid at ¢ = j. These point estimates
are then linearly interpolated and extrapolated to the boundaries, to get a depth
estimate over the entire domain.

The mismatch in surface elevations calculated from the two equations is also
used as a convergence criterion to stop the iteration process. The total error over

the entire domain is defined as

i=N

e= Al Im@)| - mG)] [} (4.11)

i=1
where N is the total number of grid points in the domain. Theoretically, the true
value of the error, when the iterated depth converges to its final value, should be
e = 0. But because of approximations in the solution, such as a linear interpolation
over the domain, the mass and momentum equations cannot be solved to give exact
values of the elevations. The error ¢ therefore always is a finite nonzero quantity.
Since a minimum error also cannot be predefined (because the true surface elevation
is an unknown quantity), the iteration is terminated when the error approaches
a constant value within a predefined arbitrary tolerance. Figure 4.3 shows the
total mismatch between the calculated surface elevations summed over the domain,
plotted against the number of iterations for the linearized case. Based on previous
model runs, the maximum number of iterations for this case was fixed at 9. The error
drops to its minimum constant value after about 5 to 6 iterations. The algorithm

thus converges to a final depth and surface elevation estimate very quickly.
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niter

Figure 4.3: The total mismatch of surface elevations (¢) at successive iterations
(niter) in the linearized inversion case.

A parallel inversion method (CASE I) was developed, assuming the avail-
ability of only surface elevation data. The inversion problem reduces to solving
the mass and momentum equations for u(xz) and h(z). The linearized inversion

equations (4.8-4.9) can be recast in the following manner

wy[h + agh?ha,] + Uy z[ash®2h,) + w4 (ar + a2)h?] = Cny (4.12)
g1 + bohhgs] + g [2bahhy] + sy, [(b1 + by)h?] = ﬂgz (4.13)

Since the true values of the surface elevation are given (1, = 5, = n) and C' is
calculated from the given surface images, the right hand side of both the equations
is known. On using centralized finite differences for the derivatives in the unknowns

ty and ug, the linearized mass and momentum equations become tridiagonal in the
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unknowns u; and uy respectively, and are solved using a tridiagonal matrix solver.
Tridiagonal solvers require boundary values to be specified for the unknown, which
here are the unknown particle velocities u; and uy. We therefore arbitrarily set the
values uy(1) = u;(N) = 0 and uy(1) = uy(N) = 0. This approximation has been
seen to affect computations marginally near the boundaries and does not propagate
into the domain. A new estimate of depth is obtained as
=itz (G
)= B

Zi:j-—-w,f‘z |ua(7)|

The mismatch in velocities calculated from the mass and momentum equations is

i (4.14)

used as a convergence criterion, and the total error is defined as

i=N

e=> {| lwm(@)| - ua(i)| 1} (4.15)

i=1

The iteration is similarly terminated when e approaches a constant, value.

4.2 Fully nonlinear inversion equations
Let us consider CASE II first, when only velocity data is available. The mass

equation can be written as

Pim+Quni + Ry = S, (4.16)

h*uy,, — h(huy)

Ijl = [“’l _C—|—(Llh'2“'1:l::r:+ G = 9 — +”’2h(h'“1):r:n:]
hty) g

Q= [k
UL g

R = [—IT-]

Sy = [—arhPuygy — huy — agh®(huy) o)



Dividing throughout by R, and collecting all terms on the left hand side gives
7, + Qonfi + Pamy + Sy = 0 (4.17)

where @y = %—, 5 = f;—'l and S, = %}L Equation (4.17) is a cubic equation in
the unknown 7; and has analytic solutions which can be found in any standard

mathematics text. The momentum equation can be written as

Psny + Q:s?}g = S3 (4.18)
Py = g—ug(hug)es + (hug)suz, + Chytg, + Chug,,
UM g it “’23:2 o g “"2:::.7:0
Qs = — :
2
Sy = Clug + h*uguy(by + ba) + byhhyguy + 2byhhy s,
U2 ZPUgUo, (h.uz)r2
— T = QT o) Z(,._’LLQ(}?,'-'.LQ)_-,:;,: s T

Dividing throughout by @3 and collecting all the terms on the left hand side, we get
N5 + Pyng + Sy =0 (4.19)

where Py = % and Si= %35 The momentum equation (4.19) is quadratic in the
unknown 7, and has standard analytic solutions. Since there exists more than one
solution for both the mass and momentum equations (the equations being cubic
and quadratic), of which only one is the correct value, and since solving the mass
equation involves evaluating complex quantities, a simpler solution procedure using
Newton Raphson method was used. It was found, however, that solutions from
either method for both the mass and momentum equations were the same. The
Newton Raphson method requires an initial guess or a seed value, which in this
case was provided by first solving the linearized mass and momentum equations

(4.8 - 4.9), and then substituting the solution as an initial guess to solve (4.17) and



(4.19). The iteration of depth remained the same, based on the mismatch between
the calculated values of 7, and 7.

The inversion procedure for CASE I can be formulated by rewriting (for
convenience) the fully nonlinear inversion equations (4.17 and 4.19) in terms of the

unknown velocities u; and uy. The mass equation is

(@
Bt + Mt - Nt e = B (4.20)
h+m
Ly = [1+ (—%‘ + agh) hy)
M, = 2(—%1 + ash)he
B —
N, = [ah*+ m(h = m) + (—m + ayh)h]
6 2
The momentum equation is given by
K, —
Lg'{ffz + Mz’uzm = Ng‘ugm = —?—(ﬂ (421)
Ly, = 1+ byh%h,,
My = 2byhh, — noh,
2 'S
Ny = h*(by + b)) — i 1a2h
K, = [—7 = E(Zn = 1" Juptings } — {(2a — m2)[uz(hus),,]}

_ %{[(hug)m - ?}2'152:!:]2}]

Since 1y, h and C' are known quantities, the mass equation is tridiagonal in u; and
can be solved using tridiagonal matrix solvers, where again the boundary values for
wy and wuy are set to zero. The left hand side of the momentum equation is also
tridiagonal in uy, but the term K, contains nonlinear convective terms involving

the unknown wu, itself. The momentum equations is thus solved iteratively. At the



first iteration all the nonlinear terms in u, are neglected (K, = 0) and the following

linear tridiagonal equation is solved for wu,
L2“’2 + ﬂf?.“&r: + N?“'l:t::n ==t (422)

The solution to (4.22) is used to calculate Ky. K is then substituted into
(4.21) to calculate the solution to the fully nonlinear equation. Based on the mis-

match between u, and uy, the depth is updated as before.

4.3 Modifications due to mean flow effects

The existing inversion methodology has to be modified to account for pre-
scribed mean flows in the given data, in both the surface elevation and velocity
maps. The synthetic input data is generated by specifying a constant volume flux
(q) across the spatial domain in FUNWAVE. The depth uniform time invariant

current is given by

Ulz) = Jif ) (4.23)

where h(z) is the spatially varying water depth and ¢, is a constant volume flux per

unit width (in the y-direction). Since the images to be generated had to be purely
one dimensional, the width was fixed at unity throughout the domain. Due to the
varying depth, the current U changes with z. A following or opposing current can
be specified by choosing a positive or negative value for the volume flux respectively.
Due to the current, there is also a depression in the mean water level which also
varies spatially across the domain.

Consider the fully nonlinear mass and momentum inversion equations
. 1

C\‘ -
LI“’I + M| Uy g + Nl”l:m: = D + A (424)
h+m
Ko — agne
Louy + Moy, + Noty,, = % + B (4.25)



where A and B are the integration constants and the coefficients are the same as in

(4.20-4.21). We can split the total variable into a pure wave and a mean part as
m = Tw + (4.26)

and similarly for the other variables. The phase velocity C' is the Doppler shifted

speed due to the current
C=Cy+U (4.27)

We first neglect the integration constants, i.e A = B = 0. When the constants are
put to zero, the inversion equations reduce to (4.8-4.9), when velocity data is given,
and (4.12-4.13), when elevation data is given. Though the inversion equations are
the same it is to be noted that the input data used in the above equations has mean
flow quantities inherent in it and that the phase speed is Doppler shifted by the
current. It is expected that the results will be in error, and they are discussed under
CASE IIB in the next chapter.

The next step is to retain the integration constants in the inversion equations.
We however do not directly evaluate A and B in terms of the mean quantities.
Instead, the mean quantities are subtracted from the total given surface elevation
or velocity data and the resulting pure wave data is used as input to the inversion
model. As discussed before, we make the approximation that 77 = 7 = 0 and
can invert the depth for the case when only velocity data is given. The inversion

equations are thus reduced to

”:13111 ¥ Qz?ﬁm + ])2?,’1m + SQ =i (428)

n:jw + RI”Qm + Sd =) (429)



where the coefficients are the same as in (4.17) and (4.19) but involve only the pure
wave part of the quantities. The rest of the inversion process remains essentially the

same as before.
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Chapter 5

RESULTS

The synthetic input data (in the form of time lagged spatial maps of surface
elevation and orbital velocities) was generated by running the fully nonlinear time-
dependent extended Boussinesq model FUNWAVE. By changing the value of -,
the nonlinearity control parameter in the model, model runs were performed for
Nwogu’s linearized equations (v = 0) and the fully nonlinear extended Boussinesq
equations of Wei et al. (1995) (v = 1). The images were saved at specified time
steps separated by a fraction of a wave period. Monochromatic and groupy wave
conditions were simulated in the model. The phase speeds were calculated from
the saved images using the least squares method. With an arbitrarily assumed flat
bottom as the starting depth, inverted depths were calculated. The convergence
of the depth estimates was determined by recording the error (¢) and the depth
estimate at each iteration. Particle kinematics were computed after the inverted
depth had converged.

The inversion tests are broadly divided into two sections. Results under the
first section (CASE I) assume the availability of surface elevation data in the form
of two spatial maps at two different time instances. The second section (CASE
IT) shows the inversion results with velocity data given in the same form. In each
section, different input wave conditions are analyzed, and inversion is performed with
both the linearized and nonlinear inversion equations. For the first section, along

with depth estimates, the spatial variation of orbital velocities is also calculated and
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compared with the FUNWAVE results. Similarly, in the second section, estimated
maps of surface elevation are compared to those obtained from FUNWAVE. The
estimated phase speeds are compared to the analytic phase speed obtained from
Nwogu’s linearized dispersion relationship. Inverted depths are calculated in the
presence of initially prescribed mean flows for monochromatic waves and for fully

nonlinear equations with both surface elevation and velocity data.

5.1 Inversion with surface elevation data (CASE I)

Two different types of surface elevation data from the FUNWAVE model
have been considered, one in which there were no prescribed mean flows (CASE
IA), and the second in which an initial mean current was prescribed (CASE IB) in
the model. Inversion for CASE IB is done with the inversion equations where the

integration constants were neglected.

5.1.1 No prescribed mean flows in surface elevation data (CASE IA)
There were no prescribed mean flows in CASE IA, i.e 7 = 0 and U = 0.
We first discuss the linearized inversion results. A progressive monochromatic wave
with wave height H = 5em, wave period T = 4.369s was allowed to propagate over
a 1 : 30 plane slope. The deep water depth was hy; = 3.5m and in the shallow
region, the water depth was hy, = 0.5m. The model (FUNWAVE) grid spacing
was dz = 0.25m and the time step was dt = 0.02s. The total domain length was
ne = 3001 (iz denotes the spatial grid location). Sponge layers of width 25 m
and 50 m were applied on the seaward and shoreward boundaries respectively. The
nonlinearity parameter in FUNWAVE was v = 0. No wave breaking was observed as
the wave propagated over the changing topography. The elevation and velocity maps
were stored at six time steps itl = 20050, it2 = 20075, #t3 = 25000, it4 = 25050,

itH = 30000 and t6 = 30100. The first image was collected after about 400 waves
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Figure 5.1: (a) Wave surface images for CASE TA generated in FUNWAVE with
v =0 (b) Assumed(- -) and actual depth(-)

had been generated by the source function, which is much longer than that needed for
the first few transient waves to die out. Steady state wave conditions had thus been
reached before the data was recorded. The time lag between two consecutive images
was varied to investigate possible effects on phase speed and depth estimation.
The top panel (a) in Figure 5.1 shows the two surface images. The dashed
line is the image at it5 and the solid line is the later image at 7t6. The images are
thus separated by 0t = 2.0s which is about half the wave period. The effect of time
lag on the estimate of wave phase speed or the depth estimate in the monochromatic
wave tests was negligible. However, in the groupy wave tests, the time separation

between the images does affect both the speed and depth estimates markedly, and
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Figure 5.2: (a) Analytic (-) and estimated (- -) wave phase speed for CASE IA.
(b) Total velocity mismatch (€) at successive iterations (niter)

will be discussed later. The z-axis (iz) shows the spatial grid location and the y-
axis shows the surface elevation. Even though FUNWAVE was run with a spatial
domain of 3001 points, in all the inversion tests the domain has been truncated to
get rid of the sponge layers and parts of the uninteresting flat regions on either side
of the slope. In the bottom panel, the actual analytic depth used in FUNWAVE to
generate the depths is plotted as the solid line. The dashed line shows the assumed
depth, which in this case was a flat bottom of depth h = 2.0m.

The linear analytic phase speed (solid line) is plotted with the least square
estimated phase speed (from the two surface images) in the top panel of Figure 5.2.
The window size was W = 25m (which in grid numbers, shown in the figures as

iz, means iz to iz + 100, since the grid spacing was 6z = 0.25m) and the window
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Figure 5.3: Estimated inversion depths for CASE IA, f = 1.0: niter=1(.),
niter=2(-.), niter=3(- -), niter=>5(-)

shift (ws) was ws = 5m, which means that the wave celerity was estimated at five
equidistant points within a window. Linear interpolation was done to calculate the
celerity variation over the whole domain. The analytic speed is estimated accurately
except at the sharp corners in the bathymetry, because of the large finite window
size. The bottom panel shows the absolute value of the velocity mismatch summed
over the whole domain (€), plotted against the iteration number in the inversion
algorithm. Convergence is fast and the error decreases monotonically to its minimum
value within about five iterations. No predefined tolerance values were set for a
convergence criteria. Based on previous inversion tests, the maximum number of
iterations was fixed at 9. This is somewhat of an overkill, since the iteration could
be stopped without affecting the results, after about five iterations.

Figure 5.3 shows the estimated depth iterates for the particular iteration

number. The shallowness parameter = 1.0. The depth converges to its final value
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Figure 5.4: (a) Actual () and inverted depth (- -) for CASE IA. (b) Actual(-)
and estimated velocities { u; (), uz (- -) }

in the first couple of iterations. The dotted line is the first estimate calculated from
the shallow water inversion equations. The velocity mismatch drives this shallow
water estimate to its final converged value. The top panel of Figure 5.4 shows the
final converged inverted depth compared to the actual or true depth.

The depth estimate agrees well with the analytic bathymetry except at the
sharp corners. The smearing in phase speed translates to a corresponding loss in
resolution in the inverted depth. From (4.1-4.2), for a given depth, we can see that an
overprediction of phase speed leads to an overprediction in u, and an underprediction
in uy. Similarly, if the computed phase speed is smaller than the true phase speed,
1y would be smaller than w and u, would be greater than u, where u is the true

value of the particle velocity. This can be observed by comparing Figure 5.2 (top
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Figure 5.5: Inverted depths for CASE IA, f = 1.5: niter=1(.), niter=2(-.),
niter=3(- -), niter=>5(-)

panel) and Figure 5.4 (bottom panel) near the corners of the bottom slope. Also,
from (4.5) it can be seen that a discrepancy in the computed velocities translates to
a corresponding error in the inverted depth. For example, at the offshore toe of the
slope, the phase speed is underpredicted, which leads to an underprediction of %, and
a corresponding underprediction in depth. The comparison of actual and estimated
velocities (from the mass equations (u;) and the momentum equation (uy)) shows
that the velocity estimates are accurately predicted from the inversion equations.
This additional ability of the present inversion methodology (to accurately predict
the velocities, given surface elevation) can be used effectively in other inversion
algorithms where both variables are required to estimate depth, but only one is
available.

The shallowness parameter can be increased to accelerate convergence, as

can be seen by comparing Figure 5.3 with Figure 5.5 where # = 1.0 and 8 = 1.5
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Figure 5.6: (a) Actual () and assumed depths for CASE 1A : h,,1(.), hes2(-.),
has3(- =). (b) Total velocity mismatch at successive iterations dur-
ing inversion with the different assumed depths h, 1(%), h.s2(+) and
has3(0)

respectively. An increased value of  seems to direct the depth iterates towards
the true depth more quickly. However, the iteration has been observed to begin
diverging at # > 2.0. For all the inversion cases, the shallowness parameter has
been kept fixed at unity. A similar parameter was used by Kennedy et al. (1999) in
their ratio of estimated and calculated phase speeds to update the estimated depths
based on the phase speed mismatch,

The inversion methodology is based on the mismatch in velocities calculated
from the mass and momentum inversion equations for an assumed depth. In the
inversion case just discussed, the assumed depth (even though it was a flat bottom)

was taken as an intermediate value between the minimum and maximum true depth
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(Mypin = 0.5m < hy = 2.0m < hyee = 3.5m). The minimum and maximum values
are not known a priori, and assuming an intermediate flat depth as the starting point
for the inversion is thus impossible. Three different starting depths were considered,
all of which were constant across the domain. In Figure 5.6 (a) are shown the three
assumed depths along with the actual depth. The dashed line (h,3) represents the
assumed depth which was everywhere shallower than the actual depth, the dash-
dot line (hy2) being deeper everywhere than the true depth and the dotted line
(hol) represents the case considered before. In the bottom panel is plotted the
total velocity mismatch throughout the inversion for the different assumed starting
depths. Except for the error at the first iteration of hyl shown as circles (o), the
convergence is uniform for all the three cases. This is evident from the depth and
velocity estimates for inversion tests performed with the three different starting
depths, shown in Figure 5.7. Only the velocity estimate from the mass equation
(u1) has been compared in the bottom panel. The estimated velocity from the
momentum equation (u,) is also independent of the starting depth. Any arbitrary
depth can thus be used as a starting point for the inversion.

The same wave parameters used above for the linearized inversion, were used
to simulate waves using the fully nonlinear equations in FUNWAVE (y = 1). Surface
images were saved 2 seconds apart and used to calculate phase speeds and estimate
depths based on the fully nonlinear inversion equations. The model parameters
remained the same. Figure 5.8 (a) shows the surface elevation maps, the dashed
line being the first image, and the solid line being the image 2 seconds later. The
effect of nonlinearity in the model equations can be seen in the modulation of the
wave in the shallower flat region because of the interaction between the primary
wave and the recurring harmonics. The wave shoals as it climbs up the slope and
the nonlinear transformations modify the wave form. The bottom panel shows the

actual and assumed depth. The linear analytic phase speed and the estimated phase
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Figure 5.7: Actual (-) and estimated depths for CASE IA obtained with hgl(.),
ho2(-.), ho3(- -). (b) Actual () and estimated velocities (u;) with the
different assumed depths
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Figure 5.9: (a) Linear analytic (-) and estimated (- -) phase speeds. (b) Actual
(-) and inverted (- -) depths.

speed are plotted in Figure 5.9 (a).

The window size was W = 25m, and the window shift was ws = 6.25m. The
actual depth is seen to be estimated well by the fully nonlinear inversion, except at
the toe and the shallower part of the slope. This error in the inverted depth can
be explained as before by noting the discrepancies in the phase speed comparisons
(Figure 5.9) and the velocity comparisons in Figure 5.11. The nonlinear inversion
algorithm also converges very quickly within the first five iterations. The estimated
depths at each iteration are shown in Figure 5.10 (b). Once the depth has converged,
the corresponding particle velocities (at the final iteration) are evaluated from the
nonlinear mass and momentum equations. The true and estimated velocities are

plotted in Figure 5.11. The velocity from the mass equation is slightly overpredicted
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Figure 5.10: (a) Total velocity mismatch (€) at successive iterations. (b) Inverted
depth estimates at successive iterations : niter=1 (.), niter=2 (-.),
niter=3 (- -), niter=>5 (-)

and from the momentum equation slightly underpredicted in the shallower depths.
This is due to the corresponding overprediction of phase speed, and which leads to
an overprediction of depth at the shoreward toe of the slope.

To simulate groupy wave conditions, a time series generated from a TMA

spectrum program was used as an input to FUNWAVE. The peak frequency (f, =

1
%

) was 0.229 s~'. The maximum frequency (fn.e) was 0.40 s~'. The significant
wave height (H,) was 0.05 m. The resulting time series and spectra are shown in
Figure 5.12.

Two images were taken at itl = 30125 and 2 = 30175 and are shown

in the top panel in Figure 5.13. The images were generated in FUNWAVE with
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Figure 5.11: Actual(-) and estimated { u,(.), ua(- -) } velocities for CASE TA
with fully nonlinear inversion equations
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Figure 5.12: (a) Input time series in FUNWAVE, v = 0 (b) Energy spectrum for
the time series (f, = 0.229s71)
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Figure 5.13:

(a) Surface images generated in FUNWAVE from Nwogu’s linearized
equations (b) Linear analytic (-) and estimated (- -) phase speeds
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Nwogu’s linearized equations (y = 0). The bottom panel shows a comparison of
linear analytic and estimated phase speeds. It can be seen that in the deep water
portion of the slope, the estimated speed deviates from the linear phase speed.
There are several reasons for this discrepancy, which is related to the groupiness of
the signal and is discussed in greater detail later. The phase speed and therefore
the inverted depth estimate depend on the time instants the surface images are
saved. Due to the incorrect representation of the phase speed by the least squares
estimate, the final converged inverted depth (dashed line) as shown in Figure 5.14(a)
also cannot predict the actual depth in deeper water. The estimates of particle
velocities from the mass and momentum equations are however accurate and cannot

be distinguished from the actual profile plotted in Figure 5.14 (b).
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Figure 5.14: (a)Actual () and inverted depths from a single image
niter=1(.),niter=2(-.), Converged depth (-) (b)Actual(-) and esti-
mated velocities (uy(.), up(——))
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To investigate the effect of the groupiness of the signal on the errors in the
phase speed estimate, the same time series as above was simulated in FUNWAVE
to generate one hundred surface images. The first set of fifty images were saved at
random time steps starting at it, = 20099 and ending at it, = 29501. There were
thus fifty random images in a total time interval of 188.04 seconds. Each image
in the second set of fifty images was collected one second after the corresponding
image in the first set to simplify the phase speed calculation for each pair of images.
The time interval between corresponding images in the two sets was thus constant
at 6t = 1.0s. The actual analytic depth and the assumed initial flat depth is shown
in Figure 5.15(a).

The bottom panel shows the random time steps for the first set of images
sorted in ascending order in time. Fifty estimates of phase speed were thus obtained
from each pair of images and the results are shown in Figure 5.16. For each estimate
of phase speed (from one pair of images), inverted depths were computed with both
images of each pair. The depth estimates obtained from the first fifty images are
shown in Figure 5.17 compared to the actual depth. It can be seen that all the
inverted depths converge to the true depth in the shallower part, but are randomly
distributed across the frue value in the deeper portion of the depth and along the
slope. The reasons for discrepancy in the deeper portion are discussed later. The
inverted depths from the second set of fifty images are shown in Figure 5.18 and
show the same features. The inverted depths obtained by averaging over the two sets
of fifty estimated depths are plotted along with the true depth in Figure 5.19. The
improvement in the predicted depth obtained by averaging can be seen by comparing
the averaged depth to that obtained from a single image, as shown in Figure 5.20.
It is expected that the error would decrease with an increased number of images
considered for averaging. For irregular wave conditions also, a similar averaging

would lead to better agreement, with the actual depths and particle kinematics.
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Figure 5.15: (a) Actual(-) and assumed initial depth(- -) (b) Random time steps
used in FUNWAVE (7 = 0) to generate the first fifty images.



To explain the errors in the estimated phase speed, a simple wave group was
numerically generated using two sinusoidal propagating wave forms with slightly
differing wave frequencies. The carrier wave characteristics were 7' = 4.369s and
H = 0.05m. The wave group was allowed to propagate over different depths with
0.2317 < o < 4.225, which ranged from shallow to deep water. Figure 5.21 shows
three such wave groups. Two snapshots were taken of the propagating group for

-

each case at a time interval §t = 1—2 and the speed of each individual peak and crest
in the wave form calculated by calculating the distance each peak or crest moves
and then dividing that distance by ot.

Figure 5.22 shows the computed speed for each extremum in the wave group
plotted along-with the carrier wave speed (solid line). The x-axis shows the surface
elevation extremum number in the group. Consider the shallowest water group
where ji = 0.797 which is plotted in panel (a) in Figure 5.21. The first peak occurs
at an extremum number N = 1 and the node in the wave group is close to N = 10
for this case. It can be seen from the dotted line in Figure 5.22, that as we approach
the node of the wave group (N = 10) from either side, the estimated speed deviates
from the carrier speed. This error is maximum close to the node, i.e, at N = 10 for
the shallowest case and N = 6 for the deeper water case where the error is more
than 20 % of the carrier speed. This is due to the modulation of the wave form
which causes a slope in the wave envelope and which increases towards the node.
Another point to note is that the error between the carrier phase speed and the
computed value increases as we go from shallow to deeper water, which can be seen
from the difference between the dotted and dashed lines from the corresponding
solid lines in Figure 5.22. The error at the respective node increases from 7 % to 20
%. This explains the large and random errors in the estimated phase speeds seen in
the groupy waves case (Figure 5.16) in the deeper part of the depth. Each time we

evaluate the phase speed close to a node of the wave form, the estimate is in error.
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Figure 5.16: Linear analytic () and phase speeds estimated (- -) for each pair of
images saved at the random time intervals
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Figure 5.18: Actual(-) and estimated depths from the second set of fifty images
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Figure 5.19: Actual(-) and estimated depth averaged over first set of images(-.)
and estimated depth averaged over second set of images ()

As demonstrated, this error can only be minimized by averaging over a large set of
images. In the shallower part of the depth, the waves in the group are propagating
at speeds independent of individual frequencies and are dependent only on the local

water depth. The errors in the estimated phase speed are thus small.

5.1.2 With mean flows present in surface elevation data (CASE IB)
We now consider CASE IB, where mean flows were present in the input
data (spatial maps of surface elevation) and where the integration constant were
neglected in the inversion equations. This test case thus demonstrates the errors
in the estimated phase speed and inverted depth by not accounting for mean flow
effects during inversion. A constant volume flux (¢ = 0.1m?/s) was specified. The
resulting current and mean water level variations are shown in Figure 5.23. The

current is constant over the flat regions of the slope and reaches its maximum value
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Figure 5.20: Actual(-) and estimated depths for a single image (-.) and averaged
over a hundred images (- -)

at the shallowest depth. The mean water level variation is observed to be small (due
to the weak current). Fully nonlinear extended equations were used to compute the
wave images, all other model and depth parameters remaining the same as before
for CASE IA. The surface images separated by df = 1.0s are shown in the top panel
of Figure 5.24.

The effect of nonlinearity can be observed in the wave modulation over the
shallower depth due to shoaling effects. The bottom panel shows the actual and
starting inversion depth. The top panel in Figure 5.25 shows the analytic and es-
timated phase speed. Because of the following current, the phase speed is Doppler
shifted and is everywhere larger than the true phase speed. The velocity estimates
are also in error. This error translates to the inverted depth, shown in Figure 5.26.
The error is seen to be larger in the shallower part because the current effect (mag-

nitude) is also larger in that region of the depth. This error would thus increase
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Figure 5.21: Wave envelopes in (a) p = 0.797 (b) p = 1.693 (¢) p = 3.698

for stronger currents. Given only surface elevation data, it is not possible to obtain
the current variation across the domain. The present inversion method thus cannot
account for mean flows with only surface elevation data, and at present no unam-

biguous modifications can be suggested for CASE IB to improve depth predictions.

5.2 Inversion with velocity data (CASE II)

Similar to storing spatial maps of surface elevation generated in FUNWAVE
at specified time steps, time lagged snapshots of particle velocity can also be used
as inversion data. We distinguish two cases - CASE ITA, when there were no mean
flows present in the data, and CASE IIB, when the velocity maps had prescribed

mean flows in them. We first compare results for CASE ITA.
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Figure 5.23: (a) Initial current profile specified in FUNWAVE, v = 1 (b) Mean
water level variation across the domain due to the current
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Figure 5.24: (a) Wave surface elevation snapshots for CASE IB generated in FUN-
WAVE with ¢ = 0.1m*/s and v = 1 (b) Actual (-) and assumed (-
-) starting inversion depth
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Figure 5.25: (a) Linear analytic (-) and estimated phase speed for CASE IB (b)
Actual (-) and estimated velocities for CASE IB (u;(—.), us(——))
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Figure 5.26: Actual (-) and inverted depth (- -) for CASE IB
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Figure 5.27: (a) Velocity maps generated in FUNWAVE (y = 0 for CASE IIA
(b)Actual (-) and assumed depth (- -)

5.2.1 No prescribed mean flows in particle velocity data (CASE IIA)

Using the linearized time dependent Nwogu’s equations in FUNWAVE (y =
0) velocity maps were saved at it5 = 30000 and £6 = 30100 which meant a time
lag of 6t = 2.0s. All the other wave, model and bottom parameters remained as
in CASE TA (H = 0.05m,T = 4.369s). The velocity images are shown in Figure
5.27 (a), where the dashed line is the first image in time. The assumed and actual
depths are shown in the bottom panel.

The linear analytic phase speed is compared to the least squares estimate
in Figure 5.28 (b). The window size was W = 25m and the spatial shift for the
window was ws = 12.5. The estimate matches the analytic values accurately except

at the seaward and onshore toes of the slope due to the large window size. The
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Figure 5.28: (a) Linear analytic (-) and estimated phase speed. (b) Actual (-)
and inverted depths at niter =1 (.), niter = 3 (-.), niter =5 (- -)
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Figure 5.29: (a)Total surface elevation mismatch (¢) at different iterations (niter)
for linearized inversion. (b)Actual (-) and estimated surface eleva-

tion {m(.), 72(——)}

bottom panel shows the inverted depth estimates at different iterations, where the
final converged inverted depth is shown as the dashed line. The dotted line is the
shallow water estimate and the solid line is the true depth.

As can be seen from Figure 5.29 (a), convergence is uniform and fast, as the
total surface elevation mismatch decreases to a constant minimum value in about
five iterations. The maximum number of iterations here was also fixed arbitrarily as
9. The bottom panel shows the true surface elevation as obtained from FUNWAVE
(solid line), plotted along with the estimates from the mass equation (1, (dotted
line)) and the momentum equation (7, (dashed line)). Wherever the estimated

phase speed is greater than the true celerity, 7; < 75 and vice versa. This is obvious
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Figure 5.30: (a)Velocity data obtained from FUNWAVE (y = 1 for CASE IIA.
(b)Actual (- ) and inverted depth estimates niter = 1 (.), niter = 3
(-.), niter =5 (- -) using fully nonlinear inversion equations.

by looking at (4.1-4.2). Due to this error in the surface elevation estimates, the
inverted depth is also smaller than the true depth in over the plane slope, which can
be explained by looking at (4.7) where the estimated depth is seen to be directly
proportional to 7, and inversely proportional to 7.

The same monochromatic wave form was simulated in FUNWAVE with the
same depth but with the fully nonlinear time dependent extended Boussinesq equa-
tions (y = 1). The velocity images saved at lagged time intervals are shown in
the top panel of Figure 5.30. As the wave shoals up the slope, nonlinear interac-
tions between the primary wave component and its harmonics modulates the wave,

which can be seen in the velocity profile over the shallower flat part of the slope.
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Figure 5.31: (a)Total surface elevation mismatch () at different iterations (niter).
(b)Actual () and estimated surface elevation {n;(.),7.(——)} for
fully nonlinear test
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An assumed flat depth of 0.25m was fixed as a starting point for inversion with
the fully nonlinear equations. The inversion estimates are shown in the bottom
panel. The true depth is reasonably well recovered by the inversion, and the in-
verted depth is accurate over the shallower part of the bathymetry. Even with the
fully nonlinear inversion equations, the depth iterates and estimated surface eleva-
tion converge quickly, within five to six iterations (See Figure 5.31). The estimated

surface elevation matches well with the true values.

5.2.2 With mean flows present in particle velocity data (CASE IIB)

As before in CASE ITA, mean flows were prescribed in FUNWAVE by a con-
stant volume flux (¢ = 0.2m*/s) across the domain. The resulting current and mean
water level variations are shown in Figure 5.32. The current is weak enough to ne-
glect the mean water level variations in the fully nonlinear inversion equations. The
current and mean water level depression increases as the depth becomes shallower,
reaching a constant maximum over the flat shallow part of the depth.

Fully nonlinear equations were used in FUNWAVE to generate the velocity
maps shown in Figure 5.33(a). The increased values of the velocity due to the
following current can be seen by the positive shift in the entire velocity profile. The
phase speed estimate (dashed line) is also Doppler shifted by the current and leads
to an increase due to the following current.

The depth inversion can be done using this Doppler shifted phase speed esti-
mate with both the linearized and fully nonlinear inversion equations. The inverted
depth using the linearized equations is shown as the dash-dot line in Figure 5.34.
The dashed line is the inverted depth from the fully nonlinear equations and the
solid line is the true depth. As expected both estimates are in error because the

integration constants were neglected.
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Figure 5.33: (a)Total velocity maps generated in FUNWAVE (y = 1,4 = 0.2m%/s)
(b)Linear analytic () and estimated (- -) phase speed.
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Figure 5.35: (a)Actual (-) and estimated surface elevation from the mass equation

- Linearized inversion (.), Fully nonlinear inversion (- -). (b)Actual
(-) and estimated surface elevation from the momentum equation -
Linearized inversion (.), Fully nonlinear inversion (- -)
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Figure 5.35 (a) shows the surface elevation estimate (7;) from the linearized
mass equation (dotted line) and fully nonlinear mass equation (dashed line). The
solid line is the actual value. The bottom panel shows similar estimates from the
linearized and fully nonlinear momentum inversion equations. All the estimates are
in error due to the presence of mean flows. Because of the linear nature of the wave
and since the fully nonlinear equations here do not take into account the effect of
currents, both the estimates (from the linearized and fully nonlinear equations) are
almost the same though consistently in error from the true value.

We now calculate the pure wave part of the velocity data to account for mean
flows in the inversion. The current profile is obtained by locally averaging over the
total velocity map and is compared to the prescribed current in Figure 5.36 (a). On
subtracting this current from the total velocity (u) profile we get the pure wave part
of the velocity (u,), which is shown as the solid line in Figure 5.36(b). The dashed
line is the total velocity with the mean flow in it. The Doppler shift in the phase
speed is also corrected for by subtracting this current from the computed phase
speed (C). The corrected phase speed is denoted as before as (.

Figure 5.37 shows the total surface elevation mismatch (¢) at each inversion
iteration for three separate inversion cases. The first inversion is done with the total
velocity (u) and computed Doppler shifted celerity (C), the second case is with the
pure wave part of the velocity (u,) and the computed Doppler shifted celerity and
the third case is the inversion done with the pure wave part of the velocity and the
corrected phase speed (Cp). The dotted line (o) shows the errors during the first
inversion case. The dashed line (+) shows the errors during inversion with the pure
wave part of the velocity and the Doppler shifted phase speed. The solid line shows
convergence during the third inversion case. As is evident, the error decreases with
each successive correction. The inversion thus has to take into account both the

Doppler shifted velocity and the phase speed. The corresponding inverted depths
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Figure 5.36: (a)Prescribed (-) and estimated (- -) current variation across the
domain. (b)Total (- -) and pure wave part (-) of velocity data.
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Figure 5.37: (a)Total surface elevation mismatch (¢) for inversion with 1, and C
(0), uy and C' (+) and u, and Cy (*). (b)Actual (-) and estimated
depths - Inverted depth with u,, and C (.), with u,, and Cj (- -)
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are compared to the actual depth in the bottom panel. By comparing this panel to
the inverted depths obtained from uncorrected data in Figure 5.34, it can be seen
that the modified algorithm makes remarkable improvements by accounting for mean
flow effects and the inverted depth agrees with the true depth much better.

Figure 5.38 shows the estimated surface elevations from the mass (top panel)
and momentum equations (bottom panel). The dotted line in each shows the result
after inversion with the pure wave part of the velocity but Doppler shifted phase
speed. The dashed line is the estimate with the corrected phase speed and the pure
wave part of the velocity. The improvement in the surface elevation estimate by
correcting for the phase speed can more clearly be seen in the shallower part of the
depth (where the dashed line agrees much better with the solid line than the dotted
line). With the existing modification in the inversion algorithm, mean flows can be

accounted for only in monochromatic waves and weak currents.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

A depth inversion algorithm has been developed for one horizontal dimen-
sion and non-breaking waves. The inversion input data is assumed to be in the
form of time lagged spatial maps of either surface elevation or particle velocity.
Cross-correlation methods to estimate local phase speeds from the time lagged im-
ages, gives large errors for monochromatic wave conditions. They can be applied
with increased and reasonable accuracy to irregular waves, when the errors are seen
to cancel out due to superposition from the various individual wave components.
Hilbert transforms, as another alternative to estimate phase speeds from such input
data, can only be used for strictly periodic waves. It is thus not a very practical
tool for evaluating phase speeds in random sea states. A least squares method has
been developed to compute local phase speeds from time lagged spatial variations of
either surface elevation or particle velocity. This method can be applied accurately
to various wave conditions and the errors in the phase speed estimate are uniformly
small compared to the cross-correlation estimates.

The inverted depths agree well with the actual depth used to generate the
images. The depths studied here were analytically generated and were representa-
tive of monotonic beach slopes. Barred beaches were also constructed with realistic

bar amplitudes, and the inverted depths agreed well with the analytic depths. In
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addition to estimating the bathymetry, the inversion algorithm can also compute
particle kinematics, i.e, given surface elevation data, particle velocities can be cal-
culated, and vice versa.

Linearized as well as fully nonlinear inversion equations were developed to
take info account the nonlinear effects of wave propagation close to the coast. Mean
flow effects due to weak currents have been included by modifying the inversion
equations. The inversion for this case can only be done with velocity data. The
resulting inverted depths and surface elevation estimates show remarkable improve-
ments over the original formulation.

For groupy wave conditions, when inversion is done with a single pair of
images, the computed phase speed, depth and particle kinematics show deviation
from the true values, especially in the deeper part of the depth. The errors are
related to the groupiness of the input data, and depend on the time instant at
which the surface image was recorded. These errors can be minimized by averaging
over randomly distributed (in time) images, with increased averaging leading to a

decrease in the absolute errors.

6.2 Scope for future work
6.2.1 Including effects of strong currents

In the modifications to account for mean flow effects in the present inversion
method, it was assumed that currents were weak in magnitude, so that mean water
level changes could be neglected. The currents were also depth uniform and time
invariant. Due to wave breaking, strong currents such as rip currents are often
seen near the shore and which play their own role in modifying the bathymetry as
well as the wave kinematics. Wave current interactions is an important nonlinear
coastal phenomenon. To correctly estimate the bathymetry in such conditions, it is

necessary to make further modifications to include the presence of strong currents.
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It is to be noted that in its present form, the modified inversion method can only

work for monochromatic wave conditions.

6.2.2 Including effects of wave breaking

Wave breaking is a common phenomenon close to the coast. Waves entering
shallow water shoal and finally break due to the increasing wave height, dissipat-
ing a large portion of the wave energy and momentum, which while modifying the
wave train, also affects the bathymetry. To accurately predict the depth in such a
dynamically complex region, wave breaking has to be accounted for in any inver-
sion method. The present method would work well to the point of wave breaking,
since the inversion equations are fully nonlinear and can handle wave shoaling and
other nonlinear interactions. Also, since no time history of the wave is available as
input data to the inversion, wave breaking possibly has to be included by relating
local changes in wave slope at breaking to momentum and energy dissipation. The
inversion equations have to be conserving mass and momentum with wave breaking

to accurately predict underlying depths.

6.2.3 Extension to two horizontal dimensions

Due to wave refraction, diffraction and other two dimensional effects of a
changing bathymetry, the wave field near the shore is hardly ever purely one dimen-
sional. There are situations however, where a principal direction of travel can be
identified, and the wave field can be resolved along that dominant direction of travel,
assuming that the variation perpendicular to that direction is weak or negligible.
Since the present inversion method has been developed in only one horizontal dimen-
sion, further work needs to be done to extend it to both the horizontal coordinates.
Most practical applications of depth inversion to changing nearshore bathymetries

would require this extension. It is to be noted that the present assumption of data
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availability would also have to be extended. Among the three variables - surface
elevation (as a function of both horizontal coordinates) and particle velocities along
both horizontal coordinates, two would have to be available as input data. Local
phase speeds can be calculated over the entire two dimensional domain using cross-
correlation or least squares methods to spatial maps of surface elevation, but the

determination of depth would require two of the three variables.

6.2.4 Validation with field data

The inversion methodology developed here assumes that time lagged, spa-
tially dense yet discrete profiles of either surface elevation (half of the wave height)
or particle velocity be available as input data. In this thesis, synthetic input data
has been generated from a time dependent Boussinesq model. The inversion was also
performed with the corresponding inversion equations, for e.g, when linearized time
dependent equations in FUNWAVE were used to generate the images, linearized
inversion equations were used to estimate depth and the particle kinematics. Re-
motely sensed data in physical variables such as wave height or particle velocity is
as yet scarce in literature. The inversion algorithm has to be tested with field data
either obtained from radar units or digital video cameras. At present, the possibility
of translating either radar or optical backscatter to physical units of surface eleva-
tion and particle velocity is still very much incomplete. Ongoing research however
seems promising enough to be capable of delivering data of the kind needed to per-
form inversions with the present method. The possibility of using time exposures
of digital video data is at present being investigated in the Centre for Applied and

Coastal Research.

105



Bibliography

Bell, P. S. (1999). Shallow water bathymetry derived from an analysis of X-band

marine radar images of waves. Coastal Engineering, 37, 513-527.

Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., and Chawla, A. (2000).
Boussinesq modeling of wave transformation, breaking and runup.Il: Two hori-
zontal dimensions. Journal of Waterway, Port, Coastal and Ocean Engineering,

126. In press.

Dalrymple, R. A., Kennedy, A. B., Kirby, J. T., and Chen, Q. (1998). Determining
bathymetry from remotely sensed images. In 26th International Conference on

Coastal Engineering, pages 2395-2408, Copenhagen.

Dugan, J. P.; Suzukawa, H. H., Forsyth, C. P., and Farber, M. S. (1996). Ocean
wave dispersion surface measured with airborne IR imaging system. In Proc. 1995
International Geoscience and Remote Sensing Symposium (IGARSS’95), pages

1282-1283, Florence, Italy.

Fuchs, R. A. (1953). Depth determination on beaches by wave velocity methods.

Technical report, University of California, Berkeley.

Grilli, S. T. (1998). Depth inversion in shallow water based on nonlinear properties

of shoaling periodic waves. Coastal Engineering, 35, 185-200.

106



Kennedy, A. B., Dalrymple, R. A., Kirby, J. T\, and Chen, Q. (1999). Determination
of inverse depths using direct Boussinesq modeling. Journal of Waterway, Port,

Coastal and Ocean Engineering. In press.

Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A. (2000). Boussinesq
modeling of wave transformation, breaking and runup. I. One dimension. Journal

of Waterway, Port, Coastal and Ocean Engineering, 126.

Lippmann, T. C. and Holman, R. A. (1991). Phase speed and angle of breaking
waves measured with video techniques. Coastal Sediments, pages 542-556. Edited

by N. Kraus.

Madsen, P. A. and Sgrensen, O. S. (1992). A new form of Boussinesq equations with
improved linear dispersion characteristics. Part 2 A slowly varying bathymetry.

Coastal Engineering, 18, 183-204.

Madsen, P. A., Murray, R., and Sgrensen, O. R. (1991). A new form of Boussinesq
equations with improved linear dispersion characteristics. Coastal Engineering,

15, 371-388.

Nwogu, O. (1993). An alternative form of the Boussinesq equations for nearshore
wave propagation. J. Waterway, Port, Coastal and Ocean Engineering, 119(6),

618-638.

Stockdon, H. F. (1998). Estimation of wave phase speed and nearshore bathymetry

using video techniques. Master’s thesis, Oregon State University.

Thornton, E. B. and Guza, R. T. (1982). Energy saturation and phase speeds
measured on a natural beach. J. Geophysical Research, 87(C12), 9499-9508.

Ursell, F. (1953). The long wave paradox in the theory of gravity waves. Proc.

Cambridge Phil. Soc., 49, 685-694.

107



Wei, G., Kirby, J. T., Grilli, S. T., and Subramanya, S. (1995). A fully nonlinear
Boussinesq model for surface waves. I Highly nonlinear unsteady waves. Journal

of Fluid Mechanics, 294, 71-92.

108



