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ABSTRACT

A detailed experimental study has been carried out in a laboratory to study
the strong wave-current inferactions that are observed at the mouth of river inlets.
The aim of this work was twofold. Firstly, to study the dynamics of wave blocking
under different wave climates and, secondly, to develop empirical formulae that
quantify energy dissipation due to current-limited wave breaking. These formulae
can then be used in numerical models simulating wave-current interactions.

The experiments were conducted in a 30 m long recirculating flume. A chan-
nel with a varying width was placed in the middle part of the flume to simulate an
inlet. The experiments were designed such that wave blocking occurred close to the
narrow part of the channel where the currents were maximum. All the experiments
were conducted in a constant water depth of 0.5 m. The experiments were broadly
divided into 3 parts: the monochromatic wave tests, the narrow-banded spectral
tests, and the random wave tests.

The monochromatic tests were further subdivided into two subgroups : the
wave reflection tests and the wave breaking tests. The wave reflection tests were
small amplitude tests in which the waves were reflected from the blocking point with
very little breaking. The measured amplitude envelope for the smallest amplitudes
was an Airy function and confirmed the linear theory predictions. In the breaking

wave tests there was very little to no reflection and all the blocking was accompanied

xii



by wave breaking. The blocking phenomenon was found to depend strongly on non-
linearity. An empirical dissipation formula based on a modified bore model approach
was developed and tested with the data.

The narrow-banded spectral tests were also divided into two subgroups : the
wave group tests and the wave packet tests. The aim was to see if a moving blocking
point could generate long waves upstream of the blocking region. In the wave group
tests, the individual components of the spectra were blocked separately at their
respective blocking points. No long wave motion was observed in any of the tests.

A weakly non-linear narrow-banded amplitude envelope numerical model has
been developed for a varying channel. The model accounts for wave blocking by
allowing the phase to be complex. The model uses a linear dispersion relation.
Comparisons with data show that though the model can handle wave blocking, it is
unable to predict the correct blocking position as that depends strongly on amplitude
dispersion effects. Also, the model blocks the waves at the carrier frequency of the
modulating wave train, whereas observations have shown that the actual blocking
occurs at the separate blocking points of the respective spectral components.

Finally, random wave tests were also conducted to compliment the monochro-
matic wave tests. The random wave tests consisted of TMA spectra of varying energy
and peak frequency. The tests varied from most of the spectrum getting blocked, to
very little blocking. Using an empirical probability of breaking based on the data, a
bulk dissipation formula for energy loss due to current-limited breaking in random
waves has been proposed and tested with the data using both a bulk wave action
conservation model and a spectral model. The energy dissipation formula is based
on a wave slope formulation, and other formulae based on a wave slope formulation

also compared well with the data.

xiii



Chapter 1

INTRODUCTION

Wave-current interactions occur in nature over a varying set of physical scales
starting from the development of large freak waves on the Agulhas current that
severely damaged an oil tanker (Mallory, 1974) down to the small scale interactions
between capillary waves and internal waves. These interactions are also not just
limited to the modification of waves by underlying currents and a good example of
the development of currents by waves is the generation of rip currents and long shore
currents by waves breaking on a beach. Thus, the study of wave-current interactions
has been a topic of active research among scientists for quite some time now and
a good overall picture of the different aspects of this interaction can be found in
the review papers by Peregrine (1976), Jonsson (1990) and Thomas and Klopman
(1997).

A particular area of interest in this subject is the interaction between short
scale gravity waves and strong large scale tidal currents. In these cases the time
and length scales over which the current varies is much larger than the wave period
or wave length. Similar to the case of waves in slowly varying depth, the waves
are assumed to locally satisfy the kinematic properties of plane waves on uniform
currents. Consider a two-dimensional wave moving on a depth uniform current U
(see Figure 1.1). Then in a frame of reference moving with the component of the
current in the direction of the waves, the equations and solutions for water wave

motion are identical to the case of no current. If w is the wave frequency in a



Figure 1.1: Schematic diagram showing the wave and current direction

stationary reference frame and o is the wave frequency in a reference frame moving
with the current, then the phase speed of the wave in the two reference frames can
be related by

w a

— + |U| cos b
k[ k|

or
w—k-U=o¢o (1.1)

where k is the wave number and remains unchanged in the two reference frames.
The expression for o depends on the wave theory used. Eqn. (1.1), together with
an expression for o gives the Doppler-shifted dispersion relation for waves moving

on uniform currents.



Figure 1.2: Wave Blocking at Indian River Inlet, Delaware USA

1.1 Kinematics of wave blocking

Wave blocking is the phenomenon by which propagating waves are stopped
by strong opposing currents. As waves propagate into an opposing current, their

., 0w ; :
group velocity (—) reduces, leading to the waves shoaling on the current. If the

current is strong %flough then this group velocity could go to zero causing the waves
to get blocked. This is fairly common at the entrances of tidal inlets where tidal
currents can become very strong. One such example of wave blocking is shown in
Figure 1.2, where the view is looking seaward from the southern inlet breakwater.
The photograph has been taken three hours after high tide, and thus there is a
strong current propagating out of the inlet. This strong current blocks waves that
are trying to propagate into the inlet. Due to the sharp increase in wave steepness
prior to blocking, the wave environment tends to become very rough, as can be seen

in Figure 1.3. This causes a considerable navigational hazard, and boats have been

known to capsize trying to transit or navigate inlets under such circumstances.



Figure 1.3: Wave field close to the blocking point

For waves to get blocked their group velocity has to go to zero. Thus, d-
ifferentiating the dispersion relation (1.1) with respect to & and setting the group

velocity to zero we get

do .

B = -U (1.2)
where

U = |U|cosf

Eqn. (1.2) is the kinematic condition that has to be satisfied for waves to get
blocked. From the equation it is obvious that wave blocking can only occur if the
currents are opposing the waves (6 > 90°).

A better understanding of the blocking process can be obtained from the

graphical solution of (1.1) using linear wave theory.

o = \/ gk tanh kh



The dispersion solution is given by the intersection of the curve 0 = w— kU with the
curve o = y/gk tanh kh in Figure 1.4. We shall limit our analysis to a 1-dimensional
flow field in which the current is moving opposite to the waves (f = 180°). The
solution point A corresponds to a wave moving in the absence of a current. In the
presence of an opposing current the solution moves to point B which corresponds to
a wave with a larger wave number & (shorter wave length). The group velocity of the
wave is given by the difference of the slope of the curve and the straight line. As the
wave propagates into regions of stronger current, the wave number keeps increasing
and the group velocity decreases till at point D the group velocity goes to zero. This
corresponds to the blocking point, and no solution for the wave exists for stronger
currents. For any arbitrary current smaller than the blocking current there is also
a second solution given by point C, which has no corresponding solution in still
water. The waves corresponding to this solution have very short wave lengths and
their group velocity is negative. Thus, even though the waves are moving against
the current their energy is washed down by the current. As the waves are pushed
further and further into weaker currents, their wave lengths keep decreasing. At the
blocking point the two solutions B and C coalesce to give a single solution at D.
From Figure 1.4 it is also clear that if w decreases then the slope of the
straight line at D becomes greater. Thus, longer waves require stronger blocking
currents. To study the effects of the wave amplitude on the blocking point consider

a 3" order Stokes theory in deep water
o =+/gk[1+ (ka)?|

which leads to

do _ [g | 1+ 3(ka)?
ok \/; [ 14 (ka,)2] (1.3)

() ]



Figure 1.4: Graphical solution of the dispersion relation ('Dash Dot line’ U = 0;
'Dash line’ U < blocking current; "Solid line’ U = blocking current,)

From (1.3) and (1.2) we see that larger waves require a stronger blocking current.
A graphical comparison of the linear dispersion relation with the Stokes dispersion
relation is shown in Figure 1.5. The linear and non-linear blocking points are denoted
by D and D,, respectively. The required blocking current is given by the slope of
the straight line, which is greater for the non-linear case.

Wave-current interactions can significantly alter the wave lengths and ignor-
ing this effect can lead to considerable errors. One such case has been highlighted
by Jonsson et al. (1970), who have quantified the errors in surface wave calculations

from bottom mounted pressure measurements.

1.2 Dynamics of wave blocking

The blocking effect of strong opposing currents have been known for a long
time. Evans (1955) conducted experimental studies on hydraulic breakwaters for
stopping waves. However the dynamics of wave-current interaction became much

clearer with the development of the concept of radiation stress by Longuet-Higgins



xXwof

Figure 1.5: Graphical representation of wave blocking using linear dispersion re-
lation ("Dashed’ line) and Stokes dispersion relation (*Solid line’); T
= 1.75 8, h = 0.50 m, a = 0.04 m. D and D,, correspond to the linear
and non-linear blocking points respectively.

and Stewart(1960,1961). By averaging over the oscillatory wave motion they showed
that radiation stress, which is defined as the excess momentum flux due to waves,
is responsible for the transfer of energy between waves and currents in the energy

equation. The governing equation in one dimension for a depth uniform current is

given by
oE 0 ou :
= (c,_,,E) + Sea e =0 (1.4)

where E is the wave energy and can be written in terms of the wave amplitude a

E =

pga’

B3|

Saa 18 the radiation stress and, using linear wave theory, can be written as

+() 0
Sy = p/ uzd,z+] pdz

—h —-h

u and p are the horizontal velocity and pressure distributions due to the wave motion.

7



Alternatively, using the concept of averaged Lagrangian (Whitham, 1965),
Bretherton and Garrett (1969) showed that in a moving medium it is the wave
action that is conserved and not the wave energy. The wave action is defined as the
ratio of the wave energy density F and the intrinsic frequency o, and the governing

equation is given by

0 (FE 0 (c,E\ _ .
a(;) * a—(‘:r) =1 (1.5)

They also showed that for surface gravity waves (1.4) and (1.5) are the same equa-
tion.

Considering steady wave motion, eqn. (1.5) predicts that waves shoal as they
propagate into regions of stronger currents and at the blocking point the energy
goes to infinity. For this reason it was believed that waves break before they reach
the blocking point (e.g. Phillips, 1966). However, the difficulty with using either
the radiation stress theory or the wave action conservation principle close to the
blocking region is that they are based on ray theory, which lead to singularities at
caustics such as the blocking point.

Using a perturbation stream function and conducting a local analysis in the
neighborhood of the blocking point, Peregrine (1976) showed that the waves at the
blocking point have a large but finite steepness and are not singular. If the initial
steepness is small enough that there is no wave breaking anywhere in the domain
then the waves are reflected at the blocking point with a different wave number and
the amplitude envelope through the blocking region is given by an Airy function.
The reflected wave is denoted by point C in Figure 1.4, and as these waves are swept
back into weaker currents they continue to increase in steepness. Smith (1975), using
the uniform expansion of Ludwig (1966), developed a uniform asymptotic solution
for the wave amplitude through the blocking region. He showed that the wave

action flux for the incident and reflected wave are equal and opposite. Between the
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regions of no blocking to complete reflection due to blocking there lies a transition
region when the current is strong enough only to cause partial wave reflection. A
linear analysis of partial wave reflection with the help of Schrodinger equations was
carried out by Stiassnie and Dagan (1979). The results of complete transmission and
complete reflection were recovered as limiting cases of their more general approach.

Recently, Shyu and Phillips (1990) extended the work of Smith (1975) to
include capillary effects and blocking on finite amplitude long waves. As reflected
waves become smaller capillary effects become more important. The inclusion of
capillary effects leads to the identification of a second reflection point where the
reflected waves are reflected once again back in the direction of the incident waves.
The second reflection is accompanied by a further increase in the wave number,
beyond which viscous dissipation effects become important and the wave motion is
damped out. The physics of this multiple reflection have been outlined in Trulsen
and Mei (1993). If the two blocking points are sufficiently far apart then the theory
of Shyu and Phillips (1990) can be used to analyze the multiple reflection. Trulsen
and Mei (1993), using a boundary layer method, developed an alternative theory
for the multiple reflections without any limit on the separation distance between
the two reflection points and extended the work to the limit when the two reflection
points coalesce. The phenomenon of double reflection and corresponding attenuation
of wave amplitude due to viscous effects have been observed in the short wave
experiments of Badulin et al. (1983).

In recent years direct modeling of wave blocking has been done with the
help of fully non-linear Boussinesq models (Chen et al., 1998). The advantage
of using Boussinesq models is that they are non-linear and can be used to study
amplitude dispersion and energy transfer effects in the dynamics of wave blocking.
The disadvantage is that for short waves the dispersive properties are not very

well predicted, with the deviation increasing with increasing wave number. If wave
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blocking occurs before the waves become short enough for these deviations to be
prominent then the models work very well (Chen ef al., 1998). But if wave blocking
is expected to occur in the region where the waves are very short then the deviations
in the dispersion relation will lead to significant errors in the predictions of wave

blocking.

1.3 Motivation for current study

Most of the theoretical analysis on wave blocking has been limited to the
linear wave limit. But the sharp steepening of waves just prior to the blocking
point makes this approximation valid only for very small waves, which is not the
case at river inlet entrances where the waves are steep and tend to break at or
before the blocking point (see Figure 1.3). Due to the complexity of the wave
field, an experimental study is required to shed light on the dynamics of wave
blocking and steepness limited wave breaking. Unfortunately there are very few
experimental studies on this subject. Lai et al. (1989) conducted experimental
studies with both monochromatic and random waves on strong opposing currents.
They studied the kinematics of the strong interaction up to the blocking point but
did not show any results about the dynamics of the interaction. Sakai and Saeki
(1984) conducted wave breaking tests for monochromatic waves in the presence
of both a sloping bottom and an opposing current, and the corresponding studies
for irregular waves were conducted by Sakai et al. (1986). There is however still
very limited understanding of how the wave energy is dissipated due to current
limited breaking. Ris and Holthuijsen (1996) simulated current-induced breaking
and blocking with the help of a third-generation wind-wave spectral model, and
compared their results with the data of Lai ef al. (1989). The dynamics of the

process were poorly predeicted.
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To develop a better understanding of the dynamics involved in the interac-

tions between waves and strong currents, a series of experiments have been conduct-

ed in the recirculating flume at the Center for Applied Coastal Research. The main

objectives were:

4.

1.4

To study the amplitude envelope of monochromatic waves through the blocking
region for varying conditions from transmission to complete reflection when

there is no wave breaking.

To study the evolution of large monochromatic waves through the blocking

region in the presence of wave breaking.

. To study the effects of a moving blocking point by conducting tests on wave

groups and wave packets.

To develop empirical formulae that quantify energy dissipation due to current
limited wave breaking in deep water, for both monochromatic and random
waves. These formulae can then be used with numerical models of Ris and
Holthuijsen (1996) and Chen et al. (1998) to study the dynamics of strong

wave-current interactions (e.g. waves breaking on rip currents).

Thesis outline
The thesis outline is as follows.

In Chapter 2, the experimental facility has been described. First the experi-

mental setup is explained in detail with the help of a schematic diagram of the plan

view. Then there is an explaination of the coordinate system and the measuring

instruments used for collecting data. Finally, a detailed description of the generated

current profile has been given.

In Chapter 3, details about the monochromatic experiments and correspond-

ing analysis are given. The experiments are in two parts. The first part consisting
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of very small amplitude tests where the waves are reflected from the blocking point
with very little to no breaking. Comparisons of the measured wave envelope are
made with linear theory. In the second part large amplitude tests are considered
where the waves break without being reflected at the blocking point. An ener-
gy dissipation formula is developed to simulate current limited wave breaking and
comparisons are made to the data with the help of a simple model based on the
wave action conservation principle. A heirarchial pattern is observed in waves on
blocking currents. Predictions of the blocking point are made with both the linear
and non-linear dispersion relation and checked with the data.

In Chapter 4, details about the experimental studies on narrow banded spec-
tra are given. Experiments were conducted with wave groups (generated by a bichro-
matic spectrum) and wave packets (generated by a Gaussian spectrum).

In Chapter 5, a third order weakly non-linear model is developed for the
envelope of narrow-banded waves propagating against strong varying currents. The
model is width integrated to account for a varying channel. The phase is complex
so that the waves decay beyond the blocking point. The model uses a second order
iterative finite difference scheme. A breaking model based on the empirical dissi-
pation function developed in Chapter 3 is used. The numerical model is compared
with the experimental observations presented in Chapters 3 and 4.

In Chapter 6, experimental studies on random waves are presented. Based
on the experimental data a bulk dissipation model is developed to simulate energy
dissipation due to current limited wave breaking. The breaking model is tested
using two separate numerical models both of which are width integrated and based
on the wave action conservation principle. The empirical dissipation model is based
on a slope formulation and comparisons are made with existing models that are also
based on a wave slope formulation. The parametric values used to calibrate the

dissipation model are compared with the parametric values for the monochromatic
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dissipation model.

Finally, in Chapter 7 the conclusions are presented.
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Chapter 2

EXPERIMENTAL FACILITY

2.1 Introduction

The experiments were conducted in the Center for Applied Coastal Research
at the University of Delaware. The aim was to simulate the conditions experienced
in inlets during the periods when there are fast tidal currents propagating out of
the inlet. Tidal currents are turbulent and, compared to gravity waves, vary over
much longer time scales. Thus, in our experiments we generate turbulent currents
with a constant mean velocity. Since we wish to isolate the phenomenon of wave
blocking from other effects associated with inlet geometries (such as refraction on
the ebb jet), the experiments have been conducted in one dimension only. Further

details about the experiments can be found in Chawla and Kirby (1999a).

2.2 Experimental Setup

The experiments were conducted in a 30 m long flume in the Center for
Applied Coastal Research at the University of Delaware. A recirculating system
was built on an already existing flume. All plumbing was done using PVC pipes.
A schematic plan view of the setup is shown in Figure 2.1. Currents are generated
with the help of a pump which draws out water from behind the wave paddle and
puts it back into the flume at the other end. The width of the flume is 0.6 m and all

the experiments are conducted in a water depth of 0.5 m. The wave periods range
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from 1.2 — 1.6 sec, and the kh values range from 1.35 — 2.4, Thus, the experiments

have been conducted in a range from deep to intermediate water depths.

2.2.1 Perforated wavemaker

A perforated “piston-type” wave paddle is used to generate waves in the tank.
This allows us to draw out the water from behind the wavemaker, and the vertical
profile of the current in front of the wave paddle remains unchanged. A schematic
view of the wave paddle is shown in Figure 2.2. The wave paddle is made of 1/8
in. thick stainless steel plate. Approximately 30% of the paddle surface area is
perforated. The wavemaker is able to generate sinusoidal waves but due to energy
leaking through the perforations the wave heights are much smaller when compared
to a linear wavemaker theory for a solid plate (see Figure 2.3). A perforated wave-
malker theory using a quadratic loss formulation to account for energy loss through
the wave paddle has been developed for such a wavemaker by Chawla and Kirby
(1999¢), but has not yet been extended to include the case of non-zero mean flow

through the paddle.

2.2.2 Recirculating pump and flow meter

The currents in the system are generated with the help of a 30 HP Weinman
pump that pumps water at a rate of 1500 gpm under a head of 60 ft. Head loss
calculations for the entire setup were done for the design current to determine the
pump specifications. The pump has an 8 in. diameter suction pipe and a 6 in.
diameter discharge pipe. In order to provide sufficient head and prevent cavitation,
the suction end of the pump is connected to the bottom of the flume. Due to the
limited space under the flume a fiberglass manifold box has been used to connect

the pump to the flume (see Figure 2.4).
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Figure 2.2: Schematic view of the perforated wave paddle
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The discharge pipe from the pump is a 6 in. diameter pipe that runs along
the length of the flume and puts the water back into the flume at the far end. A
Hayward 6 in. gate valve controls the flow rate. The opening and closing of the gate
valve is controlled with the help of an electric actuator that is mounted on top of the
valve. The default signal to the actuator is to open the valve fully. This prevents any
accidental closing of the valve during operation. The flow rate is measured with the
help of an Omega digital flow meter that consists of a paddle wheel sensor inserted
into the discharge pipe and an instrumentation box that consists of an analog board
and a relay board. The flow meter provides the time series of the instantaneous
flow rate which is then recorded with the help of the data acquisition system. The

calibration of the sensor is linear and is accurate to within 1%.

2.2.3 Inlet design and flow straightener

A channel with a varying width has been constructed and placed in the flume
approximately 12 m from the wavemaker (see Figure 2.1), with the aim of simulating
a river inlet. The channel has been constructed with epoxy coated marine grade
plywood which provides a smooth finish and reduces frictional losses. The width of
the narrow part of the channel is 0.36 m, and it has been designed such that the
current in this region is strong enough to block waves with periods up to 1.3 s in 0.50
m of water depth. The channel expands slowly with an angle of 5° to the width of the
flume to prevent flow separation in the expansion. Thus, the additional complexity
of wave focusing on a laterally spreading jet is avoided. A flow straightener has
also been placed in the flume close to the point where the water is discharged back
into the flume. The flow straightener consists of a number of 1 ft. long pieces of 1
in diameter PVC pipes stacked in a close-packed array. Its purpose is to eliminate
all the large scale eddies that are generated during the discharge of water into the

flume.
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2.3 Coordinate system

The origin is placed at the beginning of the narrow part of the inlet with
the z— coordinate axis pointing down the length of the flume and positive in the
direction of the waves. Thus, the inlet begins at = —2.8 m, and the narrow part
of the inlet extends from x = 0 till # = 4.8 m. Due to symmetry the side wall of the
flume becomes the center line of the inlet. The y— coordinate axis points positive
towards the false wall with y = 0 at the centerline (right wall of the tank). The z—

coordinate axis points positive upwards with z = 0 at the still water level.

2.4 Data Collection

Two different types of instruments have been used for collecting data. The
fluid velocities have been measured with the help of a SONTEK acoustic Doppler
velocimeter (ADV), and time history of the water surface is obtained with the help
of capacitance wave gages.

The ADV consisted of a 10 MHz 2D probe which measured the horizontal
velocities combined with a data acquisition software on a PC. The maximum velocity
range of the ADV is +2.5 m/s, and the maximum sampling frequency is 25 Hz. The
probes are accurate to within +1 cm/s. The advantage of using the ADV is that it is
factory calibrated and sturdy enough that it does not require any further calibration.
The probe has problems in making measurements if the velocities are too small or
if the water is very clear. The software calculates an ADV correlation coefficient
which is a data quality parameter obtained from the velocity calculations. The
correlation is expressed as a percentage with a perfect correlation of 100% indicating
reliable low noise measurements. The usable range for reliable data is 70 to 100%.
In our experiments the current velocities were strong enough to give around 90%
correlation. The limitation of the ADV is that its maximum sampling rate is only 25

Hz which means that the upper limit to which data can be resolved is 12.5 Hz. Thus,
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turbulence measurements cannot be made for the higher frequencies. Nevertheless,
it gives very good estimates of the rms turbulence intensities and mean velocity
profiles (see Chawla and Kirby (1999a) for detailed plots).

Capacitance wave gages have been used in the experiments to measure the
time history of the water surface. The surface gage measurements extend from out-
side the inlet to the end of the narrow part of the inlet and are shown in Figure 2.1.
The gages are calibrated so as to be able to convert the measured time series from
volts to centimeters. All the gages are sturdy in the sense that the calibration curves
are linear with very little drift. A typical calibration curve for 4 gages is shown in
Figure 2.5. Changes in water temperatures affect the calibration curves slightly and
calibration must be done at least once a day. In our experiments, calibration of
the gages was done every time the gages were moved so as to ensure the proper
functioning of the gages. Thus, typically calibration of the gages was done 3 to 4
times a day. Both the calibration and collection of data from the gages is done with
the help of a Concurrent 7200 data acquisition computer system. The computer
system contains 80 A/D channels which converts the analog signals from the wave
gages into digital signals. Unlike the ADV, there is no limit to the rate at which
data can be sampled by the gages. A higher sampling rate is preferred because it
gives finer spectral resolution; however, for a fixed length of time of a data record,
a higher sampling rate means that more data points have to be sampled. Thus, for
the random wave tests where the data had to be recorded for long lengths of time
a sampling frequency of 50 was used, while for the monochromatic wave tests and
narrow-banded spectral tests the sampling frequency was close to 100 Hz. The sam-
pling frequency for the periodic tests varied with the wave period, and was chosen
such that the data record contained an integer number of waves.

The Concurrent 7200 computer system is also used to run the wavemaker. It
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Figure 2.5: Calibration plots for capacitance gages (cm = b1*V + a)

has 4 D/A boards, and one of the boards is connected to the wavemaker. The sam-
k)
pling frequency for moving the wavemaker was around 4000 Hz for our experiments,

eliminating the need for analog filtering of the command signal.

2.5 Current profiles

One of the primary assumptions in our study has been that the currents are
depth uniform with no cross channel variations. To test whether such an assumption
is valid for the currents generated in the flume, a detailed measurement of the current
vertical profile was done at various locations along and across the flume through the
varying channel. At each position the horizontal velocity in the x direction has been
measured as a time series with the help of the ADV. Data sampling has been done at
25 Hz for 330 s. Figure 2.6 shows the vertical velocity profile at 5 different locations

along the channel. U refers to the mean current defined by

U=<u(t) >



The mean current has a slight shear due to the bottom boundary layer. The varia-
tions over depth are small, specially close to the narrow part of the inlet where wave
blocking occurs. Thus, the current is assumed to be uniform in the channel cross

section and given by

Q _
Yzt (2.1)

where b is the width of the channel, h the water depth, and @ is the measured volume
flux. Boundary layer effects have been ignored in (2.1), leading to lower predicted
mean currents. To account for this the value of () was artificially increased from
0.089 to 0.095 m®/s (see Figure 2.7). |

One of our major concerns in designing the channel was to prevent flow
separation from the side walls. To check for flow separation, cross channel velocity
profile measurements were made both for the case of large breaking waves on a
current (H = 0.12 m, T = 1.2 s) and also for the case of the flow alone. Figures 2.8
and 2.9 show the cross channel vertical velocity profiles at two different horizontal
locations in the channel. Though there is some amount of cross channel variation
in the flow, the velocity profiles do not indicate that the flow is separating in the

varying channel, even in the presence of large breaking waves.
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Chapter 3

EXPERIMENTS ON MONOCHROMATIC WAVES

3.1 Introduction

Experiments on monochromatic waves were divided into two parts: the small
amplitude tests in which waves are reflected from the blocking point without any
breaking and the large amplitude tests where the waves break at or before the
blocking point and wave reflection is suppressed. In both cases a range of wave
heights for different wave periods have been considered. The aim is to study the
evolution of the amplitude envelope through the blocking region and quantify the
effects of a varying wave height and period as well as the energy decay due to
steepness limited wave breaking. A version of this presentation also appears in

Chawla and Kirby (1998).

3.2 Small amplitude tests - wave reflection

Wave reflection from the blocking point occurs only when the incident wave
is small enough such that there is no wave breaking at or before the blocking point.
Since wave energy cannot propagate beyond the blocking point, and no energy is
lost. due to wave breaking, the waves get reflected back. The reflected waves are
peculiar in the sense that their phase speed is still moving against the current, but
their group velocity moves with the current. In other words the wave energy is
washed down stream by the currents. As the waves propagate further away from

the blocking region, they continue to get shorter and shorter. Close to the blocking
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point, the incident and reflected waves superimpose to form the typical nodes and
antinodes patterns in the amplitude envelope.

There are several references in the literature on the evolution of the amplitude
envelope through the blocking region for the linear limit. A review on the subject
is given in Chapter 1. According to linear theory the amplitude envelope through

the blocking point is an Airy function, and is given by (Trulsen and Mei, 1993)
alz) = IJ(,Ai(—(.tgm(:r: - :r:bp)) (3.1)

where by is a constant related to the incident amplitude, x;, is the location of the

blocking point and « is given by

U
~ o
302

ko

o=
B=Tpy

3.3 Experimental tests

To study this phenomenon of wave reflection a total of 15 test cases were
run. The tests were divided into three groups. Each group consisted of 5 test cases
having a constant wave period and increasing wave heights. The incident wave
heights were gradually increased to study the effects of nonlinearity on the shape
of the amplitude envelope. Wave blocking occurred close to the narrowest part of
the channel (z = 0). To capture the variation in the amplitude shape close to the
blocking region, 43 gage measurements were made between © = —1.5 m and @ = 0.8
m. At each gage location the time series was recorded for 256 wave periods. The
initial conditions were obtained from the first gage at = —4.6 m, and is tabulated

in Table 3.1.
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Table 3.1: Parameters for monochromatic wave reflection tests determined at = =

—4.6 m
Test No. | T (s) | H (m) | Sampling freq (Hz)
1 1.2 | 0.012 83.333
2 1.2 | 0.013 83.333
3 1.2 | 0.014 83.333
4 1.2 | 0.015 83.333
D 1.2 | 0.016 83.333
6 1.2 | 0.013 83.333
7 1.3 [ 0.015 76.923
8 1.3 0.018 76.923
9 1.3 | 0.021 76.923
10 1.3 | 0.024 76.923
11 1.3 | 0.015 76.923
12 1.3 | 0.020 76.923
13 1.4 | 0.025 71.429
14 1.4 | 0.032 71.429
15 1.4 | 0.038 71.429

3.4 Comparisons with linear theory

Wave height distributions for all the 15 test cases are shown in Figure 3.1. The
change in the shape of the amplitude envelope, with increasing wave amplitude, is
clearly visible when we move from Test 1 to 5. The waves change from being reflected
at the blocking point to breaking at the blocking point with little or no blocking as
is evident from the lack of nodal and antinodal points in Test 5. Tests 6 to 10 are
similar. In the case of Test 11, according to linear theory, no blocking should occur.
But partial wave reflection still occurs because the required blocking current is close
to the maximum current (Stiassnie and Dagan, 1979). With increasing amplitude,
the required blocking current moves further away from the maximum current, and
no wave reflection pattern is observed.

The comparison between the Airy solution (3.1) and the amplitude envelope
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Figure 3.2: Comparison between measured amplitude envelope (’o’) and Airy func-
tion for test 1

for Test 1 is shown in Figure 3.2. The comparison is good except at the crest of
the front, where the deviations are probably due to nonlinear effects. The deviation
between the Airy solution and the measured data increases with wave amplitude
(Figure 3.3), and when the waves start breaking the measured envelope no longer

resembles an Airy function.

3.5 Large amplitude tests - wave breaking

A total of 18 breaking wave test cases were run. The tests have been divided
into 3 groups. Each group consists of 6 cases in which the wave period is kept
constant and the wave height varied from small to large values. Data has been
collected in the form of a time series of the water surface with the help of the
capacitance wave gages. Data was recorded for 256 wave periods, and for each test
a detailed data set at 29 gage locations has been obtained. The data set from the

first gage (located at # = —5.2 m) is used to determine the initial conditions (see
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Table 3.2: Parameters for monochromatic breaking wave tests determined at z =

—-b5.2 m
Test No. | T (s) | H (m) | Sampling freq (Hz)
1 1.2 | 0012 83.333
2 1.2 | 0.018 83.333
3 1.2 | 0.033 83.333
4 1.2 | 0.066 83.333
) 1.2 | 0.095 83.333
6 1.2 | 0.126 83.333
7 1.3 | 0.014 76.923
8 1.3 | 0.029 76.923
9 1.3 | 0.057 76.923
10 1.3 | 0.084 76.923
11 1.3 | 0.104 76.923
1% 1.3 | 0.130 76.923
13 1.4 | 0.016 71.429
14 1.4 | 0.026 71.429
15 1.4 | 0.071 71.429
16 1.4 | 0.096 71.429
17 1.4 | 0.117 71.429
18 1.4 | 0.141 71.429

Table 3.2). Wave blocking conditions were satisfied for the 1.2 sec. and some of
the 1.3 sec. waves, while the 1.4 sec. waves were never blocked. Repeatability tests
showed that the experiments were repeatable to within 6% error in wave height (see
Chawla and Kirby (1999a) for details). All the wave properties are deduced from

the time series of the water surface with the help of a zero-upcrossing method.

3.5.1 Numerical model
A simple numerical model has been developed to study wave breaking. The

model uses the wave action conservation principle first derived by Bretherton and
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Garrett (1969). The conservation principle is given by

o (E E _, k _
a (;) + V L (;Ogaz) - 0 (32)

where, E'is the wave energy, Cy, the group velocity, o the intrinsic wave frequency
and £ the wave number.

Assuming steady wave conditions eliminates the first term in (3.2). Also
since we are trying to model wave flow in a narrow channel, flow variation across
the channel is assumed to be small and (3.2) is integrated over the width of the
channel. Adding a dissipation term for wave breaking, the final model equation can

be written as

1[0 (bEC,\] D
Pl =3 a8

where, b is the channel width, and D determines the energy loss due to wave break-
ing. D is unknown and has to be determined empirically as there is no theoretical

solution available.

3.5.1.1 Energy dissipation model

LeMéhauté (1962) first hypothesized that the energy dissipation in a breaking
wave can be modeled by the energy dissipation in a moving bore. This idea has been
used with reasonable success in simulating depth limited wave breaking (e.g. Battjes
and Janssen, 1978). Though the bore model has been derived for shallow water wave
breaking, the same idea will be used here to determine an energy dissipation term
for current limited wave breaking.

Consider a bore connecting two regions of uniform flow (Figure 3.4). Using
the control volume approach, the energy dissipation per unit width across the bore

is given by

hy + hy)

_,___1 1 3\3 9(
D= 4,09(!.*.2 hy) i (3.4)
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h,

Figure 3.4: Sketch of a single steady bore.
The length scales ho and by can then be associated with the wave parameters
ho —hy ~H (3.5a)

ho + h i |
Bathy 1 (3.5b)

2hohq ¢
where H is the wave height and ¢ is a vertical length scale which needs to be
prescribed. For depth limited breaking models, ¢ is given by the water depth h.

But for current limited breaking models this would not be a useful scale as wave

breaking can occur in deep water too. Instead we use

_ tanh kh (3.6)
k
where ¢ — h in shallow water and ¢ — £k~ in deep water. We get,
p 4 gk
D' = —=pg(H)*{| ——— 3.7
4 py(H) tanh kh (3:7)

where 3 is a non-dimensional parameter which relates D' to energy dissipation in
breaking waves. Now, D’ is the energy dissipation rate over the entire wave, and
thus, the dissipation rate per unit area is given by

. D' . P (Qk)s 3
b= i - 81 ( tanh kh a (3.8)

In shallow water, (3.8) reduces to the standard bore model used in depth limited
wave breaking (Battjes and Janssen, 1978), except that the parameter 3 will have

a different value.



Apart from an expression for energy dissipation we also need a criterion for
the onset of wave breaking. Since wave breaking on opposing currents occurs due
to the waves becoming very steep, a steepness limited criterion based on Miche’s
criterion is used

kH,
~tanh kh el (8.9)
where 7 is a non-dimensional parameter.

Eqns. (3.3) together with (3.8) and (3.9) provide a simple linear model for
monochromatic waves shoaling and breaking on opposing currents. The model uses
the wave action conservation principle, and becomes singular at the blocking point.
This is because the wave action conservation principle is based on ray theory, which
is not valid close to the blocking point since it forms a caustic. Since the location of

the blocking point is determined by the dispersion relation, the model is run using

both a linear dispersion relation

o =/ gk tanh kh (3.10)

and a 3" order Stokes dispersion relation (Bowden, 1948)

(3.11)

T
W sy [1 + (ka)? (8 + cosh 4%7:’:, 4 2 tanh ﬁ.,h,)]
8sinh™ kh

to quantify the importance of amplitude dispersion in determining the model re-

sponse.

3.5.2 Data to model comparisons

Tests 1, 2, 7, 8, 13 and 14 have small initial amplitudes and results from
these cases are essentially similar to the tests for wave reflection. Thus, these tests
have been omitted in the present analysis. The parameters f and v were set to 0.1

and 0.6 respectively.
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The wave height comparisons are shown in Figure 3.5. In all the tests the
wave heights have been normalized with the initial wave height. The model works
much better when using a Stokes dispersion relation as opposed to the linear dis-
persion relation. This is because close to the blocking point the waves steepen quite
considerably and terms of O(ka)? are no longer small enough to be neglected. The
shoaling properties are quite accurately predicted by the wave action conservation
principle. We also find that a bore dissipation model does a reasonable job in pre-
dicting energy dissipation due to wave breaking.

The heirarchial nature of the blocking effect can be observed as we increase
the wave height keeping the wave period constant. In test 3 waves are blocked at
the entrance of the channel. Due to non-linear effects the actual blocking occurs
later than predicted by linear theory. When the wave height is increased further in
test 4, the required blocking current is greater than the maximum current in the
system. Thus the waves reach the narrow channel without getting blocked. At this
point if the wave amplitude remains unchanged then the waves should propagate
right through the channel. However the waves continue to lose energy due to wave
breaking and they propagate into the channel till the amplitude becomes small
enough for the maximum current to block the waves. It is therefore very important
to be able to predict energy decay due to current limited wave breaking to accurately
simulate wave blocking.

Since the wave breaking is occurring in deep water, we can also use a white-
capping model (Hasselmann, 1974) to determine the energy dissipation in the waves.

In a white-capping model
D=—-p.0FE (3.12)

where F is the wave energy, and 0.02 is the calibrated value used for parameter 3,

. The comparison between the bore model and the white-capping model is shown
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in Figure 3.6. The two models give very similar results, and we shall stick with the
bore model because it can also be used in shallow water.

Another point that comes to attention is that though the blocking point is
well predicted by the Stokes dispersion relation in cases like Tests 3 and 4, the model
fails in this respect in Tests 5 and 6. To get an idea of why this happens we take a
look at the wave period distribution for all the tests, given in Figure 3.7. The wave
period data beyond the blocking point is scattered due to fluctuations in the water
surface caused by the turbulence in the current. These fluctuations are on the order
of 1 em, and are perceived as waves by the zero-upcrossing method. From the figure
we see that in Tests 5 and 6 the wave period shifts from a 1.2 sec period to a 1.4 sec
period, for which the blocking conditions are not, satisfied. This tendency is most
pronounced in Tests 5 and 6, but can also be seen to a smaller extent in Tests 9 to
12. It is absent in the 1.4 sec wave tests.

The shift to longer wave periods occurs due to the development of side band
instabilities. Benjamin and Feir (1967) showed that water waves are unstable to
side band growth and the growth of these instabilities depend upon the frequency
and wave amplitude. Due to the increase in wave steepness, they become highly
pronounced when the waves are riding on opposing currents and have been observed
in the laboratory (Lai et al., 1989). Their effects become even greater as the waves
approach the blocking point, because the group velocity €'y, tends to zero and the
wave energy travels very slowly. Thus, a significant amount of energy could be
transferred from the primary wave to the side bands even through small spatial
distances, as the time available for the interaction to take place is large. Since
the lower side band requires a stronger blocking current than the primary wave or
the upper side band, it can continue to propagate forward while the other two are
blocked. This effect can be clearly observed in the frequency spectra for Test 6 (see

Figure 3.8). As the spectrum moves into stronger currents, the energy is transferred
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to the lower side band, while the upper side band and primary wave component
get blocked. In particular note that between x = —0.5 m to z = —0.03 m, the
energy in the lower side band increases by almost 10 times. In the narrow channel
the blocking condition for the primary wave component and the upper side band is
satisfied and they get blocked, while the lower side band propagates right through
the channel. The occurance of this effect depends both upon the growth of the side
band instabilities and the position of the primary wave component in the frequency
spectrum. Our simple linear model cannot simulate this phenomenon, and a more

detailed analysis is required.

3.6 Summary

Experimental studies on a series of monochromatic waves on an opposing
blocking current have been conducted. The experiments can be broadly classified
into two groups — small amplitude tests where the waves are reflected from the
blocking point, and the large amplitude tests where wave breaking occurs with no
reflection.

In the wave reflection tests we find that the measured envelope is an Airy
function for the smallest waves, Thus confirming the predictions of linear theory.
With increasing non-linearity the amplitude envelope deviates from the Airy func-
tion and there is a transition region between the case where the waves are reflected
from the blocking point with no breaking to the case where waves break at the
blocking point with no reflection. Partial wave reflection was also observed in cases
where the required blocking current is slightly greater than the maximum current.

In the breaking wave tests a simple wave action conservation model together
with a modified bore dissipation breaking model is used to simulate the data. Com-
parisons show that amplitude dispersion plays an important role in determining

wave blocking due to the rapid increase in the wave steepness close to the blocking
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point, and a third order Stokes dispersion relation works much better than a linear
dispersion relation in predicting the blocking point. The energy decay is predicted
reasonably well with the modified bore model. The advantage of using this dissipa-
tion model to simulate energy decay due to current limited wave breaking is that in
shallow water it asymptotes to the standard bore model used to simulate depth lim-
ited wave breaking (Battjes and Janssen, 1978). However, it should be kept in mind
that though the dissipation models for current limited and depth limited breaking
are very similar, the parametric coefficients  and v for the two processes are very
different.

In some of the cases, the wave energy for the largest amplitudes was shifted
to lower frequencies due to side band instabilities and the waves were not blocked.
The growth of side bands can be accentuated close to the blocking point due to
the increased wave steepness and the longer temporal scales at which the energy
propagates, leading to significant energy transfer to the lower frequencies. The
growth of side bands also makes the waves very groupy, which in turn increases the
complexity of wave breaking. It is thus clear that side bands in a carrier wave play
an important role in determining whether waves are blocked or not, and ignoring
them could lead to significant errors in wave modeling.

From our experimental studies on monochromatic waves we find that there
is a hierarchy in the wave field characteristics. As the initial wave amplitude on a

blocking current is increased the waves
1. are blocked and reflected,
2. are blocked and break at the blocking point,

3. pass through the maximum current due to amplitude dispersion but break and

still get blocked, and
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4. transfer significant energy to a lower side band which does not get blocked

while the primary wave and the upper side band do.






Chapter 4

NARROW-BANDED SPECTRAL TESTS

4.1 Introduction

The excess momentum released by waves breaking on a beach acts as a forcing
mechanism for fluid motion in the nearshore region. Due to the irregular nature of
wave motion, the breaker line is always moving. This moving breaker line has been
identified as one of the mechanisms for generating long waves in the nearshore region.
To study if it was possible to similarly generate long waves downstream of a moving
blocking point, a series of experiments were conducted on narrow banded spectral
waves. The temporally varying amplitude envelope of a narrow banded spectrum
creates a moving blocking point. Two sets of experiments were conducted. The
first set consisted of a series of tests on wave groups generated by a bichromatic
spectrum, while the second set was a series of tests on wave packets generated by a

Gaussian shaped spectrum.

4.2 Wave groups

Wave groups were constructed by superposing two monochromatic waves
having the same amplitude but slightly different frequencies. The difference between
the frequencies determining the number of waves in a group. Three different sets
of wave groups were used. Each set consisted of 4 different energy levels, making a

total of 12 tests. The test particulars are given in Table 4.1, where the tests with
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Table 4.1: Parameters for wave group tests determined at + = —4.6 m

Test No. | Ty (s) | Ty (s) | Hs (m) | Sampling freq (hz)
1 1.06 1.2 0.028 88.889
2 1.06 1.2 0.054 88.889
i 1.06 1.2 0.068 88.889
8 1.06 1.2 0.098 88.889
3 1.01 1.3 0.028 87.912
4 1.01 1.3 0.054 87.912
9 1.01 1.3 0.068 87.912
10 1.01 1.3 0.083 87.912
5] 1:1% 1.3 0.025 82.051
6 1.15 1.3 0.053 82.051
11 1.15 1.3 0.074 82.051
12 1.15 1.3 0.089 82.051

similar input spectrum have been grouped together. 36 gage measurements were
made for each test between z = —4.6 m and = = 4.61 m.

The frequency spectra at the first gage (z = —4.6 m) for all the test cases are
shown in Figure 4.1. The figure shows that though the signal that was sent to the
wavemaker is bichromatic, the waves do not remain bichromatic by the time they
reach the first gage. For the larger wave amplitude tests, wave energy is transferred
to the side bands. Also when the frequency of one of the design wave components is
close to 1 hz, the growth of an anomalous third wave component is observed. This
anomalous wave component does not have significant energy in tests 5,6,11 and 12,
where the design frequencies are further away from 1 hz. The cause for this anomaly
is not very clear and is currently under study. The corresponding time series for
these tests are shown in Figures 4.2 to 4.4.

The cleanest wave groups were observed for test 6 as there are only two

wave components in the spectrum (see Figure 4.1). The evolution of the wave
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Figure 4.2: Time series at z = —4.6 m for Tests 1,2,7,8 (wave group tests)
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Figure 4.3: Time series at x = —4.6 m for Tests 3,4,9, 10 (wave group tests)
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Figure 4.4: Time series at z = —4.6 m for Tests 5,6, 11, 12 (wave group tests)

groups through the blocking region for this case is shown in Figures 4.5 and 4.6.
The figures show the time series at 12 different locations in the channel. As the
waves propagate into stronger currents the groups become asymmetrical and the
waves are transformed from being groupy to being monochromatic to finally being
blocked. The corresponding spectral plots (Figures 4.7 and 4.8) show that the
two wave components are blocked at their respective blocking points. There is
very little interaction and no long waves are generated downstream of the blocking
point. Similar results were also observed by Chen et al. (1998) in their numerical

simulations.

4.3 Wave packets

Wave packets have been generated with the help of Gaussian shaped frequen-

cy spectra. For our experiments 12 design test conditions were generated. As in
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Figure 4.5: Time series of the wave groups at six different locations in the channel
(Test 6)
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the case of the wave group tests, these tests have been divided into 3 sets. Each set
consisting of 4 different test conditions with varying energy content. The equation

for the design spectra was given by

exp (—0.5“—;;’10

S{f) = (4.1)

27y

where, f, is the peak frequency, and v and « are coefficients determining the energy
content and width of the spectrum. The larger the value of «, the lesser the number
of individual wave components in the packet.

The time series of the wave paddle motion for the 12 cases are shown in
Figures 4.9 to 4.11, where the tests with similar forms have been grouped together.
The tests were designed such that they are similar to the corresponding wave group
tests. By the time the wave packet reached the first gage (z = —4.6 m), the packet
had diffused out, leading to much smaller wave heights (see Figures 4.12 to 4.14).
This is specially true for Test 3, where the signature of the wave packet has been all
but lost in the noise of the water surface. The test particulars for the wave packet
tests are given in Table 4.2. H,,,, is the maximum wave height in the wave packet.
T, is the peak period and « is the parameter used in (4.1).

Similar to the wave group tests, test 6 consists of a relatively clean packet
and the evolution of this packet in space is shown in Figures 4.15 and 4.16. At
the blocking point the energy from the wave packet is reflected back and further
away from the blocking point (zr = —2 m) it is easy to distinguish the incident
wave packet from the reflected packet. Closer to the blocking point the incident
and reflected wave packets interact with each other and very close to the blocking
point it becomes very difficult to distinguish between the two. The corresponding
spectral plots (Figures 4.17 and 4.18) show that no long waves are generated in the

wave packet tests either.

05



Table 4.2: Parameters for wave packet tests determined at z = —4.6 m
Test No. | T}, () | Hmae (m) | «
| 1.125 0.0175 | 0.08
1.125 0.035 0.08
1.125 0.07 0.08
1:125 0.094 0.08
1.137 0.013 0.15
1.137 0.02 0.15
1.137 0.031 0.15
10 1137 0.05 0.15
1.219 0.017 0.08
6 1.219 0.032 0.08
11 1.219 0.054 0.08
12 1.219 0.084 0.08
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Figure 4.9: Time series of the wave paddle motion for Tests 1,2, 7,8 (wave packet
tests)
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Figure 4.10: Time series of the wave paddle
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Figure 4.11: Time series of the wave paddle motion for Tests 5,6,11,12 (wave
packet tests)
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4.4 Summary

A series of experimental tests were conducted on the evolution of wave groups
and wave packets through the blocking region. The aim was to see if analogous to
a moving breaking point in shallow water, a moving blocking point could act as
a forcing mechanism for the generation of long waves downstream of the blocking
points. Our test results indicate that this is not the case. The individual wave
components in the wave groups get blocked at their respective blocking points with
little interaction, and the waves evolve from being groupy to being monochromatic.
Similar results were also observed in the numerical simulations of Chen et al. (1998).
Reflection of the wave packets from the blocking point was observed in the wave
packet data. Detailed plots of the narrow banded spectral tests are available in

Chawla and Kirby (1999a).
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Chapter 5

WEAKLY NON-LINEAR EVOLUTION EQUATION FOR
NARROW-BANDED WAVES PROPAGATING IN
STRONG CURRENTS

5.1 Introduction

Benjamin and Feir (1967) in their pioneering work showed both theoretically
and experimentally that deep water waves with a carrier frequency f are unstable
to side band perturbations at f £ Af. They conducted an instability analysis on
Euler’s equations and showed that the growth rate of these perturbations is directly
dependent on the steepness of the waves. This sparked a great interest in the long
term temporal and spatial evolution of deep water waves and wave packets, and a
good review on the subject has been given by Yuen and Lake (1980).

Whitham (1965) deduced the basic governing equations for the slow mod-
ulation of wave amplitude, wave number, etc. Chu and Mei (1970, 1971) using a
WKB-perturbation technique extended the scope of Whitham’s theory by including
new terms which directly represented the modulation rates. The evolution of these
instabilities were found to be governed by the Schrodinger equation separately by
Zakharov (1968), Hasimoto and Ono (1972) and Davey (1972). Permanent form so-
lutions of the Schrédinger equation in the form of envelope solitons were predicted
by Zakharov and Shabat (1972) who solved the equation directly using the inverse

scattering technique of Gardner et al. (1967). Yuen and Lake (1975) derived the
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non-linear Schrodinger equation using Whitham’s theory by carrying out the aver-
aged variational principle to a higher order, and thus showed that the two different
methods used to study the evolution of the side bands were in fact the same. They
also verified the solutions obtained by Zakharov and Shabat (1972) with the help
of experimental studies. Their experiments showed a recurrence pattern which was
confirmed by Lake et al. (1977) and Yuen and Ferguson (1978). Though the recur-
rence of a monochromatic wave was predicted by the non-linear Schrodinger model,
the experiments of Lake et al. (1977) showed that the recurrence is accompanied by
a decrease in the frequency, which could not be predicted by the non-linear equation.
Lo and Mei (1985) carried out the analysis to a higher order in non-linearity and
showed that the growth in the energy of the side bands was unequal with the lower
side band growing much faster. However, even in their numerical simulations recur-
rence occurred with no apparent shift in the frequency. Based on the experimental
studies of Melville (1983), Trulsen and Dsythe (1990) showed that the down-shift
occurs due to wave breaking at the steepest waves. Combining the model of Lo
and Mei (1985) with a damping term to simulate energy dissipation, they showed
that this was a possible mechanism for the down shift, though they were unable to
recover a clean monochromatic wave.

Studies on side band instabilities in the presence of currents were carried out
by Turpin et al. (1983) and Gerber (1987). They showed that these instabilities are
highly pronounced in the case of an opposing current due to the rapid steepening of
the waves. This increase in the growth rate of the side bands has been observed in the
experiments carried out by Lai et al. (1989) and in our own experiments as well. Our
experimental studies indicate that the evolution of side bands through the blocking
region can adversely affect the dynamics of the wave field beyond the blocking point.
The earlier models have been developed by considering perturbations on a carrier

wave that is moving with the group velocity. But at the blocking point this carrier



wave gets blocked, and the evolution of the side bands cannot be predicted any
further into the domain.

A non-linear model for wave evolution needs to be developed that is valid in
the domain beyond the blocking point. We have seen from our graphical solution
in Figure 1.4 that, in the presence of currents, the dispersion relation has two roots
(denoted by B and C in the figure). As the current increases the two roots move
towards each other and beyond the blocking point there are no solutions of the
dispersion relation. In fact there are solutions but they are in the complex domain.
This can be seen from the linear dispersion relation for waves and currents in deep

water.
(w— kU)* = gk

Solving the quadratic equation in k& we get

1
Wiy b gk gu 14 24
k= 7

202

g ; . 3 .
k becomes complex for U < ~ Figure 5.1 shows how the real and imaginary
o :
roots of the dispersion relation vary with the current. Beyond the blocking point two
complex conjugate solutions are obtained. This leads to a complex phase function.

The water surface motion 7 is given by

1~ e

where 1) is the phase. For a complex phase the wave changes from a sinusoidal
form to an exponential form, and a decaying solution can be obtained by using the
appropriate root.

A numerical model has thus been developed which accounts for blocking

effects by allowing the phase to be complex. The model is one-dimensional in space
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real roots of the wave number
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Figure 5.1: real and imaginary roots of the Doppler shifted linear dispersion rela-
tion as a function of U (T = 1.2 s)
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and has been developed for narrow channels with varying width. The orientation

of the coordinate system is chosen such that the z— axis lies along the channel

centerline, the y— axis is in the cross channel direction and the z— axis points in

the vertical direction. The short wave motion is in the positive x direction, while

the underlying steady depth uniform current is in the opposite direction.

5.2 Boundary value problem

The boundary value problem for irrotational fluid flow in terms of a velocity

potential d is given by

<I’):,1._1', + (i)ﬁ_,;- -+ (i’z'z' = 0; —fi!. <EL

‘i’ i fl,,;-‘I’);e + fl.g;,(i)?;. =0 z= —}')P,

b, 1 /. . ,
= ——t— 5_((1)2,: + (I)Er 4 (I)ﬁ); (=1
g g

t

(i).ffi 24 yql)i ofe (cf)?_ s (f);zj g (f);‘)

Y

1. 8 2 0 . 8| (22, 2
+ E{‘B@;{ + o+ <I)@} (#+

(i)!j = :t(’)a-(f).r, ’_l} = :tf;

(5.1a)
(5.1b)
(5.1c)
) (5.1d)
+ <1>§) =0; Z=1
(5.1e)

where 20 is the channel width and 7} is the surface displacement due to the combined

effect of current and waves.

We now nondimensionalize the problem using the following scaling

,l,:..
'f'] ] -—; (I) —
a
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where a is the measure of wave amplitude, kg is the measure of wave number and
¢ = kpa is a nonlinearity parameter.

The resulting B.V.P. is given by

Dpp + Py + ., =0; —h<z<en (5.3a)
D, + he®r+ hy®y=0; 2=-h (5.3b)
n=—0 - >(P++82); z=ey (5.3¢)

Oy + D, + e(tbi + 2 + <I>§)

f

€ d 9, 0 ; . , (5.3d)
Sl By B 1 (D224 02) =0y 2=

ki 2 { "Ox Ty Ay * Bz} a @Y+ ij ey

by = +b, Py y=%b (5.3¢)

Since the waves are propagating in the positive z direction, we have a fast
scale in x and ¢t over which the phase of wave motion changes and a slower scale
over which the wavenumber and wave amplitude changes. Across the channel there

are no fast scales. Using stretched coordinates we thus have

X1 X
:r:::r:+—l+—.;+°" (5.4a)
€ €
T, T -
b=tk G (5.4D)
i Y .
Y= ? f_2 (J.4F)
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Furthermore, since we are studying the interactions between an O(1) current and

wave motion, we can write ¢ and 7 as

¢ =P, + e, (5.5a)

7= Ne + €Ny (5.5b)

where the sub-scripts ¢ and w correspond to current and wave motion respectively.

5.2.1 Solution for current motion

Assuming that the current is steady and uniform in depth, and that both the
channel geometry and depth averaged current U are a function of the slow coordinate

X,, we can write @, as
1 o
D, = ;3_/ U(X2)d Xy + ®.(X2, Y7, Y5, 2) (5.6)

The resulting boundary value problem for current motion in the stretched coordinate

system is then given by

Uy, + 62&),;\,1 v, t®.. =0 —-h<z<n (5.7a)

&, = —*Uhy,; z=—h (5.7b)
Leoo | 205 2, (& \2

e = =5 (U +€ ((I)cyl) + (P..) ); =N, (5.7¢)

- ('f,rm.2 U+ Ney, &)c‘n) = <i)c;; =, (5.7d)

O, = Hebx,U; Yy =ked (5.7¢)

70



From the B.V.P. it is clear that the vertical velocity (‘I_)f._: is O(¢?). We can thus

write (i)c as
b= by (X2, 11, Y3) + o (X, 2)

Substituting the above expression in (5.7) and solving the B.V.P. by first integrating

out the Y} dependency using the lateral boundary conditions, we get

s - be2 (yl)’z

B = 72 (5.8a)

= (Ub)x, (z + h)?

D,y = — 2 5 —Uhyx,2 (5.8b)

and the combined expression for @, is given by

Ubx, (Y1) _ ( (Ub)x, (z+ h)?

b 2 b 2

O, = ig / 416 EA7 5 AR

€

+ Uh,,\—zz) (59)

From (5.9) it is clear that the horizontal velocity along the channel has variations in
depth and across the channel. However, for our experimental setup these variations
were less than 1%. Substituting (5.9) in the surface boundary conditions yields

27N
Ne = _w a i 0(64) (51(](1,)

(Ub(h + 1)) x, = O(e*) (5.10b)

5.2.2 Solution for the combined wave-current interaction
Substituting (5.5) in (5.3), doing a Taylor series expansion about the current
surface z = 7, and separating the B.V.P. for the steady current (eqn. 5.7), we get a

resulting B.V.P. for the combined wave-current interaction
(I)m:z:::: + (I)wyy o (I)wzz == U; ~h S Z S €Tl [5'11}]‘)
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Dy, + he®p, =0; z2=—h (5.11b)

€ (I)C't: b (Im (I)(:z
e = — (I)wt. - § (( f‘ g (I)wu:)z = ( ! T+ (I)wt,r) (T -+ q’wa)g)

1 (5.11c)
+ g(@” + fD{j -+ IJ,Z); Z =y

Py + Doy + 10 P ( 2 4+ Dy,)? (Ic” + @y, )2 + ((I);z ‘”‘"')2);
+ %{(‘1’ o) 8‘9 (% ) o (22 +<1>m)-a—z}
(P2 + 20+ (C2 4 2,2+ (I’— +0,.7) -
(5.11d)
Pyy = £b:Pyp; y==£b (5.11e)

Substituting the stretched coordinates (5.4), the velocity potential for current

(5.9) and perturbing the wave motion using the small parameter ¢

B, = Dy + €Dy + €Dy (5.12a)

The = T + €1 + €13 (5.12b)

the nonlinear B.V.P. can be reduced to a set of linear B.V.P.s at different orders of

¢. For compactness the following definitions shall be used

0 ) .
D:_t+U£ (5.13a)
r=pt4+ 2 (5.13b)

= = :
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Dl—i-l-U .

a’.zj] JY

0 0

D .-
= 51 T Vax,

(0 8
VZ(%@)

and the corresponding B.V.P.s for the first three orders of ¢ are given by

(I)RIJ:.’!: + (I)‘I'I.ZZ = F:ﬂ;; ]J z < 0

$,, =Gn; 2=-h, n=123

M = I(n; Z=MNe N= 11 2: 3

I'®,=Jn;, 2=1, n=123

(Dnyl = Hn, }f| = :I:f[), [ ¢ 1‘ 2
where the forcing terms are given by

Fi=0

Fy = —2®y,x,

1?3 = —(@1,\';){1 "+ q)lle].) - ((I)lx;\'z w (Dl)\'-;,m) - 2(1)'2:.!:)!.'1

n=1,223

(5.13¢)

(5.13d)

(5.13e)

(5.14a)

(5.14D)

(5.14c)

(5.14d)

(5.16a)



Gy =0 (5.16h)

G3 = —hy,?y, (5.16¢)

Hy =0 (5.17}1)

Hy, = :l:ng(I)la; (517b)

I‘X’l = —D‘I’l_ (518?].)
1

Ky =—-D®y — D;P; — §(V(p1 ’ V(I’]) —mD®P,, (518[))

z

f(;; =— D(I)g — D'l(I)g — Dz‘l)l — T (D]‘I’lz + .D(I)zz + %(V(TH ¥ V(IH) )

2 b
o rjl.."‘2.-0(1)1,3 - %Dq)lzz - (qll:cq)lx\ﬂ s (I)l:::q)2:r: + (I)lz(I)Zz) - J}\z }fI(DIY'l
)
+ Uney,
(5.18¢)
J=0 (5.19a)
Jy = =2DD®; — D(V®, - V&) — [Py, (5.19b)
bx. Ub) x .
Jy == =LY Ddiy, +m ( ’J)“ — DyD®, — DDy ®, — D3, + 1,y By,

~ 2DDy®; — Dy (VO - V&) = 2Dy, @1 x, + @1, Doy + 01,05,
1
—5 Ve V(V®, - Vdy) — (2DD1<I*; + %y + D(VP, - v(pl))
2
- ?}21—‘(1)1:: - %F(I)Jz;:

(5.19¢)
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The first order solution of (5.14) is the linear solution for a propagating
wave. Due to the presence of nonlinear forcing terms at higher orders in the surface

boundary conditions, we expand the velocity potential using a WKB expansion

=7

(I)ﬂ = q’ﬂ,[l + (Z (I“'n"m."3?:1'”“'JIJ -+ C-C-) (520)

m=1

where c.c. is the complex conjugate and ¢ is the phase function given by

A s /(A:(Xg)d::: — wdt) - (5.21)
Thus

k=vy | w=-—1Y (5.22)

w remains constant through the domain but £ varies with the current and beyond the
blocking point k& becomes complex. The solution thus changes from a propagating
wave form to an exponentially decaying one. Therefore, to propagate the solution
through the blocking region, the phase function ¢ is allowed to be complex. The
forcing terms in the boundary value problem are also expanded using the WKDB

expansion. Substituting the expansion in (5.14) we get

9 o
(% = n"'zkz) (I)n,m = Fﬂ,‘m.; —h <z< 0 (5233)
Z
(I)?r.,'.'n: = Gn,'m; Z =~ (523}))
(I)il'.'..:ruy1 = G'n,-m; = +b (523()
0 2.2
Fo " m nyn — Jams 2 = Te 0.49C
- o | B I (5.23d)



Thngn = Kﬂ,,m; Z =1 (5230)
where
c=w—kU (5.24)

Eqgn (5.23) has to be solved sequentially for all m at a particular n before

going to the next n level. For n > 2 there are two special cases.

m =0 : The governing equation is given by

(I)n,(}mg = £'n0 (525)
Integrating (5.25) in depth and using the boundary conditions we get

Te
[ Rt,Odz = Jn,ﬂ - Gn‘O (526)
J —h

m = 1 : The boundary value problem is given by

(68—; - kz) G1=Fn1; —-h<z<n (5.27a)

®n1, =Gny; z2=-h (5.27b)
a _

(5 -0 )‘I’n,l =dJdn1; 2= (5.27¢)

M =Kn1; 2=n (5.27d)
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The homogeneous solution to (5.27) is a freely propagating wave governed by the
linearized problem. To prevent secular terms, the inhomogeneous solution must
satisfy a solvability condition which is given by

e

| D1 Fnadz = @y 10 — P11G (5.28)

J—h =T z=—h

The two solvability conditions (5.26) and (5.28) yield the evolution equations

for the wave amplitude and the corresponding long wave motion.

5.2.2.1 First order solution

The forcing terms at the lowest order are given by

F[ZO N G1:U : -][ZU

At m=0
P10, =0
Thus,
Dy 9= Py o(Xy, X0, V1,Y5, T, T, - +) (5.29)

At m =1 the boundary value problem is

8‘2
(@ — kg) 11 =0 —-h<Lz5n (5.30)

(I)l,l: — U, z=—h
Jd ]
(a—az)@m =ik =1

which yields the linear solution for a propagating wave

1A (cosh Q)

(I) = —_—— I-_ b
il cosh ¢ (3.d1a)

20
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0% = ktanh g (5.31b)

where A is the wave amplitude, and the following definitions have been used for

compactness
Q=k(z+h) q=k(h+n) (5.32)

Substituting the solution for ®; in the forcing term for 7, yields at the different

harmonics
Mo =0 (5.33a)
A
?}]’1 = E (533b)

5.2.2.2 Second order solution
Using the solutions at n = 1, the forcing terms at this order can be determined

and are given by

kAx, (cosh (@)

Fz,n =0 ; F2,l ==
o \coshq

) 3 Fg‘-)_ =0
Gap=0 ; G21=0 ; Gy2=0

3

i i (a - n*) o |*
Jop = aA|? (m + c.r:.) — _(1 + | tanh ‘I|2) ;

2| tanh ¢|2

3io® A2
Jog =An +UAx, ; Jopg=——
4sinh” ¢
where « defined by
a=elV (5.35)
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is a coefficient which denotes the nonlinear forcing mechanism. Note that o = 1
everywhere before the blocking point. Beyond the blocking point o will either be an
exponentially growing or decaying function depending upon the choice of the wave
number.

At m = 0 we have

Dyp,, =0 —h<2<n

(I)z‘()z =10 z=—h
and thus get

@2,() = (I)Q,G(X],}(g,}"1,Y2,TL,T2,——.) (537)

At m = 1 we have

0? 4 kAx, (cosh@
(322 k )(1)2’1 o (coshq )' h<zsne

®yy.=0; z=-h

d ;
(a'_z == O-J) (D2,1 — AT[ == brAX;; Z =1

Substituting the forcing terms Fjy,Go, and Jy;, and solution at n = 1 in (5.28)

yields
Ap, + (U +Cy)Ax, =0 (5.39)

where C), is the group velocity for a wave propagating in a frame of reference with

the current and is given by

o 2q .
b= 2k (1 - sinh 2(]) 3 40)
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The homogeneous solution for ®,; is the same as @, and the particular solution
can be obtained by the method of variation of parameters to yield

iB (coshQ) B ( @ sinh ) )A .

20 \ cosh ¢ 2ko cosh g

Py = —

The first term in the expression can be absorbed in the solution for ®,; and we get

By = — (M)Ax, (5.41)

2kao cosh g

At m = 2 we have
0? g
'9—2 B 412:2 (1}2,2 = U, '—'h. g =~ S T}'{;
Oz

q)g,g: =0; z=-h

) . 3io3 A2
— — 40?2 | B, = . B =N
(Bz 7 ) %27 4sinh? q ==

which yields the particular solution

3io A? cosh 2QQ
16sinh* ¢

Equs (5.37), (5.41) and (5.43) give the solution for ®,, and together with the

Dyy = —

solutions for ®; and 7, can be substituted in the forcing term for 7, to yield at the

different harmonics

|A|2ﬂ( lo|*(1 + | tanh ¢|?)

20 = — l:(q’l‘u;p1 + U(I)I!UXI) + — (k tanh g + (:.r':.))]

4 | tanh ¢|?
(5.44a)
i go tanh ¢ -
M1 = 5 Ap, + (U = T)A,\», (5.44b)
k cosh ¢ 2 "
Moo = ————(2cosh“ g+ 1)A (5.44c¢)
8sinh” ¢
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5.2.2.3 Third order solution

To determine the governing envelope equations at third order we only need
to evaluate the solvability condition at n = 3. Using the solutions at n = 2 and

n = 1, the forcing terms for m = 0,1 at third order are given by
Fip=— (‘I’mxl x; T (I)l,ﬂylyl)

F3, = %(AXIJ\’1 +AY,Y.)M - %{k(ﬁicosh@)xg X (M)M]

cosh ¢ o cosh ¢ o cosh ¢
" iQsinh @
ocoshg =
(5.45a)
kA
G3o=0 ; G31= —h»xzm (5.45Db)
J3p0 = — (@umﬂ +2U®1 05,4, + U2<I>1,[]X1X1)
a g — {T* * *® * *® R2 .
+§{( |0'|2 )(A-Y|A R| = AA]AR|) + {A/\rlA (7"‘]{3) +C.f—.}}
Uby kA A 10 . 90”0,
'f3,I — b 2 YIAY] - %7}”‘\,2 ~+ E(Uh)xg -+ '6(2?; + ,l;;2 )AXIXI
1 A, Uo /A
+3(An +Utn) + 4 (2)
iokA sinh 2¢ y 2
= sinh 2q ((I)I,UTI b (U = = )(I)l‘”z\'l) -+ %(_E|A| A(R4 + Rrj)
(5.45¢)
where
k%2 ;
Ri=k"+ 4l ﬁ!ga + (0*)%(¢ + tanh ¢) (5.46a)
k ; ¢ tanh ¢ K *
R; = —(2 — tanh®q) — 5.46b
’ G’( sk k (r_lr(:osh2 q) (5 )
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- O_(,T(l'tgl'.‘2 e e o)) (5.46¢)

lo]?  2|o|?cosh® ¢

Ry = %lkl (k + k*)(tanh ¢ + tanh ¢*) (5.46d)
Ry = L 3|k[202(20 — 0*) cosh 2¢ + 3k|o|*(20 — o*) sinh 2¢
%™ 8sinh? q| lo? o J k
) 2 - € 2
+ 30‘1{:2(1 — 2sinh? q) — o sinh? q(lgl (1+ [l'm.hq| )
| tanh ¢|?
;|?0* sinh 2¢(1 + 2 cosh®
— (k tanh ¢ + k* tanh q*)) i ,Q( Tave (5.46e)
2 sinh 2¢*
e ([KP0?  E(R—KY) o K
sinh q( ]2 -+ sinh tj(l E +|o | ))

k 2
+ HEO‘ sinh? ¢(k + k*)(tanh ¢ + tanh q"‘)}

Substituting the forcing terms in (5.26) and (5.28) and simplifying, we get a set of

coupled equations

q’l,ﬂ'z‘m T 2U(I)1=UX1T; =+ U2(I’1'0xlxi = (h+nc) (‘I’Lﬂxtxi + (I)l,ﬂ}f.)'.)

_Oz{(g| |2 )(A).IA'.& X, ARY) + {AYlA*(Rz—i—R&)_F(( }}

(5.47a)
U+C, : .C,
247, +2(U + C,)Ax, + a(—’) ey — -
; o Xa k:
Uby. 2ick A sinh 2¢ 5.47b
L Yt — sinh 2¢ (q)l’”'f‘l + (U g )(Dl'“f\’u) ( )

+ 2ic| APA(Rs + Rg) = 0
where

. 2 .
o 2({0 (':osh2 q % _2q sinh ¢C, (5.48)
k? sinh 2¢ o k cosh ¢

82



The variation in the channel width can be taken into account by integrating
(5.47) across the channel and using the lateral boundary conditions. From (5.14)

and (5.17) the lateral boundary conditions is given by

P10y, =0; Y1 = keb (5.49a)

Ayl = i‘.it’k’Ab,\'z; Yl = +eb (549[))

Integrating (5.47) across Y = +eb and using (5.49) we get a set of coupled equations

for the width averaged amplitude A, and long wave @,

@1,[),1,11,1 |- 2U(I-)1=UX1T1 = (U2 s (h, . n‘-'))(i)l‘“xlx,

o il (PR o o merh
— %{ (O-|o-—|:‘) (AXIA*RI = A);‘—IARI*) |- {AXLA*(_QZZ_ -+ Rg) -+ l".f_.'..}}
(5.50a)

] I TG
F R SV N PR (u

= ) A —ioAx, x,
b Xa

- sinh 2¢\ - s
((I)'-‘]T; W (U a Smc: (f)q')""’.!\") + 2iat| A|*A(Rs + Re) = 0

T
ok A (5.505)

sinh 2¢

Eqn. (5.50) is a third order weakly non-linear evolution model for a narrow-
banded wave envelope propagating on a strong current in a narrow varying channel.
The model is also valid beyond the blocking point.

For sake of convenience we shall rewrite (5.50) in dimensional form

By, + 20D, + (U* — g(h+ 1)) P,

- ﬂgz { (0|;|ZJ*) (A ARy — ALAR:") + {A:nf_l* (%E =+ R:;) + c.c. }}

83



(U +C,)b

24,4+ 2(U + Cy)As + % ( ) A-iowA,

o
2ickA | - sinh 2¢\ -
= L Dy, + (U = M)@l,u + 2ic| A|*A(gRs + Rg) = 0
gsinh 2¢ o »

(5.51b)
where the primes have been omitted for brevity. The expression for ¢ is now given

by
o* = gk tanhq (5.52)

The expressions for the coeflicients Ry to Ry, C, and oy, remain unchanged except
that they are now evaluated with the dimensional values of o and &.

When there is no wave blocking then 1, k and o are real and (5.51) simplifies

to
By, + 20y, + (U2 — g(h +n.))® { ol i b1AP)
— g\n e . — & ! g €
1.0s b0zt J ! 1022 2k tanh? g 4sinh® ¢
(5.53a)
- = oc/(U+C)b\ - . = 2ickA | -
244,{ -+ 2(U + CQ)A,L + = ("—-—"—'—”( J) ) A— VWkkAge — — 1T 1,0,
b o @ g sinh 2¢

11 2 smin == z .
i (U _ gsinh 2q)(§m 2 2mlﬁ|2fi(0k (cosh 4(;4‘—8 : 2 tanh q)) _0
o # 16 sinh” ¢

(5.53b)
For a constant width (5.53) reduces to the 1-D evolution model of Turpin et al.
(1983).
In the linear limit, and neglecting frequency dispersion (5.51) reduces to

g((U + C,q)b)i T

24, +2(U+C)A + 5 (———=) A=0 (5.54)

|
Multiplying (5.54) with —gA*, adding the complex conjugate of the resulting equa-
P

tion and using the following definition for wave energy F
.
= —pg|A|?,
5PIlAl
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we get

(D)3 (), -0 g

o
(o {
o
S—

Equ. (5.55) is the width integrated wave action conservation principle.

5.2.2.4 Choice of k beyond the blocking point

We have already seen from the graphical solution of the dispersion relation
in Figure 5.1 that beyond the blocking point we get a pair of complex conjugate
roots. The choice of the wave number has to be done carefully so as to choose the
decaying solution beyond the blocking point.

Based on the equation for the surface motion
A .
Ty = 5(’.“‘(’ + O(e)

and the expression for non-linear forcing given by (5.35), a positive I'm(k) (Imn(f)
refers to the imaginary part of complex function f) seems to be the appropriate
choice as it leads to a decaying solution for the surface motion and the non-linear
forcing for a fized wave amplitude. However, since both the forcing term and the
surface motion are dependent on the wave amplitude, it is necessary to study how
the envelope equation varies beyond the blocking point before choosing the wave
number root.
i

Consider a linearized version of the evolution equation (5.51) in a uniform

medium (i.e. no shoaling)
24; +2(U + C,)A; — i1 Aze = 0 (5.56)
Assuming a plane wave solution for the wave amplitude

i e {wi([\’m—ﬂt)



and substituting in (5.56) we get
o Ok
Q= (U+CHK + K*% (5.57)

Solving the quadratic eqn. (5.57) for K, we get a pair of solutions

o —(U—FCQ)—F\/(U-J-Cg)z-J-?,QO'kk _—

Ky = ( e ) (5.58a)
. (—(U+Cy) — /(U +Cy)?+ 200k .

Kn = ( w— ) (5.58b)

Figure 5.2 shows the plots of the two roots as a function of €2 for a wave with
T = 1.2s. In the figure K; — 0 as 2 — 0, which means that for this root the wave
amplitude will be constant in space when there are no modulations in time, which
makes physical sense. However, in the case of Ky there will be spatial modulations
in the wave amplitude even in the absence of any temporal variations. Furthermore,

; sy e .
in the deep water limit, with — < 1, the roots can be approximated as

a
2k
Ky — (5.59a)
o
Q

Ky = 2k 2__) s

2 ( = (5.59b)

which yields

Q t5.60
di, = 2k 5.60a)
dS2 Q
dK, = 2k (5.60b)

Ky has a negative group velocity and will propagate wave energy backwards. Thus,

K, is the spurious root to the solution.

86



0.35
0.3
0.25
0.2

e

-~
0.15
0.1

0.05

2.45

2‘4 AP

2.35r

2.3F

5\2.25

2.2
2.15

2.05
0

Figure 5.2: K, and K, as a function of Q. (T =1.2s, U= 0.0 m/s, h = 0.5 m)

T

0.05

1
0.1 0.15
Qlo

0.2

0.05

0.1 0.15
Qlo

87

0.2



Im(K) (m™)

=)
:

I I I I | I I

=15
-8

-6 -4 -2 2 4 6

0
Im(k) (m™)
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A positive I'n(IK;) will yield a decaying solution for the envelope equation
beyond the blocking point. Using (5.48) and (5.40) Im () has been plotted as a
function of I'm(k) in Figure 5.3, for Q =~ 0.5s~!. From the figure it is clear that the
choice of a positive In(k) will lead to an exponential growth in the wave amplitude
A. Since [Im(K,)| > |[Im(k)|, the growth in the amplitude will be stronger than the
subsequent decay due to the complex phase, causing the waves to blow up beyond
the blocking point. Thus, to simulate wave blocking we have to choose the root with

a negative Im(k).

5.2.2.5 Energy dissipation due to wave breaking
Energy dissipation due to wave breaking is introduced as an additional sink
term in the envelope equation. Considering only the shoaling model we have

2A7, +2(U + Cy)Ax, + %(

(U+Cg)b) A+vA=0 (5.61)
o Xz
where v is the energy dissipation coefficient. The expression for 7 is evaluated
using the empirical dissipation term D (given by eqns. (3.3) and (3.8) developed in
Chapter 3).

To compare v with D, we first write (5.61) as an energy equation in exactly

the same way as we did for (5.55)

% [% (%}9‘_))] g _7’?5 (5.62)

where we have made the assumption of steady waves to eliminate the time derivative
term. Comparing eqns. (5.62), (3.3) and (3.8) we get

e 2‘{.} 2 r
v=2 e (5.69)
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Similar to the Miche’s criterion used in Chapter 3, a slope criterion is used
to determine the onset of wave breaking. But for numerical stability reasons the
energy dissipation term is ramped up smoothly as waves approach the limiting slope

2[“} 5
v = —gk*|A|[1 + tanh(40(m — my))] (5.64)
where the terms in the square brackets is the empirical ramp function, m is the wave

slope (m = k|A|) and my is the limiting slope based on (3.9) in Chapter 3.

5.3 Numerical Scheme

The set of coupled equations in (5.51) are solved using two second order finite
difference schemes. The spatial coordinate = has been discretized by x; = jAz, while
the time has been discretized by 1, = kAL,

For the long wave motion we use a backward time centered space (BTCS)

numerical scheme. The derivatives are thus given by

= - KLy ph—l =k

Dy, = (Af) ((I> ﬂ,- — Z(I)I,Uj)

T 1 k+1 Th+1 Hh+1

(I')I)UJ‘:I == (AT) ((I)l. 0 i+1 + (I)I:Uj—l - 2(]:)1:0..:- )

T k-1 T h+1 Tk Tk
Pro, = 2Az At ((I 'J‘r'v+l B (I)]’J‘r’;f—l =B T (I)"U.f—l)

A-T- = QAT (A?I{ A;r+1)

Solving for the entire spatial domain at any time step leads to a set of equations

which in matrix form can be written as

{(Tilf:g'} = {F( Yy, (I)l o, nonlinear terms in AHI)} (5.66)
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For the envelope equation we use a Crank-Nicolson scheme. The scheme is

centered in space, and centered in time but about grid level ﬁ-.:+§ with a grid spacing
of —. The derivatives are thus given by

1

)

i 1 ik Ak+ ik ik
A, = M(A;I; — At 4 A, - AF)

= 1. Tk -1 Tk Tk Tk Ak Ak
Agy = Ba)? (A.fif +ATH 247 + AL+ A - 2‘4-?')

Once again solving for the entire spatial domain at a particular time step leads to

a set of equations which in matrix form are given by

{fl“'} = {19(&)%:};"(‘1-)?,0, A* " nonlinear terms in fik'*'])} (5.68)

The coefficient matrices in (5.66) and (5.68) are tridiagonal and can be easily

Cy

inverted to obtain ‘i’L,n and A at the new time step for all points in the spatial
domain. Since the forcing vectors F' and S involve terms at time step k& + 1 the

solution is obtained iteratively in the following manner.
e First we solve (5.66) using A* in F,
_ y _— o ERAE oa T o
e then we solve (5.68) using ®75" and A" in S,

e we now again solve (5.66) and (5.68) using the new values of A¥*! in F' and

S.

5.3.1 Boundary conditions

For the long wave motion ®, o Sommerfeld radiating boundary conditions were

used at both the upwave and downwave boundaries

(I)l,l],_ — (U + \/gh,)ff);,(,w =0 Upwave boundary (5.69a)

g1



"i’]_’{){ + (U + +/ !};J.)(I)l'[)m =0 Downwave boundary (5.69b)

For the wave envelope equation the Sommerfeld radiating boundary condition
was used for the downwave boundary while the upwave boundary condition

was the prescribed wave amplitude.

A = ag(t) tanh(¢) Upwave boundary (5.70a)

A+ (U+Cy)A, =0 Downwave boundary (5.70b)

where the tanh(¢) function is used to slowly ramp up the signal to its full value and
suppress noise associated with a sudden start.

To test our coupled equation numerical model we simulated the propagation
of a soliton. Zakharov and Shabat (1972), using an inverse scattering technique
showed that solitons are a permanent form solution of the Schrodinger equation. In
the absence of any wave blocking and in a uniform medium (i.e. constant depth and
width) our model (given by eqn. (5.51)) can be reduced to a Schrodinger equation.
Thus, our model should be able to propagate a soliton without changing shape.
The numerical simulation for a case with b =06 m, h=05m, T =12s, U =0
m/s, Az = 0.05 m, At = 0.0074 s is shown in Figure 5.4. For this test case the
wave envelope was prescribed inside the domain instead of at the upwave boundary.

There is no change in the shape of the soliton as it propagates through the domain.

5.3.2 Numerical filter
In Section 5.2.2.4 we found that the simplified version of the evolution e-
quation (eqn. (5.56)) yields two roots for a plane wave, of which (5.58a) is the

correct root. There are several examples in the literature of numerical simulations
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Figure 5.4: Propagation of a soliton in a uniform medium (T = 1.2 s, U = 0 m/s,
h = 0.5 1)
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of monochromatic wave envelopes in a uniform medium showing that the models
pick up the correct root. Similar results have also been obtained in our numerical
model for a monochromatic wave (see Figure 5.5). For the numerical simulation
we have taken T'=12s, U = 0m/s, h = 05 m, b = 0.6 m, Az = 0.05 m and
At =0.0074 s

However, a varying channel leads to the development of instabilities which
propagate backwards. To illustrate this point consider the linearized version of
(5.51)

(U +Cy)by

gy + 2T 4+ G3) A - %( ) b (5.71)

a

Once again assuming a plane wave solution for the wave amplitude

A = geilKz—9t)

and substituting in the equation we get

e (1) 4 O3B 4 RAZKE 408 5.72)
q 2 2
where
e 6_((U+Cy)b)
4 f) a T
or
Vs
Q=Q, —i—
i)
and
A=ge 2Kt (5.73)

For a contracting channel, 7, < 0 and according to (5.73) this would lead to the

growth of instabilities. In a domain that is very slowly varying the growth of these
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Figure 5.5: Snapshots of the spatial evolution of the wave envelope for a monochro-
matic wave in a uniform domain(T = 1.2s,U = 0)
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Figure 5.6: Spatial variation of domain width. Depth is constant

instabilities may be insignificant. However in our experimental tests the domain
varies abruptly over a few wave lengths and the instabilities are expected to grow
faster.

Numerical tests have thus been conducted to study the growth of instabilities
in the varying domain. The numerical domain used is shown in Figure 5.6. The
domain is similar to the one used in the experiments (see Figure 2.1 in Chapter 2),
except that the varying width is described by a tanh function to remove discontinu-
ities. For the simulations Az = 0.05 m, At = 0.0074 s, h = 0.5 m, U = 0 m/s, and
initial amplitude Ay = 0.01m. Figure 5.7 shows the spatial snapshots of the wave
envelope at different times. The limits of the region where the channel is narrowing
is shown by the dashed line. The growth of the instability in the varying part of

the channel can be clearly observed. This instability propagates along the spurious
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root. K5, and since this root has a negative group velocity the disturbance is prop-
agated backward into the domain. An opposing current leads to a larger value of
vs and consequently a faster growth of the instability as can be seen in Figure 5.8
for a current distribution shown in Figure 5.9. Consequently for a domain which
is expanding (Figure 5.10) and has a current distribution given by Figure 5.12, the
instability is damped out as can be seen in Figure 5.11.

To simulate the experimental tests conducted on narrow-banded waves (see
Chapters 3 and 4) our numerical domain has to have a contracting channel. We thus
need a numerical filter which will damp out the instability that propagates along

the root Ky. A ‘3 point’ filter is used for this purpose (Shapiro, 1970)

ek

Anewl:s:j&:r: = FYfAl.T::jﬁ:L‘ Al (Almr-(j—l)&:r + AII=(,f+I}AJ:) (574)

Substituting
A= AD Bi{h’:r;—ﬂ!.)

in the above equation, we get an amplification factor or response function R as a
function of K and Az

R= % = ys + (1 — ) cos(K Az) (5.75)

where 7, is a weighting function. Damping occurs when R < 1. Substituting
(5.59) in (5.75) we can get the response functions for the two roots K; and K,
(see Figure 5.13). The undesired root K, has a much higher damping rate, and
can be damped out. Figure 5.14 shows the snapshots of the evolution of the same
monochromatic wave as shown in Figure 5.8 with the exception that a 3 point filter
with v, = 0.65 is used every 10 time steps. The filter damps out the disturbance

with negligible effects on the desired solution.
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Figure 5.7: Snapshots of the spatial evolution of the wave envelope for a monochro-
matic wave (T = 1.25,U = 0)
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Figure 5.8: Snapshots of the spatial evolution of the wave envelope for a monochro-
matic wave (T = 1.28,U given in Figure 5.9)
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Figure 5.9: Current distribution for numerical test shown in Figure 5.8
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Figure 5.11: Snapshots of the spatial evolution of the wave envelope for a
monochromatic wave (T = 1.2s,U given in Figure 5.12)
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Figure 5.12: Current distribution for numerical test shown in Figure 5.11

5.4 Comparison with data

For comparing with experimental results numerical simulations were done
in a domain which is linearly varying just like in the experiments. The numerical
domain is shown in Figure 5.15. Numerical filtering was done every 10 time steps
with 7y = 0.7. The filtering was done only until the blocking point. It should be
kept in mind that since the phase function is allowed to be complex, the actual

e Im¥) and this expression is used to compare

amplitude envelope is given by |A
with the amplitude envelope of the data.

For numerical simulations of monochromatic wave trains we had Az = 0.05
m and At = 0.0074 s. Figure 5.16 shows the amplitude comparison of the model
with the monochromatic breaking wave Test 2 (T = 1.2 s, H = 0.009 m). From the
plot we can see that the model is able to block the waves, but this blocking occurs

earlier than in the data. This is because the model uses a linear dispersion relation
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Figure 5.14: Snapshots of the spatial evolution of the wave envelope for a
monochromatic wave using a 3 point filter (T = 1.2s,7; = 0.65)
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Figure 5.15: Numerical domain for comparisons with data. Depth is constant

(5.52) to predict the location of the blocking point. In the comparison between the
model and breaking wave Test 4 (T = 1.2 s, H = 0.066 m) shown in Figure 5.17 this
disparity is even larger. The model predicts blocking at the linear blocking point but
the data shows that due to the larger wave amplitude the waves reach the maximum
current without getting blocked. Beyond this point due to energy dissipation the
waves continue to lose energy till the blocking point is reached much further inside
the channel. The importance of non-linear dispersion in wave blocking was pointed
out in Chapter 3, and the inability of the model to predict this effect is a fairly
strong limitation of the model.

Numerical simulations of wave groups have been done for conditions corre-
sponding to the wave group Test 6 shown in Figures 4.5 and 4.6 in Chapter 4. The
groups in the model were constructed by modulating a carrier wave with T = 1.22

s. For the simulations we used Az = 0.05 m and At = 0.012 s, which corresponds
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Figure 5.16: Model to data comparison of the amplitude envelope for a monochro-
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to the sampling frequency at which the data was collected in the experiment. The
time series of the surface elevation are shown in Figures 5.18 and 5.19, and the
corresponding comparison of the amplitude envelopes with the data are shown in
Figures 5.20 and 5.21. In the experiments the individual wave components of the
wave group are blocked at their respective blocking points and the time series goes
from being groupy to being monochromatic and then being completely blocked.
In the model however the entire wave group gets blocked at the blocking point of
the carrier frequency and there is no selective blocking as seen in the experiments.
This limitation of the model to not separately block parts of the frequency spec-
trum also prevents the model to reproduce the experimental results of Test 6 in the
monochromatic breaking wave experiments where the energy of the lower side band
is not blocked (see Chapter 3).

Numerical simulations have also been conducted to simulate Test 6 of the
wave packet experiments shown in Chapter 4. The wave packet in the model was
created from a half-sine wave and it contained 8 waves. The wave period of the
carrier wave was 1.22 s. A strong filter (7, = 0.6 and filtering every 5 time steps)
was used to remove all the numerical instabilities. The time series of the data (see
Figures 4.15 and 4.16 in Chapter 4) shows that the wave packets are reflected from
the blocking point and close to the blocking point the incident wave packet and
the reflected wave packets interact. In the model simulations shown in Figures 5.22
and 5.23 we also see a reflected wave packet. Though the numerical model has
been developed only for the forward propagating root it is possible that close to the
blocking point when the incident and reflected roots are very close to each other, the
narrow banded spectrum around the incident root may capture the reflected root
also. However it is not clear whether the reflected packet in the numerical results

is the reflection from the blocking point or the backward propagation of numerical
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instabilities. The separation distance between the incident and reflected wave pack-
ets at any particular gage location is greater in the experimental data as compared
to model simulations because the blocking point in the experiments is further away
from the wavemaker due to non-linear dispersion effects. The comparisons of the
amplitude envelopes of the model and experimental data (Figures 5.24 and 5.25)
shows that the actual blocking of the packet occurs later than predicted by the

model.

5.5 Summary

A weakly non-linear model has been developed for the evolution of the enve-
lope of a narrow-banded spectrum propagating in strong currents. The model has
been developed for channels of varying width and depth. Beyond the blocking point,
the roots of the dispersion relation branch out to give a pair of complex conjugate
roots. Thus, the wave changes from a progressive periodic form to an exponentially
damped form. Choosing the correct root leads to the decay of wave motion beyond
the blocking point. In the absence of wave blocking and for a channel of constant
width, our model can be reduced to the model of Turpin et al. (1983).

The model consists of a pair of coupled equations for the wave envelope and
the long wave motion. Usually in the literature the long wave motion is integrated
out to yield just a single equation. However, due to the complex nature of the
coeflicients this is not possible in our case and we have to solve a coupled system
of equations. The numerical scheme consists of a BTCS scheme for the long wave
equation and a Crank-Nicolson scheme for the envelope equation. Numerical tests
on the propagation of a soliton have shown that the model works well. The governing
envelope equation has two roots, one in which the wave energy is transported in the
direction of propagation of the carrier wave, and a second spurious root in which the

energy is transported in the opposite direction. In the uniform channel, the model
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Figure 5.22: Time series of the model simulations of the surface elevation 7 at
positions corresponding to the wave packet data on Figure 4.15 in
Chapter 4
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Chapter 4
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picks up the correct root. However, within a rapid channel transition with increasing
opposing current, the model is unstable. The strength of the instability grows with
the rate at which the group velocity is decreasing and the disturbance is propagated
backwards as the spurious root. To counteract the growth of the unstable mode a
3 point filter is used in the model.

The choice of the correct root to damp out the waves beyond the blocking
point is not straightforward. The apparent choice is the wave number with the
positive imaginary component, which will lead to decay of the surface wave ampli-
tude for a fixed reference wave amplitude. However, the choice of this root actually
causes the complex wave amplitude to increase exponentially with a faster rate than
the decay of the carrier wave. Since the increase in the amplitude is greater than
the decay due to the phase function, the overall solution will blow up. Therefore,
the correct choice to simulate wave blocking is the root with the negative imaginary
wave number.

When simulating wave blocking the model has a few major limitations. The
first is that the model predicts the blocking point based on the linear dispersion
relation and cannot account for non-linear effects. In the experimental results of
Chapter 3 we saw that due to the sharp steepening of the waves prior to the block-
ing point, the non-linear terms in the dispersion relation become important and
the linear dispersion relation does a poor job of predicting the position of wave
blocking. The second major limitation of the model is that blocking occurs at the
blocking point of the carrier wave. However experimental results both in the case of
monochromatic waves (breaking wave tests Test 6) and the wave group tests show
that this is not the case and that the individual wave components of the spectrum
are blocked at their respective blocking points. This inability of the model to block
the wave components of the spectrum separately means that the model is unable

to simulate the propagation of the lower side bands even when the primary wave
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component and the upper side bands are blocked (monochromatic breaking wave

tests Test 6, Figure 3.8 in Chapter 3).
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Chapter 6

EXPERIMENTS ON RANDOM WAVES

6.1 Introduction

The evolution of wave spectra on a varying current was first studied by Huang
et al. (1972), using the wave action conservation principle together with the doppler
shifted dispersion relation. Tayfun et al. (1976) extended the analysis to finite depth
and a directional wave spectrum. Experimental studies conducted by Hedges et al.
(1985) showed that the model of Huang et al. (1972) overpredicted the spectral
values in the high frequency range. Better comparison was obtained when they
included an upper limit to which the waves were allowed to grow in any frequency
band, using an equilibrium range constraint similar to the one used by Phillips
(1977).

Sakai et al. (1986) conducted experimental studies on waves breaking in shal-
low water in the presence of opposing currents. Their studies showed that the oppos-
ing currents increased the energy decay due to breaking. The opposing current also
led to larger increases in the significant wave period. However, their experimental
studies were conducted in shallow water where the breaking process is dominated
by depth limited breaking. Ris and Holthuijsen (1996) conducted numerical sim-
ulations of random waves being blocked by strong currents in deep water using a
third-generation wave model. They tried to quantify the energy decay in due to

current limited breaking with the experimental studies of Lai et al. (1989), with
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inconclusive results. Our experimental studies on monochromatic waves outlined in
Chapter 3 have shown that under blocking conditions the waves exhibit a heirarchial
behavior extending from wave reflection to prevention of blocking due to growth of
side bands. In irregular waves all of these different physical processes are occurring
together and it is not obvious if a monochromatic energy decay model can be used
with irregular waves. Thus, in order to develop an empirical dissipation model for
current-limited breaking in irregular waves a detailed experimental study on irreg-
ular waves has been conducted and shall be outlined in this present chapter. A

version of this presentation also appears in Chawla and Kirby (1999b)

6.2 Experimental tests

The random wave experiments consisted of 20 spectral tests, the details of
which are available in Chawla and Kirby (1999a). For each spectral test, gage
measurements were done at 36 different locations in the flume. At each location the
time series of the water surface was recorded at 50 Hz for 1000 sec. In all of the
spectral tests there was wave breaking to some degree or other, thus, results from
all of the tests shall be presented here.

The design spectrum for each of the tests was determined from a TMA spec-
trum. Due to wave blocking of high frequency components, the measured spectrum
af the first gage (z = —4.6 m) does not correspond in shape to an equilibrium TMA
spectrum (see Figures 6.1 and 6.2). The initial conditions are therefore determined
from the measurements of the first gage. The spectra have been quantified in terms
of the root-mean-square wave height H,,,, and the average frequency w.

Jo £S(f)df
Jo S(h)df

The parameters for the tests are given in Table 6.1. Larger values of H,,,; were not

Il

w=2r

(6.1)

used because it led to breaking of the higher waves at the wave paddle itself.
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Table 6.1: Parameters for Random wave tests (determined at z = —4.6 m).

Test No. | @ sec™! | Hypps m
] 5.81 0.026
2 5.68 0.033
3 5.40 0.042
4 5.33 0.045
5 5.35 0.026
6 5.24 0.034
7 5.07 0.047
8 5.03 0.057
9 5.07 0.033
10 4.96 0.046
11 4.85 0.059
12 4.80 0.068
13 4.90 0.033
14 4.76 0.044
15 4.70 0.058
16 4.63 0.070
17 4.60 0.027
18 4.45 0.040
19 4.39 0.052
20 4.28 0.062
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6.3 Bulk dissipation formula

Before developing a numerical model for random waves, we need to determine
a bulk dissipation formula for random waves breaking on opposing currents. Similar
to the monochromatic wave problem, we shall use a previous method for determining
bulk dissipation in depth limited wave breaking as a guideline to solve for a bulk
dissipation formula for current limited wave breaking. The approach followed here
will be the one outlined in Thornton and Guza (1983).

The basic assumption is that the energy dissipation in any individual breaking
wave is given by the bore model (see eqn. (3.8)). The bulk energy dissipation due

to all the breaking waves is then given by
<D :~»=/ D(H)P,(H)dH (6.2)
0

where P,(H) is the probability distribution of wave height of the broken waves and

is unknown. D is the energy dissipation in the breaking wave and is given by

P (H*E)a 3
D= —-f8,— — | H 6.3
f 81 tanh kh 6:3)

Eqn. (6.3) is similar to (3.8), except that we use an average wavenumber k corre-
sponding to @ and a different scaling parameter [, which depends upon the energy
dissipation in the waves.

An empirical expression for P,(H) can be obtained from experimental data.
In order to do so, we must first be able to separate the breaking waves from the

non-breaking waves in any given time series.

6.3.1 Geometric criterion for broken waves
A geometric criterion is used to separate out the breaking and non-breaking
waves in a time series. This criterion was first proposed by Longuet-Higgins and

Smith (1983) and later modified by Xu et al. (1986).
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The method consists of dividing the time series into individual wave compo-
nents using the zero-upcrossing method. For each wave component we then deter-
mine

dan, __ Ang

R=|—|&|——
|Bt |At

(6.4)

Using the non dispersive wave equation

i

: = {
ot T ox

we get

An

€T

R=|e
where ¢ is the phase speed of the wave component determined using linear theory.
Now

An

— &~ tan o
Az

where tan « is the wave slope. Longuet-Higgins and Fox (1977) showed that
tan v = (0.586
is the limiting slope for waves. Thus, a wave is breaking if
Rar = 0.586¢ (6.5)

where R4, is the maximum value of R determined from (6.4). Eqns (6.5) together
with (6.4) provide a geometric criterion to determine breaking waves from a time
series. The criterion is so called because it is based on the maximum slope of the
waves. The biggest disadvantage with using this method is that some of the waves

start breaking earlier and continue to break as they pass over the gage, but by then
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their slope has reduced considerably. The method cannot distinguish between these
breaking waves and unbroken waves with small slopes.

To test the method, an experiment was conducted in which the time series of
breaking random waves was recorded at 8 different locations in the tank. Observers
were placed in front of each gage with a counter to record the broken waves passing
over the gages. The comparison between the probability of breaking (fraction of
breaking waves) determined with the help of visual observations and the geometric
method is shown in Figure 6.3. The discrepancies occur due to the errors in visual
observations and the inability of the method to distinguish between broken and un-
broken waves of small slope. Nevertheless, the qualitative pattern of the probability
of breaking is reproduced reasonably well by the geometric method, and complete
agreement is not so important as the bulk dissipation formula shall be scaled by a
non-dimensional parameter. Thus, the method shall be used to develop an empirical

formula for the probability of breaking.
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6.3.2 Probabilistic distribution function for broken waves

An empirical formulation of the probabilistic wave height distribution of the
broken waves is determined with the help of the experimental data. Figure 6.4
shows the pdf of broken and unbroken waves at x = 0, for 6 different tests. The
solid line is the Rayleigh distribution. From the figure it is clear that the wave
height distribution of the broken waves is a subset of the Rayleigh distribution and
is skewed towards larger values of the wave heights. Thus, the pdf for broken waves

can be given by
P,(H) = W (H)P,(H) (6.6)

where P,(H) is the pdf of the broken waves, W(H) is a weighting function to be
determined, and P,(H) is the Rayleigh wave height distribution given by

2H H 5
BAH) = 2 OXP (— (H ) ) (6.7)

TS

H,..s is the root-mean-square wave height.

The weighting function W (H) has to be skewed towards larger values of wave
height. Also, the proportion of waves breaking must increase with stronger opposing
currents. Since waves tend to steepen on the stronger currents, a wave slope criterion

is proposed for the weighting function

FHoms ] EH O\
wiE) = |22 | by e - 2 o
=[] 1o (- (i) )} o

where v, is a parameter to be determined and k is the wave number corresponding
to w. The terms in the curly bracket skew the wave height distribution to larger

wave heights.
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Substituting (6.8) and (6.7) in (6.6), we get an expression for P (H) as

k . H \*?
PJ H =2H —————— gk & e 1
bH) (manhkh) pr( (HNM) ){
= Hins v, tanh kh

Figure 6.5 gives the comparison between the pdf of broken waves and the empirical

(6.9)

function given in (6.9). The probability of breaking @, can then be given by
Q= / P,(H)dH (6.10)
Jo

The value of v, is fixed by comparing the probability of breaking obtained from (6.10)
and (6.9) and the probability of wave breaking obtained from the experimental data.
These comparisons are shown in Figures 6.6 and 6.7 as a function of x for v, = 0.6.

Substituting (6.9) and (6.3) in (6.2) and solving we get

_ o3 | gk’ ( ; )2 - [1

32/ \| tanh kh \ 7, tanh kh rms

B NP1
. 1 + o T'ﬂ'l-‘f_
¥ tanh kh

In shallow water, where tanh ki — kh, (6.11) reduces to the expression

(6.11)

obtained by Thornton and Guza (1983). It should be mentioned that we could have
chosen a different form for P,(H) to give a better comparison with the distribution
of broken waves but the subsequent expression for bulk energy dissipation would
have been very complex. We would also lose the added advantage of (6.11) reducing

to the depth limited form of Thornton and Guza (1983) in shallow water.

6.4 Numerical Model
Using the wave action conservation principle together with an expression for

the bulk energy dissipation, two simple numerical models are used. Since we have
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already seen from the monochromatic tests that amplitude dispersion effects are
important, a non-linear dispersion relation is used in both the models. H,,,, is used

to quantify the amplitude dispersion effects.

6.4.1 Bulk wave action conservation model
In this model the individual spectrum is described by its bulk quantities, and
then modeled as a monochromatic wave, but using the bulk dissipation formula for

wave breaking. The governing equation is given by

1 la (bE,.,,MCga)] _<D>

(6.12)

EE o a

where F,,, is the wave energy corresponding to H,,s. C‘_,,u and & are the group
velocity and intrinsic wave frequency associated with the average frequency @.
The problem with this model is that we specify an @ in the initial conditions
which characterizes the spectrum. In the model this @ remains fixed as the random
waves progress into stronger currents. But in reality as the spectrum moves into
stronger currents, more of the higher frequency components get blocked and sub-

sequently @ shifts down. We thus do not expect the model to perform very well,

particularly in regions where a large part of the spectrum is blocked.

6.4.2 Spectral Model

A second model is used to account for the limitations of the first model.
In this approach the entire spectrum is modeled and not just its bulk quantities.
The model involves dividing the frequency spectrum into N equally spaced bins,
and representing the energy in each bin by a monochromatic wave. The governing

th

equation for the ¢** wave component is then given by

() -5

i
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where d; represents the energy dissipation in each frequency component due to wave
breaking.

The advantage of having spectral information is that we can empirically ad-
just 0; so that the higher frequency components have greater energy dissipation.

The expression used for é; is given by
o\ 4
5o = b (;) (6.14)

where o is a coefficient. The terms in the brackets were raised to the 4th power
because that gave reasonably good extimates of the spectrum. Since the total energy
dissipation from all the wave components is given by < D >, we get
B 24 =
T N ai\*

Ei:l ET: (E)

Eqns. (6.13) together with (6.14), (6.15) and (6.11) make up the spectral

X

(6.15)

model. The advantage of this model as compared to the bulk conservation model
is that individual frequency components can be tracked separately, and we can
simulate spectral quantities like @ more accurately. The disadvantage is that it is

computationally more intensive.

6.5 Comparisons with data

The parametric values of 3, and v, in the two models were arbitrarily fixed
at 0.4 and 0.6 respectively. In the spectral model 100 energy bins were used. For the
spectral comparisons, the energy spectra from the gage measurements was Bartlett
averaged with 24 degrees of freedom (Af = 0.012). The H,,,; comparisons are
shown in Figures 6.8 and 6.9. The disadvantages of representing an entire spectrum
by just one component are seen in Tests 7— 13 where only a part of the spectrum is
blocked. The energy dissipation in the bulk model also tends to be greater because

of the inability to predict the down shift in @ (see Figures 6.10 and 6.11). In the
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case of Test 17 wave breaking criterion are barely met and the energy dissipation
is too subtle to be modeled with any degree of accuracy by the empirical model.
Overall the bulk dissipation formula for random waves breaking on a current works
reasonably well. There are a few discrepancies between data and spectral model
predictions of @ for the higher energy cases. These are probably due to nonlinear
effects.

The evolution of the spectrum and the comparison with the spectral model for
one of the tests is shown in Figure 6.12. The spectral model simulates the spectrum
reasonably well, except in the narrow channel where the high frequency components
are underpredicted. Figures 6.13 and 6.14 show the spectral comparisons between
model results and data at the last gage (z = 4.6 m) for all the tests. The spectrum
of the first gage has also been plotted to show the down shift more clearly.

We thus find that a probability of breaking criterion based on the wave slope
together with a bore dissipation model works reasonably well in simulating energy
dissipation in random waves. Another criterion which was based on wave slope was
given by Battjes and Janssen (1978). Though their model was derived for depth
limited wave breaking, we should be able to use their model with a few modifications
to simulate current limited wave breaking. They state that all the waves breaking
at any given point have a wave height H,,,,, which is the maximum wave height.

For the current limited breaking cases we shall denote this by
Ir T :
Hoor = T tanh kh (6.16)

which is very similar to the breaking criterion used for monochromatic waves (see
equ. (3.9). They then determined an expression for the probability of breaking ()
in terms of a transcendental equation using a Rayleigh distribution.

} i Qb o H?'ms g
nQ, ( H) (6.17)
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Using the bore dissipation model the energy dissipation is then given by

(.GE?)S 3
— | H? . 6.18
tanh kh Tt ( )

p
Dy; = —ﬁw-ng

Using the same parametric values and the spectral model formulation, the
comparison between the present bulk dissipation formula given by (6.11), and the
Battjes and Janssen dissipation formula given by (6.18) are shown in figures 6.15

and 6.16. Both the formulae give very similar results.

6.6 Summary
A series of experiments of random waves have been conducted to study ener-
gy dissipation due to wave breaking under conditions of strong opposing currents.
Jomparison with data has shown that just like in the case of monochromatic waves
(Chapter 3), a modified bore dissipation model works very well. The modified mod-
el uses a wave slope criterion instead of the standard wave height to water depth
ratio that is used for shallow water breaking. The Battjes and Janssen (1978) mod-
el which also uses a wave slope criterion to determine breaking compares very well
with the data also. As random waves propagate into stronger opposing currents, the
frequency spectrum down shifts considerably due to the blocking of higher frequency
components. This down shift can be accurately modeled with a spectral model.

A puzzling feature of our current-limited breaking models has been that the
parametric coefficient f which is used to characterize the energy dissipation has
different values for monochromatic and random waves (0.1 and 0.4 respectively).
This is unlike the depth-limited breaking models (Thornton and Guza, 1983; Battjes
and Janssen, 1978). A probable reason for the disparity could be that in our tests
the current is not monotonically increasing and reaches a maximum in the narrow
part of the channel. The waves thus do not continue breaking as they propagate

into the channel. This effect is accounted for in the random wave model because
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the probability of breaking reduces in the narrow part of the channel, leading to a
reduction in the energy dissipation. The monochromatic model on the other hand
has been designed for a monotonically increasing current, and does not account for
waves not continuing to break. Shallow water breaking models of Thornton and
Guza (1983) and Battjes and Janssen (1978) have been calibrated on monotonic

beaches.
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Chapter 7

CONCLUSIONS

A detailed study has been conducted on the dynamics of wave blocking and
current limited wave breaking under different wave conditions with the help of ex-
periments and numerical modeling. The aim has been to quantify the physical
processes involved and attempt to reproduce the experimental results with the help
of a numerical model.

An existing 30 m long flume was modified to conduct experimental studies on
wave blocking. A recirculating system was built in the flume so that currents could
be generated by drawing out the water from behind the wavemaker and putting
it back into the flume at the far end. The wavemaker consisted of a piston-type
flat paddle, and the solid plate was replaced by a perforated plate so as to allow
the currents to go through but still be able to generate waves. The experimental
setup could only generate currents opposing the waves. An inlet was created in the
middle of the flume by narrowing the flume width with the help of false walls. The
maximum currents were generated in the inlet and the experiments were designed
such that wave blocking occurred inside the inlet. The inlet was designed such that
there is no flow separation and jet like formations in the flow field as the current left
the inlet. Velocity measurements of the current were made using SONTEK ADV
probes, while the water surface was measured with the help of capacitance wave

Bgages.
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The experimental studies on monochromatic waves were divided into the
small amplitude wave tests and the large amplitude wave tests. In the small am-
plitude wave tests the initial wave steepness was kept small enough so that waves
did not break even at the blocking point causing them to get reflected. A detailed
measurement of the wave envelope was made for different conditions. For the small-
est wave heights the measured envelope through the blocking region was an Airy
function and confirmed the linear theory predictions. With increasing amplitude,
the envelope deviated from the Airy function theory, and there was a transition
region between the waves being completely reflected with no breaking to completely
breaking with no reflection. Partial wave blocking was also observed. The large am-
plitude tests were conducted to study the effects of non-linearity on wave blocking
and to develop an empirical function for energy dissipation due to wave breaking. A
simple wave action conservation model was used to compare with data. The energy
decay was found to be simulated reasonably well with a modified bore model that
asymptotes to the form of the depth limited breaking model in shallow water. The
parameter quantifying energy decay was found to have a much smaller value than
that used for depth-limited breaking. Due to the significant increase in wave steep-
ness prior to blocking, amplitude dispersion became important and a third order
Stokes dispersion relation did a much better job than the linear dispersion relation
in predicting the blocking point. In some of the largest amplitude tests waves were
not blocked due to side band instabilities. The growth of side bands were enhanced
considerably due to both the increased wave steepness and the longer temporal s-
cales at which the energy propagated. The upper side band and the primary wave
component were then blocked and the lower side band propagated through because
its blocking point was never reached. Numerical models that are unable to simulate
this complex phenomenon will yield highly erroneous results.

A series of narrow-banded spectral tests were conducted. The modulating
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wave trains created a moving blocking point and the aim was to see if this could act
as a forcing mechanism for the generation of long waves analogous to the moving
breaking point in shallow water. Experiments were conducted both on bichromatic
wave groups and wave packets, but no long waves were observed. In the wave
group tests the individual wave components were blocked at their respective blocking
points with little or no interaction. Reflection of the wave packet from the blocking
point was also observed.

A weakly non-linear numerical model was developed for narrow-banded wave
spectra propagating in a varying channel. The model simulated wave blocking by
accounting for complex values in the phase function beyond the blocking point.
Under no blocking conditions and in regions of constant width our model can be
reduced to the envelope model of Turpin et al. (1983). The model is unstable in
regions where the channel width and/or depth is changing rapidly and a 3 point
filter had to be used to suppress these instabilities. Though we have developed a
global model which simulates wave blocking without having to use any asymptotic
expansions, the model still has two major limitations. Firstly, it uses the linear
dispersion relation to determine the blocking point which we have already seen
from our experiments, does a rather poor job in predicting the blocking point. And
secondly, the model blocks the waves at the carrier frequency of the modulating wave
train. Our observations both in the blocking of monochromatic wave trains with
side bands and in the blocking of wave groups show that in reality narrow-banded
spectral waves are not blocked at their carrier frequency, but, instead the individual
components of the spectrum are blocked at their respective blocking points. To
counteract this limitation, a spectral numerical model would have to be developed
along the lines of the non-linear integro-differential model of Zakharov (1968), which
treats the dynamics of each frequency component separately.

To complement the experimental studies on current-limited wave breaking



in monochromatic waves, a series of experiments was also conducted on random
waves. The aim was to develop an empirical bulk dissipation formula for current-
limited wave breaking similar to the one developed by Thornton and Guza (1983)
for depth-limited wave breaking. An empirical formula based on the modified bore
dissipation formula for monochromatic waves and an empirical probabilistic distri-
bution of breaking waves was developed and calibrated with the data. The formula
was tested using both a bulk wave action model and a spectral model. Since the
spectral model resolved the details of the spectrum it compared much better with
the data.

A puzzling feature of the bulk dissipation formula is that the parametric
coefficients have different values for random and monochromatic waves. This is
unlike the dissipation formulae for depth limited breaking. A probable reason for
the disparity could be that our experiments were conducted in a current which is
not, monotonically increasing (the current reaches a maximum in the narrow chan-
nel), while the experiments on depth-limited breaking were conducted on monotonic
beaches. The dissipation formula for random waves can account for the current not
being monotonic because the probability of breaking reduces when the current stops
increasing. The dissipation formula for monochromatic waves on the other hand, as-
sumes a monotonic current and continues to dissipate energy even when the current
becomes constant.

The advantage of using the bulk dissipation formula is that in the shallow
water limit it asymptotes to the depth-limited breaking formula of Thornton and
Guza (1983). It should be kept in mind that though both the depth-limited and the
current-limited formulae have very similar forms the parametric values identifying
the energy decay in the two processes are very different. A detailed experimental
study in different conditions are required to obtain a range of parametric values

spanning both the current dominated and depth dominated wave breaking.
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