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ABSTRACT

Models that predict the fluid motion in the surf and swash zones on a beach
are necessary in the effort to understand nearshore processes. The movement of
sediment and the associated shoreline change are caused by the action of waves and
current over time. The following endeavor presents contributions to the quantitative
understanding of the cross-shore wave transformation and sand transport processes
in surf and swash zones on beaches.

First, a time-averaged model that is based on the finite-amplitude shallow-
water equations is developed to predict the root-mean-square wave height, wave
setup, and free surface skewness and kurtosis from outside the surf zone to the
inner swash zone. This new model includes nonlinear correction terms in the cross-
shore radiation stress and energy flux that become important in very shallow water.
Calibration and initial comparisons to laboratory tests are presented; additional
comparisons to independent laboratory tests and field data are presented as verifi-
cation. The model is shown to effectively predict the cross-shore variations of the
skewness and kurtosis as well as the root-mean-square wave height and setup on
laboratory and natural beaches.

Second, a time-averaged model to predict both erosional and accretional
beach profile evolutions under the assumptions of alongshore uniformity and nor-
mally incident waves is presented. In the development of the model, the cross-
shore sediment transport in surf zones on beaches is analyzed on the basis of the
time-dependent, depth-integrated sediment continuity equation including sediment

suspension, storage, advection and settling. The energetics approach is shown to

ix



correspond to the special case of local equilibrium between sediment suspension
and settling. The corresponding time-averaged model together with the simpli-
fied assumptions of Dean (1977) yields a uniform suspension rate for the standard
equilibrium profile. The simplified time-averaged model with new moving bound-
ary conditions at the shoreline and breaker point is compared with erosional and
accretional beach profile evolutions under regular waves in a large tank. The sed-
iment suspension rate estimated for the equilibrium terraced and barred beaches
under irregular waves is found to be roughly uniform in the surf zone but increases
significantly in the swash zone.

Finally, a time-dependent, cross-shore sediment transport model in the surf
and swash zones on beaches is developed to predict both beach accretion and erosion
under the assumptions of alongshore uniformity and normally incident waves. The
model is based on the depth-integrated sediment continuity equation which includes
sediment suspension by turbulence generated by wave breaking and bottom fric-
tion, sediment storage in the entire water column, sediment advection by waves and
wave-induced return current, and sediment settling on the movable bottom. The
hydrodynamic input required for this sediment transport model is predicted using
the finite-amplitude, shallow-water equations including bottom friction. The de-
veloped model is compared with three large-scale laboratory tests with accretional,
neutral (little), and erosional beach profile changes under regular waves. The model
predicts sediment suspension and sediment concentration in a physically realistic
manner. The present computation is limited to the initial beach profile change, but
the numerical model is capable of predicting the accretional, erosional and neutral

profile changes.



Chapter 1

INTRODUCTION

The majority of the U.S. coastline is currently suffering from erosion, caus-
ing considerable public concern (National Research Council 1990). This ongoing
beach erosion will accelerate if the mean sea-level rise increases due to the green-
house effect (National Research Council 1987). The U.S. Army Corps of Engineer’s
shore protection program covers only 8 percent of the nation’s 4,300 km of critically
eroding shoreline and has shifted from primarily coastal structures to primarily
beach restoration and nourishment through placement of sand (Hillyer et al. 1997).
The performance of beach nourishment and protection projects is presently being
predicted by extrapolating historical shoreline changes (National Research Council
1995) because none of the existing models can predict long-term shoreline changes
resulting from erosion during storms and recovery between storms. Af present, no
model can predict the net onshore sand transport in the surf and swash zones during
the post-storm recovery.

Our understanding of nearshore hydrodynamics and sediment transport me-
chanics were reviewed by Peregrine (1983), Grant and Madsen (1986), Komar and
Holman (1986), Battjes (1988), Kobayashi (1988), Raudkivi (1990), Svendsen and
Putrevu (1995), and Nielsen (1992). Considering the complexity of the nearshore

processes including the spatial and temporal variability of sand bar morphology



(Lippmann and Holman) and shoreline position (Plant and Holman 1996), the fol-
lowing study is limited to the cross-shore processes under the assumption of along-
shore uniformity and normally incident waves. The seaward increase of sand di-
ameter observed on natural beaches [e.g. Thornton et al. (1996)] is not considered
in the following analyses. Longshore currents (Bowen 1969; Longuet-Higgins 1970)
and sediment transport [e.g. Hanson and Kraus (1989)] are better understood apart
from the uncertainties of the cross-shore and vertical distributions of the longshore
currents [e.g. Gallagher et al. (1998); Garcez Faria (1998)] and longshore sediment
fluxes [e.g. Wang (1998)].

Three related mathematical models are presented here in the effort to predict
short-term and long-term changes of beach profiles and shoreline positions. Chapter
2 presents a new time-averaged irregular wave model. Chapter 3 discusses a new
beach profile evolution model. Chapter 4 presents a new time-dependent sediment
transport model. Each of Chapters 2-4 is self-contained with independent introduc-
tion and notations because each chapter deals with related but different aspects of
nearshore processes. Each of Chapters 2-4 is explained in the following, and the
conclusions are presented in Chapter 5.

A computationally efficient wave model for the wave motion in the swash
zone on a beach is necessary in the effort to predict beach erosion and recovery near
the shoreline. While time-dependent shallow-water wave models have some success
in predicting surf and swash characteristics, the significant computation time makes
these models less suitable for beach profile models. The time-averaged models for
random waves are much more efficient computationally but do not predict the wave
conditions in the swash zone. A nonlinear time-averaged model that is based on the
finite-amplitude shallow-water equations is developed in Chapter 2 to predict the

root-mean-square wave height, wave setup, and free surface skewness and kurtosis



from outside the surf zone to the inner swash zone. This model is based on the time-
averaged shallow-water continuity, momentum, and energy equations and includes
nonlinear correction terms in the cross-shore radiation stress and energy flux that
become important in very shallow water. The time-averaged equations can be solved
numerically with much less computation time but require empirical relationships to
close the problem as shown in Chapter 2.

Calibration and initial comparisons were conducted of this time-averaged
wave model with data from three laboratory tests on 1:16 slope and two tests with
quasi-equilibrium terraced and barred beaches consisting of fine sand. This time-
averaged model is shown to be capable of predicting the cross-shore variations of
setup and root-mean-square wave height of the free surface elevation from outside the
surf zone to the lower swash zone of frequent wave uprush and downrush including
the observed large increase of wave setup near the still water shoreline. In order
to ascertain the applicability of the model to conditions different from tests used
for calibration, the model is verified using independent data sets including new
laboratory tests on a 1:30 slope that included runup measurements. Additionally,
the model predictions are compared to field data collected at Duck, North Carolina.
The model is shown to effectively predict the cross-shore variations of the skewness
and kurtosis as well as the root-mean-square wave height and setup on laboratory
and natural beaches. The exponential gamma distribution is shown to be capable of
describing the measured probability distributions of the shoreline elevation as well
as the free surface elevation in the field. The computationally efficient solution of
irregular wave motions may make this model suitable for the prediction of sediment
movement and the associated coastline changes.

Existing models have some success in predicting the sediment dynamics in-
volved in offshore sediment transport. However, it is more difficult to predict the

accretional case where sand grains are deposited on beaches. A simple time-averaged



model with moving boundary conditions at the shoreline and breaker point is shown
to predict both erosional and accretional beach profile evolutions in Chapter 3. Ex-
isting models assume that the local sediment transport rate is determined by the
local hydrodynamic forcing and sediment characteristics without regard to cross-
shore sediment advection. The net cross-shore sediment transport rate, however,
may be affected by sediment advection from or into the surrounding areas. A new
cross-shore sediment transport model is developed that includes sediment suspension
by turbulence generated by wave breaking and bottom friction, sediment storage in
the entire water column, sediment advection by waves and wave-induced currents,
and sediment settling on the movable bed. The energetics approach is shown to
correspond to the special case of local equilibrium between sediment suspension
and settling. The corresponding time-averaged model together with the simplified
assumptions of Dean (1977) yields a uniform suspension rate for the standard equi-
librium profile with the scale parameter A as a function of the sediment fall velocity.
The simplified time-averaged model with new moving boundary conditions at the
shoreline and breaker point is compared with erosional and accretional beach pro-
file evolutions under regular waves in a large tank. The sediment suspension rate
estimated for the equilibrium terraced and barred beaches under irregular waves is
found to be roughly uniform in the surf zone but increase significantly in the swash
zone.

The existing cross-shore beach profile models generally use sediment trans-
port models that are too simplistic to predict both beach erosion and accretion. A
one-dimensional, time-dependent model is developed in Chapter 4 to predict the
depth-integrated sediment dynamics and resulting beach profile change in surf and

swash zones. The depth-integrated sediment continuity equation includes sediment



suspension by turbulence generated by wave breaking and bottom friction, sedi-
ment storage in the entire water column, sediment advection by waves and wave-
induced return current, and sediment settling on the movable bottom. The hydro-
dynamic input required for this sediment transport model is predicted using the
finite-amplitude, shallow-water equations including bottom friction. The developed
model is compared with the three large-scale laboratory tests with accretional, neu-
tral (little), and erosional beach profile changes under regular waves as in Chapter
3. The model predicts sediment suspension under the steep front of breaking waves
and due to bottom friction in the swash zone. The computed depth-averaged sedi-
ment concentration does not respond to local sediment suspension instantaneously
because of the sediment storage and advection. The mean sediment concentration
becomes large in comparison to the oscillatory concentration with the decrease of
the normalized sediment fall velocity. The net cross-shore sediment transport rate
is shown to be the small difference between the onshore transport rate due to the
positively-correlated oscillatory components of the suspended sediment volume per
unit area and the horizontal sediment velocity and the offshore transport rate due
to the product of the mean suspended sediment volume and the mean horizontal
sediment velocity. Relatedly, the net accretion or erosion rate of the movable bot-
tom is determined by the small difference between the mean sediment settling rate
and the mean suspension rate caused by wave breaking and bottom friction. The
model successfully predicts the initial accretional, erosional and neutral beach profile

changes.
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Chapter 2

TIME-AVERAGED IRREGULAR WAVE MODEL

2.1 Introduction

The need for a simple model for the wave motion in the swash zone on a
beach has been pointed out in relation to the prediction of beach erosion and recov-
ery near the shoreline [e.g., Hedegaard et al. (1992)]. The time-dependent numerical
model based on the finite-amplitude shallow-water equations (Kobayashi and Wur-
janto 1992) has been shown to be capable of predicting the swash characteristics on
natural beaches (Raubenheimer et al. 1995; Raubenheimer and Guza 1996). Alter-
natively, time-dependent models based on extended Boussinesq equations have been
developed to elucidate the nonlinear wave transformation processes in the shoaling,
surf and swash zones [e.g., Schiffer et al. (1992)]. These time-dependent numerical
models, however, require significant computation time to resolve the breaking wave
profiles varying rapidly in time and space.

On the other hand, the time-averaged models for random waves represented
by the root-mean-square wave height or expressed as the superposition of regular
waves are more efficient computationally at the expense of the loss of the detailed
temporal information, such as the skewness of the wave profile which is regarded
to be important for the onshore sediment transport on beaches [e.g., Guza and
Thornton (1985)]. The time-averaged models for random waves represented by
the root-mean-square wave height (Battjes and Janssen 1978; Thornton and Guza

1983) or expressed as the superposition of regular waves (Dally 1992; Mase and



Kobayashi 1991) are much more efficient computationally but do not predict the
wave conditions in the swash zone (Cox et al. 1994a).

A nonlinear time-averaged model is developed to predict the cross-shore vari-
ations of the wave setup, 7, and the root-mean-square wave height, H,,,, from out-
side the surf zone to the lower swash zone where H is defined as Hyms = V8 0
with ¢ = standard deviation of the free surface elevation. This model is based on
the time-averaged continuity, momentum, and energy equations derived by time-
averaging the nonlinear equations used in the time-dependent model of Kobayashi
and Wurjanto (1992). The time-averaged equations can be solved numerically with
much less computation time but require empirical relationships to close the prob-
lem. The time-averaged rate of energy dissipation due to random wave breaking
is estimated by modifying the empirical formula of Battjes and Stive (1985) to ac-
count for the landward increase of Hyp,s/ I near the shoreline where h = mean water
depth. The skewness s and the kurtosis K of the free surface elevation included in
the time-averaged momentum and energy equations are expressed empirically as a
function of H,ms/?i.

The developed model is calibrated with three tests conducted on a 1:16
smooth impermeable slope and two tests on quasi-equilibrium terraced and barred
beaches consisting of fine sand (Johnson and Kobayashi 1998a). This time-averaged
model is shown to be capable of predicting the cross-shore variations of 7j and H,s
of the free surface elevation from outside the surf zone to the lower swash zone
of frequent wave uprush and downrush. The model of Battjes and Stive (1985)
considerably underpredicts 7 and H,,,s near the still water shoreline.

In order to ascertain the applicability of the model to conditions different
from tests used for calibration, the model is verified using independent data sets.
Five additional laboratory tests on a 1:30 slope were conducted that included runup

measurements. The model is compared with these five additional tests as well as



field data taken during storm conditions at Duck, North Carolina. The model is
shown to effectively predict the cross-shore variations of the skewness and kurtosis
as well as the root-mean-square wave height and setup on laboratory and natural
beaches. The exponential gamma distribution (Kobayashi et al. 1998) is shown
to be capable of describing the measured probability distributions of the shoreline

elevation as well as the free surface elevation in the field.

2.2 Model Formulation

The assumptions of alongshore uniformity and normally incident irregular
waves are made in the following. For flow on an impermeable beach, the the finite-
amplitude shallow-water equations for mass and horizontal momentum can be ex-

pressed as [e.g. Kobayashi et al. 1989

oh 0
d 0 N _ on
57 (W) + 5 (hU®) = —gh= (2.2)

in which 2 = cross-shore coordinate taken to be positive landward; ¢ = time; p
= fluid density; ¢ = gravitational acceleration; h = instantaneous water depth; 7
= instantaneous free surface elevation above the still water level (SWL); and U
= instantaneous depth-averaged horizontal velocity. The time-averaged continuity

equation corresponding to (2.1) is

RU =0 (2.3)
where the overbar denotes time-averaging, and use is made of the no flux boundary
condition into the impermeable beach. The time-averaged cross-shore momentum

equation obtained from (2.2) is written as

dSzs - dn

o = —pgh 5 (2.4)
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Figure 2.1: Definition Sketch

with

1 ——
Sea = p (U2 + 59(n —7)" (2.5)

in which S;, may be regarded as the cross-shore radiation stress derived from (2.2).
Note that the the radiation stress defined in (2.5) differs from the expressions of
Phillips (1977) and Mei (1989) in that the return current U is included. The time-
averaged bottom shear stress may be neglected in (2.4) as explained by Kobayashi
and Johnson (1998). The bottom elevation 2, given by z, = (7 — h) is assumed to
depend on z only. The time-averaged energy equation corresponding to (2.3) and

(2.4) may be expressed as (Kobayashi and Wurjanto 1992)

2 (@) =-Ds (26)

with

T -
Ep = 5P hU3 + pgnhU (2.7)

in which Ep = energy flux per unit width; and Dp = energy dissipation rate due
to wave breaking, which needs to be estimated empirically in this time-averaged
model.

To simplify (2.3), (2.4), and (2.6), the instantaneous free surface elevation 7
is expressed as

n=1n0+0mn (2.8)



where 77 and o are the mean and standard deviation of 7, respectively; and 7, =
normalized free surface elevation with 7; = 0 and 72 = 1. If wave reflection is
negligible, progressive linear long wave theory may be used locally to relate the
oscillatory components (7 —7) and (U — U) inside and outside the surf zone (Guza

and Thornton 1980; Kobayashi et al. 1998). This relationship together with (2.8)

szf-+1/~%— O1s (2.9)

Eq. (2.9) is necessary to reduce the number of unknown variables in the time-

yields

averaged model although the local reflection coefficient may not be small near the
still water shoreline on beaches (Baquerizo et al. 1997). Substitution of (2.8) and
(2.9) into (2.3) with h = (7 — ) and h = (7 — z) yields

U=-02+/gh ; a,,:—% (2.10)

which indicates that U is negative and represents return current (Kobayashi et
al. 1989). Although (2.10) does not account for the landward mass flux due to a
surface roller (Svendsen 1984a), it predicted the undertow measured at the mid-
depth below SWL fairly accurately (Kobayashi et al. 1997b, 1998).

Substitution of (2.8) and (2.9) with (2.10) into (2.5) yields

Sz = % Py H’Ems [(2?}, = %) - Cs:| ; Hypms = \/go (2‘11)

with

C, = 0,8 — 02 (2.12)
where s = skewness of 1 and 7, with 73 = s; n = finite-depth adjustment parameter
or the ratio of group velocity to phase speed with n = 1 in shallow water; and Cs =
nonlinear correction term for S,,. For linear progressive waves in finite depth, n is
normally expressed as [e.g., Dean and Dalrymple (1984)]

n= ! 1+ .Lph_.— (2.13)
2 sinh (Qkph)

10



where k, = linear wave number corresponding to the spectral peak period 7, outside
the surf zone. The cross-shore variation of 7), may be neglected in (2.13) because n =
1 in shallow water for any reasonable representative wave period used to calculate
k,. The cross-shore radiation stress S, based on linear wave theory is given by
(2.11) with Cy = 0. Cj is on the order of unity near the still water shoreline and
can not be neglected in the swash zone (Kobayashi and Johnson 1998).

Substitution of (2.8) and (2.9) with (2.10) into (2.7) yields
1

Ep = 3 P9 H? - nCy(1+Cr) (2.14)
with
1
Cr =3 50, (1-02) +35 02 (K —5) + 0 (215)

where C, = phase velocity based on T, with C, = v/gh in shallow water; Cp =

nonlinear correction term for Er. The kurtosis K = of 5 and 7, is

K= (”_ﬁ)4=ﬁ (2.16)

a

The finite-depth adjustment is included in (2.14) in the same way as (2.11) where
n C, in (2.14) is the group velocity based on T,. The cross-shore energy flux Ep
based on linear wave theory is given by (2.14) with Cr = 0 where Cp is on the order
of unity near the still water shoreline (Kobayashi and Johnson 1998).

The momentum equation (2.4) with (2.11) and the energy equation (2.6)
with (2.14) need to be solved numerically to predict the cross-shore variations of the
wave setup 77 = (H+ 2) and the root-mean-square wave height H,,,s = V8 0. These
equations reduce to those used in the existing time-averaged models [e.g., Battjes
and Stive (1985)] if Cs = 0 and Cr = 0. To estimate the nonlinear correction terms
C, and Cp using (2.12) and (2.15) with o, = o/h, the skewness s and the kurtosis

K are assumed to be expressed in the following empirical forms

g= 1, (H,.ms/ﬂ) - K = fk(s) (2.17)
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where f, and fx = empirical functions which will be obtained using the five tests
discussed later.

Finally, the energy dissipation rate Dy due to wave breaking in the energy
equation (2.6) needs to be estimated. The empirical formula proposed by Battjes
and Janssen (1978) and calibrated by Battjes and Stive (1985) is adopted here for
its simplicity. The formula proposed by Thornton and Guza (1983) may predict the
distributions of breaking and nonbreaking wave heights more accurately but requires
additional empirical parameters. In the present formulation, the exponential gamma
function may be used to describe the probability density function of 7 instead of
wave heights after the cross-shore variations of 77, o, and s are predicted (Kobayashi
et al. 1997b, 1998).

The calibrated formula by Battjes and Stive (1985) is given by

v
Dp=7p9fQHn (2.18)
with
1 *
an Q = (I}{}'Tns) (2,19)
i k, h
Hy = -Ukﬁ tanh (f}/[} gS ) (2.20)
" :
Hymso g Tr?
v = 0.5+ 0.4tanh (33 T p Ry o (2.21)

where a = empirical coefficient recommended as o = 1; f, = spectral peak frequency
given by f, = TP_I; @ = local fraction of breaking waves in the range 0 < @ < 1;
H,, = local depth-limited wave height; &, = linear wave number calculated using f,
and h; v = empirical parameter determining I, = ~vh in shallow water; L, = deep-
water wavelength based on Tj; and H,pe = deep-water value of H,s calculated
using linear wave shoaling theory with 7}, h and H, specified at the seaward

boundary of the numerical model.
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Figure 2.2: Sketch of the Boundary Between the Inner and Outer Zones

The empirical parameter v is uncertain in light of the field data by Rauben-
heimer et al. (1996) but is estimated using (2.21) without any additional calibration.
Relatedly, Battjes and Janssen (1978) indicated that Dy given by (2.18) would un-
derestimate the actual energy dissipation rate and produce H,,,s > H,, near the
shoreline, although (2.19) with @ < 1 requires H,ys < Hp. They recommended use
of a cutoff of H,yns = H,, when H,,s > H,,. This adjustment leads to H,n,s = vh
near the shoreline. However, H,,;/h is not constant and increases landward where
H,ps/h =~ 2 at the still water shoreline for the SUPERTANK data of Kriebel (1994).
It is interesting to note that the simple theoretical analysis of Svendsen (1984b) also
indicates a Hyms/h =~ 2. As a result of landward increase, (2.18) with (2.19)-(2.21)
is assumed to be valid only in the outer zone z < w; with z; = cross-shore loca-
tion where @ computed by (2.19) becomes unity and the still water depth decreases
landward in the region z > z;. The latter condition is required for a barred beach
to allow Q < 1 landward of the bar crest where ) = 1 may occur. An example of
the boundary between the inner and outer zones is shown in Figure 2.2. For the

inner zone = > x;, the ratio H, = H,,s/h is assumed to be expressed as

r— T

Ho=y+(n-7 ; = >0 (2.22)

Ty — Iy
where v, = value of H, on the order of two at the still water shoreline located at

z = z,; and 3 = empirical parameter. The values of v, and § will be calibrated

using the five tests discussed later. Eq. (2.22) describes the landward increase of
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H, from H, = v at £ = z; to H, = v, at £ = z, > z;. For the inner zone z > z;, the
momentum equation (2.4) and (2.22) are used to predict the cross-shore variations
of b and H,,s, whereas the energy equation (2.6) is used to estimate Dy which must

be positive or zero.

2.3 Numerical Solution

The numerical model called CSHORE (Kobayashi and Johnson 1998) is de-
veloped to solve (2.4) and (2.6) with (2.11)—-(2.22) where CSHORE includes the
option to include the bottom friction effects neglected in (2.4) and (2.6). The sea-
ward boundary of CSHORE is located at z = 0 where the values of T}, Hys and
7 at = = 0 are specified as input. The bottom elevation z,(z) in the region z > 0 is
also specified as input and the location z, of the still water shoreline is found using
z(z = z,) = 0. First-order finite-difference approximations of (2.4) and (2.6) are

expressed as

Njv1 =Nj — [P g (Hj+1 + Ej)]—l {2 [(SM)J‘H - (Sx:r)J]} (2-23)
(EF)J'H - (-EF)J' - %{ [(EB)H-] : 4 (-D”B)j} (2.24)

where the subscripts (j + 1) and j indicate the quantities at nodes located at ;44
and z;, respectively, with Az = (x4, — z;) being the nodal spacing. The first-
order numerical method in (2.23) and (2.24) is simple and accurate provided that
the nodal spacing Az is sufficiently small. The computation time is short, and
therefore this simple approach may be adequate. In the subsequent computations
for the laboratory data, use is made of Az =~ 10 cm. For the known quantities
at node j, the unknown quantities at node (j + 1) are computed by solving (2.23)
and (2.24) using an iteration method starting from o7,, computed using (2.24) with
(Dp)j1 = (Dp);. The adopted iteration method is found to converge within several
iterations. The convergence criteria is based on the differences between the iterated

values of 0,41 and hjy1 being less than the specified small value ¢, where € = 0.01
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mm is used in the subsequent computations. If Q;41 = 1 and (dz/dz) > 0 for
x > 41, the inner zone is reached and z; = z;,, is set.

For the nodes located in the inner zone z > z;, (2.22) is used to obtain
Hy = H,ms/ﬁ and o, = H*/\/g. Since the mean water depth A& can become very

small in the inner zone, (2.4) with (2.11) is rewritten as

dh =8P dz
T o RO LoV z> :
(2P +1) e h T for z>ux; (2.25)
with
I
P=g? [(2?1 - i) + 0,8 — UE] (2.26)

A first-order finite difference approximation of (2.25) between nodes j and (j + 1)

yields
Rin = 3P+ B+ 2 {(Pra + 3P+ 2% -2 [(a),0 - ()]} 220)

Eq. (2.27) is solved using an iteration method starting from the value of n;; in-
volved in Pjy; calculated using h; where (0,);41 and s;;1 are known using (2.22)
and (2.17), respectively. Since n given by (2.13) is essentially unity in shallow wa-
ter, this interaction method converges rapidly. After HJ-_H is computed, the energy
equation (2.6) is used to obtain (Dp);+1. The computation is marched landward

until A4 < €.

2.4 Experiments and Empirical Formulas

Two different experiments were conducted in a wave tank that was 30 m
long, 2.4 m wide, and 1.5 m high. These experiments were described in detail
by Kobayashi et al. (1997b, 1998). Irregular waves based on the TMA spectrum
were generated with a piston-type wave paddle. Three tests were conducted with
a plywood beach of a 1:16 slope. The water depth in the tank was 76.2 cm. For

each test, 17 runs were performed to measure free surface elevations using eight
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capacitance wave gauges. Wave gauges partially immersed in gauge wells were used
for the free surface measurements near the still water shoreline. In addition, two
tests were conducted with a fine sand beach with an initial slope of 1:12. The sand
was well-sorted and its median diameter was 0.18 mm. The sediment specific gravity
was 2.66, and particles were observed to be suspended by the breaking waves in the
surf zone for both tests 4 and 5. The initial slope of the sand was approximately 1:12
for tests 4 and 5. Data were collected from these two tests with specified random
waves after the sand beach was exposed to the specified wave action for several days
and became quasi-equilibrium with the bottom elevation changes less than about 1
cm/hr. For each of the two tests, 21 runs were performed to measure free surface
elevations using ten wave gauges. Wave gauges near the still water shoreline were
partially buried in the sand. The duration of each run in these five tests was 400 s
and the initial transient duration of 75 s was removed. The sampling rate was 20
Hz.

Table 2.1 lists the wave conditions at the seaward boundary located at z = 0
for each of the five tests where d = still water depth; 7 = wave setup or set-down;
T, = spectral peak period; and H,,; = root-mean-square wave height defined as
H,ms = /8 0 with ¢ = standard deviation of the measured free surface oscillation.
Tests 1, 2 and 3 are the 1:16 slope tests described by Kobayashi et al. (1998),
whereas tests 4 and 5 correspond to the sand beach tests explained by Kobayashi et
al. (1997b). The incident irregular waves were generated on the basis of the TMA
spectrum, and the spectral shape was not varied in these experiments. The wave
setup or set-down is very small at = 0 outside the surf zone. The measured wave
conditions at z = 0 include the slight effects of reflected waves. The incident and
reflected waves at © = 0 were estimated using a three-gauge method by Kobayashi
et al. (1997b, 1998). Table 2.1 lists the estimated values of the spectral root-mean-

square wave height, Hi,. = v/8mi, with m, = zero-moment of the incident wave
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Table 2.1: Wave Conditions at Seaward Boundary and Breaker Parameter vy for
Calibration Tests Comprised of Tests 1, 2, 3 Conducted on a Planar
1:16 Slope and Tests 4, 5 Conducted on a Fine Sand Beach.

d ﬁ Tp Hrms Hinc R oY Z; T
Test | (cm) | (cm) | (s) | (cm) | (cm) (m) | (m)
W@ |6 @] 6 |6 | 7]O]O]00)

1 75.0 | 0.03 | 1.5 ]| 12.4 | 12.2 | 0.14 | 0.84 | 11.1 | 12.0

2 75.0 | -0.32 | 2.8 | 16.9 | 15.8 | 0.15] 0.67 | 9.0 | 12.0

3 76.2 |-0.24 | 4.7 | 184 | 18.4 | 0.17 | 0.56 | 8.3 | 13.0

el 60.0 | -0.15| 1.6 | 12.8 | 129 | 0.19 | 0.83 | 13.3 | 13.8

5 60.0 | -0.12 | 2.8 | 14.6 | 14.3 | 0.25 | 0.65 | 12.4 | 13.7

spectrum at z = 0, and the average reflection coefficient, R = \/m, with mg,
= zero-moment of the reflected wave spectrum at z = 0. The difference between
H, s and Hip,. is negligible except for test 2 with (Hyms — Hine)/Hyms = 0.065. The
reflection coefficient was in the narrow range 0.14 < R < 0.25 and slightly larger for
tests 4 and 5 with the foreshore slope of about 1:5 at the still water shoreline.

The measured values of 77, T,, and H,,,, at 2 = 0 listed in Table 2.1 are
specified as input to CSHORE. The measured bottom elevation z,(z) in the region
z > 0 is also specified as input where Table 2.1 lists the cross-shore location z; of
the still water shoreline for each test. The bottom profile z,(z) will be presented in
conjunction with the measured and predicted cross-shore variations of 77 and Hypps.
The breaker parameter vy calculated using (2.21) and the cross-shore location z; at
the seaward limit of the inner zone computed by CSHORE are listed in Table 2.1.

The measured values of H, = H,,s/h in the inner zone « > z; are used to
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Figure 2.3: Empirical Formula for H, = H,,,,/h in Inner Zone z > ;.
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Figure 2.4: Empirical Formula for Skewness s as a Function of H,.

calibrate the new empirical parameters v, and (3 in (2.22) for the five tests. Figure
2.3 shows the measured values of (H, — 7)/(vs — 7) with 7, = 2 as a function of
z, = (z — x;)/(zs — x;) where the values of 7, ;, and z, for each test are listed
in Table 2.1. The trend of the scattered data points for the five tests may be
represented by (2.22) with v, = 2 and = 2.2. Figure 2.3 shows that H. increases
gradually from H, = v at z, = 0 and more rapidly above the still water shoreline
located at z, = 1. It is noted that the large scatter in the region z, > 1 is caused
partly by the scatter of data points obtained in repeated runs due to the difficulty
in measuring the small values of h and H,,,, accurately in the swash zone.

The measured values of H., s, and K in the entire region z > 0 for the five
tests are analyzed to obtain the empirical relationships expressed by (2.17). Figure

2.4 shows the skewness s as a function of H, = H,,,s/h. The trend of the scattered
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Figure 2.5: Empirical Formula for Kurtosis & as a Function of Skewness s.

data points in Figure 2.4 are simply represented by three straight lines

s = 2H, for 0.1< H, <05
s=1.5— H, for 0.5<H,<1.0 (2.28)
=0.7H, — 0.2 for 1.0<H,<5H

The skewness s increases initially with the increase of H, due to wave shoaling but
decreases after wave breaking. Both s and H, increase rapidly near and beyond the

still water shoreline. Figure 2.5 shows the relationship between the kurtosis K and
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the skewness s which may be expressed as
K =3+ s*? for 02<s<3 (2.29)

The empirical relationship between K and s proposed by Ochi and Wang (1984)
yields similar agreement as shown in Figure 2.5. However, their expression is more

complicated and (2.29) is adopted here for its simplicity.

2.5 Comparisons With Five Tests

The numerical model CSHORE is compared with the five tests listed in Table
2.1 and used to develop the empirical formulas (2.28) and (2.29) as well as (2.22)
with 7, = 2 and # = 2.2. Figures 2.6-2.8 compare the measured and computed
cross-shore variations of 7j and H,,, for tests 1-5. The variations of 7 and Hyys
computed by the model of Battjes and Stive (BJS hereafter) are also plotted in
these figures. The bottom elevation z,(z) above and below SWL is shown in the
first and second panels, respectively, in Figures 2.6-2.8 to show the effects of the
beach profile on the wave setup 7 and the root-mean-square wave height Hyps.
The seaward boundary z; of the inner zone listed in 2.1 is indicated in each figure.
The data points from repeated runs in each test are presented without averaging to
indicate the degree of the data scatter that was apparent in the swash zone because
of the difficulty in measuring small water depth accurately (Kobayashi et al. 1997b,
1998). Time averaging in the swash zone was performed for the entire measured
time series because the separation of wet and dry durations was difficult due to the
presence of a very thin water layer.

For tests 1-3 shown in Figures 2.6 and 2.7, breaker types on the 1:16 smooth
slope varied from mostly spilling breakers for test 1 to predominantly plunging
breakers for test 3. Correspondingly, the inner zone became wider from test 1 to

test 3 where (z, — ;) = 0.9, 3.0 and 4.7 m for tests 1, 2, and 3, respectively, in
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Table 2.1. Comparing CSHORE and the BJS model, the computed variations of 7
and H,,,, in the outer zone z < z; are practically the same in view of the larger
uncertainty associated with the empirical formula (2.18) with (2.19)—-(2.21). No
attempt is made to calibrate 7 to improve the agreement for H,,,, in the outer zone
for test 2. In the inner zone z > z;, CSHORE is capable of predicting the larger
increase of the wave setup 77 and the more gradual decrease of the wave height H,,
in the inner zone.

For tests 4 and 5 shown in Figure 2.8, incident waves shoaled and broke on
the small bar at the edge of the terrace. Plunging breakers at the terrace edge
were intense in test 5. Wave breaking was reduced on the terrace before incident
waves broke again in the swash zone. The BJS model is capable of predicting this
wave transformation across the terrace except for the detailed variations of Hyps
at the terrace edge. The differences between CSHORE and BJS model are limited
essentially in the narrow inner zone where (z; — ;) = 0.5 and 1.3 m for tests 4 and
5, respectively, in Table 2.1. CSHORE allows the extension of BJS model into the

lower swash zone.

2.6 Independent Verification on Mild Slope

In order to ascertain the applicability of the model to different conditions,
the model is verified using independent data sets. Five additional laboratory tests
were conducted that included measurements of runup as well as the free surface.
The experiments were conducted in the same wave tank used for the calibration of
the model as outlined in Sections 2.4 and 2.5 except that the 1:16 planar slope used
in tests 1-5 was replaced with a relatively mild 1:30 slope. The water depth in the
tank was 75.0 cm as indicated in Figure 2.9 which shows the general layout for the
experiments. For each test, four runs were performed with identical wavemaker in-

put time series; it was demonstrated that the wave field and runup time series were
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Figure 2.6: Measured and Computed Setup 7, and Height H,,,, for Tests 1 and 2.
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Test 3

Figure 2.7: Measured and Computed Setup 7, and Height H,,, for Test 3
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Figure 2.8: Measured and Computed Setup 7, and Height H,.,s for Tests 4 and 5.
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Figure 2.9: Experimental Setup for Tests 6-8 with Planar 1:30 Slope.

practically identical between runs. Detailed measurement of the free surface eleva-
tions was conducted using three movable capacitance wave gauges and three fixed
gauges that functioned to separate the incident and reflected waves immediately
seaward of the breaker zone. A capacitance runup wire placed at a vertical distance
of 2 cm above the 1:30 slope was used to measure the shoreline elevation above the
still water level (SWL). As in tests 1-5, The duration of each run in these five tests
was 400 s with a data sampling rate of 20 Hz. The initial transient duration of 75
s was removed prior to any analysis.

Measurements in the swash zone pose particular problems for capacitance
wave gauges due to the intermittent periods of essentially zero water depth. A wave
gauge to measure the free surface in the swash zone was designed to overcome these
difficulties. The instrument was secured to the plywood bottom and was moved
along the center line in the wave basin between each run.

Table 2.2 lists the wave conditions at the seaward boundary = = 0 taken at
the location of the middle gauge of the three fixed gauges as shown in Figure 2.9.
The quantities tabulated are defined as those in Table 2.1 for the five calibration

tests. The wave set-down is very small at z = 0 outside the surf zone. The measured
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Table 2.2: Wave Conditions at Seaward Boundary and Breaker Parameter v for
Five Verification Tests

d ﬁ Tp Hrms Hinc R i Ty Tg
Test | (cm) | (em) | (s) | (cm) | (cm) (m) | (
W 1@ |G |@]6) |6 | @6 |10

6a | 43.1 |-0.13|1.54 | 8.12 | 890 | 0.23 | 0.76 | 12.39 | 12.93

6b | 43.1 | -0.17 | 1.54 | 9.01 | 9.73 | 0.25 | 0.78 | 12.54 | 12.93

7a | 43.1 |-0.24 | 2.58 | 10.14 | 10.26 | 0.24 | 0.62 | 10.78 | 12.93

7b | 43.1 |-0.29 | 2.57 | 11.25 | 11.11 | 0.25 | 0.63 | 10.88 | 12.93

8 43.1 | -0.35 | 4.47 | 12.64 | 12.38 | 0.25 | 0.54 | 8.08 | 12.93

wave conditions at & = 0 include the slight effects of reflected waves. The incident
and reflected waves at 2 = (0 were estimated using a three-gauge method in the same
manner as tests 1-5. The reflection coefficient was in the narrow range 0.23 < R <
0.25.

The measured values of 77, T},, and Hyp, at x = 0 listed in Table 2.2 are speci-
fied as input to CSHORE. Figures 2.10-2.12 demonstrate the accurate prediction of
the cross-shore variation of root-mean-square wave height H,,,s, wave setup 7, and
free surface skewness s and kurtosis K. Data for two different incident root-mean-
square wave heights are shown in the common Figures 2.10 and 2.11. The data and
computed results shown indicate the saturation near the shoreline because the wave
statistics are nearly independent of the incident wave height. The skewness s and
kurtosis K are not specified as boundary conditions of the model, and therefore the
model prediction of these higher order moments is marginal in the region affected

by the mismatch of s and K at z = 0.
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Figure 2.10: Cross-Shore Variations of Wave Setup 7, Root-Mean-Square Wave Height
H s, Free Surface Skewness s and Kurtosis K: Model Prediction for Test
Ga( ), and Test 6b (= = = ); Measured Free Surface for Test 6a (e),
and Test 6b (x); Measured Runup for Test 6a ((J), and Test 6b (V).
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Figure 2.11: Cross-Shore Variations of Wave Setup 7, Root-Mean-Square Wave Height

H s, Free Surface Skewness s and Kurtosis K: Model Prediction for Test
Ta ( ), and Test 7b (= = = ); Measured Free Surface for Test 7a (o),
and Test 7b (x); Measured Runup for Test 7a (OJ), and Test 7b (V).
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Figure 2.12: Cross-Shore Variations of Wave Setup 7, Root-Mean-Square Wave Height

Hyms, Free Surface Skewness s and Kurtosis K: Model Prediction for
Test 8 ( ); Measured Free Surface for Test 8 (e); Measured Runup
for Test 8 (O).
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The statistical quantities of the measured runup time series are also plotted
in each panel at the location of the still water shoreline although the location is
arbitrary because the actual shoreline location as measured by the runup wire in
Figure 2.9 varies with time. It is clear that the characteristics of the runup are
markedly different from those of the free surface time series measured by a vertical
wave gauge. The values of H,p,, = V/80,, where o, = standard deviation of the
shoreline elevation, shown in the second panel is relatively large because the shoreline
freely oscillates; the vertical free surface motions at a fixed point, however, are
limited by the bottom. Likewise, the mean shoreline elevation is higher than the
setup 7. The skewness and kurtosis of the shoreline elevation are approximately
Gaussian (s = 0 and K = 3) as observed by others [e.g., Holland and Holman
(1993)], but the free surface elevation at a fixed location shows the landward increase
of s and K as observed by Kobayashi et al. (1998). The measured runup data in
Figure 2.10 (tests 6a and 6b) and in Figure 2.11 (tests 7a and 7b) indicate that the
slightly larger incident wave height results in the slightly larger mean and standard
deviation due to the un-saturated low frequency shoreline oscillations [e.g., Guza
and Thorton (1982)].

Figure 2.13 is an example of the recorded time series of runup and free surface
elevation n as measured by the bottom mounted swash gauge designed to measure
the elevation of the free surface in the swash zone. The gauge was comprised of a
frame to support a capacitance wire while minimizing the disturbance of the flow.
The runup wire was stationary and therefore recorded a reproducible record for each
of four runs. The swash gauge, however, was moved between runs. It was positioned
in the still water depth of 5 and 2 ecm for runs 1 and 2, respectively, while it was
located 2 ecm and 5 cm above SWL on the slope for runs 3 and 4, respectively.
The free surface oscillations measured by the swash gauge decrease landward. The

shoreline oscillations appear to be dominated by occasional large excursions lasting
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for several waves. For example, the group of large waves occurring in the vicinity
of t = 30 s in the free surface signal of 1 resulted in the large runup event lasting
about 10 s.

The frequency spectra of the measured shoreline oscillations in Figure 2.14
indicate that the shoreline oscillations on the 1:30 slope are dominated by the low
frequency components for all of the tests. Two tests are plotted together for tests 6
and 7 to show that the runup spectra are practically independent of incident wave
height except for the very low frequency component.

Figure 2.15 compares the measured probability density function P of the
normalized runup 7, = (1, —7,) /o, where 7, = shoreline elevation above SWL, and
7, and o, = mean and standard deviation of 7. Use is made of the exponential
gamma distribution (Kobayashi et al. 1998) along with the measured skewness for
each test. The exponential gamma distribution is capable of describing the measured
probability distribution of the runup with relatively small skewness as measured by a
wire placed parallel to the bottom. The distributions with large skewness measured
by vertical gauges for tests 1-5 were already shown to be well represented by the
exponential gamma distribution (Kobayashi et al. 1997b, 1998). CSHORE will
need to be extended to predict the mean, standard deviation, and skewness of the
shoreline elevation 7, in order to predict the exceedance probabilities of the shoreline

elevation.

2.7 Independent Verification on Natural Beach

The pressure recordings from the storm on Jan. 28, 1998 collected at the Field
Research Facility in Duck, NC were also used in verifying CSHORE. Data samples
are available for the 24 hour period of January 28, 1998. The cases of largest and
smallest water depth occurring at 7:00 (high tide) and 13:34 (low tide), respectively,
on January 28, 1998, are analyzed in some detail in Johnson and Kobayashi (1998b).

Time series from three pressure gauges mounted on the pier as well as bathymetry
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Table 2.3: Locations of Four Gauges Deployed During SandyDuck Experiment.

Cross-shore | Longshore | Deployment Position | Bottom Position

Gauge (m) (m) below NGVD (m) | below NGVD (m)
651 182.9 513.6 1.01 1.46
641 239.11 516.64 1.64 1.96
1861 566.9 516.6 8.17 8.57
o 7.49 7.9

Table 2.4: Wave Conditions at End of Pier during High and Low Tides

Test ﬁ Hrms Tp

(m) | (m) | (sec)
High Tide | 0.13 | 1.71 | 11.63
Low Tide | 0.16 | 1.67 | 12.8

taken as part of a larger study were used as shown in Figure 2.16. Table 2.3 indicates
the cross-shore and long-shore position as well as the deployment depth relative
to National Geodetic Vertical Datum (NGVD) of the three gauges used. Also,
the bottom position is indicated relative to NGVD. The free surface elevation was
derived from the pressure record using linear wave theory[e.g., Guza and Thorton
1980]. Figures 2.17 and 2.18 show the comparisons of the predicted root-mean-
square wave height, setup, and skewness of the free surface with the measured data
for the high tide and low tide conditions. The model is initiated at the end of the
pier located at z = 0 with the measured wave conditions listed in Table 2.4.

The slight overprediction of the wave heights seen in Figures 2.17 and 2.18
are due in part to the application of the one-dimensional model when the assump-
tion of normally incident waves on a long straight coast of longshore uniformity is

questionable. Scour in the vicinity of the pier due to the effect of the piles was

37



clearly evident in the measured bathymetry shown in Figure 2.16. The depth of
the scour was approximately 1 m and the level of the bottom along the pier was
approximately 1 m below the bathymetry far from the pier. The scour hole may
reduce the wave height through refraction. The bathymetry in the vicinity of the
pier is expected to cause incoming wave energy to refract out and reduce the wave
height at the positions where the pressure is measured.

Figure 2.19 shows the measured probability density function of the normal-
ized free surface elevation 7, = (np—1)/o with o = the standard deviation of the free
surface. The gauge locations are indicated in the third panel in Figures 2.17 and
2.18 and the values of H,,,, listed in Figure 2.19 decrease landward. The exponen-
tial gamma distributions with the measured and predicted skewness are also plotted
in Figure 2.19. The agreement is not very sensitive to the measured and predicted
skewness. The tail of the skewed distribution for large 7, is predicted well. As a
result, CSHORE combined with the exponential gamma distribution can be used,

for example, to estimate the required deck clearance for piers.
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Chapter 3

PROFILE EVOLUTION MODEL

3.1 Introduction

Existing models have some success in predicting the sediment dynamics in-
volved in offshore (erosional) sediment transport [e.g. Dean (1991)]. However, it
is more difficult to predict the accretional case where sand grains are deposited on
beaches. A simple time-averaged model with moving boundary conditions at the
shoreline and breaker point is shown to predict both erosional and accretional beach
profile evolutions herein. Existing models assume that the local sediment transport
rate is determined solely by the local hydrodynamic forcing and sediment char-
acteristics without regard to cross-shore sediment advection. The net cross-shore
sediment transport rate is generally the small difference between large onshore and
offshore transport rates and may be affected by sediment advection from or into the
surrounding areas. A new cross-shore sediment transport model is developed that
includes sediment suspension by turbulence generated by wave breaking and bottom
friction, sediment storage in the entire water column, sediment advection by waves
and wave-induced currents, and sediment settling on the movable bed.

The cross-shore sediment transport is analyzed on the basis of the time-
dependent, depth-integrated sediment continuity equation including sediment sus-
pension, storage, advection and settling. The energetics approach by Bagnold (1966)
is shown to correspond to the special case of local equilibrium between sediment

suspension and settling. The corresponding time-averaged model together with the
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simplified assumptions of Dean (1977) yields a uniform suspension rate for the stan-
dard equilibrium profile with the scale parameter A as a function of the sediment fall
velocity. The simplified time-averaged model with new moving boundary conditions
at the shoreline and breaker point is shown to predict both erosional and accretional
beach profile evolutions under regular waves in a large tank. The sediment suspen-
sion rate estimated for the equilibrium terraced and barred beaches under irregular
waves is found to be roughly uniform in the surf zone but increase significantly in

the swash zone.

3.2 Formulation
3.2.1 Time-Dependent Sediment Continuity Equation

It is difficult and time-consuming to predict the vertical distributions of bed
load and suspended load in surf zones. As a first attempt, the depth-integrated

sediment continuity equation is expressed as

7 7
% {f cdz] +% [f cudz] =S — wyc,, (3.1)
z v 2y

where ¢ = time; 2 = cross-shore coordinate, positive onshore; ¢ = volumetric sedi-
ment concentration; ¢,, = volumetric sediment concentration near the bottom ele-
vation z,; 1) = instantaneous free surface elevation; v = horizontal fluid velocity; S
— upward sediment suspension rate from the bottom per unit horizontal area; and
wy = sediment fall velocity. The depth-averaged concentration C is defined as

d
C= %/z cdz (3.2)

b

where h = 1 — z,. and depth-averaged horizontal velocity U is defined as

1 /"
U:—[ u dz (3.3)
ht,,

Substitution of (3.2) and (3.3) into (3.1) leads to
0 %)
a(h@) + %(ahCU) = § — wye,, (3.4)
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where the correction factor « is defined as

1 Mrue
= I ——d i
o h/% (UC) z (3.5)

If the horizontal sediment velocity u is assumed to be represented by U in the ad-
vection term, then a = 1 is a reasonable approximation and is used in the following.
However, experimental data is necessary to verify the accuracy of & = 1. Assuming
¢, =~ C, (3.4) is rewritten as

2(hC) + Z(hCU) = S -  wsC

(3.6)
storage advection suspension settling

The concentration C' in (3.6) includes both bed load and suspended load. The
sediment storage term is exact for the depth-averaged concentration C, and the
settling rate w;C' per unit horizontal area is assumed to be determined by C.

The sediment suspension rate S in (3.6) in surf zones is uncertain but may
be expressed as

S=<du > (3.7)

where < ¢w' > = ensemble-averaged upward sediment flux due to turbulence gener-
ated by wave breaking and bottom friction; ¢’ = turbulent concentration fluctuation;
and w' = turbulent vertical fluid velocity. To estimate < ¢'w’ >, the transport equa-
tion for the turbulent kinetic energy & per unit mass [e.g., Tennekes and Lumley

(1974)] may be approximated by
P+ <buw >—-€e~0 (3.8)

where P = production rate of k; < b'w’ > = destruction rate of k due to the negative
buoyancy fluctuation ' due to suspended sediment; and e = dissipation rate of k.
The temporal change, advection and diffusion of k£ may be neglected relative to

P and € in (3.8) on the basis of the order-of-magnitude data analysis by Cox et
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al. (1994b) for the case of no sediment. The negative buoyancy and concentration
fluctuations are related by

b =—(s—1)gc (3.9)

where s = sediment specific gravity; and g = gravitational acceleration. Substituting

(3.9) into (3.8), the sediment suspension rate S expressed as (3.7) is given by

P —¢
Sx (3.10)

The net production rate (P —¢) of the turbulent kinetic energy per unit mass
used for sediment suspension may be related to the local wave energy dissipation
rates Dy and Dj per unit horizontal area due to wave breaking and bottom friction,
respectively, in the following form:

- egDp + efo

P—e ok

(3.11)

where p = fluid density; and ep and ey = suspension efficiencies for the turbulence
induced by wave breaking and bottom friction, respectively. Substitution of (3.11)

into (3.10) yields

egDp + e;D_f
pg(s — 1)h

Admittedly, (3.12) is crude because the complicated suspension processes are

S~ (3.12)

taken into account through the empirical efficiencies ep and ey. Nevertheless, (3.6)
and (3.12) are more general than the energetics approach by Bagnold (1966) who
implicitly assumed S ~ w;C' in (3.6). This assumption of local equilibrium and
(3.12) yield

pg(s — 1)hCwy ~ egDp +e; Dy (3.13)

The cross-shore sediment transport rate g; per unit width can be obtained by sub-
stituting C' from (3.13) into ¢, = hCU. Eq. (3.13) implies that the rate of work

required to keep the sediment suspended is approximately the same as the rate of
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the dissipated fluid energy used for the sediment suspension. Bagnold (1966) consid-
ered the bottom friction only and suggested ey on the order of 0.01. The energetics
formula developed by Bailard (1981) was based on (3.13) with D = 0. Roelvink
and Stive (1989) added the effect of Dp to this formula. However, the energetics
approach based on (3.13) is valid only if the storage and advection terms in (3.6)
are negligible.

The numerical model CBREAK is developed to compute C(t,z) using (3.6)
and (3.12) where the numerical model RBREAK (Kobayashi and Wurjanto 1992)
is used to compute h, U, D; and Dg. CBREAK is useful in examining the time-
dependent mechanisms of sediment suspension, storage, advection and settling in
the surf and swash zones, and the computed results are presented in Chapter 4.
However, CBREAK requires considerable computation time to resolve the rapid
temporal and spatial variations of breaking waves. A time-averaged cross-shore
sediment transport model is developed using (3.6) and (3.12) to predict the beach

profile evolution in more efficient but empirical manners.

3.2.2 Time-Averaged Sediment Continuity Equation

The time-averaged equations corresponding to (3.6) and (3.12) may be ex-

pressed as
o - -
o (q,) = S—wC (3.14)
Y o EBDurerly (3.15)
pg(s —1)h
with
g, = hCU = hC U + (hC — hC)(U — V) (3.16)

where the overbar indicates time averaging. The net sediment transport rate g, is
the sum of the offshore (negative) and onshore (positive) transport rates. The time-

averaged suspended sediment volume per unit area, hC, is transported offshore by
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the return current U which is negative and flows offshore. The oscillatory compo-
nents (hC' — hC) and (U — U) are positively correlated and cause onshore sediment
transport because sediment particles suspended under the steep front of breaking
waves tend to be transported onshore by the onshore wave velocity (U — U).

The time-averaged sediment continuity equation (3.14) involves the two un-
known variables C' and g, because the terms in (3.16) can not be expressed as a
function of C. The time-averaged suspension rate S given by (3.15) may be esti-
mated using the time-averaged wave model CSHORE outlined in Chapter 2. This
closure problem created by time averaging may be solved in various empirical man-
ners. An empirical approach based on the concept of equilibrium beach profiles is
proposed in the following.

For equilibrium beach profiles, g, = 0 and (3.14) and (3.15) yield

Se=uwyCy ﬁ—_l) %)e (3:17)
where the subscript e indicates equilibrium and "ﬁf may be neglected in (3.15)
relative to Dp in surf zones. Dean (1977) assumed the uniformity of (Dp/h). across
the surf zone on an equilibrium beach. This assumption and (3.17) together suggest
that S, and C, may be assumed to be independent of z in the surf zone. In addition,
the concentration C is intuitively assumed to be expressed as

ﬁg & (1 - ﬁ)ge

W

C =

for 0<p<1 (3.18)

where = empirical parameter in the range 0 < # < 1 so that C > 0 for S>0
and S, > 0. The empirical relationship (3.18) yields (S — w;C) = (1 — B)(S — Se)
so that the net suspension rate is zero for the equilibrium beach. Substitution of
(3.18) into (3.14) yields g, in terms of S and S.. Admittedly, this procedure is not
unique. Kriebel and Dean (1985) have assumed that the net offshore transport rate
(—7,) is proportional to (S — S,) in view of (3.15) with Dy = 0 and (3.17). If their

empirical formula is adopted, C' can be obtained from (3.14).
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3.2.3 Simple Model for Beach Profile Evolution

In the following, use is made of the simplest wave model in the surf zone
adopted by Dean (1977) for his analysis of equilibrium beach profiles without any
nearshore bar. Wave setup is neglected and h = h is the still water depth hereafter
where the overbar is omitted in the following. The analysis is limited to the surf zone
in the depth range 0 < h < hy with h, = breaker depth. The local breaking wave
height is assumed to be yh with the empirical parameter y ~ 0.8. The time-averaged

wave energy equation with D; = 0 is expressed as

0

where Ep is the time-averaged flux of wave energy. If the simplifying assumption of

linear shallow-water wave theory is used, the energy flux is expressed as

1
EF - gngz\/ g‘h (320)

Substitution of H = ~h into (3.20) yields

{
Ep = gpm"‘ff\/ gh (3.21)

The use of (3.21) in (3.19) yields

_ i 1.5_2 1.53h
Dp = =169 "1 h" 5 (3.22)
which is recast as
5 Jd
D - 1.5 Zh_ 1.5 23
B= =509 " &L,(h ) (3.23)

Substitution of (3.23) into (3.15) with Dy = 0 yields the time-averaged sediment

suspension rate

_ 583\/§'}’2 0 /15
S =511y 3 (3.24)

Substitution of (3.24) into (3.17) for constant C, yields the equilibrium profile

in the form

h= A(Zee — :t:)m' for h=0 at ®B=i,, (3.25)
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with

Sepy? g
Dean (1991) proposed A = 0.067 w}** where the units for A and wy are mi/3

e [Mr” (935)”3 o

and cm/s, respectively. On the other hand, Kriebel et al. (1991) proposed A =
2.25(w%/g)"/* which has homogeneous units. The difference between the two for-
mulas for A is less than 30% for sands with w; = 1-10 cm/s. Equating (3.26) and
the latter formula, C, = 0.79%¢ep/(s — 1) which yields C,/ep ~ 0.3 for v ~ 0.8 and
s ~ 2.6. To obtain better agreement with data, A is regarded as a calibration pa-
rameter. Substitution of C, obtained from (3.26) into (3.17) yields the equilibrium

suspension rate

563\/§ ,.?,QA'Lﬁ
Se=m— 07—
24(s — 1)

Substituting (3.24) and (3.27) into (3.18), the time-averaged sediment con-

(3.27)

centration is given by
5eB+/9g w 15 Q 415
= CBVIT (1 _ g)ArS — (K1 3.2
ke 24(s — 1)wy 1B ﬁ@:s(h ) W)
Substitution of (3.24) and (3.28) into (3.14) yields the time-averaged sediment trans-

port rate g, = ¢ for brevity

8¢  5ep(1—-PB)Va7* [0 /15 1.
PR VT oS § la[h )+ A 5] (3.29)

To predict the temporal variation of the still water depth h, use is made of the

continuity equation of bottom sediment

(1- np)% = g—i (3.30)
where ¢t = morphological time for the profile evolution; and n, = bottom sediment
porosity. Solving (3.29) and (3.30) with appropriate initial and boundary conditions
yields h(t,z) and ¢(t,z) in the region of 0 < h < hy. The governing equation for

h obtained from (3.29) and (3.30) turns out to be a wave equation because of the
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— X

Figure 3.1: Definition Sketch

assumption of (3.18). If the assumption made by Kriebel and Dean (1985) is adopted
instead of (3.18), the governing equation for h is a diffusion equation as shown by
Kobayashi (1987).

The location of the shoreline where h = 0 varies with time ¢ and is denoted
by z,(t) and is shown in Figure 3.1. The breaker location where h = hy also varies
with time and is denoted by z,(t). The subscripts o and b indicate the values at

h = 0 and hy, respectively. The initial condition for h is expressed as
h = hi(z) for t=0 and i <2< Zs (3.31)

where h; is the initial still water depth corresponding to the initial beach profile
specified as input and the subscript 7 indicates the initial values at ¢ = 0.

The eroded (accreted) area above the still water level denoted by A, is
bounded by the initial beach profile, the eroded (accreted) profile, and the still
water level as shown in Figure 3.1. The eroded (accreted) area at the seaward
boundary, A;, is bounded by the initial profile, the eroded (accreted) profile and
the constant breaker depth hy. It is noted that A, and A, are taken to be positive

for erosion. Figure 3.1 demonstrates the case of A, > 0 (erosional) and A, < 0



(accretional) where sand is eroded at the still water line and deposited offshore. To
avoid the complexities of detailed analyses for sediment transport above the still

water line and beyond z,, A, and A, are assumed to be given by
A, = da(-'so = xm') ;o A= db(:nb = -'Ebi) (332)

where dy and d, = height of eroded or accreted area below the breaker depth and
above the still water level, respectively. If z, is larger (smaller) than z,;, the shoreline
moves onshore (offshore) and the eroded area A, is positive (negative). If z, is larger
(smaller) than z;;, the breaker point moves onshore (offshore) and the eroded area
A, is positive (negative). The translations of the breaker and shoreline locations
result from the sediment transport at these locations. The sediment volume balance

at these moving boundaries may be expressed as

A

w» = (1- ﬂp)%ﬁJ at z=ux(t) and h=h (3.33)
d

% = —(1- np)% at £=1,t) and h=0 (3.34)

Substitution of (3.32) leads to

ﬂf‘l?g,

G = (1 — ‘Tlp)db? at = S'L'b(t) and h= hb (335)
@ = —(1- np)da% at T=ax,t) and h=0 (3.36)

The cross-shore sediment transport rates ¢, and g, in (3.35) and (3.36) are related
to h through (3.29). The onshore (offshore) translation of the breaker location in
(3.35) is caused by the onshore (offshore) sediment transport from (into) the region
seaward of the breaker. On the other hand, the onshore (offshore) translation of the
shoreline in (3.36) is caused by the offshore (onshore) sediment transport from (into)
the region landward of the shoreline. The heights d, and d, need to be specified as

input because the regions x < x, and x > x, are not analyzed here.
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Conservation of sediment dictates that the eroded area match the deposited

area as depicted in Figure 3.1

—Ap+ Ay + A3 = A, + Ay (3.37)

where

Ay — A = / ) hi dx — / h dx (3.38)
Thi Thi

Thi
Az = / (hy — h) dz = hy(zp; — p) —f

b

Ty
h dz (3.39)

Ty

Substituting (3.38) and (3.39) into (3.37) yields

b

f hdz+ A, + Ay + hb(ﬁb = :L'bi) = f } h; dz (340)
T Lpi

Along with (3.32), this can be rewritten as

‘b

/ bz + do(® — ) + (d + o) (s — 745) = / " hida (3.41)

which includes the volume changes due to the boundary displacements (z, — Z4;)

and (1:5, - :Bb;').

3.3 Semi-Analytical Solution

A semi-analytical solution is obtained for the case where the parameters

hy, v, e, B, ny, S, A, dy and d, are constant and the initial beach slope m is

constant with h; = m(z, — ) in (3.31). It is convenient to introduce the following

normalized variables:

p t " 11
=— , T ==
t?’i’l LE

d d
== dt==2
hg, h,b

with

h*

*

™m =

m =

h qtm
= — . s e Y 49
hy ' g (1 —ny)hpLe 42)
mlL
£ 4
h',b (3 3)
4(s — 1)(1 — L

Sep(1=p8)7v  Vghy
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where L, = surf zone width of the equilibrium profile given by (3.25); and ¢, =
beach profile evolution time scale.

Substitution of (3.42)-(3.44) into (3.29)-(3.31), (3.35), and (3.36) yields

oq* d

== =~y 1 (3.45)
g?: = - ai* (h)® -1 (3.46)
hf = m*(z};, —z") at =0 and z;, <z* <z (3.47)
g = dj jff at o* =7] and h*=1 (3.48)
g = —d i:;; at =g and  h*=0 (3.49)

The normalized parameters involved in these equations are m*, d;, d’ and z¥, where
P q g Upy Gy oi

xp. = (x3; — 1/m*) using (3.47). Integration of (3.45) with respect to z* yields
P (o L (3.50)

where use is made of ¢* = ¢} at 2* = 2} and h* = 0. Since ¢* = ¢ at z* = z} and
h* =1, (3.50) requires
G =q-1+z,—x (3.51)

Substitution of (3.48) and (3.49) into (3.51) yields

*dmz tdxz‘ % E

b +d, i 1 (3.52)
Solving (3.46) with (3.47) and (3.52), h*(t*,2*) with 0 < A* < 1 for t* > 0 and
z; (t*) < z* < z(t*) can be derived as shown in the following. Then, ¢; and g can

be obtained using (3.49) and (3.51), respectively, and ¢*(t*, z*) is given by (3.50).

The steady (equilibrium) solution for (3.46) is expressed as

B = (z%, — x*)¥® for )

€ oe



where hf = 1 at z* = 2}, = (2}, — 1). The normalized equation (3.53) corresponds
to (3.25). To find the equilibrium shoreline location z},, (3.41) is normalized using
(3.42)—(3.44)
g Toi
/‘ h*dz* + d}(z; — z3;) + (dy + 1) (zp — zp;) = / hidz* (3.54)
z} i

which is valid for arbitrary profiles h* and h}. Substituting (3.47) and (3.53) for h;
and h? in (3.54), we obtain

3 * * * * % i 1
o do(:nae == :Em:) + (db + 1)(3"56 —_ mbi) — %

: (3.55)

The displacement of the equilibrium breakerline relative to the initial location is

given by

*

The — Tpi = (Tge — T53) +

= (3.56)

where use is made of (3.47) at z* = z}, and (3.53) at z* = z};. The displacement of

the equilibrium shoreline relative to the initial location is obtained from (3.56).

* * * * 1
Toe — Lo = (g:be - xb’i) - ('?n_* - 1) (357)

Substitution of (3.56) and (3.57) into (3.55), respectively, yields
dm* — 5 + 10d} (m* — 1)

* . “I —_— .58

Toe ~ Toi 10m* (1 + d2, + d}) (3.58)
— 6 m* — 10d(m* — 1

ot o BBE _AGDW (3.59)

10 m*(1 + d} + dy)
which are plotted in Figure 3.2 as a function of the normalized initial slope m*
defined in (3.43) for 0 < d; < 0.5 and 0 < dj < 0.5 which may be regarded as the
expected range for d* and di. The plotted variations of (z}, —z};) and (z}, —};) with
respect to m* are not sensitive to d’ and dj. The shoreline displacement (z}, — ;)
increases monotonically with the increase of m* and becomes positive (shoreline
erosion) for m*>1. The breaker displacement (z}, — x};) decreases monotonically

with the increase of m* and becomes negative (offshore displacement) for m*21.

~

b4



0.5

*

0i

&
1

=2+

Figure 3.2: Displacements of the Equilibrium Shoreline and Breaker Locations
Relative to Their Initial Locations
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Figure 3.3: Example of Moving Shoreline, Breakerline and Characteristics

Since m* = m/(hy/Le), in (3.43), m* can be regarded as the ratio between the
initial slope m and the equilibrium slope h;/L. based on the breaker depth h;, and
the equilibrium surf zone width L..

To predict the evolution from the initial profile (3.47) to the equilibrium
profile (3.53), the wave equation (3.46) is expressed in the following characteristic

form:

i = —1 alon 2 = -?i h* or e
- & o T2 dh*

which describes the variation of h* along the characteristic path z*(¢*) propagating

landward. Along the path, dt* = —dh* and hence da*/dh* = —(3/2)v/h* which is

3
=—5vh (3.60)

96



easier to integrate. To integrate (3.60) analytically, the plane (z*,t*) is separated
into different zones depending on the origin of the characteristic path as shown in
Figure 3.3 and explained in the following.

In zone 1, the characteristic path originates from the initial condition (3.47)
at t* = 0. Integration of (3.60) along the path starting from (z}, t* = 0) where
h! = m*(z}; — z7) yields

* t*
gt (h*, ") = 2%, — f ﬂ:: + (h* + 1) — (h*)® (3.61)

which expresses z* as a function of h* and ¢*. The landward boundary of zone 1 is

the shoreline (h* = 0) located at

o) =ah — —+ () for 0<t*<1 (3.62)

ot *
m

The seaward boundary of zone 1 is the characteristic path z7(t*) originating from

the initial breaker location at (zj;, t* = 0)
() =142 - 1=t for 0<t*<1 (3.63)

The path z7 intersects the shoreline at t* = 1 as shown in Figure 3.3. This inter-
section point is regarded as the upper bound of zone 1. It should be stated that =7}
and z} also becomes equal at a certain time t* < 1 if m* > (2/3). The complication
due to the double intersections is not considered in this analysis.

In the region of the plane (z*,t*) above the path z(¢*), the characteristic
path originates from the seaward boundary located at j(¢*) which can be found from
(3.52) for the known z*. For z given by (3.62), (3.52) can be solved analytically.

n@) = aie) -1+ %1% (x;. —i-14 Bt “3) - (—3)

m m*

3 t* L
. d* o _ _F W
) (db + o) db [ d: D ( d;)

for 0<t*<1 (3.64)

with
Fp(y) = exp(—*y2)/; exp(t?)dt (3.65)
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where Fp is the Dawson’s integral (Abramowitz and Stegun 1972). Since it is not
possible to solve (3.52) analytically for t* > 1, (3.52) is solved numerically using the
following finite difference approximation based on t* = (n — 1)At* with n =1, 2,

-+, and At* = constant time step:

g (@)n+1 = (@h)n rd (@ )nt1 = (@5)n _ (@)nt1 + (@)n  (@)nsr + (2h)n
: At* e At* 2 2
(3.66)

where the subscripts (n+ 1) and n indicate the values at t* = nAt* and (n —1)At*,
respectively. Eq. (3.66) is solved for (z}),41 for the known (2})n41, (#})n and (z3)s
where (z7); = zj;. For 0 < ¢* < 1, the computed values of z(¢*) using (3.64) and
(3.66) are compared and the difference is less than 0.0001 for At* = 0.01 used here.

In zone j with j = 2, 3, - - -, integration of (3.60) along the characteristic path

originating from z;j(¢;) with the specified ¢; and h* =1 yields
h*=1-1t"+t : z* =z () +1 - (h*)"® (3.67)
which are combined to express z* in terms of A* and ¢*
a*(h*,t*) = zp(h* +t* — 1) + 1 — (h*)'® (3.68)

where the value of z} is evaluated for the value in its parentheses. The shoreline

location for zone j can be found from (3.68) with h* = 0.

() =z (t* - 1) +1 (3.69)

o
The upper bound of zone j is the path originating from z;}(¢;) with ¢ = (j — 1)

B =2y —1) +1- (- 9)' (3.70)

The path 2} intersects the shoreline at t* = j in view of (3.69) and (3.70). As a
result, zone j with j = 2, 3, --- is bounded by z}_,(¢*) with (j —2) <¢* < (7 —1),
ap(t*) with (j —2) <t < (j— 1), p(t*) with (j — 1) < ¢* < 4, and 2}(¢") with
-2 s
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Figure 3.4: Numerical Solution

The computation is marched in time until z}(¢*) and z;(¢*) approach the
equilibrium z}, and z}, given by (3.58) and (3.59), respectively, within the error
of 0.0001. For the actual computation, z}(t*) and z;(¢*) are computed first using
(3.62), (3.66) and (3.69). Second, z}(t*) is calculated using (3.63) and (3.70). Third,
z*(h*,t*) is computed using (3.61) and (3.68) where h* in the range 0 < A* <1
is discretized as h* = (i — 1)Ah* with ¢ = 1, 2, --+, and Ah* = 0.02 where the
computed results are found to be essentially identical for Ah* = 0.01 and 0.02.

To check the accuracy of the semi-analytical solution obtained without regard
to the double intersections between a3(t*) and (") as described in relation to
(3.62) and (3.63), (3.60) is also solved numerically using the finite difference grid
with constant Ah* and At* shown in Figure 3.4. Along the characteristic path,
dh* = —dt* using (3.60) and the finite difference approximation of (3.60) between the
two points at (hf+At*, t2) and (A, t;,,) is used in the time marching computation.

The value of z* at (h} + At*, ;) is linearly interpolated using z;, and z,,, under
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the condition of At* < Ah*

N AN ALY L
TivAten = (1 = m) Tint mxwm (3.71)
where z7,, =value of z* at h} = (i—1)Ah* and ¢}, = (n—1)At*. The finite difference
representation of dz* = —d(h*)'® along the characteristic path yields
Tt = Thraen = = [(B°)7® = (] + A1) (3.72)

Substitution of (3.71) into (3.72) yields

At* AtF 5
Ty = (1 = *A?) Tint m$:+1,n + (hy + At)" — (h7)'° (3.73)

The initial values of 2, at t} = 0 are known from the specified initial beach profile.
The shoreline location (z})n41 = 27,4, can be found from (3.73) with ¢ = 1. The
breaker location (#})n41 = 27,4, With hj = (I—1)Ah* = 11is calculated using (3.66).
The numerical and semi-analytical solutions for At* = 0.01 are found to be slightly
different for Ah* = 0.02 but indistinguishable for Ah* = 0.01. The computed results

presented in the following are based on the semi-analytical solution.

3.4 Comparison with Profile Evolution Data

Comparison is made with the regular wave data from large scale wave tank
experiments conducted by Thorndike Saville at the Coastal Engineering Research
Center during 1956-1957 and 1962. The data were retrieved and reported by Kraus
and Larson (1988). The initial beach slope was approximately 1:15 where m = 1/15
is used in the semi-analytical solution. The median sand diameter dsy was 0.22 or
0.40 mm. The sand specific gravity was s = 2.65. The sand porosity is assumed as
n, = 0.4 here. Three cases for accretional, erosional and neutral shoreline changes
are selected as listed in Table 3.1. The wave period T', the breaker depth Ay, the
ratio v = Hy/hy with H, = breaker height, and the sediment fall velocity w; for
each case are listed in Table 3.1. Use is made of the average values of the measured

H, and hy which varied somewhat during each test.
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Table 3.1: Comparison of Semi-Analytical Solution with Three Cases

Shoreline | T | hy, | 7 wy A(m!/3) L. | tm
Case | Change (s) | (m) (ecm/s) | Emp. | Cal. | m* | (m) | (hr)
201 | accretion | 11.33 | 1.36 | 1.42 5.9 0.15 [ 0.23|0.71 | 144 | 2.6
500 | erosion | 3.75 | 1.60 | 1.19 3.1 0.11 | 0.10 | 2.67 | 63.9 | 15.0
801 neutral | 3.75 | 0.75 | 0.91 5.9 0.15 | 0.15 099 | 11.2 | 6.5

The beach profile evolution predicted by the semi-analytical solution is sen-
sitive to the parameter A for the equilibrium profile (3.25) but is not sensitive to
ep(1 — f) in (3.44) and d} and d;, in (3.43). It is simply assumed that ep(1 — §) =
0.001, dj = 0.4 and d;, = 0.2 as typical values. The calibrated A and the empirical
A = 0.067 w}* (Dean 1991) for each case are listed in Table 3.1. The calibrated
and empirical values of A are in good agreement except for case 201. Table 3.1 also
lists the normalized initial slope m* defined in (3.43) as well as the equilibrium surf
zone width L. and the morphological time scale t,, defined in (3.44). The shore-
line change becomes more erosional (accretional) with the increase (decrease) of m*
from unity as explained in relation to (3.58). The predicted beach profile becomes
essentially equilibrium after the duration of regular wave action on the order of 10
tm. The analysis of Dalrymple (1992) showed that the use of a profile parameter
P = (gHg)/(w}T), based on the deep water wave height Ho, is useful in the predic-
tion of the trend of the beach profile evolution. For values of P > (9,000 — 10,400),
barred (erosional) profiles were observed, while normal (accretional) beach profiles
were observed for smaller values of P. The values of the profile parameter P are 894,
240,000, and 8,774 for cases 201, 500, and 801, respectively. The profile parameter is
independent of time and does not account for the initial beach slope. Nevertheless,
the profile parameter accurately indicates the accretional and erosional trends for
cases 201 and 500, respectively, as well as the profile of small change in case 801.

Figures 3.5-3.7 show the comparisons of the measured and predicted beach

profiles for the three cases where z = 0 is taken at the still water shoreline on the
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Figure 3.5: Measured and Predicted Beach Profiles for Case 201.
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Figure 3.6: Measured and Predicted Beach Profiles for Case 500.
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Figure 3.7: Measured and Predicted Beach Profiles for Case 801.
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initial 1:15 slope at ¢ = 0 and the bottom elevation 2, equals —h with h = still
water depth. The measured and predicted profiles are practically equilibrium at the
last time level for each case. The semi-analytical solution based on the standard
equilibrium profile is limited to the depth range 0 < h < ly, and can not predict bar
formation. Both the seaward (accretion) and landward (erosion) displacements of
the shoreline at z, = 0 relative to the initial location z = 0 are predicted fairly well.
The analytical solution based on z as a function of h and ¢ occasionally produces two
values of h at given z. This is not possible physically and may have been caused
by the assumption (3.18) which has resulted in the wave equation for h without
any diffusion. In conclusion, the simple profile evolution model proposed here may
predict both the shoreline accretion and erosion but may be no better than existing
models [e.g. Kriebel and Dean (1985); Kriebel et al. (1991)] based on the standard

equilibrium profile which does not always represent the measured profiles well.

3.5 Comparison with Equilibrium Beach Data

To develop a time-averaged sediment transport model based on (3.14)-(3.16),
it is necessary to overcome the closure problem created by time averaging. It might
be possible to assume on the basis of (3.17) without the overbar for time averaging
that the suspension rate S,, the sediment concentration C, and the energy dissipa-
tion rate per unit volume, Dp/h, are constant in the surf zone on an equilibrium
beach. This assumption is examined using the irregular wave data that corresponds
to test 4 and test 5 for equilibrium beach profiles that are outlined in Chapter 2. In
review, the measured sand characteristics were dso = 0.18 mm, wy = 1.9 emfs, s =
2.66 and n, = 0.4 with the empirical A = 0.067 w}** = 0.09 m'/*. Two tests were
conducted for two different irregular waves. The incident waves were measured in
0.6 m water depth as shown in Table 2.1. The spectral significant wave height Hy,,
was 18.2 and 20.3 cm for tests 4 and 5, respectively. The spectral peak period T,

was 1.6 and 2.8 s for tests 4 and 5, respectively. A comparison of the the nonlinear
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time-averaged model CSHORE with the measured wave statistics for these tests was
presented in Section 2.5.

The equilibrium profile model of Dean (1977) makes the assumption of a
constant energy dissipation rate per unit volume Dpg/h along with a wave height of
~vh in (3.21) to obtain the monotonic equilibrium beach profile given by (3.25). This
model, therefore, can not predict the barred and terraced profiles seen in Figures
3.8 and 3.9 which show the cross-shore variations of the measured and predicted
root-mean-square wave height H,,,s = V8 ¢ with o = standard deviation of the free
surface oscillation for tests 4 and 5. Creed et al. (1992) demonstrated that a more
accurate energy dissipation model including a distribution of irregular wave heights
such as that of Thornton and Guza (1983) could predict an equilibrium profile
that differs from the (3.25) under the assumption of constant Dp/h. The energy
dissipation rate per unit volume, Dpg/h, in the model CSHORE is based on the
formula proposed by Battjes and Janssen (1978) for the outer zone where the fraction
of breaking waves is less than 1 as explained in Section 2.2. The energy dissipation
within the inner zone is estimated empirically in CSHORE because the formula of
Battjes and Janssen (1978) yields values of H,,, that exceed the maximum height
H,, as explained in relation to (2.22). The energy dissipation rate Dp is predicted
fairly well by CSHORE as the cross-shore variations of H,,,, compare well with
the data as seen in Figures 3.8 and 3.9. In spite of the very simple model for
breaking waves adopted by Dean (1977), the measured equilibrium beach profile
is represented fairly well by the standard equilibrium profile with A = 0.09 m!/?
inside the surf zone where the incident waves broke intensively at the bar crest(test
4) and the terrace edge (test 5). The energy dissipation rate Dp and the mean
water depth h predicted by CSHORE are used in (3.17) to estimate the value of
C./ep = [pg(s — 1)wy|" (Dp/h). where the suspension efficiency ep is uncertain

but may be on the order of 0.01. The estimated cross-shore variations of C,/ep for
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Figure 3.8: Cross-Shore Variations of Wave Height H,,,, Equilibrium Bottom
Elevation and Time-Averaged Sediment Concentration for Test 4.
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Figure 3.9: Cross-Shore Variations of Wave Height H,,,, Equilibrium Bottom
Elevation and Time-Averaged Sediment Concentration for Test 5.
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tests 4 and 5 indicate that the values of C,/ep and Dg/h are very small seaward of
the breaker zone as expected and roughly constant in the surf zone but that these
values are significantly larger in the swash zone. As a result, the assumption of
constant energy dissipation rate per unit volume is less accurate than the standard
equilibrium profile for these two tests, and a new assumption will be required to
predict various equilibrium profiles. This problem is related to closure problem for
the time-averaged sediment transport model based on (3.15)—(3.17). Future studies
will be required to solve these problems and extend the time-averaged irregular wave

model CSHORE to predict beach profile evolution more accurately.

69



Chapter 4

TIME-DEPENDENT SEDIMENT TRANSPORT MODEL

4.1 Introduction

A time-dependent, cross-shore sediment transport model in the surf and
swash zones on beaches is developed to predict both beach accretion and erosion
under the assumptions of alongshore uniformity and normally incident waves. The
model is based on the time-dependent equations derived in Chapter 3. Because
Chapter 3 discussed existing beach profile evolution models only, a more extensive
review on nearshore sediment transport is given in the following.

Considering the complexity of the three-dimensional nearshore processes in-
cluding the spatial and temporal variability of sand bar morphology (Lippmann and
Holman 1990) and shoreline position (Plant and Holman 1996), this study has been
limited to the cross-shore processes of well-sorted sand in surf and swash zones un-
der the assumptions of alongshore uniformity and normally incident waves. These
assumptions may be too restrictive but beach recovery even under these conditions
can not be explained quantitatively at present. The bottom boundary layer and sed-
iment transport outside surf zones are better understood [e.g., Grant and Madsen,
(1986); Madsen et al. (1993)]. Longshore currents and sediment transport inside
surf zones are also better understood apart from the uncertainties of the cross-shore
and vertical distributions of longshore currents [e.g., Gallagher et al. (1998); Garcez
Faria et al. (1998)] and longshore sediment fluxes [e.g., Wang (1998)].

Empirical one-dimensional models are widely used in the U.S. to predict

beach and dune erosion [e.g., Kriebel et al. (1991)]. These models are based on the
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concept of equilibrium beach profiles without any bar (Dean 1991), an empirical
closure depth of the profile change, and empirical criteria for beach erosion and
accretion (Kraus et al. 1991; Dalrymple 1992). The empirical models based on
the adjustment of a beach profile toward an equilibrium profile in the presence of
large storm surge can predict dune erosion reasonably well if empirical parameters
are calibrated (Kobayashi 1987; Zheng and Dean 1996). As for nearshore bars,
Trowbridge and Young (1989) used a sheet flow model based on the time-averaged
onshore bottom shear stress to explain the onshore movement of a bar on a natural
beach observed during low-energy wave conditions. Thornton et al. (1996) and
Gallagher et al. (1998) used the energetics-based total load model of Bailard (1981)
to explain the offshore movement of a bar on the same beach observed during storms.
The energetics model could not predict the slow onshore migration observed during
low-energy wave conditions. The sheet flow and energetics models could not explain
equilibrium terraced and barred beaches created by irregular waves in a wave flume
(Orzech and Kobayashi 1998).

Cross-shore beach profile models based on physical processes were developed
mostly in Burope and Japan. For example, Hedegaard et al. (1992) presented
the intercomparison of five European and one Japanese model. The hydrodynamic
modules of these six models are mostly based on the horizontally one-dimensional,
time-averaged equations for energy and momentum for predicting the wave height
and setup as well as the vertically one-dimensional, time-averaged momentum equa-
tion for predicting the undertow current [e.g., Svendsen (1984a)]. For the sediment
transport modulus, use was made of a vertical diffusion equation of suspended sed-
iment combined with a bed load formula (Deigaard et al. 1986) or the energetics
model of Bailard (1981) which was modified to include the effect of wave breaking
explicitly (Roelvink and Stive 1989). These sediment transport models assume that

the local sediment transport rate is determined solely by the local hydrodynamic
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forcing and sediment characteristics without regard to cross-shore sediment advec-
tion. The comparisons of these six models with the measured eroded profiles in a
large wave flume indicated the deficiencies of the models in terms of swash dynamics
and low-frequency waves. No comparison was made with accreted beach profiles.
The instantaneous concentration of suspended sediment measured by various
researchers [e.g., Hanes (1991); Beach and Sternberg (1991), (1992); Conley and
Inman (1992); Hay and Bowen (1994); Jaffe and Rubin (1996); Foster et al. (1996);
Puleo et al. (2000)] outside and inside surf zones on natural beaches indicated inter-
mittent temporal variations in which the instantaneous concentration was intermit-
tently much larger than the mean concentration. Possible mechanisms suggested for
the intermittent variations include bed forms (ripples and megaripples), large waves
in a wave group, vortices and turbulence generated by breaking waves and bores,
wave-induced boundary ventilation, and coherent motions including shear instabil-
ity in the turbulent boundary layer. Numerical time-dependent models developed
to predict sediment suspension include vertical diffusion models for spilling waves
(Deigaard et al. 1986) and for nonbreaking waves (Li and Davies 1996), a discrete
vortex model for plunging waves (Pedersen et al. 1995), and a convection-diffusion
model (Duy and Shibayama 1997). The comparisons of these models for breaking
waves were limited to the mean concentration under monochromatic waves probably
because of the large uncertainty of the time-dependent bottom boundary condition
for the concentration and because of extensive computation time to simulate irreg-
ular waves. On the other hand, Lin and Liu (1998) solved the Reynolds equations
with an algebraic nonlinear Reynolds stress model and computed the solute mixing
under plunging waves which was impulsive and almost immediate. None of these
time-dependent models were applied to predict cross-shore beach profile changes.
The above concise review suggests that the sediment transport models adopted

in the existing cross-shore beach profile models may be too simplistic to predict
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both beach erosion and accretion. On the other hand, the two-dimensional, time-
dependent models for suspended sediment may be too demanding computationally
for the simulation of beach profile evolution. Furthermore, the accuracy of these
time-dependent models may be limited by the very limited knowledge of sediment
dynamics in the bottom boundary layer in surf zones. As a result, a one-dimensional,
time-dependent model is developed here to predict the depth-integrated sediment

dynamics and resulting beach profile change in surf and swash zones.

4.2 Formulation
The time-dependent sediment continuity equation derived in Section 3.2.1
is modified slightly in the following. The vertical distributions of bed load and
suspended sediment are not analyzed in the following one-dimensional model which
assumes that suspended load is dominant in surf and swash zones. The depth-
integrated continuity equation (3.6) for sediment per unit horizontal area is modified
as
%(hC) + %UICUE) = S - wyC (4.1)
storage advection suspension settling
where ¢ is time, z is the cross-shore coordinate defined positive onshore, h is the
instantaneous water depth, C is the depth-averaged sediment concentration includ-
ing both bed load and suspended load, Uy is the horizontal sediment velocity, S is
the upward sediment suspension rate from the bottom, and wy is the sediment fall
velocity. The concentration C' is defined such that hC' is the sediment volume in
the water column per unit horizontal area. The sediment velocity U is defined such
that hCU; is the volumetric sediment transport rate per unit width which is positive

onshore. The sediment settling rate w;C' in (4.1) is assumed to be represented by

the depth-averaged concentration C.
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The horizontal fluid and sediment velocities are generally assumed to be
the same. As a result, the sediment velocity Uy in the advection term in the one-
dimensional equation (4.1) was approximated by the depth-averaged horizontal fluid
velocity U in (3.6). This approximation may introduce a dispersion term due to the
vertical variations of the horizontal fluid velocity and the sediment concentration
[e.g., Kobayashi et al. (1997a)] but this dispersion term is neglected for lack of
knowledge of the vertical distribution of the instantaneous sediment concentration.
For steady uniform flow, Kobayashi and Seo (1985) solved the conservation equations
of mass and momentum for both the fluid and sediment and showed the difference
between the horizontal fluid and sediment velocities on the order of the sediment
fall velocity wy. The discriminator laser-Doppler velocimeter measurement by Muste
and Patel (1997) indicated that the streamwise velocity of suspended fine sand was
less than that of water by as much as 4%. The sediment velocity U, in (4.1) is

assumed to be given by

Uy =U—wy (4.2)

Admittedly, (4.2) results in (—U,) > (=U) when U < 0 but the small correction
wy > 0 increases the mean offshore sediment velocity U, = (U — wy) where the
overbar denotes time averaging and U is the return current flowing offshore which
is smaller than the undertow flowing offshore below the wave trough (Kobayashi
et al. 1989). In short, (4.2) should be regarded as an empirical adjustment for the
shortcoming of the one-dimensional equation (4.1).

As demonstrated in Section 3.2.1, the sediment suspension rate S has been

estimated using the transport equation for the turbulent kinetic energy k as

P—e¢
S =—0—-—1 4.3
(s—1)g -
where (P — ¢) is the net production rate of k used for the sediment suspension from

the bottom. Expressing (P — €) in terms of the local wave energy dissipation rates
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Dp and Dy per unit horizontal area due to wave breaking and bottom friction,

respectively, (4.3) has been rewritten as

__eép Dp + ey Dy
pg(s —1)h

The suspension rate S is thus expressed in terms of the energy dissipation rates

(4.4)

Dp and Dy which can be predicted using a one-dimensional, time-dependent wave
model. The suspension efficiencies ep and ey in (4.4) are assumed constant, al-
though ez may depend on breaker types such as spilling and plunging breakers.
It is expected that ep < e; because bottom friction acting on the bottom may be
more efficient than wave breaking occurring at the water surface. The instantaneous
response between Dy and S in (4.4) may be realistic but the lag between Dy and
S neglected in (4.4) may cause some shift in the predicted erosion and accretion
pattern.

The sediment continuity equation (4.1) along with (4.2) and (4.4) may be
solved numerically to obtain C(t,z) for the computed h(t,z), U(t,z), Dy(t,z) and
Dp(t,z) using a one-dimensional wave model. The temporal change of the bottom
elevation 2, defined positive upward with z, = 0 at the still water level (SWL) can
be computed using the volume conservation of bottom sediment

sz . 'thC—S

a (1- np) (49)

where n,, is the bottom sediment porosity. Substitution of (4.1) into (4.5) yields the
sediment continuity equation in terms of the cross-shore gradient of the sediment
transport rate where the storage term is normally neglected in comparison to the
volume change of the bottom sediment during a sufficient duration. The suspension
rate S in (4.5) is determined by the local hydrodynamic forcing of Dp and Dy in

(4.4) but the concentration C in the settling rate w;C in (4.5) is influenced by the

sediment advection from and to the surrounding areas.



4.3 Numerical Model
The numerical model called CBREAK is developed on the basis of (4.1), (4.2),
(4.4) and (4.5) which are normalized using the following dimensionless variables

denoted by the prime:

' t ! z ' Zb ! h ! U ! Us
l T €T ol Zp F ke h i (QH)UQ ’ Us (QH)UQ
(46)
C S Dz D;
= — e D!I — — }Djl =
o g ° i C.H/T ° B pgH?/T ' ~17 pgH?|T
! (4.7)
- T(gH)' ? L | _ € _ (1-mp) __€B
U—T:wf—ﬁacc—(—s-_—l),cm— C. y Bl
(4.8)

where T and H are the characteristic wave period and height used for the normal-
ization, respectively. The normalized variables in (4.6) and (4.7) are assumed to
be on the order of unity. The important dimensionless parameters are defined in
(4.8). The ratio o between the horizontal and vertical length scales is assumed to
be large for finite-amplitude, shallow-water waves in surf zones. The normalized
sediment fall velocity w; is the inverse of the Dean number which has been shown
to be useful in separating bar and berm profiles [e.g., Kraus et al. (1991); Dalrymple
(1992)]. The characteristic concentration C, determines the order of magnitude of
the concentration C'. The normalized concentration C,, of the bottom sediment
with the porosity n, is the maximum value allowed for C'. The ratio e, between
the suspension efficiencies eg and ey is assumed to be in the range 0 < e, < '

Substitution of (4.6)—(4.8) into (4.1), (4.2), (4.4) and (4.5) yields

a I Fall a Vel ! !
7 (WC) + 5 (HO'U,) = §' — wfC" (4.9)
! ! TD"
B == B ? , 8= L::—B (4.10)
o7 w.C' — 8
E%H%T_ (4.11)
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For sands under typical breaking waves in surf zones on natural beaches,
the length ratio o is on the order of 10. The normalized fall velocity w}, which
can also be regarded as the ratio between the sediment fall velocity w; and the
vertical velocity scale H/T, is generally on the order of unity or less. The difference
(U'—U!) between the normalized fluid and sediment horizontal velocities is hence on
the order of 0.1 or less. Assuming the suspension efficiency e; ~ 0.01 as suggested by
Bagnold (1966), C, ~ 0.006 and C,, ~ 100 for sands with s ~ 2.6 and n,, ~ 0.4. This
estimated order of magnitude of C, is consistent with available concentration data
in surf and swash zones on natural and laboratory beaches (Beach and Sternberg
1991; Van Rijn and Kroon 1992; Kobayashi et al. 1996; Osborne and Rooker 1999;
Puleo et al. 2000). Eq. (4.11) with C,,, ~ 100 indicates that the temporal change of
the bottom elevation over one wave period is indeed very small and on the order of
0.01. The morphological time scale of the beach profile change is thus on the order
of 100 7" and much larger than the characteristic wave period T'. In the following,
th prime for the normalized variables is omitted for brevity.

The numerical model CBREAK is an extension of the numerical wave model
RBREAK based on the finite-amplitude, shallow-water equations under the assump-
tion of 02 > 1 (Kobayashi et al. 1989; Kobayashi and Wurjanto 1992). RBREAK
has been verified extensively using inner surf and swash data on natural beaches
by Raubenheimer et al. (1995, 1996) and Raubenheimer and Guza (1996). The
hydrodynamic variables used in RBREAK are normalized in the same way as in
(4.6)—(4.8). The normalized continuity, momentum and energy equations are given

by

oh 0

ET + -é-i-(hU) =0 (4.12)
OE OF _ B i -
a‘%g——D , D=Dp+ Dy , Dy= QO‘fblUl (4.14)
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1 1
B= §(h.U2 +7%) for z<0 , E= §(h,U2 +n2—2) for 2z,>0 (4.15)
F=hU(n+ %W) (4.16)

where f, is the constant bottom friction factor, n = (h + 2,) is the normalized free
surface elevation above SWL, E is the specific energy normalized by pgH?, and F
is the energy flux per unit width normalized by pgH?(gH)"?. The normalized local
bottom slope (0z,/0z) in (4.13) and the local surf similarity parameter £ are related
by & = (02,/0z)/(2m)'/? (Kobayashi et al. , 1989).

As a first attempt, CBREAK is limited to the computation of h, U, Dy, Dp
and C using (4.9), (4.10) and (4.12)—(4.16) for the fixed bottom and for the duration
of 100 7' and the prediction of the rate of the bottom elevation change using (4.11).
In other words, only the initial profile change is predicted in the following because the
computation for a very long duration is time-consuming and may not be warranted
if the initial profile change can not be predicted accurately.

The finite difference grid of grid sizes At and Az is used to solve (4.9) and
(4.12)-(4.14) numerically. The cross-shore grid size Az is chosen to be constant and
small enough to resolve the steep front of breaking waves where Az =~ 0.005 for the
computed results presented in\the following. The time step size At on the order of
0.001 is allowed to vary such that At is reduced in a semi-automated way whenever
numerical difficulties occur at the moving shoreline defined as A = ¢ where 6 = 0.001
is used in the following computation. The seaward and landward boundaries of the
computation domain are located at = 0 and well above the moving shoreline,
respectively. The initial time ¢ = 0 for the computation marching forward in time
is taken to be the time when the specified incident wave train arrives at ¢ = 0. The
initial conditions are specified as 7 =0, U =0and C =0 at t =0 for z > 0.

For the known values of h;, U; and C; at the time level ¢ and at the cross-
shore node j indicated by the subscript j, the values of these variables at the next

time level t* = (¢+At), which are denoted by the asterisk, are computed in sequence.
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First, the values of b} and U with the nodal location j =1, 2, ---, s* are computed
from (4.12) and (4.13) using the dissipative Lax-Wendroff method in the same way
as RBREAK (Kobayashi et al. 1987). The integer s* indicates the wet node next
to the moving shoreline at the next time level ¢*, and hj = 0 and U; = 0 for
§ > (s*+1). The reflected wave train at z = 0 is computed from the characteristic
equations derived from (4.12) and (4.13) (Kobayashi et al. 1989).

Second, the values of (Dy)}, Ej and F} are calculated using (4.14)-(4.16).
The value of D} is computed using the first equation in (4.14) which is approxi-
mated by the implicit first-order difference in ¢ and the central difference in . The
computed Dy and (Dy); are smoothed by averaging the computed values over the
five nodes from (j — 2) to (j + 2) because numerical noises tend to occur near the
steep wave front and the moving shoreline. Then, 0 < (Dy); < Dj is imposed so
that (Dp)} = [Dj — (Dy);] 2 0. The values of (U;); and S are calculated using
(4.10) before the computation of Cj using (4.9) where C} = 0 for j > (s* +1).

Third, the sediment continuity equation (4.9) is solved using the MacCor-
mack method in the same way as Kobayashi and Karjadi (1996) who computed
the alongshore fluid velocity V' using the alongshore momentum equation for small
incident wave angles. These two equations become the same if C' and U, in (4.9)
are replaced by V and U, respectively, and S and w; are regarded as the driving
force and linearized friction factor for V, respectively. The value of C} with j =1 at
z = 0 is computed separately using the following characteristic form of (4.9) derived
using (4.10) and (4.12):

aC GC_E_%(I lah)

%tV =5 " h \! o8

(4.17)
which is solved following the numerical procedure devised by Kobayashi and Karjadi
(1996) to avoid the specification of C' as input when Us > 0 and the characteristic
variable C' propagates landward at z = 0. Use is made of the implicit first-order

difference approximation of (4.17) along the straight characteristic path from the
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unknown C at the time level ¢ to C7 at the next time level #*. The value of C is
estimated from C; and C, by interpolation for (Us); < 0 and by extrapolation for
(Uy)} > 0. This approximation of (4.17) yields

N Atwp (. 1 R—BW\1" [+ _ At ow o AtS?
A= [1 T h} (1 o Az )] G Az (Uah (Ca—Cr)+ hi
(4.18)

Use of the Lax-Wendroff and MacCormack methods results in numerical high-
frequency oscillations that tend to appear at the rear of a breaking wave, especially
on a gentle slope. These numerical artifacts are apparent, for instance, in the com-
puted free surface elevation 7 as shown in Figures 4.1-4.3. More advanced numerical
solutions such as slope-limiting methods do not suffer these numerical oscillations
[e.g. LeVeque (1990)]. The Lax-Wendroff and MacCormack methods are used,
nevertheless, due to previous experience as explained above.

The time-marching computation is continued until the normalized time ¢ =
100 where the following computation is limited to regular incident waves. The
computed temporal variations of h, U and C become periodic sufficiently before ¢ =
100 as shown in Section 4.4. After the establishment of the periodicity, computation
is made of the time-averaged quantities denoted by the overbar which are involved
in the time-averaged sediment continuity equation obtained from (4.9) along with

(4.10)

", Y _
5. (hCU;) =5 —w;C (4.19)
RCU, = RC T, + (hC — RC)(U, = T,) , ‘Uj:U-? (4.20)
g meate - D
5=5;+5 , 8;= (%i) , Sp=e¢ (—hﬁ) (4.21)

where 3’} and Sp are the time-averaged suspension rates due to the turbulence
generated by bottom friction and wave breaking, respectively. The net cross-shore
sediment transport rate hCU, in (4.19) is the sum of the offshore (negative) and

onshore (positive) transport rates as shown in (4.20). The time-averaged sediment
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volume hC per unit horizontal area is transported offshore by the mean sediment
velocity U, which is negative because the return current U flows offshore. The
small correction wy /o increases this offshore sediment transport rate slightly. The
oscillatory components (hC' —hC) and (U, —U,) = (U —U) are positively correlated
and cause onshore sediment transport because sediment particles suspended under
the steep front of breaking waves tend to transport onshore by the onshore wave
velocity (U — U). Finally, the normalized bottom elevation change Az, during one
wave period is obtained by integrating (4.11) from t = ¢, to t = (t, + 1) with 2,
being the time after the establishment of the periodicity

Az, = (w;C — 5)/Chr, (4.22)
which is positive for accretion and negative for erosion.

4.4 Comparison with Initial Profile Change

Comparison is made with the regular wave data used in the comparison of the
profile evolution model in Chapter 3 taken from large scale wave tank experiments
conducted by Thorndike Saville and reported by Kraus and Larson (1988). The
experiment was conducted in a wave tank that was 194 m long, 4.6 m wide, and
6.1 m deep. The initial beach slope was approximately 1/15. The measured initial
profile is used in the following computation. The median sand diameter was 0.22
or 0.40 mm. The specific gravity of the sand was s = 2.65. The porosity of the
sand bed differed slightly along the beach profile but n, = 0.4 is assumed in the
following comparison. Three representative cases are selected for the comparison
with CBREAK. For case 201, a berm was formed above SWL and the still water
shoreline was displaced seaward. For case 500, erosion occurred near the shoreline
and a bar was formed near the break point. For case 801, the initial profile changed
little. The sediment fall velocity was 5.9 cm/s for cases 201 and 801 and 3.1 cm/s
for case 500. The wave period T was 11.33 s for case 201 and 3.75 s for cases 500
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Table 4.1: Comparison of CBREAK with Three Cases
Profile & H d o £ wy R i
Case | Change | (s) | (m) | (m)
201 | accretion | 11.33 | 1.52 | 1.56 | 28.8 | 0.77 | 0.44 | 0.69 | 0.08
500 | erosion | 3.75 |[1.83|2.20 | 8.7 [0.23 | 0.064 | 0.39 | 0.03
801 neutral 3.75 10.911]0.95]123]0.33| 0.24 | 0.34 | 0.03

and 801. The wave height H and the still water depth d listed in Table 4.1 are
the measured breaker height and depth for each case. All the quantities presented
hereafter are the normalized quantities defined in (4.6)—(4.8) where the prime has
been omitted. The values of 7" and H for each case in Table 4.1 are used for the
normalization.

The dimensionless parameters listed in Table 4.1 are explained along with the
input parameters specified for the computation. The ratio o between the horizontal
and vertical length scales is in the range o = 8.7-28.8. The shallow-water assumption
of 62 > 1 is acceptable at the break point which is taken as the seaward boundary
z = 0 for the computation. The normalized incident wave profile whose height
and period are unity in the normalized depth d/H is specified for lack of the wave
profile data using cnoidal wave theory [e.g., Kobayashi et al. 1987] where the Ursell
parameter is larger than 55 for the three cases. The specified incident wave profile
may not be very accurate but the finite-amplitude, shallow-water equations adopted
in CBREAK are not expected to describe the detail of breaking waves in the outer
surf zone. The surf similarity parameter & is proportional to the normalized bottom
slope as explained in relation to (4.13). The value of £ based on the uniform slope of
1/15 is 0.77, 0.23, and 0.33 for cases 201, 500, and 801, respectively. The breaking
waves are likely to be plunging for case 201 and spilling for cases 500 and 801 on
the basis of the empirical criteria by Battjes (1974). The normalized sediment fall

velocity wy is 0.44, 0.064, and 0.24 for cases 201, 500, and 801, respectively. The
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computed wave transformation and sediment response in the surf and swash zones
are explained in light of these different values of ¢ and w; where the computed
results for case 801 fall between those for cases 201 and 500.

The bottom friction factor f, in (4.13) and (4.14) is simply taken as f, =
0.015 which was the value calibrated by Raubenheimer et al. (1995) using runup
measurements on a natural beach. The value of R in Table 4.1 is the computed runup
height on the initial beach which is the maximum shoreline elevation above SWL
normalized by H. The swash zone is wider for plunging waves in case 201 with R =
0.69 than for spilling waves in cases 500 and 801 with R = 0.34-0.39. The computed
wave reflection coefficient r at z = 0 is also listed in Table 4.1. Since r = 0.03-0.08,
wave reflection is negligible at z = 0. On the other hand, the suspension efficiency e
associated with bottom friction is simply taken as ey = 0.01 as suggested by Bagnold
(1966). For e; = 0.01, s = 2.65 and n, = 0.4, the characteristic concentration
C, = 0.0061 and the normalized bottom sediment concentration Cy,, = 99. These
values seem to be reasonable as discussed in relation to (4.11). The suspension
efficiency ep associated with wave breaking is calibrated in the range eg = 0.002-
0.01 corresponding to the ratio e, = (eg/ef) = 0.2-1. Only the ratio e, appears in
the normalized equations (4.9)—(4.11). The increase of e, results in the increase of
sediment suspension due to wave breaking. The computed results for ez = 0.005
and e, = 0.5 are shown in the following. The effects of ep on the computed profile
changes are discussed in relation to the comparison of the measured and predicted
beach profile changes.

Computation is made for the duration 0 < ¢ < 100 for each case. Figures 4.1,
4.2, and 4.3 show the computed cross-shore variations of the free surface elevation 7
with the initial bottom elevation z,, the horizontal fluid velocity U, the suspension
rate S, and the sediment concentration C at ¢ = 99.25 and 99.75 for cases 201, 500,

and 801, respectively. For case 201 with & = 0.77, the steep front of a plunging wave
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Figure 4.1: Computed Cross-shore Variations of n, U, S, and C at ¢ = 99.25 and
t = 99.75 for Case 201.
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Figure 4.2: Computed Cross-shore Variations of n, U, S, and C at t = 99.25 and
t = 99.75 for Case 500. 85



Case 801
t=99.25 t=99.75

Figure 4.3: Computed Cross-shore Variations of 7, U, S, and C' at t = 99.25 and

t = 99.75 for Case 801.
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propagates upslope against a thin layer of water flowing downslope on the beach
face at t = 99.25. The front propagating upslope is reduced and becomes gentler
at t = 99.75 after a half of the wave period and water flows downslope in the rear
of the front. Intense sediment suspension occurs in the narrow region of the steep
front and milder sediment suspension occurs in the wider region of the water flowing
downslope. The depth-averaged concentration C' does not respond to the suspension
rate S instantaneously even though w; = 0.44 for case 201 is relatively large. The
response is damped and shifted due to sediment storage and advection.

Figure 4.2 for case 500 with & = 0.23 shows four spilling waves with steep
fronts in the surf zone. Each wave propagating upslope is dissipated almost com-
pletely before it reaches the shoreline which oscillates very little. Noticeable sedi-
ment suspension is confined near the steep wave fronts. The suspension intensity
under the spilling wave is significantly less than that under the plunging wave shown
in Figure 4.1. The depth-averaged concentration C' for case 500 with w; = 0.064
does not vary much with time because of the slow settling of the suspended sedi-
ment. It is noted that the values of S and C near the break point at = 0 are fairly
small in Figures 4.1 and 4.2. This is because the incident cnoidal wave specified at
z = 0 needs to propagate onshore to develop a steep front in this one-dimensional
computation. The lack of intense suspension at the break point may not be unre-
alistic in light of the turbulence data by Cox et al. (1994b) who found almost no
turbulence in the interior below the break point defined as the start of aeration in
the tip of the regular wave. Figure 4.3 for case 801 with £ = 0.33 shows the case
where the computed results lie between those for cases 201 and 500 shown in Figures
4.1 and 4.2.

Figures 4.4 and 4.5 show the temporal variations of the computed volume
flux AU per unit width, the computed suspension rate S, and the computed concen-

tration C' at four cross-shore locations for case 201. Cases 500 and 801 are shown
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Figure 4.4: Temporal Variations of Computed hU, S, and C at z = 0 (top) and

z = 0.23 (bottom) for Casegé?[)l.
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Figure 4.5: Temporal Variations of Computed hU, S, and C' at z = 0.5 (top) and
z = 0.63 (bottom) for Case 201.
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Figure 4.6: Temporal Variations of Computed hU, S, and C' at x = 0 (top) and
z = 0.61 (bottom) for Case 500.
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Figure 4.8: Temporal Variations of Computed hU, S, and C at 2 = 0 (top) and
2 = 0.84 (bottom) for Case 801.
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Figure 4.9: Temporal Variations of Computed hU, S, and C at z = 1.10 (top)
and z = 1.53 (bottom) for Case 801.
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in Figures 4.6-4.9. For case 201 with & = 0.77 and w; = 0.44, the computed tem-
poral variations become periodic after approximately ten waves. At the break point
(z = 0), sediment suspension is caused by bottom friction associated with the large
onshore velocity under the narrow wave crest and the small offshore velocity under
the wide wave trough. In the middle of the surf zone (z = 0.23), intense suspension
occurs under breaking waves but the mean concentration is as large as the oscil-
latory concentration. At the still water shoreline (z = 0.50), sediment suspension
occurs intensely during short wave uprush (hU > 0) and mildly during long wave
downrush (hU < 0). In the swash zone above SWL (z = 0.63), suspension during
uprush is reduced and suspension during downrush is increased, while C' appears to
respond to S more instantaneously.

Figures 4.6-4.7 for case 500 with £ = 0.23 and w; = 0.064 show that the
computed temporal variations do not become periodic until £ = 90 at z = 0, { = 60
at = 0.61, and ¢t = 40 at z = 1.31 and 2.00 where the still water shoreline is at
x = 2.07. At the break point (z = 0), sediment suspension is caused by bottom
friction and the concentration averaged over several waves builds up very slowly. At
the other locations z = 0.61, 1.31 and 2.00, wave breaking is well established and
sediment suspension under breaking waves is dominant. However, the mean concen-
tration exceeds the oscillatory concentration due to the large number of suspension
events required to build up the mean concentration. Figures 4.8 and 4.9 show that
the computed results for case 801 with £ = 0.33 and w; = 0.24 lie between those
for cases 201 and 500. A periodic state is reached before approximately ¢ = 20.

In the following, the time-averaged quantities during 99 < ¢ < 100 are used to
examine the computed time-averaged sediment transport dynamics on the basis of
(4.19)-(4.22). Figure 4.10 shows the cross-shore variations of C, Sp and S; for cases
201, 500, and 801. The time-averaged sediment concentration C is the maximum

near the still water shoreline at z = 0.50 for plunging waves in case 201 and in the
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outer surf zone for spilling waves in case 500. For case 801, the peaks of C occur
in the middle of the surf zone and in the swash zone where the still water shoreline
is located at z = 1.31. The time-averaged suspension rates Sz and S; defined in
(4.21) are caused by wave breaking and bottom friction, respectively. For the three
cases, Sp is the maximum in the middle or outer surf zone but S is larger for case
201 because of wave breaking and dissipation in the narrow surf zone. For case 201,
S_f is as large as Sp except that the suspension due to bottom friction is dominant in
the swash zone. For cases 500 and 801, S_f is very small except in the narrow upper
swash zone and numerical noises become apparent in the regions of very small S_f
The cross-shore variations of C and S = (Sp + Sy) are similar although S and C do
not respond simultaneously as shown in Figures 4.1-4.9.

Figure 4.11 shows the cross-shore variations of the time-averaged sediment

volume hC per unit area for the three cases where hC = [h C + (h — h)(C — C)).
The correlation between the oscillatory components (h—h) and (C —C) is generally
positive and significant near the still water shoreline at z = 0.50 for plunging waves
in case 201. The positive correlation implies that the sediment concentration tends
to be larger under the wave crest and smaller under the wave trough where (h—h) =
(n — 7). The contribution of the correlated oscillatory components decreases with
the decrease of wy and §. For case 500, hC ~ h C because the mean concentration C
is larger than the oscillatory concentration (C'— C) as shown in Figures 4.6 and 4.7
and the slow sediment settling due to w; = 0.064 reduces the correlation between
the oscillatory concentration and the wave profile.

Figure 4.12 shows the cross-shore variations of the time-averaged sediment

transport rate hCU, per unit width for the three cases where hCUj is the sum of the

offshore transport rate hC U, and the onshore transport rate (hC' — hC)(U; — Uy)
as shown in (4.20). These onshore and offshore transport rates are on the order of

0.1 and relatively small. Consequently, it is difficult to predict the small difference
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on the order of 0.01 between the relatively small two quantities. The net rate hCU,
for the accretional case 201 is positive (onshore) and becomes the maximum (0.04)
slightly seaward of the still water shoreline at z = 0.50. The net rate for the
erosional case 500 is negative (offshore) and becomes the minimum (—0.008) in the
outer surf zone. It should be noted that the net rate for case 500 would become
slightly positive without the correction term wy/o added to U, = (U — wy/o) in
(4.20) where w;/o = 0.007 for case 500. The net rate hCUj for the neutral case 801
is slightly negative (more than -0.002) in the outer surf zone and slightly positive
(less than 0.003) in the inner surf and swash zones. The net rate is hence practically
Zero.

Figure 4.13 shows the cross-shore variations of the net suspension rate (S —
w;C) per unit area for the three cases where the net rate is the relatively small differ-
ence between the suspension rate S and the settling rate w fﬁ. The net suspension
rate for the accretional case 201 is positive (erosion) in the surf zone and negative
(accretion) in the swash zone where the net rate becomes zero slightly seaward of the
still water shoreline at the location of the maximum hCUj in Figure 4.12. The net
suspension rate for the erosional case 500 is slightly negative (more than -0.03) in
the outer surf zone and slightly positive (less than 0.02) in the inner surf zone where
the net rate becomes zero at the location of the minimum hCU, in Figure 4.12. The
net suspension rate for the neutral case 801 fluctuates in the range of -0.025 to 0.025
and is relatively small. It is noted that the computed cross-shore variations of hCU,
and (S —w;C) satisfy the time-averaged sediment continuity equation (4.19) within
highly fluctuating errors on the order of 0.01. These errors appear to be caused by
the finite difference approximation of the cross-shore gradient of the small sediment
transport rate hCU, which is sensitive to numerical noises. This is the reason why
the bottom elevation change Az, during one wave period is expressed as (4.22) in

terms of the net settling rate (w;C — S).
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The beach profiles measured after one-hour wave action were reported by
Kraus and Larson (1988). The number N of regular waves involved in the one-hour
wave action is 318 for case 201 with 7" = 11.33 s and 960 for cases 500 and 801
with 7' = 3.75 s. Since the computation is made only for 100 waves, the beach
profile change after the one-hour wave action is simply predicted to be NAz,. This
prediction neglects the effects of the evolving beach profile on the wave motion and
sediment transport. Figure 4.14 shows the normalized profiles measured initially
and after the one-hour wave action and the predicted profile which is the sum of
the initial profile and NAz, in the region of # > 0. For the accretional case 201,
the degree of erosion and accretion is overpredicted for the suspension efficiency
ep = 0.005 and is better predicted for ez = 0.002. For the erosional case 500, the
predicted profiles using ez = 0.005 and 0.01 are in reasonable agreement with the
measured profile apart from the shift of the bar crest and the erosion depth in the
bar trough. For the neutral case 801, the measured and predicted profile changes
are small except for the relatively small bar which changed very little during the
20-hr wave action. The empirical suspension efficiency ep may need to be varied

spatially to predict the detailed profile changes.
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Figure 4.10: Cross-shore Variations of Computed C, Sp, and S_f for Cases 201,
500, and 801.
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Figure 4.11: Cross-shore Variations of Computed AC, h C, and (h — h)(C — C)
for Cases 201, 500, and 801.
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Figure 4.12: Cross-shore Variations of Computed (hC' — hC)(U, — Us), hCU,, and
hC U, for Cases 201, 500, and 801.

100



0.15 T | T |
g Case 500
0.1+ ¢ G’ ]
/ ""h-__
0.05+ S i [
--"-'—--______-____-_"
e T PO M R
~0.05} : e ’
N, .'.’
~ N
-0.1F - 0
0 0.5 1.5 2 25
0.[5 I I T I T T I T
20N e Case 801
0.1_ - b — \ p o
. Y i
0.05F ’ it - A
~005F ™ - I Y
Ve v b
-0.1} ‘."h* v ,-' ! -
e ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
X
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Chapter 5

CONCLUSIONS

A time-averaged model for breaking irregular waves is developed in Chapter
2 to predict the cross-shore variations of the mean and standard deviation of the
free surface elevation from outside the surf zone to the lower swash zone. This time-
averaged model is derived by averaging the time-dependent continuity, momentum,
and energy equations which were used successfully to predict irregular wave runup
on beaches. This time-averaged model includes nonlinear corrections terms in the
cross-shore radiation stress and energy flux. The correction terms involving the
skewness and kurtosis are important in very shallow water. The time-averaging of
the time-dependent equations reduces computation time considerably but creates
a closure problem. The energy dissipation rate due to wave breaking is estimated
using an existing empirical formula in the outer zone. In the inner zone near the still
water shoreline, a new empirical formula for H, = H,,, /H is proposed to describe
the landward increase of H,. In addition, simple empirical formulas are proposed
to express the skewness and kurtosis as a function of H,.

The developed model is calibrated and compared with three irregular wave
tests on a 1:16 smooth impermeable slope and two tests on quasi-equilibrium ter-
raced and barred beaches. Verification is conducted using five independent labora-
tory tests on a 1:30 slope as well as additional comparisons with field data collected
at the Field Research Facility. The major improvements of the new model in com-

parison to existing models are that it is capable of predicting the wave setup and
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root-mean-square wave height near the still water shoreline. Coupling of the new
wave model with a cross-shore sediment transport model may make it feasible to
predict the erosion and recovery near the still water shoreline.

The runup time series and statistics as measured by a runup wire are shown
in Chapter 2 to differ markedly from those measured by vertical wave gauges. The
exponential gamma distribution, which was shown by Kobayashi et al. (1998) to
describe the free surface probability distributions measured in a wave flume, is found
to be also capable of describing the measured probability density functions of the
runup in the wave flume and the free surface elevations in a surf zone on a natural
beach.

A time-dependent cross-shore sediment continuity equation is derived in
Chapter 3 that includes sediment suspension, storage, advection, and settling. Time-
averaging of this equation creates a closure problem associated with the correlation
of time-varying quantities. Several empirical assumptions are made to obtain a
simple model for beach profile evolution. A semi-analytical solution is derived for
constant water level and wave conditions and compared with three large-scale lab-
oratory tests with accretional, erosional, and neutral (little) beach profile changes.
This simple model predicts both shoreline accretion and erosion but is not accurate
enough to predict detailed features. Finally, equilibrium terraced and barred beach
data are used to assess the assumption of constant energy dissipation rate per unit
volume for equilibrium profiles. This assumption is less accurate than the standard
equilibrium profile. A different approach will need to be devised to solve the closure

problem for the time-averaged sediment continuity equation.
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A time-dependent, cross-shore sediment transport model is developed to pre-
dict the temporal and spatial variations of the depth-averaged sediment concen-
tration in surf and swash zones in Chapter 4. The model is based on the depth-
integrated sediment continuity equation which includes sediment suspension by tur-
bulence generated by wave breaking and bottom friction, sediment storage in the
entire water column, sediment advection by waves and wave-induced return cur-
rent, and sediment settling on the movable bottom. The sediment suspension rate
is expressed in terms of the wave energy dissipation rates due to wave breaking and
bottom friction using the simplified transport equation for the turbulent kinetic en-
ergy which includes the negative buoyancy effect due to suspended sediment. The
rate of the bottom elevation change is computed using the volume conservation of
bottom sediment and the net sediment settling rate. The hydrodynamic input re-
quired for this sediment transport model is predicted using the finite-amplitude,
shallow-water equations including bottom friction. The combined numerical model
called CBREAK is explained concisely. The present version of CBREAK does not
include the effects of the bottom profile change on the wave motion and sediment
transport.

The time-dependent numerical model is compared with the same three large-
scale laboratory tests of accretional, erosional, and neutral (little) beach profile
changes as presented in Chapter 3. Sediment suspension is predicted to be intense
under the steep front of breaking waves and mild but persistent in the thin layer of
water flowing downslope in the swash zone which is affected by bottom friction. The
response of the depth-averaged sediment concentration to the sediment suspension
rate is damped and shifted due to the sediment storage and advection. As the nor-
malized sediment fall velocity is reduced, the mean sediment concentration becomes
dominant in comparison to the oscillatory concentration. The positively-correlated

oscillatory components of the suspended sediment volume per unit area and the



horizontal sediment velocity cause relatively small onshore sediment transport. The
product of the mean suspended sediment volume and the mean horizontal sediment
velocity yields relatively small offshore sediment transport. The net cross-shore sed-
iment transport rate is the small difference between the relatively small onshore and
offshore transport rates, which is difficult to predict accurately. The net sediment
suspension rate is also the small difference between the mean suspension rate and
the mean settling rate but can be used directly to predict the rate of the bottom
elevation change. The predicted profile changes are consistent with the measured
initial profile changes. CBREAK can predict the formation of a berm above the
still water shoreline and the formation of a bar in the outer surf zone, although it
can not predict the detailed profile changes using the constant suspension efficien-
cies ep and e;. CBREAK will need to be compared with irregular wave data and
detailed measurements of sediment concentration and fluid velocities. Additionally,
the effects of bottom profile changes on the wave motion and sediment transport

will need to be included.
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