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ABSTRACT

An experiment was conducted to examine the probability distributions of the
waterline elevation on a stone revetment with a 1:2 slope located in the surf zone on a
gently sloping beach. The experiment consisted of 27 tests for three spectral peak
periods and nine water depths at the toe of the revetment. For each test, 10 wave
gauges were utilized to measure the irregular wave transformation from outside the
surf zone to the revetment. A runup wire was placed parallel to the revetment to
measure the waterline oscillations. An acoustic Doppler velocimeter was also utilized
to measure the fluid velocities at the toe of the revetment. The wave reflection
coefficients, estimated using a three-gauge array, placed just seaward of the surf zone,
were estimated to be less than 0.4. The measured time series and spectra indicate the
dissipation of incident waves and the generation of low-frequency waves as the water
depth was decreased at the toe of the revetment. The exponential gamma distribution,
with measured mean, standard deviation, and skewness, can describe all of the
measure probability distributions adequately for all of the tests. The time-averaged
model CSHORE predicts the measured cross-shore variations of the mean, standard
deviation, and skewness fairly well. CSHORE tends to poorly predict the measured
variations of kurtosis. In addition, CSHORE underpredicts the standard deviation of

the waterline elevation noticeably as the depth is increased.
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Chapter 1

INTRODUCTION

1.1 Coastal Structures

Various types of coastal structures can be seen protecting shorelines, ports, and
harbors throughout the world and the prediction of irregular wave runup on those
structures is necessary in determining the crest height of the structure. The crest height of
the structure must be of significant magnitude so that overtopping of design waves does
not occur. Common types of coastal structure constructed in the United States are jetties
and revetments that are most often constructed as rubble mound structures (Kobayashi
1999). Rubble mound structures are typically inclined structures constructed of stone,
referred to as armor units, of uniform or variable mass depending upon the design and
application. Wave uprush and downrush on the seaward slope of the structure affect the
wave forces acting on armor units and the stability and movement of the armor units.
Currently, numerical models developed to predict the free surface elevations and velocity
on permeable and impermeable slopes are available and accurate within errors of
approximately 20 % (Kobayashi 1999). A simple, predictive model, as proposed in this
study, is required to accurately represent irregular wave runup on coastal structures

(Kearney and Kobayashi 2000).



1.2 Previous Experiments and Models

Empirical formulas for irregular wave and armor stability were developed using
laboratory experiments for coastal structures in relatively deep water to reduce the
number of dimensionless parameters in the formulas. Experiments were conducted to
examine the effects of toe depth on irregular wave runup (Rathbun, et al. 1998) and
armor stability (Melby and Kobayashi, 1998). However, it is difficult to develop
empirical formulas that can deal with various irregular wave transformations and
breaking on the beach seaward of the toe of the structure.

Time-dependent numerical models based on the finite-amplitude shallow-water
equations including bottom friction have been shown to be capable of predicting the
irregular wave transformation on the fronting beach and wave runup on the structure as
reviewed by Kobayashi (1999). However, the time-dependent numerical models require
significant computation time to resolve the breaking wave profiles varying rapidly in time
and space. The present use of such models is essentially limited to research applications.

1.3  Objectives and Overview

The following study is, in part, an attempt to propose and verify a time-averaged
probabilistic model, CSHORE, for practical applications as a compromise between purely
empirical formulas and highly computational models. The time-averaged cross-shore
momentum and energy equations derived from the finite-amplitude shallow-water
equations including bottom friction are solved numerically to predict the cross-shore

variation of the wave setup, 7 , and root-mean-square wave height, H,,, from outside the



breaking wave zone to the swash zone (Kobayashi and Johnson 1998). This model has
been shown to predict the wave setup and height in the surf and swash zones on beaches.
This model is extended in this study to predict the mean and standard deviation of the
waterline elevation on the seaward slope of a rubble mound structure.

The probabilistic distribution of the waterline elevation with the known mean and
standard deviation was expressed by the exponential gamma distribution. For shoreline
elevations on natural beaches, the Gaussian distribution was shown to be a good
approximation of measured distributions (Huntley et al. 1977) but systematic
discrepancies related to time series skewness were observed (Holland and Holman 1993).
On the other hand, irregular wave runup on coastal structures has not been analyzed in
this manner probably because empirical formulas developed originally for regular waves
deal with only the maxima of the oscillating waterline.

To verify the time-averaged model and the appropriateness of the exponential
gamma distribution for irregular wave runup, experiments were conducted in a wave tank
that is 30 m long, 2.44 m wide and 1.5 m high. A plywood beach with an approximate
1:32 slope and a stone revetment with a 1:2 slope were installed in the wave tank.
Irregular waves based on the TMA spectrum were generated with a piston-type wave
paddle. Three wave gages placed outside the surf zone were used to separate incident
and reflected waves. Three movable wave gages were used to measure the irregular
wave transformation on the 1:32 slope. A swash gage was placed at the toe of the 1:2
slope to measure the free surface oscillations in very shallow water. A runup wire placed

parallel to the stone revetment was used to measure the waterline oscillations. An



acoustic Doppler velocimeter (ADV) was placed at the toe of the stone revetment to
measure fluid velocities. The velocity data was analyzed to predict the statistics and
probabilities of fluid velocities, which will be required for the future probabilistic
analysis of stone movement and dislodgment.

Twenty-seven tests were conducted for three spectral peak periods; 7, = 1.5, 2.4,
and 4.7 s and nine different toe depths; d, = 4, 6, 8, 10, 12, 14, 16, 18, and 20 cm. The
incident root-mean-square wave heights were taken as large as possible to avoid wave
breaking at the paddle and were approximately 12 cm. The 27 data sets were analyzed to
calibrate and verify the time-averaged probabilistic model for irregular wave
transformation on the beach and the runup on the structure.

The following chapter provides an overview of the experimental procedures
including experimental setup and armor and filter stone characteristics, as well as the
equipment calibration. Free surface, wave runup, and velocity measurements are also
discussed. In Chapter 3 the time series and frequency spectra are presented for the free
surface and runup elevations. Statistical parameters for each test such as wave setup or
setdown, 7 , root-mean-square wave height, /,,,, skewness, s, and kurtosis, K, are also
presented. Chapter 4 presents the results from the separation of incident and reflected
waves. Chapter 5 presents the time series and spectra for the measured cross-shore
velocities. Comparisons of the measured cross-shore time series parameters to those
parameters predicted by linear long wave theory are also presented. The exponential
gamma probability distribution is presented in Chapter 6 along with figures comparing

the distribution with probability distribution functions for normalized free surface



elevation and runup, 7+, and normalized cross-shore component of the horizontal

velocity, u+. In Chapter 7, the numerical model CSHORE is presented along with a
comparison of the results from CSHORE to the free surface and runup statistical

parameters 7 , Hyps, 5, and K presented in Chapter 3. Conclusions based on the results of

this study are presented in Chapter 8.






Chapter 2

EXPERIMENTAL PROCEDURES

Twenty-seven tests were conducted as a part of the experiment for this project
in order to collect sufficient irregular wave, runup, and velocity data to validate the
model. Because this experiment was performed to gather a broad range of data, over a
relatively large range of water depths, special considerations had to be made for the
revetment construction, experimental setup, and performance of the tests, to ensure the
collection of reliable data. This chapter will review the experimental setup,
procedures for calibration and collection of free surface and runup data, collection of

velocity data, as well as a summary of the tests performed.

2.1  Experimental Setup

Tests for the experiment were conducted in a wave tank that was 30 m long,
2.44 m wide, and 1.5 m high. A plywood beach with an approximate 1:32 slope and a
stone revetment with a 1:2 slope were installed in the tank as shown in Figure 2.1.
The 1:2 slope consisted of an impermeable plywood layer, an approximate 4 cm filter
layer of two stone thicknesses, and an approximate 14 cm armor layer of two stone

thickenesses.



Irregular waves based on the TMA spectrum (Bouws, et al. 1985) were
generated with a piston-type wave paddle. Three paddle time series were created for
each of the three spectral peak periods; 7, =1.5, 2.4, and 4.7 s based on a toe water
depth of 12 cm. The incident root-mean-square wave height was taken as large as
possible to avoid wave breaking at the paddle and was approximately equal to 12 cm

for all tests.

2.2 Stone Characteristics

The purpose of the experiment was to collect information regarding irregular
wave transformation and runup on a stone revetment that was stable. Because the
revetment would be subject to a large variety of water depths and wave periods, stones
of sufficiently large mass were chosen to resist movement or being dislodged under the
most extreme wave conditions that could be experienced during the performance of the
tests. The median armor layer stone mass was calculated to be approximately equal to
100 g for a series of irregular waves with the peak period, 7, = 4.7 s, and water depth
of d, = 20 cm at the toe of the revetment (Shore Protection Manual 1984). The target
median mass of the filter layer was selected as roughly half of the armor layer stone
mass, but the stones for both layers were selected based on availability at the time of
the experiment. To determine the basic characteristics of the armor and filter stone,
tests were conducted to determine the average specific gravity of each according to the
ASTM testing standard for large aggregate (ASTM C:127 2000). Mass, volume,

density, and percent finer by mass were determined for each stone chosen for the



sample set of 50 stones for each layer. The results from the stone characteristic
analysis were tabulated and are presented in Table 2.1 for the armor stone and Table
2.2 for the filter stone. From these results the median mass, M5, was interpolated for
the armor stone and the filter stone. Once the median mass was determined, the

nominal diameter was calculated as defined in equation (2.1)

Dpso = (M“‘O ps]% 2.1)

where p; = stone density. The median mass of the armor layer was approximately

equal to 89 grams, while the median mass of the filter stone was approximately equal
to 16 grams. The approximate nominal diameter of the armor stone and filter stone

was 7 cm and 2 cm respectively.
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Table 2.1: Armor Stone Characteristics

Stone Mass Volume Density Cumulative % Finer By
number (2) (cm®) (g/cm’) Mass Mass
46 49.3 19.5 2.52 49.2 1.1
10 50.7 19.6 2.56 100.0 2.2
37 55.6 22.1 2.51 155.7 34
45 55.8 28.1 2.94 211.4 4.6
8 57.3 21.6 2.63 268.8 5.8
21 58.5 233 2.50 3273 7.1
33 59.3 21.5 2.74 386.6 8.4
48 60.4 22.0 2.74 447.0 9.7
30 65.9 243 2.69 512.9 11.1
17 66.0 249 2.63 578.9 12.5
49 69.2 26.0 2.64 648.1 14.0
12 69.9 25.7 2.72 718.0 15.5
44 70.4 25.6 2.73 788.4 17.0
27 75.2 26.1 2.87 863.6 18.7
32 77.3 32.0 2.40 940.9 20.3
13 78.0 28.4 2,73 1018.9 22.0
43 79.5 35.7 221 1098.4 23.7
4 79.8 30.7 2.59 1178.1 25.5
3 79.9 30.3 2.62 1258.1 27.2
18 80.4 30.7 2.53 1338.4 28.9
40 81.0 313 257 1419.4 30.7
31 81.5 324 2.51 1500.9 324
23 82.9 36.0 2.24 1583.9 34.2
26 84.9 32.1 2.62 1668.7 36.0
50 85.22 30.8 2.75 1754.0 379
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Table 2.1 continued: Armor Stone Characteristics

Stone Mass Volume Density Cumulative % Finer By

number (g) (cm®) (g/ch ) Mass Mass
19 85.4 320 2.65 1839.4 39.7
2 85.7 35.0 2.43 1925.1 41.6
41 86.4 32.0 2.66 2011.5 43.5
15 88.5 34.6 2.53 2100.0 454
9 88.6 31:5 2.75 2188.6 47.3
29 89.8 354 2.51 2278.4 49.2
42 93.3 35.6 2.61 2371.7 512
24 93.9 36.8 2.52 2465.6 53.3
47 95.5 35.7 2.66 2561.1 55.3
i 98.8 36.9 2.65 2659.8 57.5
36 103.3 38.7 2.66 2763.1 597
14 106.0 392 2.67 2869.1 62.0
25 107.7 39.3 2.73 2976.8 64.3
16 110.9 43.1 2,51 3087.7 66.7
34 112.9 41.8 2.69 3200.6 69.1
11 113.7 40.5 2.79 3314.2 71.6

5 113.9 423 2.68 3428.2 74.1
20 115.4 40.0 2.86 3543.5 76.5
28 118.6 44.9 2.63 3662.2 79.1

1 121.0 43.0 2.80 3783.2 81.7
35 136.2 49.1 2.76 39194 84.7
38 136.5 47.8 2.84 4055.9 87.6
6 177.7 64.4 2.75 4233.6 91.5
39 191.0 76.0 2.50 4424.6 95.6
22 204.6 72.3 2.80 4629.2 100.0

Total 4929.2 1748.4 131.8
Average 92.6 35.0 2.64
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Table 2.2: Filter Stone Characteristics

Stone Mass Volume Density Cumulative % Finer By

number (g) (cm?) (g/em’) Mass Mass
38 8.4 3.4 2.48 8.4 1.0
14 8.9 23 3.94 17.4 2.1
6 9.1 2.7 3.39 26.5 3.3
73 9.2 2.5 3.71 35.7 4.4
19 9.8 4.1 2.38 45.5 5.6
22 10.0 4.1 2.41 55.4 6.8
31 10.4 5.8 1.79 65.8 8.0
53 10.4 4.9 2.12 76.2 9.3
26 10.8 3.9 2:75 87.1 10.6
34 11.4 5.0 2.30 98.5 12.0
37 11.9 5.0 2.38 110.3 13.5
9 12.0 44 ) 1223 14.9
27 12.2 54 227 134.5 16.4
32 12.3 52 2.39 146.8 17.9
12 12.6 52 2.41 159.4 19.5
44 12.9 5.3 2.41 1723 21.0
66 13.0 8.0 1.63 185.3 22.6
41 13.4 6.6 2.04 198.7 243
13 13.7 4.5 3.03 2124 26.0
30 13.7 6.4 213 226.2 27.6
21 13.9 4.8 2.89 240.1 29.3
63 14.2 7.7 1.83 254.3 311
45 14.5 4.6 3.16 268.8 32.8
36 14.9 6.7 222 283.7 34.7
48 14.9 7.6 1.97 298.6 36.5




Table 2.2 continued: Filter Stone Characteristics

Stone Mass Volume Density Cumulative % Finer By

number (g) (cm®) Jg/cms) Mass Mass
25 15.1 7.4 2.03 313.9 383
55 15.3 6.1 2.51 329.0 40.2
40 15.5 6.3 2.47 344.5 42.1
65 15.6 72 217 360.1 44.0
3 15.7 6.2 2.51 375.7 45.9
39 15.8 59 2.66 391.5 47.8
64 15.9 7.1 2.23 407.4 49.8
11 17.4 7.6 2.29 424.8 51.9
62 17.5 7.3 2.38 442.2 54.0
16 17.8 T 2.31 460.0 56.2
43 17.8 #al 231 477.8 58.4
47 17.9 7.1 2.52 495.7 60.6
15 18.1 6.1 2.95 513.9 62.8
28 19.1 7.1 2.67 5329 65.1
4 20.0 8.0 2.50 552.9 67.5
61 20.5 7.6 2.69 573.4 70.0
1 22.0 9.4 2.35 595.4 72.7
23 23.6 10.7 2.20 619.0 75.6
33 25.1 10.4 2.41 644.1 78.7
5 27.3 12.5 2.19 671.4 82.0
17 27.7 13.0 213 699.1 85.4
18 27.9 11.8 2.36 727.0 88.8
29 28.4 14.1 2.02 755.4 92.3
10 29.3 13.7 2.13 784.7 95.9
2 339 17.8 1.90 819.6 100.0

Total 819.6 352.1 121.71
Average 16.4 7.0 2.43
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2.3 Free Surface Measurements

During each test, 10 capacitance-type wave gauges and a capacitance-type
runup wire were utilized to take free surface and runup measurements. The only
exception was that a swash gauge was utilized in place of gauge number 9 when the
toe depth d, = 4, 6, 8, and 10 cm. An additional swash gauge was placed
approximately half way up the 1:2 slope. Data gathered from this gauge proved to be
difficult to interpret and unreliable. Therefore, data from this gauge was not utilized
during the analysis for the experiment. The gauge locations are indicated using the
cross-shore coordinate x, which is taken to be positive onshore, with x = 0 at gauge 1.
The still water depth at each gauge location was also measured when the water depth
at the toe of the revetment was d, = 0 cm. These values, along with their cross-shore
coordinate, are displayed in Table 2.3. The waterline elevation measured by the runup

wire is assumed to be located at the intersection of the runup wire and the still water

level (SWL).
Table 2.3: Still Water Depth at Gauge Locations
Wave Gauge
Number 1 2 3 4 5 6 T 8 9 10
Cross-Shore
Location 0.0 0.23 2.0 6.0 9.0 12.0 14.0 14.5 14.8 14.9
x = (m)
%"" t\:a“"' 0461 | 0459 | 0373 | 0.268 | 0.156 | 0.082 | 026 | 001 | d,
Pt (i) +d, | +d, | +d | +d | +d | +d | +d | +d, t ] -0.05
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Wave gauges 1, 2, and 3 were placed just seaward of the surf zone and utilized
to separate incident and reflected waves. The remaining gauges were placed in
stationary positions to measure the irregular wave transformation on the 1:32 slope at
approximately constant spatial intervals. Because of the limited number of gauges
available during the running of the tests, two runs had to be performed for each test.
During the second run for each test, three gauges were moved to the region near the
toe for better spatial resolution.

2.3.1 Wave Gauge Calibration

Each wave gauge was calibrated prior to the beginning of the tests over a
period of 4 to 5 hours. Calibrations were conducted by raising and lowering the water
level in the tank by 2 cm over the range of water elevations anticipated during all of
the tests. Once the calibration water level was achieved, the gauge voltage readings
were recorded. Nineteen or twenty points were used for the calibration of all gauges,
except for the swash gauge, which had 12 points of calibration. The calibration data
for all of the gauges generally followed a straight line, as illustrated in Figure 2.2 for
gauge 1. The conversion factor for the wave gauges and the swash gauge was
obtained by performing a linear fit to the data. This calibration process was time
consuming, but necessary for accurate measurements of the free surface elevations.

2.4  Wave Runup Measurement

To measure the free surface oscillation at the revetment, a runup wire was

utilized and placed parallel to the 1:2 stone revetment, approximately 2.5 cm vertically
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Figure 2.2: Calibration Points and Linear Fit for Gauge 1.

from the approximate mean surface of the stone. It was difficult to place the wire
close to the slope because of the large size and irregular shape of the stones, which
were stationary for this experiment.

2.4.1 Runup Wire Calibration

The runup wire was calibrated simultaneously and in the same manner as the wave
gauges. Nineteen points of calibration were used for the runup wire. Because the
runup wire was significantly longer than the wire used for the wave gauges, the data
collection system had to be modified to accommodate this length. An extra capacitor
was added in series with the standard wave gauge, and adjusted so that values could be
recorded over the entire length of the wire. Due to this modification, a first order
approximation through the calibration points was no longer valid, so a third order fit

had to be utilized. The calibration curve for the runup wire is shown in Figure 2.3
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Figure 2.3: Runup Wire Calibration Points and Third Order Fit.

2.5  Velocity Measurement

To measure fluid velocities, a 2-dimensional, side-looking acoustic Doppler
velocimeter (ADV) was utilized. When compared with the cross-shore velocities,
which were dominated by waves and wave-induced currents, cross-tank velocities
associated with three-dimensional turbulence were small and therefore not presented
herein.

The ADV was placed immediately seaward of the slope (x = 14.8 m) to
measure the cross-shore velocities at the toe of the 1:2 stone revetment. It was the
intent of this experiment to gather cross-shore velocity data at the mid-still water depth
for all of the tests. During preliminary tests, it became apparent that it would be
difficult to mount the ADV in an adequate position to measure the fluid velocities at
those depths, because of the wave tank configuration and large range of water depths.
Subsequently, the ADV was mounted so that the probe was approximately 1.5 cm

vertically above the plywood beach, so that consistent data could be recorded. During



test performance for the shallowest water depths (¢, = 4 and 6 cm) fluid velocities
could not be reasonably recorded, because of the relatively long downrush durations
during which the ADV probe would emerge from the water.

Although the ADV cannot be calibrated prior to testing in the same way as
wave gauges are calibrated, the ADV software contains a self-diagnostic program,
which was run prior to the performance of the tests.

2.6  Summary of Tests

Twenty-seven tests were conducted for each of the three spectral peak periods;
T, = 1.5, 2.4, and 4.7 s and nine different toe depths; d,= 4, 6, 8, 10, 12, 14, 16, 18,
and 20 cm. Each test was conducted for a duration of 400 s and sampled at a rate of
20 Hz, with the exception of the tests for the 4.7 s peak period, which were conducted
for 800 s and sampled at a rate of 10 Hz. Initial transient waves of 60 s or 120 s (1200
data points) were removed from each test. The data acquisition parameters are
summarized in Table 2.4 where A, B, and C indicated the test with 7, = 1.5, 2.4, and
4.7 s, respectively. The toe depth d, is used to designate each of the nine tests for each

T, as listed in Table 2.5.



Table 2.4: Data Acquisition Parameters

Test

Tps)

Sampling Rate

Test Duration (s)

Effective Data

(Hz) Interval (s)
A 4.7 10 800 120 — 800
B 2.4 20 400 60 — 400
C 1.3 20 400 60 — 400
Table 2.5: Test Designation Table
Test Toe depths — d; (cm)
20 18 16 14 12 10 8 6 4
A A20 | AIlS Al6 | Al4 | Al2 Al10 A8 A6 A4
B B20 B18 B16 Bl4 B12 B10 B8 B6 B4
C C20 Cl18 Clo6 Cl4 C12 Cl10 C8 Cé6 C4
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Chapter 3

MEASURED FREE SURFACE AND RUNUP ELEVATIONS

In this chapter, cross-shore surface elevation time series and frequency spectra
are presented. Time series plots and frequency spectra plots were generated at each
gauge location and for the runup wire for each test run. These time series and spectral
plots are based on the recorded data and therefore include the effects of reflected
waves. Representative plots for time series and frequency spectra will be displayed in
the chapter as examples, the data as a whole is presented in Appendix A.

In addition, cross-shore surface elevation statistics are also presented. The

wave setup or setdown, 7 , the root-mean-square-wave height, H,,;, the skewness, s,
and kurtosis, K, for each of the measured time series of the free surface elevation, 7,

are computed under the assumption of equivalency of probabilistic and time
averaging, as was done by Kobayashi et al.(1998).

3.1 Free Surface Time Series

Time series were plotted for each test, including the effects of reflected waves.

Figure 3.3 is an example of the recorded time series for test B12. Data from five wave
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gauges and the runup wire are presented to show the shoreward wave transformation.
For test B12 some wave breaking occurred in the region of gauge 6 and waves are almost
completely broken at gauge 9 and the runup wire. Similar conditions were observed for
tests A12 and C12 of the same d;, shown in Figure 3.2 and Figure 3.4 respectively. As d,
was decreased, the zone of wave breaking moved offshore. On the other hand, as d; was
increased, the region of wave breaking moved closer to the stone revetment.

3.2  Frequency Spectra

Frequency spectra were plotted for each test, including the effects of reflected
waves. Figure 3.6 is an example of the shoreward transformation of the frequency
spectra for test B12. The spectral peak period at f = 0.42 Hz, corresponding to a peak
period of 2.4 s at gauge 1, was reduced shoreward due to wave breaking, while low
frequency components increased landward. As d, was decreased, the peak of the
frequency spectra began to disappear farther offshore and the shallow water waves and
waterline oscillations on the revetment were dominated by low frequency wave
components. Similar results were observed as d; was varied for 7,=4.7 s and 1.5 s as
shown in Figure 3.5 and Figure 3.7 respectively. As d, was increased, the spectral peak
observed at gauge 1 remains discernible at gauges 2 through 10 and the runup wire.

33 Time Series Parameters

Complete free surface statistical data were calculated for each test and are
presented in Table 3.1, Table 3.2, and Table 3.3 for 7, = 4.7 s, 2.4 s, and 1.5 s. Wave

setup or setdown, 7 , root-mean-square wave height, H,n»s, skewness, s, and kurtosis, K,
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are tabulated for each gauge location and the runup. The values for gauge 1, at x = 0, are
utilized as the primary input for the numerical model CSHORE. The free surface
statistical data is compared to the output of CHSORE and these comparisons are
discussed further in Chapter 7.

3.4 Bottom Elevation Uncertainty on the Revetment

Gauge 10 was mounted immediately landward of the toe of the revetment at
x=14.9 m. The gauge never emerged from the water during the test even though part of
the gauge was “buried” within the armor stones of the slope. Considering the 1:2 slope,
the theoretical slope surface at the gauge location should be approximately 5 ¢cm above
the plywood beach. The times series in shallow water were adjusted or truncated to this
elevation, which had a significant effect on the free surface statistics for this gauge
location as well as the shape of the probability distribution. Figure 3.1 shows an example
of an uncorrected time series and the subsequent time series after. truncation. Time series
were truncated for 7, = 4.7 s when d, was less than or equal to 16 cm, for 7, = 2.4 s when
d, was less than or equal to 10 cm, and for 7, = 1.5 s when d; was less than or equal to 6
em. For consistency throughout the experiment, the truncated time series were

utilized for all analyses performed.
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Chapter 4

INCIDENT AND REFLECTED WAVES

For the purposes of this experiment, separating the incident and reflected
waves was an important step in the process in determining the feasibility of using the
numerical model CSHORE for irregular wave runup prediction on a revetment.
CSHORE does not account for reflected waves explicitly, but was calibrated using the
experimental and field data, which included both incident and reflected waves. The
model has already been shown to reasonably predict cross-shore transformations of
irregular waves, but such comparisons were made on relatively gentle slopes
compared to the 1:2 revetment utilized for this experiment. Separation of the incident
and reflected waves and subsequent determination of average reflection coefficient
showed that even though the revetment was steeply sloped, reflection was relatively
small and therefore did not have an adverse affect on the predictive accuracy of the
model.

4.1  Separated Time Series and Spectra

The incident and reflected wave time series were estimated at the seaward

gauge location, x = 0, using the three gauge method used by Kobayashi et al. (1998).

36



The three gauge method is an extension of the original separation method developed by
Goda and Suzuki (1976). The original model was limited in its ability to separate
incident and reflected waves at frequencies where the wavelength was an integer multiple
of the gauge spacing. The three gauge method reduces this limitation by utilizing and
combing the results from three pairs of gauges to cover a wider range of frequencies.
Gauge spacing for the separation of incident and reflected waves was chosen such that
adequate frequency resolution was achieved for all three peak periods. The spacing is
shown in Table 4.1 where there still water depth at wave gauges 1, 2, and 3 has been
listed in Table 2.3.

Table 4.1: Three-gauge Array Separation.

Gauge Pair Spacing (m)

1,2 0.23
1,3 2.0
2,3 1.77

The three gauges used for the separation of the incident and reflected waves were
mounted in a section of the tank where the bottom was gently sloping. The gauges were
mounted in this location to be located outside the surf zone, but also sufficiently far away
from the paddle where wave breaking occasionally occurred due to large wave
generation. Although the method to separate incident and reflected waves was developed
for constant depth, it has been shown that the effects of a gently sloping beach on the

separation of incident and reflected waves is negligible (Kobayashi and Raichle 1994).
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Once the waves were separated, the incident and reflected wave spectra were
calculated and smoothed using a Bartlett Window to band-average the data with 16
degrees of freedom for each run. The incident and reflected spectra are shown in Figure
4.1 and Figure 4.2 for T, = 4.7 s, Figure 4.3 and Figure 4.4 for 7, = 2.4 s, and Figure 4.5
and Figure 4.6 for T, = 1.5 s. Although the energy or zero spectral moment for each peak
period is different, the trend of the data is the same. The spectra indicate that a majority
of the wave energy near the peak frequency was being dissipated with little wave
reflection, while the low frequency waves were almost completely reflected.

4.2  Spectral Parameters and Average Reflection Coefficient

To evaluate the incident spectral root-mean-square wave height and average reflection
coefficients, the zero-moment or m,, for the incident spectrum S;, and reflected spectrum

S,, are defined in equation (4.1) and (4.2) respectively.

(ma)i= [J=si(f ) (“.1)

(mo)y= [Los,( 1 )df 4.2)

where fyu, and fjee are the minimum and maximum frequencies resolved by the

separation method. Once the incident wave zero-moment is determined, the spectral
estimate of the incident root-mean-square wave height H; can be determined using

equation (4.3).

Hi= [3img); (4.3)
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The measured root-mean-square wave height H,',,,s and H; are compared in Table 4.2.
The percentage difference between the two wave heights fell between —0.1 and 0.1 with

the exception of those calculated for tests with 7, = 2.4 s.

The average reflection coefficient R, defined as R = [(m, j,, /imo ii was estimated

for all the tests. The reflection coefficients R were very similar for 7, = 4.7s and 2.4 s,
with values ranging from R = 0.33 - 0.36 for d,= 20 cm to R = 0.26 when d;= 4 cm. The
reflection coefficient R decreases as d; is decreased because of the increased wave
breaking. The reflection coefficients for 7, = 1.5 s were in a narrow range for all water

depths, ranging from R = 0.23 for d;= 20 cm to R = 0.20 for d,= 4 cm.

Table 4.2: Incident and Reflected Waves at Gauge 1.

v | e | Kt | | el | Mo

? H; (cm) T rms
A20 66.1 0.33 15.8 16.4 0.04
Al8 64.1 0.32 15.1 16.0 0.06
Al6 62.1 0.34 15.3 14.7 -0.04
Al4 60.1 0.28 14.5 14.3 -0.01
Al2 58.1 0.27 14.4 13.9 -0.04
Al10 56.1 0.28 14.0 13.7 -0.02
A8 54.1 0.27 13.2 137 0.04
A6 52.1 0.26 12.9 12.4 -0.04
A4 50.1 0.26 12.5 12.7 0.02
B20 66.1 0.36 13.8 11.4 -0.21
BI18 64.1 0.36 13.4 10.9 -0.23
B16 62.1 0.36 13.2 10.3 -0.28
Bl14 60.1 0.35 12.9 9.9 -0.30
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Table 4.2 continued: Incident and Reflected Waves at Gauge 1.

e | SR | meein | gl | e | e
? H,—(cm) ms rms
B12 58.1 0.34 12.6 9.9 -0.27
B10 56.1 0.30 123 10.0 -0.23
B8 54.1 0.32 11.9 9.1 -0.31
B6 321 0.29 11.6 9.2 -0.26
B4 50.1 0.26 11.3 9.1 -0.24
C20 66.1 0.23 10.0 9.7 -0.03
Cl18 64.1 0.22 97 9.4 -0.03
Cle6 62.1 0.23 9.4 9.4 0.00
Cl4 60.1 0.24 9.2 9.1 -0.01
Cl2 58.1 0.24 9.0 8.9 -0.01
Cl10 56.1 0.22 89 8.8 -0.01
C8 54.1 0.20 8.8 8.6 -0.02
Co6 52.1 0.20 8.6 8.4 -0.02
C4 50.1 0.20 8.5 8.4 -0.01
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Figure 4.1: Incident and Reflected Spectra for 7, = 4.7 s;
d; =20, 18, 16, 14, and 12 cm.
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Figure 4.2: Incident and Reflected Spectra for 7, = 4.7 s; d, = 10, 8, 6, and 4 cm.
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Figure 4.3: Incident and Reflected Spectra for 7, =2.4s;
d, =20, 18, 16, 14, and 12 cm.
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Figure 4.4: Incident and Reflected Spectra for 7, = 2.4 s; d; = 10, 8, 6, and 4 cm.
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Figure 4.5: Incident and Reflected Spectra for 7, = 1.5 s;
d,= 20,18, 16, 14, and 12 cm.
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Figure 4.6: Incident and Reflected Spectra for 7, = 1.5s; d, = 10, 8, 6, and 4 cm.
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Chapter 5

MEASURED CROSS-SHORE VELOCITIES

Horizontal velocities were measured at the toe of the revetment for test runs
with d, greater than or equal to 8 cm. Measurements could not be made for d; less
than 8 cm due to the extended emergence of the ADV probe from the water. The
long-shore velocities were measured and found to be negligible, consisting mostly of
three-dimensional turbulence and signal noise.

In this chapter, cross-shore velocity time series, spectra, and parameters will be
presented as well as the approximate relationships between the free surface statistics
and cross-shore velocity statistics. The mean velocity #, standard deviation oy,
skewness s,, and kurtosis K, for each time series are computed under the assumption
of equivalency of the probabilistic and time averaging as stated in Chapter 3 for the
free surface parameters. The cross-shore velocity u, is taken to be positive landward.

5.1  Cross-shore Velocity Time Series

The cross-shore velocity time series were recorded for each test if the water
depth at the toe was equal to or greater than 8 cm. Time series plots for each water

depth and respective incident peak period are displayed in Figure 5.1, Figure 5.2, and
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Figure 5.3. The velocity time series appear jagged due to turbulence caused by wave
breaking, similar to the free surface time series for gauge 9 at the toe of the slope. Cross-
shore velocity is taken to be positive onshore. Peak velocities from the time series are
observed onshore while offshore velocity appears to occur for longer durations especially
for the longer peak period 7, = 4.7 s. This occurs partly because of wave nonlinearity
and partly because a certain volume of water stored in the stone is released from the
revetment stone during subsequent wave downrush.

5.2  Cross-shore Velocity Frequency Spectra

Frequency spectra were plotted for each test, including the effects of reflected
waves. The cross-shore velocity data was analyzed in the same manner as the free
surface data, utilizing a Bartlett window to band-average the data with 16 degrees of
freedom.

The frequency spectra were plotted for each peak period with all tests for the
water depths over which data could be recorded. The plots are included on Figure 5.4
displaying the results for 7, = 4.7 s, Figure 5.5 displaying the results for 7, = 2.4 s, and
Figure 5.6 displaying the results for 7, = 1.5 s. Similar to the spectral analysis results
from gauge 9 of the free surface data, an increase of low frequency velocity components

were observed with the decrease of d,. The results are similar for all peak periods.
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Figure 5.1: Cross-shore Velocities for 7, =4.7 s; d, = 20, 18, 16, 14, 12, 10 and 8 cm.
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Figure 5.2: Cross-shore Velocities for 7, = 2.4 s; d, = 20, 18, 16, 14, 12, 10 and 8 cm.
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Figure 5.3: Cross-shore Velocities for 7, = 1.5 s; d; = 20, 18, 16, 14, 12, and 10 cm.

51



B Test A20 -

n Test A18 .

L Test A16 .

- Test A14 .

L 1

0 0.2 0.4 0.6 0.8 | 1.2 1.4
Frequency (Hz)

Figure 5.4: Frequency spectra for 7, = 4.7 s and d, =20, 18, 16, 14, 12, 10 and 8 cm.
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Figure 5.5: Frequency spectra for 7, = 2.4 s and d, = 20, 18, 16, 14, 12, 10 and 8 cm.
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Figure 5.6: Frequency spectra for 7, = 1.5 s and d, = 20, 18, 16, 14, 12, and 10 cm.
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53 Horizontal Velocity and Linear Theory

To obtain the approximate relationships between the free surface and cross-
shore velocity statistics, local nonlinearity may be neglected and linear progressive
long-wave theory may be assumed to be approximately valid locally, even inside the
surf zone (Guza and Thornton 1980). The relationship of the oscillatory components

of the cross-shore velocity and free surface elevation is expressed as
(5.1)

where g = gravitational acceleration and = mean water depth, defined as
where d = still water depth. If equation (5.1) holds, the following statistical

relationships can be derived

(5.2)

in which , s, and, K are the standard deviation, skewness, and kurtosis of the free
surface elevation

To estimate the mean velocity or undertow , it has been assumed that the
cross-shore velocity measured near the bottom, but well outside the boundary layer, is
approximately equal to the depth-averaged velocity U. The time-averaged continuity

equation, , for an impermeable beach yields (Kobayashi ez al. 1998).

(5.3)
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Substituting and equation (5.1) into (5.3) yields the following equation for

undertow velocity:
(5.4)

5.4  Cross-shore Velocity Statistics

Cross-shore velocity statistical data were calculated for each test, given the
limitations on water depth, and are presented in Table 5.1, Table 5.2, and Table 5.3 for
T,=4.7s,2.4s,and 1.5 s, respectively. Undertow velocity, , standard deviation of

the cross-shore velocity , skewness, s,, and kurtosis, K,, are tabulated and

compared to predicted values from the equations previously presented. The
theoretical values are calculated utilizing free surface data gathered from gauge 9,
which was co-located with the ADV at the toe of the revetment.

Comparison of the theoretical results to the measured results from the cross-
shore velocity yield poor to fair results. This poor correlation appears to be related to
a variety of factors. As stated earlier, the ADV was placed at the toe of the revetment
with the probe approximately 1.5 cm from the bottom. The gauge was placed at this
location in order to gather as much comparable data as possible. The assumption of
linear long wave theory, with no reflected waves, appears to be crude at the toe of the
1:2 slope. In the tests performed, moderate wave reflection was generally observed
outside the surf zone, but the wave reflection coefficient may have increased landward

(Baquerizo et al. 1999).
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Table 5.1: Comparison of Measured Cross-shore Velocity Statistics
to those Predicted by Linear Long Wave Theory for 7, = 4.7 s.

(cm/s) (cm/s) Su K,
Test
Meas. Theory Meas Theory Meas. Theory Meas. Theory

A20 -1.3 -7.0 18.6 313 0.87 0.29 3.73 3.20
Al8 -1.8 -7.3 194 3E3 1.08 0.23 3.99 3.03
Al6 -2.1 -8.1 17.1 32.0 0.93 0.23 3.76 297
Al4 -2.8 -8.9 16.5 32.6 1.04 0.19 3.98 2.83
Al2 -3.1 -10.0 15.6 333 1.12 0.16 4.18 2.72
Al10 -2.5 -9.9 19.2 32.5 0.81 0.14 3.13 2.67
A8 -2.4 -12.8 19.0 34.6 0.79 0.15 3.04 2.67
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Table 5.2: Comparison of Measured Cross-shore Velocity Statistics

to those Predicted by Linear Long Wave Theory for 7, =2.4 s.

(cm/s) (cm/s) S K,
Test
Meas. Theory Meas. Theory Meas. Theory Meas. Theory

B20 -1.6 -5.1 20.1 26.8 0.65 0.39 2.94 3.78
B18 -2.7 -5.3 19.3 26.6 0.69 0.35 3.00 3.43
Bl16 -3.0 -5.9 18.9 27.3 0.80 0.28 3.19 3.10
Bl14 -4.0 7.5 18.1 28.1 0.89 0.32 3.34 2.94
BI2 -3.9 1.5 17:3 28.8 0.91 0.33 3.34 2.83
B10 -5.7 -1.5 17.5 27.8 0.48 0.36 2.64 2.85
B8 -4.3 -9.0 17.1 29.0 0.49 0.34 2.60 2.79
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Table 5.3: Comparison of Measured Cross-shore Velocity Statistics

to those Predicted by Linear Long Wave Theory for 7, = 1.5 s.

(em/s) (cm/s) Su K,
Test
Meas. Theory Meas. Theory Meas. Theory Meas. Theory.

C20 -1.1 2.4 14.1 18.1 0.27 0.63 2.84 4.02
Cl18 -1.6 -2.7 14.9 18.9 0.26 0.55 2.71 3.99
Cl6 -1.6 -3.0 15.4 19.4 0.36 0.53 2.66 4.01
Cl4 2.5 -3.6 15.8 20.4 0.53 0.53 2.69 3.97
Ci2 -1.9 -4.6 16.3 223 0.52 0.55 2.59 3.95
C10 -2.5 -4.6 12.5 21.5 0.18 1.19 2.66 5.14
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Chapter 6

PROBABILITY DISTRIBUTIONS

Wave statistics were calculated from every measured free surface time series,
including the runup time series and cross-shore velocity time series. The mean, the
standard deviation, and the skewness, were calculated from the time series. The
waterline elevation above the still water level (SWL) measured by the runup wire was

analyzed in the same way as the free surface elevation 7 above the SWL. The

normalized free surface elevation 7+ is defined as

" =’—7—;—"7 (6.1)

where 7 = mean of 7. The mean and standard deviation of 7« are zero and unity,
respectively. The measured probability density function for 7 was compared with
the exponential gamma distribution (Kobayashi et al. 1998) together with the
measured value of skewness s. Similarly the mean, standard deviation, and skewness
were also calculated from the cross-shore velocity times series, v. The normalized
cross-shore velocity u» is defined in the same manner as the normalized free surface
elevation in equation (6.1) with # defined as the mean cross-shore velocity and

o, defined as the standard deviation of the cross-shore velocity.
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6.1  Exponential Gamma Distribution

Given the definition of the normalized free surface elevation 7+, the mean and
standard deviation are equal to zero and unity, respectively. The skewness s of 7+ is the

same as the skewness of 7. The exponential gamma distribution for 7« can be expressed

as
1) =L@ @ e ) (62)

with
y = (@) - ya) (6.3)

in which a = shape parameter; 7~ = gamma function; y = digamma function; and
' = trigamma function. The relationship between s and a is given by
s =~y @] (6.4)
in which y" = tetragamma function. The kurtosis K of 7+ is given by
K= y"(afy'@]? +3 (6.5)
in which " = pentagamma function.
The gamma and related function are explained in Abramowitz and Stegun (1972)
and tabulated by Gran (1992). The values of 77(a), yla), ¥'(a), ¥'(a), and y"(a) for

given a can be found using Mathematica (Wolfran 1991). The value of a for given s can
be obtained by solving (6.4) using an iteration method as shown in Gran (1992) (Orzech

and Kobayashi 1997).
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The exponential gamma distribution can be limited, because we assume a range of
0 < s < 2 for the skewness. This range is consistent with available field and laboratory
data [Bitner (1980); Huang and Long (1980); Goda (1985); Mase and Kobayashi (1991);
Raubenheimer et al. (1995)]. Farther offshore, where water is relatively deep, s

approached zero and equation (6.2) reduces to a Gaussian distribution:

I ¢
f(;y*)=Eexp {—”Z] fors=0 (6.6)

Closer to the shoreline, where the swash zone is always wet, s approaches zero and

equation (6.2) becomes the exponential distribution:

fop) = e+ fors=2 6.7)
This exponential distribution is limited to the range 7+ = [(»-7)/c]> -1. This lower
limit may be interpreted in terms of the instantancous water depth, 7 = (7-2zp) as

expressed by Kobayashi ez al. (1998), where z; = the bottom elevation which is taken to
be positive above the still water level.

6.2  Free Surface and Runup Elevations

For each test, the measured probability density function f(z+), was plotted along
with the predicted exponential gamma distribution for each gauge location and the runup
wire. In these comparisons, the measured 7, o, and s are used in the exponential
gamma distribution. Examples of the distributions are shown in Figure 6.1, Figure 6.2,
and Figure 6.3 for 7, = 4.7 s, 2.4 s, and 1.5 s, respectively. Figures for all of the data

collected are presented in Appendix C. Only gauge locations 1, 4, 6, and 9 are plotted in
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this section along with the runup wire. This is to give a general understanding of how the
distribution changes as the waves propagate towards the revetment and the impact the
revetment has on the runup distribution. In general the exponential gamma distribution
compared well with the measured probability distributions. Deviations are apparent in
the regions where intense wave breaking is occurring or frequent spilling breakers are
observed.

The exponential gamma distribution does not always represent the runup
distribution as well as the free surface comparisons, as can be seen in Figure 6.1, Figure
6.2, and Figure 6.3. This is most likely due to prolonged wave run-down on the
revetment. In addition, the agreement is poor when compared to measured distributions
for wave gauge 10 when d, is small. This occurs, because gauge 10 was mounted on the
slope of the 1:2 revetment as explained in section 3.4. For example, when d, = 4 cm, the
still water elevation was 1 cm below the surface elevation of the 1:2 slope at gauge 10,

therefore the time series upon which the analysis was based, was truncated so that 7 > 1

cm. In these cases of shallow water above the porous stone the distribution agreement is
not favorable. However, for the engineering applications for which this model is
intended, the exponential gamma distribution performs well because in all cases it

compares well with very large values of 7+ related to the small probability of the

waterline elevation upper limit corresponding to large wave runup elevations.
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6.3 Cross-shore Velocity

Cross-shore velocities u were analyzed where the normalized cross-shore
velocity u+ is defined in the same manner as the free surface elevation from equation

(6.1). Probability distributions for the cross-shore velocity f(ux), were compared to the

exponential gamma distribution when d;, > 8 cm for tests conducted with 7, = 4.7 s and
2.4 s, and when d, > 10 cm for tests conducted with 7, = 1.5 s due to the emergence of
the ADV probe from the water. Comparisons are displayed in Figure 6.4 for 7, = 4.7 s,
Figure 6.5 for 7, = 2.4 s ,and Figure 6.6 for 7, = 1.5 s. In general the agreement
between the exponential gamma distribution and the measured distribution was good, as
can be seen in the figures. The agreement is similar to the free surface comparisons, but
became worse as d; was decreased. This is due to the prolonged offshore velocities at

the toe that occur in shallow water depths.
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Chapter 7

CROSS-SHORE VARIATION OF TIME SERIES PARAMETERS

In Chapter 5, it was shown that the measured probability distribution can be
fitted by the exponential gamma distribution. In this chapter, the numerical model

CSHORE is presented, as well as the comparison of the measured cross-shore

variations of 77 , Hyms = V8o, s and K.

7.1 Numerical Model CSHORE

CSHORE is a nonlinear time-averaged model developed to predict cross-shore

variations in wave setup, 7 , and the root-mean-square wave height, H,,,, from outside

the surf zone to the swash zone where H,,s is defined as H,,s = 8o with
o = standard deviation of the free surface elevation (Kobayashi and Johnson 1998).
This model is based on the time-averaged continuity, momentum, and energy
equations derived by time-averaging the nonlinear equations used in a time-dependent
model by Kobayashi and Wurjanto (1992). Alongshore uniformity and normally
incident irregular waves were assumed in the model formulation. To account for
nonlinear affects in very shallow water, the finite-amplitude shallow-water equations

including bottom friction were time-averaged.
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7.1.1 Governing Equations for CSHORE

The governing equations for CSHORE are presented here, the detailed model
formulation is not discussed as it has been previously presented by Kobayashi and
Johnson (1998). Assuming an impermeable bottom, the time-averaged continuity
equation can be expressed as

hU =0 (7.1)
where h = instantaneous water depth; and U = instantaneous depth-averaged
horizontal velocity. The time-averaged cross-shore momentum equation is written as

(Kobayashi et al. 1989)

dSyx _ = df
ra pgh == - Tp (7.2)
with
Y =
Sxx = AU +3elr-7) (7.3)
‘.f P
th = 2P fluju (7.4)

in which x = cross-shore coordinate taken to be positive landward; Sy, = cross-shore
radiation stress; p = fluid density; g = gravitational acceleration; 7 = instantaneous
free surface elevation above the still water level; 7;, = time-averaged bottom shear
stress; f = bottom friction factor. The bottom elevation z, is defined as z, = (7-h). It

is assumed that z, depends only on x. The time-averaged energy equation
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corresponding to the time-averaged continuity and momentum equations is expressed

as (Kobayashi and Wurjanto 1992)

g =1 __ Il
= (Er)=-Ds-Ds (7.5)
with
EF = 2p00% + st (7.6)
—_— 1
= Bl Y beU‘U‘? (7.7)

in which £z =energy flux per unit width; D s = energy dissipation rate due to bottom

friction; and D = energy dissipation rate due to wave breaking. The value for Dp is

estimated empirically for the model.

7.1.2 Empirical Relationships for Prediction of s and K

To develop a method for predicting s and K, CSHORE was calibrated against
five random wave tests. Three tests were performed on a plywood beach with a 1:16
slope, with the remaining tests performed on an equilibrium fine sand beach. The

following empirical relationships for s and K were developed based on Hs = Hys/h .

§=2H+ for 0.1 < H«<0.5 (7.8)
s=1.5—H» for 0.5< H«< 1.0 (7.9)
s=0.7H«-0.2 for 1.0<H«<5 (7.10)
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with kurtosis estimated as
K=3+ 52 for0.2<s < 3 (7.11)

7.2  Required Input for CSHORE

CHSORE requires wave data and certain parameters to predict the shoreward
progression of irregular waves. The required wave input data is the spectral peak
period 7, the root-mean-square wave height, and wave setup or setdown at an
offshore location. The offshore location for all tests performed was at the cross-shore
coordinate x = 0 m, which is the location of gauge 1. The input root-mean-square
wave height H,, and setup 7 values were entered from measured values at gauge 1,
presented earlier in Table 3.1 for 7, = 4.7 s, Table 3.2 for 7, = 2.4 s, and Table 3.3 for
T,=1.5s. In addition to the wave statistical parameters, the bottom friction factor and
bathymetry has to be specified at cross-shore locations landward of x = 0 m. The
bottom friction factor f, was chosen to range between 0.1 and 0.5 for the revetment
(Kobayashi et al. 1990) and set to zero for the plywood beach seaward of the
revetment. Results for bottom friction factor of 0.1 on the 1:2 slope are the only
results presented. The measured bathymetry was input as depicted in Figure 2.1. The
number of spatial nodes (defined as JSWL by the CSHORE) also has to be input as
well. The number of spatial nodes must be chosen large enough so that the computed
cross-shore variations of the time-averaged quantities do not depend on 4x. The
constant nodal spacing 4x is defined as x/JSWL where x; = the cross-shore distance

between the seaward boundary and the still water line defined as z, = 0 at x = x;
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(Kobayashi and Johnson 1998). The values for JSWL and the corresponding water
depth d, are shown in Table 7.1.

Table 7.1: Toe Water Depth and Nodal Spacing Used for CSHORE.

Toedepths—| o | 1o | 16 | 14 | 12 | 10 | 8 6 4
d; (cm)

JSWL 760 758 756 754 752 750 748 746 | 744

7.3  Measured Free Surface Statistics Compared to CSHORE

Output data from CSHORE was plotted along with the discrete wave and
runup statistical values to show the comparison of the measured data to that predicted

by CSHORE. Figures 7.1 — 7.27 include comparisons of 77, Hyps, S, and K from the

offshore gauge location 1 to the revetment. Measured wave data values are displayed
as open circles on the plots, while the runup wire data is shown as an open diamond,
and the computed variation is a solid line.

In general, agreement between the measured and predicted values is good for

7 and H,, for most of the tests performed, particularly for those tests performed

when the water depth at the toe of the slope was shallow. As the water depth was
increased, the ability of CSHORE to predict runup decreased. This is because the
runup wire cannot be assumed to be equivalent to the hypothetical vertical wave gauge
at the intersection between the wire and the still water level as depicted in Figure 2.1

for larger values of d,. In short, a direct comparison of wave runup measured by a
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runup wire cannot be made to a wave gauge at the same location. Free surface
elevations measured by a runup wire can vary greatly over the length of the wire,
resulting in a large standard deviation of the runup signal, while the lower limit of a
vertical gauge near the still waterline is limited by the slope surface as was the case
with gauge, therefore yielding a significantly lower standard deviation. The difference
between the gauge data and the runup wire data becomes evident when d; > 14 ¢cm as
can be seen in Figure 7.6 for 7, = 4.7 s, Figure 7.15 for 7, = 2.4 s, and Figure 7.24 for
T,=1.5s. As wave propagate shoreward, the wave height or standard deviation of the
vertical gauge will approach zero onshore, but a runup wire will show a significant
standard deviation, because of the large oscillation along the wire placed parallel on
the slope.

The bottom friction factor f;, for the revetment was varied from 0.1 to 0.5. The
model results indicated that, at least for the variety of tests performed during the
experiment, CSHORE was relatively insensitive to large changes in the friction factor.
The computed results presented here are based on f; = 0.1 on the revetment. In
addition, some difficulties may arise from the fact that CSHORE is a calibrated model.
While CSHORE does not include wave reflection explicitly, there is some inclusion of
wave reflection in its calibration. Although this may seem like a possible source of
error, comparison of predicted and measured data at shallow depths shows that the
model agrees well with the measured data as can be seen in Figures 7.1, 7.10, and

7.20.
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The agreement between the measured and predicted values for the skewness
and kurtosis range from fair to poor. When the value for s or K at x = 0 does not agree
well with the measured values, the agreement for skewness tends to be marginal, while
the agreement for kurtosis tends to be poor. This may be attributed to the fact that

skewness and kurtosis are not included as input at x = 0 for CSHORE.
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Figure 7.17: Measured and Predicted Values of 77, Hy, 5, and K Vs. x
forT,=2.4sand d,= 18 cm.

94



B O Wave Gauges
¢ Runup Wire Test B20
ol — CSHORE
(m) N
- o Ow®

m
O
-0.01
0.2
o
Hrms w o O
0

10 1 : . , . | |
Kot (o) (@) 00
o)
® o
0 1 I L ' ; | 1
0 2 4 6 8 10 12 14

x(m)

Figure 7.18: Measured and Predicted Values of 77 , Hyus, 5, and K Vs. x
for 7, = 2.4 s and d, = 20 cm.

95



0.0 O Wave Gauges
¢ Runup Wire LeitkEa
ﬁo.m I — CSHORE
(m)
Gp—o0 1
-0.01
0.2
rf?lso B —
(m"'gp——0

A\

Figure 7.19:

x(m)

96

Measured and Predicted Values of 7 , Hy, 5, and K Vs. x
for T,=1.5sand d,= 4 cm.

16



s O Wave Gauges
¢ Runup Wire Test OB
ﬁo.m ~ CSHORE
m
™ gp—o0 o o
-0.01
0.2
FP?ISO -
m*'o——0 o
0
3
2_.
s
;—’e—/“TM
0
10 I 1 I T I 1 T
K 5
® o o) o
0 1 1 1 1 [} 1 |
0 2 4 6 8 10 12 14
x(m)

Figure 7.20: Measured and Predicted Values of 77, Hyps, s, and K Vs. x
for 7,=1.5sand d,= 6 cm.

97



b= O Wave Gauges o
¢ Runup Wire TesCh
50.01- ~ CSHORE
m
™ gp—0 o o
-0.01
0.2
H'HSO
(m)"'gp——0 o
0
3
2 =
\Y
IM
0
].0 ) T 1 T I T T
K i
5@ o o o o) fal0)
0 1 1 L 1 1 1 1
0 2 4 6 8 10 12 14

x(m)

Figure 7.21: Measured and Predicted Values of 77, Hyus, 5, and K Vs.
for T,=1.5sand d,= 8 cm.

98



0.02

O Wave Gauges .
¢ Runup Wire LG
2 - csHore
™ gp—0- o o
-0.01
0.2

IO T T T T T T T
K 5| (o]
@ (o) (o) (o] o Q
O 1 1 1 1 1 1 1
0 2 4 §) 8 10 12 14

x (m)

Figure 7.22: Measured and Predicted Values of 77, Hyus, s, and K Vs. x
for T,=1.5sand d;= 10 cm.

99



002 O Wave Gauges

¢ Runup Wire
_0.01 — CSHORE

(m)

Test C12

o ©

(o)
O

-0.01

0.2

rms

(m)o'lfl}

0]
)
0

x(m)

Figure 7.23: Measured and Predicted Values of 77 , Hyus, s, and K Vs. x
for T,=1.5sand d,= 12 cm.

100



nle O Wave Gauges

¢ Runup Wire
- — CSHORE

Test Cl14

™ p—e 0

O

-0.01

0.2

rms

0]
o
(o)

o

x(m)

Figure 7.24: Measured and Predicted Values of 77, Hg, s, and K Vs. x
for T, =1.5sand d,= 14 cm.

101



0.02

O Wave Gauges ——
¢ Runup Wire o5 |
| — CSHORE
™ gp—o o o o :
-0.01
0.2
rms =
0
3
2r i
s
1r J
K. © o
10 1 T 1 T I 1 T
£ & )
@ o (o) o (o) (o)
0 1 1 1 ] 1 1 1
0 2 4 6 8 10 12, 14
x(m)

Figure 7.25: Measured and Predicted Values of 77, Hyy, 5, and K Vs. x
for T, =1.5sand d,= 16 cm.

102

16



0.02

O Wave Gauges
¢ Runup Wire Test C18
TR ~ CSHORE
(m) e o i 5 -
-0.01
0.2
H
rms . _ ~ o
0
3
2 =
s
l L
OCIT O O 2
10 T T r ; ; . .
K 5t
® o o) o o
0 1 L | . ’ | |
0 : 4 6 8 0 12 14
x(m)

Figure 7.26: Measured and Predicted Values of 7, Hyms, 5, and K Vs. x
for 7,=1.5sand d,= 18 cm.

103



O Wave Gauges
¢ Runup Wire
— CSHORE

Test C20

o

(=

o
1

(0]

(m) _
Lo O (@) —0

HI'HIS
(m) 0.1¢B

0]

1

o
)

0 1 L 1 L L 1 1
0 2 4 6 8 10 12 14

x(m)

Figure 7.27: Measured and Predicted Values of 7 , Hyys, 5, and K Vs. x
for 7, = 1.5 s and d; = 20 cm.

104



Chapter 8

CONCLUSIONS

Twenty-seven irregular wave tests were performed for three spectral peak
periods and nine toe depths, with incident wave heights generated as large as possible.
For each test 10 wave gauges, an ADV (if not limited by toe depth), and runup wire
were utilized to measure the free surface, horizontal velocity and waterline oscillations
at the toe of the rock revetment. The exponential gamma distribution with measured
mean, standard deviation, and skewness can describe the measured probability
distributions of the free surface elevations from outside the surf zone to the waterline
elevation on the 1:2 revetment. CSHORE is shown to predict the cross-shore
variations of the mean, standard deviation, skewness, and kurtosis of the free surface
from outside the surf zone to the revetment. CSHORE does not account for wave
reflection, but the average reflection coefficients for these tests were less than 0.4. In
the future, improvement is needed to relate the waterline elevation measured by a wire
placed parallel to the slope with the free surface elevation measured by a vertical

gauge, because CSHORE predicts the wave statistics measured by the vertical gauge.

105






REFERENCES

Abramowitz, M. and Stegun, I.A. (1972). Handbook of mathematical functions.
Dover, New York, N.Y.

American Society for Testing and Materials. (2000). “ASTM C:127, Standard test
method for specific gravity and absorption of coarse aggregates.” Annual
Book of ASTM Standards., Vol. 4. Construction, ASTM, Conshohoken, PA, 64
- 68.

Baquerizo, A., Losada, M.A., Smith, J.M., and Kobayashi, N. (1997). “Cross-shore
variation of wave reflection from beaches.” J. Wirwy., Port, Coast. and Oc.
Eng., ASCE, 123(5), 274-279.

Bitner, E.M. (1980). “Non linear effects of the statistical model of shallow-water wid
waves.” J. Applied Ocean Res., 2(2), 63-73.

Bouws, E., Gunter, H., Rosenthal, W., and Vincent, C.L. (1985). “Similarity of the
wind wave spectrum in finite depth water. 1. Spectral form.” J. Geophy. Res.,
90(C1), 975-986.

CETN-III-9, Revetments — Their applications and limitations. (1981). U.S. Army
Corps of Engineers, Coast Engrg. Res. Ctr., Fort Belvoir, VA.

CETN-III-2, Riprap revetment design. (1985). Coast Engrg. Res. Ctr,, U.S. Army
Engr. Witrwy. Experiment Station, Vicksburg, MS.

Goda, Y. 2000. Random seas and design of maritime structures. World Scientific
Publishing Co. Pte. Ltd., River Edge, N.J.

Goda, Y. and Suzuki, Y. (1976). “Estimation of incident and reflected waves in
random wave experiments.” Proc. 15™ Coast. Eng. Conf., ASCE, 842-845.

Gran, S. (1992). A4 course in ocean engineering. Elsevier, New York, N.Y.

Guza, R.T. and Thornton, E.B. (1980). “Local and shoaled comparisons of sea surface
elevations, pressures, and velocities.” J. Geophys. Res., 85(C3), 1524-1530.

106



Holland, K.T. and Holman, R.A. (1993). “The statistical distribution of swash
maxima on natural beaches.” J. Geophys. Res., 98(C6), 10271-10278.

Huang, N.E. and Long, S.R. (1980). “An experimental study of the surface elevation
probability distribution and statistics of wind-generated waves.” J. Fluid
Mech., 101(1), 179-200.

Huntley, D.A., Guza, R.T., and Bowen, A.J. (1977). “A universal form for shoreline
runup spectra?” J. Geophy. Res., 82(18), 2577-2581.

Johnson, B.D. and Kobayashi, N. (1998). “Nonlinear time-averaged model in surf and
swash zones.” Proc. 26" Coast. Eng. Conf., ASCE, 3, 2785-2798.

Kearney, P.G. and Kobayashi, N. (2000). “Irregular breaking wave transformation on
a beach and runup on a revetment.” Res. Rept. No. CACR-00-06, Ctr. for
Applied Coast. Res., Univ. of Delaware, Newark, Del.

Kobayashi, N. (1999). “Wave runup and overtopping on beaches and coastal
structures.”  Advances in Coastal and Ocean Engineering, Vol. 5, World
Scientific, Singapore, 95-154.

Kobayashi, N., Cox, D.T., and Wurjanto, A. (1990). “Irregular wave reflection and
runup on rough impermeable slopes.” J. Wtrwy., Port, Coast. and Oc. Eng.,
ASCE, 116(6), 708-726.

Kobayashi, N., DeSilva, G.S., and Watson, K.D. (1989). “Wave transformation and
swash oscillations on gentle and steep slopes.” J. Geophys. Res., 94(C1), 951-
966.

Kobayashi, N., Herrman, M.N., Johnson, B.D. and Orzech, M.D. (1998).“Probability
distributions of surface elevation in surf and swash zones.” J. Witrwy., Port,
Coast. and Oc. Eng., ASCE, 124(3), 99-107.

Kobayashi, N. and Johnson, B.D. (1998). “Computer program CSHORE for
predicting cross-shore transformation of irregular breaking waves.” Res. Rept.
No. CACR-98-04, Ctr. for Applied Coast. Res., Univ. of Delaware, Newark,
Del.

Kobayashi, N. and Raichle, A.-W. (1994). “Irregular wave overtopping of revetments
in surf zones.” J. Wtrwy., Port, Coast. and Oc. Eng., ASCE, 120(1), 56-73.

Kobayashi, N. and Wurjanto, A. (1992). “Irregular wave setup and runup on
beaches.” J. Wtrwy., Port, Coast. and Oc. Eng., ASCE, 118(4), 368-386.

107



Mase H. and Kobayashi, N. (1991). “Transformation of random breaking waves and
its empirical numerical model considering surf beat.” Proc. Coast. Sediments
91, ASCE, 1.668-702.

Melby, J.A. and Kobayashi, N. (1998) “Progression and variability of damage on
rubble mound breakwaters.” J. Wirwy., Port, Coast. and Oc. Eng., ASCE,
124(6), 286-294.

Rathbun, J.R., Cox, D.T. and Edge, B.L. (1998). “Wave runup and reflection on
coastal structures in depth-limited conditions.” Proc. 26" Coast. Eng. Conf.,
ASCE, 1, 1053-1067.

Raubenheimer, B., Guza, R.T., Elgar, S., and Kobayashi, N. (1995). “Swash on a
gently sloping beach.” J. Geophys. Res., 100(C5), 8751-8760.

Shore Protection Manual. (1984). Coast Engrg. Res. Ctr., U.S. Army Engr. Wirwy.
Experiment Station, U.S. Government Printing Office, Washington, D.C.

Wolfran, S. (1991). Mathematica, 2" ed., Addison-Wesley, Redwood City, CA.

108



.3

=



APPENDIX A

TIME SERIES PLOTS

This appendix contains representative time series plots for all tests performed.
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Figure A.38: Time Series for 7, = 1.5 s, d; = 4 cm, for Gauge 7 — Runup Wire.
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Figure A.40: Time Series for 7, = 1.5 s, d; = 6 cm, for Gauge 7 — Runup Wire.
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Figure A.42: Time Series for 7, = 1.5 s, d; = 8 cm, for Gauge 7 — Runup Wire.
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Figure A.44: Time Series for 7, = 1.5 s, d, = 10 cm, for Gauge 7 — Runup Wire.
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Figure A.45: Time Series for 7, = 1.5 s, d, = 12 cm, for Gauge 1 — Gauge 6.

154



0.4

Test C12 Gauge 7
0.2 ;
] P T e R T A e L
-0.2
0.4
Gauge 8
02 g

© © ©
[ S T N (S ]

Gauge 9

T

2

Surface Displacement (m)
=

o o o
SRS
]

1

Gauge 10

o

|
e
o

<
~

Runup wire

e
(Vo]
T

_0. 2 1 /|
60 120 180 240 300

Time (sec)

Figure A.46: Time Series for 7, = 1.5 s, d; = 12 cm, for Gauge 7 — Runup Wire.
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Figure A.48: Time Series for 7, = 1.5 s, d, = 14 cm, for Gauge 7 — Runup Wire.
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Figure A.49: Time Series for 7, = 1.5 s, d; =16 cm, for Gauge 1 — Gauge 6.
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Figure A.52: Time Series for 7, = 1.5 s, d; = 18 cm, for Gauge 7 — Runup Wire.
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Figure A.54: Time Series for 7, = 1.5 s, d,; = 20 cm, for Gauge 7 — Runup Wire.

163




APPENDIX B

FREE SURFACE FREQUENCY SPECTRAL PLOTS

This appendix contains representative frequency spectra for all tests performed.
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Figure B.1: Frequency Spectra for 7, = 4.7 s, d; = 4 cm, for Gauge 1 — Gauge 6.
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Figure B.2: Frequency Spectra for 7, = 4.7 s, d, = 4 cm, for Gauge 7 — Runup Wire.
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Figure B.3: Frequency Spectra for 7, = 4.7 s, d, = 6 cm, for Gauge 1 — Gauge 6.
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Figure B.4: Frequency Spectra for 7, = 4.7 s, d,= 6 cm, for Gauge 7 — Runup Wire.
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Figure B.5: Frequency Spectra for 7, = 4.7 s, d, = 8 cm, for Gauge 1 — Gauge 6.
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Figure B.6: Frequency Spectra for 7, =4.7 s, d,= 8 cm, for Gauge 7 — Runup Wire.
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Figure B.7: Frequency Spectra for 7, = 4.7 s, d;= 10 cm, for Gauge 1 — Gauge 6.
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Figure B.8: Frequency Spectra for 7, = 4.7 s, d, = 10 cm, for Gauge 7 — Runup Wire.
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Figure B.9: Frequency Spectra for 7, = 4.7 s, d, = 12 cm, for Gauge 1 — Gauge 6.
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Figure B.10: Frequency Spectra for 7, =4.7 s, d, = 12 cm, for Gauge 7 — Runup Wire.
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Figure B.11: Frequency Spectra for 7, = 4.7 s, d; = 14 cm, for Gauge 1 — Gauge 6.
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Figure B.12: Frequency Spectra for 7, = 4.7 s, d,= 14 cm, for Gauge 7 — Runup Wire.
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Figure B.13: Frequency Spectra for 7, =4.7 s, d, =16 cm, for Gauge 1 — Gauge 6.
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Figure B.14: Frequency Spectra for 7, = 4.7 s, d; =16 cm, for Gauge 7 — Runup Wire.
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Figure B.15: Frequency Spectra for 7, =4.7 s, d, =18 cm, for Gauge 1 — Gauge 6.

179



Gauge 10

10
107
lo—l i 1 1 T I T I
! Runup Wire
10°
107
0 0.2 0.4 0.6 0.8 1 1.2
Frequency (Hz)

Figure B.16: Frequency Spectra for 7, =4.7 s, d; = 18 cm, for Gauge 7 — Runup Wire.
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Figure B.17: Frequency Spectra for 7, = 4.7 s, d; = 20 ¢cm, for Gauge 1 — Gauge 6.
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Figure B.18: Frequency Spectra for 7, = 4.7 s, d; = 20 cm, for Gauge 7 — Runup Wire.
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Figure B.19: Frequency Spectra for 7, = 2.4 s, d, = 4 cm, for Gauge 1 — Gauge 6.
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Figure B.20: Frequency Spectra for 7, = 2.4 s, d,= 4 cm, for Gauge 7 — Runup Wire.
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Figure B.21: Frequency Spectra for 7, = 2.4 s, d,= 6 cm, for Gauge 1 — Gauge 6.
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Figure B.22: Frequency Spectra for 7, = 2.4 s, d, = 6 cm, for Gauge 7 — Runup Wire.
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Figure B.23: Frequency Spectra for 7, = 2.4 s, d,= 8 cm, for Gauge 1 — Gauge 6.
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Figure B.24: Frequency Spectra for 7, = 2.4 s, d, = 8 cm, for Gauge 7 — Runup Wire.
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Figure B.25: Frequency Spectra for 7, = 2.4 s, d,= 10 cm, for Gauge 1 — Gauge 6.
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Figure B.26: Frequency Spectra for 7, = 2.4 s, d,= 10 cm, for Gauge 7 — Runup Wire.
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Figure B.27: Frequency Spectra for 7, = 2.4 s, d;= 12 cm, for Gauge 1 — Gauge 6.
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Figure B.28: Frequency Spectra for 7, = 2.4 s, d,= 12 cm, for Gauge 7 — Runup Wire.
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Figure B.29: Frequency Spectra for 7, = 2.4 s, d;= 14 cm, for Gauge 1 — Gauge 6.
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Figure B.30: Frequency Spectra for 7, = 2.4 s, d,= 14 cm, for Gauge 7 — Runup Wire.
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Figure B.31: Frequency Spectra for 7, = 2.4 s, d, =16 cm, for Gauge 1 — Gauge 6.
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Figure B.32: Frequency Spectra for 7}, = 2.4 s, d; =16 cm, for Gauge 7 — Runup Wire.
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Figure B.33: Frequency Spectra for 7, = 2.4 s, d, =18 cm, for Gauge 1 — Gauge 6.
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Figure B.34: Frequency Spectra for 7, = 2.4 s, d, = 18 cm, for Gauge 7 — Runup Wire.
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Figure B.35: Frequency Spectra for 7, = 2.4 s, d, = 20 cm, for Gauge 1 — Gauge 6.
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Figure B.36: Frequency Spectra for 7, = 2.4 s, d; = 20 cm, for Gauge 7 — Runup Wire.
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Figure B.37: Frequency Spectra for 7, = 1.5 s, d, = 4 cm, for Gauge 1 — Gauge 6.
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Figure B.38: Frequency Spectra for 7, = 1.5 s, d, = 4 cm, for Gauge 7 — Runup Wire.
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Figure B.39: Frequency Spectra for 7, = 1.5 s, d; = 6 cm, for Gauge 1 — Gauge 6.

203

4



| Test C6

Gauge 7

Gauge 10

Runup Wire

Frequency (Hz)

12 1.4

Figure B.40: Frequency Spectra for 7, = 1.5 s, d; = 6 cm, for Gauge 7 — Runup Wire.
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Figure B.41: Frequency Spectra for 7, = 1.5 s, d; = 8 cm, for Gauge 1 — Gauge 6.
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Figure B.42: Frequency Spectra for 7, = 1.5 s, d,= 8 cm, for Gauge 7 — Runup Wire.
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Figure B.43: Frequency Spectra for 7, = 1.5 s, d, = 10 cm, for Gauge 1 — Gauge 6.
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Figure B.44: Frequency Spectra for 7, = 1.5 s, d;= 10 cm, for Gauge 7 — Runup Wire.
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Figure B.45: Frequency Spectra for 7, = 1.5 s, d, = 12 cm, for Gauge 1 — Gauge 6.
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Figure B.46: Frequency Spectra for 7, = 1.5 s, d,= 12 cm, for Gauge 7 — Runup Wire.
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Figure B.47: Frequency Spectra for 7, = 1.5 s, d; = 14 cm, for Gauge 1 — Gauge 6.
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Figure B.48: Frequency Spectra for 7, = 1.5 s, d; = 14 cm, for Gauge 7 — Runup Wire.
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Figure B.49: Frequency Spectra for 7, = 1.5 s, d, =16 cm, for Gauge 1 — Gauge 6.
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Figure B.50: Frequency Spectra for 7, = 1.5 s, d, =16 cm, for Gauge 7 — Runup Wire.
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Figure B.51: Frequency Spectra for 7, = 1.5 s, d, =18 cm, for Gauge 1 — Gauge 6.
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Figure B.52: Frequency Spectra for 7, = 1.5 s, d,= 18 cm, for Gauge 7 — Runup Wire.
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Figure B.53: Frequency Spectra for 7, = 1.5 s, d, = 20 cm, for Gauge 1 — Gauge 6.
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Figure B.54: Frequency Spectra for 7, = 1.5 s, d, = 20 cm, for Gauge 7 — Runup Wire.
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APPENDIX C

PROBABILITY DISTRIBUTIONS

This appendix contains comparison plots of the measured probability distribution

and the exponential gamma distribution for all tests performed.
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FigureC.1: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 4 cm, Gauge 1 - 6.
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FigureC.2: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 4 cm, Gauge 7 — Runup Wire
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FigureC.3: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 6 cm, Gauge 1-6.
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FigureC.4: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 6 cm, Gauge 7 — Runup Wire
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FigureC.5: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 8 cm, Gauge 1 — 6.
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FigureC.6: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,= 8 cm, Gauge 7 — Runup Wire
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FigureC.7: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 10 cm, Gauge | - 6.
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FigureC.8: Free Surface Comparison of Measured Probability Distributions to tt_le
Exponential Gamma Distribution for 7, =4.7 s, d.= 10 cm, Gauge 7 — Runup Wire
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FigureC.9: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, =4.7 s, d,.= 12 cm, Gauge 1 — 6.
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FigureC.10: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, =4.7 s, d.= 12 cm, Gauge 7 — Runup Wire
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FigureC.11: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, =4.7 s, d.= 14 cm, Gauge 1 — 6.
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FigureC.12: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d;.= 14 cm, Gauge 7 — Runup Wire
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FigureC.13: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 16 cm, Gauge 1 — 6.
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FigureC.14: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, =4.7 s, d.= 16 cm, Gauge 7 — Runup Wire
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FigureC.15: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d.= 18 cm, Gauge 1 — 6.
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FigureC.16: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d.= 18 cm, Gauge 7 — Runup Wire
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FigureC.17: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, =4.7 s, d;.= 20 cm, Gauge 1 — 6.
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FigureC.18: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 4.7 s, d,.= 20 cm, Gauge 7 — Runup Wire
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FigureC.19: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,.= 4 cm, Gauge 1 - 6.
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FigureC.20: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,.= 4 cm, Gauge 7 — Runup Wire
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FigureC.21: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,.= 6 cm, Gauge 1 — 6.
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FigureC.22: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 6 cm, Gauge 7 — Runup Wire
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FigureC.23: Free Surface Comparison of Measured Probability Distributions to the

Exponential Gamma Distribution for 7, =2.4 s, d.= 8 cm, Gauge 1 - 6.
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FigureC.24: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,= 8 cm, Gauge 7 — Runup Wire
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FigureC.25: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 10 cm, Gauge 1 — 6.
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FigureC.26: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 10 cm, Gauge 7 — Runup Wire
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FigureC.27: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,.= 12 cm, Gauge 1 — 6.
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FigureC.28: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 12 cm, Gauge 7 — Runup Wire
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FigureC.29: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 14 cm, Gauge 1 — 6.
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FigureC.30: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,.= 14 cm, Gauge 7 — Runup Wire
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FigureC.31: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d,= 16 cm, Gauge 1 — 6.
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FigureC.32: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 16 cm, Gauge 7 — Runup Wire
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FigureC.33: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 18 cm, Gauge 1 — 6.
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FigureC.34: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d.= 18 cm, Gauge 7 — Runup Wire
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FigureC.35: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7), = 2.4 s, d.= 20 cm, Gauge 1 - 6.
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FigureC.36: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 2.4 s, d;.= 20 cm, Gauge 7 — Runup Wire
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FigureC.37: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 4 cm, Gauge 1 — 6.
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FigureC.38: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d.= 4 cm, Gauge 7 — Runup Wire
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FigureC.39: Free Surface Comparison of Measured Probability Distributions to the

Exponential Gamma Distribution for 7, = 1.5 s, d,.= 6 cm, Gauge 1 — 6.
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FigureC.40: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d..= 6 cm, Gauge 7 — Runup Wire
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FigureC.41: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 8 cm, Gauge 1 - 6.
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FigureC.42: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 8 cm, Gauge 7 — Runup Wire
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FigureC.43: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 10 cm, Gauge 1 — 6.
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FigureC.44: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d;.= 10 cm, Gauge 7 — Runup Wire
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FigureC.45: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 12 cm, Gauge 1-6.
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FigureC.46: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 12 cm, Gauge 7 — Runup Wire
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FigureC.47: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7,, = 1.5 s, d,.= 14 cm, Gauge 1 - 6.
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FigureC.48: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 14 cm, Gauge 7 — Runup Wire
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FigureC.49: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 16 cm, Gauge 1 — 6.
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FigureC.50: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d..= 16 cm, Gauge 7 — Runup Wire
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FigureC.51: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,= 18 cm, Gauge 1 — 6.
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FigureC.52: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d.= 18 cm, Gauge 7 — Runup Wire
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FigureC.53: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d,.= 20 cm, Gauge 1 - 6.
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FigureC.54: Free Surface Comparison of Measured Probability Distributions to the
Exponential Gamma Distribution for 7, = 1.5 s, d.= 20 cm, Gauge 7 — Runup Wire
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