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ABSTRACT

One of the most important problems faced when modeling nearshore flows
is to establish an appropriate representation at the shoreward boundary of the do-
main. Depth integration is used in some nearshore models to reduce complete 3D
governing equations to 2DH and this provides excellent results for nearshore cur-
rents. However, at the shoreline, as the waterdepth goes to zero, this gives the
trivial zero-solution. A related approach is used in Boussinesq theory where the so-
lution establishes a polynomial approximation to the vertical velocity profile which
leads to similar 2DH equations. In both the cases, however, the moving shoreline
changes the position where a condition of zero waterdepth and volume flux has to
be imposed.

Another aspect of the moving shoreline boundary problem is that the motion
of the shoreline results in a time varying fluid domain which is to be modeled
numerically, as the offshore boundary of the region of interest remains fixed.

In the past, this problem has essentially been treated with either fixed grid
methods or with co-ordinate transformation methods. In the fixed grid methods, the
computational grid points remain at constant position and the status of some grid
points change from wet to dry and vice-versa as the shoreline moves. In the previous
attempts with fixed grid methods the shoreline position between the last wet and
the first dry point is either not calculated or is obtained by some extrapolation
method. The transformation methods can be selected so that a high resolution can
be obtained in the region where it is necessary and thus can provide a more accurate

results at a less computational cost.



In the present work, the equations for the shoreline motion have been de-
veloped and a time varying fluid domain has been implemented in the numerical
scheme using a co-ordinate transformation and a fixed grid method with a wet-dry
interface. It has been shown that the problem here essentially is to find the velocity
and the position of the shoreline. Once they are known, a numerical scheme can
easily be developed to incorporate a time varying model domain.

The results are presented in comparison with the analytical results in 1DH
and with the numerical results from other models in 2DH cases. It was found out
that the accuracy of the results depends very much on the grid spacing. An increase
in the time step doesn’t produce a large error in the numerical solution.

The transformation method which appears to be more advantageous, can
only be applied efficiently in the cases where a predominant shoreline exists. In
other cases, such as modeling of bays and embayments, fixed grid method seems

more suitable.
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Chapter 1

INTRODUCTION

One of the most important problems faced when modeling nearshore flows is
to establish an appropriate representation at the shoreward boundary of the domain.
Depth integration, which is used in all the nearshore models to reduce complete 3D
governing equations to 2DH, provides excellent results in the nearshore. However,
as the waterdepth goes to zero at the shoreline, this gives the trivial zero-solution.
This means that the equations used inside the computational domain degenerate
to zero at the shoreline. The fluxes, which are velocities integrated over the depth,
become zero at the shoreline, but this doesn’t necessarily imply that the particle
velocity at the shoreline will become zero. In the shallow water region, where the
fluid velocity is fairly uniform over depth, velocities can be calculated by dividing
the fluxes by the waterdepth. This, however, can’t be done at the shoreline, and
this results in the necessity to derive a new equation for the motion of the shoreline
itself.

A related approach is used in Boussinesq theory where the solution establishes
a polynomial approximation to the vertical velocity profile which leads to similar
2DH equations.

The non-zero particle velocity at the shoreline, changes the shoreline position
with time. So, the point where the volume fluxes are zero, changes it’s spatial
position, which results in a time varying fluid domain, which is to be modeled in

the numerical computations.



So the problem at hand can essentially be divided into two parts, first to
develop a description for the velocity of the shoreline and thus the changes in the
shoreline position with time and second to devise a method to incorporate a time
varying model domain in the numerical scheme.

The simplest boundary condition that can be applied at the shoreward bound-
ary of a model domain is to use a wall boundary condition at the initial shoreline.
Under this condition, the shoreline doesn’t move with time and the fluxes at the
initial shoreline are always zero. As shown by Lynch and Gray (1980), this type
of shoreline boundary condition doesn’t affect the results even a moderate distance
from the boundary very much, but near the boundary, it may result in significant
Crrors.

Near the shoreline, flow properties change rapidly with the cross-shore dis-
tance. A significant amount of sediment transport also occurs in the neighborhood
of the shoreline. In order to be able to predict these processes and the flow in the
swash region, an accurate and efficient model for the treatment of the shoreline is
required.

In the past, the time varying fluid domain has been modeled in Eulerian
schemes essentially using either a wet-dry interface for the shoreline with fixed grids
or a coordinate transformation, where the instantaneous model domain is trans-
formed onto a fixed, evenly spaced, rectangular computational grid. These options
are discussed in more detail below.

With the use of Lagrangian description, moving boundaries can be treated
efficiently. Some examples of this are presented in Pedersen and Gjevik (1983), Zelt
and Raichlen (1990) and Zelt (1991).

Brocchini and Peregrine (1996) suggest different ways of analyzing the mean
shoreline for wave averaged models and outline a method of treatment of the moving

shoreline for such models as the lower edge of the swash by using the integral flow



properties of the swash zone.

In the present work, the governing equations for the nearshore circulation
model SHORECIRC will be used to describe the nearshore flow. The dispersive and
dissipative terms in these equations will be treated as source terms to the nonlin-
ear shallow water equations and will be disregarded in this work. The Boussinesq
equations can also be regarded as the nonlinear shallow water equations in which

the dispersive terms essentially are treated as inhomogeneous source terms.

1.1 Fixed grid methods

Due to it’s conceptual simplicity, many numerical models use fixed grids with
a wet-dry interface to treat the moving shoreline. Reid and Bodine (1968) were
among the first to use this type of model at the shoreline. They used this scheme
in their storm surge model. The bottom elevation was assumed to be constant
over a grid and thus the actual topography was approximated by a stair-step like
topography. The flux through the last wet grid to the first dry grid was given by an
empirical relation which was a function of the height of the water column in the wet
grid above the land elevation in the dry grid. Hibberd and Peregrine (1979) used a
fixed grid method to describe the run-up and run-down of a uniform bore on a plane
sloping beach. Here linear extrapolation was used to determine the waterdepth
and the velocity at the first dry grid point during run-up. If the waterdepth at
the first dry grid point was greater than a threshold value, it was included in the
computational domain. During run-down, the last wet point was excluded from the
computational domain when the waterdepth there goes below that threshold value.
Kobayashi et al. (1987) used a similar method in their model. Militello (1998)
describes a method of flooding and drying of grid cells for a model on staggered
grids. In this scheme, a wet cell becomes dry when the waterdepth at the center
of that cell gets smaller than a specified “critical” depth, and a dry cell becomes

wet when at least one of the four adjacent cells have a surface elevation higher



than the bottom depth at the dry point together with the flow at the corresponding
boundary of these two cells, is in the direction of the dry cell. Liu et al. (1995)
declares the first dry point to become wet when the surface elevation at the last
wet point becomes greater than the bottom elevation at the first dry point and the
surface elevation at the newly wet point is assigned the same surface elevation as
at the last wet point. In all these methods described above, the actual shoreline
position is never identified. Balzano (1998) compares many wet-dry methods and
proposes some new methods of it’s implementation in the models for tidal flooding.
These methods had slightly different criterion for declaration of a grid to become
wet or dry and they also differed in the method to calculate the volume of water left
in a grid when it was declared dry. However, none of the methods discussed here,
determines the shoreline position between the last wet and the first dry grids.

Sielecki and Wurtele (1970) and VanDongeren and Svendsen (1997b) are
among others who used a wet-dry interface on fixed grids to model a moving shoreline
and tried to determine the actual shoreline position. Sielecki and Wurtele (1970)
determines the shoreline position between the last wet and the first dry grid points,
but this is done by using a linear extrapolation to the shoreline of the surface
elevation and velocity from the neighboring wet points. VanDongeren and Svendsen
(1997b) used the method of volume of water stored past the last wet point and
assumed a triangular shape of that to estimate the actual shoreline position, and
when the distance of the shoreline from the last wet point becomes more than a
grid spacing, the first dry grid point was declared wet and was included in the
calculations at the next time steps. Similarly when this distance becomes less than
zero, the last wet point is excluded from the computational domain at the next time
steps.

In a fixed grid, the shoreline position will generally fall between two grid

points, the last wet and the first dry point going shoreward. The lack of information



about the shoreline position between the last wet and the first dry grid points makes
the declaration of a grid to be wet or dry difficult. Because there are no flow values at
the dry points simple interpolation is not possible. In some cases of implementation
with fixed grid, e.g. Reid and Bodine (1968), Militello (1998) etc. , only regular grid
points are chosen as shoreline points, which means that the shoreline is moved one
or more Az at a time. This makes the wetting and drying procedure more impulsive
and can be one of the reasons that makes wet-dry methods more prone to numerical
instabilities.

In the fixed grid method described in chapter (5) below, the position of the
shoreline is determined as a special point positioned between the last wet and the
first dry grid point. This is done by solving the momentum equation for a fluid

particle at the shoreline.

1.2 Use of a coordinate transformation

The other category of methods for treatment of the moving shoreline, which
have been described in the literature is the use of a coordinate transformation.
In this method the real, time varying physical domain is transformed onto a time
invariant, computational domain. At any instant of time, the computational domain
corresponds to the real domain at that time. As the moving shoreline changes the
cross-shore length of the domain, most of the coordinate transformation schemes
used to model this, changes the grid spacing only in the cross-shore direction. All
the coordinate transformation methods assume that the shoreline position at any
given time, is a single valued function of the longshore position.

The simplest type of coordinate transformation scheme to achieve this goal
was the one used by Johns (1982), where the cross-shore coordinate x is transformed

to X using a transformation similar to,

X=—— (1.1)



where z is measured from the fixed offshore boundary and L(t) is the length of the
real domain at time ¢. This results in a linear mapping of the time varying real
domain z = [0, L()] to the fixed computational domain X = [0,1]. Johns et al.
(1982) describe a similar approach of coordinate transformation for the modeling of
storm surges on the east coast of India. Shi and Sun (1995) describe a coordinate
transformation method that takes into account the time varying shoreline in their
finite difference model for storm surge in the generalized curvilinear coordinate. In
all these methods not only do the horizontal coordinates get transformed but also
the velocities get modified so that the modified velocity in the transformed plane is
ZEro0.

Jamet and Bonnerot (1975), Lynch and Gray (1980), Gopalakrishnan and
Tung (1983) describe a few examples of implementation of a transformation method
in finite element models. Jamet and Bonnerot (1975) and Lynch and Gray (1980)
used continuously deforming finite elements where the last element followed the
fluid boundary. Gopalakrishnan and Tung (1983) used Lagrangian acceleration to
find the motion of the shoreline and a variable element length. In this method, the
motion of the shoreline increases the length of the last element. When this length
becomes larger than 1.2 times the initial element length, the last element splits into
two parts. The paper describes the numerical scheme and shows an example of
run-up. However, it doesn’t describe or show examples of run-down.

Ozkan Haller and Kirby (1997) used a shoreline transformation technique
to take into account the moving shoreline in their spectral collocation model for
nearshore circulation. Here the coordinate transformation was done in two steps.
In the first step the time varying fluid domain was transformed onto a fixed domain
which was then transformed again so that the image domain becomes [-1,1]. The sec-
ond transformation was required because of the use of Chebyshev collocation method

to calculate spatial derivatives in the cross-shore direction. As described here, the



coordinate transformation method can be modified to obtain smaller grid spacing
in the region where a higher resolution is required than the rest of the domain. In
modeling a moving shoreline, a high resolution is required near the shoreline where
the flow properties change more rapidly with spatial distance. However this effect is
included in the second transformation and hence can’t be used with other numerical
schemes.

The advantage of this type of shoreline boundary condition is that, when the
shoreline position is known, then the computational domain automatically contains
the complete wet region where the equations of motion are applicable. However, the
coordinate transformation modifies the governing equations and makes them slightly
more complicated. Especially when the complete depth integrated, wave averaged
equations are to be solved using this method, it requires short wave averaged flow
properties e.g. radiation stresses and wave volume fluxes, to be specified along the
transformed grid. Thus a wave driver is required which can provide these on the

non-rectangular and time varying grid.

1.3 Outline of present work

In the next chapter, the governing equations for the nearshore circulation
model SHORECIRC and it’s solution method will be described. In chapter (3), a
derivation of the equations for the motion of the shoreline for depth integrated, wave
averaged models will be presented. This will then be used to implement a moving
shoreline boundary condition for the model SHORECIRC.

Chapter (4) will describe a coordinate transformation scheme which will be
used to include the effect of the moving shoreline, and which, in a general case, is
also irregular in the longshore direction. As mentioned, the transformation scheme
will be chosen such that it also provides a reduced grid spacing near the shoreline.
It will enable the model to pick up more information near the shoreline where the

hydrodynamic properties change rapidly with the cross-shore distance.



Then a fixed grid method will be described in the chapter (5). In this scheme,
the shoreline position will be calculated by solving the equations for the shoreline
motion, derived in chapter (3). This will provide direct information about the
position of the shoreline which is treated as a special point between the last wet and
the first dry grid points.

Chapter (6) will contain comparison of the results between the model compu-
tations with the shoreline boundary condition implemented using both these meth-
ods and the analytical results for one dimensional cases as given by Carrier and
Greenspan (1958) and Synolakis (1987) and the numerical results for two dimen-
sional cases given by Zelt (1986) and Ozkan Haller and Kirby (1997). Finally, in

chapter (7) some conclusion and the line of future work will be described.



Chapter 2

GOVERNING EQUATIONS

2.1 Governing equations

The governing equations used in the present work are the wave averaged,
depth integrated Navier-Stokes equations. They were first derived by Putrevu and
Svendsen (1991). Further modifications of these equations were carried out by Van-
Dongeren and Svendsen (1997b), Sancho and Svendsen (1997a) and Haas and Svend-
sen (2000) and the final form of these equations are,

The continuity equation,

o 0 ¢ -
T (/-n Vot Qm) - >

and the momentum equation,

3 = = E ¢
% + 0 (QGQ'B) - @ / Vmedz Th i (uwavl,ﬁ' o umﬁvlﬂr) dz

ot 0T h 0B J g 0%a J¢,
0 T T 198 /"C

S R B . . odz | = 9.2

+ g(h’”+06:ng el Sap R 0 (2.2)

where subscripts « and f are the indices for the horizontal co-ordinates.
Figure 2.1 shows the definition of different variables used.

These equations can be rearranged so that all the terms that represent the
contributions to changes in the Riemann variables along the characteristics when
these equations are written in the conservation form are on the right hand side of

the equations.

¢ | 0Qq
ot " 0o

=Ry (2.3)
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Figure 2.1: Definition sketch.

9 0 a
;;;3 + oz, (Q Qﬁ) + g(ho +C)3—C = Ry (2.4)

Here R, and Ry include the short wave forcing, the dispersive mixing, the surface
and bottom shear stress and the turbulent stress terms and are called the source
terms. Similarly, in the case of a Boussinesq approximation these source terms
contribution on the RHS may represent the dispersive-nonlinear terms.

These source terms do not change principal nature of the problem so they are
disregarded for simplicity in the following numerical computations. This simplifies
the governing equations which reduce to the nonlinear shallow water equations which

are given by,

a_C+an+%

W b By o © (25)
0Q, vz
g‘; +8£( )+ (—Q? )+9(%+C)S—i =0 (2.6)
o0Q, 7] y 0
8;?: 6_( ) (Q )+((h0+c) C — g (2.7)
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2.2 Numerical solution scheme

A predictor-corrector method was used in the numerical scheme for time
integration of the governing equations (2.5), (2.6) and (2.7). This method involves
solution in two steps. One is an explicit step called predictor step which provides
a first estimate of the variables at the next time step and the second is an implicit
step called the corrector step which uses the values predicted by the explicit step
to obtain more accurate values of the variables at that time step. More details on
these time integration scheme can be found in Anderson et al. (1984). For example,

the predictor step of an equation like,

of
= om I 2.
will be of the form,
fpn+1 = fn. 3 At P(Fﬂ,Fn_l,Fn_2, ) (2‘9)

Whereas the form of the corrector step for this example will be,

£ = 7 4 Atx C(F,", B F™Y P2, ) (2.10)

Here superscripts show the time step at which the values are calculated and [ et

n=2 ...) are the present and the previous time steps, whereas ("*') is the next time
step where the solution is to be obtained. The subscript (,) and (.) denote the
predictor and the correct steps respectively. The functions P and C' depend on the
order of the time integration scheme used.

For high accuracy, the corrector step has to be repeated till the result con-
verges. However, in the present work the corrector step has been executed only once
as it has been found that for these set of equations and for the range of Az and At
used here, a second corrector step would be fairly close to the first corrector step.

The advantage of this kind of system is that, it has the simplicity of an
explicit method and at the same time the results have the accuracy and the stability

characteristics of an implicit method.
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When all the other terms from the LHS of the governing equations (2.5), (2.6)
and (2.7) except the time derivative term are moved to the RHS, these equations
get the form of (2.8) and can be solved by the method described above. In the
present work, a third order predictor-corrector scheme was used. In which case the

functions P and C' are given by,

Pl g, pr=e (23F™ — 16F™! + 5F"?%) (2.11)

ol-sl-

O, I F™Y) = 1 (R 485" = P 212

Spatial derivatives need to be calculated before the time integration scheme,
as described above, can be implemented. They were calculated by using a fourth
order finite difference formula for the interior points. At the last two points near
the lateral and the offshore boundaries, second order finite difference formulae were
used. Forward differencing was used at the offshore and the left lateral boundaries,
backward differencing was used at the right lateral boundary whereas in the interior
region, central differencing was used.

At the shoreline boundary, where these sets of governing equations are not
valid as the waterdepth goes to zero, the governing equations and the methods to
include them in the rest of the model simulations will be described in the next
chapters.

The solutions obtained were filtered using the filters described by Shapiro
(1970) to get rid of the high frequency spurious solutions. This filter removes all
the waves of wavelength equal to 2Az.

More details on the derivation of the governing equations and the solution
scheme can be found in Putrevu and Svendsen (1994), VanDongeren and Svendsen

(1997b) and VanDongeren and Svendsen (2000).
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Chapter 3

MOTION OF THE SHORELINE

The depth averaged equations as described in chapter (2), give the fluid flow
in terms of the volume fluxes and the surface elevation. At the shoreline, where the
waterdepth goes to zero, the volume fluxes also become zero, but the velocity of the
fluid particles, which are calculated by dividing the fluxes by the waterdepth, may
not become zero. This velocity can’t be calculated by using the depth integrated
equations of motion as the waterdepth is zero there. In this chapter we will derive
the equations to calculate the velocities at the shoreline and the shoreline position,

once the velocities are known.

3.1 Kinematic condition
The kinematic condition at the shoreline states that the fluid particles at the
shoreline remains at the shoreline. This provides us with an equation to calculate
the time variation of the shoreline position when the particle velocity at the shoreline
is known. If & = £(y,t) is the z coordinate for the shoreline then the shoreline is
given by
z—€E=0 (3.1)

We therefore, have the kinematic condition,

D(z — &)

Dt =0 (3.2)
Where
D 0 , 0 .0 _
E—'B—t—l-u.a‘l"‘va—y (33)

13



is the derivative following the shoreline. On expanding the derivatives we get,

ot " Ay

The assumption here is that the shoreline position is a single valued, contin-

% w - (3.4)

uous function of the longshore co-ordinate y at any time .

3.2 The differential form of the momentum equation
The velocity of the shoreline can be obtained from the momentum equation
by taking it’s limit as the waterdepth goes to zero at the shoreline. In the following
section, the differential and the integral form of the momentum equation will be
used in two independent derivations of the equation for the velocity of the shoreline.
As described in chapter (2) we consider the depth integrated z momentum

equation in the form,

Q. 0 [Q.° 0 (Q.Q, ¢ _
Bt +‘£( v )—Fa—y‘(—h 1”)-I—_(j’:l’la—m—-0 (3.5)

where h = hy + C, is the total waterdepth, Q. = uh and @, = vh are the

volume fluxes and u and v are the components of the velocity in « and y directions,
respectively.

On substituting @, = uh and Qy = vh in (3.5) we get,

au, 3]1 GQZ 0Q, oQy ¢
h Uz +u + ! + By +v hé’y -!-gha$ 0 (3.6)
The continuity equation states,
¢ | 0Qz  0Qy _
ot or Ty 37)

Since, h = hy + ¢ and hy is a function of spatial position only, so, d(/dt =
Oh/0t and on eliminating 9 /0t and dh/ot from (3.6) and (3.7), we arrive at,

h@ iu@ﬂ-hua—u—k hac

gL g Tl TR, (3:5)
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or, for any arbitrarily small h # 0,
ou ou ou ¢

Since the shoreline is following the fluid particles, we have

du®  Ou ou\’ ou\’
Bt <F (u%) + (va) (3.10)
On substituting from (3.10) into (3.9), we get,
du’® 2

Equation (3.9) is the non-trivial solution of (3.8) for any arbitrarily small
waterdepth h # 0. However, at the shoreline waterdepth does go to zero. So it will
be shown below that the use of integral form of the momentum equation also result
in the same equation for the velocity of the shoreline before it is used in further

computations.

3.3 Integral form of the momentum equation

The integral form of the z momentum equation for a control volume following

d
,0——/ udw = —/ pnds (3.12)
dt Jaqu) S()

Here Q(t) is the control volume of the fluid, following particle motion, con-

fluid particles,

tained in the control surface S(t). dw and ds are the volume and the surface elements
respectively and n, is the z component of the vector 7i normal to the control surface.

To simplify the calculation of the volume and the surface integrals in the
equation (3.12), the region near the shoreline can be approximated by a triangular
wedge as shown in the Figure 3.1. Here surface (1) moves with the free surface and
it’s rightmost point follows the shoreline. If we assume that u is constant within
this wedge and thus is equal to the shoreline velocity u®, then we get,

d du®
- udw = pA ;
Pt fg(t) M S (3.13)
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Figure 3.1: Region near the shoreline approximated by a triangular wedge.

where, A = —1(h + (),A2® is the cross section area of the wedge. Since
z is positive in the onshore direction and the waterdepth is positive offshore for
(h+ )z < 0, A has a negative sign in the expression here.

If we assume the pressure to be hydrostatic near the shoreline, we get

—[SE?LEG’-S = %9[(h+€)zé‘$]2

P
1 he A+I2
it |kl I

= S9ATC(h+ Q) (3.15)

On substituting the terms on the LHS of (3.13) and (3.15) into (3.12), we

get,

du’
dt

This is the same equation as (3.11) obtained in the section (3.2).

=—9(s (3.16)
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On extending this to the 2DH case, z and y components of the velocity of

the shoreline can be given by,

du(y,t)| _
e fan 96z (3.17)
and,
dv(y,t)| "
- L, = —g(® (3.18)

Here u® and v* are calculated along a constant y line so that the shoreline
motion can be calculated by (3.4). Hence equations (3.17) and (3.18) represent
the general 2DH equations which will be used in the following to determine the

horizontal velocities of the shoreline points with co-ordinates (z*, y*).

3.4 Discussion

As mentioned in the introduction, the question that remains to be answered
now is, how to incorporate a time varying domain in a numerical scheme. This can
be achieved in two ways.

The first is to map the physical domain onto a new co-ordinate system which
follows the time varying domain and perform all the calculations in the transformed
domain. This transformation not only modifies the governing equations but also
gives us an opportunity to obtain a spatial distribution of grid spacing so that a
higher resolution can be obtained in the areas where the gradients of the surface
elevation and the velocities are expected to be higher. This approach and a scheme
to implement this in SHORECIRC model will be discussed in detail in chapter (4).

The second method could be, to have a fixed grid and define the shoreline
position as an interface between wet and dry grid points. In this method the govern-
ing equations remain unmodified, though new finite difference formulations need to
be obtained to take into account a non-constant grid spacing between the last wet
grid point and the shoreline position. An algorithm also needs to be formulated to

add and delete grid points from the active calculation zone, which is the wet region

1Y



of the computational domain, as the grid points get wet and dry in the course of
a model run. We describe a scheme to implement this method of treatment of the

moving shoreline for SHORECIRC in chapter (5).
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Chapter 4

THE COORDINATE TRANSFORMATION SCHEME

One of the methods of implementation of a time varying domain in a nu-
merical model is to introduce a coordinate transformation such that the instanta-
neous physical domain, which expands and contracts as the shoreline is moving,
gets mapped on to a fixed domain in the transformed coordinate system. One such
scheme will be described here. Near the shoreline, velocities and surface elevations
often have large gradients. A suitable coordinate transformation can be chosen such
that such a smaller grid spacing can be obtained as an add-on benefit in the regions
where high resolution is required. So a high resolution near the shoreline than the
rest of the domain will produce a more accurate result at a lesser computational
cost. In selecting a coordinate transformation scheme, which has a primary aim of
mapping the irregular and time varying shoreline onto a fixed grid in the compu-
tational domain, constraints will be prescribed here so that a smaller grid spacing
near the shoreline than the rest of the domain can be obtained. This transformation
is expected to result in a computational grid, which has evenly spaced grid points
in the computational domain, and which corresponds to a grid with varying spacing
in the physical domain at any given time.

The governing equations described in the chapter (2) are derived for rectan-
gular cartesian coordinates. On introduction of this coordinate transformation, the
governing equations need to be modified to take into account the grid spacing vari-

ation and distortion. An example of a such modification of the governing equation
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Figure 4.1: Sketches of the real (on the left) and the transformed (on the right)
model domains.

due to introduction of a coordinate transformation is described by Anderson et al.

(1984) to take into account a non-uniform grid spacing in a model domain.

4.1 Model domain definitions

The actual physical domain (z,y,t) extends from z = 0 to z = L + £ and
y=0toy =Y. &(y,t) is the shoreline position measured from a reference level
z = L. In most cases the initial shoreline position can be taken to be this reference
level. The physical domain is transformed onto a computational domain (z,,t) by

the transformation equations,

z = g(z)+£&(y, t)f(2) (4.1)
y = (4.2)
I8 (4.3)

The computational domain extends fromz =0toZ =M andg=0toy =Y.

A sketch of the real and the computational domains are shown in the Figure 4.1.
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4.2 Conditions on the transformation functions

The form of the transformation equation (4.1) is selected to suit the goal
of the transformation. The function f(Z) is selected such that the transformation
maps the irregular shoreline onto a fixed, straight line in the computational domain
whereas the function g(z) is selected such that this transformation yields smaller
grid spacing near the shoreline than that offshore.

Since the offshore boundary of the real and the computational domains should

be at the same location,

g=0 = =0 (4.4)

we must have,

Similarly the shoreline in both the domains must coincide, so,

g=M = =L+ (4.6)
Hence, f and g must satisfy,

fM)y=1 ; gM)=1L (4.7)

Additionally, f(z) — 0 as Z tends to zero, so that the effect of the shoreline
changes reduces offshore gradually and finally vanishes at the offshore boundary of
the computational domain.

Without loss of generality, we can assume that L = M as it does simplify the
calculations later on. Now Az/AZ = 1 implies an equal grid spacing in both the
domains.

The grid size distribution in the cross-shore direction is given by,

2~ 4@ + £, 0@ (45)
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The condition that the grid spacing near the shoreline should be smaller than
that offshore, is expressed mathematically by,
A:L' ! !
0= |{— =g' (M) +&(y,t)f'(M)| <1 (4.9)
Az I=M
Az/AZ = 0 would imply that two points in the computational domain corre-
spond to one point in the physical domain. Since the inverse of the transform would

not be unique in this case, it must be avoided in the transformation used here.

4.3 Selection of the transformation functions

Any function which satisfies the conditions described in the section (4.2) can
be used in the transformation equations. The conditions on the function f(Z) state
that it goes from 1 to 0 as # goes from the shoreline Z = M to the offshore boundary
of the model domain z = 0.

Different analytical functions which have a variation with Z similar to the
one required by the conditions on f(Z) were tried. Figure (4.2) shows the variation

of some of them. e.g.

fig) = gos (4.10)
fo®) = e M2 (4.11)
f2(@) = 1-—tanh{a(M — z)} (4.12)
fu(@) = (ﬂ—i-) g MER) (4.13)
and,
f5(&) = (67 M2 — e M) /(1 — ™V). (4.14)

The last two functions satisfy condition f(0) = 0 exactly, whereas, the other
three can give f(Z) very close to zero depending on the values of & and M but never

equal to zero at the offshore boundary.
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Figure 4.2: Some possible choices for f(Z). (—) e~®M=2); (— — _) g~a(M-2)%;

— ) 1 — tanh{a(M — 2)}; (---) (&) e‘“,(M“i’) and (++e- )
(e~ UM=E) —g~oM) /(] —e~¥) fora=0.3.

Since the purpose of the function g(Z) is to ensure a certain variation of

Az /AZ which is related to ¢'(Z), it is convenient to prescribe g'(Z), subject to,

J(M) < 1 (4.15)
M
and, / g (wdw = M (4.16)
0
and then calculate g(z) by, )
0

For any f'(M) # 0, the grid size distribution Az/AZ will be greater or
smaller there than ¢g'(M) depending on the sign of &. If ¢'(M) = 0.5, then for any
given f'(M), (Az/AZ),_,, can accommodate maximum variation of £ about £ = 0.
In most of the simulations described afterward, ¢'(M) = 0.5 will be used. Figure 4.3
shows the effect of different £ on Az/AZ for one particular choice of f(z) and g(Z).

It can be seen, that the grid spacing near the shoreline (z = M) is smaller than
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Figure 4.3: Axz/Az for different ¢ with f(Z) = f5(Z) and g¢'(
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and a = 0.1.

1l

) = 0.5+tanh{a(M —
—3.0, for a = .01015

that offshore (Z = 0) but it changes with £. During the highest run-up (§ = 3 in the
example) the grid is stretched and Az/AZ increases somewhat toward the shoreline.
When the shoreline is in the lowest position of rundown (£ = —3) the resolution at
the shoreline is very high with Az/Az = 0.2 only. Thus a very high resolution is
obtained during phase of the rundown which is also the phase with the strongest
spatial variations and potential wave breaking.

As there are only two required conditions on the function g(z) and one of
them has been used to determine the value of ¢'(M) only one condition is left on
g(Z). It can be uniquely determined if it has only one free parameter. If for example
a polynomial of z is assumed for ¢'(Z), only a linear function can be determined

uniquely and that is,

(4.18)
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Figure 4.4: Some possible choices for ¢'(z). ( ) 0.5+ (M —2)/M; (-—-)
0.5 + tanh{a(M — %)} and (--—-— ) 0.5+ a (M —z)+b(M — z)* with
a=1/3M and b= 1/M? for M = 20m.

For a second degree polynomial, a family of functions for ¢'(Z) given by,
¢ (@) =05+a(M—3)+b(M—z)° (4.19)
is obtained. Where a and b must satisfy the relation,

3aM + 2bM* =3 (4.20)

which is obtained by substituting (4.19) into the condition (4.16)

Different functions have been tested for g(z) too. Figure 4.4 shows some
possible choices for g(z). For the most of the model simulations described afterward
¢'(#) = 0.5+ tanh{a(M — z)}. Here a is calculated so that g(0) = 0 is satisfied.
It can be seen in Figure 4.4 that the region where ¢'(Z) < 1 is smaller for ¢'(z) =
0.5+tanh{a(M —z)}. So the region of Az/Az < 1is concentrated near the shoreline

where a high resolution is required. f(z) = f5(Z) from (4.14) has been used in the
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most of the simulations. f(Z) satisfies all the conditions prescribed for any value of

—aM

«, which is however, selected such that e is very small and close to zero.

4.4 Modification of the governing equations due to the transformation

In order to be able to perform calculations in the (Z, #,%) coordinate system,
the derivatives with respect to z, y and ¢ in the continuity and the momentum
equations need to be changed to the derivatives with respect to 7, § and t. These
changes can be obtained by successive differentiation. For the general case of z =

f(z,9,1),y = f(@,y,1) and t = f(z,7,t) the modified differential operators would

be,
9 0oz ooy 0ot
oz — 050z 950z T Biow (21)
9 oo 0oy, 00
5y _ Dzay 950y ooy ()
o _ dox 00y 00 42

5t ~ ozot oy oiok

However in the present formulation, Z is a function of z, y and ¢ whereas j

and f are functions of only y and ¢, respectively, so,

0y 0y _
o= =0 (4.24)
ot ot
== (4.25)
Furthermore from (4.2) and (4.3),
oy ot
T e (4.26)
With these simplifications, (4.21), (4.22) and (4.23) reduce to,
s, d 0%
B = e (4.27)
d 0 00z
s BB a=ob s i
& - T By )
d a 0 0%
5 3—f+£§ (4.29)
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Differentiating the transformation equation (4.1) with respect to z, y and ¢

gives,
1= f@)0 + 0 () g (4.30)
T 19 | OW:t) .
0 = J@5 +E0I @) g + @) (431
and,
o0 oz
0= 5@ + w0 @2 + 28D 5z (4.32)
respectively. By rearranging (4.30), (4.31) and (4.32) we get,
0%
2 = 7@ T Ew,0F @) e
o 1 08 (yst) o~ 1
% = ~\rerraarm) o 1O =
or 1 o€ (y,t) ,,_
5 = \rermore) o e e
Or,
ox 030,
% = “m5l@ (4.36)
o _ omoc,
5% ~% atf(x) (4.37)
Substitution from (4.27), (4.36) and (4.37) in equations (4.28) and (4.29)
results in,

o _ o _ommo,
oy 0y 0z0z0y
0 0 0 0% 0¢

= 2 D%y

ot ot 07 0z Ot

(4.38)

(4.39)

On applying these modifications from (4.27), (4.38) and (4.39) to (2.5), (2.6)

and (2.7), we obtain the governing equations in their final form as,

0Q. 05  0Q, 0Q, 9% 3%

o _ aconot 0, 90,
ot 0z Oz Ot 0z dx 0y 0z Oz Oy

27

(4.40)



o axé)x@t @+ \% ) o B\ B

Qx@y oz 36 - o¢ 0z
- 0z ( h ) oz ay )= h6_6_ (441)
0Qy,  0Q,0z 0 ( ) 9% ( z)
ot Bm ot @ F h
Qx oz 8& y ac ac oz 06

When the functions f(Z) and g(Z) are selected, the term 0z/0x can be cal-
culated by (4.33). Since £ is known as a function of y at any time step n and at
the previous time steps n — 1, n — 2 etc. , 9/dy can easily be calculated at those
time steps. As the components of the velocity of the shoreline are also known at
that present time step n and previous time steps, 9¢/9t can be calculated from (3.4)
and then & at the next time step n + 1 can be obtained by the time integration of
this equation. As all the terms in the modified governing equations (4.40), (4.41)
and (4.42) are known at a time step n and previous time steps, a 3rd order ABM
predictor-corrector scheme can be applied to calculate the volume fluxes and the
surface elevation at the next time step for Z = 0 to Z < M. At £ = M a similar
predictor-corrector scheme can also be used for (3.17) and (3.18) to obtain u*® and

v* and then (3.4) to obtain shoreline position £ at the next time step.
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Chapter 5

FIXED GRIDS WITH WET-DRY INTERFACE

As mentioned earlier, the particle velocity at the shoreline and thus the shore-
line position can be calculated by the equations derived in chapter (3). In the last
chapter, a coordinate transformation method was described to take into account a
time varying fluid domain in a numerical model. In this chapter another method of
implementation of the boundary condition at the moving shoreline will be described
which uses fixed grids. In this method the computational domain discretized on a
fixed grid and the shoreline is defined as the point separating wet and dry regions,
which need not be a grid point. In order to do this, the last wet and the first dry grid
points are identified and the shoreline point is treated as a special point between
the grid points. When the shoreline passes a dry grid point while moving in the
shoreward direction, that grid point is included in the active calculation zone, which
is the wet region of the domain, at the following time steps of the computation. Sim-
ilarly when a wet grid point is passed in the seaward motion of the shoreline, it is
excluded from the active calculations in the following time steps.

In the past, most of the implementations using fixed grid points with wet-
dry interface, do not resolve the shoreline position between the last wet and the
first dry point. Many such examples were discussed in section (1.1). Sielecki and
Waurtele (1970) and VanDongeren and Svendsen (1997b) give a few examples where
the shoreline position between the last wet and the first dry grid points was deter-

mined, though they use extrapolation schemes to do this. In the method used by

29



VanDongeren and Svendsen (1997b) the shoreline position between the last wet and
the first dry point was determined along with the surface elevation at the last wet
point. This was done by calculating the volume of water stored past the last wet
point and assuming a linear variation of the surface elevation from the last wet point
to the shoreline point. The volume flux at the last wet point was also obtained by
interpolation.

In the method described here, the velocity of the fluid particles at the shore-
line are obtained first. The shoreline position is then calculated by using these
velocities. The actual shoreline position is calculated at each time step and thus the

position of the shoreline between the last wet and the first dry grid points is known.

5.1 Spatial derivatives near the shoreline

Since the distance between the last wet point and the shoreline point is not
the same as the constant grid spacing in the rest of the domain and this spacing
also changes with time, the finite difference formulation for spatial derivatives near
the shoreline needs to be modified. This is done by going back to the Taylor se-
ries expansion and obtaining the spatial derivative formula for a non constant grid
spacing near the shoreline.

For simplicity, in the following sections only the 1DH case will be discussed.
The procedure for 2DH case will be described later in the section 5.3 as a modifica-
tion of 1DH case.

The shoreline position is identified as z, the last wet grid position as zy and
the second last wet grid position as z;. The spacing between z; and z; is Az which
is the grid spacing in the rest of the domain. The spacing between zy and z,; changes
with time. The ratio of this distance to the constant grid spacing in the rest of the
domain Az is denoted by s. A sketch of the domain near the shoreline is given in

Figure 5.1.
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Figure 5.1: Domain near the shoreline. z, is the shoreline position. zo and z, are
last two wet points.

Let’s assume that the derivatives of the function f(z) are to be calculated.

The Taylor series expansion of this function about the last wet grid point zq gives,

(sAz)?

f(@s) = f(zo+ sAz) = f(zo) + sAzf'(zo) + o1

B prian) +002%)  (52)

f"(z0) + O(A2?) (5.1)

f@) = [f(zo— Az) = f(z0) — Azf'(20) +
By eliminating f"(z) from equations (5.1) and (5.2) the relation for f'(z) in terms
of f(xzo), f(z1) and f(z,) are obtained as,

f(@s) + (8> — 1) f(z0) — 8°f (21)
s(s+1)Az (6:8)

f'(zo) =

Similarly, the Taylor series expansion of f(z) about the shoreline position z

fao) = (o, s80) = @) - shaf (@) + O pa) + O(aa?) (5.0

f@) = flzs— (s+1)Az) = f(z,) = (s +1)Azf'(,)

(e DAY puiz,) 4+ 0(aa) (5.5)
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and elimination of f"(z;) gives,

vy (1425)f(@s) — (1+5)°f (o) + 8°f(21)
fles) = s(s+1)Az (8:5)

5.2 Addition and deletion of a grid point

In this method with a fixed grid and a wet-dry interface for the shoreline, the
active calculation zone is the wet region where the fluxes and the surface elevations
are calculated by solving the continuity and the momentum equations (2.5), (2.6)
and (2.7). The second part of the computational domain is the dry region shoreward

of z,. This region is sufficiently described by,

ho+¢=0 (5.7)
or,
¢ =—hg (5.8)
where hy may be < 0 and,
Qy = 0 (5.10)

At the shoreline, the velocity component is calculated using (3.17) and then
the horizontal position of the shoreline point is calculated by time integration of

(3.4). The surface elevation at the shoreline point is then calculated by

Cs = _(h'(])s (511)

and the fluxes there are zero.

In the cases where the bottom topography is given analytically, hg, can be
calculated directly when the shoreline position is known. In other cases, it has to
be obtained by interpolation between the undisturbed water depths at the regularly

spaced grid points near the shoreline.
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The ratio of the distance of the shoreline position from the last wet grid to
the constant grid spacing Az, s, appears in the denominator of the equations (5.3)
and (5.6), so s = 0 must be avoided during the motion of the shoreline. Therefore, it
is necessary to choose a small, fixed minimum value for s = s, During rundown,
if § < Spin, it is assumed that the last wet grid point (z) has become dry, so that
grid point is removed from the active calculation zone and the value of s is increased
by 1.

Similarly, during run up the first dry grid point is not included in the active
calculation region until the value of s becomes larger than 1 + spi,. When s >
1 + Smin, the first dry grid point is declared to become a wet point and is include in
the active calculation zone. The value of s is then decreased by 1. In most of the
simulations described later on, we will use 8,,;, = 0.5.

Since a third order ABM predictor-corrector method is used for time integra-
tion in this work, it’s required to know the RHS of the governing equations at time
steps n, n — 1, and n — 2 in order to calculate the flow variables at the next time
step n + 1. Therefore when a dry point is included in the active calculation region
during the onshore movement of the shoreline, the RHS of the governing equations
at two previous time steps is required to be specified at that grid location. However,
the first dry grid point is not added to the calculation zone until after the value of
s becomes greater than 1 + sy, and in the most cases, the number of time steps
needed for s to go from s = 1 t0 § = 1 + 8,4 is more than two. Hence at the first
dry grid point, the calculation of the RHS of the mass and the momentum equations
can be started as soon as the shoreline passes that point while moving in the onshore
direction. This provides the values of the variables at the new wet points which can
then be used in the time stepping of ¢, @, and @, when that point is included in
the active calculation region. However, if the value of s,,in selected is very small,

the number of time steps needed for s to go from s = 1 to § = 1 + s, can become
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Figure 5.2: Three regions in 2DH case with fixed grid and wet-dry interface. Re-
gion I has all the grid points wet, region III has all the grid points dry
and region II has some grid points which are wet.

less than two and small errors may introduce due to incorrectly imposing the RHS
of the mass and the momentum equations to zero.

Shapiro filter is applied to all the wet points in the cross-shore direction. As
the distance between the shoreline position and the last wet point is not constant
and is not the same as the rest of the domain, the shoreline point is excluded from

the filter scheme.

5.3 Fixed grids for 2DH cases

In the 2DH case, some extra care is needed in order to apply the boundary
condition at the shoreline using a fixed grid and a wet-dry interface. The difference
from the 1DH case is that now the last wet points and the shoreline points are
functions of longshore position. The y component of the velocity is also need to
be calculated using (3.18) before (3.4) can be used for calculation of the shoreline
position. Thus the y derivatives are to be calculated at and near the shoreline
and filters are to applied in the longshore direction y also. The difficulty in the

calculation of y gradients at the shoreline is due to the fact that at an arbitrary
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shoreline position, there may not be grid points in the longshore direction, as s(y),
in general, can have different values at different longshore locations. It can be seen in
Figure 5.3 that in order to calculate derivatives at a shoreline point A, the variables
at the points B and C should be known. However, as B and C are neither a regular
grid point nor a shoreline point, the values of the variables at these points can only
be obtained by interpolation.

As described by Shapiro (1970), filtering in 2DH cases are to be done by
applying the filter first in one direction and then in the other direction. In the
cross-shore direction, as the last wet point is known and all the points offshore of
the last wet point are wet, the filter can be applied easily. Whereas in the longshore
direction, it’s necessary to find out first which grid points are wet before a filter can
be applied. Depending on the number of wet points in the longshore direction, the
order of filter in that direction also needs to be changed.

In an attempt to solve this problem, the model domain is divided into three
regions. In the first region, all the grid points in the longshore direction are wet. In
the second region some of the grid points in the longshore direction are wet, and in
the third region none of the grid points in the longshore direction are wet. Figure
(5.2) shows these three regions for a typical model domain. Extending the 1DH
formulation to 2DH is straightforward in the regions one and three, since all the
grid are either wet or dry,. In the region II, the = derivatives near the shoreline can
be calculated by (5.3) and (5.6) as before. To obtain the y derivatives in this region,
a fourth order central difference formula has been applied if there are two wet points
on both sides of a wet point along the y direction, otherwise a second order finite
difference formula has been applied.

As mentioned Figure 5.3 shows a typical case near the shoreline. In order
to solve the equation (3.18) for the y component of the velocity at the shoreline

point A, /0y needs to be calculated at that point. Since on the one side of
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Figure 5.3: A typical situation encountered in order to calculate the y derivative
at the shoreline. (— — —) is the shoreline position at the ™ grid in
the y direction.

the shoreline point A there are no grid points in the longshore direction, a second
order interpolation scheme is first applied to obtain the surface elevation data in
the longshore direction at points B and C in Figure 5.3 before this derivative can
be calculated.

The equation,
f(B) = ax{s()}* +b*s(j) +c (5.12)

with s(j) = (2°(j) — =(i))/A=z, was used to calculate the value of f at point B.

Here,

o = FUGi+1)-2fG-1i+1)+fG-2j+1} (13)
and c = f(i,7+1) (5.15)
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Similarly j + 1 was replaced by j + 2 to calculate the variables at the point C'. The

2nd order forward difference equation,

of) - 1
dyla  2Ay

{=3f(A) +4f(B) - f(C)} (5.16)
was then used to calculate the derivative at the point A as the distances between A
and B, and B and C are same and equal to Ay.

Similar formulas were used in cases where the wet point in the vicinity of the

shoreline are on the left side of the shoreline point. In this case backward difference

equations were used instead of (5.16).
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Chapter 6

RESULTS

In this chapter the results of the nearshore circulation model SHORECIRC,
with the implementation of the moving shoreline boundary condition, are compared
with the analytical solutions for flow in one horizontal dimension and with the
numerical results from other models for flow in two horizontal dimensions. As
mentioned in chapter (2), the source terms in the governing equations are neglected
in the numerical computations which also makes the numerical results equivalent to
the results they are compared with in this chapter. Both the methods of treatment
of the moving shoreline, i.e. the coordinate transformation, and a fixed grid with a
wet-dry interface, were implemented.

In the one dimensional case, three situations will be simulated. They are,
the transient solution and the periodic solution given by Carrier and Greenspan
(1958) (CG58 hereafter) and the solution for the run up of a solitary wave given
by Synolakis (1987). The bottom topography for both the cases of CG58’s solution
is a plane sloping beach, where as for the Synolakis (1987) case, topography has a
constant depth offshore followed by a plane sloping beach near the shoreline.

As no analytical solutions are available for two dimensional run up, the
present model results are compared with the results of other numerical models.
The case of a solitary wave run up as described by Zelt (1986) for a concave beach
and the simulation of the same case by Ozkan Haller and Kirby (1997) are chosen

for this purpose.
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In the following sections, results will be presented first for the coordinate
transformation method and then for the fixed grid with a wet-dry interface method

for the boundary condition at the moving shoreline.

6.1 The coordinate transformation method
The comparison of the results of SHORECIRC is presented, with the moving
shoreline, treated with a coordinate transformation method as described in chapter

(4).

The transformation functions,

f@) = (e M= — M) /(1 — e (6.1)
and, g(Z) = 0.5+ tanha(M — 7) (6.2)
and thus, g(Z) = 05(Z+M)— é log [cosh {a(M — z)}] (6.3)

were used in the equation (4.1) and a is calculated by solving
1
0.5M = —log {cosh(aM)} (6.4)
a

The equation (6.4) was obtain such that the function g(z) as given in (6.3) satisfies

the condition (4.5).

6.1.1 Comparison with analytical solutions in 1DH

Here the comparison of the results for the transient case and the periodic case
described by CG58 and for the run-up of a solitary wave as given by Synolakis (1987)
will be presented. The analytical solutions are given in terms of the non-dimensional

variables. The scalings used were,

s = gl (6.5)
¢ = ¢/(od) (6.6)
u' = u/y/gol (6.7)
t* = t/y/olfg (6.8)
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where superscript (-*) represents the non-dimensional value of (-), a is the
bottom slope and [ is the length scale, which can be selected for the specific problem

under investigation.

6.1.1.1 The Carrier and Greenspan’s solution : Transient case
The Analytical solution of the Nonlinear Shallow Water equations for plane
sloping beaches were obtained by CG58 by using a series of transformations which

finally reads as,
ot = 4¢' (6.9)
A= 2t + 1Y) (6.10)

where ¢* is the non-dimensional phase speed which is equal to Vd*. More
details of the transformations used can be seen in Appendix A.

At the shoreline, the waterdepth d* = (* 4+ hg = 0, so ¢* = Vd* = 0 and thus
with this transformation, o* = 0 always represents the shoreline position.

The dependent variables z, ¢, ¢, and u are obtained in terms of the indepen-
dent variables o and A\. Appendix A describes the transformations used by CG58,
the solutions obtained by them and the reverse transformation which transforms
((o,)), u(o, ), z(o, ), and t(o, A) back to ((z,t) and u(z,t). This is used here to
first specify the initial conditions in the model simulations and then to compare the
simulation results.

CG58 described some initial value problems and their analytical solution. In
the transient case, the initial water surface elevation is assumed to have a depression
near the shoreline and it is released from that state of rest. The surface elevation

and corresponding x locations in the non-dimensional form are given by,

5 a 8 @
Y= e|l-= =+ = 6.11
s 2(a®+02): 2 (a%+0?)3 PRL)
o
s T +L (6.12)
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Figure 6.1: SHORECIRC results with the coordinate transformation method for
the CGH8’s transient solution for surface elevation as a function of the
cross-shore distance at t* = 0 to t* = 0.8 at the steps of At* = 0.05.
Analytical solution (------ ); Present model ( ). Az* =0.007735
and At* = 0.025 were used in the simulations.

where,
a=1.5(1+0.9¢)? (6.13)

and initially,
4" =0 (6.14)
Here € is a small parameter, which characterizes the magnitude of the depression.
The surface elevation becomes asymptotically equal to € as z goes to infinity offshore
and this is the maximum surface elevation. The minimum surface elevation is zero
and it occurs at the shoreline at ¢* = 0. Initial surface profile has a zero tangent
at the shoreline and at z* = —1, ¢* = 0.9¢. For non-breaking cases, the value of ¢
should be less than or equal to 0.23 as predicted by CG58.
The results are presented here for ¢ = 0.1. The bottom slope « is taken to

be 1/50 and the length scale [ was selected to be 20m.
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Figure 6.2: SHORECIRC results for the time series of the surface elevation at the
shoreline with the coordinate transformation for the CG58’s transient
solution. Analytical solution (----- - ); Present model ( Yo NF* =
0.007735 and At* = 0.025 were used in the simulations.

In order to simulate this situation in the present model, the dimensional form
of the surface elevation profile, which was obtained by using (6.5) and (6.6) in (6.11)
and (6.12), was imposed in the model and the initial velocity field was set to be zero
through out the domain.

Figure 6.1 shows the non-dimensional surface elevation as a function of the
cross-shore distance z* at time t* = 0 to t* = 0.8 in steps of At* = 0.05. Figure 6.2
shows the time series of the non-dimensional surface elevation at the shoreline for
t* upto 5. As can be seen from this figure, the shoreline shoots past the maximum
initial surface elevation e and then slowly comes back to asymptotically approach
€ as time t* goes to infinity. In both the figures above, surface elevation has been
scaled with the depression parameter e. We see that the present model results are
in excellent agreement with the analytical solutions.

In the model run for Figure 6.1 and Figure 6.2, Az* was specified to be
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Figure 6.3: Dependence of the numerical solution on grid spacing. Analytical
solution (- - =); AZ* = 0.007735 ( ); Az* = 0.01547 (———);
Az* = 0.03094 (—-—-- ). Courant no. Cr = 0.7 for all the cases

0.007735, the Courant number Cr at the offshore boundary was 0.7 and the corre-
sponding At* was 0.0025. In Figure 6.3 and Figure 6.4 the effect of increase in Az”
and At* are shown respectively. In these figures, the plots are given for 0 < ¢* < 1.6
as to show how the model results start deviating from the analytical solution. Be-
cause of the coordinate transformation, Az changes with the cross-shore position.
However, the computational cost depends on the number of grid points and hence
on AZ, thus AZ has been used here for demonstration of the effects, an increase in
the grid spacing has, on the present model results.

In Figure 6.3 the model results are analyzed for sensitivity to the value of
Az* it can be seen that for AZ* < 0.015, the errors in the model results are small.
However, Az* =2 0.031 produces significant deviations in the model results from the
analytical solution.

Similarly Figure 6.4 shows the time series of the shoreline position for different
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Figure 6.4: Dependence of the numerical solution on time step. Analytical solution
(+=4); Cr = 0.7 ( Y; Cr =09 (——-); Cr = 1.0 (--—-— T
AZ* = 0.007735 for all the cases.

values of the Courant number. For all these cases Az* = 0.007735. It is clear that
only small errors were introduced with the increase of Courant number even upto
1.0 and thus with the increase of At*.

Since in Figure 6.3 the Courant number is constant, a change in AZ changes
At also. The results, however, do not depend a lot on At as shown by Figure 6.4,
so the conclusions that the difference between different curves in Figure 6.3 is only

due to change in Az are well justified.

6.1.1.2 The Carrier and Greenspan’s solution : Periodic case
CGH8 also presented the analytical solution for the periodic standing waves
on a plane sloping beach. For this case, the surface elevation (, cross-shore position

x, velocity u and time ¢ are given in the non-dimensional form by,

A u*’

¢ = ZJO(O')COS/\ i (6.15)

44



Figure 6.5: The surface elevation as a function of the cross-shore distance at differ-
ent time steps for the periodic solution. The coordinate transformation
model ( ); Analytical solution (- - =). Az* = 0.0647 and Courant
number Cr = 0.7 were used.

0.*2
ORI 6.1
% T: +¢ (6.16)
e _Adi(o zsm/\ (6.17)
o
= %X"-—u* (6.18)

This represents a wave of non-dimensional frequency equal to one, traveling
towards the shore, getting fully reflected from there and creating a standing wave
like situation.

Here A is the non-dimensional wave amplitude. A/4 is the maximum vertical
excursion of the shoreline. The above solution is valid for 0 < A < 1. A =1
corresponds to a vertical tangent on the surface elevation. Mathematically, when
A = 1, the Jacobian of the transformation used to arrive at these solutions becomes

zero and the transformation looses the one-to-one correspondence between the actual
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Figure 6.6: The time series of the surface elevation at the shoreline for CG58 peri-

odic case. The coordinate transformation model ( ); Analytical
solution (- - -). AZ* = 0.0647 and Courant number Cr = 0.7 were
used.

and the transformed variables.

At X = 0, we have v* = 0 and ¢* = 0. So, the initial conditions are given

here by,
A
¢ = ZJG(G) (6.19)
2

I — _‘g_ *

gt = 16+C (6.20)
and

% =0 (6.21)

In this case also, the initial condition of the surface elevation was imposed
on the numerical model by using (6.6) and (6.5) to obtain the dimensional form of

(6.19) and (6.20). The initial velocity field was set to be zero.
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Figure 6.7: Effect of increase in grid spacing for CG58 periodic case. Analytical
solution ( ); Az* = 0.032345 (- - -); Az* = 0.06469 (—— —);
Az* =0.12938 (--—-- ); Az* = 0.25876 (------ ). Cr = 0.7 for all the

cases.

The length scale I = 20m and the bottom slope o was chosen to be 1/30.
Results for A = 0.6 are presented here. Az* = 0.0647, which results in about 10
points from the shoreline to the first “node” in surface elevation, and the Courant
number Cr = 0.7 were used in this case.

Figure 6.5 shows the non-dimensional surface elevation as a function of the
cross-shore position z* at different time ¢*. Figure 6.6 shows the time series of the
non-dimensional surface elevation at the shoreline. Again, the model compares well
with the analytical solution. Figure 6.6 shows a very small deviation of the model
result from the analytical result at the maximum and minimum shoreline run-up.

Figure 6.7 shows the time series of the surface elevation at the shoreline
for different grid spacing. Similar to the transient case, here also Az" is used as a
measure of grid spacing. It can be concluded from this figure that for Az* < 0.13, the

results are very accurate. However for Az* = 0.26, the errors get significantly larger.
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Figure 6.8: Effect of increase in time step for CG58 periodic case. Analytical
( ); Cr = 0.5 (—-—-— ); Cr = 0.7 (--+); Cr = 09 (——-);
Cr=10(----- ). AZ* = 0.0647 for all the cases.

Figure 6.8 shows the time series of the surface elevation at the shoreline for different
At* which is obtained by using different Courant numbers. As observed, the results
do not change a lot with increase in At as long as the Courant number is below 1.
As the time step is calculated using the Courant number at the offshore boundary,
increasing it above 1.0 starts numerical instabilities at the offshore boundary which

soon covers the complete domain.

6.1.1.3 Run-up of a solitary wave

Synolakis (1987) derived an analytical solution for the run-up of a first order
solitary wave. Figure 6.9 shows the bottom topography and the different parameters
of the incident solitary wave. The bottom topography has a constant waterdepth

offshore and a plane sloping beach near the shoreline. These two parts meet at
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Figure 6.9: Definition sketch for Synolakis’ solution of a solitary wave run-up

The peak of the solitary wave used here, is initially at z* = X7, and the

initial surface profile is given by,

7= pr sech? { Ly (z* — Xf)} (6.22)

This is the profile for a first order solitary wave so this waveform will represent
a solitary wave only when the wave height is small. Since the NSW equations were
used here and the dispersion terms were not included, the initial waveform will not
preserve it’s form even on a horizontal bottom. However, Synolakis’ analytical result
was also obtained for the NSW equations, so the numerical results obtained here
are equivalent to the results obtained by Synolakis (1987).

Synolakis (1987) used H*/d* = 0.019 and the beach slope a = 1/19.85 in
order to compare experimental results with the analytical solution. In the present

numerical model simulations, we used the same values.
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Figure 6.10: Run-up of a solitary wave. Analytical solution (- - -); the coordinate
transformation model (——).
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Figure 6.11: Bottom topography used by Zelt (1986)

Figure 6.10 presents a comparison with the coordinate transformation method
for the surface elevation (* as a function of the cross-shore distance z* at times
+* = 20 to t* = 55 in the steps of At* = 5. We see that the model predictions are in
good agreement with the analytical results even at time ¢* = 45, the approximate
time of maximum run-up. In the case shown here, AZ* = 0.2 and Courant number

C'r = 0.7 were used.

6.1.2 Comparison with numerical solutions in 2DH

In the course of studying the response of harbors to long wave excitation,
Zelt (1986) developed a Lagrangian finite element model. It was applied to the
case of the run-up and run-down due to the incidence of a solitary wave on a beach
where a curved shoreline meets a region of constant depth with a sloping bathymetry
nearshore. The bottom topography is shown in the Figure 6.11. Such geometry was

chosen to demonstrate the interaction of different processes affecting the shoreline
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run-up. This case is used here for comparison with the results of the coordinate
transformation model in 2DH.

The undisturbed waterdepth, as shown in Figure 6.11, is given by,

ho, forx <L
hiz,y) = 6.23
(@) hg—’—'gﬂ[giﬁ%]. forx > L (6.23)

where the length scale L is half the wavelength of the cosine form of the shoreline.
By setting h = 0 in (6.23) and solving for z, the initial shoreline position can
be obtained and is given by,

L Y
=L+ (3-cos ™ 6.24
T +7r cos L) (6.24)

As oppposed to Synolakis’ case, where the initial profile of the solitary wave
was prescribed, here the incident solitary wave was introduced at the offshore bound-
ary of the model domain. In this case, the incident wave, as described in VanDon-

geren and Svendsen (1997b), was given as,

where ¢°(t) is the surface elevation at the offshore boundary, o = H/h, is the
nonlinearity parameter and 3 = (ho/L)? is the dispersion parameter. ¢, was obtained
such that the initial surface elevation at the offshore boundary was 1% of the wave
height. It was observed by Zelt (1986) that oo > 0.3 results in a vertical tangent
developing on the surface elevation during the run-down which means that the
assumptions behind the equations fail, which leads to numerical problems. This
situation is similar to the case of A = 1 for the periodic case in the Carrier and
Greenspan solution in one horizontal direction. @ = 0.2 was selected for the present
model comparisons.
From (6.23) the bottom slope is given by,

h.g’fl’ 1
R R )

(6.26)
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Figure 6.12: Time series of the surface elevation at the shoreline along different
longshore locations. The present model ( ); Zelt (1986) (----

).

In the model domain, the slope changes from 1/5 at the lateral boundaries of the
domain (y = 0 and y = 2L) to 1/10 at the center (y = L). On substituting these
values in (6.26),

1 h.()‘?f 1
10 L {3—cos(m)} 520
o 2 2
ho\® [ 4\ _
8= (f) - (ﬂ) =0.0162 (6.28)

Since the incident solitary wave was introduced in the domain through the
offshore boundary, an absorbing-generating boundary condition as described by Van-

Dongeren and Svendsen (1997a) was used at the offshore boundary.

6.1.2.1 Zelt (1986)’s case
The results of the simulations by Zelt (1986) for the topography shown in

Figure 6.11 were presented as the time series of the surface elevation of the shoreline
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Figure 6.13: The maximum run-up and the minimum run-down as a function of
the longshore position. The present model ( ); Zelt (1986) (--

o

at the five locations, y/L = 0,0.25,0.5,0.75,1 in the longshore direction and the
maximum run-up and run-down as a function of the longshore position for the
different values of a. Time has been non-dimensionalized with a time scale T' =
Vgho/L and the non-dimensional time ¢ = 0 is chosen as the time at which the
run-up is maximum at the lateral boundaries.

Figure 6.12 shows the comparison between Zelt (1986) results and the results
for the coordinate transformation method for time series of surface elevation at the
five locations. Figure 6.13 similarly shows the comparison for the maximum run-up
and the minimum rundown predicted by the coordinate transformation model to
the results presented by Zelt (1986). Az* = 0.01278 and Courant number Cr = 0.7

were used in the present model simulations.
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Figure 6.14: Time series of the surface elevation at the shoreline along different
longshore locations. The present model ( ); Ozkan Haller and
Kirby (1997) (— ——).

6.1.2.2 Ozkan Haller and Kirby (1997)’s simulation of Zelt’s case

Ozkan Haller and Kirby (1997) also used Zelt’s case to test the moving shore-
line boundary condition in 2DH, for their Fourier-Chebyshev collocation model. The
results of the present model compared with those obtained by Ozkan Haller and
Kirby (1997) are shown in Figure 6.14, again as the time series of the surface eleva-
tion at the five stations. Figure 6.15 shows the maximum run-up and the minimum
run-down along the longshore direction obtained from the two models.

It is seen that the coordinate transformation model compares quite well with
the results of both, Zelt (1986) and Ozkan Haller and Kirby (1997). It’s prediction
of the first run-up peak is in very good agreement with the other two models. The
present model starts deviating from the Zelt’s solution at about non-dimensional
time ¢ = 12. In general it is in a better agreement with the solution given by Ozkan

Haller and Kirby (1997). This is apparent from the comparison of Figures 6.13
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Figure 6.15: The maximum run-up and the minimum run-down as a function of
the longshore position. The present model ( ); Ozkan Haller
and Kirby (1997) (— ——).

and 6.15 which show the maximum run-up and the minimum run-down as a function
of the longshore distance.

All the results shown here are obtained by numerical simulations and they
all are quite close to each other thus it’s difficult to say which one is the best. The
values of Az and At are not known for the computations of either Zelt (1986) or
Ozkan Haller and Kirby (1997). Ozkan-Haller and Kirby had 128 grid points in the
cross-shore direction and 48 in the longshore direction. However due to different
coordinate transformation schemes, even when the number of grid points used in
the present model is same as the one used by Ozkan-Haller and Kirby, the grid size
distribution isn’t the same as the one used by them. Furthermore the behavior of
the other two models with changes in Az and At is not known. This makes further
comparative study more difficult. However, it was observed that with a further

decrease in grid spacing, the results obtained with the present model doesn’t change
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Figure 6.16: The maximum run-up and the minimum run-down as a function of
the longshore position for different AZ* in the present model. Az* =
0.01278 ( ); Az* = 0.0205 (——-); Az* = 0.0273 (—---- );
AZ* = 0.041 (- - -). Courant number Cr = 0.7 for all the cases.

as shown in Figure 6.16. Hence it can be concluded here that for the given Az and
At values, all the three models are in good agreement with each other and as the
results don’t change with further decrease in AZ in the present model, this result is
probably accurate.

Figure 6.17 shows a 3D representation of the surface elevation on the whole
domain at different stages of incidence, run-up and run-down of the incoming solitary
wave. It is interesting to notice that in spite of the fact that a solitary has no
negative surface elevation the run-up process in this topography results in quite
large depression of the shoreline at later stages of the process (as could also be seen

from the previous figures).



Figure 6.17: The surface elevation over the whole domain as obtained by the
coordinate transformation method for the 2DH case.
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Figure 6.18: Surface elevation as a function of the cross-shore distance at different
time steps for the CG58’s transient case. The analytical solution (- -
-); SHORECIRC with fixed grid ( i

6.2 Shoreline model with fixed grid and wet-dry interface

In this section, the results of the model simulations will be presented for the
boundary condition with a fixed grid and a wet-dry interface as described in chapter
(5). The cases used for comparison here are the same as the ones used earlier to
show the performance of the coordinate transformation method for the treatment

of the moving shoreline.

6.2.1 Comparison in 1DH cases
As before the scales used to non-dimensionalize the dependent and indepen-

dent variables are the same as given by (6.5), (6.6), (6.7) and (6.8).

6.2.1.1 The Carrier and Greenspan’s solution : Transient case
The initial surface elevation profile is again given by in non-dimensional form

by (6.11) and (6.12). The initial velocity field is set to be zero. The length scale
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Figure 6.19: Time series of the surface elevation at the shoreline for CG58’s tran-
sient case. The analytical solution (- - -); SHORECIRC with fixed

grid ( 1,

| = 20m and bottom slope a = 1/50 was again selected.

Figure 6.18 shows the result of the surface elevation as a function of the
cross-shore distance z* at time t* = 0 to t* = 0.8 at steps of At* = 0.05. Figure 6.19
shows the time series of the surface elevation at the shoreline. The surface elevation
has been scaled by ¢, and € = 0.1 was used in this case also.

We see that the fixed grid model predicts the analytical solution very well.
The grid spacing used in this case is Az* = 0.0039175, where as Az* = 0.0077
was used in the corresponding case with the coordinate transformation method.
Since the transformation results in a grid spacing near the shoreline to be 0.5Az,
these values imply that near the shoreline the grid spacing was the same in the two
examples. Thus it can be concluded that, for the chosen Az values, the accuracy of
the solution in either method of implementation of the moving shoreline is similar

and very high.
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Figure 6.20: Time series of the surface elevation at the shoreline for the CG58’s
transient case for different Az*. The analytical solution (- - -); Az* =
0.0039175 ( ); Az* = 0.007835 (— — —); Az* = 0.01567 (----
-). Courant number Cr = 0.7 for all the cases.

1.2 T T T T T T T

Figure 6.21: Time series of the surface elevation at the shoreline for the CG58’s
transient case for different values of Courant number. The analytical
solution (- « =); Cr = 0.7 ( ); Cr =09 (——-); Cr=1.0 (---
-—). Az* = 0.007835 for all the cases.
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Figure 6.20 shows the time series of the surface elevation at the shoreline for
different Az*. The Courant number for all these cases were 0.7. Similarly Figure 6.21
shows the time series of the surface elevation at the shoreline for different Courant
numbers. For all these cases Az* was 0.0039175. Similar to the case with the
coordinate transformation method, here also results deviate more from the analytical
with increase in grid spacing than with increase in time steps.

It was observed that for the coordinate transformation method, a Az* >
0.031 results in larger deviations of the results from the analytical solution, and
equivalently with the fixed grid method, a Az* > 0.016 results in similar larger errors
in numerical simulations. As mentioned these Az values corresponds to equivalent
grid spacing near the shoreline. However as the coordinate transformation method
results in larger grid spacing offshore, it requires lesser number of grid points to
model a domain that the number of points required to model same domain with the

fixed grid method.

6.2.1.2 The Carrier and Greenspan’s solution : Periodic case

Similarly for the periodic case, the initial surface profile as given by (6.19)
and (6.20) was imposed in the numerical model in the dimensional form. The length
scale [ was selected to be 20m and the beach slope o = 1/30. Figure 6.22 shows
the surface elevation as a function of the cross-shore distance at different time steps.
Figure 6.23 shows the time series of the surface elevation at the shoreline.

The periodic case also requires a Az* which is about half the value of Az*
used to obtain similar accuracy in the results with the coordinate transformation
method. As before this can be attributed to the fact the the coordinate transforma-
tion results in reducing the grid spacing near the shoreline to about half the value
of Az*. So, Az* = 0.032345, used in Figure 6.22 and 6.23, and Az* = 0.647, which

is used in the corresponding case with the coordinate transformation method, have
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Figure 6.22: The surface elevation as a function of the cross-shore distance at
different time steps for the CG58’s periodic case. The analytical
solution (- - -); SHORECIRC with fixed grid ( ).
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Figure 6.23: Time series of the surface elevation at the shoreline for CG58’s pe-
riodic case. The analytical solution (- - -); SHORECIRC with fixed

grid ( Js
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Figure 6.24: Time series of the surface elevation at the shoreline for the CG58’s
periodic case for different Az* in the present model with fixed grid.
The analytical solution (- = -); Az* = 0.015 ( ); Az* = 0.02 (-
——); Az* = 0.03 (--—-— ). Courant number Cr = 0.7 for all the
cases.

a similar resolution near the shoreline. It appears that for the chosen Az values the
two methods give similar and very high accuracy.

Figure 6.24 shows the time series of the surface elevation at the shoreline for
different Az* in the model with fixed grid. Figure 6.25 shows the time series of
the surface elevation at the shoreline for different Courant number in the model. It
can be observed that the model starts deviating from the analytical solution with
increase in grid spacing and it is seen that this devation is distributed somewhat
differently from the deviation observed with the coordinate transformation method
for the similar grid spacing in Figure 6.7. However, an increase in time step in
Figure 6.25, does not introduce any error similar to the case with the coordinate

transformation method in Figure 6.8.
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Figure 6.25: Time series of the surface elevation at the shoreline for the CG58’s
periodic case for different Az* in the present model with fixed grid.
The analytical solution (- - -); Cr = 0.5 ( ); Cr = 0.7 (— — -);
Cr=10(----— ). Az* = 0.015 for all the cases.

65



6.2.1.3 Run-up of a solitary wave

Figure 6.26 shows the comparison of SHORECIRC results using fixed grids
for the case of solitary wave run-up with the analytical solution given by Synolakis
(1987). Here the surface elevation is plotted as a function of the cross-shore distance
at time t* = 20 to t* = 55 in steps of At* = 5. Az* = 0.1, again half the value
used for the coordinate transformation method and the Courant number is again
Cr = 0.7 were used in the model simulation. All other parameters are also the
same as the ones used in the coordinate transformation method to include a moving
shoreline. As Figure 6.26 shows the results are again in excellent agreement with

Synolakis’ solution.

6.2.2 Comparison in 2DH cases

Similarly, in the two dimensional case, the results of the fixed grid model are
compared with Zelt (1986) and Ozkan Haller and Kirby (1997)’s model results.

Figure 6.27 shows the comparison of the time series of the surface elevation at
the five longshore locations. Figure 6.28 shows the comparison for the maximum run-
up and the minimum run-down as a function of the longshore position as obtained
by the fixed grid model to the results presented by Zelt (1986). Figure 6.29 and 6.30
show the same results compared to the results obtained by Ozkan Haller and Kirby
(1997).

In this case also, the fixed grid model predictions are closer to the predictions
by Ozkan Haller and Kirby (1997) than by Zelt (1986). It can also be noticed by
comparing Figure 6.15 and 6.30 that the results with the fixed grid implementation
of the moving shoreline have some minor wiggles in the surface elevation at the
shoreline that were not present in the results with the coordinate transformation
method. It may be attributed to the fact that with the fixed grids and a wet-dry
interface, at a given time step the Shapiro filter, which is applied to remove the high

frequency spurious oscillations, is applied only to grid points which were wet at that
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instant of time. The shoreline points, which by definition, are always between the
last wet and the first dry grid point, are never included in the filter scheme. In
contrast, for the coordinate transformation scheme the shapiro filter can be used at
all points at all time. This, however, does not change the fact that the agreement

between the three methods is remarkably good.
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Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Summary

In the present work the equations for the velocity of the shoreline have been
derived. Two methods to incorporate the time variation of the fluid domain in a
numerical model have been developed, one using a co-ordinate transformation and
the other one with a wet-dry interface using a fixed grid. These methods have been
implemented in the nearshore circulation model SHORECIRC and the results are
compared with analytical results in one dimension and with numerical results in two
horizontal directions.

For the co-ordinate transformation method, the actual time varying fluid
domain was transformed onto a fixed computational domain. The transformation
was chosen such that the instantaneous shoreline is mapped onto a fixed and straight
line in the transformed plane and the evenly spaced grid points in the computational
domain correspond to a smaller grid spacing near the shoreline than the grid spacing
offshore.

The moving shoreline boundary condition has also been implemented by using
a fixed grid and a wet-dry interface. The shoreline points, which in general lie
between two grid points are treated as special points between regular grid point.
When a shoreline point crosses a dry point during run-up, that point is declared wet
and included in the computation. Similarly, when a shoreline point crosses a wet
point during run-down, that point is declared dry and excluded from computation

in following time steps.
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The results presented here were obtained with the reduced SHORECIRC
equations where short waves were not present and frictional dissipation and quasi

3D dispersion terms were neglected.

7.2 Conclusions

In the coordinate transformation method, the computational domain is fixed
and has a rectangular grid. However the governing equations get modified and
become more complex. Since a computational grid in this method corresponds to
different points in the physical domain at different times, the time series of any flow
property at a fixed position in the physical domain can’t be obtained without an
interpolation of the results, except at the shoreline and the offshore boundary which
are always mapped to a fixed point in the computational domain.

With the fixed grid method, the governing equation remain unchanged. How-
ever, the model domain can become complex. This method results in a non-constant
grid spacing between the last wet point and the shoreline position which requires
new finite difference formulae there. The time series of flow properties are readily
available with this method. With this method, Shapiro filter can not be applied
up to the shoreline. This seems to be the reason for the small wiggles in the two
dimensional case.

The comparison of the results with the co-ordinate transformation and the
results with the wet-dry interface using fixed grid shows that when the grid spac-
ing near the shoreline is same in these two methods, the accuracy of the results
are comparable. The fact that far offshore, the grid spacing with the co-ordinate
transformation method is much larger than that with fixed grid method does not
introduce much error in the solution. The results with both the methods of inclusion
of the time varying model domain reveal that the change in the grid spacing has a

stronger effect on the solution than changes in the time step.
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It was found out that the wet-dry method for the treatment of the moving
shoreline is equally accurate as the co-ordinate transformation method as long as
the grid spacing near the shoreline is same in both the cases. The co-ordinate
transformation can be used to obtain a smaller grid spacing near the shoreline than
the rest of the domain however, with the fixed grid method, the resolution in the
offshore region is same as near the shoreline. This results in a high accuracy with
co-ordinate transformation method for a lesser computational cost than that with
the fixed grid method. However in the cases where a predominant shoreline doesn’t
exist e.g. bays and embayments, a transformation method may not be well suited.

In the present work the cases where short waves are not present are discussed.
To include the effects of short wave motion, with the transformation method, a short
wave driver is required which can provide radiation stresses and wave volume fluxes
due to the short waves along the transformed grids. Non availability of such a wave
driver may serve as one limitation on the transformation method to extend them
to field situations. Whereas extension of the fixed grid method to field situations
becomes fairly straightforward if the short wave properties are provided at different

time steps as described by Haas and Svendsen (2000) using wave-current interaction.
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Appendix A

THE CARRIER AND GREENSPAN SOLUTION

A.1 Introduction

Carrier and Greenspan (1958) presented an analytical solution of the Non-
linear Shallow Water Equations. It shows that the waves can reach the shoreline
without breaking. It also shows that whether or not a wave will break before it
reaches the shoreline depends on the initial conditions of the wave. However, it
doesn’t determine a simple criterion under which a wave will break when it reaches
the shoreline. In order to obtain the analytical results, it uses some transformations
of the independent variables. In this chapter the transformations used, the results
obtained by Carrier and Greenspan (1958) and how they were used in the present

work to compare the model results will be described.

A.2 Transformation method

The NSW equations for one dimensional case are given by,

G+ [u(C + h)2 0, (A1)

Uy + vy +9¢ = 0. (A.2)

Where u is the depth averaged velocity, ¢ the surface elevation, i the undisturbed
waterdepth, z the cross-shore position and ¢ is time. By using the scaling, given by
(6.5), (6.6), (6.7), and (6.8) along with ¢** = (h +()/h.L and h = —h,z, A.1 and

A.2 arrive at their non-dimensional form as,
up. +uup. + (. = 0. (A.3)
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(o +[u*((*—2")]» = O (A.4)

For simplicity, superscript (*) has been omitted from now on. In the following
all the variables are in the non-dimensional form unless otherwise stated.

On replacing ¢ by c¢ using the relation for the phase speed in the non-
dimensional form ¢ = v/ — z, in (A.3) and (A.4) and adding and subtracting them
as described by Stoker (1948), we get,

(%+(u+0)%) {u+2c+t} = 0 (A.5)
((%+(u—c)%) fu—2+t} = 0 (A.6)

On defining o and 3 such that,
(%Huﬂ)%) = % (A7)
(%+(u-—c)a%) = % (A.8)

equations (A.5) and (A.6) reduce to,

ug+2cg+tg = 0 (A.9)
Uy — 2Ca+ta = 0 (A.10)

On applying the differential operator /9 from (A.7) on x and ¢ we get,

zg = u+e (A.11)
ig = 1 (A.12)

This can be rearranged such that,
zg— (u+c)tg=0 (A.13)

Similarly by applying the differential operator d/da from (A.8) on z and ¢
we will get,
To— (U—C)te =0 (A.14)
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The variables o and f here are treated as the independent variables and

u, (, x and ¢ as their unknown functions.
The LHS of equations (A.9) and (A.10) are exact differentials, so they can
be integrated directly. Which gives,
ut+2c+t = fla), (A.15)
u—2c+t = g(B). (A.16)
Here f and g are any arbitrary functions of a and f respectively.
The equations (A.15) and (A.16) can be rearranged such that,
2(utt) = fla)+g(B)=A (A.17)
dc = f(a)—g(B) =0 (A.18)
The equations (A.17) and (A.18) define A and o respectively, which are then chosen
as the final set of independent variables. Since o and A are the independent variables

now, the derivatives with respect to o and /8 need to be changed to those with respect

to o and \. This transformation can be obtained by successive differentiation and

is given by,
% = %aﬁ + %Aa (A.19)
% = Dot ahs (A.20)
From equations (A.17) and (A.18),
oo =f'(@) op =—9'(B) (A.21)
Ao = f(@) rs =4'(B) (A.22)

On substituting the values of o4, 05, Ao and Ag from (A.21) and (A.22) into
(A.19) and (A.20) we get,

% = Pl (ai(;*a%) (A.23)
2 = 00 (- %) (A.24)



When (A.23) and (A.24) are substituted in (A.13) and (A.14), we get,

~4'(B) [(@e —23) = (u+)(ts —ta)] = O (A.25)
fl@) (s +22) = (u—c)(ts +13)] = 0 (A.26)

f'(@) = 0 and ¢'(8) = 0 imply that f(«) and g(j) are constant and this along
with (A.15) and (A.16) implies that ¢ and thus the waterdepth is constant. So the

non-trivial solution of (A.25) and (A.26) are given by,

(mg—x,\) = (’U,+C)(fg'—'t,\) = [ (A27)

(:Ea + :I?)_) — (u — C) (ta == t,\) =5 (. (AQS)
The equations (A.27) and (A.28) can be rearranged to yield,

Ty — Uty +cty = 0, (A.29)

Ty +cte —uty = 0. (A.30)

Now z can be eliminated from (A.29) and (A.30) by differentiating (A.29) with
respect to A and (A.30) with respect to o. This results in a single equation for ¢

which is given by,

C(t/\-\ = toa’) = ('U,)‘ = ca)tu- + (CA + Ug)t,\ =10 (A31)
From (A.18),
c=0 and G = tll (A.32)
and from (A.17)
1
uy +ty = 3 and Uy = Lz (A.33)

On substitution from the expressions above, (A.31) simplifies to,

C(t)\)\ —tog) — %tg = (A.34)
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or,

From (A.17),
By = =i, (A.36)
Upy = —loo (A.37)
and Ury = —t,\,\ (ASS)

On substituting these into (A.35) we get,
O’(’U,,\)\ = 'U.m,-) — 31:50- ={) (ASQ)

On introducing a potential function QB(&, A) such that,

=72 A.40
u=t (A.40)
(A.39) reduces to
(O‘tﬁg)a = O’(,é}‘,\ =) (A41)
and, (A.17), (A.18) and (A.29) gives,
- %_u (A.42)
_h_ v
¢ = B-3 (A.43)
- v ¥
TE 4718 2 (Aa)

With these transformations, the nonlinear equations have been transformed
in a linear equation. The moving shoreline position has been mapped to o = 0 in
the transformed plane. The surface elevation, the velocity, the offshore distance and

time are obtained as explicit function of the independent variables o and A.
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Figure A.1: Carrier and Greenspan solution for surface elevation
cross-shore distance at different times.

A.3 Periodic case and it’s solution

One of the solutions of (A.41) is,

This results in,

¢

i

d(o, A) = Ady(o) sin A

AJy(0) sin A
o
AJy(o)cos A o  (AJi(o)sinA)?
4 16 20°
AJy(o)cos A (AJy(o)sin \)?
4 - 207
A AJi(o)sin A
7

as a function of

(A.45)

(A.46)
(A.47)
(A.48)

(A.49)

This represents the case of full reflection of an incoming wave from the shore-

line and forming a standing wave. Figure A.1 and A.2 shows the surface elevation

and the velocity profile respectively for A = 0.6 as a function of the cross-shore

distance = at different time t.
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Figure A.2: Carrier and Greenspan solution for velocity as a function of cross-
shore distance at different times.
A.4 Transient case and it’s solution
Some cases of the response of the release of a fixed initial shape of the water
surface elevation had been discussed by CG58. In one of these cases, the initial

waveform was given by a one parameter family of curves,

5 3 5
¢ = gl g2 W (A.50)
2 (a2 4022 2(a%+0?):
e
T —E+< (A.51)

where, a = 1.5(1 4 0.9¢)'/? and ¢ is the small parameter.

This represent the case where a mound of water with a depression near the
shoreline is released from the state of rest at time ¢ = 0. The solution for this case
is given by,

. B 1 3 1 -4\
R (S e O A R (( R VNP Y

N i 1 1—iA )
$ = 86&6{{(1—3’)\)2+02}1f2+Z{(1—z’)\)2+02}3r’2}’ (A.53)
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u?  a’c? Py
R, .. it A.b4
! 2 16 4’ W)
& = %—u, (A.55)
a’o?
= 4 ! A.56
¢ = 2+ %0 (250

Here o and A\ have been replaced by ao and a) respectively.

A.5 Solutions for fixed z and ¢

The solutions described above are given as u(o, A), (o, A), (o, A) and t(o, A).
Since most of the numerical models solve the governing equations along fixed z and
for constant time step, it’s needed here to obtain a suitable method to transform
these back for constant z and ¢ before it could be used to compare the results of
the numerical simulations. This is done here by finding ¢ and A such that dz is

constant and dt = 0. dz and dt are given by,

ot ot
ox ox

dt = 0 results in,
ot ot

On substituting from (A.59) to (A.58) we get,
oz 2\ 9z
de=|——-[2)—<|d .

e[ (3) %] -
Equations (A.60) and (A.59) can be used to find do and d\ at a constant time when
a constant dz has been specified. However, the first point known at any time is at
o = 0 and for the periodic case, co-efficient of do in (A.60) becomes zero at o = 0.
So, instead a constant do has been specified and value of z is calculated from (A.60).
For any time ¢, A(o = 0,1) is calculated from (A.42). Initial surface elevation

¢ is used to specify the initial condition in the numerical model whereas at other ¢

values it’s used to compare the result of the simulations.
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