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ABSTRACT

A numerical model based on finite-amplitude,  shallow-water
wave theory is developed to predict irregular wave breaking and transmission as well
as wave force on an innovative Shore-RIB structure that consists of one or
two tubes held by an anchored fabric shroud. The numerical model
slightly underpredicts the measured transmission coefficient which decreased
linearly with the increase of the ratio between the crest elevation of the structure and
the incident spectral significant wave height. The predicted maximum fabric tension
predicted using the computed maximum horizontal wave force is in fair agreement
with the measured tension. The difficulties in predicting the temporal
variations of the fabric tension due to intermittent tube oscillations are discussed
using the measured and predicted time series and spectra of the fabric tension.  For
practical applications, it is recommended to minimize the temporal range of the fabric
tension between the static fabric pre-tension and the predicted maximum fabric tension.



ACKNOWLEDGEMENTS

This study was supported partly by the U.S. Army Corps of Engineers, Coastal
and Hydraulics Laboratory under Contract No. DACA42-02-P-0041.

This report is essentially the same as the thesis written by the first author,
Hiroaki Hosoi, for the Master’s degree of the Department of Civil Engineering,
Nagoya University in Nagoya, Japan. The first author would
like to thank Professors Koichiro Iwata, Norimi Mizutani and Hiroshi Tagawa for their
valuable comments and encouragement to complete this thesis as the continuation
of his research at the Center for Applied Coastal Research, University of Delaware,
during April, 2001 to March, 2002.



Contents

ABSTRACT i
ACKNOWLEDTGEMENTS ii
1 INTRODUCTION [
2 EXPERIMENTS
2.1 Experimental Setup

3

3

2.2 Measurements )
3 NUMERICAL MODEL 8
8

8

9

3.1 Goveming Equations and Numerical Method

3.1.1 Goverming equations

3.1.2 Numerical method

3.1.3 Computational parameters and procedure: 11

3.1.4 Incident wave profile 12

3.2 Wave Reflection, Transmission and Energy Balance 12

3.2.1 Wave reflection 12

3.2.2 Wave transmission 13

323 Waveenergy balance 14

3.3 WaveForce 16

4 COMPUTED RESULTS 19

4.1 Six Tests Selected for Computation 19

4.2 Waves at Seaward and Landward Boundaries 19

4.3 Free Surface Elevation and Depth-averaged Velocity 20

4.4 Wave Energy Balance 22

5 WAVE TRANSMISSION COEFFICIENT AND FABRIC TENSION - 25
5.1 Wave Transmission Coefficient and Wave Reflection Coefficient

5.1.1 Wave reflection coefficient 25

5.1.2  Wave transmission coefficient 25

5.2 Prediction of Fabric Tension 27

5.2.1 Horizontal and vertical wave forces 27

5.2.2 Measured fabric tension 29

523 Semi-empirical prediction method 29

5.3 Measured and Predicted Temporal Variations of Fabric Tensione 33

6 SUMMARY AND CONCLUSIONS 36

REFERENCES 37

APPENDIX: COMPUTED RESULTS 39



1 INTRODUCTION

In many coastal countries the economic activities and population are concentrated along the coastline.
The utilization and development of the coastal regions are likely to increase in the future. As a result, it is
essential to maintain and improve port and harbor facilities and to develop mitigation measures against
coastal hazards caused by storms and tsunamis. At the same time, coastal utilization and development will
need to be sustainable and in harmony with the coastal environment. Coastal structures will remain
essential for future coastal utilization and development as reviewed by Kobayashi (1999).

Breakwaters with low crests have been constructed for shoreline stabilization and harbor protection. The
low crest reduces construction cost but increases wave transmission. The wave transmission coefficient
defined as the ratio between the incident and transmitted wave heights depends on the incident wave
characteristics, the crest height and width, and the structure slope, roughness and permeability on the basis
of available empirical formulas (D’ Angremond et al. 1996; Seabrook and Hall 1998). The most important
parameter for the empirical estimation of the wave transmission coefficient is the ratio between the crest
height above the still water level and the incident design wave height such as the significant wave height.
On the other hand, Kobayashi and Wurjanto (1989) developed a time-dependent numerical model to
examine the wave dynamics involved in wave reflection, breaking and transmission over a submerged
breakwater. Their numerical model was shown to be in good agreement with a set of laboratory data on
regular wave reflection and transmission coefficients.

On the other hand, softer, flexible or floating structures have also been constructed to reduce the
construction cost in comparison to the solid structures fixed on the seabed. Ohyama et al. (1989) proposed
a flexible mound consisting of a horizontal membrane bag filled with water and attached to the seabed.
They developed a linear wave model to study the wave transmission and reflection characteristics of the
flexible mound and compared their model with experimental data. Phadke and Cheung (1999) improved
their linear wave model by analyzing the membrane more realistically. Other membrane structures
attached on the seabed were examined by Broderick and Leonard (1995), Liapis et al. (1996) and Devi et
al. (1999). Milgram et al. (1971) examined the structural and hydrodynamic forces on a flexible, floating
barrier used as a containment device for floating liquid pollutants such as oil. Sawaragi et al. (1989)
calculated wave reflection and transmission by a submerged vertical membrane lifted by floats. Cho et al
(1997) investigated the performance of flexible-membrane wave barriers, whereas Ohyama et al. (2000)
computed the floating-body motion in nonlinear random waves.

Van der Meer et al. (2000) conducted laboratory experiments and analyzed the spectral changes
between incident and transmitted waves. Kobayashi and Wurjanto (1992) developed a numerical model
to investigate irregular wave setup and runup on beaches. Kobayashi and Raichle (1994) applied this
numerical model to predict irregular wave overtopping of revetments in the surf zone.

The U.S. Army Corps of Engineers, Coastal and Hydraulics Laboratory has been developing a
nearshore rapidly-installed breakwater (Shore-RIB) to protect and facilitate landing operations for
nearshore logistics over the shore as illustrated in Fig. 1.1.  One of the Shore-RIB concepts tested in a
wave flume by Melby and Resio (2002) consisted of water-filled high-tenacity high-strength fabric tubes
held by an anchored fabric shroud. Since only fabric shroud and tubes are required, the construction cost
of this structure is much less than a conventional type of breakwater. In addition, the Shore-RIB can be
removed and redeployed at another site. Consequently, civilian applications of the Shore-RIB are
promising at sites of moderate wave action. Melby and Resio (2002) measured the wave forces on the
fabric shroud covering the tubes and the irregular wave transmission coefficient for ranges of incident
wave conditions, structure freeboards, structure configurations, and shroud pre-tension. In designing such



breakwaters, it is essential to predict the wave reflection and transmission coefficients, wave forces, and
structure response. A numerical model is developed here to predict the irregular wave breaking and
transmission and the wave force on the submerged and emerged Shore-RIB structures. The numerical
model is verified using the laboratory measurements by Melby and Resio (2002). The verified numerical
model is used to examine the cross-shore and temporal variations of the free surface, horizontal velocity
and pressure on the structure which were not measured in the experiments. The numerical model and the
quantitative understanding gained from the predicted wave dynamics can be used to optimize the
Shore-RIB configuration because it is easier to change the structure geometry and examine the
corresponding wave dynamics in the numerical model.

In the following, the experiments and measurements of the wave transmission coefficient and fabric
tension performed by Melby and Resio (2002) are summarized in Chapter 2 because their experimental
results are essential in this study but are not available easily. In Chapter 3, the numerical model developed
in this study is presented in detail. In Chapter 4, the computed results including the reflection coefficient,
transmission coefficient, free surface profile and horizontal velocity variation, time-averaged wave energy
balance and wave forces on the Shore-RIB are presented and discussed. In Chapter 5, comparison is made
between the measured and computed wave transmission coefficients. In addition, the maximum fabric
tension measured for each test is predicted using the maximum horizontal wave force predicted by the
numerical model. Finally, Chapter 6 presents the summary and conclusion of this study.

Fig. 1.1 Idealized View of Nearshore RIB Concept (Melby and Resio 2002)



2 EXPERIMENTS

2.1 Experimental Setup

A small-scale physical model study was conducted by Melby and Resio (2002) to investigate the
functional and structural response of the nearshore RIB system in the U.S. Army Corps of Engineers,
Coastal and Hydraulics Laboratory. The maximum anchor loads and the resulting tensile loads in the
fabric shroud were measured in their study. In addition, the functional performance of the structure,
defined primarily by wave transmission, was measured. The structure and anchor loads and the functional
performance were anticipated to be a strong function of the structure geometry defined by the crest height
or freeboard, the seaward slope of the shroud, the cross-shore width of the structure, and the freespan
length of the shroud, as well as the incident wave conditions and water level. Their experiments are
summarized in the following.

In their conceptual study, various structure configurations were tested including a single tube structure
and a two-tube structure, both with varied freeboard. The study was conducted in a wave flume that was
0.91 m wide, 0.91 m deep, and 45 m long. The 0.91-m-wide flume width was divided into two channels,
one 0.61 m wide and the other 0.30 m wide. The structure was constructed to span the 0.61-m-wide flume
while the 0.30-m-wide flume was left open in order to measure incident waves unaffected by the structure.

Irregular waves were generated using the TMA spectrum with the spreading parameter of 3.3 by a
piston-type wave maker. Each 15-min time series was generated using a random phase method. In this
technique, the phases of the Fourier components are chosen at random but the amplitudes are set
deterministically according to the target spectrum. The resulting wave records have spectra that exactly
match the target spectrum. The maximum and minimum frequencies were set to 3.0 and 0.1 Hz,
respectively.

Waves shoaled up with a uniform slope of 1:82. Water surface elevations were measured at 9 locations
in the flume. Fig. 2.1 shows the flume layout with the wave gage locations. Two gage arrays, consisting of
3 gages each, were placed in shallow water and deep water. In the gage arrays, the seaward two gages
were separated by 0.305 m while the two landward gages were separated by 0.610 m. There were two
gages placed 2.22 m and 3.00 m directly landward of the structure toe and one gage located in the open
channel coincident with the structure toe. The wave data were collected at 50 Hz for 590 sec from the
15-min wave generation. A total of 30 seconds was removed from the start of each wave record. Tables 1
and 2 list model test parameters for the three plans tested. In Tables 1 and 2, the depth at the structure toe
was measured at the point where the seaward slope would intersect the bottom. The freeboard is defined as
the distance from the still water level to the crest of the largest cylinder as shown in Fig. 2.2.
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Fig. 2.1 Wave Flume Layout with Structure and Wave Gage Locations
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The structure was anchored to an aluminum 2 load cells

plate that was bolted to the concrete floor as TR Freeboard PVC pipe
shown in Fig. 2.2 where the 7.6 cm-deep sand

layer placed on the concrete floor to avoid
sudden depth changes is not shown in this and
subsequent figures. The structure spanned the
full width of the 0.61-m-wide flume. The tubes
were constructed of PVC pipe and were Spreader Plate
effectively infinitely stiff compared to the Im_lm% #1.0cm 1
shroud. The tubes were free to move under the

shroud. The shroud was sandwiched in a  pjg 22 Shore-RIB Layout and Support Configuration
spreader plate on both ends, each spreader plate

consisting of two 1-mm-thick aluminum plates.

The spreader plates were 3.9 cm wide and spanned the full width of the flume. The shoreward plate
connection was connected to the base plate using 4 shackles. The seaward end was connected to two I mm
diameter steel cables which ran through the steel plate, around pulleys, and back up to the 2 load cells that
were mounted to a rigid support structure above the model. Using this setup, the sum of the measured
forces in the two load cells would be equivalent to the total longitudinal force in the fabric. The model
shroud material was a 284-gram polyester with approximate thickness of 0.25 mm.

Forces in the fabric shroud were measured using 2 load cells. The preload in the fabric shroud was used
to cause the static tension in the fabric shroud. The tension force per unit width in N/m was the sum of
the two load cell forces divided by the width of the flume (0.61 m). Values were given for both pre-test
and post-test loads. The movement of the tube(s) during the test caused the preload to decrease, for the
high preload cases, or increase for the low preload cases, although some tests deviated from this. The
average of the pre-test and post-test loads is used here to obtain the static tension force per unit width for
each test.

,—_-““‘_ZL

Fabric Shroud Aluminum Plate

2.2 Measurements

A spectral analysis of each wave gage record was performed. The spectral density was obtained by
smoothing the modified periodogram of each record. A cosine bell data window with nondimensional
length of 0.1 was used to reduce leakage. The modified periodogram was smoothed using a moving
average filter with filter length set to obtain a filter bandwidth of 0.05 Hz. The high and low frequency
cutoffs were 3.0 and 0.1 Hz, respectively. The resulting spectral significant wave height was used to
describe the wave height. It is defined as H,,, = 4my"* with mg=zero moment of the wave spectrum. The
spectral peak period is defined as 7,” = 1/f,"where f,is the frequency at the spectral peak. The prime is
used to indicate the dimensional variables. The wave height and period in Table.l and 2 are those
measured in the open flume at the structure toe. The toe water depth, i freeboard, R, incident wave
height, H,,, wave period, T, and fabric pre-tension were all varied systematically in order to define the
response of the system over a wide range of wave and pre-tension conditions.

Three different structure plans were tested. Fig. 2.3 shows Plan 1. This plan consisted of a 32.3-cm
diameter PVC tube that was free to roll and slide under the fabric shroud. A 94-N weight was placed
inside the tube. The tube was open on the ends and therefore filled with water to the still water level. Fig.
2.4 shows Plan 2. This plan was similar to Plan 1 except the weight was removed from inside the tube and
small wood chocks were added to either side of the tube to prevent rolling. Fig. 2.5 shows Plan 3. In this



plan, the single 32.3-cm tube was replaced by two O 323emdia PVC oo
tubes with diameters 21.8 cm and 27.5 cm. The
largest tube was on the landward side of the structure.
For plan 3, both tubes included wood chocks to
prevent rolling.

For all plans, the tests consisted of a series of
different waves and water levels. In addition, each
test was run with low and high pre-tensions in the
fabric shroud. The fabric shroud was preloaded by  Fjg 23 Cross-sectional Layout of Plan 1 Structure
tightening turnbuckles that connected the anchor
lines to the load cells. The low pre-tension was
roughly 5 N in each load cell, which was the lowest O 32 3em dia PVC
possible to prevent flapping of the shroud. The high
pre-tension was approximately 40 N in each load cell.
Table 2.1 and 2.2 list the static tension force per unit
width, T, for each test.

When testing Plan 1, the tube oscillated seaward
and landward approximately 18 cm during the tests
with low preload. This movement occurred partly
because the tests were begun with the tube in its  pjg 2 4 Cross-sectional Layout of Plan 2 Structure
furthest landward position. The tube always migrated
toward the geometric center of the structure with
significant oscillations about the center primarily as a O
function of wave period and the phasing of the waves.
The tube movement was reduced to 9 cm with high
preload and with the tube placed initially in the
center position. For Plans 2 and 3, the lateral
excursion was much lower for both the low and high
preload cases, primarily due to the addition of JO/
wooden chocks connected to the base of the PVC
tubes. These chocks crudely simulated the resistance
to sliding and rolling that would be present in the
prototype structure because the prototype fabric tubes
would assume an oblate shape on the bottom of the ocean. For Plan 2, all tests began with the tube in the
center and the maximum excursion was about 5 cm for all tests. For Plan 3, all tests began with the contact
point between the two tubes placed at the center of the structure and the maximum lateral excursion
ranged from 0 to 2.5 cm.

Table 2.1 and 2.2 list the wave transmission coefficient and measured maximum tension in the fabric.
The wave transmission coefficient is defined as K=(H,," )/(Hyuo" )i where (H,,” ), is the transmitted
spectral significant wave height and (H,,,”); is the corresponding incident wave height. The maximum
fabric tension force per unit width, 7, is the sum of the maximum force in each load cell divided by the
width of the flume. It is noted that the wave transmission coefficients measured at the two locations in
Fig. 2.1 were found to be practically the same. Hence, the average value for each test is listed in Table
2.1 and 2.2

1.27em

27.5¢m dia 1.27cm
21.8cm dia

Wood Chock

Fig. 2.5 Cross-sectional Layout of Plan 3 Structure



Table 2.1 Wave Conditions, Transmission Coefficient, Static and Maximum Tension for Plans 1 and 2

Incident Incident - ) i
Depth at Tranmission Static Maximum
Freeboard Wave Wave . . ;
Test Toe 2 . ; Coefficient Tension Tension
W i) R, “(cm) Period Height K, T./(N/m) T, “(N/m)
T, “(sec) | Hy, (cm) . i
1.1 1.4 11.3 0.67 0.0 382.3
1.2 2.1 12.1 0.71 0.0 393.1
1.3 1 11.6 0.71 0.0 413.6
1.4 1.4 11.3 0.64 68.9 327.2
1.5 1.4 11.7 0.51 97.9 341.0
1.6 1.3 11.6 0.48 169.8 281.0
1.7 1.9 12.5 0.49 135.6 370.8
1.8 2.0 12.9 0.47 138.2 413.4
1.9 20.4 2.9 | 12.2 0.48 136.9 313.8
1.10 2:1 12.5 0.52 132.8 457.0
1.11 2.6 12.9 0.53 126.4 487.2
1.12 2.7 13.5 0.51 143.4 519.0
2.1 1.4 12.0 0.47 124.1 225.7
2.2 1.7 12.3 0.51 124.1 289.3
2.3 22 12.8 0.49 124.1 313.1
2.4 1.4 11.7 0.47 14.8 211.0
2.5 17 12.3 0.49 14.8 310.0
2.6 2.2 12.9 0.47 14.8 419.2




Table 2.2 Wave Conditions, Transmission Coefficient, Static and Maximum Tension for Plans 3

Incident Incident o . .
Depth at Tranmission Static Maximum

Freeboard Wave Wave ) A .

Test Toe . . Coefficient Tension Tension
, R. “(cm) Period Height p P
h”(cm) o - K, T "(N/m) Tax (N/m)
T, “(sec) | Hy, (cm)

3.1 1.3 9.8 0.41 119.7 163.1
3.2 1.4 9.8 0.44 126.2 162.5
33 1.7 9.7 0.46 126.2 165.1
34 1.7 9.8 0.49 124.8 174.1
3.5 2.0 9.6 0.49 127.2 162.0
3.6 23 10.0 0.48 129.7 154.9
3.7 24.6 19 24 10.1 0.50 131.0 160.3
3.8 1.3 9.6 0.40 14.9 82.1
39 1.4 9.9 0.42 15.7 88.7
3.10 17 9.8 0.43 14.9 87.5
3.11 1.7 9.8 0.46 14.8 97.9
3.12 2.0 9.6 0.47 15.7 89.8
3.13 2.3 10.0 0.46 14.9 97.9
3.14 24 104 0.47 14.9 108.0
3.15 1.3 11.3 0.59 104.4 171.5
3.16 1.7 12.4 0.60 133.6 177.9
3.17 2.2 12.0 0.63 132.1 169.7
3.18 2.3 12.7 0.63 139.3 174.3
3.19 30.2 27 23 12.9 0.65 140.8 177.9
3.20 1.2 11.3 0.53 22.6 140.7
3.21 1.7 12.5 0.55 33.6 148.5
3.22 22 12.0 0.60 34.3 168.0
3.23 2.3 12.4 0.61 55.4 183.4
3.24 24 12.6 0.62 17.4 149.5
3.25 1.2 7.7 0.23 119.0 133.8
3.26 1.6 8.1 0.27 119.0 128.4
3.27 2.1 7.9 0.29 115.2 143.1
3.28 22 8.1 0.31 124.1 157.9
3.29 2.6 8.1 0.32 126.2 148.0
3.30 1.4 9.1 0.27 126.2 161.8
3.31 1.6 9.7 0.31 133.6 164.9
3.32 2.1 9.6 0.32 131.5 165.9
3.33 22 9.6 0.33 131.5 160.5
3.34 19.8 77 2.6 9.6 0.33 131.5 149.0
3.35 1.4 10.1 0.28 119.0 152.0
3.36 1.6 10.5 0.33 119.0 168.7
3.37 2:1 10.2 0.35 130.0 162.0
3.38 2.2 10.1 0.35 133.0 158.9
3.39 2.6 10.2 0.35 135.1 161.8
3.40 1.4 9.8 0.26 29.2 84.6
341 1.6 10.2 0.30 349 101.0
3.42 2.1 10.0 0.30 41.7 107.9
3.43 22 10.1 0.31 41.6 119.5
3.44 2.6 10.1 0.32 39.3 113.3




3 NUMERICAL MODEL

The numerical model adopted in this study is explained in this chapter. The governing equations,
numerical method and computational procedures are expressed in Chapter 3.1. The computation methods
for wave reflection, wave transmission and energy balance are described in Chapter 3.2. The computation
method for predicting the wave force is derived in Chapter 3.3.

3.1 Governing Equations and Numerical Method

3.1.1 Governing equations

In order to predict the irregular wave
motion and resulting force on the Inci Az

) ncident !

Shore-RIB  structure, the numerical Wave .
model developed by Kobayashi and
Waurjanto (1989) is modified here. The
wave motion on the structure, which is
assumed to be impermeable and
stationary, is computed for the irregular
incident wave specified at the seaward
boundary of the computation domain as
shown in Fig. 3.1. The landward
boundary located at x’=x,” is also shown. Fig. 3.1 Definition Sketch
The prime indicates the dimensional
variables in the following. The symbols
shown in Fig. 3.1 are as follows: x’=horizontal coordinate taken to be positive landward with x’=0 at the
seaward boundary; z’=vertical coordinate taken to be positive upward with z’=0 at the still water level
(SWL); d/=water depth below SWL at the seaward boundary; d,’=water depth below SWL at the landward
boundary; " =local angle of the slope which may vary along the slope; 7/=free surface elevation above
SWL; h’=water depth above the impermeable slope; and u'=depth-averaged horizontal velocity.
Kobayashi and Wurjanto (1989) computed wave transmission over a submerged structure as shown in Fig.
3.1. Their numerical model is extended here to compute wave transmission over both emerged and
submerged structures.

For the flow over the impermeable structure, the vertically-integrated equations for mass and
x’-momentum for finite-amplitude shallow-water waves are expressed as (Kobayashi et al.,1987)

: SWL

—————————————————— ___*

ah' a (h‘ =0 3.1)
a:

—“‘(h‘ |)+ (h-l vZ
where 17 =time; g=gravitational acceleration; and f”=constant friction factor related to the shear stress

acting on the structure. Use is made of =0 in the following computations because the surface of the
fabric shroud is smooth and essentially impermeable.



The following dimensionless variables and parameters are introduced to normalize Egs. (3.1) and (3.2):

t=tIT" ; x=xMT.(gH,)"] 5 w=ullgH )" (3.3)
e=ZIH'; h=WIH'; n=n'/H,' ; d, =d,'IH, (3.4)
o=T'(g/H")"* ; 0=cwn8 ; f=0 f12 3.5)

where T,’=representative wave period; H,'=representative wave height; o =parameter expressing the ratio
between the horizontal and vertical length scales; @=dimensionless gradient of the slope; and f
=normalized friction factor. In the following computation, use is made of 7,'= T, and H,’= H,,,” where
T,/= incident wave spectral peak period and H,,’= incident wave spectral significant wave height. The
representative wave period and height used for the normalization can be taken as the period and height
used to characterize the incident wave for a particular problem.

Substitution of Egs. (3.3)-(3.5) into Egs. (3.1) and (3.2) yields

oh 9

—+—(hu)=0 6
at+ax( “) (3:6)
0 9, , 1,

i o —i( —h)=-0h- A
ar(hu)+ax(u *e )=—60h—f|u|u (3.7)

where @ and f express the effect of the slope and friction, respectively. In term of the normalized
coordinate system, the slope is located at

2= [ 0dx—d, ; x20 (3.8)

which reduces to z =(6x—d,) for a uniform slope.

3.1.2 Numerical method

The initial time #=0 for the computation marching forward in time is taken to be the time when the
specified incident wave train arrives at the seaward boundary located at x=0 as shown in Fig. 3.1. The
initial conditions for the computation are thus given by #=0 and u=0 in the region x20. It is noted that h
and 7 are uniquely related for given slope geometry expressed by Eq.(3.8).

Egs.(3.6) and (3.7) are combined and expressed in the following vector form:

oU OF
—+—+G=0 3.9
ot Ox R
i U= m . F= mu +0.5h" . G- 6'h+f|u|u (3.10)
h m 0

where m=uh is the normalized volume flux per unit width. The vectors F and G depend on the vector U
for given fand f.



Eq. (3.9) is discretized using a finite difference grid of constant space size Ax and constant time step 4t
based on an explicit dissipative Lax-Wendroff method. In the following, the known quantities at the node
located at x=(j-1) Ax (j=1,2,...je) and at the time t=(n-1)At are indicated by the subscript j without a
superscript. The integer je indicates the landward boundary node located at x = x,. The unknown
quantities at the node j and at the time t=nA4r are denoted by the subscript j with the superscript * where
the asterisk indicates the quantities at the next time level. The values of U,* and Uj,* are computed using
the seaward and landward boundary conditions, respectively. The values of U for j=2,3,..., (je-1) are
computed using the known values of U}, U; and Uj,, at the time =(n-1)At (Kobayashi et al., 1987)

2

. 1 A
U;=U, ”’I[E(Fm —Fj_l)+Aij}+?(gj ~8;4—A0x85,)+D, (3.11)

where A=At/Ax and if the computed value of i;* turns out to be negative, use is made of h* = 0, u* =0
and m;* = 0 to account for possible dry nodes on the structure. The vector g; in Eq. (3.11) is given by

1 Ax
By E(Am +4, {Fn: ~F, +7(G,-'+l "'G;')] 2
2u .
with A=[ . L )} (3.13)
| 0

The vector §; in Eq. (3.11) is defined as

S, = [A““"J - 0'59:'0(’”1“ = mH)} (3.14)
2flu [ (2 - 0., -n_) w(m, —m,_
with e, = hl} JI|:(“,‘ IJ(EA:S j I)_u,r(m(_;zi&x)mj l)_gjhj ".fl“;|u; (3.15)

where h; in the denominator on the right hand side of Eq.(3.15) is replaced by & = 0.001 if 0 < h;<d to
avoid the division by a very small number.

The vector D; in Eq. (3.11) represents the additional term for damping high frequency parasitic waves,
which tend to appear at the rear of a breaking wave, and is given by

DJ =%bj(Uj+l_Uj)_Qj—l(Uj_Uj-l)] (3.16)

. I
with Qj=pj1+5qj(Aj+Aj+,) (3.17)

where I = unit matrix; and the coefficients p; and g; are given by

10



_1[e

Win = WJ|(vJ +Vj0) =&V = “’;l(“’j T Win ):I
Py (c,+¢,n) (3.18)

e

Vs —vjl“gzlen _w,:'”
(cj +cj+l)
12

with ce=h i v=u+c ; w=u-c (3.20)

(3.19)

q; =

where & and & are positive damping coefficients determining the amount of numerical damping of high
frequency parasitic waves at the rear of a breaking wave. The denominator (¢;+c;,;) on the right hand sides
of Egs. (3.18) and (3.19) is replaced by 6= 0.001 if 0 < (¢; + ¢j41) <O.

The numerical stability criterion for this explicit finite difference method is given by

(3.21)

where u,,=maximum value of u expected to be encountered in the flow field; ¢,=maximum expected value
of h'* and e=greatest coefficient of £, and &,.

3.1.3 Computational parameters and procedure

The values of Af, Ax, & and & used in the
following computation are discussed below. The
dimensional grid spacing Ax'=0.5 c¢m is used to ﬂ"“‘ foreach cm/
resolve the spatial variation of the breaking wave ; !

) ) Input Incident Wave
whose height is on the order of 10 cm. The / at Seaward Toe /
number of grids along the x-axis is 163 for each =l
case as will be explained in Chapter 4. The Calculation of

Governing Equations

normalized time step 4t is 1/3300-1/3000 to resolve
the rapid temporal variation of the breaking wave
and to satisfy Eq.(3.21). The damping coefficients
& and & are taken as & = &= 2.0 as recommended
by Kobayashi and Wurjanto (1989) for computing

nsatisfied

Check Numerical U
tability Criterio

Satisfied
( sTop )

e Calculation of Wave
regular wave transmission over a submerged Enery Baliice
trapezoidal breakwater. and Wave Force

Next Time Step

As summarized in Fig. 3.2, the computation N
procedure is explained as follows:
I. Input the structure geometry, computation ﬁutpm Computed RW
parameters, and initial conditions as well as the
b-ENI)

measured incident irregular wave profile at the

seaward boundary at the beginning of each
Fig. 3.2 Computation Procedure
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computation.

2. Perform the time marching computation using Eq. (3.11) and the boundary algorithms which will be
explained in Chapter 3.2.

3. Check whether the numerical stability criterion given by Eq. (3.21) is satisfied or not. The
computation stops if it is not satisfied.

4. Calculate the wave energy balance which will be explained in Chapter 3.2, and the wave force acting
on the Shore-RIB structure as will be explained in Chapter 3.3.

5. Continue the computation for the specified duration.

6. Store the computed results for output.

3.1.4 Incident wave profile

The measured temporal variation of 7, (¢) from each of the laboratory tests conducted by Melby and
Resio (2002) is normalized and specified as input for the incident wave. The measured time series for the
duration of 30-590 s sampled at the rate of 0.02 s is used for the computation by removing the initial
transition of 30 s. The computation duration is hence for 1”= 0 — 560 s. A linear interpolation of the input
time series is employed to obtain the value of 7,(7) at each time step because the time step At is much less
than the data sampling rate of 0.02 s.

The initial conditions for the computation requires no wave at the initial time #=0. A smooth transition
over the first wave period is introduced using a sine function with 7, = 0 at =0 to satisfy the initial
condition.

3.2 Wave Reflection, Transmission and Energy Balance
In order to derive appropriate seaward and landward boundary conditions, Eqs. (3.6) and (3.7) are
expressed in the following characteristic forms

dar da flefe  ax

8r+(“+c)8x 0 3 - u+c (3.22)
of af f|1¢|u dx

ot —0)— = g =g .23
™ +(u c)ax 0+ 7 g (3.23)

with  ¢c¢=h"?; a=u+2c ; B=-u+2c (3.24)

where azand £ are the characteristic variables.

3.2.1 Wave reflection

Assuming that u < ¢ in the vicinity of the seaward boundary where the normalized water depth below
SWL is d,, a and f represent the characteristics advancing landward and seaward, respectively, in the
vicinity of the seaward boundary. The total water depth at the seaward boundary is expressed in the form
(Kobayashi et al. 1987)

h=d, +n,@)+n.(t) at x=0 (3.25)
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where 7; and #, are the free surface variations normalized by H,” at x=0 due to the incident and reflected
waves, respectively. The incident wave train is specified by prescribing the variation of 7; with respect to
20. The normalized reflected wave train 7, is approximately expressed in terms of the seaward advancing
characteristic f at x=0

n,@) = %d,‘”ﬂ(r) -d, at x=0 (3.26)

where fis given by Eq. (3.23).

It is also required to find the unknown value of the vector U;* at x=0 and the time t=n4¢ which cannot
be computed using Eq. (3.11).

A simple first-order finite difference equation corresponding to Eq. (3.23) with f=0, where the bottom
friction is negligible in finite depth, is used to find the value of £, * at x=0 and the time t=n4t

ﬁl* = ﬁl *%(Hl —C )(ﬂz - ﬂl) + Atg[ (3.27)

where B, =(-u, +2¢,) and B, =(-u, +2c,).

The right hand side of Eq. (3.27) can be computed for the known values of U; with j=1 and 2 at the time
t=(n-1)At where the spatial nodes are located at x = (j—1)Ax. The value of 7, at the time t=nAt is
calculated using Eq. (3.26). Eq. (3.25) yields the value of h;*, while u; = [2(»‘1,*)”2 —ﬂ,‘] using the
definition of /3 given in Eq. (3.24). Thus, the values of &,*, u* and m,*=u,*h,* at x=0 and = nAt are
obtained.

The reflection coefficient K, at x=0 is estimated as the ratio of the reflected wave standard deviation
and the incident wave standard deviation

1/2

e N
K, = w (3.28)
n;

where the overbar indicates the time averaging for the entire computation duration. Eq.(3.28) accounts for
the difference 77, between the still water level and the mean water level at x=0 where 7(1) is specified
such that 7, =0.

3.2.2 Wave transmission

It is assumed that the transmitted waves at x = x, propagate landward without being reflected from
the shoreline and the transmitted water flows landward without a return current. Assuming that u<c in the
vicinity of the landward boundary located at x = x, where the normalized water depth below SWL is
d.=d/IH,, o represents the characteristics advancing landward in the vicinity of the landward boundary.
The boundary conditions at x = x, are expressed as (Kobayashi and Wurjanto 1989)

h=d,+n,G@) at x=x, (3.29)
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n,@) = %dj”a(t) —-d, at x=x, (3.30)

where 7, is the free surface oscillation at x = x, normalized by H,” due to the transmitted wave. Eq.
(3.30) expresses the transmitted wave train 7, in terms of the landward-advancing characteristic & given
by Eq.(3.22) in a manner similar to Eq.(3.26) for the reflected wave train. U ;e is computed in the
following manner. A simple first-order finite difference equation corresponding to Eq. (3.22) with f=0,
where the bottom friction is negligible in finite depth, is used to find the value of & * at x = x, and the
time t=nAt

. At
e = e = (e + €, M@y = o)) = AL, (3.31)

where @, =(u, +2¢;) and @, =, :PZCJe_l). *a;-e* is computed at t=ndt usin*g Eq. (3.31)
and 7/ at t=nAt using Eq. (3.30) with = a,,. Then, h,, is computed as h;, =(d, +7,) from Eq.
(3.29), while u; = [a;e - 2(h;¢)”2] . Thus, m:.e = h;u;‘, and U;.? is obtained.

The transmission coefficient K, associated with the computed wave train 77,(¢) is estimated as the ratio
of the transmitted wave standard deviation and the incident wave standard deviation assuming d, =d,.
172
2

= (??: __'?_;)
n'

K (3.32)

t

The transmission coefficient (K,),., based on the ratio between the spectral transmitted significant wave
height (H,,,), and the spectral incident significant wave height (H,,,); is defined as

(Hma )!' (3.33)

(Ku' )nm = (H

mo )i

where K, = (K)n, because H,,=40;, with 0, = standard deviation of the time series of 7 used to compute
the corresponding spectrum. On the other hand, the transmission coefficient (K,),,; is also computed
as the ratio between the transmitted significant wave height (H,,;), and the incident significant wave
height (H,,),

(HIH):
Ky = ]
Pt (H,;3)

where the significant wave height H,,, is the average height of the highest 1/3 waves based on the
zero-upcrossing method for the irregular wave profile. If the wave height distribution follows the
Rayleigh distribution and linear wave theory is valid, the transmission coefficients defined above are
expected to be the same.

(3.34)

3.2.3 Wave energy balance
The normalized equations of mass and x-momentum given by Egs. (3.6) and (3.7) are used to compute
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the flow field. The normalized energy equation corresponding to Eqgs. (3.6) and (3.7) are expressed as
(Kobayashi and Wurjanto 1989)

oE 0
with
E=%(huz +n?) for h=n (3.36a)
l 2 2 2
E=§[hu +n*=(h-n)*] for h<n (3.36b)
uz
E, =u}{?+nJ (3.37)
D, = flulu’ (3.38)

where E =normalized specific energy defined as the sum of kinetic and potential energy per unit horizontal
area; Ep =normalized energy flux per unit width; D;=normalized rate of energy dissipation per unit
horizontal area due to bottom friction; and Dg=normalized rate of energy dissipation per unit horizontal
area due to wave breaking. The dimensional rate Dy’ of energy dissipation due to wave breaking is given
by Dy'=( pgH,*IT,)Dy where p=fluid density, which is assumed to be constant neglecting air bubbles.
The normalized potential energy is taken to be relative to the normalized potential energy at /=0 when the
incident wave train arrives at x=0 as shown in Fig. 3.1. Egs. (3.36a) and (3.36b) are applicable for the
portion of the structure below and above SWL, respectively.

Since the wave energy balance is normally analyzed in terms of the time-averaged quantities, the
time-averaged dissipation rate, D, due to wave breaking is computed using the time-averaged energy
equation derived from Eq. (3.35)

P d T— S—
Dy =~—-(E;)=D, (3.39)

The present numerical model needs to predict that D—B is positive or zero depending on whether wave
breaking occurs or not. The energy flux E, should decrease with the increase of x, while D, 20
since Dy defined in Eq. (3.38) is positive or zero.

Integration of Eq. (3.39) from the seaward boundary to the landward boundary yields the time-averaged

energy equation for the region 0 < x <x,
EF(x=0)—E_F(x=xe)=L'(DJ,+DB)dx (3.40)

where the first and second terms on the left hand side of Eq. (3.40) are the values of E_F at x=0and
x = x,, respectively. Eq. (3.40) implies that the difference between the net energy fluxes at the seaward
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and landward boundaries equals the rate of energy dissipation between the two boundaries.
The specific energy E and the energy flux E, at the seaward boundary, where 7= (1, +1,) at
x=0 from Eq. (3.25), are approximately given by Kobayashi and Wurjanto (1989) using linear wave theory

E=n>+@m, -1,) at x=0 (3.41)
E, =d® [n_f —(n, ~77_,)2] at x=0 (3.42)

where d,'* is the normalized group velocity at x=0 based on linear long wave theory. The reflection
coefficient K, given by Eq. (3.28) includinglhe effect of 77, is based on Egs. (3.41) and (3.42).

On the other hand, the specific energy E and the energy flux E, at the landward boundary, where
n=mn, at x=x, , are approximated by use of linear wave theory

E= (7.~ E)z at x=1ux, (3.43)
E_F =d)*(n, —E)z at x=ux, (3.44)

where d,'?is the normalized group velocity at x=x, based on linear long wave theory. The transmission
coefficient K, given by Eq. (3.32) for the case of d,=d, is based on Eqgs. (3.43) and (3.44).

3.3 Wave Force

The horizontal and vertical wave forces on the entire
Shore-RIB structure per unit width are predicted and
used to estimate the measured fabric shroud tension per
unit width.

The hydrostatic pressures on the upper and lower
sides of the fabric shroud are balanced when there is no
incident wave. The wave-induced pressure is
assumed to act on the upper surface of the fabric
shroud. The wave-induced pressure P,,”is hydrostatic
below the instantaneous free surface elevation 7’ for
finite-amplitude shallow-water waves Fig. 3.3 Wave Pressure on Infinitesimal

Structure Surface

P,'= pgn' (3.45)

where p =water density, g=gravitational acceleration, 7”= dimensional free surface elevation above the
Shore-RIB structure.

By the consideration of an infinitesimal surface of the fabric shroud with the length increments Ax” and
Az’=tan@Ax ", and the surface length [(AY')*+(A4z”)*)" as shown in Fig. 3.3, the dimensional horizontal
force AF, and the dimensional vertical force AF, are given by

AF,'=P,'sin0'[ (Ax)* +(Az ‘)2]”2 (horizontal force) (3.46)
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AF,'=P,'cos @' (Ax)* +(Az)* ] (vertical force) (3.47)

with

Az tan @' Ax - Ax (3.48)

[y +@aey]” [y +@ay]” [(Ax)?+az)?]"

sin@'=

where the horizontal force is taken to be positive in the positive x“(landward) direction and the vertical
force is taken to be positive downward.
Substitution of Eq. (3.48) into Eqgs. (3.46) and (3.47) yields
AF,'= P,'tan @' Ax' (3.49)
AF,'=P,'Ax' (3.50)

where the local bottom slope tan@”is known for the specified bottom geometry. The total dimensional
horizontal force F,”per unit width and the total dimensional vertical force F,’ per unit width in the region
0<x'<x,' are hence expressed as

F,'= L*"Pw 'tan 0" dx" 3.51)

F'= _L’"Pw'dx' (3.52)
Substitution of Eq. (3.45) into Egs. (3.51) and (3.52) yields

F,'=pg [ n'tn6'dx’ (3.53)

F'=pg I:"r} dx' (3.54)

The right hand side of Eqgs. (3.53) and (3.54) are normalized by the dimensionless valuables defined in
Egs. (3.3)-(3.5)

F,'=pgH’ _L Ondx (3.55)
F.'=pgH’c L" ndx (3.56)

As a result, the, normalized horizontal force F}, per unit width and the normalized vertical force F, per unit
width are defined as

__E__
N ogH N (3.57)
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A simple trapezoidal rule is used for the
numerical integration of Egs. (3.57) and
(3.58). Fu(t) and F,(f) are computed as a
function of time ¢ using the computed free
surface elevation #(t,x) in the region
0<x<x, where the normalized bottom
slope &x) in Eq. (3.57) is independent of ¢
for the assumed stationary structure. The
computed Fy(r) and F,(r) will be used to
estimate the fabric shroud tension per unit
width using a simple quasi-static force
balance equation for the Shore-RIB

(seaward)

Fig. 3.4 Quasi-Static Force Balance

structure as illustrated in Fig. 3.4 that will be explained in Chapter 5.
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4 COMPUTED RESULTS

This chapter presents the computed results for six selected tests which include the free surface
elevations at the seaward and landward boundaries, the free surface elevation and depth-averaged velocity
and the energy balance. Six typical tests are selected for the computation as summarized in Chapter 4.1.
The time series of the incident, reflected and transmitted waves are discussed in Chapter 4.2. The
computed results of the free surface elevation and depth-averaged velocity are explained in Chapter 4.3
where the spectra of the measured transmitted waves are presented. Finally, the computed wave energy
quantities are discussed in Chapter 4.4. The figures quoted in Chapters 4.2. 4.3 and 4.4 are attached in
Appendix for convenience.

4.1 Six Tests Selected for Computation

The numerical model in Chapter 3 is compared with the 6 tests listed in Table 4.1 where the entire tests
have been tabulated in Tables 2.1 and 2.2. The dimensionless parameters d,= d,7H, | x.=x./T,{gH, ")’ 2 and
o=T,{g/H,)"”, have been introduced in Egs. (3.3)-(3.5), in which the prime indicates the dimensional
variables, and d,’=water depth below SWL at the seaward boundary as shown in Fig. 3.1; x, “= horizontal
distance of the computation domain; and H,” = representative wave height taken as the spectral significant
wave height; 7,”= representative wave period taken as the spectral peak period 7,7 The dimensionless
parameters R., L and t, in Table 4.1 are defined as R=R//H/, L = L'/d/, and t,= t,/IT, in which
R.=normalized freeboard defined as the distance above the still water level to the crest of the largest
cylinder with R.<0 for a submerged tube; L=normalized wave length at x=0; L’=wavelength at x=0 based
on linear wave theory; #,’=total computation duration taken as ¢, =560 s as explained in Chapter 3.1.
Tests 1.3 and 2.2 correspond to one tube covered by the shroud, whereas Tests 3.5, 3.17, 3.22 and 3.32
involve two tubes as shown in Fig. 2.5. Although the physical model of Shore-RIB consists of the fabric
shroud and mobile tubes, the Shore-RIB for the present numerical model is assumed to be rigid and
impermeable.

Table 4.1 Summary of Six Tests Selected for Computation

Test T,(s) | H(cm) d, R, X o L (=L'ld}") i
1.3 1.7 11.6 2.53 0.25 0.447 15.6 9.2 3294
2:2 1.7 123 2.39 0.24 0.434 15.2 9.2 329.4
3.5 2.0 9.6 2.56 0.30 0.417 20.2 12.1 280.0

3.17 2.2 12.0 252 -0.23 0.339 19.9 12.0 254.5

3.22 2.2 12.0 2.52 -0.23 0.339 19.9 12.0 254.5

3.32 2.1 9.6 2.06 0.80 0.397 212 14.3 266.7

4.2 Waves at Seaward and Landward Boundaries

Figs. A.1(a)~(f) in Appendix show the normalized time series of the measured incident wave train 7,(?),
the computed reflected wave train 7,(¢), the total wave train 7,,(t)=[7(2)+n4#)] at the seaward boundary
x=0 and the computed transmitted wave train 7,(r) at the landward boundary x=x, for each test. The
horizontal axis ¢ in each figure is the normalized time defined as the dimensional time ¢ divided by the
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peak period 7,’. The seaward boundary condition using the measured incident wave profile 7() has been
explained in Chapter 3.1. The computation duration for each testis 0 <7 <7, and the time series in Figs.
A.1 are at the end of the computation.

For Tests 1.3, 2.2, 3.5 and 3.32 for the emerged breakwaters, the transmitted waves are related to wave
overtopping. Therefore, the transmitted wave trains for these tests show sharp peaks of overtopping
waves. The transmitted waves may become undular as they propagate. The development of an undular
bore was predicted numerically by Peregrine(1966) using a Boussinesq wave model for the case of no
wave breaking. The present numerical model based on finite-amplitude, shallow-water waves cannot
predict the development of an undular bore because wave dispersion is not accounted for.

Figs. A.2(a)-(f) in Appendix show the computed spectra of 7; at x=0 and 7, at x=x,. These normalized
spectra are plotted as a function of the normalized frequency, f = f"T,’, where f’= dimensional frequency.
The spectra shown in each figure are the smoothed spectra with 16 degrees of freedom. The incident wave
spectrum corresponds to the measured incident wave profile at the seaward toe of the structure where the
incident waves were generated using the TMA spectrum as explained in Chapter 2.1. The computed
transmitted wave spectrum is compared with the measured transmitted wave spectrum for each test where
the location of the transmitted wave measurement depicted in Fig. 2.1 is farther landward of x=x,.

For Test 1.3, the difference between the measured #;and the measured #, is relatively small because of
large transmitted waves due to no shroud pre-tension and tube oscillations. For Test 2.2, there is a
relatively larger difference between the measured 7; and 7, because the tube was essentially fixed by the
wooden chocks as explained in relation to Figs. 2.3 and 2.4. The spectrum of the computed 7, is smaller
than the measured spectrum for 7, around the peak frequency for both tests.

For Tests 3.17 and 3.22, the agreement between the computed and measured spectra for 7, is reasonable
probably because these tests correspond to the submerged Shore-RIB structures and more waves were
transmitted than in the other tests for the emerged Shore-RIB structures.

For Test 3.5, the difference between the computed and measured spectra for 7, is noticeable at the peak
frequency, f =1, and at the low frequency, f~0.2.

For Test 3.32, the disagreement between the computed and measured spectra for 7, at the peak
frequency and low frequency is large like Test 3.5. The larger difference between the spectra for 7; and 7,
implies the smaller wave transmission and larger wave energy dissipation due to the greater R, of this
highly emerged breakwater.

In Figs. A.2, the power spectra of the measured 7, in the low frequency range f ~0.2 are relatively large
for every test. The reason may be related to wave groups of large waves overtopping the structure. The
tubes constrained by the wood chocks oscillated intermittently in the cross-shore direction, and this slight
movement might also have generated low-frequency waves.

4.3 Free Surface Elevation and Depth-averaged Velocity

Figs. A.3(a)-(f) in Appendix show the spatial variations of the computed maximum, mean and
minimum free surface elevation 7 above the normalized Shore-RIB structure, where the actual tube was
circular, as well as the spatial variations of the computed maximum, mean and minimum depth-averaged
horizontal velocity u. The maximum, mean and minimum values of 7 and u are obtained from the
computed time series during the entire duration 0 <7 <. #,,.

For all the tests the mean free surface elevation at the seaward boundary, x=0, is slightly negative and
that at the landward boundary, x=x,, is slightly positive. This is caused by wave set-down and wave setup
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due to the occurrence of wave breaking above the Shore-RIB structure in the computation domain. The
numerical model predicts the mean surface elevation 7, at x=0 on the order of —0.03 and the value of
n at x=x, on the order of 0.03 for all the tests. It should be noted that the incident wave profile 7,(1)
specified as input has zero mean. As a result, the wave set-down is the same as the computed mean value
?}_r of the reflected wave and the wave set-up is the computed mean value ?}_, of the transmitted wave.

The normalized mean water level difference, that is, the difference between the wave setup 77, at x=x,
and the wave set-down 77, atx=0 is expressed as

An=n,-@ +n)=n,-n, @.1)

The computed difference &5 is in the range of 0.03-0.10 for the six tests. Fig. 4.1 shows the
computed values of A7 as a function of the normalized freeboard R.. The comparison of the computed
and empirical values of the mean water level difference for submerged breakwaters was presented by
Kobayashi and Waurjanto (1989), but no formula is available for emerged breakwaters. The increase of R,
reduces A7 in Fig. 4.1. The greater difference

between the wave set-up and wave set-down b5
occurs in Tests 3.17 and 3.22 with continuous oib ___________ ® .
wave transmission due to the negative value of R,
than in the other tests for the emerged structures 0.08
with the positive R, and intermittent wave Jn-o‘oo' |®
transmission. e
In Figs. A.3, the maximum horizontal velocity 004
occurs on the landward (rear) slope of the - @
breakwater due to the large breaking transmitted s -
wave. The minimum horizontal velocity occurs at Umr i : A : :
the seaward (front) slope of the breakwater due to L I L

[4

wave downrush before the arrival of the next
incident wave. The mean horizontal velocity
becomes the largest landward of the highest crest
of the structure and the smallest in front of the
crest of the front tube. The difference between the
maximum and minimum values of the mean
velocity u is hence the largest for Test 3.32 with
the largest R, and is smaller for Tests 3.17 and 3.22
with R.<0. In short, Fig. 4.1 depicts the changes of _ : ) -
irregular wave breaking, reflection, overtopping e T T TR "o PR g =
and transmission patterns with the increase of the
normalized freeboard.

Fig. 4.2 shows the computed spatial variation of i:
the time-averaged volume flux per unit width, . . _ . . .

m=a. for Test 3.5. The time averaged
continuity equation corresponding to Eq. (3.0) Fig. 4.2 Computed Spatial Variation of
requires m =0 (Kobayashi and Wurjanto 1989). Time-Averaged Volume Flux for Test 3.5
The constant volume flux m is expected to be

Fig. 4.1 Normalized Mean Water Level Difference
An as a Function of Normalized Freeboard R,

Shore-RIB
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positive because the transmission of wave energy accompanies the transmission of water mass over the
Shore-RIB structure. Fig. 4.2 indicates numerical errors of the order of 10% of the relatively small
constant value of m .

Figs. A.4(a)-(f) in Appendix show the computed spatial variations of the normalized free surface
elevation 77 above SWL located at z=0 and the normalized depth-averaged horizontal velocity u at the
specified normalized time levels for each test. The free surface elevation indicates the wave pattern above
the structure. The horizontal velocity indicates the direction of water flow where ¥>0 landward. The water
on the structure flows landward (uprush) and seaward (downrush) on the structure..

The interaction between the wave downrush and incoming wave produces the steep wave front and
breaking. For Tests 3.17 and 3.22, incident

waves are transmitted over the submerged Table 4.2 Surf Similarity Parameter for Selected 6 Tests

breakwater with the steep wave front. Test & Average p

Incident waves flow over the highly emerged tan¢’
breakwater in Test 3.32. 1.3 15.6 0.87 5.3
The steep wave front above the seaward 2.2 15.2 5.3
slope of the Shore-RIB structure occurs on 3.5 20.2 3.8
317 19.9 3.7

the gentler slope between the two tubes in 0.47
Tests 3.5, 3.17, 3.22 and 3.32 rather than on 1= L 2
the steep slope of the single tube in Tests 1.3 L L 40
and 2.2. The steepness of the wave front is

related to wave breaking and breaker type. The surf similarity parameter defined as & = o tan 8'/\[2_7r

(e.g., Kobayashi et al. 1987) is applied to classify the type of wave breaking where tan ¢’ is the average
seaward structure slope between the toe and crest of the structure as calculated by Melby and Resio (2002).
Table 4.2 lists the computed surf similarity parameter for each test. The surf similarity parameter ¢~5.3
for the single-tube Shore-RIB in Tests 1.3 and Test 2.2 is greater than £~3.8 for the double-tube
Shore-RIB in Tests 3.5, 3.17, 3.22 and 3.32. This implies surging waves for ¢&~5.3 and collapsing
waves for & ~3.8 if the structure is a uniform slope with no wave overtopping. The present numerical
model may not predict the details of wave breaking and flow separation but the computed wave patterns
on the structure appear realistic in light of the video observations made by Melby and Resio (2002).

0.5

4.4 Wave energy balance St
Figs. A.5(a)-(f) in Appendix show the computed
spatial variations of the normalized time-averaged 503 S .
wave energy per unit horizontal area, E , the 1<)
normalized time-averaged energy flux per unit
width, E. , and the normalized time-averaged
energy dissipation rate per unit horizontal area due
to wave breaking, D_a , above the normalized ] m
Shore-RIB structure for each test. Wave energy is 0'0_0,4 T 02 00 02 o4 06 0;_3 10
the sum of kinetic and potential energy as expressed Re
by Egs. (3.36a) and (3.36b). In Figs. A.5, there are Fig. 4.3 Ratio between Wave Energy E at
two peaks in the spatial variation of the x=x, and x=0 as a Function of R,
time-averaged wave energy for each test. The first

D G ] e f o =
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peak, which is the maximum value in the computation
domain, occurs in the vicinity of the landward corner
of the front slope of the breakwater. The second
peak occurs near the seaward corner of the rear slope
of the breakwater. This may result from the changes
of the structure slope at these two corners where wave
breaking tends to occur. The ratio between E (x=0)
and E (x=x,) as a function of R, for each test is
shown in Fig. 4.3. E (x=x,) for Tests 3.17 and 3.22
are about 30% of E (x=0), _whereas E (x=x,) of Test

3.32 is less than 5% of E (x=0). As a result, the Fig. 4.4(a) Wave Downrush and Bubble
increase of R. reduces the landward wave energy as Entrainment at Seaward Corner of
expected. Slope Change

The wave energy flux per unit width is computed
using Eq. (3.37). The time-averaged wave energy flux
decreases landward very gradually except near the
corners of the slope change as shown in Figs. A.5.
The spatial variation of E, determines the energy
dissipation rate as expressed in Eq. (3.39). It should be
stated that the bottom friction has been neglected by
setting f“ =0 as input as explained in relation to Eq.
(3.2). o

The time-averaged energy dissipation rate D, is
positive or zero. There are two peaks in the spatial
variation of D, for each test as shown in Figs. A.S5.
The landward peak is the maximum for each test. The
maximum of E and D, occur approximately at
the same location. For Tests 1.3 and 2.2, the
seaward peak is much smaller than the landward peak
because little wave breaking occurred at the seaward corner of the slope change.

Possible energy dissipation is examined using the video recording. The seaward corner may cause the
initial breaking of incident waves due to the decrease of water depth below the still water level as shown
in Fig. 4.4(a). The landward corner may cause the impingement of transmitted waves on the flow from the
onshore side as shown in Fig. 4.4(b). It is important to identify the locations where wave breaking
occurred and strong eddies were formed above the breakwater. Air bubbles in water may be used to locate
the zones of wave breaking and turbulence. Figs. 4.5(a)-(d) show the zones of visible air bubbles obtained
from the videotape of the experiment recorded by Melby and Resio (2002). The shaded zones are the
zones of frequent air bubbles. The air bubble zones occurred at the landward and seaward corners where
the slope changes occurred. For Tests 3.17 and 3.22, incident waves broke on the gentle slope between the
two submerged tubes. The bubble zones depicted in Figs. 4.5(a)-(d) are qualitatively consistent with the
spatial variations of D_a shown in Figs. A.5. However, it should be noted that the numerical model in
Chapter 3 does not account for air bubbles.

Fig. 4.4(b) Wave Overtopping and Bubble
Entrainment at Landward Corner of
Slope Change
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Air bubble zone

(a) Test 1.3 and 2.2 (b) Test 3.5

(c) Test 3.17 and 3.22 (d) Test 3.32

Figs. 4.5(a)-(d) Air Bubble Entrainment Zones Observed Visually for Each Test
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5 WAVE TRANSMISSION COEFFICIENT AND FABRIC TENSION

First, the computed reflection coefficients are presented, and the computed wave transmission
coefficients are compared with the measured wave transmission coefficients in Chapter 5.1. To predict the
tension acting on the fabric shroud of Shore-RIB, a semi-empirical method is developed in Chapter 5.2.
The predicted tension is compared with the measured tension for the three different configurations of the
Shore-RIB structure in Chapter 5.3. A design guideline for the fabric shroud is proposed on the basis of
the predicted and measured tension in Chapters 5.2 and 5.3.

5.1 Wave Transmission Coefficient and Wave Reflection Coefficient

5.1.1 Wave reflection coefficient

The computed wave reflection coefficients (K,),, and (K,);3, and the measured and computed wave
transmission coefficients (K,)m, and (K,), for each of the six tests are shown in Table. 5.1 where the wave
reflection coefficient was not measured in the experiment by Melby and Resio (2002) as summarized in
Chapter 2.1. (K,)., is computed as the ratio of the spectral reflected significant wave height and spectral
incident significant wave height and is the same as that given by Eq. (3.28). On the other hand, (K)s is
the ratio of the reflection significant wave height and incident significant wave height based on the
average of the highest 1/3 waves. The spectral reflection and transmission coefficients are based on the
time-averaged specific wave energy and wave energy fluxes as explained in Chapter 3.2. The other
coefficients are based on the significant wave heights.

The computed values (K,),, are approximately 0.7 and relatively large for Tests 1.3, 2.2 and 3.32 and
are approximately 0.5 for the other tests. The computed reflection coefficients depend on the normalized
freeboard R, and the average slope tan@’listed in Table 4.2. The increase of R, reduces wave transmission
and increases wave reflection for the four tests of Plan 3, which is the two-tube Shore-RIB structure. On
the other hand, the average slope tan@; listed in Table.4.2, is larger for the one-tube Shore-RIB structure
and the increase of the slope results in larger wave reflection. The trends for (K,),, and (K,);;; are similar
except that (K,),5 is slightly smaller than (K,),,.

Table 5.1 Reflection Coefficients and Transmission Coefficients for Six Tests

Test (Kpmo (KD (Ko (K1
Computed | Computed | Computed | Measured | Computed | Measured

1.3 0.75 0.68 0.40 0.71 0.59 0.69
2.2 0.75 0.66 0.41 0.50 0.59 0.49
3.3 0.56 0.52 0.34 0.49 0.49 0.46
3.17 0.44 0.41 0.56 0.63 0.64 0.60
3.22 0.44 0.42 0.55 0.60 0.64 0.55
3.32 0.72 0.60 0.23 0.32 0.44 0.29

5.1.2 Wave transmission coefficient

Fig. 5.1 compares the measured and computed wave transmission coefficients (K;),, based on the
spectral significant wave heights as a function of the normalized freeboard R, for the tests of Plan 1, 2 and
3 where all the measured values listed in Tables 2.1 and 2.2 are also plotted. (K),, is the ratio between the
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spectral transmitted significant wave height and spectral incident significant wave height as defined in Eq.
(3.33). The open and solid symbols show the measured and computed values, respectively, where the
circle, triangle and square are used for Plan 1, 2 and 3, respectively. The solid line in Fig. 5.1 is the
empirical formula for the transmission coefficient of stone-armored breakwaters (D’Angremond et al.
1996)
R,
K, =0.46-0.3——=0.46-0.3R, for stone breakwater 5.1

ma

The dotted line in Fig. 5.1 is the formula fitted by Melby and Resio (2002) for the data for Plan 3.

K, =0.53-0.28R, for Plan 3, Shore-RIB (5.2)

The measured and computed values of (K, 10
decrease linearly with increasing R, as expressed 09] ) e e
in Egs. (5.1) and (5.2). The measured (K, is 08 L Ei:;::::zﬂ_
slightly larger than that for the stone-armored 0.7 © A Comp. (Plan2) []
breakwater probably because of the flexibility of 0_6."“-~§,_~ 8 : Elf,m.,f S{Eﬁuﬂ i
the Shore-RIB structure due to the flexure of the 3 0.5 i @E ol ]
fabric shroud and the lateral excursion of the % 04 )y
tube(s) as well as the smooth and impermeable 0.3-: %};“&L‘ ]
surface of the fabric shroud. 0.2 A

Fig. 5.2 shows the comparison between the 0.1
measured and computed spectral significant 00—

.. S 04 02 00 02 04 06 08 10 12

transmission coefficients for the 6 tests. The R
solid line in Fig. 5.2 corresponds to the perfect  Fjg, 5.1 Measured and Computed Wave Transmission
agreement. The computed (K),, is smaller than Coefficients (K,)mo VS. R,

the measured (K)),, especially for Plan 1 for
which the horizontal tube oscillations were fairly
large and may have generated radiated waves.
It is noted that the numerical model has not
accounted for the structure motion.

Fig. 5.3 shows the measured and computed
wave transmission coefficients (K));; as a
function of the normalized freeboard R, together
with the straight lines based on Eq. (5.1). The
wave transmission coefficient (K}),; is the ratio =
between the transmitted significant wave height | A Pln2
and incident significant wave height based on 5 . 5 P'a"lj‘
the average of the highest 1/3 waves as defined 0.0 0.2 0.4 0.6 0.8 10
by Eq. (3.34). Both the measured and computed Mopeueod (K.

(K153 are larger than that based on Eq. (5.1) for Fig. 5.2 Comparison of Measured and
these 6 tests like (K., shown in Fig. 5.1. Computed (K)o
However, the computed (K)); is slightly larger

than the measured (K,),» except for Plan 1 as

(] ]

Computed (K),,
=]
=
1
Op
]

[ =
B2
1
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shown in Fig. 5.4. The difference between the
computed (K., and (K)3 is related to the
computed transmitted wave profiles with sharp
peaks as shown in Figs. A.l(a)-(f) where the
sharp peaks increase the wave heights based on
the zero upcrossing method.

Four data points for (K)),, for Plan 1 in Fig. 5.1
deviate from the other data points. This is also
true for the data point for Plan 1 in Fig. 5.3.
This is related to the tube movement for Plan 1
discussed in Chapter 2.2 as well as the fabric
shroud static tension T listed in Tables 2.1 and
2.2. Fig. 5.5 shows the measured transmission
coefficient (K,),, as a function of the normalized
static tension T,=T,/(ogH,,") for the dimensional
freeboard R,/=-2.7, 2.9 and 7.7 cm for the entire
62 tests. (K)o is essentially independent of T for
Plan 3 with R/=-2.7 and 7.7 cm where R./=2.9
cm includes Plans 1, 2 and 3. Several data points
for Plans 1 and 2 may be dependent on 7. The
data points for R./=2.9 cm for Plans 1 and 2 are
selected and shown with the corresponding
measured (K)),, in Fig. 5.6. Fitted lines of the
measured data points for Plans 1 and 2 are plotted
in Fig. 5.6 where the dashed line is for Plan 1 and
the dotted line is for Plan 2. The measured
transmission coefficient (K),, for Plan 1
decreases with increasing 7y when T,<0.8 and is
approximately 0.5 when 7,>0.8. On the other
hand, (K,)., of Plan 2 is practically independent
of T,. The decreasing trend of (K,),, for Plan 1
when T,<0.8 is associated with the tests with
significant tube oscillations caused by no or little
pre-tension and no wood chocks as explained in
Chapter 2.2. On the other hand, the measured and
computed transmission coefficients (K)),, are
independent of the normalized static tension Tj
for the other tests.

5.2 Prediction of Fabric Tension
5.2.1 Horizontal and vertical wave forces

The normalized horizontal wave force Fj(f) and
the normalized vertical wave force F,(f) on the

b © Meas. (Plan 1) |1
0.9-‘ & Meas. (Plan 1) |7
] o Meas. (Plan 1) | ]
08 e Comp. (Plan 1) | ]
0.74 o A Comp. (Plan 1) |
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Fig. 53 Measured and Computed Wave
Transmission Coefficients (K);s vs. R,
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Fig. 5.5 Measured (K)),, vs. Normalized Shroud
Tension T, for Freeboard R =-2.7, 2.9 and 7.7 cm



entire breakwater per unit width as a function of
the normalized time ¢ are computed for each of the
six tests using Egs. (3.57) and (3.58) in Chapter
3.3. The maximum, mean and minimum values of
Fi(t) and oF (1) during the total computation
duration for each test are obtained and shown in
Table 5.2, where o is the ratio between the
horizontal and vertical length scales included in

the normalization of the vertical force in Eq. (3.58).

The computed F, turns out to be much smaller than
the computed Fj. As a result, the value of o F, is
used in the following where o is of the order of 20
in Table 5.2. F, and o F, are the horizontal and

0.9 o Meas. (Planl) | ]
4 Meas. (Plan 2) g
0.8 e Comp. (Plan 1) | -
o] . 4 Comp. (Plan2) |
0.6+ el 4
_£051 - -y — v
¥ 04- . A ]
0.3+ A
0.2 -
0.1 -
0.0 T  TE | e | T T T T
02 00 02 04 06 08 10 12 14
T
£
Fig. 5.6 Measured (K,), vs. T for Plans 1 and 2

vertical wave forces normalized by pgH r.:o , respectively.

It is very important to estimate the maximum fabric shroud tension of Shore-RIB. The maximum values
of the normalized horizontal and vertical wave forces may be related to the maximum fabric shroud
tension. As for Plan 3 with the two tubes, the horizontal and vertical wave forces, Fj, and of,, are the
largest for Test 3.32 with the highest normalized freeboard R, where the values of R, for the six tests have

been listed in Table 4.1.

Table 5.2 Maximum, Mean and Minimum Computed Horizontal and Vertical Wave Forces

F.ﬂ OFP
Test o
Max. Mean Min. Max. Mean Min.
1.3 3.63 0.00 -2.43 15.6 6.08 0.47 -2.25
2.2 2.96 -0.04 -2.18 15.2 5.36 0.38 -2.13
3.5 3.11 -0.05 -2.23 20.2 5.67 0.75 -3.02
37 2.93 -0.20 -2.19 19.9 5.51 -0.12 -3.02
3.22 2.69 -0.20 -2.25 19.9 5.15 -0.12 -3.08
3.32 321 0.06 -1.74 212 6.74 2.53 0.64
5 8
44 = T [
Lo R e o S we :: _____ R ;.“ .........
24 4]
14 3
o] ) A 24 =
k:x ] Y e |_‘
-1 & A i
_2.‘ x 0 7
1 * % e Max. kg ® Max.
£h A Mean -2 R & Mean
-4 » o Min. 3. % ®  Min.
P | Max. Fitted ' AP - Max. Fitted
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Fig. 5.7 Normalized Horizontal Wave Force F),
vs. Normalized Freeboard R,
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As a result, the maximum horizontal and vertical wave forces may be related to R.. The maximum,
mean and minimum normalized horizontal and vertical wave forces increase somewhat with the increase
of the normalized freeboard R, for the six tests as shown in Figs. 5.7 and 5.8. These fitted straight lines for
the maximum Fj, and ofF, are expressed as

(F,),0 =3.0+0.5R, (5.3)

(oF,),. =55+13R, (5.4)

5.2.2 Measured fabric tension

Figs. 5.9(a) and (b) show the temporal variations of the normalized measured fabric shroud tension per
unit width for Test 1.3 with no pre-tension and for Test 3.5 with pre-tension, respectively. The pre-tension
on the fabric shroud of Shore-RIB was preloaded before the fabric shroud was exposed to waves as
explained in Chapter 2.2. The horizontal axis ¢ expresses the normalized time level, which is the
dimensional time level ¢”divided by the peak period 7,”. The detailed temporal variations for a shorter
duration are also shown in these figures. The measured fabric shroud tension per unit width is normalized
as T=T7pgH,,”*, where T’ is the dimensional fabric shroud tension measured using two load cells as
explained in Chapter 2.1. The measured fabric tension varied in complicated manners. In addition, low
frequency oscillations with normalized wave periods much larger than unity are visible in the temporal
variations of the fabric tension 7(#). This may result from various causes such as wave groups and tubes
oscillating intermittently with unknown friction forces between the tube and the fabric shroud and bottom.
As a result, it is difficult to predict the temporal variations of the fabric tension accurately. Instead, the
maximum fabric shroud tension is estimated using the computed wave force in the following.

Tin
kP i e

Tin
=

TN
a8 = B oW
T
Tha 3
‘ %

180 182 184 186 188 1?0 192 194 196 198 200 120 122 124 126 128 130 132 1M 136 138 140
Fig. 5.9(a) Measured Normalized Fabric Tension Fig. 5.9(b) Measured Normalized Fabric Tension
for Test 1.3 for Test 3.5

5.2.3 Semi-empirical prediction method
As shown in Figs. 5.9(a) and (b), the normalized measured fabric tension 7() is positive even for Test
1.3 with no pre-tension. If the fabric shroud of Shore-RIB had behaved like an elastic spring, the temporal
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variation of 7(¢) should have oscillated about the normalized pre-tension 7y, in which T, =T,'/ pgH,,"
where T, =dimensional pre-tension in the absence of waves. However, the temporal variation of 7(¢) did
not become smaller than 7. This is because the fabric is not elastic and appears to respond to the
wave-induced positive tension only.

The normalized fabric tension 7(#) may hence be separated into the pre-tension 7, and the wave-induced
normalized tension T,(f)

T@W)=T,+T,@¢) (5.5)

where T,(f)=time-varying fabric tension which is positive or zero. On the other hand, the computed
horizontal and vertical wave forces, F,(t) and F,(), oscillate about zero. It is now necessary to relate the
computed wave force to the measured fabric tension in order to estimate the actual fabric tension acting on
the fabric shroud of Shore-RIB.

The horizontal wave force F), and the vertical wave force F, act on the Shore-RIB structure dynamically
together with the other forces as illustrated in Fig. 3.4. The
horizontal and vertical wave forces may be transmitted to the
fabric shroud and the tube. The tube(s) can oscillate in the
cross-shore direction and the tube oscillation may cause
additional fabric tension, even if the tube oscillation is
reduced significantly by the wood chocks for Plans 2 and 3
as shown in Figs. 2.4 and 2.5. On the other hand, the tube(s) (4 Wood Chocks ¥
did not move in the vertical direction. Hence, the vertical
wave force F, may be assumed to be transmitted to the tube
and then to the bottom without causing much tension in the
fabric. Meanwhile, the horizontal wave force causes the
lateral force on the tube(s) and an additional tension force in
the fabric. As a result, the computed horizontal wave force is
used to estimate the measured fabric tension.

Figs. 5.10(a), (b) and (c) show the force balance on the
Shore-RIB structure for the three cases corresponding to the
horizontal wave force F;,=0, F;,>0 and F,<0. Fig. 5.10(a) is
the case of no wave action with F,=0 where the static tension
T, is constant in the absence of friction between the fabric Fig. 5.10(b) Quasi Static Force Balance
shroud and tube(s). Denoting &, = angle between the for Landward Wave Force (F,>0)
seaward fabric shroud and horizontal plane and 6= angle
between the landward fabric shroud and horizontal plane, the
static horizontal force balance requires 6, =6 and use is
made of 0%6,=6,” for simplicity where 8" =67=07=43.5"
for Plans 1 and 2 and 8'=07=60%=47.1° for Plan 3 where the
above value of 8 used hereafter is different from @”used for
the average slope tan8”in Table 4.2

When the incoming wave crest acts on the front (seaward)
slope of the Shore-RIB structure with no wave crest  Fig, 5.10(c) Quasi Static Force Balance for
landward of the crest of Shore-RIB, the total horizontal wave Seaward Wave Force (F,<0)
force acts in the landward direction and F,>0 as shown in Fig.

Fig. 5.10(a) Static Force Balance in
Absence of Waves (F,=0)
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5.10(b). After the overtopping wave crest propagates landward of the Shore-RIB crest with wave
downrush on the front (seaward) slope of the Shore-RIB, the total horizontal wave force acts in the
seaward direction and F;,<0 as shown in Fig. 5.10(c). The horizontal force F;, which prevents or reduces
the tube shifting in the cross-shore direction acts mainly between the bottom of the tube(s) and the
attached wood chocks as depicted in Figs. 5.10(b) and (c) where the wave-induced fabric tension T, is
assumed to occur on the tension side of the fabric shroud against the wave-induced force Fj. Since the
fabric tension T(f) was measured only on the seaward side of the fabric shroud, the following analysis of
the wave-induced tension T,(¢) is limited to the case F;,>0. The wave-induced tension 7,(f) acting for the
case F;,<0 is not analyzed but may be less than T,, for the case of F;,>0 because the landward wave force is
computed to be larger than the seaward wave force as presented in Table 5.2.
The wave-induced tension T,(¢) on the seaward side of the fabric shroud may thus be estimated as

T, (t)cos@'=F,(t)—F,(t) for F}>0 (5.6a)
T,()=0 for F;=<0 (5.6b)

which is based on the quasi-static horizontal force balance. Fy(r) varying temporally against F(?) is
difficult to estimate because the contact problem between the tube(s) and the bottom is difficult to
formulate. F,(?) is likely to be affected by the fabric pre-tension T, and the wood chocks which controlled
the degree of the tube(s) oscillation and rolling as explained before. As a result, a semi-empirical approach
is adopted in the following.

The measured maximum wave-induced tension,

(T )mac=Tna—~T,, using Eq. (5.5) is obtained from the o

measured maximum tension T, and the static 304 :
tension 7, listed in Tables 2.1 and 2.2 for each of the o o _Plan3
62 tests where the normalized tension is the o

dimensional tension divided by pgH,,, "’ for each test. g i e .

Fig. 5.11 shows (T,)max as a function of 7} for the 62 Q’ 1.5 a °

tests. For Plan 1, there was no wood chock attached o] ) ape

to the Shore-RIB structure as shown in Fig. 2.3. The | o ;'E A ¢

wood chocks were attached to the Shore-RIB ] DEED B,0hge T "
structure for Plans 2 and 3 as shown in Figs. 2.4 and e s g s e l:. i ﬂ:' o
2.5. Plan 2 was the single-tube Shore-RIB structure T

with two wood chocks attached to the one tube. Four '

wood chocks were attached for the case of Plan 3 Fig. 5.11 Measured (T,,)ax vS. Measured T,
with the two-tube Shore-RIB structure. Fig. 5.11 for 62 Tests.

indicates that (7,)n.. decreases clearly with
increasing T, and the increase of the number of wood chocks from Plan 1 to Plan 2 and then from Plan 2to
Plan 3.

As a result, an empirical reduction factor r is introduced to approximate the right hand side of Eq. (5.6a)
as

F,()-F,t)=rF,@)  for F,>0 (5.7)

where r= reduction factor (0<r<l1) due to the static pre-tension T and the number of wood chocks. The
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value of r is assumed to be independent of time .
Substitution of Eq. (5.7) into Eqgs. (5.6a) and (5.6b) yields

T.(t)=——F,(t)  for F;>0 (5.82)
cos 8’

T,t)=0 for F;=<0 (5.8b)
Using Eq.(5.5), Eq.(5.8a) is expressed as

T()-T, =—
cos

F,(t) for F;>0 (5.9)

"

which yields the maximum tension 7}, as a function of the maximum horizontal wave force (Fy)max

T, ~TE— Ay (5.10)
cos@'

It should be noted that the fabric tension and horizontal wave force per unit width have been normalized
using the value of pgH,,, " for each test.
To develop an empirical formula for r, Eq. (5.10) is rewritten as

. (T.,.-T,)cos8’

(5.11)
(Fh)max

which implies that the value of r is estimated using the maximum values of 7 and F;. Substitution of Eq.
(5.3) into Eq. (5.11) with (7)) max=Tmax — T) yields

. (T,)) ax COS @

304058 ¢ e =Tl ke
where R.=R.7H,,,” is the normalized freeboard. The o8
reduction factor r can be calculated using the g * Planl
measured quantities T}, Ty, cos@ and R, for each of 7 35 % M
the 62 tests. Fig. 5.12 shows the calculated reduction 0'6'___“ a e
factor r as a function of the pre-tension 7 in a 054 & . %o e
manner similar to Fig. 5.11. All the values of rarein | 0.4 L
the range 0<r<1 as expected. The fitted straight lines 034 = e
plotted for Plans 1, 2 and 3 are expressed as i
r, =0.7-0.357T,  for Plan | (5.13) i K

0.0

02 00 02 04 06 08 10 12 14 :‘ﬂo' 1% 20 22
r,=0.5-032T, for Plan2 (5.14) -

£

Fig. 5.12 Reduction Factor r as Function of T

32



=0.18—-0.0757, for Plan3 (5.15)

where r; with i = 1, 2 and 3 corresponds to Plan i.
To assess the accuracy of these empirical equations, the maximum fabric tension 7}, is predicted
empirically using Eq. (5.12) as

(1)

(T T, +-L20(3.0405R,) (5.16)

mx)pmdiﬂed =4

Fig. 5.13 shows the comparison between the measured maximum tension (7a)measured and the predicted
maximum tension (7y,a)prediciea based on Eq. (5.16) for each of the 62 tests. The comparison of Figs. 5.12
and 5.13 indicates that the scatter of data points used to develop the empirical equations (5.13)-(5.15) is
reduced when these equations are used to estimate 7. This implies that the errors associated with Eqs.
(5.13)-(5.15) are reduced in the estimation of T},,.

The true test of Eqgs. (5.13)-(5.15) lies in whether
the time-invariant value of r can predict the 35

time-varying fabric tension T,(f) from the y
computed horizontal wave force Fj(f) using Egs. 30 °
(5.9) and (5.8b). g o o8 w0
L ]
r( ) 5 2.0- A Bioa
T@) =T, + 9 F,@t) forF>0 (5.17) g ]
:E 1 5-. -
T@)=T, for F;,<0  (5.18) ~ 10- D':'d?
® Plan |
where the values of T, and cos@” are known for 0‘5: & g:xg
each test and r; for Plan i is given by Eq. (5.13), 00—
(5.14) or (5.15). It should be noted that these 00 05 10 15 20 25 30 35
equations may yield good agreement for T, as (L) -
shown in Fig. 5.13 but may not be accurate enough Fig. 5.13 Comparison between Measured
to predict the detailed temporal variation of the and Predicted Maximum Tension T

measured tension 7(z).

5.3 Measured and Predicted Temporal Variations of Fabric Tension

The fabric tension 7(¢) is calculated using Eqs. (5.17) and (5.18) with the computed horizontal wave
force F(f) for each of the selected six tests. Figs. B.1(a)-(f) in Appendix show the normalized time series
of the measured tension and predicted tension as a function of the normalized time ¢ for each test. It is
clear that the present numerical model cannot predict the detailed temporal variation of the tension
affected by the complicated tube oscillations which are neglected in the present model. Low frequency
oscillations are apparent in the temporal variation of the measured tension. The lower bound of the
predicted tension is limited by the pre-tension T, during the computation duration. At least the present
model predicts the range T, <T(#)<T ., fairly well.

For Test 1.3, the largest peak occurs at the normalized time ¢ ~184 in the measured temporal variation. A
large peak also occurs at the approximately same time in the predicted temporal variation. Some of the
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other peaks in the measured and predicted tensions appear synchronously. On the other hand, the
disagreement is large during 120<¢<200 with large peaks and 40<t<120 with sparse small peaks in the
measured temporal variation. Relatively large peaks occur continuously during the entire computation
duration in the predicted temporal variation. In short, the present model is not accurate for Test 1.3 with
significant tube oscillations.

For Tests 2.2 and 3.32, only a few groups of peaks are visible in the measured temporal variation at
1~25 for Test 2.2 at t~45 and 143 for Test 3.32. Some peaks in the predicted temporal variation occur at the
approximately same time for Test 2.2. No correlation between the measured and predicted temporal
variations exists for Test 3.32.

Better agreement between the measured and predicted temporal variations is obtained for Tests 3.5, 3.17
and 3.22. For Test 3.17, several groups of large peaks in the measured tension appear at the approximate
same time in the predicted tension. However, the predicted tension exhibits more frequent and larger peaks
than the measured tension. The agreement between the measured and predicted temporal variations is
relatively better for Tests 3.5 and 3.22.

In summary, the strong irregularity of the temporal variation of the measured tension makes it difficult
to predict the detailed temporal variation of the fabric tension. However, the range of the temporal
variation is predicted well by the present model based on the measured 7; and the empirical equations for
the reduction factor r obtained from the measured 7,,.. For the design of the fabric shroud, it is safer to
reduce the range T,<7(f)<T,,.. because of the uncertainty of the predicted temporal variation.

Figs. B.2(a)-(f) in Appendix compare the power spectra of the normalized measured and predicted
tension for each test. These normalized spectra are plotted as a function of the normalized frequency f = f”
T,”with f=dimensional frequency. The power spectra of the measured tension in the low frequency range
f~0 are dominant for each test especially for Test 3.22. The power spectra of the predicted tension are
much smaller in the low frequency range f ~0 but show the peak at f=1, corresponding to the peak of the
incident wave spectrum. This indicates that the measured fabric tension was not induced by individual
waves in the incident wave train.

Table 5.3 shows the mean and standard deviation of the measured and predicted tension together with
the normalized measured pre-tension T, for each test. The error (%) is based on the absolute difference
between the measured and predicted mean tension divided by the measured tension. The agreement
between the measured and predicted tension is good for Tests 3.5, 3.17 and 3.32. Large errors occur for
Tests 1.3 and 3.22 because of the small pre-tension T of the fabric shroud for Tests 1.3 and 3.22. The
agreement is worse for Test 2.2 than for Tests 3.5, 3.17 and 3.32 for the two-tube Shore-RIB structure
probably because the single tube moved more than the two tubes for the similar pre-tension T; Table 5.3
confirms better agreement for the tests with the narrow range of T,<T(t)<T,. wWhere T, is generally
smaller for Plan 3 with the two tubes as shown in Fig. 5.13.

Table 5.3 Mean and Standard Deviation of Measured and Predicted Tension

Test Pre-Tension Mean Standard Deviation
T Measured | Predicted | Error (%) | Measured | Predicted
13 0.00 0.15 0.35 133.3 0.24 0.52
2.2 0.84 1.05 0.94 10.5 0.12 0.16
3.8 1.41 1.46 1.44 1.4 0.06 0.05
3.17 0.94 1.02 0.97 4.9 0.03 0.06
3.22 0.24 0.46 0.28 39.1 0.14 0.08
3.32 1.46 1.50 1.49 0.7 0.04 0.06
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Fig. 5.14 shows the comparison between the
measured and predicted mean tension for the six
tests. The solid line in Fig.5.14 corresponds to the
perfect agreement. This confirms better agreement
for the tests with the large 7, and mean tension.
Fig. 5.15 shows the standard deviations of the
measured and predicted tension as a function of
the pre-tension Tj for the six tests. The increase of
T, reduces the reduction factor » as shown in Fig.
5.12 and the corresponding maximum tension 7,
in Eq. (5.16). As a result, the increase of T results
in the reduced range T,<T(#)<T,., with the smaller
standard deviation.

This confirms the suggested design guideline for
the fabric shroud based on the reduced difference
between T, and T, where T, can be estimated
using Eq. (5.16) with Eqgs. (5.13)-(5.15).
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6 SUMMARY AND CONCLUSIONS

The numerical model is developed to predict irregular wave breaking and transmission as well as wave
force on submerged and emerged impermeable structures. The developed numerical model is compared
with available laboratory data on a nearshore rapidly-installed breakwater (Shore-RIB) consisting of one
or two tubes held by an anchored fabric shroud. A small-scale physical model study conducted by Melby
and Resio (2002) investigated the functional and structural response of the Shore-RIB structure model
including the wave transmission coefficient K, and the fabric shroud tension 7(#) as a function of time ¢ for
62 tests.

The present numerical model based on finite-amplitude, shallow-water waves over rigid and
impermeable structures is not capable of predicting the detail responses of Shore-RIB. The computed
transmitted wave train exhibits sharp peaks of intermittently overtopping waves. The present numerical
model, however, cannot predict the development of an undular bore landward of Shore-RIB since wave
dispersion is not accounted for. The power spectra of the measured transmitted free surface elevation 7, in
the low frequency range are found to be relatively large because groups of large waves overtop the
structure together and the intermittent tube oscillation in the cross-shore direction may have generated
waves. The computed normalized mean water level difference Az due to wave set-up and wave
set-down decreases with the increase of the normalized freeboard R, for the range —0.3< R, <0.8 where
positive R, implies an emerged Shore-RIB. o

The computed spatial variation of the time-averaged wave energy dissipation rate D, is consistent
with the video recording of the locations of wave overtopping and impingement as well as the interaction
of wave downrush and incoming wave. There are two peaks in the spatial variation of D, . Both peaks
occur in the vicinities of the seaward and landward corners of the structure where wave breaking tends to
occur. Wave breaking at the front corner of the structure is more intense for the two-tube model than the
single-tube model and this trend also appears in the spatial variations of the computed D, .

The measured transmission coefficient (K)),, is slightly larger than that predicted by the empirical
formula for stone-armored breakwaters (D’Angremond et al. 1996) because of the flexibility of the
Shore-RIB structure due to the flexure of the fabric shroud and the lateral excursion of the tube as well as
the smooth and impermeable surface of the fabric shroud. Meanwhile, the computed (K)),, is slightly
smaller than the measured (K,),,, since the numerical model assumes a rigid structure. Both measured and
computed transmission coefficients (K,),, decrease linearly with the increase of the normalized freeboard
R, of the Shore-RIB structure.

The measured transmission coefficient (K,),,, for Plan 1, corresponding to the single-tube model with
small static pre-tension and no wood chocks, decreases with the increase of the normalized static tension
T, when T,<0.8, whereas (K,),., for the other tests are practically independent of 7. The decreasing trend
of (K,)m, for Plan 1 when T,<0.8 is associated with the tests with significant tube oscillations caused by no
or little pre-tension and no wood chocks used for preventing tube movement in the cross-shore direction.
On the other hand, the measured and computed transmission coefficients (K,)., are independent of the
normalized static tension 7 for the other tests.

The maximum, mean and minimum normalized computed horizontal wave forces increase somewhat
with the increase of the normalized freeboard R, and a linear regression analysis for the maximum force
(Fy )max yields (F,),,.. =3.0+0.5R,. The maximum fabric tension is predicted semi-empirically using
(a) the predicted horizontal wave force (Fj)yaq; (b) the empirical reduction factor r, which is dependent on
pre-tension 7T, and the number of wood chocks; and (c) the static pre-tension T;. The predicted maximum
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fabric tension Ty is shown to be fairly accurate for the three different configurations (Plans 1, 2 and 3). It
should be noted that the present numerical model cannot predict the detailed temporal variation of the
fabric tension because the fabric tension is affected by the complicated tube oscillations that are neglected
in the present model. However, the present numerical model predicts the measured range T,<T($)<T,,,, of
the oscillatory tension force 7(¢) fairly well.

The flexibility of the fabric shroud and the excursion of the single tube increased the fabric tension
when the tube was not constrained by wood chocks and sufficient fabric pre-tension 7;. The two-tube
configuration with two wood chocks for each tube reduced the tube oscillations and temporal variation of
the fabric tension considerably. It is recommended to reduce the temporal range between 7, and the
maximum tension T,,, predicted by the simple semi-empirical method so as to minimize the uncertain
temporal fluctuations of the fabric tension that may eventually cause fatigue damage to the anchored
fabric shroud.
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