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ABSTRACT

This study is to investigate the nearshore processes involving wave trans-
formations, wave-driven circulation, as well as the resulting sediment transport and
beach evolution through numerical modeling. A nearshore sediment transport model
and kinematic wave models were developed and incorporated with the SHORECIRC
(SC) model. The coupled wave-current-sediment transport model was tested against
comprehensive experimental data measured in the LSTF at the CHL and in other
facilities. The comparisons indicate that the model is capable of well predicting
nearshore wave properties, wave-induced hydrodynamics and sediment transport
under both regular and irregular wave conditions.

| The predicted wave properties and wave-induced hydrodynamics using the
cnoidal-bore wave model that was developed in this study using non-sinusoidal wave
phase motions, coupled with the SC show excellent agreement with measured data
in the experiments with regular waves. The sinusoidal wave model, however, under-
predicts the wave height increase towards breaking and the decay inside the surfzone,
and it is incapable of predicting the increases in the wave peakedness (7./H) and
in ¢?/gh towards breaking and the decays afterwards. Consequently, the sinusoidal
wave model over-estimates the wave volume flux but reasonably well predicts the ra-
diation stress. Thus the SC with the sinusoidal wave model as driver over-estimates
the undertow but well predicts the longshore currents and mean water level. Both
the measurement and the model prediction demonstrate less significant cross-shore

variations of wave properties and wave-induced currents under irregular waves. The

xiii



predicted wave-group averaged quantities and temporal variations of wave proper-
ties and wave-induced circulation using the irregular wave model coupled with the
SC agree reasonably well with the experiment measurements under irregular waves
in the LSTF.

The sediment transport model was developed to calculate the transport rates
of bedload and suspended load as well as the resulting beach morphology change.
The formula, for the bedload transport rate was derived starting from the two-phase
flow theory and appears to be an improved version of both the Bailard and Inman
(1981a) formula and the Engelund and Fredsge (1976) formula. Two approaches
have been developed for suspended sediment transport: One is a modification of
the Bailard (1981b) formula to include the effect of wave breaking, and the other
is a detailed physics-based phase-resolving diffusion-convection model for sediment
suspension.

The wave-current-sediment transport model was used to simulate the sedi-
ment transport on a plane beach under regular waves. The differences in the pre-
dicted sediment transport rates among different formulas were demonstrated, the
effects of the wave phase motion, wave asymmetry, wave breaking, currents, sedi-
ment convection caused by the vertical flow velocity as well as bottom boundary
conditions on sediment transport were investigated, and the resulting beach mor-
phology changes such as formation of the breaker bar as well as the general beach
erosion in the inner and middle surfzone were illustrated.

The wave-current-sediment transport model was tested against the measure-
ments in a comprehensive hydrodynamic and sediment transport experiment under
irregular wave environments in the LSTF. In addition to wave heights and wave-
induced circulation, the predicted longshore sediment transport rates, vertical pro-
files of sediment concentrations and fluxes as well as the beach profiles show good

agreement with experiment measurements.
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Chapter 1

INTRODUCTION

The nearshore ocean, extending from the beach to water depths of about 10
meters, is of significant societal, economic and military importance. More than half
the U.S. population lives within 50 miles of the shoreline. Beaches are a primary
recreational destination for tourists, and are essential to commerce and national
defense. It is crucial to increase our knowledge of nearshore processes resulting
from the interactions among winds, waves, currents, tides, sediments and other
phenomena in the nearshore region. Better understanding and accurate prediction
of nearshore processes can improve coastal management and lead to substantial
benefit for coastal communities.

The analysis and modeling of nearshore processes has been under continuing
development over several decades and particularly during the last few years. The
present study presents an effort to advance our knowledge about nearshore processes

by using numerical modeling together with the large-scale laboratory experiments.

1.1 Observations of Nearshore Processes

An effective strategy for investigating nearshore processes is to combine nu-
merical models with laboratory or field experiments. Observations are not only
needed to reveal new and unexpected phenomena but also needed to test model pre-
dictions. Several comprehensive field investigations as well as numerous laboratory
experiments have been performed mainly in the USA and Europe. Field experiments

can be performed at a large geometric scale and under natural nearshore conditions,



but they are hard to control and significant uncertainties are still present in the
data collected. Laboratory experiments, on the other hand, are relatively easier to
control but are usually limited by the small geometric scale and the incapability of
reproducing the complex nearshore processes observed in the field.

As one of the few large-scale facilities around the world, the Large-scale Sed-
iment Transport Facility (LSTF) has been constructed at the U.S. Army Engineer-
ing Research and Development Center’s (ERDC) Coastal and Hydraulics Labora-
tory (CHL), Vicksburg, Mississippi (Hamilton et al., 2001; Hamilton and Ebersole,
2001). The intent for this facility is to accurately reproduce certain nearshore pro-
cesses found on a long, straight, natural beach in a finite-length wave basin. The
LSTF simulates nearshore hydrodynamics and sediment transport processes under
both regular and irregular wave environments at a relatively large geometric scale.

Several hydrodynamic and sediment transport experiments have been per-
formed in the LSTF, and comprehensive data sets including wave properties, wave-
induced circulation and resulting sediment transport and beach profile evolution
have been collected. These data were analyzed and used to test the coupled wave-

current-sediment transport model developed in this study.

1.2 Review of Modeling Nearshore Wave and Circulation

Nearshore wave motion and circulation have been extensively studied since
large-scale computations became possible, increasing from a modest beginning in
the early 1970. Hence a rich literature is available on this subject. It is beyond the
scope of the present study to give a complete review of this literature. Interested
readers are referred to review papers such as Battjes (1988) or Svendsen and Putrevu
(1995). In the following we limit the description to aspects relevant for the present
study.

Comprehensive nearshore circulation models consist of two major compo-

nents. The first is a model component that describes the wave motion and is also



capable of providing information about the wave averaged properties responsible for
driving currents, which is the radiation stresses and the volume fluxes generated by
waves. The second is a circulation part that calculates the currents from the wave-
generated forcing. The wave component is also termed the wave driver for the
circulation component. Both components have been subject to intensive studies in
recent years and advanced versions have been developed by commercial institutions
such as Danish Hydraulics Institute, Delft Hydraulics, and Hydraulics Research,
Wallingford, UK to mention some. These models, however, are all proprietary and
the source codes cannot be purchased. In the present investigation we use the quasi
3-D SHORECIRC model for the circulation part of the model computations. For
a closer description see e.g. Van Dongeren and Svendsen (2000). This model has
been tested extensively in the past, as e.g., Svendsen et al. (1997), Van Dongeren
and Svendsen (2000), and Haas and Svendsen (2000).

An important aspect of the wave models used as drivers is that they need to
be fast enough to avoid slowing down the computational performance of the entire
model. The wave drivers are relatively simple wave models and several suitable
models have been published and studied. The REF/DIF1 model developed by Kirby
and Dalrymple (1994) has these capabilities, and has been used in all previous
applications of the SC model (Dongeren et al. (1994), Haas and Svendsen (2000),
Haas et al. (2000), Svendsen et al. (1997), Van Dongeren and Svendsen (2000), to
mention some).

The wave model is also essential to modeling nearshore sediment transport
and beach evolution. The wave motion is the source mechanism for sediment trans-
port in the nearshore. It is not only because the nearshore current, a primary agent
responsible for net sediment transport, is induced by waves, but also because the
wave velocity combined with the current velocity is responsible for sediment entrain-

ment from the bed and for sediment suspension in the water column. In addition, the



non-sinusoidal wave phase motion or wave asymmetry (skewness) tends to induce
net sediment transport in the wave direction, which is important for the cross-shore
sediment transport and resulting beach profile evolution.

REF/DIF1 uses the sinusoidal wave theory for the wave phase motion and
assumes steady-state wave transformation. However, in reality waves are usually
irregular and become non-sinusoidal in shape as they propagate into the nearshore
region. Hence, REF/DIF1 may not be able to provide accurate forcing for wave-
induced circulation or provide accurate wave velocities and phase motions which
are essential for the nearshore sediment transport and beach evolution. Alternative
wave models are developed in the present study. They include both the wave non-
linearity and wave irregularity in the models but at the same time keep the model
simplicity.

The wave models developed in this study are based on the kinematic wave
theory which is quite effective for the wave propagation on the beaches with lim-
ited longshore variations considered here. In its general 2-D horizontal form the
kinematic wave theory was first presented by Phillips (1969). This method remains
popular and is attractive because of its relative simplicity. It essentially is capable
of describing the wave transformation and refraction in areas with gently sloping
topography. Phillips described the method for sinusoidal waves, but as illustrated
in this study this approach is capable of describing slowly varying non-sinusoidal

waves as well, if choosing appropriate theories for wave phase motions.

1.3 Review of Modeling Nearshore Sediment Transport

Numerous models have been proposed for coastal sediment transport, rang-
ing from the simple CERC formula (USACE, 1984), quasi-steady models based on
Bagnold’s energetic principles to complex numerical models involving higher-order

turbulence closure schemes or based on the two-phase flow theory. However, the



accurate prediction of coastal sediment transport still presents a major challenge to
coastal researchers and progress has been relatively slower in this area.

Sediment transport is typically separated into the suspended load mode and
the bedload mode, and different formulas or models are applied to each mode sepa-
rately. Significant uncertainties are still present in quantitative modeling of sediment
transport and resulting bed change, even for open channel flows. The mechanisms
and parameterizations both for sediment entrainment from the bed and suspension
in the water column remain poorly understood. The complex flow condition for
combined wave and current flows make it more chanllenging to accurately predict
the nearshore sediment transport and beach morphology change.

Sediment suspension and transport vary temporally and spatially in the
nearshore region. Even the wave-averaged net sediment transport rates vary sig-
nificantly not only in magnitudes but also in directions. A few numerical models for
coastal sediment transport have been developed by commercial institutions such as
Danish Hydraulics Institute, Delft Hydraulics, and Hydraulics Research, Walling-
ford, UK to mention some. Different assumptions were made in these models and the
accuracy of the model predictions is still less satisfying (Davies et al., 1997). A de-
tailed physics-based model for coastal sediment transport and morphology change
incorporated in a nearshore hydrodynamic model has not been developed in the

United States, and this study is to present an effort in this area.

1.4 Motivation and Objectives

The purpose of this study is to investigate nearshore processes that involve
transformation of surface gravity waves propagating across the continental shelf to
the beach, the corresponding wave-induced circulation, and the resulting sediment
transport and beach evolution by using numerical modeling and the large-scale lab-

oratory experiments in the LSTF.
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The main objectives of this study are to: (1) Incorporate a nearshore sedi-
ment transport model and wave models in the nearshore circulation model SHORE-
CIRC and finally develop a realistic coupled wave-current-sediment transport model
for nearshore processes that involve wave transformations, wave-driven circulation,
and resulting sediment transport and beach evolution. (2) Compare the model pre-
dictions against the comprehensive experimental measurements carried out in the
LSTF at the CHL. (3) Use the model to investigate some characteristics of nearshore
hydrodynamics and sediment transport under both regular and irregular wave envi-
ronments. And (4) illustrates the effects of different wave models on the predicted

wave properties, wave-induced circulation and resulting sediment transport.

1.5 Outline of Present Work

The presentation is organized as follows.

Chapter 2 gives a brief overview of the LSTF facility layout, instrumentation,
and the experiments performed in this facility. The data collected in the experiments
include wave properties, 3-D wave-induced currents and sediment transport.

Chapter 3 discusses the theoretical background of the wave model developed
based on the kinematic wave theory. After reviewing the basic equations for the
general kinematic wave theory, the wave-averaged parameters used in the wave-
averaged energy equation or used in the circulation model are formulated based on
different theories for wave phase motions. This kinematic wave model is then further
simplified for a parallel straight beach using the Snell’s law. Analytical solutions
are found for the parameters of regular waves propagating on the straight parallel
beach and a numerical scheme is developed for the properties of irregular waves.

Chapter 4 presents extensive comparisons of wave properties and wave-induced
circulation between the experimental measurements and model predictions. The
comparisons include the entire range of nearshore parameters from wave heights,

phase speeds, wave peakedness, mean water levels, to depth-averaged quantities



and depth variations of wave-induced currents. The comparisons against the reg-
ular wave experiments address the questions of how well a simple sinusoidal-wave
based model perform in comparison to a model that better represents the actual
wave phase motion and of how important the inaccuracies of a wave model are for
reproducing the 3-D current patterns in the nearshore. The comparisons against the
irregular wave experiment in the LSTF help illustrate the differences of wave char-
acteristics and wave-induced currents between regular waves and irregular waves,
and help test the performance of the kinematic model to represent the actual hy-
drodynamics induced by irregular waves.

Chapter 5 focuses on the theoretical background of the sediment transport
and contains a detailed description of the sediment transport model developed in
this study. A brief review of the two-phase flow theory is presented, followed by a
re-derivation of the formula for the bedload transport rate starting from the two-
phase flow theory. T'wo approaches are developed for suspend sediment transport.
The simpler one is to modify the Bailard (1981b) formula to include the effect of
wave breaking on suspended sediment transport rate. The other is to develop a
detailed physics-based phase-resolving diffusion-convection model for sediment sus-
pension. The boundary conditions and sediment diffusion coefficient are discussed
in this chapter and are carefully implemented in the diffusion-convection model. A
numerical scheme for solving the diffusion-convection equation is addressed.

Chapter 6 presents the simulation results of sediment transport using the
coupled wave-current-sediment transport model for a presumed simple case, which is
sediment transport on a plane beach under regular wave environments. The results
were analyzed to test the behavior of the present models and to investigate the
difference of various formulas in the predicted net transport rates, the contributions
of waves and currents to sediment transport, and the effects of the wave asymmetry,

convection due to the vertical flow velocity and different bottom boundary conditions



on sediment transport. The 3-D characteristics of nearshore sediment transport and
the beach morphology change are also demonstrated.

Chapter 7 presents the comparisons of sediment transport under irregular
wave environments between Test 1H in the LSTF and the predictions using the
developed wave-current-sediment transport model. The comparisons include the
time-averaged longshore sediment transport rates and the vertical profiles of the
time-averaged sediment concentrations and fluxes.

Chapter 8 summarizes the work presented and provides the conclusions drawn

from the study.



Chapter 2

OVERVIEW OF THE HYDRODYNAMIC AND
SEDIMENT TRANSPORT EXPERIMENTS IN THE
LSTF

The Large-scale Sediment Transport Facility (LSTF) was built at the U.S.
Army Engineering Research and Development Center’s (ERDC) Coastal and Hy-
draulics Laboratory (CHL), Vicksburg, Mississippi. The purpose for the facility is
to reproduce certain nearshore processes found on a long, straight, natural beach in
a finite-length wave basin. The LSTF is capable of simulating nearshore hydrody-
namic and sediment transport at a relatively large geometric scale. A brief overview
of the facility and experiments in the LSTF are described in this chapter, while the
detailed information can be found in Hamilton et al. (2001) and in Hamilton and

Ebersole (2001). !

2.1 Overview of the Laboratory Facility
2.1.1 General Facility Layout

The LSTF has dimensions of 30 m cross-shore by 50 m longshore by 1.4 m
deep. The general layout of the LSTF is shown in Figure 2.1. A concrete beach,

with approximately a longshore dimension of 31 m and a cross-shore dimension of

I Part of the material in this chapter is modified or quoted from the report by
Hamilton et al. (2001).
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21 m, is located in the central region of the facility, on top of which a sand beach
was later constructed.

Four digitally controlled and servo-electric driven piston-type wave generators
are located offshore to generate regular and irregular waves. Each of the wave
boards is 7.62 m wide, and all the wave generators are synchronized to create a
unidirectional long-crested wave front of 30.5 m in width. The wave generators can
be oriented at various angles ranging from 0 to 20 degrees relative to shore normal,
while the angle was set to 10 degrees in the experiments. A rubble mound wave
absorber is located behind the wave generators to minimize wave reflections.

Twenty independent flow channels were built at the up- and down-stream
boundaries of the facility. Each of the channel is 0.75 m wide except the one clos-
est to the shoreline which is 3.75 m in width. Sediment-laden longshore currents
flow toward the 20 downstream flow channels, each of which contains a low pro-
file, gravity-feed sediment trap to measure the longshore sediment transport rate
during experiments involving sediment transport. The longshore current is exter-
nally re-circulated from the downstream end back to the upstream of the facility
through 20 independent pump-and-piping systems. The flow is then guided to the
upstream end of the beach by the 20 upstream flow channels. The longshore current
re-circulation system is essentially an active closed-loop system that continuously
re-circulates the longshore current from the downstream boundary to the upstream
of the beach while waves are being generated.

The discharge rates of the pumps are adjusted through an iterative process
until a ”desired” magnitude and cross-shore distribution of longshore currents for a
given wave condition were achieved. The term ”desired” is used to describe longshore
currents with a high degree of longshore uniformity, which in reality is generated
along an infinitely long straight beach.

Figure 2.2 sketches out the cross-shore profiles of the concrete and initial

1)



sand beaches. The main section of the concrete beach has a constant slope of
1 : 30 and the toe of the beach slopes down to the basin floor at a 1:18 slope.
The moveable-bed beach was later constructed on top of the concrete beach using
approximately 125 m? of very well sorted quartz sand with a median grain size of
Dsy = 0.15 mm. The initial sand beach profile was determined based on results
from the preliminary experiments and an analysis of the equilibrium beach profile
for this grain size (Dean, 1977). The main section of the sand beach was graded to
have a constant slope of approximately 1 : 27, extending from the initial still-water
shoreline to 16 m offshore. A sand berm was built behind the shoreline, with a front
slope of 1 : 5.5 and a height which exceeds the maximum excursion of wave runup
in the swash zone.

The coordinate system used in the references for the LSTF experiments (as
e.g., Hamilton et al. (2001) and Hamilton and Ebersole (2001)) was chosen so that
the origin is at the downstream, shoreward end of the basin, the positive X -axis is di-
rected offshore, the positive Y-axis is directed upstream, and the z-axis is measured
positively upward relative to the still water level. However, the (z, y) coordinate
system used in the present study was defined so that the origin is at the upstream,
offshore end of the concrete beach, the positive z-axis is directed shoreward and
the positive y-axis is downstream. These two coordinate systems, as illustrated in

Figure 2.1, are related by
$=2—X y=447-Y (2.1)

where (X,Y) is the coordinate system used in Hamilton et al. (2001) and Hamilton

and Ebersole (2001).
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2.1.2 Instrumentation

A semi-automated instrumentation bridge was used as a rigid platform for
mounting wave gages, current meters, fib-optic backscatter sensors, and a fully au-
tomated bathymetric survey system. The bridge spans 21 m in the cross-shore
direction and can traverse the entire length of the wave basin.

Fourteen single-wire capacitance wave gages were used to simultaneously
measure the time series of water surface elevations. Ten of the wave gages were
mounted along the bridge to measure wave transformations from the offshore zone,
across the surfzone and into the swash zone. The other four gages are fixed in front
of the four wave generators to measure offshore wave conditions. Only three of them
actually functioned in the experiments.

Ten acoustic-doppler velocitimeters (ADV) were used to measure the instan-
taneous flow velocities. The ADVs were co-located with the wave gages along the
bridge at about the same cross-shore location and were separated from the gages
by approximately 0.4 m in the longshore direction. The ADVs were positioned so
that the sampling volumes were located approximately one-third of the water depth
above the bed in most tests, but their elevations were adjusted in some tests for the
purpose of measuring vertical profiles of flow velocities.

Four vertical arrays of Fiber-Optic Backscatter Sensors (FOBS) were located
along the bridge during the experiments involving sediment transport. Each array
was co-located about midway in the longshore direction between the waves gage
and the ADV and about the same cross-shore location. The FOBS simultaneously
measured suspended sediment concentrations at 19 elevations in the water column.

Twenty Bottom Sediment Traps (BST) were located at the downstream end
of the facility to measure the cross-shore distribution of longshore sediment transport
rates. Eighteen sediment traps were positioned within 18 out of the 20 flow channels,

one in each channel. T'wo shorter traps were located landward of the most-landward
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Table 2.1: Instrumentation and sampling scheme in a sand beach experiment in

the LSTF
Measurement, Instrument| Points| Sampling | Sampling Vertical
in x Rate Duration Profile

Surface Elevation CWG 10 20 Hz 10 min N/A
Currents ADV 10 20 Hz 10 min Yes
Sediment Concentration | FOBS 7 16 Hz 10 min Yes
Sediment Flux BST 20 4 Hz Continuous | No
Beach Topography ABSS 3660 | Each Test | N/A N/A

channel to quantify the sediment transport rate near the shoreline and in the upwash
zone. The sand accumulated in the traps was dredged from the traps and discharged
onto the upstream end of the beach after a significant amount of time.

A fully Automated 3-D Bathymetric Survey System (ABSS), consisting of a
beach profile indicator and a x-y positioning system, was used to quantify spatial
and temporal changes of beach bathymetry. The cross-shore profile was measured
every 0.5 m along the beach for most tests, and the resolution is 0.005 m in the
cross-shore direction for each transect.

A brief summary of the instrumentation and sampling scheme specific to a

sand beach experiment is listed in Table 2.1.

2.2 Overview of Experimental Measurements

Several hydrodynamic and sediment transport experiments have been per-
formed in the LSTF. Three of them, which are referred to as Test 6, Test 8 and
Test 1 by Hamilton et al. (2001) and Hamilton and Ebersole (2001) were used in
the comparisons in this study, and the experimental conditions are summarized in
Table 2.2. In this table H, stands for the significant wave height, 7}, for the peak
spectral period, « for the wave angle of incidence relative to shore normal and hg

for the still water depth.

15



Table 2.2: Summary of experimental conditions

[ Test, I Test 6 Test 8 [ Test1 |
Beach Type Fixed-bed Fixed-bed Moveable-bed
Wave Type Regular waves | Irregular waves | Irregular waves
Incident H; (m) | 0.18 0.23 0.25
Incident T}, (sec.) | 2.5 2.5 1.5
Incident a (deg.) | 10 10 10
Incident hy (m) | 0.667 0.667 0.9

2.2.1 Hydrodynamic Experiments: Test 6 and Test 8

Both Test 6 and Test 8 are hydrodynamic experiments conducted on the con-
crete beach, one using regular waves and the other using irregular waves. Regular
waves were generated in Test 6 with a wave height of 0.18 m, period of 2.5 seconds
and incident angle of 10 degrees at the wave generators. Irregular waves were gen-
erated in Test 8 using a TMA spectrum. The incident significant wave height is
0.23 m, the peak spectral period is 2.5 seconds and the incident wave angle is 10
degrees. The significant wave height in Test 8 was selected so that the root-mean-
square wave height H,,,, was comparable to the wave height for the regular wave
experiment (Test 6). The length of the driving signal was 500 seconds, 200 times
the peak wave period.

A number of preliminary tests were carried out in each experiment before
the formal test, in which the desired longshore uniform currents were produced and
comprehensive measurements were conducted. The purpose of the preliminary tests
is to find the proper magnitude and cross-shore distribution of the pumped flow
rates to be used in the formal test. The tests were identified in Hamilton et al.
(2001) and in Hamilton and Ebersole (2001) as Test 6A to Test 6N for the regular
wave experiment and Test 8A to 8E for the irregular wave experiment.

During the formal tests, i.e., Test 6N and Test 8E, measurements were made

16



using wave gages and ADVs mounted on the instrumentation bridge at eight tran-
sects along the beach at the following alongshore coordinates of y = 5.7, 9.7, 13.7,
17.7, 21.7, 25.7, 29.7, 30.7 m. Along each of the eight transects, instant water sur-
face elevations were measured at ten cross-shore locations and in front of three wave
generators, and velocity components were measured at the elevation approximately
one third of the local water depth above the bed at nine cross-shore locations. In
addition, the instantaneous flow velocities were also measured along the transect of
y = 17.7m at various elevations. The cross-shore variations of wave heights, mean
water levels and currents at eight transects as well as the vertical profiles of currents

along the transect of y = 17.7m were deduced afterwards.

2.2.2 Sediment Transport Experiment: Test 1

Test 1 in the LSTEF is a comprehensive hydrodynamic and sediment transport
experiment conducted on the sand beach. Irregular waves were generated in this
test and the incident wave conditions are significant wave height of 0.25 m, peak
spectral period of 2.5 seconds and wave angle of 10 degrees.

Numerous test segments, identified as Test 1A to Test 1H in Hamilton and
Ebersole (2001), were conducted in this experiment. In addition to the purpose of
establishing a proper pumping setting, another goal of the preliminary tests is to let
the beach reach a near-equilibrium beach condition before the formal test (Test 1H)
in which comprehensive measurements of hydrodynamics and sediment transport
were performed. The hydrodynamic measurements in Test 1H were similar to those
in Test 6N and Test 8E. The measurements involving sediment transport, which
is the main purpose of Test 1H, include the instant longshore sediment transport
rates measured by downstream sediment traps and the vertical profiles of instant

sediment concentrations measured by the FOBS along the transect of y = 22.7m.
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The comprehensive measurements of hydrodynamics and sediment, transport
in the LSTF were used in the present study to compare the model predictions

against, which will be illustrated in chapters 4 and 7.
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Chapter 3

THE KINEMATIC WAVE DRIVER MODELS

3.1 Basic Equations for the General Kinematic Wave Model
3.1.1 The General Governing Equations

The wave models used in the present study are based on the kinematic wave
model which describes the shoaling and refraction of waves that can be described
by a slowly varying amplitude or wave height H and a phase function 6. ' Follow-
ing Phillips (1969) this implies that the wave number (tensor) k, (« denotes the
direction of z,, and z,(c = 1, 2) correspond to x and y in the Cartesian coordinate

system) is given by

o6
R = =
0% 4 (3.1)
and it follows that the wave number vector is irrotational so that
Oky Ok
— ——=0 32
B:L‘l 8.‘1,"2 ( )
and the spatial and temporal changes in w and k, are linked by the equation
Ok,  Ow,
—+—=0 3.3
5 | 9z, G

where t denotes time.

! The material in this section was originally presented in the paper by Svendsen
et al. (2003).
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This equation states that any temporal variation in the wave number vector
must be balanced by spatial changes in the absolute wave angular frequency wa. In

addition wa is related to k., the local water depth A and current velocity V, by
Wo = Wy + ko Va (3.4)

where the relative frequency w, is given as a function of the numerical value k of &,

(k = Vkaks) by the dispersion relation for the wave motion
b= fk, H,h) (3.5)

The solution for k, (and w,) corresponds to establishing the propagation
pattern for the waves. The wave heights H(z,,t) are then determined from the

wave-averaged energy equation given by (Phillips, 1969)

8 1 Qﬁla a 1 Q‘-‘.Uﬂ 217 avﬁ NV
o1 E— EPT) e E{Em + Vo E - :jPQa(T) } = —Sags B, +D=VoThe (3.6)

Here @, is the total volume flux in the wave-averaged motion, and V, is the depth-
averaged current velocity in that motion, F is the wave energy density, Qo is the
wave volume flux, Fy, is the wave energy flux, S,z is the radiation stress, D is the
energy dissipation of wave breaking which is defined so that D < 0 for energy loss
and 73, is the averaged bottom friction. The wave-averaged parameters F, Qya,
Eyo and S,p are dependent on wave height H and phase variation. Hence, in order
to determine the H from (3.6), all these parameters need to be linked to the wave
height as described in the following.

It may be noticed that no limitation is placed on the phase function, which
therefore does not have to be sinusoidal. On the other hand the seemingly simpler
version of the kinematic model based on the concept of wave action £/w rather than
the wave energy F used here is only valid for the sinusoidal phase variation and the

associated dispersion relation.
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3.1.2 Dimensionless Wave-Averaged Parameters

To facilitate the solution of (3.6) we extract the H-variation from the wave-
averaged quantities (i.e., the quantities averaged over the time scale of wave period).
It is useful to define a dimensionless parameter for each of the quantities. These
dimensionless parameters essentially represent the generalized shape of the wave (in
the sense of surface profile, velocity and pressure field, etc). This approach will
also greatly facilitate the parameterization of empirical data to be used inside the
surfzone.

We write for the energy flux Ey,

¢ 1
Eio = [pp + §pu,2]'u,adz = pgH?*c,B (3.7)
—hg

where ( is the instantaneous water surface elevation relative to the still water level,
hg is the still water depth, u is the total horizontal wave particle velocity, u, is the
x— and y— components of the wave particle velocity, ¢, is the phase velocity vector
defined from the wave speed ¢ by the relation ¢, = ck,/k and B is the dimensionless
parameter for the energy flux.

For the energy density E' the dimensionless parameter is By:

1
—puldz = pgH’Bp (3.8)

¢ p 1 = /C
zadz = —
ho P9 2997} —hg 2

¢ i}
E = {pgz + =pu?}dz—
—ho 2

where  is the mean water level (MWL) and 7 is the water surface elevation relative
to the MWL.

For the radiations stress Sqg
Saﬁ — Sm Cap + Spéaﬁ = ngZPaﬁ (39)
where eqp = (ko kg) /k?, the Kronecker delta do5 = 1 if @ = # and d,p5 = 0 if @ # f3,

S mn

¢
/I puldz = pgH* Py, (3.10)
g

¢ j
Sp = —/I pw?dz + ﬁpgnz = pgH*P, (3.11)
=
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where w is the vertical wave particle velocity in the local vertical plane of wave

propagation. Hence, P, is given by
Paﬂ - Pm €ap S e prsaﬁ (312)
For the wave volume flux @,, the dimensionless parameter By is defined by:
¢
Qua = / Uy 42 = —— —— BQ (313)
ho ;

The energy dissipation D for the breaking waves can be rewritten as

_ pgH?®
4WT

D (3.14)

where D is the dimensionless parameter.

It is noted that (3.7), (3.8), (3.9) (with (3.10) and (3.11) ) and (3.13) are the
exact definitions for those quantities.

Specifying the phase variation will result in values for the dimensionless pa-
rameters B, Bg, P.g, Bg and D. If exact expressions for the phase variation of the
velocity, pressure field and surface elevation in the wave motion were inserted into
the integrals the results for those parameters would also be exact. Solving (3.6) then
gives the wave height variation. With wave heights H and phase speeds ¢ known we
can then determine in particular the volume flux @, and the radiation stress Sug

which represent the major forcing parameters for circulation models.

3.1.3 Expressions for the Dimensionless Parameters Based on Different
Wave Theories

Different representations of the wave phase motion by different wave theories

result in different approximations of the dimensionless wave-averaged parameters

and thus the derived wave properties such as wave height, phase speed and the

wave-averaged dimensional parameters. In this study both the sinusoidal and non-

sinusoidal wave theories were used to represent the wave phase motion, and the
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resulting wave models are referred as sinusoidal and non-sinusoidal (cnoidal-bore)

wave driver models, respectively.

The Sinusoidal Wave Theory

The sinusoidal (or linear) wave theory is the simplest approximation for the
wave phase motion. In the present sinusoidal wave model the phase motion is de-
scribed by the usual sine wave theory both inside and outside the surfzone. However,
the effect of a roller is added to the wave-averaged parameters inside the surfzone.

For the phase speed ¢ we use the general intermediate depth value of

= 1/%tanh kh (3.15)

where h is the water depth from the bottom to the mean water level. As the figures
will show for the conditions of the experiments considered in this study this does
not differ noticeably from the shallow water value of \/gh.

Outside the surfzone we therefore have for the dimensionless parameters B

and Bpg, P,s and B

B=(1+G)/16 (3.16)
Brp=1/8 (3.17)
14+G G

Paﬁ = 16 Eap + ﬁ(sﬂﬁ (318)

with
G = 2kh/ sinh 2kh (3.19)

and
Bg= 1/8 (3.20)

For the computations with sinusoidal waves without a roller these expression
also apply for surfzone waves. However, it is for simplicity assumed in the calcula-

tion of the wave-averaged parameters that the surfzone waves are in shallow water,
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though this is of course no real limitation. With the shallow water wave assumption

and the effect of the roller added we then get

1 1Ahc
1 Ah)\ 2 1
Paﬂ = (g + EE) E €ap = 1—650,'3 (322)
1 A h\ &

The roller area A in this sinusoidal and the following non-sinusoidal wave
models are both determined using the results of Svendsen (1984) which suggested

that
A

H?
At this point it is also possible to use Okayasu et al. (1988)’s suggestion of A/HL =

=0.9 (3.24)

0.06 but the above was found to give slightly better results in this study:.

It is noted that waves no longer have sinusoidal shape when propagating to
the nearshore and the sinusoidal wave theory may not be accurate enough for the
description of the phase motions of nearshore waves, especially for waves close to
breaking and inside the surfzone. Hence, an alternative non-sinusoidal wave theory
is further used in this study to describe the wave phase motion: The cnoidal wave
theory is used for waves outside the surfzone and non-sinusoidal long wave theory

is used for surfzone waves.

The Cnoidal Wave Theory for Waves outside the Surfzone

The cnoidal wave theory is equivalent to assuming that waves are weakly
nonlinear Boussinesq waves that are changing so slowly that their local shape corre-
sponds to the constant depth solution on that location. The waves therefore follow
the rules of shoaling and refraction of waves on a gently sloping bottom. As com-

pared to sinusoidal waves, cnoidal waves are asymmetric about the horizontal axis,
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with larger forward motion with shorter duration and small backward motion with
longer duration.
The local cnoidal wave parameters are given by the local Ursell number de-

fined by
HI?
h?

and the wave shape is determined by the parameter m which is the solution to the

= (3.25)

equation

1
.= ﬂ;sz (3.26)

where K is the complete elliptic integral of the first kind that is function of m.
This equation needs to be solved for each H and L at each depth A. This is
done iteratively using standard algorithms for the elliptic integral K (see e.g. Press
et al. (1986)). To follow the wave transformation from one point to another we
therefore need to determine the evolution of the Ursell number as waves propagate.
For the energy flux Ef, the dimensionless parameter B is given by (see e.g.

Svendsen (1974))

n?
which can be evaluated as
I E E E
where F/(m) is the complete elliptic integral of the second kind.
The phase speed ¢ is given by
c? H
— =14+ A — 3.29
qh e h (3.29)
in which
2 3B
Ac= ——-1- 3.30
' m m K ( )
We also have
B = By (3.31)



B
Pos = Boeas + ?‘} Sap (3.32)

and

Bg=B; (3.33)

The Non-Sinusoidal Long Wave Theory for Surfzone Waves

Inside the surfzone the broken waves are very different from any simple wave
shape we know such as linear waves, Stokes waves, stream function waves, cnoidal
waves, and etc. Hence the conventional wave theories are no longer appropriate
for the description of the surfzone waves. As a result, the dimensionless wave pa-
rameters are determined empirically for this region in the present study. For the
inner surfzone waves, rollers are fully developed and a rather slow change in wave
shape resembles periodic bores. On the other hand, immediately after wave break-
ing, rapid transitions of wave shapes occur and the rollers are very unstable (here
termed the transition region and will be discussed in a separate section later).

Inside the surfzone we assume a hydrostatic pressure and a depth uniform
particle velocity distribution in the wave motion. The wave-averaged effect of the
wave shape is then again described by By. In addition, however, we also include
the effect of the surface roller created by wave breaking. In this respect the model
is equivalent to the model developed by Svendsen (1984), but in contrast, we use a
nonlinear bore model to determine the phase speed ¢ of breaking waves. This turns
out to be important for some of the results. Hence we find for the dimensionless

wave parameters inside the surfzone

1A hCc?

A h\ ¢ B
Paﬁ=(30+mﬁ)g—h(ﬁaﬁ+?ﬂﬁa£; (3.35)
A h\ ¢
Br= 1| B e .36
Q (D+HLH)gh (@:8e)
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The wave shape parameter By is, however, evaluated using the empirical results for
the (non-sinusoidal) waves inside the surfzone obtained by Hansen (1990) instead of

using the value of 1/8 for sinusoidal waves.
By = Byp {1 —a(b— h/hp)(1 — h/hp)} (3.37)

where Byp is the value at the breaking point which can be determined with the

cnoidal wave theory outside the surfzone. For a and b Hansen gave
a = (1560) ™" b= 1.3 = 10(& — &oo) (3.38)
where & and &y, were given by
&0 = hg/(Ho/Lo)"?; £oo = hy/0.1421/ (3.39)

in which A, is the spatial gradient of the water depth A in the z direction.
Energy Dissipation Inside the Surfzone

The energy dissipation D in breaking waves is due to wave energy being
transformed to turbulent energy, and then to heat. The same method for calculating
D is used in both sinusoidal and non-sinusoidal wave models.

The breaking process is often considered analogous to the situation in a
hydraulic jump or a moving bore. A closer analysis shows that there is far more
truth behind the intuitive concept than one should expect, but also shows a number
of points where the two processes differ. Derivations for D and ¢ were discussed by
Svendsen et al. (1978).

From the derivation of Svendsen et al. (1978), the bore-equivalent of the wave

speed was given by

& 3 /o - S | Ne e o Hos , 3
- — i L S 1 L il 9 i e e s i - SO TR - L S A A
1+ ( 2+3H)h+(2 3H+3H2)(h) +( +=5)(=-)° (3.40)

where 7). is the crest elevation of the breaking wave.
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The dimensionless energy dissipation can be written in terms of 7, as

i [ : (3.41)

@7 DD

Therefore, inside the surfzone the wave crest elevation 7./H, which is a mea-

sure of wave peakedness, is an important parameter for which Hansen (1990) found
ne/H = 0.5+ {(n./H)p — 0.5} (h/hp)? (3.42)

The Transition Region of the Surfzone

The model equations described above involve two non-physical peculiarities:
For both wave models the roller area goes from zero to a finite value at the beginning
of the surfzone; For the non-sinusoidal wave model the wave phase speed also has
a discontinuity at the start of breaking. This causes singularities, in particular in
the gradient of the radiation stress and the volume flux which act as forcing for the
wave-induced currents, which is numerically unacceptable.

The roller, however, does not change discontinuously in reality. In fact in
spilling breakers it takes some distance before the roller motion is fully developed
and even in more violently breaking waves such as moderately plunging breakers the
breaking process takes a distance to develop after the initial turnover of the wave.

Similarly, immediately after breaking the wave speed increases. Physically
this is observed as a collapse of the wave front that looks like the wave tumbles
forward. Mathematically it is represented by the fact that at the breaking point
(3.40) gives higher wave speeds than (3.29).

These two criteria were used to smoothly link the wave properties of the
roller area A and the phase speed ¢ between the values at breaking and the values
inside the surfzone. Cubic spline were used to describe the transitions which were
assumed to take place over a distance of L; = rhy. The value of » would typically be

5-8 and in the present applications we used » = 8. This transition is similar to the
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rules used in Boussinesq models for the variation of the roller area at the initiation
of breaking (see e.g., (Schéffer et al., 1993))

The general cubic spline function used for the transition is
Y =3 8%+ 0s 82401 8 a0 0<s<l1 (3.43)

where Y] is the final result of the parameter (in the transition region) after applying
the cubic spline, s is the distance from the breaking relative to the total width of

the transition region

5 = 7 rp<zx<zp-+ L (344)
t
and the coeflicients
g = 2%3 = 2}/015 —|— Ll‘. l;H + Ll‘, (;L (345)
ay = —3Yop+3Yy —2LYyp — LYy, (3.46)
o = Li¥p (3.47)
ap = Yo (3-48)

with Ypp and Yy, are the (known) values of the parameter at the ends of the tran-
sition region (i.e., at *+ = zp and at © = xp + L), and Yy, and Yy, are the
r—derivatives of the parameter. The coefficients a3, as, a; and ag are evaluated
so that the results of the parameter in the transition region (after using the cubic
spline curve) can be smoothly linked to those outside the transition region. In an-
other words, both the values and the z-derivatives of the parameter are continuous

at the ends of the transition region.

3.2 Simplified Wave Model for Regular Waves on the Straight Beach
Many beaches have nearly straight and parallel contours, and the alongshore

variation of wave parameters are negligible. This situation also applies for the beach
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constructed in the LSTF. Thus, the wave models have been developed in this study
especially for the wave propagation on a parallel straight beach.

We first consider regular waves, as in Test 6N in the LSTF. For regular
waves propagating on a parallel straight beach, @ /0t = 0 and @ /0y = 0. Hence

Equation (3.2) for the conservation of waves reduces to the Snell’s law
sin @, /¢ = (sin /)i = R; (3.49)

Here, a,, denotes the wave angle relative to the shore normal and subscript ¢ rep-
resents the incident point where the wave parameters are known. After neglecting

higher order terms, the wave-averaged energy equation (3.6) reduces to
0F,/0x =D (3.50)

Equations (3.49) and (3.50) are the well-known equations governing the shoaling

and refraction of waves propagating on a parallel straight beach.

3.2.1 Waves outside the Surfzone

For waves outside the surfzone D = 0 and the energy equation becomes
Ej; = Bz (3.51)
After plugging (3.7) for E, we have
H?Becos ay, = (H?*Becos oy, ); (3.52)

Based on the Sinusoidal Wave Theory
Substituting (3.16) for B we get

H=H; K, K, (3.53)

where K is the shoaling coefficient

K, = yJegife, (3.54)
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in which ¢, is the group velocity and ¢,/c = (1 + G)/16, and K, is the

coeflicient

K, = \/cos Qi COS

Based on the Cnoidal Wave Theory
Plugging (3.27) for B yields

H%Byccos o, = (H?Byccos a,); = Fj

which can be written as

H?Bey/1 — Ric? = F,
after expressing cos ay, = /1 — R?c? based on the Snell’s law (3.49).
Furthermore, (3.25) can be written as

el

2 h3

refraction

(3.55)

(3.57)

(3.58)

We now have a complete system of three non-linear equations (3.57), (3.58)

and (3.29), with one independent variable i and three unknowns U,, H and ¢. This

set, of governing equations is similar to that used by Skovgaard and Petersen (1977).

However, we took a further step herein to de-couple the equation systems to get

analytical solutions.

Using (3.58) to eliminate ¢* in (3.57) and rearranging terms yields

— hH® = Py
where
U.h?
p = Rf T2
P
By o
ByU, v
Solving for H we get
H 1 [)‘2
F S (m + 35 +ﬁs)
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(3.60)

(3.61)

(3.62)



where

; (3.63)

B ( 260° + 270 + 3/128,° B, + 815y’ ) ‘*
3 —_—
In addition, using (3.58) to eliminate ¢ in (3.29) and rearranging terms yields
the shoaling-refraction equation for the cnoidal wave
H\"' h H
G = LIPS (G | 3.64
. ( h ) gT? h (5.64)
Numerical iterations are required to solve the equations (3.62) and (3.58) for
the wave height H and the Ursell number U,. The other wave parameters such
as ¢, shape parameter By and peakedness 7./H can then be explicitly determined
afterwards.
For normally incident waves, no wave refraction occurs. The shoaling-refraction

equation for the cnoidal wave reduces to the shoaling equation obtained by Svendsen

(1974)

h? h

(H2B,c,T)% gT?

& 1

JUSBE) =1 (3.65)

3.2.2 Waves inside the Surfzone

Plugging (3.14) for the energy dissipation due to wave breaking into (3.50)

and integrating from the breaking point we have
H/H, = K;KpKy (3.66)
in which

I(S = 1!CbBb/CB (3.67)

Kp = \/ COS lyypy/ COS gy (3.68)

H, [*DK3K® __|
» s8r g 3.69
8¢,B,T Joy, h %} (3-69)

Ks = {1

where the subscript b again stands for the breaking point and the parameters at

breaking are known based on the theories (models) for waves outside the surfzone.
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It is noted that both ¢ and D are dependent on wave height H based on
the bore theory and thus iterations are required in order to solve for H. However,
further investigations on (3.40) and (3.41) show that ¢?/gh and D are sensitive to
ne/H but insensitive to H/h. Therefore, only a few iterations are required in order

to obtain the final solution of H.

3.3 Simplified Wave Model for Irregular Waves on the Straight Beach

Waves in the field are usually irregular waves. Both wave height and wave
period vary temporally instead of remaining constant. However, it still represents
a big challenge to simulate the propagation of irregular waves. In this study the
kinematic approach is applied in this study to simulating irregular wave propagation
on a parallel straight beach. The basic assumption applied here is that the irregular
waves are slowly varying waves, i.e., the temporal variations of wave heights and
wave periods are on the time scale of wave groups. As a result, the transformation

of irregular waves can still be described by (3.3) to (3.6).

3.3.1 Simplified Governing Equations

Although no spatial variation of beach topography exists in the longshore
(y) direction for a parallel straight beach, irregular waves propagating on the beach
still have spatial variations in y direction, as illustrated by (3.3). However, the
spatial variation of irregular waves in the longshore direction is expected to be much
smaller than that in the cross-shore direction, considering the fact that the cross-
shore variation of beach bathymetry is the major mechanism of the neashore wave
transformation. If we are particularly interested in the variations of the properties
of slowly varying irregular waves with small incident angles on a parallel straight
beach, the spatial variation of waves in the longshore direction can be neglected for

simplicity, as we do in the present study.
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After neglecting the longshore variation of wave properties, 9/dy in (3.3)
and (3.6) becomes zero. Furthermore, after inserting (3.4) for w, and w, = ke
into (3.3) we have

Ok cos ay,

0 .
5 = _6_1"{ k(c+ U cosay, + Vsinay,) } (3.70)

where U and V' are the depth-averaged current velocities in the z and y directions,

respectively. This equation can also be rewritten in terms of kh as

d(khcosay,) O . . oh
5 = — 6:1:{ kh(c+U cos ay, + Vsinay,) } + k(c+ U cos oy, + V sinay,) =
(3.71)

Neglecting high order terms in (3.6) gives

or 9] oU 5)%
TR e et — TN T r— == 1; .
5 a:f;{Ff(Oga +UE}+D (S 5 + S v oy ) U, (3.72)

Expressing Ey in terms of E yields

oF 0 oU oV .
-5 —a{ﬂ(nc(,os ay+U)}+D - ( Sma; 1 S;cya—y ) — U5 (3.73)

where n = B/Bp. As discussed in section 3.1.2, n = 1 for cnoidal waves outside

the surfzone and long waves inside the surfzone, while n = (1 + G)/2 for sinusoidal

waves outside the surfzone and can be approximated by 1 for shallow water waves.

3.3.2 Numerical Solution

It is noted that both (3.71) and (3.73) are convection-type equations. There-
fore, the same numerical scheme is used to solve (3.71) and (3.73) for kh cos v, and
E, respectively. The predictor-corrector scheme is used for the time difference, as
done in SHORECIRC. The Adams-Bashforth scheme is used for the predictor, and
the Adams-Moulton scheme is used for the corrector. The second order upwind dif-
ference scheme is used for the convection terms, i.e., %{ kh(c+U cos ay,+V sinay,) }

in (3.71) and Z{E(nccosa, + U)} in (3.73). The second order upwind scheme is
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selected to avoid the wiggle problem and numerical diffusion problem. The same
numerical scheme is also used later to solve the diffusion-convection equation for
suspended sediment concentration, as detailed in section 5.4.6.

After khcosa, and E are obtained in a predictor or corrector step, wave

parameters can be determined as follows:

1. Given kh cos ay,, k and «, are determined using Snell’s law (3.49).

2. Determine H and ¢ for waves outside the surfzone.

(a) For sinusoidal waves, ¢ is determined using the dispersion relation (3.15)
in which k is known; and H is derived from (3.8) in which £ is known

and B = 1/8.

(b) For cnoidal waves, B = By which is dependent on the Ursell number U
and thus on H. Substituting (3.25) for H in (3.8) and rearranging terms

give
_ E 167"
~ pg KAhS

where By is a function of U. Therefore, U can determined numerically

U?B,

(3.74)

from this equation for a given E. After U is known, dimensionless pa-
rameters for cnoidal waves such as By and A. can be found. Finally,
H is explicitly derived from (3.8) provided E and Bp = By, and c is
determined using (3.29).

3. Determine H and c¢ for waves inside the surfzone. As illustrated in (3.34),
By is a function of ¢?/gh which is dependent on H/h as shown in (3.40).
However, a further analysis shows that ¢?/gh is insensitive to H/h, and thus
a few iterations are required to solve for H for a given E. After H is known,

c is determined using (3.40).



While several relations have been proposed for determining the location of
wave breaking in terms of H, H/h or kh, the criterion of wave breaking still remains
uncertain, particularly for irregular waves. Here the breaking criterion described in
Svendsen (1987) for regular waves is used to determine the breaking location of the
individual wave within the irregular wave group. The breaking criterion proposed

by Svendsen (1987) is
. . 2 Ho =12
0= 535 (Z,)

where Hy and Lg are the deep-water wave height and wavelength, respectively.

(3.75)

The boundary conditions used in the irregular wave model include the time

series of wave heights, wave periods and wave angles in the offshore reference.
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Chapter 4

COMPARISONS OF NEARSHORE HYDRODYNAMICS
BETWEEN MODEL PREDICTIONS AND
MEASUREMENTS

This chapter is to present the comparisons of wave properties and wave-
induced circulation between the measurements, particularly in Test 6N and Test 8E
in the LSTF, and the results predicted by the wave models, as described in Chapter

3, coupled with the SHORECIRC.

4.1 Comparisons of Nearshore Hydrodynamics under Regular Waves

The main objective of the comparisons of the nearshore hydrodynamics under
regular wave environments is to investigate the accuracy of the two wave models
used for driving nearshore circulation, and how the inevitable inaccuracies in the
predictions of wave quantities influence the current predictions. !

In addition to the measurements in Test 6N in the LSTF by Hamilton and
Ebersole (2001) (H&E) other experimental data used in the comparisons include the
experiments by Hansen and Svendsen (1979) (H&S), by Cox et al. (1995) and Cox
and Kobayashi (1997) (CK&O), by Ting and Kirby (1994) (T&K), and by Svendsen

and Veeramony (2001) (S&V).

I The material in this section was originally presented in the paper by Svendsen
et al. (2003).
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Table 4.1 lists the incident wave conditions and bottom slopes in the experi-
ments used in the comparisons. In the table subscript ¢ refers to the values of wave
parameters as generated. In most cases the bathymetry corresponded to a section
with a horizontal bottom followed by a plane beach with the slope indicated in the
last column. It is also noticed that the waves generated in these experiments are

close to shallow water waves from the incident point.

Test hi(m) | T'(sec) | Hiy(m) | U; | hi/L; | bottom slope

H&E 0.667 | 2.50 | 0.18 |21.3 | 0.113 | 1:18 ((x<3.m), 1:30 (x>3.m)
H&S (H) |0.36 |1.67 [0.10 |17.5]0.127 | 1:34.26 (x>14.78m)

H&S (K) | 0.36 | 1.67 |0.08 |14.0|0.128 | 1:34.26 (x>14.78m)

H&S (N) [ 0.36 | 2.00 0.07 18.7 | 0.102 | 1:34.26 (x>14.78m)

H&S (P) | 0.36 | 2.50 0.07 30.6 | 0.078 | 1:34.26 (x>14.78m)

H&S (Q) | 0.36 | 2.50 0.04 17.5 | 0.079 | 1:34.26 (x>14.78m)

CK&O 0.40 | 2.20 0.125 | 35.4 | 0.094 | 1:35 (x>11.85m)

T&K 0.40 2.00 0.125 | 37.9 | 0.106 | 1:35 (x>11.85m)

S&V 0.40 1.50 0.06 6.4 |0.153 | 1:35 (x>11.85m)

Table 4.1: Incident wave parameters in the experiments used in the comparisons.
For the measurements by H&S, H, K, N, P and @ refer to individ-
ual experiments, H&E stands for Test 6N in Hamilton and Ebersole

2001b), H&S for Hansen and Svendsen (1979), CK&O for Cox et al.
1995, 1997), T&K for Ting and Kirby (1994) and S&V for Svendsen
and Veeramony (2001).

4.1.1 Wave Properties
The short wave properties used in the comparisons include the wave height,
wave peakedness, phase speed, wave-averaged parameters such as the radiation stress

and wave volume flux.

Variation of Wave Heights
We first analyze the development of the wave height, which is the quantity
most frequently measured and which has the greatest influence on all the wave

parameters including the velocity field.
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Comparisons of predicted wave heights with measurements at 8 transects in
Test 6N in the LSTF are presented in Fig. 4.1. The y-value refers to the longshore
location in our coordinates for each transect (see Fig. 2.1).

For completeness Fig. 4.2 shows the comparisons with the 1-D measurements
by H&S, T&K, CK&O, and S&V. We see that the results are very similar to the
comparisons in Fig. 4.1. Similar comparisons have been shown in the literatures
before though sometimes with slightly different versions of the cnoidal wave the-
ory (Svendsen and Brink-Kjar (1972), Skovgaard and Petersen (1977) to mention
a few). It is therefore as expected that in all cases the cnoidal-bore model gives a
much more accurate prediction of the wave height than the sine wave theory, par-

ticularly in the region close to breaking.

Wave Peakedness 7./H

Figure 4.3 presents the comparisons of the wave peakedness 7./H between
the measurements from Ting and Kirby (1994) and Cox et al. (1995, 1997) and
the model predictions. The experimental data shows that waves become more and
more peaked as propagating to breaking at which 7./ H reaches the maximum value.
However, inside the surfzone waves become less and less peaked as they propagate
towards the shoreline. The comparisons show that while 7./H is assumed to be
a constant of 0.5 based on the sine wave model, it is predicted quite well by the

cnoidal-bore wave model.

Phase Speed
Measurements of the phase speed are only available from a few of the pub-
lished experiments. The most extensive set of results (Fig. 4.4) were measured by

H&S and a few can be extracted from the measurements by S&V. ? No phase speed

2 The S&V experiments were actually conducted with wave groups but the results
shown in Fig. 4.4 are for the smallest groupness of only 10% variation in wave
height.
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Figure 4.1: Comparisons of wave heights (H) between the experimental data (o) in Test 6N
from Hamilton and Ebersole (2001) and the predictions using the cnoidal-bore
model (—), the sine wave model with a roller (—-) and that without a roller (——)
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Comparisons of wave heights (H) between the experimental data (o) from Hansen
and Svendsen (1979), Ting and Kirby (1994), Cox et al. (1995, 1997) and Svendsen
and Veeramony (2001) and the predictions using the cnoidal-bore model (—), the
sine wave model with a roller (—-) and that without a roller (——)
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Figure 4.3: Comparisons of the wave peakedness 7./ H between the experimental data (o) from
Ting and Kirby (1994) and Cox et al. (1995, 1997) and the predictions using the
cnoidal-bore model (—) and the sine wave model (—-)

measurements were obtained from the LSTF experiments.

The phase speeds measured in the experiments are absolute speeds ¢]* relative
to a fixed point, where index m stands for measured. However, a weak return current
U occurs in a 1-D laboratory wave flume or a longshore uniform beach. In average,

over the depth U has the value of

_Qu

U= h

(4.1)
In a 1-D or a longshore uniform case this compensates for the forward volume flux
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Figure 4.4: Comparisons of ¢? /gh between the experimental data (o) from Hansen and Svend-

sen (1979) and Svendsen and Veeramony (2001) and the predictions using the
cnoidal-bore model (—) and the sine wave model (—-)
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()., created by the waves, since there can be no net cross-shore volume flux under
those conditions.

The dispersion relationship provided by wave theories represents the relative
(or ”intrinsic”) phase speed ¢, (that is the phase speed relative to the water). Hence

the relationship between ¢* and ¢, is

&g =¢+U = ¢ — Qu/h (4.2)
or
T Qw
=g + - (4.3)

Since @y, /h is typically 5 — 8% of ¢, the actual ¢, is ~ 1.05-1.08 times the measured

o

As Fig. 4.4 shows, a significant scatter of ¢?/gh were clearly observed in the
measured data, in particular after breaking. However, the trend is clear: as waves
approach breaking the values of ¢?/gh increase to values of 1.2 — 2.0. The cnoidal
wave model picks up this trend very well while for sine wave models the values of
c?/gh are nearly constant (because the waves in the experiments are nearly shallow
water waves throughout).

Perhaps more surprisingly the values of ¢?/gh decrease dramatically inside the
surfzone. Though this may be a little difficult to discern from Fig. 4.4, it becomes
more evident if a moving average is performed for the measured results. This is
again very clearly depicted by the bore model for ¢*/gh used here.

Considering the role of ¢ in the expressions for the energy flux E; in (3.13)
and the volume flux @,, in (3.7), it is not surprising that this substantial variation
in the phase speed and the accurate representation by the model is one of the most
important factors for improving the accuracy of the predictions of the wave-averaged

parameters.

Wave-Averaged Parameters: Radiation Stress and Setup

14



One of the major problems in the verification of wave models used as wave
drivers is that the radiation stress S,g cannot be measured directly with any of the
existing measuring techniques. However, the setdown/setup variation of the mean
water level has been measured in all the experiments used here. Since the radiation
stress in the 1-D or the longshore uniform case can be linked to the mean water

level by the simple equation (after neglecting the small bottom shear stress)

0S5z
oz

= —pgh= (4.4)

we can get direct information about the variation of radiation stress by examining
the variation of mean water level. As this equation shows, an increase in radiation
stress will cause a decrease in mean water level and vice versa. Figs. 4.5 and 4.6 show
that the present model represents the variations of mean water levels accurately.
However, so does the sine wave model with a roller, which seems surprising since
the sine wave theory does not predict wave heights very well.

The reason is that the radiation stress is a product of the square of wave
height and the shape parameter P,z (see (3.9)). As waves approach breaking wave
heights increase. The sine wave theory does not pick that up well and hence we would
expect it to underestimate the increase in radiation stress near breaking. This is not
the case because at the same time the actual waves become more and more peaked
as approaching breaking: crests shorter and more peaked, troughs longer and flatter.
The result is a decrease in P,y for the real waves as approaching breaking, which
will counteract the increase in wave heights. The sine wave theory does not pick
that up either. Hence, the relatively good performance of the sine wave theory in
predicting the variation of mean water levels before breaking is fortuitously due to
two counteracting errors: the under-predicted wave height and the over-predicted
shape parameter P,s. On the other hand, the cnoidal wave theory represents both

effects quite well and hence also predicts the S,g and setup variations correctly.
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Figure 4.5: Comparisons of mean water levels () between the experimental data (o) in Test
6N from Hamilton and Ebersole (2001) and the predictions using the SC with the
cnoidal-bore wave driver (—), with the sine wave driver with a roller () and
with the sine wave driver without a roller (——)
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Figure 4.6: Comparisons of mean water levels () between the experimental data (o) from
Hansen and Svendsen (1979) and Cox et al. (1995, 1997) and the predictions
using the SC with the cnoidal-bore wave driver (—), with the sine wave driver
with a roller (—+) and with the sine wave driver without a roller (——)
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Inside the surfzone the situation is reversed. Immediately after breaking
starts wave heights decrease rapidly, but at the same time waves become less peaked
so P, increases as discussed by Putrevu and Svendsen (1993). The result is at first
a very small change in mean water levels right after breaking corresponding to an
almost constant radiation stress (Svendsen, 1984). Further shoreward, however, the
decrease in wave heights dominates with the well-known setup as a consequence.

Again, while the bore theory with the empirical By used in the surf zone
picks up these counteracting trends quite well, the sine wave driver (with the roller
included) also provides remarkably accurate prediction of the mean water level vari-
ation, and hence the radiation stress, simply by ignoring these two counteracting

trends.

Wave-Averaged Parameters: Volume Flux and Undertow

The lack of direct measurements of the important wave-averaged parameters
also applies to the short wave volume flux, Q.+, which originates from the nonlinear
effects between the trough and crest of the wave. Most measuring techniques have
difficulties covering this region. In a longshore uniform wave tank and a 1-D wave
flume, however, the volume flux can be obtained from the measurement of the
undertow. By integrating the undertow velocity profiles (which are relatively easy
to measure) over depth and using the overall continuity equation we get the wave

volume flux
1

COS vy -

Qm =

/jho U(z)dz (4.5)
in which the wave angle a,, = 0 for 1-D flume experiments. To perform the integra-
tion the measured values of the undertow velocity profiles can be approximated by
a least-square-fit of a second order polynomial. This also makes it possible to carry
the integration to the mean water surface ¢. This is the approach used here for

obtaining measured values of (0,,. This can be done for all the experiments where
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the undertow velocity profiles were measured, essentially the experiments by H&E,
T&K and CK&O.

Figure 4.7 presents the comparisons of the volume fluxes in the same setting
as before. The figure is similar as for the other quantities though the documentation
clearly is much weaker due to the limited number of measurements available. It
is seen that the cnoidal-bore model predicts the volume flux through the whole
nearshore region quite well. While the sine wave driver (with a roller) also shows
good accuracy for the inner surfzone, it over-predicts the volume flux before breaking
and in the outer surfzone.

Figure 4.8 shows the equivalent values of the shape parameter Bg derived
from the volume fluxes. Waves outside the surfzone become more and more peaked
as approaching breaking (see Fig. 4.3), resulting in a decrease in Bg. While the
sine wave theory gives a constant of 0.125 for Bg, the cnoidal wave model can well
represent the decrease in Bg. For surfzone waves By first increases then decreases
as waves propagate towards the shoreline due to the combined effects of rollers
and wave shape variations. The cnoidal-bore model predicts the increase in By for
the outer surfzone very well while the sine wave driver is much less accurate in that
region. Despite the fact that the measurements in the inner surfzone are insufficient,
the bore model seems to generally pick up the decrease in Bg for the inner surfzone.
It is worthy to mention that the under-estimation by the sine wave driver of the
wave height and the over-estimation of the shape parameter does not again add up
to an accurately balanced prediction of the wave volume flux as was the case for the

radiation stress.

4.1.2 Wave-Induced Currents
The comparisons and analyses above have shown the importance of balancing
all the wave properties. The next step is to use the wave models as the drivers in

the SC model for comparisons with the measurements of 3-D currents induced by
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Figure 4.7: Comparisons of the wave volume flux @, between the experimental data (o) from
Hamilton and Ebersole (2001), Ting and Kirby (1994), and Cox et al. (1995, 1997)
and the predictions using the cnoidal-bore model (—), the sine wave model with
a roller (—-) and that without a roller(——)
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regular waves in Test 6N in the LSTF.

Longshore Currents

Figure 4.9 presents the comparisons with the LSTFEF measurements of the
cross-shore variations of depth-averaged longshore currents at seven transects. Again,
y-values refer to the longshore locations for transects in our coordinate system. The
currents are positive to the left and breaking occurs around z = 9m. The currents
were actually measured in the experiment at elevations approximately one third of
the water depth above the bed. However, as shown later in Fig 4.11, the verti-
cal profile of longshore currents is almost uniform over the water depth. Thus it
is reasonable to compare the measured longshore currents to the computed depth-
averaged values. From the measurements it is seen that a reasonable longshore
uniformity was achieved except for the areas close to the lateral boundaries. The
SC with the two wave driver models predict longshore currents reasonably well ex-
cept for the area close to upstream boundary (y ~ 0) where very small or even
negative longshore currents were measured close to shoreline.

As might be expected from the relatively equal prediction of the radiation
stress, the two wave drivers incorporated in the SC predict similar results for the
longshore currents with perhaps a slight advantage to the cnoidal-bore model, espe-
cially for the inner surf zone.

Figure 4.10 shows the comparisons of the current vectors at elevations one
third of the water depth above the bed. Only results for the cnoidal-bore wave driver
are presented. The agreement between the model predictions and the measurements
are very good, both in directions and in magnitudes, except for the area close to
the upstream boundary where flow patterns are complex. For most areas the wave-
induced currents flow towards the downstream and seaward direction.

One of the important features of the SC model is that it also predicts the

vertical variation of currents and the dispersive lateral mixing associated with this.
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Figure 4.9: Comparisons of longshore currents (V) between the experimental data (o) in Test
6N from Hamilton and Ebersole (2001) and the predictions using the SC with the
cnoidal-bore wave driver (—), with the sine wave driver with a roller(—-) and with
the sine wave driver without a roller(——)

Comparisons of the vertical profiles of longshore currents between model predictions
and measurements are demonstrated in Figure 4.11 for the transect of y = 17.7m
which is around the middle of the facility. The z-values refer to the cross-shore
positions of the sensors and £ is the vertical location above the bed. The vertical
profiles of longshore currents are nearly depth-uniform, as illustrated both by the
simulated results and by the measurements. Using the values at the elevation one
third of the water depth above the bed to represent the depth-averaged longshore
currents gives a reasonable approximation.

However, there is a trend of slight changes in the vertical profile of longshore
currents with the distance from the shore. Inside the surfzone the longshore currents
increase slightly from the seabed towards the surface, and outside the surfzone this

tendency is reversed so that the maximum value of V (z) appears near the bottom.
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Figure 4.10: Comparisons of currents at 1/3h above the bed between the experimental data
(= =) in test 6N from Hamilton and Ebersole (2001) and the prediction using
the SC with the cnoidal-bore wave driver (—)

As shown in Fig. 4.11 this trend is clearly the same in both the LSTF measure-
ments and the modeling results. A similar trend was found in the measurements
by Visser (1984) and was confirmed theoretically by Putrevu and Svendsen (1994).
They showed that this is an essential feature associated with the mechanism of the
convective cross-shore momentum transfer which constitutes the dispersive lateral

mixing. It is therefore valuable to see it confirmed again.

Cross-Shore Currents

Similarly Figure 4.12 compares the measured and computed vertical profiles
of cross-shore currents for the transect of y = 17.7m. In contrast to longshore cur-
rents, the undertow profiles show strong variations with the water depth. As always,
inside the surfzone the cross-shore velocities have the seaward-oriented maximum

close to the bottom and decrease to small values near the surface. Outside the
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Figure 4.11: Vertical profiles of longshore currents from the experimental data (o) in Test 6N
(Hamilton and Ebersole, 2001) compared with the predictions using the SC with
the cnoidal-bore wave driver(—) and the SC with the sine wave driver with a
roller(—+)
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Figure 4.12: Vertical profiles of cross-shore currents from the experimental data (o) in Test
6N (Hamilton and Ebersole, 2001) compared with the predictions using the SC
with the cnoidal-bore wave driver(—) and the SC with the sine wave driver with
a roller(—-)

surfzone the bottom values of the velocities are smaller and the velocities increase
slightly toward the surface. This trend is the same in both the modeling results
and the measurements as shown in Fig. 4.12. The vertical shapes of the undertow
profiles are reasonably well predicted by the SC with either the cnoidal-bore wave
driver or the sine wave driver with a roller. However, the SC with the cnoidal-bore
wave driver generally shows much better accuracy in predicting magnitudes of un-
dertows. Since the volume fluxes @), for the measurements were derived from the
undertow measurements it is clear that the trends in the comparisons of @), in Fig.

4.7 will be mirrored to the comparisons of undertows here.

3-D Current Profiles
The vertical profiles of currents are summarized in Figure 4.13 which shows

a 3-D plot of the measured and the computed vertical profiles of current vectors for
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the transect of y = 17.7m. The figure illustrates that the currents vary over depth
not only in magnitudes, but also in directions. This is in agreement with many
earlier model simulations (as e.g., Haas and Svendsen, 2000; Haas et al., 2000), but
it is believed to be the first time that it is has been demonstrated in extensive 3-D

laboratory experiments.?

4.1.3 Analysis of Model Skills

A crude assessment of the model capability can be obtained by considering
the root-mean-square errors of the simulation results relative to the measurements,
as listed in Table 4.2. The results include wave heights H, dimensionless phase
speeds ¢?/gh, mean water levels ¢, volume fluxes @,, and longshore currents V. In
the table, oy denotes the rms errors if the sine wave driver with a roller is used, and
oy denotes the rms error if the cnoidal-bore wave driver is used.

The rms values for the cross-shore averaged errors essentially confirm the
general impression of the more detailed comparisons presented in the figures. How-
ever, it is also obvious that such simple, one-figure measures of accuracy fall short of
illustrating the variations of the errors. For example the fact that the relatively large
errors for phase speeds in both theories mainly stem from the fact that the measure-
ments show very large scattering inside the surfzone and particularly immediately
after breaking.

They also do not reveal that in spite of the seemingly equally small errors
for both theories in predicting the setup/setdown the cnoidal/bore theory may, as
Figs. 4.5 and 4.6 indicate, be somewhat better at predicting the setup inside the

surfzone where the gradient of ¢ (and thereby the forcing) is largest.

3 Similar results can be inferred from field data if the longshore and cross-shore
profiles in the two papers Garcez-Faria et al. (1998) and Garcez-Faria et al.
(2000) are combined.
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Figure 4.13: Vertical profiles of current vectors: (a) from experimental data in Test 6N (Hamil-
ton and Ebersole, 2001), and (b) predicted by the SC with the cnoidal-bore wave
driver
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Test H&E | H&S(H) | HES(K) | H&S(N) | HES(P) | H&S(Q) | T&K | CK&O | V&S
o1 (H)(m) 0.032 | 0.011 | 0.010 | 0.009 | 0.014 | 0.009 | 0.013 | 0.016 | 0.013
aq(H)(m) 0.020 | 0.005 0.005 0.003 0.006 0.002 | 0.009 | 0.009 | 0.007
a1(c?/gh) - 0.317 0.396 0.345 0.576 0.342 — - 0.446
as(c* /gh) - 0.253 0.299 0.217 0.464 0.275 = — 0.195
71(0) (em) 0.270 | 0.140 | 0.112 | 0.090 | 0.076 | 0.025 | — | 0.164 | -
a3(C)(em) 0.256 | 0.130 | 0.110 | 0.084 | 0.064 | 0028 | - | 0150 | -
a1(Qw)(m?/s) | 0.006 - - - ~ ~ 0.005 | 0.003 -
02(Qu)(m?/s) | 0.003 | - = - . ~ |0.002 | 0001 | -
a1(V)(m/s) 0.062 - - - - - - - -
aa(V)(m/s): 0.059 -~ — —~ — = - -

Table 4.2: Root-mean-square errors of the model predictions of wave heights H,
¢?/gh, mean water levels ¢, volume fluxes @Q,, and longshore currents

V for the experiments used in the comparisons. o is the rms error if
using the sine wave driver with a roller and o5 is the rms error if using
the cnoidal-bore wave driver.
4.2 Comparisons of Nearshore Hydrodynamics under Irregular Waves
Test 8 was carried out in the LSTF to investigate hydrodynamics induced
by irregular waves (Hamilton and Ebersole, 2001). The measurements in Test 8E
were used to compare with the present irregular wave model incorporated in the SC.
The quantities used in the comparisons include wave heights, mean water levels and
wave-induced currents. Both the values averaged over the entire wave-train cycle
(wave-train-averaged values) and the temporal variations of the wave-averaged
values (low frequency oscillations) are compared in this study. The wave-train-
averaged values used here are the values averaged over the wave-train cycle of 500
seconds. The wave-averaged values (low frequency oscillations) are generated by the

averaging procedure described as folows.

4.2.1 Data Processing
The data directly collected in Test 8E were the time series of the instan-
taneous surface elevations and flow velocity components. The sample rate in the

measurement is 20 Hz. These data are then processed in the present study to derive



the wave parameters such as wave heights and wave periods as well as the mean
water levels and currents averaged over the wave-train cycle and over wave period.

While the wave-train-averaged values were derived by averaging the measured
data over the wave-train cycle of 500 seconds, the Fourier transform technique was
used in this study to assist in deriving wave-averaged values from the measurements.
The Fourier transform was used to transform the time series of measured data such as
water surface elevations and flow velocities into spectra in the frequency domain. A
cutoff frequency of 0.1 Hz, corresponding to 10 seconds in period which is 4 times of
the peak period of irregular waves, was used to separate the low frequency oscillation
from the instantaneous motion. The low frequency components were treated as the
wave-averaged components, from which the time series of wave-averaged parameters
were derived by using the inverse Fourier transform.

As an example, Figure 4.14 (a) shows the time series of the instantaneous
surface elevations measured by the wave gage located at # = 13.9m and y = 13.7m,
and the derived time series of wave-averaged mean water levels. While the derived
wave-train-averaged mean water level at this location is 0.005 m, the wave-averaged
mean water levels vary from —0.019 m to 0.036 m. The spectral density of the surface
elevations is shown in Fig. 4.14 (b). Although the peak frequency is 0.4 Hz (period of
2.5 seconds), noticeable energy still exists for lower frequency components, implying
the existence of the low frequency oscillation of the water levels.

Figure 4.15 presents the time series of the longshore flow velocities measured
by the ADV located at z = 13.9m and y = 13.7m and the derived time series
of wave-averaged longshore currents, as well as the spectral density of longshore
velocities. The wave-train-averaged longshore current at this location is 0.346 m/s,
while the wave-averaged longshore currents vary from 0.278 m/s to 0.40m/s. It is
noted that the energy for low frequency components is actually larger than that for

the peak wave frequency of 0.4 Hz. This is because that the wave particle velocity
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(a) Measured instantaneous surface elevations (thin solid line) and the derived
temporal variation of wave-averaged mean water levels (thick dash line), and (b)
the spectral density of surface elevations at & = 13.9m, y = 13.7m in Test 8E
(Hamilton and Ebersole, 2001).
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Figure 4.15: (a) Measured longshore flow velocities (thin solid line) and the derived tempo-
ral variation of wave-averaged longshore currents (thick dash line), and (b) the
spectral density of longshore flow velocities at = 13.9m, y = 13.7m in Test 8E
(Hamilton and Ebersole, 2001).

components in the longshore direction are smaller than the wave-averaged currents
(low frequency components) at this location. The wave velocities in the longshore
direction are small because the wave angles are small. However, the energy for the
peak frequency (0.4 Hz) is comparable to that for low frequency components for
the cross-shore flow velocities, as shown in Figure 4.16. This suggests that the wave
particle velocities in the cross-shore direction are comparable to the wave-averaged

cross-shore currents.
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Figure 4.16: (a) Measured cross-shore flow velocities (thin solid line) and the derived temporal
variation of wave-averaged cross-shore currents (thick dash line), and (b) the
spectral density of cross-shore flow velocities at x = 13.9m, y = 13.7m in Test
8E (Hamilton and Ebersole, 2001).

Wave heights and wave periods were derived in this study using the zero up-
crossing method on the time series of the measured surface elevations subtracting
the derived (wave-averaged) mean water levels. As an example Figure 4.17 shows
the resulting wave heights and periods at z = 3m, y = 12.7m. Significant temporal
variations can be found for both wave heights and wave periods. These data are
therefore further smoothed to obtain the time series of slowly varying wave heights

and periods, which were finally used as the inputs to the irregular wave model and in
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the comparisons with the model prediction. The smoothed wave heights and wave
periods at this location are also presented in Figure 4.17.

The smoothing procedure is performed first because the basic assumption of
the kinematic wave model requires waves to vary slowly both spatially and tempo-
rally. In addition, a milder temporal variation of wave properties helps the model
achieve numerical stability. However, by using the smoothing procedure, the ran-
dom behavior of irregular waves is somewhat restrained and irregular waves are now
represented by time variations that resemble wave groups. This may present one of

the limitations of the kinematic wave model for irregular waves.

4.2.2 Incident Wave Conditions

The incident wave conditions of the irregular wave model are the time series
of wave heights, wave periods and wave angles at the offshore boundary. In the
present study the mean position of the wave generators (z = 0) was chosen as the
offshore (wall) boundary in the SC simulation. Therefore, the wave conditions at
x = 0 should be used as the incident wave conditions for the irregular wave model.
However, the offshore-most wave gages were located 3 meters shoreward from the
wave generators. As a result, the derived wave heights and periods at =z = 3m,
y = 12.7m, as showed in Figure 4.17, were used as the incident wave heights and
periods at # = 0 in the preliminary model simulation. * The offshore incident wave
angle is 10 degrees.

However, the wave heights at z = 0 should be smaller than that at z = 3m
because of wave shoaling. As a result, the wave heights predicted by the wave
model using the wave conditions at z = 3m as the incident wave conditions (at
x = () are larger than they should be. Figure 4.18 shows the comparison of wave

heights between the measurement and the preliminary model prediction. A general

4 The obvious remedy of moving the offshore boundary to = 3m is not viable
because it would distort the current patterns relative to the actual basin.
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Figure 4.17: Derived temporal variations of wave heights and wave periods at z = 3m,
y = 12.7m in Test 8E (Hamilton and Ebersole, 2001). The thin solid lines
are the results using the zero up-crossing method, and the thick dash lines are
the smoothed results that were also used as the incident wave conditions in the
model.
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over-prediction of wave heights can be observed, and the wave-train-averaged wave
height at £ = 3m was found to be over-predicted by approximately 0.008 m in the
preliminary simulation. Thus, the wave heights at = 3 m reduced by 0.008 m were
used as the incident wave heights (at z = 0) in the subsequent formal simulation.
The wave heights at 2 = 3 m predicted in the formal simulation is also presented
in Figure 4.18 and we see that a much better agreement can be found between the

measurements and the formal simulation results.
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Figure 4.18: Temporal variations of the wave heights at = 3m derived from the measure-
ment (—) in Test 8E (Hamilton and Ebersole, 2001) compared with the model
predictions using the wave heights at = 3 m without deduction (—-) and with
deduction (——) as the incident wave heights at @ = 0.

4.2.3 Wave-Train-Averaged Wave Properties and Currents
Figure 4.19 presents the comparison of wave-train-averaged wave heights be-
tween the measurements and modeling results at 8 transects. The average breaking

point is located at z = 7.5m. It is seen that the increase in wave height towards

66



0.2
0.156

PR R WO . .

H (m)

0.2
0.15

H (m)

; i ; . H 0 R i A H H
00 3 6 9 12 15 18 0 3 6 9 12 15 18
x (m) x (m)

Figure 4.19: Comparisons of the wave-train-averaged wave heights between the experimental
data (o) in Test 8E (Hamilton and Ebersole, 2001) and the prediction using the

irregular wave model (—).
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Figure 4.20: Comparisons of the wave-train-averaged mean water levels between the exper-
imental data (o) in Test 8E (Hamilton and Ebersole, 2001) and the prediction
using the SC with the irregular wave driver (—).
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(average) breaking for irregular waves is smaller than regular waves (see Fig. 4.1),
as illustrated both by the experimental data and by comparisons of the model pre-
dictions for two cases. The breaking location changes with time and waves tend
to break with smaller H/h because of the interactions among waves. Figure 4.19
also shows that the predicted wave-train-averaged wave heights well agree with the
measurements.

A good agreement between the wave-train-averaged mean water levels de-
rived from the experimental data and the model prediction can also be observed,
as demonstrated in Figure 4.20. As compared to those in the regular wave test
(Figure 4.5 for Test 6N), the setups inside the surfzone seem to be smaller in Test
8F, which is consistent with smaller breaking wave heights.

Figure 4.21 shows the wave-train-averaged quantities of the depth-averaged
longshore currents in Test 8E compared with modeling results using the SC with the
irregular wave driver. The depth-averaged longshore currents are again represented
by those measured at one third of the local water depth above the bed in the exper-
iment. A good agreement between the measurements and the model prediction can
be found again for most of transects except the one close to the upstream bound-
ary. Small reverse currents were found in the offshore region in the measurement.
However, no reverse longshore currents occur in the modeling results because of the
periodic bi-lateral boundary conditions used in the SC simulation for Test 8E.

The wave-train-averaged current vectors measured at the elevation of one
third of the water depth above the bed as well as the computed results at that
depth are presented in Figure 4.22. The SC with the irregular wave driver predicts
the currents reasonably well both in magnitudes and in directions.

Figure 4.23 shows the comparisons of the vertical profiles of wave-train-
averaged longshore currents and Fig. 4.24 shows the profiles of cross-shore undertow

currents. The trend of the vertical variations of currents induced by irregular waves
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Figure 4.21: Comparisons of the wave-train-averaged longshore currents between the exper-
imental data (o) in Test 8E (Hamilton and Ebersole, 2001) and the prediction
using the SC with the irregular wave driver (—).

are similar to those induced by regular waves (see Figs. 4.11 and 4.12), and the SC
with the irregular wave driver is very capable of predicting the vertical profiles of

currents induced by irregular waves.

4.2.4 Temporal Variations of Wave-Averaged Wave Properties and Cur-
rents

In addition to the wave-train-averaged quantities, it is interesting to further

explore the model’s capability of predicting the temporal variations of wave proper-

ties and wave-averaged currents induced by irregular waves. The temporally varying

wave heights, wave-averaged mean water levels and longshore currents derived from

the data measured at transect of y = 13.7 m were used in the comparisons. Transect

of y = 13.7m was selected because it is the one closest to the location (z = 3m,

70



| 18

£ P g =" 2 = “ P
A A T T e T e 115
& & & & £ £ &
- &7 T & & & ez 112
z T T & e T e =
- > P &~ o &~ = = 19 E
>
e ~ N -~ - - w
I 16
1 7 - “ - - ~
i 43
~ — - ~ ~~ 1"\ N
35 30 25 20 15 10 5 o
y (m)

Figure 4.22: Comparisons of the wave-train-averaged currents at 1/3h above the bed between
the experimental data (— —) in Test 8E (Hamilton and Ebersole, 2001) and the
prediction using the SC with the irregular wave driver (—).

y = 12.7m) where the measured data were used to derive the incident wave condi-
tions for the irregular wave model.

Figure 4.25 presents the comparisons of the temporal variations of wave
heights at z = 4.9, 7.9, 10.9, 13.9 m in the transect of y = 13.7m. It is seen
that the temporal variations of wave heights become smaller as waves propagate
shoreward, as illustrated both in the experimental data and in the modeling results.
The irregular wave model appears to predict the temporal variations of wave heights
reasonably well, particularly for the region far from breaking (as e.g., at z = 4.9m
and at z = 13.9m).

However, there are some measured wave heights that are not fully represented
by the model. The worst prediction is found at & = 7.9 m where the averaged wave
breaking is located. A significant discrepancy can be found at z = 7.9m from

t = 360 to 430 second between the measurement and the model prediction, while

71



1 i S 1

. ! X=49m
0_6. S S

o]

O : b . § 06}
< 6 |: i ¢

o]

8

: r : ;
(8]
o

02} - L) PUCSUE R .. SO SO TV (O

37 0 01 02 03 04 05 O7 0 01 02 03 04 0s
vV (m/s) vV (mls)
1 NS S 1

08b it i, 08l

(17 | SR Fy A ...... ...... 08 k-

TN W S o B TR O SRRV (NN RS S | S
¥ " ' 3 X . ; . @ :
o—i P o i i1
-0.1 0 01 02 03 04 05 -0.1 0 01 02 03 04 05
V (m/s) V (m/s)
1 —— 1

0.8. 0'8
x=124m :
0.6' ........ 0.6

00 00
Q00

1) ST RBMPN (RCE (N | SIS 73 -] IRRMRIRRE NN S| (RN .., SRS, e
e T e

0 M : M " i 0 A H i i .
-0.1 0 0.1 02 03 04 05 -0.1 0 0.1 02 03 04 05
V (mis) V (ms)
1 ' : \ ! .' 1

x=15.3m : : x=16.9m :
O U -

Seie/c, ey
o
~

-%.1 O 0:1 0:2 03 04 05 -0.1 0 01 02 03 04 05
V (m/s) V (m/s)

Figure 4.23: Vertical profiles of the wave-train-averaged longshore currents from the experi-

mental data (o) in Test 8E (Hamilton and Ebersole, 2001) compared with the
prediction using the SC with the irregular wave driver (—).
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Figure 4.24: Vertical profiles of the wave-train-averaged cross-shore currents from the exper-
imental data (o) in Test 8E (Hamilton and Ebersole, 2001) compared with the
prediction using the SC with the irregular wave driver (—).

the model well predicts the wave height at z = 4.9 m for the same period of time. On
the other hand, a under-prediction of wave height from ¢ = 150 to 180 second occurs
both at z = 7.9m and at = 4.9m. The discrepancy in the temporal variation of
wave heights seems to be caused by the criterion of wave breaking we used, which
may not work for all the individual waves within the irregular wave group. However,
such suspicion has not been confirmed yet.

Figure 4.26 shows the temporal variations of the wave-averaged mean water
levels derived from the experimental data compared with the prediction using the SC
with the irregular wave model. Significant temporal variations of (wave-averaged)
mean water levels are found in the experiment data. The SC with the irregular wave
model is capable of predicting the trend of the temporal variations of mean water
levels. However, the magnitudes of the temporal variations are under-predicted by

the model.
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Figure 4.26: Comparisons of the temporal variations of mean water levels () between the
experimental data (——) in Test 8E (Hamilton and Ebersole, 2001) and the pre-
diction using the SC with the irregular wave driver (—).
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The temporally varying longshore currents derived from the experimental
data as well as the model prediction are shown in Figure 4.27. While considerable
temporal variations are found in the experiment, the SC with the irregular wave
driver is only capable of predicting the general variations instead of the detailed
magnitudes.

Because of the complicated features of the hydrodynamics induced by irreg-
ular waves, modeling nearshore circulation induced by irregular waves still presents
a great challenge for coastal researchers. The comparisons of the temporal vari-
ations of wave heights and circulation between the experimental data and model
prediction, as presented in this section, are not yet found in the literature. The
present kinematic-type irregular wave model coupled with the SC demonstrates a
general capability of predicting nearshore hydrodynamics under irregular wave en-
vironments. It is capable of accurately predicting the wave heights, mean water
levels and wave-induced circulation averaged over wave-train cycle, and it also has
a limited capability of predicting temporal variations of these quantities averaged
over wave period. The limitation of the model appears to be its under-prediction of

the magnitudes of the temporal variations of mean water levels and currents.
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Chapter 5

THEORETICAL BACKGROUND OF THE NEARSHORE
SEDIMENT TRANSPORT MODEL

The classic approach for investigating nearshore sediment transport is to split
the sediment transport into the bedload mode and the suspended load mode, and the
sediment transport rate is calculated as the sum of the bedload and the suspended
load. This method is theoretically and numerically simple and has already been
extensively applied to real engineering problems.

Alternative approach called the two-phase flow modeling has also been pre-
sented recently (as e.g., Drew (1983), Kobayashi and Seo (1985), Asano (1990), Li
and Sawamoto (1995), Dong and Zhang (1999), Hsu et al. (2003)). The advantage
of this approach lies in the fact that the mass and momentum equations for the fluid
phase and the sediment phase are solved directly and it is not necessary to separate
the bedload from the suspended load. However, the limited accuracy caused by the
theoretical uncertainties of the main forces as well as the computational complexity
and inefficiency make the two-phase flow model far from being applied to conditions
as complex as modeling nearshore sediment transport.

The present study follows the classic approach to separate the sediment into
the bedload and the suspended load. A formula was derived for the bedload trans-
port rate starting from the two-phase flow theory, and two approaches were devel-

oped for the suspended sediment transport: One is to modify the Bailard (1981b)
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formula to include the effect of wave breaking, and the other is to develop a detailed

physics-based phase-resolving diffusion-convection model.

5.1 Introduction to the Two-Phase Flow Theory
5.1.1 Governing Equations

For the sediment transport in unsteady turbulent flows, the continuity and
momentum equations for the fluid phase and the sediment phase can be written as
follows (Kobayashi and Seo (1985), Asano (1990), Li and Sawamoto (1995), Dong
and Zhang (1999)):

The continuity equations are

. 0 9] _
Fluid: E'a(l —c)+ -5:1,_'5,-'0(1 —cu; =0 (5.1)

: %) 0 .
Sediment: apsc—i- Epscusj = (5.2)

where z;(¢ = 1,2,3) and ¢ denote the Cartesian coordinate system and time, re-
spectively, p and p, are densities of the fluid and the sediment, both of which are
usually assumed to be constant. ¢ is the volumetric sediment concentration, u; and
us; are instantaneous x;-components of the velocities of the fluid and the sediment,
respectively. The concentration ¢ and velocity components u; and ug; are functions
of space (1, T2, z3) and time (%)

The momentum equations are

- 0 0 B op _ ”
Fluid: 5% (1—cu;+ 3:—njp(1 — c)usu; = p(1 —c)gi — e fi  (6.3)

€T
| p 5 T
Sediment: 5y PsCusi + B'?jpscu.siusj = pscg; + fi + a;ja

(5.4)

where g¢; is the z;-component of the gravitational acceleration, p is the total fluid
pressure, f; is the z;-component of the interaction forces per unit volume between
the sediment and the fluid including the effect of the pressure acting on the sediment

phase, and T;; is the component of the intergranular stress tensor.
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For the analysis of the two-phase flow at the turbulent regime, the instanta-
neous quantities can be expressed as the sum of (turbulent) mean and fluctuating
quantities by Reynolds decomposition:

U=+ u; Us=Tg+uy; c=t+d; p=p+y
where the bar ~ denotes mean quantities and the prime ' denotes fluctuating quan-

tities. Substituting these expressions into (5.1) to (5.4) yields:

Fluid: ((991* (1—-2)+ aij,o(l — o) = B, pc’u (5.
Sediment: 0 —psC E = PsCls; ip cul; (5.
ot B W S gy~ #
Fluid: 2 (1 =)@ — cul] + i,0(1 C)u; U
ot * oz e
=p(l —2)gi — gp fi+ 22; (5

0T 4

37'3 i

_|_

Sediment: i [ets + cul;) + 2 ClUy U7 = PsCQi + fi +
X 'nt: atﬂs 51 o g aIIIJ‘ps si Usj = Ps ;i q

where 7;; is the Reynolds turbulent stress of the fluid phase, and 7; is the turbulent

stress of the sediment phase. The 7;; is defined as the terms

= —p [ (1 —2) uju} — & v} — T cuj — c'ulnf ] (5.9)

and 7yj; as

_ =
Teji = —Ps [ C Ul ul; v+ Tai Ul + Ugj culy + cuful; | (5.10)

5.1.2 Major Forces

The most important as well as the most difficult part of the two-phase flow
theory is to evaluate the forces and to provide closures for the turbulent stresses in
terms of the primary flow and sediment parameters. For simplicity, the bar = which

denotes turbulent mean quantities is omitted hereafter.

Interaction Forces
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The interaction forces between the flow and the sediment can be expressed
as the sum of the drag force, the lift force, the added mass inertial force and the
pressure force.

A grain experiences a drag force Fp; and a lift force Fp; when a relative
velocity occurs between the fluid and the grain. The drag force results from the
form drag and skin friction as the fluid flows around the grain. The lift force is
caused by the curvature of local streamlines in the flow over the top of it. The drag
force is typically given by:

Fp; = gCDA || i (5.11)

where A is the cross sectional area of the grain facing the flow and A = wd?/4 for a
spherical particle, Cp is the drag coeflicient, and u,; is the relative velocity between
the flow and the sediment, i.e., u,; = u; — uz. While there are a few formulations
for the lift force for a vertical 2D case, no detailed investigation or generalized
formulation for the lift force has been found. In addition, the lift force is believed
to be small as compared to the drag force. Thus, the lift force is neglected in the
present study, as done by Kobayashi and Seo (1985) and by Asano (1990).

The added inertial force Fl4; on a grain in an accelerated flow arises from
the acceleration of some fluid mass with it. The added inertial force is typically

formulated as
duri

dt

where V is the volume of the grain and V = 7d®/6 for a spherical particle, and C,, is

Fpi = Cmpv (512)

the added mass coefficient which depends on the particle shape and on the proximity
to the boundary. For a spherical particle far from other particles C,, = 0.5.

The net pressure force Fp; experienced by a grain results from the spatial
gradient of the flow pressure around it.

dp
8:!: i

Fps' - —V (513)
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The vertical component of Fp is the familiar buoyancy force pgV if a hy-
drostatic pressure is assumed. The pressure gradient in the flow direction is zero
for uniform steady flows, while it is nonzero for oscillatory flows because of the
hydrodynamic pressure.

The forces discussed above are experienced by one grain, and the number of
grains per unit (mixture) volume is ¢/V. Therefore, the interaction force per unit

volume 1is
c

v

It is worthy of mention that while the pressure force on a grain is directly

b (Fpi + Fri + Fa;i + Fp;) (5.14)

included in the governing equations in Asano (1990), Li and Sawamoto (1995) and
Dong and Zhang (1999), it is treated as part of the interaction force in this study
and in Kobayashi and Seo (1985).

Intergranular Stress

Collisions and continuous contacts among grains in granular flows generate
intergranular forces both in the normal and in the tangential directions, which are re-
ferred to as the dispersive stress and the granular shear stress, respectively. Bagnold
(1954, 1966) first studied the intergranular stresses in granular flows and expressed
them as functions of the shear rate of the sediment motion du,/dz and of the linear
sediment concentration A that is related to the volumetric concentration c as follows

o (efeo)”

1= (c/co)!/3 (ila)

where ¢y is the maximum concentration generally assumed to be 0.65. It is noted
that A\ increases drastically as ¢ approaches ¢;.

Bagnold considered two different regimes in which different types of interac-
tions dominate the behavior of the fluid-grain-mixture. For large, dense particles

at high shear rates the interactions are dominated by particle collisions. This is
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referred as the inertial regime. For small and light grains in very viscous fluid the
interactions are dominated by viscosity. Bagnold termed this the macro-viscous
regime. Bagnold also defined a dimensionless parameter
B M (5.16)
v
to separate the regimes. Here s is the specific gravity of the grain s = p,/p, and u,
is the grain velocity component tangential to the bed.

A pure inertial regime was found for B > 450, for which Bagnold suggested

e 1 duig

s (Ad = P (5.17)

O’J: — —
i tan @q 25’0

where o¢ is the granular dispersive stress, 7 is the granular shear stress, and g4
is the dynamical response angle which was found to be about 18 degrees (tan ¢, =
0.32).

A purely macro-viscous regime is found for B < 40 and Bagnold suggested

dug
dz

Ue
tan g

=13(1+A) (14 A/2) pv

T¢ (518)

with a somewhat larger dynamical response angle of 37 degrees (tan ¢, = 0.75).

With typical values (s, d, A, du/dz, v) = (2.65, 0.2mm, 1, 100s~!, 107%m?/s),
we get B = 10.6. It may be expected that the sheet flow under moderate wave con-
ditions is generally in the macro-viscous regime.

The Bagnold constitutive equation was used by Hanes and Inman (1985),
and by Li and Sawamoto (1995). Based on the extensive experiments by Savage and
McKeown (1983), Ahilan and Sleath (1987) proposed another simple relationship

for the granular stresses

5  Oug
Ta = 0g tan pg = 1.2)%pv % (5.19)

This relation was used by Ahilan and Sleath (1987), Asano (1990), Ono et al. (1996),
and Dong and Zhang (1999).
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Turbulent Stress

It is noted from Eqgs. (5.9) and (5.10) that the turbulent shear stresses in the
two-phase flow are much more complex than those in the single-phase flow. The
normal turbulent stresses are usually neglected in comparison to the corresponding

pressure and gravity terms. We can rewrite Egs. (5.9) and (5.10) as

Tewz = —p|(1—8&) v w —u, dw —w dul, — culw | (5.20)

Tazgz = —Ps|CULW, + Usa CW, + w, cul, + cul W | (5.21)

where subscript « denotes the horizontal directions and o = 1,2 (z,y). After

assuming w c¢'u!, and c'ulw’ are negligible as compared to u, ¢'w’, and w, c'u’,, and
c'ul w! are negligible as compared to us, c¢'w!, the formulations of turbulent shear

Sx 8§

stresses reduce to

Toaz = —p[(1—c¢)u w —uy '] (5.22)

Tszoz = —Ps|CUL W, + Usa CW, | (5.23)

The classic approach can be introduced to establish the closure for the tur-

bulent terms as

ou,
al an! ! i @
' & ulw! €5 (5.24)
S oc
cdw & cdu = (5.25)

_652'5;
where €, is the vertical turbulent eddy viscosity and ¢, is the vertical sediment

diffusion coefficient.

5.1.3 Discussion

Although the two-phase flow model directly solves the continuity and mo-
mentum equations for the fluid phase and the sediment phase, several uncertainties
still remain in the dominant force terms in the governing equations: The formula-

tions of granular stresses are based on a few simple experiments; the evaluation of
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interaction forces depends on several parameters such as drag and lift coefficients
that are uncertain for sheet flows; the effect of sediment on flow turbulent shear
stresses is also unresolved.

In addition, the two-phase flow model involves highly non-linear and coupled
equations. Thus, the numerical calculation procedure was found to be very complex
and time-consuming. As a result, the two-phase flow model has so far been limited
to modeling sediment transport in the uniform, small scale, linear and purely oscil-
latory or steady sheet flows. It is far from the practical application in modeling the
nearshore sediment transport, which the present study aims at. However, we will

use the essential idea of the two-phase flow theory in the present model formulations.

5.2 Derivation of Formula for Bedload Transport Rate from the Two-
Phase Flow Theory

The instantaneous bedload transport rate for oscillatory flows is usually deter-
mined as a formula for steady flows. To take advantages of both the theoretical
integrity of the two-phase flow theory and the simple structure of classic bedload
formulas, a formula for the bedload transport rate is re-derived in this study starting
with the momentum equations for the two-phase flow. After assuming quasi-steady
situation and neglecting small terms, a simplified formula for the bedload transport
rate is obtained. This formula has a similar structure to the classic formulas such as
Engelund and Fredsge (1976), and Bailard and Inman (1981a) but is a theoretical
improvement of those formulas.

The beach slope in practice is very small, and tan f# ~ sin § < 1 where j is
the bottom slope. Hence, a locally plane beach with a small bottom slope in the
cross-shore direction is assumed in this study, as also done by Bailard and Inman
(1981a), and by Fredsge et al. (1985). By assuming a small bottom slope higher

order terms of O(tan 8)? can be neglected for mathematical simplicity.



Following Bailard and Inman (1981a), the local coordinate system is chosen
so that the positive z is the onshore direction, the positive y is the downstream
longshore direction, z is the upward direction normal to the bed and z = 0 at the
local bottom, as shown in Figure 5.1. By choosing (z,y) tangential to the local
bottom, the bedload moves parallel to the (z,y) plane with bottom flows. It has
been found that the bedload transport only occurs within a very thin layer close to
the bed, and the thickness of the bedload layer Ip is very small as compared to the

water depth.

Figure 5.1: Schematic diagram of the coordinate system for bedload transport

5.2.1 Simplified Momentum Equations for Quasi-Steady Flows
Adding (5.7) and (5.8), we obtain the momentum equation for the combined

fluid-grain flow

0 = e 0
a{ptl p— C)‘U,,; o PsClhg; — ,OC"UJ;- . ,OEC"U{“} + E{p(l - C)uiuj + psc‘uss‘usj}

5}
dp 0
= — bl — —F — (4 5.2
{61 = )+ puchs = 5+ 5T (5.26)

where Tj; is the stress of the combined flow consisting of the intergranular stress

Tyji and the turbulent stress 7/; including contributions from both the fluid phase
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7;; and the sediment phase 7y;;, 1.e.,
! x !
T}'z‘ = Tjj + Taji with Tii = Tji + Tsji (5.27)

For a quasi-steady situation, the local acceleration d/9t = 0, and the pressure

may be assumed to become locally the hydrostatic pressure which satisfies

Op
8:1: i

= bg; (5.28)

For a plane beach with a bottom slope in the cross-shore direction
gi=(—gsinp, 0, —gcosf ) (5.29)

If we further assume a locally uniform situation, 8/0z, /0y < 9/9z, and neglect
the velocities in the vertical direction (w =~ 0, w, =~ 0), the momentum equa-

tion (5.26) reduces to

6Tzi
(ps = P)egi + — = =0 (5.30)

After plugging in (5.29) for g;, this equation can be rewritten as separate equations

in the z, y and z directions

4 5

i —(ps — p)egsin f + S raa 0 (5.31)
Ty

: =1 5.32

Y 0+ P ( (5.32)
51 L

7 —(ps — p)cg cos B + e 0 (5.33)

5.2.2 Boundary Conditions for the Bedload Layer
At the top of the bedload layer (z = lp), it is reasonable to assume the

intergranular stress is much less than the turbulent stress, i.e., Ty;; < 'rj’,-,;. Thus,

—
Ty~ 75

i abz=ly (5.34)
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The normal turbulent stress is typically negligible as compared to the pressure and

gravity components in that direction. Therefore, T;; can be also be written as

7y Tisliety = Thlivay = Taico8Y (5.35)
Y Toyle=tp = Toyle=tp = Tosind (5.36)
Zl Tzzlz:hg = T;z|z:£,3 ~ 0 (537)

where 0 is the angle between the turbulent stress shear and the z direction, as shown
in Fig. 5.1, and 7y is the turbulent shear stress at the top of the bedload layer. Here,
7o 1s actually equivalent to the bottom shear stress |7,|, which is expressed as the
common quadratic form (neglecting the effect of the sediment phase on the flow
turbulence)

1
Ty = pflal @ (5.38)

Here, 1 is the bottom flow velocity for open channel flows and is the velocity above

the wave boundary layer for oscillatory flows. Hence,
- 1 — =+ —+ —
7o = |Th| = §Pf|’u|2 and Ty/To = @/ (5.39)

At the bottom of the bedload layer (z = 0) it is expected that the total
(combined) flow stresses in the normal direction are dominated by the granular
dispersive stress, and the interganular shear stress is much larger than the flow
turbulent shear stress when an intense bedload transport occurs. However, the flow
turbulent shear stress becomes as significant as the granular shear stress for weak
bedload transport, and thus it is included in the present study. The total stresses
for the combined flow at the bottom of the bedload layer can now be approximated

by

x-y plane: S \/wa|2=0 +Ti|;o=T0+ 1" (5.40)
Z. Tzzlz:() = —0¢g (541)
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in which 7" is the residual flow shear stress, 7 is the granular shear stress and oq

is the granular dispersive stress at the bottom of the bedload layer, and

6 = Thle+ Toglemo (5.42)
0 = —Tepzls=o (5.43)

The similar boundary conditions for bedload transport were also used in
Bailard and Inman (1981a). The difference is that the residual flow shear stress is
now included in this study while it was neglected in Bailard and Inman (1981a). It
will be illustrated later that the final formula for the bedload transport rate become

theoretically more elegant and realistically more reasonable by including the resid-

ual flow shear stress.

The volumetric bedload transport rate is defined as
Ip
o o f citp dz (5.44)
0

where @y is the local bedload transport velocity and c¢ is the (bedload) sediment
concentration, both of which are functions of the vertical location z. For simplicity

Eq. (5.44) is typically rewritten as
=3 ZB
(TB = UB / cdz (545)
0

where Up is a representative bedload transport velocity which is now independent
of z. We focus on the second formulation in this study. The values of fé” cdz and

Uy are determined separately as follows before the formula for ¢p is finally derived.

5.2.3 Determination of [/” cdz
Integrating Eqgs. (5.31), (5.32) and (5.33) separately over the bedload layer
(0 < 2z < 1), and applying (5.35), (5.36) and (5.37) for the corresponding boundary

conditions at z = lg, we have
X: Lizle=o = 100080 — 175 (5.46)
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y: Toylz=0 = Tosiné (5.47)

[
- T:z|z=0 = —(ps — p)g cos [J‘f * edz (5.48)
0

where 7, is the 2 component of the effective gravity of the bedload layer

1
Ty =i, = p)gsin,@/G ® edz (5.49)

The magnitude of the combined flow shear stress at the bottom thus becomes

E 2 =4 r'O
= Tg) (5.50)

r T,
|T0| = JTZQQJz:U +T32y|z:l] == T(}\/l = QCOS 9_47 + (

After neglecting higher order terms of O(tanf)? or O(sin8)? for a small bottom
slope, we obtain

’fg R To — To COS 0 5.51
g9

Combining (5.51) and (5.40) for a boundary condition at z = 0 yields
TG = To — Tgc080 — 7" (5.52)
and combining (5.48) and (5.41) for the other boundary condition at z = 0 gives

]
oG = (ps — p)g COSﬁ/D " edz (5.53)

According to the granular flow theory 74 = tan ¢4 04 and thus

ls
76 = tan¢q (ps — p)g cosﬁ/ cdz (5.54)
0
After rewriting (5.52) as
T0 = TG + Tyc080 + 7" (5.55)

it can be found that the total bottom flow shear stress balances the granular shear
stress, the tangential component of the bedload weight and the residual shear stress

as well. The bedload transport only occurs when the flow shear stress 7y exceeds
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7". Hence, the residual shear stress 7" is actually the threshold shear stress for

sediment movement and (5.55) can be written as
To = Tg + T4 COS 0 + Tep (5.56)

where 7. is the threshold shear stress at a sloping bottom. For a horizontal bottom,
7, = 0 and

To = Tq + Teo (5.57)

where 7. is the threshold shear stress at the bottom.

The threshold shear stress 7.5 was not included in Bagnold (1956, 1963, 1966)
and in Bailard and Inman (1981a), and thus bedload transport occurs as long as
there is a flow shear stress. The threshold shear stress for a horizontal bottom was
included and (5.57) was used in Engelund and Fredsge (1976). In the modified
version of Engelund and Fredsge (1976) formula for the sloping bottom (as e.g.,
Andersen, 1999), Eq.(5.57) was still used just with 7, replaced with 7.4 instead of
using (5.56).

Inserting (5.49) for 7, and (5.54) for 7¢ into (5.56) and rearranging terms,

we have
lp ’T[](]. = Tcﬁ/?’(}) 1
cdz = 5.58
/0 (ps — p)gtandgcos B 1+ %,%6039 (6:58)

After neglecting higher order terms of O(tan )%, we obtain

lp T0(1 — Tep/To) tan 3
rdz = 1— ——cosb 5.59
/0 “O = (os — p)g tan gy cos B o 5:59)

5.2.4 Representative Bedload Velocity

After obtaining f(fﬁ cdz, we need to determine the representative bedload ve-
locity Uy in order to obtain the bedload transport rate according to (5.45). While
ftfﬁ cdz is derived starting from the momentum equation for the combined flow, ﬁg

will be derived starting from the momentum equation for the sediment phase.
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Magnitude of U/
After we neglect the turbulent stress for the sediment phase, and again as-
sume a quasi-steady and locally uniform situation, the momentum equation for the

sediment phase (5.8) reduces to

aTszi
0z

pscg; + fi + =0 (5.60)

If only the leading terms such as the drag force and the net pressure force are

included for the interaction forces, i.e.,

C

fi=v;

c
(Fpi+ Fpi) = Fmv — pcg; (5.61)

Eq. (5.60) becomes

c aTszi o
(bs = P)egi + Fpig; +—5 = =0 (5.62)
We denote the drag force
Fpi = Fp(cosfy, sinf,) (5.63)

where #; is the angle between the drag force (or relative velocity) and the z axis

and Fp is the magnitude of the drag force. Therefore,
=iz .'0 — |2
FD = ECDA |‘u,,.| (564)

Substituting (5.29) for g;, Eq. (5.62) can be written as

X: —(ps -p)gsin,6’c+FDcos6*1%+ ag‘:x =0 (5.65)

y: Fpsin 6y % + ag;zy =0 (5.66)
8TSZZ

7 —(ps — p)gcos fe+ - — 0 (5.67)

92



Neglecting the vertical variations of u, and 6y, integrating (5.65) and (5.66),
respectively, over the bedload layer and applying the boundary condition at the top

of the bedload layer (i.e., negligible granular stresses at z = lg), we have

Tszzlz=0 = nFpcos — 7, (5.68)
ngy|z:g. — 'R.FD sin 91 (569)

in which n is the number of bedload grains per unit bed area
Il
= dz [V 5.70
n /0 cdz / (5.70)

Therefore, the magnitude of the granular shear stress at the bottom becomes

Ty
nkFp

Tg
TLFD

g

Tq = \/T_fm|z:0 + T2, |=0 = TLF;)\/]. — 2cos b 1 (5.71)

It is noted that 7, = O(tan 3). After neglecting higher order terms of O(tan 3)? in
Eq. (5.71), we have

T¢ & nFp — 1,c080, (5.72)

It is reasonable to assume the bedload moves in the same direction as the flow does,
and cos, = 1-Up/|Up| in which 7 is the unit vector in the z direction. It can be

shown later from (5.92) that
cos 0y & 1 - it/ |i] + O(tan B) = cos# + O(tan B) (5.73)
After neglecting higher order terms of O(tan 8)?%, (5.72) finally reduces to
T¢ ~ nFp — 1,cos0 (5.74)
Inserting (5.74) for 7¢ into (5.56) and rearranging terms, we have
To — Teg = nFp (5.75)

from which it can be noted that the effective flow shear stress generates the drag

force for sediment. For a horizontal bottom 7, = 0, 7¢ = nFp = 79 — 7¢3. In another
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word, the effective flow shear stress generates the drag force for sediment to balance
the granular shear stress. This relation was also used by Engelund and Fredsge
(1976).

Inserting (5.49) for 74, (5.54) for 7¢;, (5.64) for Fpp, and (5.70) for n into (5.74),

we obtain

3
tan ¢(p, — p)g cos f = = peplis|* — (ps — p)gsin B cos (5.76)
for a spherical grain (A = md*/4 and V = nd®/6). From this we can further obtain
tan
sB(1
cosf(1+ T

We denote ,, the representative flow velocity at the bedload layer, where

4 tan ¢g
3Cp

|@,|? = (s — 1)gd cos @) (5.77)

2o is the elevation above the bottom. After assuming bedload moves at the same

direction as the flow does, we have
|| = || — U] (5.78)

According to the logarithmic velocity distribution for fully rough turbulent flows

U, z
i = — i

in which U, is the shear velocity U, = 1/70/p, £ =~ 0.4 is the von Karman constant,

ks is the bottom roughness. If we express |i,,| as

8| = eUs (5.80)
it can be found that
1 20
e = —1 5.81
Fo =" “(ks/sn) (B

If we assume the representative elevation zy = 2d and the bottom roughness &k, = 2d,

it can be found that e, = 8.5.
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After substituting (5.77) for |d,| and (5.80) for |i,,| into (5.78), we obtain

the magnitude of the bedload transport velocity

5 g(s —1)d 4 tan ¢y . tan 3
|Ug| = e.U, {1 \J i 3Cpe? cosf |1+ tan b, cos 6 (5.82)

The Shields parameter is defined as

To UE
0w = = 5-83
¥ pg(s—1)gd  g(s—1)d (5:83)
Denoting
4tan ¢y tan 8
B = —5 C 1 208 0 5.84
Yep 3Cpe? (osﬁ( +tan¢:d cos ) (5.84)

Eq. (5.82) can be written as

[Up| = eU, {1 — \[tbs/t } (5.85)

from which it can be found that 1.5 is actually the critical Shields parameter and
the bedload transport only occurs when 1 > 1.4
For a horizontal bottom, 1, = % If we assume tan ¢y = 0.75, e, = 8.5

and ¢p = 0.4, it is found that 1, ~ 0.05. We can also link the critical shear stress

to the critical Shields parameter by 7.5 = .5 pg(s — 1)gd, and rewrite (5.85) as

Us| = eUy {1 —\/7e5/70 } (5.86)

Direction of {73

As discussed by Bailard and Inman (1981a), the bedload grains are concen-
trated in the lower portion of the moving layer. For mathematical simplicity the
direction of the representative bedload velocity can be approximated by the direction
of the mixture flow shear stress at the bottom, i.e.,

ﬁB _ ETZI‘lz:O +;sz|z=(}
Us| |To]

(5.87)
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After substituting (5.46) for T,e|,—o, (5.47) for Tyy|.—o and (5.51) for |Ty|, we have

Comparing (5.54) with (5.49) it is found that
TG = T, tan ¢g/ tan 3 (5.89)
Using this to replace 7¢ in (5.56) and rearranging terms yields
%:%: 1-22) (220 1 Otan ) (5.90)
After neglecting higher order terms of O(tan 3)?, this equation reduce to
5, e (1 Ty fan (5.91)

To 0 ~ tan ¢g4

Substituting 7, /7 into (5.88) with (5.91) and neglecting high order terms of
O(tan )%, we have

s

U i a8y » g o
_,B x%(1+(1—T—ﬁ)ﬁnﬁc059)_g(1_E ﬂ (5'92)
|Ug| | To ~ tan ¢g4 70~ tan ¢y

It is noted that if the critical shear stress is neglected the direction of the

bedload velocity is the same as that in Bailard and Inman (1981a).

5.2.5 Formula for the Bedload Transport Rate
After substituting (5.59) for [!2 ¢dz, (5.86) and (5.92 for Up into (5.45), and
neglecting higher order terms of O(tan 3)?, the formula for the bedload transport

rate vector now reads

& = 1 7o e.U, (1 Teh (l_n_g)
77 (ps—p)gcos B tan gy

U Tep tan B ” ( Tcﬂ) tan 3
ey , g | ) | S :
{ || (1 To tan ¢y oo 9) ¢ 70 / tan ¢y (5:83)
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Bailard and Inman (1981a) defined the bedload efficiency coefficient e as
_ J37 clip| dz

€Ep =
571 S8 edz

(5.94)

which is equivalent to

—+

|Ug|

|

(5.95)

Ep =

in the present study. Substituting |Uz| with (5.85), we obtain

el (,_ [ba

and (5.93) can be rewritten as

(j" _ 1 EBT5|EI| (1 - ‘T‘C__'g-)
? (ps — p)gcos B tan gy Ty

-y

{I_;_I (1—@ta“ﬁ cosﬁ) —5(1—“”—"3) E’E@} (5.97)

To tan¢ 70/ tan¢

As compared to Bailard and Inman (1981a), the effect of the threshold shear

stress for sediment movement is included in (5.97). As (5.97) shows, the bedload
transport rate is not a continuous function of the bottom shear stress, and the
bedload transport only occurs (i.e., |§5| > 0) when the bottom shear stress exceeds

the threshold shear stress 7.45. This is more realistic than Bailard and Inman (1981a).

5.2.6 Discussion of the Bedload Efficiency Coeflicient
If open channel flows are fully rough turbulent flows, (5.79) for the loga-
rithmic velocity profile applies for the whole water depth and the corresponding

depth-averaged velocity is

- 1 h .
=3[ i)z = My 1y 208 (5.98)
k

5/30 Kk ek
Since the depth-averaged velocity is used in the expression of the bottom friction
79 for open channel flows, |i| in (5.96) is now represented by U, and the bedload

efficiency coefficient for open channel flows becomes

Ech [wcﬁ
€Ep = -l—n—‘;}e%—}:— (1 = 7) (599)
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For turbulent flows in the wave boundary layer (WBL) of oscillatory flows, we
assume the vertical profile of the (quasi-steady) velocity in the WBL to satisfy (5.79)
as well. Therefore, the velocity at the top of the WBL (z = d,, with §,, the thickness
of the WBL) is

s =2 1
=K ks

The velocity iy, however, is always used in the expression of the bottom friction

(5.100)

70 for oscillatory flows. Thus, |@| in (5.96) is represented by ||, and the bedload

efficiency coefficient for oscillatory flows becomes

(N Ve
=—0— |1 —4/— 5.101
€R 1]} 3%%“1 ( ‘Z‘{J ) ( )

After analyzing laboratory and field data Bailard (1981b) suggested that the
bedload efficiency coefficient 0 < eg < 0.44 with a mean value of 0.21 for oscillatory
flows, while it was estimated ep = 0.13 for open channel flows by Bagnold (1963,
1966). Now it is easy to explain the difference of the bedload efficiency coefficient
between open channel flows and oscillatory flows.

By comparing (5.99) and (5.101) it is found that the ratio of the bedload

efficiency coefficient for oscillatory flows to that for open channel flows is
re = In(30h/eky)/ In(300,/ks) (5.102)

Since the water depth h in open channel flows is much larger than the thickness of
the WBL §,, in oscillatory flows, r. > 1, i.e., € for oscillatory flows is generally larger
than that for open channel flows. As an example, assuming the Shields parameters
are the same, k; = 2d = 0.3mm, h = 1m and §,, = h/50 = 2¢m, ep for oscillatory
flows is 1.4 times larger than that for open channel flows.

The flow intensity determines the Shields parameter for both open channel
flows and oscillatory flows. At the same time it also determines the thickness of the

WBL for oscillatory flows. As the flow intensity increases, the Shields parameter
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increases, and 1 — \/m increases in both (5.99) and (5.101). However, d,, usually
decreases as the flow intensity increases, resulting in increasing of e.x/ In(304,,/k;)
in (5.101). Thus, ep for oscillatory flows increases faster than that for open channels
flows as the flow intensity increases and vice verse. In another words, as compared
to that for open channel flows, the bedload efficiency coefficient for oscillatory flows
is more sensitive to the flow intensity and thus the results are more scattered in the

measurements, as shown in Bailard (1981b).

5.2.7 Dimensionless Bedload Transport Rate

The dimensionless bedload transport rate is defined as

7 .
= e—_— 5.103
b - 1edd ( )

After inserting (5.58) for [i? cdz and (5.85) for |ﬁB] in (5.45), and substituting this
¢ and (5.83) for ¢ into (5.103), we obtain the dimensionless bedload transport rate

Ce 1 , e
QSB = tan d’d cosﬁ ( 1 EZ%% 6039) (w - lfbcﬁ) (ﬂ \/7/)_(:,8) (5104)

For a horizontal bottom (f = 0) this formula becomes Engelund and Fredsge
(1976) formula. However, for a sloping bottom, the bottom slope affects the bedload
transport rate not only via the critical Shields parameter, as also shown in the
modified Engelund and Fredsge (1976) formula in Engelund and Fredsge (1982)
and in Andersen (1999), but also via the term of cos (1 + 222 ¢osf), as shown

tan ¢y

in (5.104). Unfortunately, the second effect has been ignored in all previous studies.

5.3 Modified Bailard-Inman Formula for Suspended Load Transport
Rate
In addition to the bedload, the sediment is also transported by flows as the
suspended load mode. In fact, the suspended sediment is the major mode of the

sediment transport for most situations. Different from the bedload, the suspended
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load is always assumed to move along with the flow and the difference of the velocity
between the sediment and the flow is the falling velocity in the vertical direction.
Two approaches, as detailed as follows, were developed in this study for the sus-
pended load transport: One is to modify an empirical formula for the suspended
load transport rate to include the effect of wave breaking, the other is to develop a
detailed physics-based diffusion-convection model for sediment suspension.

Numerous empirical formulas have been proposed for the suspended load
transport rate. One of the common used formulas is the energetics-based formula-
tion by Bailard (1981b), which was an extension of the works by Bagnold (1963,
1966) and Bowen (1980). The basic assumption of the energetics-based formulas is
that the suspended load transport is assumed to be supported by the stream fluid
via turbulent diffusion, and the energy in transporting the suspended sediment is
provided by the stream.

In Bailard (1981b) the suspended sediment transport in oscillatory flows was
assumed to respond to the flow condition in an instantaneous, quasi-steady manner,

and the instantaneous suspended sediment transport rate was given by

7 = %pf?% (|ar:|3 i — ;—f tan 3 |i]® E‘) (5.105)
where €, is the suspended load efficiency coefficient which was suggested to be
0.016 < e, < 0.031 for oscillatory flows (Bailard, 1981b), w; is the falling veloc-
ity of the sediment grain, and iy is the immersed weight suspended load transport

rate which is defined as

= h
i\ = (b= p)geosp [ ciidz = (po— pgeos B d, (5.106)
B

Here, ¢ is the volumetric concentration of the suspended sediment and ¢ is the
volumetric suspended sediment transport rate per unit width.
Further investigation of this formula shows that an obvious effect, the addi-

tional stirring of sediment by the turbulence induced by wave breaking, was ignored
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when applying this formula to predicting the suspended sediment transport rate in-
side the surfzone. Roelvink and Stive (1989) extended the work by Bailard (1981b)
and proposed a formula including the effect of wave breaking for a horizontal bottom

3, = 2 (g 4 ims) (5.107)
Wy

where wy, is the local turbulent energy production rate via bottom friction
Wy =Ty * U = To|T]| (5.108)

and wpy is the local turbulent energy production rate near the bottom induced by
wave breaking. Roelvink and Stive (1989) derived the same result of the energy

dissipation of wave breaking as Battjes (1975)
D = pfk*? Ba 1.0 (5.109)

where k is a depth-mean, time-averaged turbulent kinetic energy. Roelvink and
Stive (1989) also assumed

wpp = pﬁdkgﬂ (5.110)

in which k; is the magnitude of the turbulent kinetic energy near the bottom. Svend-
sen (1987) found that the turbulent kinetic energy decays approximately exponen-
tially with distance from the surface. Roelvink and Stive (1989) expressed the
following decay model with a depth length scale proportional to H,,,; was assumed
by, _
ky =  [etb/Hrme) 1] ™ (5.111)
where H,,,, is the root-mean-square wave height. Therefore, wpg, can be linked to
D by
wpy = €D (5.112)

where e, = [e(’*f’Hfm) = 1]_1’0. It can be found that 0.16 < e, < 0.35 for 0.5 <
H,pns/h < 0.9 inside the surfzone. Kobayashi and Johnson (2001) also found e, to

range from 0.2 to 1.0 in their experiments.
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Hence, (5.107) can be rewritten as

7, =22 (wy +e.D) (5.113)
Tb’f

For a sloping bottom, the effect of wave breaking on the suspended load transport
can also be added to Bailard (1981b) formula. According to Bailard (1981b), the

energy dissipation rate associated with supporting the suspended load transport is
h
ws = wy (ps — p)gcosf / cdz (5.114)
lp
After comparing with (5.106) it was found that this corresponds to
wy & |is|wy /|l (5.115)

While the turbulent energy production rate of flow via bottom friction wj is given
by (5.108), the energy production via the movement of suspended load along the
slope is

h o
wp = —(ps — p)gsin /1 c(d-1)dz (5.116)
B

which is linked to 7, after using (5.106)
wp~ —tanf i, -1 = —tan g |i,| cosd (5.117)

In contrast to Bailard (1981b), in the present study the turbulent energy
production at the bottom via wave breaking wp, is also directly included in wy, in
which wpy is given by (5.112) and D is given by (3.14). Based on the assumption of
the energetic approach

ws = €5 (wp +wp + was) (5.118)
Substituting (5.108) for wy, (5.112) for wpy, (5.115) for w, and (5.117) for wy and
rearranging terms, we obtain the magnitude of the suspended load transport rate

1 €s |t
1+E—:Jf£l tan g cosf wy

=
2
lis| =

(wp + €,D) (5.119)
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After neglecting higher order terms of O(tan )%, we have

I7,| = &[] (1 - %}M tan f cos 9) (wp + €, D) (5.120)
/
Bailard and Inman (1981a) assumed the direction of the suspended sediment

transport was, however, somewhat different from the flow velocity because of the

existence of the bottom slope and it was approximated by

e e €s| i tan 3 (sin"‘f? F— sin!?cos@}") (5.121)
lis]  ld] wy

However, it can be found that the effect of the bottom slope on the direction of
the suspended sediment transport is very small because both €; and tan  are very
small, and in practice the suspended sediment can be assumed to move in the same
direction as the flow does. For simplicity (5.121) is still used in the present study
even though we include the additional effect of wave breaking. Combining (5.120)
and (5.121) and neglecting higher order terms of O(tan )%, the suspended sediment

transport rate vector then reads

- €U €5l
by = ( g izl— tan ﬁ) (wp + &, D) (5.122)
wy w}

As shown in (5.122), the present study includes the effect of wave breaking
on the suspended sediment transport as compared to Bailard (1981b), and includes
the effect of the bottom slope as compared to Roelvink and Stive (1989). However,
since both €, and tan 3 are very small, the effect of the small bottom slope on
the suspended sediment transport is limited and the difference between (5.122) and
Roelvink and Stive (1989) can be negligible for a small bottom slope in practice.

To account for the effect of the critical shear stress on the suspended sediment

transport, we also intuitively include 7, in wy as follows

o — Te) |U To > Te
=, POl I . (5.123)
0 To < Te
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5.4 A Diffusion-Convection Model for Sediment Suspension

The effect of the suspended sediment on the flow condition is always ne-
glected. The suspended sediment is typically assumed to move along with the flow,
and the difference of the velocity between the sediment and the flow is the falling
velocity in the vertical direction. It this assumption is adopted, it is no longer nec-
essary to solve the momentum equation of the sediment phase or the two-phase flow
for the velocity of suspended sediment, and the suspended sediment transport rate
(vector) per unit width can be written as

£
dsa = / Clig d2z (5.124)
. _hrl’.!s

where u, is the flow velocity component and hgy is the still water depth of the
suspended load layer and hgs = (hg — lg) in which hg is the still water depth.

In this section a so-called diffusion-convection model for sediment suspen-
sion is described in detail. The vertical profile of sediment concentrations can be
computed from this model and the suspended sediment transport rate can then
be calculated using (5.124) provided the flow velocity is known. As compared to
the empirical formula, this approach has better theoretical basis and is capable of
providing more detailed information. In the following we will derive the governing
equation for the diffusion-convection model, discuss the factors and parameters es-
sentially affecting the model prediction such as the boundary conditions and the
sediment diffusion coefficient, as well as the numerical scheme developed to solve

the diffusion-convection problem.

5.4.1 Governing Equations
Assuming the difference of the velocity between the sediment and the flow is

the falling velocity in the vertical direction, i.e., @, — @ = —wa in which £ is the
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unit vector in the vertical direction, the continuity equation of the sediment phase

(5.6) can be written as

de 0 dc 0 — .
5t * 8,49 Vg = g (%) -

After neglecting the effect of the suspended sediment on the flow, the continuity

equation of the fluid phase (5.5) for the incompressible flow reduces to

811.3»

— =0 5.126

- (5.126)
With this equation and expressing c'u’; = —esj% where ¢; is the sediment diffusion

coefficient in the z; direction, (5.125) becomes

e dc de 0 ( 86)

— o — 2T
€ Jamj (5 )

BN +1.LjE —w;a = 3_:1:?

Because the gradients of sediment concentrations in the horizontal directions
are much smaller than that in the vertical direction, i.e., d¢c/0x, dc/dy < dc/0z,
the convective and diffusion terms in the horizontal directions are usually neglected
as a first approximation and thus

de de 0 dc "
o + (w — wy) 5 B (esz'a_z) (5.128)

A

where w is the vertical flow velocity.

This is the so-called diffusion-convection equation for the sediment suspen-
sion. The vertical convective term w % was neglected in most studies, as e.g., in
Fredsge and Deigaard (1992) and in Rakha et al. (1997). However, Nielsen (1992)
showed that this vertical convective term was important for sediment distribution
in oscillatory flows and thus this term is kept in the present study.

To solve the partial differential equation (5.128), the boundary conditions
are required at the surface and the bottom and the sediment diffusion coeflicient ¢,
needs to be determined. In addition, the instantaneous surface varies with time for

oscillatory flows and the bottom elevation may also be somewhat time-dependent as
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bed accretion or erosion occurs. Therefore, a coordinate transformation is required
to transform the temporally varying boundaries into time-independent boundaries
before a numerical scheme is applied. These problems are essential for the final
solution of the sediment concentration, and are detailed as follows.

The coordinate system is chosen for the sediment suspension so that the
positive z is the shoreward direction, the positive y is the downstream longshore
direction, the positive z is the upward direction and z = 0 at the still water level
(SWL). As a result, the surface boundary for the suspended sediment layer is located
at z = ( which is the instantaneous surface elevation relative to the SWL, and the

bottom boundary is at z = —hg,.

5.4.2 Surface Boundary Condition
As there is no sediment flux across through the water surface, the surface

boundary condition for the suspended sediment is

(wf—w)chesz% =i 2 = (5.129)

5.4.3 Bottom Boundary Condition

Although there is still no satisfactory solution to the bottom boundary condi-
tion for the suspended sediment, even for steady open channel flows, two approaches
are generally used in practice. One is to set a reference sediment concentration at
the bottom, and the other is to specify a spatial derivative in the vertical direction
of the sediment concentration at the bottom. For sediment transport in oscilla-
tory flows, the bottom boundary conditions are always specified as the quasi-steady

equivalent to those for open channel flows.

Bottom Reference Concentration
One of the commonly used formulas for the bottom reference sediment con-

centration was proposed by Engelund and Fredsge (1976). For oscillatory flows it
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has also been used to calculate the instantaneous bottom sediment concentration,
as e.g., in Fredsge et al. (1985), Ribberink and Al-Salem (1995), and Li and Davis
(1996). Engelund and Fredsge (1976) formula is a semi-empirical formula that re-

lates the sediment concentration at z = 2d to the Shields parameter as follows

1 -3
Cp = Cp (1 + -—') (5130)
b
where )\, is the linear concentration of the suspended sediment at the bed level
0.4x> T
2 o d :
X = 5o (1; e — nd? tan rf)d) (5.131)
with ”
1 tan ¢q\ " "
n=— {1 -+ ( b 'd)c) ] (5.132)

To simplify Engelund and Fredsge (1976) formula, Zyserman and Fredsge
(1994) suggested another empirical formula for the bottom sediment concentration

that is
0.331(¢ — 1/;6)1'75
T+ Sl — gt

where the maximum concentration ¢, = 0.32.

ey = (5.133)

Pickup Function

By using the bottom reference concentration boundary condition it is implied
that there is an instantaneous equilibrium between the bed shear stress and the
bottom sediment concentration. However, this instantaneous equilibrium does not
exist for unsteady flows, where the near-bed sediment concentrations may well be
considerable at times when the bed shear stress is zero because of the sediment
settling from above. An alternative approach, which has been suggested by Nielsen
et al. (1978) for oscillatory flows, is to consider sediment entrainment and deposition
as independent processes and to specify the instantaneous rate at which sand is

picked up at the bed in terms of a pickup function which is defined as follows

P = —€g % (5.134)
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Rijn (1984) recommended the following empirical pickup function (in metric

units) after analyzing the experimental data for steady flows

P — l/)r)l.ﬁ (S - 1)0.69[]‘60:0‘8
wc /0.2

This steady-flow pickup function is, however, also widely applied instantaneously

p = 0.00033 (

(5.135)

on unsteady flow.
Both approaches for specifying the bottom boundary condition are included
in the present model, and the differences in the final results are illustrated in Chapter

6.

5.4.4 Sediment Diffusion Coefficient and Turbulent Eddy Viscosity
The sediment diffusion coefficient €, is normally taken to be equal or propor-

tional to the turbulent eddy viscosity € of the flow. i.e.,
¢, =0 with g, = O(1) (5.136)

Two approaches are generally used to determine e. One is to solve the turbulence
closure model numerically. The other is to develop simple formulations to obtain
the essential part of ¢ based on the theories, for example, a mixing-length theory.
Because of the simplicity and accuracy in practice, the second approach has been
widely used and was adopted in this study as well.

According to the classic mixing-length theory, the eddy viscosity can be ex-
pressed as the production between a length scale and a velocity scale of large eddies.
i.e.,

e=IVk (5.137)

where [ is the mixing length, % is the turbulent kinetic energy and v/k represents

the scale of the fluctuating velocity

1
= Q(u’z + 2 + w'?) (5.138)
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with ', v' and w' are the turbulent velocity fluctuations.

In the turbulent bottom boundary layer for steady flows it is often used
l ox K2’ Vk x U, (5.139)

where 2z’ is the vertical distance from the bottom. Hence, the simplest expression
for the eddy viscosity is
e =rU, 7 (5.140)

However, by comparing with data a parabolic variation of the eddy viscosity is also
commonly used

e = kU, 7' (1 —2'/D) (5.141)

where D is the thickness of the boundary layer.

For open channel flows the bottom boundary layer covers the whole water
depth. However, the situation becomes much more complex for nearshore (com-
bined wave-current) flows. Turbulence outside the surfzone is mainly generated by
the bottom boundary layer, which consists of an inner wave boundary layer (WBL)
close to the bottom and an upper current boundary layer (CBL). The WBL is a
very thin layer that is dominated by the oscillatory wave motion, and the CBL is
a layer above the WBL that is dominated by the current motion. In addition to
the bottom boundary layer, turbulence inside the surfzone is also generated via the

wave breaking process.

Eddy Viscosity for Purely Oscillatory Flows

For purely oscillatory flows the wave boundary layer is limited to a very thin
layer close to the bottom and above this WBL the flow is irrotational. As a result,
the sediment suspension only occurs within this thin WBL. The eddy viscosity in
the WBL is also expected to be proportional to the shear velocity and the boundary

layer thickness which is now 9,, for purely oscillatory flows.
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There have been a lot of formulas (models) which describe the vertical dis-
tribution of the eddy viscosity. In the three-layered distribution model (as e.g.,
Kajiura, 1968; Christoffersen and Jonsson, 1985), the WBL was divided into three
layers and each layer has its own distribution function. Brevik (1981) and Trow-
bridge and Madsen (1987) neglected the inner layer of the three-layered model and
developed two-layered eddy viscosity distribution models. However, the widely used
approach is to assume one vertical distribution function of the eddy viscosity for the
whole WBL, while the distribution can be constant, linear or parabolic.

The linear time-independent eddy viscosity distribution formula that was
used by Grant and Madsen (1979), Grant and Madsen (1986), Glenn (1983), Christof-
fersen and Jonsson (1985) and You (1994) is

=KWl % <2 <6y (5.142)

where U, 18 the maximum shear velocity defined as U,y = m Here, Twbm
is the maximum bottom friction. While Grant and Madsen (1979, 1986) simply
chose zy = 0, Glenn (1983) and Christoffersen and Jonsson (1985) chose 2y = ky /30
where ky is the Nikuradse roughness. The later one is theoretically complete but
the difference between the two is negligible in practice.

Another realistic approach is to assume a parabolic distribution of the eddy
viscosity over the WBL (as e.g., Fredsge et al. (1985), Fredsge and Deigaard (1992),
Staub et al. (1996)).

=il 2" (1 —218,) 0<Z <6y, (5.143)

While a time-dependent, eddy viscosity was used in Fredsge et al. (1985); Fredsge
and Deigaard (1992) by not taking the memory of the turbulence into account, a

time-averaged ¢ was used in Staub et al. (1996).
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There were several wave shear velocity values used in the eddy viscosity
models described above. The bottom shear stress due to pure wave motion may be
defined by

raall) = %pmwb(ﬂmwb(t) (5.144)

where f, is the bottom friction coefficient for pure wave flows, and define the wave

orbital velocity at the bottom
uwb(t) = o f(0) (5.145)

where ug is the amplitude of the bottom wave orbital velocity, f(f) is the phase
variation with @ = kz — wt and f(#) = cos@ for sinusoidal waves. Thus, the

instantaneous wave shear velocity is

E%MZME%m=J§WKW (5.146)

and the time-averaged wave shear velocity is

Uwu(t) = \/%‘tmm (5.147)

which for sinusoidal waves becomes

~ 2 |
U,,.w = ; %Uuo (5148)

The maximum bottom shear stress can be written as

Tt = mazlrn()] = L2, (5.149)

Usw

and the maximum wave shear velocity is

[ Twbm H w
U*wm = pb = iz_'“-m (5150)

where u,, is the maximum bottom wave velocity and w,, = 1y for sinusoidal waves.

It is recalled that the thickness of the wave boundary layer is not well defined.

Usually the (maximum) thickness is expressed as a function of wave conditions at

111



the bottom. One common used formula for d,, is (Jonsson (1963, 1967), and Jonsson

and Carlsen (1976))

3061;; w A
— logy, ——306 = 182 (5.151)
kn kn

which can also be approximated by

51:; Ab
— =0.072(— 5.152
T = 0072(7) (5.152)

where A, is the excursion amplitude of the wave orbital velocity at the bottom, and
Ay = tlyy/w in which w is the angular wave frequency. Another widely used formula

for 6, is (Grant and Madsen (1979), Glenn and Grant (1987), and You (1994))

U*wm
WO e (5.153)

w

where n is an empirical constant. This is also used in this study. The values of
1 < n < 2 was suggested by Grant and Madsen (1979) and in Glenn and Grant
(1987), while n = 0.5 was used by You (1994).

Eddy Viscosity for Combined Wave-Current Flows

For combined wave and current flows the turbulence extends over the whole
water depth. Experimental data showed that while the structure of the oscillatory
flows is almost unchanged by the addition of currents, the addition of waves change
current profiles considerably. In essence the effect of waves is to suppress vertical
current gradients and in turn the current strength inside the WBL, an effect that is
generally attributed to increasing the wave-induced mixing near the bed.

In the three-layered distribution model for € (as e.g., Glenn and Grant (1987),
and You (1994)) the boundary layer for the combined wave-current flow was split
conceptually into three parts: an inner wave dominant WBL, a wave-current interac-
tion layer and a upper current dominant layer (CBL). However, in most models the

boundary layer was split only into two parts: the inner WBL and the upper CBL.
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The basic concepts in the two-layered models are the same, while the distribution
functions may be different.
Grant and Madsen (1979) assumed linear distributions of € in both the WBL

and CBL
Kl lnd 0< 7 <6,

€= (5.154)
gl 3" by e ¥ o h

where Uyem is the shear velocity corresponding to the maximum bottom shear

stress for combined wave-current flows, and U,. is the shear velocity for the CBL.

Christoffersen and Jonsson (1985) assumed a similar distribution of € in the CBL

and either a constant or a linear distribution of € in the WBL based on the bed

roughness. A parabolic distribution of € for the CBL is used by Coffey and Nielsen
(1984).

It is noted that the eddy viscosity distribution models mentioned above are

discontinuous at d,, which may not be realistic. To obtain a continuity of ¢ at

z' = 6y, Fredsge et al. (1985) and Fredsge and Deigaard (1992) suggested

_— (5.155)
kU2 (1 —%) &y < 2

KU we?'[1 — ;—’(1 — Lee )] & <0y
€= -

and Nielsen (1992) proposed

2 85 &2 8
e= (5.156)
sl .2 Oy <2

The bottom shear stress for combined wave-current flows is usually defined

as
1
Th,a (t) = §pfcwlUb,a I r“'wb,ﬂ: (t)l(Ub,a + Wb, (t)) (5157)

where Uy, is the current velocity vector near the bottom and w,,4(t) is the wave

orbital velocity vector at the bottom. Therefore, the maximum shear stress is

1 1
Tom = maz(|m.q(t)]) = §pfcwma:n(|Ub,ﬂ—i—uwb,ﬂ(t”z) = §,ofﬂwuﬁﬁfm (5.158)
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where
ﬁ)z + 2%
n

. m

Brm = {( cos fi + 1}1/2 (5.159)

Here, U, = |Uy,| and p is the angle between the current velocity vector and the
wave orbital velocity vector.

The bottom current shear stress 7. is usually represented by the time aver-
aged bottom shear stress | 7, (¢) |. If the bottom wave velocity is defined as (5.145)

then it is found

v = | Toal@) | = 5pfuctioty (5.160)
where
= {(51Vs)* + 261 V3 Baug cos pu + (Bauo)*}/? (5.161)
with
. U, Uy .
pr = {(a)“‘?a cos 1 f (0) + f2(0)}1/2 (5.162)
and
Uh Ub
B2 = f(O){( 0)2+2u—0008#f(9)+f2(9)}”2 (5.163)

For sinusoidal waves, #; and [, can be further approximated by some simple curves
(Svendsen et al., 2002).

As a result, the instantaneous shear velocity for combined wave-current flows

[|(t, @) [ few
*wc E |Tb a f |Ub,a+uwba )l (5164)

the maximum shear velocity is

*wcm o 1/ di- fﬂw ﬁ]mum (5165)

and the current shear velocity is

.= 4| [ 70t ‘,/ (5.166)
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It is also worth to mention that in all models the thickness of the WBL
for combined wave-current flows is determined with the similar formula to that for
purely oscillatory flows except the shear velocity for combined wave-current flows is

now used.

Eddy Viscosity for Wave Breaking

For flows inside the surfzone the turbulence is generated via both the bottom
boundary layer and the wave breaking process. Although there have been several
experiments and models to analyze the surfzone turbulence, it is still poorly under-
stood.

The classic approach to estimate the eddy viscosity due to wave breaking is
again to use the mixing-length theory described in Eqs.(5.137). What remains is to
estimate [ and k. Battjes (1975) linked [ and k to the energy dissipation due to wave
breaking, and this idea was further pursued by Svendsen (1987) and Svendsen et al.
(1987). After presenting a thorough review of the turbulence characteristics in the
surfzone, and analyzing several independent experimental investigations (Okayasu
et al. (1980), Stive and Wind (1982), Hattori and Aono (1985), and Nadaoka and
Kondoh (1982)), Svendsen (1987) found that the temporal variation over a wave
period of the turbulent kinetic energy k at a fixed position was fairly small, which
was also shown in Cox et al. (1995). By assuming below trough level part of dE;/dx
was dissipated and solving the depth-integrated transport equation for k, Svendsen

(1987) obtained

!

k z
% /& = F(3) (5.167)
where
1 D .
, = = .168
“ = gh)2 p (5.168)
and
D= —% (5.169)



By fitting the experimental data by Stive and Wind (1982), f(;) was found to be
slowly depth-varying

2! Cz’ﬂa
&= (5.170)
and thus .
= 2 [h
=T oy (5.171)

Using this k as a representative turbulent kinetic energy and fitting the ex-

perimental data, Svendsen et al. (1987) found (after our new correction)
l=ah with 0.15 < o < 0.35 (5.172)

Hence, the eddy viscosity due to wave breaking can be expressed as

z' [h
e=Ivk = ae4 !1(%)1”3 (5.173)

The experiment measurements have showed that high turbulent intensities
due to wave breaking exist low above the bottom. However, the measurement in the
layer very close the bottom (with the order of WBL thickness) is still sparse. It is
possible that the turbulence generated from the intense plunging breakers may dis-
turb the bottom boundary layer. However, such speculations have not been verified
yet. It seems reasonable to assume that the layer very close to the bottom is not
affected by the spilling breakers and a traditional WBL still exists in a thin layer

close to the bottom.

Proposed Eddy Viscosity Model for Nearshore Flows

In the present study the eddy viscosity ¢ for nearshore flows is expressed by
linear summation of the eddy viscosity due to the bottom boundary layer and that
due to the wave breaking. The following model for time-independent and depth-

varying eddy viscosity is proposed
Bl euanz (1 — m;s%) g

€ = ' 7 (5174)
KULGZ (1= £) + ady/[Z38e h(2)/° 5y <
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where the shear velocity for the inner WBL U, e, is evaluated with (5.165), the shear
velocity for the upper CBL U,, is evaluated with (5.166), the WBL thickness d,, is
evaluated with (5.153), the energy dissipation is determined by the corresponding
wave model. The constant m is determined by matching € at 2’ = §,, for the two

layers and is found to be

P o 22 (5.175)

m=1-—
Uﬂﬂcm

It is noted that (5.170) for the empirical formula for f(%) used in Svendsen

(1987) is replaced by another approximation in the present study

2 — Oy

ey =32 (5.176)

While (5.176) and (5.170) provide very similar results for the upper layer, f(;) now
approaches zero as z approaches 6,, according to (5.176) which it did not in (5.170).
A qualitative illustration of the present eddy viscosity model is shown in Figure 5.2.

Based on this model, the eddy viscosities due to the wave motion and the
current motion are both represented by parabolic functions. While the eddy viscosity
within the WBL is always dominated by the wave motion, the eddy viscosity in
the upper CBL is dominated by the current motion for flows outside the surfzone
(D = 0) and consists of both the current-generated part and the breaker-generated
part inside the surfzone.

The depth-averaged eddy viscosity is always used in the nearshore hydro-
dynamic model. Due to fact that the WBL is very thin, the depth-averaged eddy
viscosity can for simplicity be obtained by integrating the eddy viscosity for the

upper layer through the whole water depth, i.e.,

N ' Z 3 |2 —buw , Dy,
€ = g [ ARl = D) +agy ST ) P (57)

= C1khU,. + Mh(—?)”a
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Figure 5.2: A qualitative illustration of the vertical distribution of the eddy viscos-
ity for nearshore flows. €, €€, are the eddy viscosities corresponding
to the wave boundary layer, current boundary layer and wave breaking
process, respectively.

where C; = 1/6 and M =~ 0.1 for @« = 0.25, both of which were used in the
SHORECIRC. This kind of depth-averaged eddy viscosity model has been used in
several turbulence closures with different values of M (as e.g., De Vriend and Stive
(1987), Sanchez-Arcilla et al. (1992), Reniers et al. (1995), and Ozkan-Haller and
Kirby (1999)).

5.4.5 o Coordinate Transformation

As mentioned before both the surface and bottom boundaries vary tempo-
rally for sediment suspension in oscillatory flows. In order to facilitate a finite
difference scheme to solve the sediment diffusion-convection equation, the so-called

o coordinate transformation is used to transform the temporally varying boundaries
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into constant boundaries. The sketch of the o coordinate transformation is shown

in Figure 5.3.

W

S O g W

(SN G S S W) ——o—o——9
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_hog-—o—o-ﬁ—o—o 0 c.—g—.—.—.—s_-{f.

Figure 5.3: Sketch of the o coordinate transformation

After choosing

C+hf03

the temporally varying domain in the 2 —t coordinates (—hos < 2z < {) now becomes

T=t (5.178)

a constant domain in the o — 7 coordinates (0 < o < 1), and

9 o0 dor 1 0

% “Bh W Lo (5.178)
0 _ 000 00r _  Oh 0,10 0
5 - Rn e M- gl te G180

where hy = hgs +( is the local instantaneous depth of the suspended sediment layer.
Since hgs and ¢ are both dependent on t only at given z and y, Ohgs/0t = dhg,s /0T,
d¢ /0t = ¢ /Ot. Therefore, (5.180) can be written as

o dhoy, OC, 10 0
5 =W 5= -5t ot

(5.181)
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Inserting (5.179) and (5.181) into the sediment diffusion-convection equation (5.128)
yields

dc 1dc 10 ( 66) I€g<l (5.182)

or = "h00 " h2do \“00

where w, is the (relative) falling velocity in the 0 — 7 domain

Bha()g

'w,,:'wf+cr%— (1—0)?

= —w (5.183)

Now instead of solving (5.128) with temporally varying boundaries in the
z — t coordinates, we only need to solve (5.182) in the o — 7 coordinates with
constant boundaries 0 < o < 1. Furthermore, (5.182) can be simplified by using the
(linearized) kinematic surface and bottom boundary conditions for oscillatory flows

which are

% o %

= = = = = 1 5.184
o o at z=( oro (5.184)
Ohos Ohos
w = 8: = 6: at z= —hgs or c =0 (5.185)

It is found that w, = w; at the surface (¢ = 1) and at the bottom (¢ = 0). If
assuming a linear vertical profile of w through the water column (—hy, < z < (
or 0 < o < 1), it is expected from (5.183) that w, is a linear function of o, and
thus w, = wy for the whole water column because w, = w; at both ¢ = 0 and
o = 1. Hence, w, can be replaced by w; as a first approximation and this would

significantly simplify the numerical procedure of solving (5.182).

5.4.6 Numerical Scheme

The numerical method used to solve (5.182) was chosen to be as consis-
tent as possible with that used in the SHORECIRC (Sancho and Svendsen, 1997).
The predictor-corrector scheme was used for the differential in time, the Adams-
Bashforth scheme was used for the predictor and the Adams-Moulton scheme was

used for the corrector.
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If symbolically denoting
10c 1 0 dc
— ey S—— - e i l'.]_
K=Y h, 0o % h2 0o (Esz 80) (3:156)

Eq. (5.182) can be written as

dc

—=F 5.187

or ( )
The Adams-Bashforth scheme for the predictor is

¢t = cf + Atag(@rFR + aoFE~t + asFp2) + O(AT?) (5.188)

where superscript n denotes the time level, subscript k& denotes the grid locations in

the o direction and
ay'= 1£12, o =23, ap = —16, a3 =25 (5.189)
The Adams-Moulton scheme for the corrector is
At = cf + ATBo(BiFy + BoFp + BsFp 1) + O(AT®) (5.190)
where F} is the value of F corresponding to ¢ and
Bs = 1/12, Bi==8, P2 =8, B3 = -1 (5.191)

Because (5.182) is a parabolic-type partial differential equation and the con-

vection term = gg is important, the second order upwind difference scheme is used
8

for the first-order derivative gﬁ. The upwind difference scheme is chosen to avoid

the so-called 'wiggle’ problem and to achieve better numerical stability (Peyret and

Taylor, 1982). The second order accuracy is chosen to avoid the numerical diffusion

problem. The second order upwind difference scheme for %L; is
ocyt —Cpyg +4¢k,, — 3¢ 3cp —4ct_|+ ;o 9
=(l—0c 1 O(A 5.192
do () 4Ao til+a) 4A0 +o(A) | )
where o = —sign(w,) and o = —1 if w, ~ wy. In addition, the centered difference

scheme is used for the diffusion term in (5.182).
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For a general linear parabolic equation

L o

b.1
81‘.+A83: € o2 0 (5.193)
the criterion for the numerical stability is
(Az)*
At < ———— 5.194
~ 2e+ Az|A| ( )

if the non-centered difference scheme is used for the first-order spatial derivative
(Peyret and Taylor, 1982). This criterion becomes the well known Courant-Friedrichs-
Lewy condition (CFL) At < ﬁTT only when ¢ = 0. Thus, the stability criterion of
the numerical scheme used in the present study is expected to be

2
AT < (Ag)
2% + AGL—J—w;:a”‘

which can also be rewritten as

2
At < (Az)
= 265, + Az|we|m

(5.196)

where |wg|,;, is the maximum |w,| and as a first approximation |wg |, =~ wy.

5.5 Phase Variations of Surfzone Waves

A significant effect of the wave phase variation on the time-averaged sediment
transport rate arises from the wave asymmetry about the horizontal axis or the so-
called wave skewness: higher and shorter crest, but longer and shallower trough.
The wave skewness tends to induce net sediment transport in the wave direction
(shoreward and downstream direction).

Waves become more peaked and thus wave skewness becomes more consider-
able as propagating to breaking. This variation can be represented by the non-linear
wave theories, such as the cnoidal wave theory used in this study. However, no con-

ventional wave theory is appropriate for the description of the phase variation of
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surfzone waves, as discussed in Chapter 3. To represent the effect of the wave asym-
metry on the sediment transport inside the surfzone, an empirical formula for the
wave phase variation, which is usually expressed in terms of the surface profile, is
necessary.

Extensive experimental observations have found that the surface profiles in-
side the surfzone change from a peaked shape at breaking to a sawtooth-like profile
at the shoreline, and the wave skewness reduced as waves propagate to the shoreline.
Based on this fact, the simplest formulation of the surface profile inside the surfzone
appears to be a linear weighted summation of the peaked shape at breaking and the

sawtooth shape at the shoreline, i.e.,

n(t) _n(t), % + ;)(“;_13) (5.197)

H H
where ﬂf}” p is the surface profile at breaking which is predicted by the cnoidal wave
theory in the present study.

It is worth to mention that (5.197) just qualitatively describes the surface pro-
file variation inside the surfzone which in reality is much more complex than (5.197)
indicates. On the other hand, while no wave theory can appropriately represent the
surface profile inside the surfzone, Eq. (5.197) can simply and reasonably represent
the surface profile and thus the effect of the wave asymmetry on the net sediment
transport in the surfzone. This can not be represented by ordinary linear wave

theory.

5.6 Bathymetry Update
The bathymetry update is derived by solving the depth-integrated equation
for sediment mass conservation

dhyg - 1 8@sx e aff‘sy
ot 1-—mn, \ Or Ay

(5.198)
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where n, is the porosity of the sediment and n, ~ 0.4, g,, and gy, are the time-
averaged volumetric sediment transport rates per unit width including both the

bedload and the suspended load, i.e.,

¢
Guo = Qoo+ 50 = Ga+ | Clladz (5.199)

It is always important to analyze the performance of a mathematical model
and test the accuracy of the model predictions with experimental measurements.
The performance the present sediment transport model incorporated with the wave
models and the SHORECIRC will be analyzed in Chapter 6 and 7, and comparisons
between the model predictions and experimental data in the LSTE are presented in

Chapter 7.
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Chapter 6

ANALYSES OF PREDICTED NEARSHORE SEDIMENT
TRANSPORT

The objective of this chapter is to present extensive numerical simulation
results predicted by the sediment transport model combined with the wave models
and the SHORECIRC model. The purpose is to test the behavior of the present
sediment transport model, analyze the effects of the primary factors on sediment
transport and illustrate some characteristics of nearshore sediment transport which
are difficult to discern in experiments. A presumed simple scenario, which is sedi-
ment transport on a plane beach under regular wave environments, was simulated
using the present wave-current-sediment transport model. The initial beach profile
and incident wave conditions were chosen to be the same as those in Test 6N in
the LSTF. The regular wave condition was chosen over the irregular wave for the
purpose of illustrating the effects of nearshore wave transformations on sediment
transport. These effects tend to be smoothed out for irregular waves because of the
temporal variations of wave conditions and spatial variations of the breaking loca-
tion. A plane beach profile was chosen over an equilibrium beach profile in order to
amplify cross-shore variations of sediment transport and to illustrate the evolutions

of the beach profile.

6.1 Sediment Transport Rates Predicted by Various Models

Bedload transport rate
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Figure 6.1 shows the cross-shore variations of the wave-averaged volumetric
bedload transport rates per unit width in the cross-shore direction (Qp,) and in the
longshore direction (@ p,) predicted by the Engelund and Fredsge (1976) formula,
by the Bailard and Inman (1981a) formula, by the present modified Engelund and
Fredsge formula (5.104) and by the modified Bailard and Inman formula (5.97) with
the bedload efficiency coefficient e = 0.21, respectively. The cnoidal-bore wave
model was used in the tests and thus the wave asymmetry about the horizontal
axis, sometimes termed the wave ”skewness”, is presented in the model results. The
cross-shore location of wave breaking is at zp = 9m. It is worth to point out that
under regular wave conditions the wave-averaged sediment transport rate is also the
net transport rate.

It is seen that all the formulas predict a similar trend for the cross-shore
distributions of net bedload transport rates. A net shoreward bedload transport is
predicted for the region outside the surfzone whereas a net seaward transport for
the inner surfzone as the result of the balance between the wave asymmetry and
cross-shore currents. The predicted longshore bedload transport rates are always
towards the downstream direction because both longshore currents and the wave
asymmetry tend to induce net bedload transport in that direction. The effect of the
wave asymmetry on the net longshore bedload transport rate is limited because of
the small wave angles. A significant longshore bedload transport appears to occur
in the mid surfzone where significant longshore currents exist.

As illustrated theoretically in Chapter 5, both the Bailard and Inman (1981a)
formula and the Engelund and Fredsge (1976) formula for the bedload transport
rate can be derived from the two-phase flow theory. The difference between the
two formulas lies in the fact that while the bedload efficiency coefficient is assumed
to be a constant in the Bailard and Inman (1981a) formula it is linked to the

Shields parameter in the Engelund and Fredsge (1976) formula. Therefore, both

126



x (m)

onshore transport

o ; é
i 2
(107° m?/s)

qu

Figure 6.1: Comparison of wave-averaged bedload transport rates per unit width predicted by
the Engelund and Fredsge (1976) formula (..), by the Bailard and Inman (1981a)
formula (—.), by (5.104) (——) and by (5.97) with eg = 0.21 (—).

formulas predict similar shapes but somewhat different magnitudes of the cross-
shore variations of bedload transport rates, as shown in Figure 6.1. For different
values of ep, different magnitudes of bedload transport rates would be predicted by
the Bailard and Inman (1981a) formula.

As an improved version of the Bailard and Inman (1981a) formula, Eq. (5.97)
includes the effect of the critical shear stress on the bedload transport. The net
bedload transport rates per unit width predicted by (5.97) are also presented in
Figure 6.1. The net bedload transport rates predicted by (5.97) are close to those
predicted by the Bailard and Inman (1981a) formula for the region outside the sur-

fzone but are smaller for the region inside the surfzone. As illustrated in (5.97)
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the instantaneous bedload transport rate decreases after including the critical shear
stress. Because the wave velocity is dominant for flows outside the surfzone, the ef-
fect of the critical shear stress on the instant bedload transport rate in the shoreward
direction is comparable to that in the seaward direction, resulting in a negligible dif-
ference in the net bedload transport rates. However, as currents become significant
inside the surfzone, less net bedload transport rate would be predicted in the current
direction after including the effect of the critical shear stress.

Figure 6.1 also demonstrates the net bedload transport rates per unit width
predicted by (5.104), which is an improved version of the Engelund and Fredsge
(1976) formula. However, no obvious difference is found in the predicted results
between (5.104) and the Engelund and Fredsge (1976) formula. This is because the
bottom slope in this test case is so small that the difference between two formulas

is hardly discriminated.

Suspended sediment transport rate

Figure 6.2 presents cross-shore variations of the wave-averaged suspended
sediment transport rates per unit width in the cross-shore direction (Qs,) and in
the longshore direction (Qg,) predicted by the Bailard (1981b) formula, by the
modified Bailard formula (5.122) and by the present sediment diffusion-convection
model using the pick-up function as the bottom boundary condition, respectively.

As similar to the bedload and for the similar reasons, the net cross-shore
suspended sediment transport rate is found to be towards the shore for the region
outside the surfzone and towards the sea for the inner surfzone. The net longshore
suspended sediment transport rate is in the downstream direction and becomes
significant in the mid surfzone.

Different from the bedload, the cross-shore distributions of the net suspended
sediment transport rates predicted by different models (formulas) show significant

difference, both in shapes and in magnitudes. This is because different models
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Figure 6.2: Comparison of the wave-averaged suspended sediment transport rates per unit
width predicted by Bailard (1981b) (—.), by (5.122) (——), by the present sediment
diffusion-convection model applying the pick-up function boundary condition (—)

(formulas) are based on different approaches. The Bailard (1981b) formula is derived
from a simple energetic approach, while the present diffusion-convection model is
solving the sediment diffusion-convection equation.

After including the effect of wave breaking, the net longshore suspended sed-
iment transport rate predicted by the modified Bailard formula (5.122) is much
larger than that determined by the original version for the surfzone. As illustrated
in (5.122), the energy dissipation of wave breaking is directly added in the modified
Bailard formula. Hence, a considerable transport rate is predicted by this formula
for the region immediately after breaking where the maximum energy dissipation

occurs. The effect of wave breaking is reflected in the diffusion-convection model by

129



including the energy dissipation in the sediment diffusion coefficient (see (5.174)).
However, the bottom boundary condition of sediment suspension is primarily deter-
mined by the bottom friction. As a result, the diffusion-convection model predicts
a significant net suspended sediment transport rate in the mid surfzone where sig-
nificant longshore currents occur instead of the region immediately after breaking,
as shown in Fig. 6.2. This might be more realistic.

It is interesting to notice the double peaks of the predicted cross-shore dis-
tributions of net longshore transport rates of the bedload as well as the suspended
load. One is located around the breaking point and the other in the mid surfzone,.
The double peaks seem to be the result of the balance between the intensity of
longshore currents and the wave asymmetry. It is also seen that wave breaking not
only amplifies the magnitudes of the double peaks but also shifts the location of the
first peak from the breaking point into the surfzone for suspended sediment.

For this test case, the magnitude of the net bedload transport rate is approx-
imately 10 to 20 percent of the suspended load transport rate. However, this ratio
may vary in reality depending on the wave and current conditions and sediment

characteristics.

6.2 Effect of Wave Asymmetry

Figure 6.3 illustrates the difference of the cross-shore variations of the net
bedload transport rates predicted by (5.122) using the sinusoidal wave model and
using the cnoidal-bore wave model, respectively. Similarly Figure 6.4 presents the
difference for suspended sediment transport. It is noted that for both the bedload
and the suspended load, the cross-shore sediment transport is towards the shoreward
direction for the region outside the surfzone and changes to the seaward direction for
the inner surfzone if the cnoidal-bore wave model is applied. However, it is always
towards the seaward direction if using the sinusoidal wave model. While the cross-

shore variations of longshore sediment transport rates have double peaks if using
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the cnoidal-bore wave model, only one peak is found if using the sinusoidal wave
model. In addition, the predicted longshore transport rate using the sinusoidal wave
model is generally less than that using the cnoidal-bore wave model. Thus there
are significant differences in the predicted transport rates using the two models.
These differences essentially reflect the effects of wave asymmetry on the sediment

transport in nearshore flows.
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Figure 6.3: Comparison of the wave-averaged bedload transport rates per unit width predicted
by (5.122) using the sinusoidal wave model(——) and using the cnoidal-bore wave
model (—)

Sinusoidal waves are symmetric about the horizontal axis. The forward
(shoreward and downstream) and backward (seaward and upstream) sediment trans-
port rates due to the wave velocity are equivalent because of the wave symmetry.

Therefore, the net sediment transport rate would be zero for pure (sinusoidal) waves
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Figure 6.4: Comparison of wave-averaged suspended sediment transport rates per unit width
predicted by the present diffusion-convection model using the sinusoidal wave
model(——) and using the cnoidal-bore wave model (—).

and would follow the current direction (i.e., the seaward and downstream direction)
for combined (sinusoidal) wave and current flows. As shown in Figure 6.3 and 6.4, a
net seaward and downstream sediment transport is predicted for the whole nearshore
region if the sinusoidal wave model is used.

However, nearshore waves in the field are always in non-sinusoidal shapes.
Waves become more peaked as approaching breaking: crests shorter and more
peaked, troughs longer and flatter. This wave asymmetry about the horizontal
axis, i.e., the wave skewness, tends to induce more sediment transport in the wave
direction than the opposite direction, resulting in a net sediment transport in the

wave direction (i.e., the shoreward and downstream direction). On the other hand,
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wave-induced currents tend to induce a net sediment transport in the current direc-
tion (i.e., the seaward and downstream direction). Therefore, the direction of net
sediment transport depends on the balance between the wave skewness and currents.

As a result of weak currents, the effect of wave asymmetry on sediment
transport appears to be more noticeable for the region outside the surfzone. As
waves propagate to breaking, wave skewness increases and reaches the maximum
value at breaking, and so does the net sediment transport rate which is towards the
shoreward and downstream direction. Inside the surfzone the situation is reversed.
Instantly after breaking starts waves become less peaked and wave skewness reduces.
On the other hand, wave-induced currents become more significant. The result is
that the direction of net sediment transport rate is adjusted to follow the current
direction as current intensity increases. As shown in Figure 6.3 and 6.4, a net
seaward sediment transport in the cross-shore direction is predicted for the mid and
inner surfzone, and the maximum net seaward sediment transport occurs in the
middle surfzone where the strongest wave-induced currents occur.

As a result of the small wave angles in this test case (incident wave angle of 10
degrees), the longshore wave velocity component and thus the effect of wave asym-
metry on the net longshore sediment transport rate are less significant than those
in the cross-shore direction. Therefore, the predicted longshore sediment transport
rates show less difference when using the sinusoidal or cnoidal-bore wave model, as

compared to the significant difference in the predicted cross-shore transport rates.

6.3 Contributions of Waves and Currents

To illustrate more clearly the contributions of waves and of currents to sedi-
ment transport, Figures 6.5 and 6.6 present the predicted net bedload and suspended
load transport rates per unit width for purely oscillatory flows, pure current flows
and the combined wave and current flows. Here, Eq. (5.122) was used for the bed-

load, the diffusion-convection model was used for the suspended load. The flow
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velocities used in the tests are the wave velocity only, wave-induced current velocity

only and combined wave and current velocity, respectively.
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Figure 6.5: Comparison of the wave-averaged bedload transport rates per unit width predicted
by (5.122) for three flow conditions: waves only (—.), wave-induced currents only
(==) and combined wave and current flows (—)

As shown in Figures 6.5 and 6.6, the wave asymmetry is the mechanism of
the net sediment transport which is towards the wave direction for pure oscillatory
flows. The trend of the cross-shore variation of net sediment transport rates follows
that of wave skewness: increase towards breaking and decay inside the surfzone. For
pure current flows, the net sediment transport is as expected towards the seaward
and downstream direction as currents do, and the trend of the cross-shore variation
of net sediment transport rates is similar to that of wave-induced currents. Sediment

transport mainly occurs inside the surfzone with the maximum transport rate at the
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Figure 6.6: Comparison of the wave-averaged suspended sediment transport rates per unit
width predicted by the present diffusion-convection model for three flow conditions:
waves only (—.), wave-induced currents only (——) and combined wave and current
flows (—)

middle surfzone where the maximum current occurs, while the net sediment trans-
port rate is negligible outside the surfzone where currents are weak. For combined
wave and current flows, currents together with the wave asymmetry determine the
net sediment transport rate, which, however, is not the linear summation of the
transport rate for pure oscillatory flows and that for pure wave-induced current
flows.

The reason for this can be seen by considering the suspended sediment trans-

port in combined wave and current flows. We divide the instantaneous sediment
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concentration and velocity into a wave-averaged part and an oscillatory part

Here, the wave-averaged part of the flow velocity becomes the current velocity and
the oscillatory part is the wave velocity. Therefore, the wave-averaged sediment
transport rate is

7 ¢ s
Qs = / Cllg dz = / EUa dz + / Clye dz (62)
ho ho ho

L

As an example, Figure 6.7 presents the j}f;s cU, dz for suspended sediment
as well as the wave-averaged transport rates predicted by the diffusion-convection
model together with the cnoidal-bore wave model. It is found that the net suspended
transport rates differ from the frfg,, ¢U, dz primarily in the region close to breaking
where wave asymmetry is significant, while the difference is negligible for the inner
and middle surfzone and for the region further offshore where wave asymmetry
is negligible. Hence, it can be concluded that the effect of the wave asymmetry
on net sediment transport lies in f,fu Clwa dz, which is the difference between ¢,
and ffn ¢U, dz, as illustrated in (6.2). As wave angles in the test case are small, the
j}fn Cliyy dz is small as well, resulting in a limited difference between the net longshore
sediment transport rates and the f,f-u ¢V dz. In another words, for small wave angles
ffﬂ ¢V dz could be an approximation of the net longshore sediment transport rates.

Figure 6.7 also shows the predicted net sediment transport rates for pure
(wave-induced) current flows, which are smaller than ffo ¢U, dz for combined wave
and current flows. Because current velocities are the same in the two tests, the dif-
ference is caused by the difference in sediment concentration. The (wave-averaged)
sediment concentration is generated by both currents and wave velocities for com-
bined wave and current flows. However, for pure current flows it is only created by

the currents.
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Figure 6.7: Comparison between the predicted wave-averaged suspended sediment transport

rates per unit width (—), and |, :o ¢U; dz (o) for combined wave and current flows,
as well as the wave-averaged sediment transport rates per unit width for pure
wave-induced current flows (——).

6.4 Vertical Convection of Sediment

As a first approximation the convection term caused by the vertical flow
velocity is usually neglected and the boundaries of suspended sediment layer are
assumed to be temporally constant (as e.g., from the bottom to the mean water

level). The diffusion-convection equation (5.128) for suspended sediment thereby

de de 0 Oe =
i il R G it ok < < .
ot oz oz (6” 3z) hoe S 25 ¢ (6:3)

which is the governing equation for the so-called sediment diffusion model. The

reduces to

sediment diffusion model is commonly used to solve for the vertical distribution of

137



suspended sediment in open channel flows as well as in combined wave and current
flows (as e.g., Fredsge and Deigaard (1992) and Rakha et al. (1997)). However,
Nielsen (1992) showed that in oscillatory flows the diffusion model is not accurate
enough for sediment suspension and the effect of the vertical flow velocity should be

included.
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Figure 6.8: Comparison of the wave-averaged suspended load transport rates per unit width
predicted by the diffusion model (——) and by the diffusion-convection model (—).

Figure 6.8 presents the cross-shore variations of the net suspended sediment
transport rates per unit width predicted by the diffusion model compared with those
by the diffusion-convection model. The cnoidal-bore wave model was used as the
wave driver and flow conditions are the same in two tests. The bottom reference

concentration boundary condition was applied so that the sediment concentrations
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at the bottom are the same in two tests. Therefore, the difference in the predicted
results of suspended sediment transport is solely caused by the fact whether the effect
of the vertical flow velocity is included or not. The comparison reveals that the net
sediment transport rate predicted by the diffusion model is slightly smaller than
that predicted by the diffusion-convection model for the region outside the surfzone.
However, for the surfzone the difference is indistinguishable. In other words, a
limited effect of the vertical flow velocity on the net suspended sediment transport
rate primarily occurs outside the sufzone but is negligible inside the surfzone.

Figure 6.9 demonstrates the vertical distributions of the wave-averaged sed-
iment concentrations at z = 6 m (3m before breaking) and at z = 12m (3m after
breaking) predicted by the diffusion model and by the diffusion-convection model,
respectively. A more uniform vertical distribution of sediment concentration is pre-
dicted by the diffusion-convection model than by the diffusion model for the region
outside the surfzone, whereas the vertical profiles predicted by two models show in-
discernible difference inside the surfozne. In addition, the difference in the vertical
profiles at z = 6m is more eminent for the upper water column and is limited for
the near-bottom. However, as showed in Figure 6.9, the absolute value of sediment
concentration at the upper water column is much smaller than that at the near-
bottom (as e.g., less than 10~° for 4 cm above the bottom). Hence, the absolute
difference of sediment concentrations predicted by the diffusion-convection model
and by the diffusion model appears to be negligible in practice.

Figure 6.10 shows the phase variations of suspended sediment concentrations
at different vertical locations at (a) z = 6 m (with still water depth of 0.4m) and
at (b) = 12m (with still water depth of 0.2m), respectively. The wave period
is 2.5 s. It is seen that while the bottom sediment concentration (at z = —0.40m
for z = 6 m) are the same, the sediment concentration (at z = —0.38m, i.e., 2cm

above the bottom) predicted by the diffusion-convection model not only has a larger
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Figure 6.9: Comparison of vertical profiles of the wave-averaged sediment concentrations at
(a) # = 6m and at (b) « = 12m predicted by the diffusion model (—~—) and the
diffusion-convection model (—)

wave-averaged value but also has a more significant temporal variation and asym-
metry, and this difference is expected to be more distinguishable further above the
bottom. However, at z = 12m (inside the surfzone) the phase variations of sediment
concentrations predicted by two models reveal negligible difference

The comparisons illustrated in Figures 6.8, 6.9 and 6.10 suggest that the ver-
tical flow velocity in combined wave and current flows tends to intensify sediment
suspension, and results in a more significant temporal variation and a more uniform
vertical distribution of suspended sediment concentrations and thus a larger trans-
port rate given the same bottom boundary condition. This effect of the vertical flow

velocity would increase the sediment “diffusion” coefficient if the sediment diffusion

140



(b) x=12m

0.03

'2=-019m

0.02
© 0015} Mo
0.01
0’005 ........................ ................
0 i
0 1 2 3 4 5
0.2 0.2
o 0.1 o 041
0.056 0.05}
0 0
0 1 2 3 4 5

t(s) t (s)

Figure 6.10: Comparison of the time series of sediment concentrations at (a) @ = 6m and at
(b) & = 12m predicted by the diffusion model (——) and the diffusion-convection
model (—)

model is used.

The turbulent intensity of the flow and thus the sediment diffusion coefficient
are small in the current boundary layer for the region outside the surfzone where
currents are weak. Therefore, the effect of the vertical flow velocity on sediment sus-
pension becomes more noticeable. This effect is expected to be more distinguishable
for purely oscillatory flows in which no current exist, as shown by the experimental
data (Nielsen, 1992). The vertical flow velocity is negligible near the bottom and
increases vertically, and so does its effect on sediment suspension. However, as the

result of the stronger currents and particularly the significant turbulent intensity
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caused by wave breaking, the turbulent intensity and the sediment diffusion coef-
ficient in the current boundary layer becomes more significant inside the surfzone,
resulting in a negligible effect of the vertical flow velocity on sediment suspension.
Hence, no discernible difference appears in the predicted sediment concentrations
and transport rates between the diffusion-convection model and the diffusion model
for the region inside the surfzone.

The absolute differences of the predicted suspended sediment concentrations
and transport rates between the diffusion-convection model and the diffusion model
are rather small. Suspended sediment typical concentrates near the bottom and
the concentration decay very fast with water depth. However, the vertical flow
velocity increases vertically and is negligible near the bottom. Hence, the sediment
convection due to the vertical flow velocity primarily occurs in the upper water
column where the sediment concentration is negligible and thus the effect of the

vertical flow velocity on suspended sediment transport rate is fairly limited.

6.5 Effect of Bottom Boundary Conditions

The bottom boundary condition is a primary factor in determining sediment
suspension in the water column. As discussed in Chapter 5, two approaches are
typically applied for the bottom boundary condition, one is to specify the bottom
reference concentration and the other to specify the vertical gradient of sediment
concentration at the bottom (pick-up function). Figure 6.11 shows the net suspended
sediment transport rates predicted by the diffusion-convection model applying the
bottom reference concentration as boundary condition (5.130) and the other ap-
plying the pick-up function as boundary condition (5.135). The cnoidal-bore wave
model was used as the wave driver and flow conditions are the same in the two
tests. Thus the differences in the predicted suspended sediment concentrations and

transport rates between the two tests are caused entirely by the different bottom

142



boundary conditions applied. It is seen from that the predicted net suspended sed-

iment transport rates are surprisingly close in the two tests.
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Figure 6.11: Comparison of wave-averaged suspended sediment transport rates per unit width
predicted by the diffusion-convection model applying the bottom reference con-
centration boundary condition (——) and applying the pick-up function boundary
condition (—)

Figure 6.12 shows the equivalent vertical profiles of the wave-averaged sus-
pended sediment concentrations at = 6 m and at x = 12 m predicted in two tests.
It is interesting to notice that the model applying the bottom reference concentra-
tion boundary condition (5.130) predicts a larger wave-averaged bottom sediment
concentration but at the same time a faster vertical decay of the concentration near
the bottom, resulting in a slightly smaller net transport rate, than the model ap-

plying the pick-up function (5.135). As the sediment diffusion coefficients are the
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same in the two tests, the slopes of the vertical profiles of (logarithmic) sediment
concentrations are close for most of the water column except near the bottom where
the vertical gradient of sediment concentration is specified by (5.135) when applying

the pick-up function bottom boundary condition.
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Figure 6.12: Comparison of vertical profiles of the wave-averaged sediment concentrations at
(a) z = 6m and at (b) = 12m predicted by the diffusion-convection model
applying the bottom reference concentration boundary condition (——) and ap-
plying the pick-up function boundary condition (—)

Figure 6.13 presents the temporal variations of the instantaneous sediment
concentrations in the two tests at different vertical positions at z = 6m and at
z = 12m, respectively. The bottom sediment concentrations (at z = —0.40m for

¢ = 6m and at z = —0.20 m for z = 12m) predicted by the model using the bottom
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reference concentration as boundary condition appear to have not only larger wave-
averaged values but also much larger temporal variations. Tt z = 6 m the bottom
sediment concentration varies from 0 to 0.190 within one wave period with a wave-
averaged value of 0.024 and at x = 12/m from 0.041 to 0.153 with an average value
of 0.060 if specifying the bottom reference concentration with (5.130). However, if
specifying the pick-up function with (5.135), at @ = 6 m it only varies from 0.002 to
0.047 with an average value of 0.013 and at z = 12m from 0.026 to 0.038 with an
average value of 0.031.
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Figure 6.13: Comparison of the time series of sediment concentrations at (a) « = 6m and
at (b) z = 12m predicted by the diffusion-convection model applying the bot-
tom reference concentration boundary condition (——) and applying the pick-up
function boundary condition(—)

If the bottom reference concentration boundary condition is used, it is implied
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that an instantaneous equilibrium exists between the bottom shear stress and the
suspended sediment concentration. According to (5.130) the instantaneous bottom
sediment concentration is proportional to the instant effective bottom shear stress.
Therefore, the concentration is zero when the shear stress is zero and reaches the
maximum value when the shear stress is maximal, as shown in Figure 6.13. However,
this instantaneous equilibrium may not exist for oscillatory flows. If dense clouds of
sediment are settling from above the concentration at the bottom may well be larger
when the shear stress is zero. If the pick-up function is used as the bottom bound-
ary condition, the vertical gradient of the sediment concentration at the bottom
instead of the concentration itself is a power function of the effective bottom shear
stress based on (5.135). Thus, when the shear stress is zero the vertical gradient of
sediment concentration at the bottom is zero but the bottom concentration is not

zero, as shown in Figure 6.13.

6.6 3D Sediment Transport

Figure 6.14 presents the cross-shore variations of the vertical profiles of wave-
averaged sediment concentrations predicted by the diffusion-convection model using
the pickup function boundary condition. The cnoidal-bore model was used as the
wave driver. This figure illustrates the distinguishable variations of sediment suspen-
sion in the cross-shore direction. For the offshore-most region, the bottom sediment
concentration is small and sediment suspension is only limited in a very thin layer
close to the bottom as a result of the small bottom shear stress and small sediment
diffusion coefficient. The flow velocity, consisting of the wave velocity and the cur-
rent velocity, becomes larger as breaking is approached, resulting in a larger bottom
shear stress and sediment diffusion coefficient, and thus a larger bottom sediment
concentration and a thicker sediment suspension layer. An intense sediment suspen-

sion is found in a much thicker layer in the outer and middle surfzone, as a result of
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the larger bottom shear stress and the wave breaking process which intensifies the

flow turbulence and thus the sediment diffusion coefficient.
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Figure 6.14: Predicted cross-shore variations of the vertical profiles of wave-averaged sediment
concentrations

The vertical profiles of suspended sediment motions are summarized in Fig-
ure 6.15 which shows a 3-D plot of the predicted vectors of tc for the transect of
y = 17.7m. This figure demonstrates that the net suspended sediment transport
varies with depth rapidly in magnitudes and slightly in directions. This figure also
illustrates a significant cross-shore variations, not only in magnitudes but also in
directions, of net suspended sediment transport. While the net suspended sediment
is negligible in the offshore-most region, intense net sediment transport is found
towards the shoreward direction immediately outside the breaking and towards the
longshore direction in the outer and middle surfzone. Because of the effect of the

wave asymmetry, the directions of suspended sediment transport differ from those
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of wave-induced currents (see Figure 4.13), particularly for the region outside the

surfzone.
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Figure 6.15: Predicted cross-shore variations of the vertical profiles of wave-averaged sediment
fluxes.

The 2-D plot of the total sediment transport rate vectors, consisting of the
bedload and the suspended load, predicted by the diffusion-convection model is
presented in Figure 6.16. This figure again shows that the directions of the net sedi-
ment transport rates are different from those of wave-induced currents (Figure 4.10).
Net sediment transport occurs primarily in the shoreward direction for the region
outside the surfzone but primarily in the longshore direction for the surfzone. It
is expected from the cross-shore variations of sediment transport rates that a bar
would be formed around the breaking line and erosion would generally occurs in the

inner and middle surfzone for this test case.
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Figure 6.16: Predicted total sediment transport rate vectors per unit width in the LSTF.

6.7 Predicted Evolutions of Beach Profile

Beach profile in the field can vary considerably depending on wave condi-
tions and resulting wave-induced currents and sediment transport. The cross-shore
sediment transport plays a primary role in the beach profile evolution for a straight
parallel beach, for which Eq. (5.198) reduces to

Ohoy 1 0Qs
ot 1-—n, Oz

(6.4)

This equation illustrates that beach accretion occurs (9ho/0t < 0) where 0y, /0x <
0, and beach erosion occurs (0hy/8t > 0) where 0y, /0z > 0.

Figure 6.17 shows the evolutions of the beach profile from an initial plane
beach to a beach with a breaker bar within one hour predicted by the sediment
diffusion-convection model. The resulting evolutions of the beach profile when using
the cnoidal-wave model and the sinusoidal wave model are presented in this figure.

It is seen that a sand bar is formed around the breaking and erosion generally occurs
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in the mid and inner surfzone no matter whether the cnoidal-bore or the sinusoidal
wave model is used.

The differences in the predicted evolutions of beach profile for different wave
models being used lie in the location and the size of the breaker bar, slight beach
evolution outside the surfzone and the width of the erosion area inside the surfzone.
As for sinusoidal waves a net seaward cross-shore sediment transport is predicted
for the whole nearshore region and the maximum seaward transport rate occurs
slightly inside the surfzone (see Figs 6.3 and 6.4), a higher but narrower sand bar is
predicted close to breaking. A slight beach accretion is predicted seaward of the bar
but a considerable beach erosion is found shoreward of the bar which covers most
of the surfzone (z > 10m), as shown in Figure 6.17 (b).

However, if the cnoidal-bore wave model is used, a net shoreward sediment
transport is predicted outside the surfzone and it changes into seaward-directed
transport, as shown in Figs 6.3 and 6.4. This results in an significant beach accretion
from approximately 1m outside breaking to 3m inside breaking and a wider but
lower sand bar formed in this region, with a considerable beach erosion seaward to
the bar which covers the middle and inner surfzone (z > 12m) and a slight erosion

seaward to the bar as well, as illustrated in Figure 6.17 (a).

It is worth to point out again that the comparisons presented in this chapter
are meant as illustrations of the complex mechanisms that govern sediment motion
and beach development. They are limited to the sediment transport on a plane
beach under regular wave conditions. As illustrated several places in the discus-
sion above, the results and conclusions may not be the same for different situations
and will be different for sediment transport on a non-plane beach under irregular
wave environments. It is expected that the cross-shore distributions of net sedi-

ment transport rates can be more uniform and the locations of the wider and lower
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breaker sand bar may migrate because of temporal variations of wave conditions
and particularly spatial variations of wave breaking locations for irregular waves.
In addition, the evolutions of beach profile may also be different depending on the
initial beach profile. Some of the characteristics of nearshore sediment transport
on an “equilibrium” beach will be illustrated in the following chapter through the

comparisons with Test 1H in the LSTF.
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Chapter 7

COMPARISON OF SEDIMENT TRANSPORT
BETWEEN THE MODEL AND THE MEASUREMENTS

This chapter is presenting the comparisons of nearshore sediment transport
between the measurements in Test 1H in the LSTF and the simulated results using
the present sediment diffusion-convection model combined with the SHORECIRC
and the irregular wave model.

As described in Chapter 2, Test 1H in the LSTF was carried out on an initial
"equilibrium” sand beach with the median grain size of 0.15 mm. Irregular waves
were generated with an incident significant wave height of 0.25m, a peak spectral
wave period of 1.5 seconds and an angle of 10 degrees. In addition to the hydrody-
namic measurements, the movable bed was surveyed on a regular basis, the vertical
profiles of sediment concentrations were measured using the Fiber-Optic Backscat-
ter Sensors, and the cross-shore distribution of longshore sediment transport rates
was measured using the downstream sediment trapping system.

The smoothed results of the time series of wave heights and wave periods
measured at 2.4m in front of the wave generator, as shown in Figure 7.1, was
used as the inputs for the wave model. The beach profiles surveyed prior to the

experiment were used as the initial beach bathymetry in the model.

7.1 Comparisons of Hydrodynamics
The emphasis of this chapter is to compare the predicted and measured sed-

iment, transports. Hence, only a few comparisons of hydrodynamics are presented
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Figure 7.1: Derived temporal variations of wave heights and wave periods at z = 2.4m in
Test 1H (Hamilton et al., 2001). The thin solid lines are the results using the zero
up-crossing method, and the thick dash lines are the smoothed results which were
also used as the incident wave conditions in the modeling.

herein. Figure 7.2 presents the initial beach profile as well as the comparisons of
the cross-shore variations of the time-averaged wave heights, mean water levels and
currents at the middle transect of the sand beach between the experiment data and
model prediction. Because of the difference in the beach profiles, the cross-shore
variations of the wave heights and currents in Test 1H appears to be less than those
in Test 8E. It shows again the hydrodynamic model’s capability of generally well

predicting wave properties and circulation under irregular wave environments, as
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detailed in Chapter 4. The exception is the longshore current velocity close to the
shoreline. The significant longshore current measured at = 16.9m is considerably
under-estimated by the model.

The accurate predictions of flow conditions provide a solid basis for modeling
sediment transport and beach morphology change resulting from the combined wave

and current flow motions.

7.2 Comparison of Longshore Sediment Transport Rates

Figure 7.3 shows the comparison for the cross-shore distribution of time-
averaged longshore sediment transport rates. As both the experimental data and
model prediction indicate, much stronger longshore sediment transport is found
inside the surfzone as compared to the region outside the surfzone. The cross-shore
distribution of the longshore sediment transport rates is much more uniform inside
the surfzone under irregular wave environments as compared to those under regular
environments as illustrated in Chapter 6. This is because the temporal variations of
wave conditions and spatial movements of the breaking location tend to smooth out
the time-averaged quantities including wave properties, wave-induced currents and
the resulting sediment transport rates. In addition, the “equilibrium” beach profile
also helps generate a more uniform cross-shore distribution of sediment transport
rates.

The comparison shows that the present sediment model combined with the
SHORECIC and the irregular wave model is capable of generally predicting the
longshore sediment transport rate quite well for most of the nearshore region. An
exception is for the region close to the shoreline in which the model apparently under-
estimates the sediment transport rate measured in the experiment. Considering the
complexity of the sediment transport under the combined wave and current flows and

the typical poor accuracy shown by other sediment transport models, the relative
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Figure 7.2: Initial beach profile (2,) and the comparisons of the cross-shore vari-
ations of the time-averaged wave heights H, MWLs ¢ and currents
V and U at y = 22.7 m between the experimental data (o) in Test
1H (Hamilton et al., 2001) and model prediction (—). The still water
shoreline is at z = 17.8 m.
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Figure 7.3: Comparison of the cross-shore distribution of time-averaged longshore
sediment transport rate between the experimental data (o) in Test 1H
(Hamilton and Ebersole, 2001) and model prediction (—)

good agreement between the present model and the experimental data is rather
exciting.

The under-prediction of both the longshore currents and sediment trans-
port rates close to the shoreline represents a limitation of the present wave-current-
sediment transport model. Although the model prediction does show an increase
in the longshore sediment transport rate close to the shoreline, the model may not
be capable of accurately characterizing the extreme flow conditions and resulting

intense sediment transport in inner surfzone.
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7.3 Comparisons of the Vertical Profiles of Sediment Concentrations
and Sediment Fluxes

Figures 7.4 to 7.10 present the comparisons of the vertical profiles of time-
averaged sediment concentration ¢ and of the product of ¢ and longshore current
velocity V for seven cross-shore locations between the experimental data and model
prediction. The real longshore sediment flux @@ cannot be derived from the experi-
mental data because the time series of the sediment concentrations and of the flow
velocities have not been simultaneously measured at the same location. However,
as illustrated in Chapter 6, the time-averaged sediment flux @ in the longshore
direction can be approximated by the value of ¢V for small wave angles as the case
in Test 1H.

The comparisons show that the vertical profiles of the time-averaged sediment
concentrations and fluxes under irregular wave environments change more slowly
in the cross-shore than those under regular waves as illustrated in Chapter 6. The
model predictions generally agree with the measured vertical profiles quite well both
in the concentration results and in sediment flux for most of the nearshore region.

It is also interesting to notice that the under-prediction by the model of the
net longshore sediment transport rate for the inner surfzone (as e.g., at z = 15.9m
in Figure 7.3) is somewhat in contradiction with the accurate prediction of the
vertical profiles of the sediment flux at the same region (as e.g., at x = 15.3m in
Figure 7.10), as the net transport rate is equivalent to the integral of the vertical
profile of the time-averaged sediment flux over the water depth. This contradiction
emphasizes the uncertainty and difficulty in collecting accurate sediment transport

data even in laboratory experiments.
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7.4 Comparisons of Cross-shore Beach Profiles

As a result of the initial "equilibrium” beach profile, the beach morphology
change is limited in the experiment. As shown in Figure 7.11, only a limited ac-
cretion occurred for the region between z = 6m and z = 9m and a very slight
erosion occurred in the inner surfzone after 3.5 hours of experiment operation. The
model prediction also indicates a negligible beach profile change, as demonstrated

in Figure 7.11 as well.
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Figure 7.4: Comparisons of the vertical profiles of (a) the time-averaged sediment
concentration ¢ and (b) ¢V at & = 6.4m between the experimental
data (o) in Test 1H (Hamilton and Ebersole, 2001) and model predic-
tion (—)
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Figure 7.5: Comparisons of the vertical profiles of (a) the time-averaged concen-
tration ¢ and (b) €V at @ = 7.9 m between the experimental data (o)
in Test 1H (Hamilton and Ebersole, 2001) and model prediction (—)

0.25 0.25
D
0.2} o2k..-
E E
gms- gow.._._
.E 0.1 % 0.1
w i
0.05} 0.05Hy - RPN SR~ SN I
D
ol i NG 5 ., :
10° 10 10" 10 100 10° 0 02 04 06 08 1

average ¢ (kg/m’)

average(c) * average(v) [kg!nﬁ‘s)

Figure 7.6: Comparisons of the vertical profiles of (a) the time-averaged concen-
tration ¢ and (b) €V at @ = 9.5m between the experimental data (o)
in Test 1H (Hamilton and Ebersole, 2001) and model prediction (—)
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Figure 7.7: Comparisons of the vertical profiles of (a) the time-averaged concen-
tration ¢ and (b) éV at z = 10.9m between the experimental data (o)
in Test 1H (Hamilton and Ebersole, 2001) and model prediction (—)
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Figure 7.8: Comparisons of the vertical profiles of (a) the time-averaged concen-
tration ¢ and (b) €V at = 12.3 m between the experimental data (o)
in Test 1H (Hamilton and Ebersole, 2001) and model prediction (—)
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Figure 7.9: Comparisons of the vertical profiles of (a) the time-averaged concen-
tration ¢ and (b) ¢V at = 13.9m between the experimental data (o)
in Test 1H (Hamilton and Ebersole, 2001) and model prediction (—)
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Figure 7.10: Comparisons of the vertical profiles of (a) the time-averaged concen-
tration ¢ and (b) ¢V at £ = 15.3m between the experimental data
(o) in Test 1H (Hamilton and Ebersole, 2001) and model prediction
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Chapter 8

CONCLUSIONS

A nearshore sediment transport model has been developed for the bedload
mode and the suspended load mode as well as the nearshore morphology changes,
and kinematic wave models have been developed for the transformations of both
(sin'usoidal and non-sinusoidal) regular and irregular waves. By incorporating the
sediment transport model and wave models in the SHORECIRC, a realistic coupled
wave-current-sediment transport model is developed for nearshore processes involv-
ing wave transformations, wave-driven circulation, and resulting sediment transport
and beach evolution. This model was tested primarily through the comparisons
against the comprehensive experimental measurements carried out in the LSTF at
CHL. Characteristics of nearshore hydrodynamics and sediment transport under
regular and irregular wave environments and the effects of wave models on the com-
puted wave-induced circulation and sediment transport were also investigated by

analyzing the model predictions and comparisons.

8.1 Modeling Wave Characteristics and Nearshore Hydrodynamics
The wave models developed for both regular and irregular waves are based
on the kinematic (”energetic”) approach. One regular-wave model uses sinusoidal
waves for the phase motion and the other uses non-sinusoidal waves (i.e., cnoidal
waves outside the surfzone and empirical relations inside the surfzone). The irregular
wave model uses either sinusoidal or non-sinusoidal waves depending on the local

wave condition (as e.g., the Ursell Number). The SHORECIRC using these models
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as wave drivers is capable of predicting nearshore hydrodynamics induced by regular
or irregular, sinusoidal or non-sinusoidal waves.

The comparisons of the wave-current model includes the entire range of
nearshore parameters from wave heights, phase speeds, wave peakedness, wave-
averaged forcing for circulation, mean water levels, to depth-averaged quantities
and depth variations of both longshore and cross-shore currents. The predicted
temporal variations of wave-averaged wave heights, mean water levels and currents
compared with the irregular wave experiments are also presented.

The extensive comparisons against the regular wave experiments make it
possible to address two essential questions: (1) how well does a simple sinusoidal-
wave based model perform in comparison to a model that better represents the
actual shape of the wave motion? And (2) how important are the inaccuracies of a
wave model for reproducing the 3-D current patterns in the nearshore. The main

conclusions may be summarized as follows:

e As expected the sinusoidal wave model grossly underestimates the wave height
increase towards breaking and consequently predicts a weaker decay of wave
height inside the surfzone. It is also incapable of predicting the increases of
¢?/gh and wave peakedness (as e.g., 1./ H) towards breaking and decays inside
the surfzone. However, the nonlinear cnoidal-bore wave model picks up the
cross-shore variations of wave height, ¢/gh and wave peakedness remarkably

well.

e In spite of these deficiencies, however, the two wave models incorporated in
the SC predict almost equally well the cross-shore variations of mean water
levels and longshore currents with only a limited advantage to the cnoidal-bore
wave driver. The explanation for this is that near breaking the sine waves are
more "bulky” in shape than real waves. The accurate predictions of the setup

and longshore currents imply that the variations of radiation stresses are well
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represented by both models. This clearly has important consequences for the
capability of the models to function as forcing mechanisms for the generation

of nearshore currents.

The cross-shore undertow currents are primarily determined by the wave vol-
ume flux for which the phase velocity plays an important role. The compar-
isons show the deficiency in the sinusoidal wave model, which over-predicts
the wave volume flux and cross-shore currents before and after breaking as a
result of the failure to predict the substantial increase in phase speed around
breaking. The SC using the cnoidal-bore wave driver, however, predicts the

wave volume fluxes and most of the undertow profiles quite well.

In all it appears that while the sinusoidal wave model performs surprisingly
well for the mean water levels and longshore currents its weakness lies in the
prediction of cross-shore motion, while the cnoidal-bore based model shows a

more uniformly reliable performance.

Measures of the overall model skills have been shown for some of the variables
in the form of cross-shore averaged rms-values of the errors. Such measures
can give convenient one-number indications of the deviations from the mea-
sured values. However, comparison with the figures showing the details of the
variations over the cross-shore reveals that such simple numbers for the skills
can both be unduly influenced by large local scatter of the measurements and

hide positive details of model performance.

The comparisons with the irregular wave experiments illustrate two issues:

(1) the differences of wave characteristics and wave-induced currents between regular

and irregular waves, and (2) the capability of the kinematic wave model to represent

the actual hydrodynamics induced by irregular waves. The primary conclusions are

summarized as follows:
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e Because of the temporal variations of the properties of irregular waves and the
resulting spatial movements of the breaking location, the cross-shore varia-
tions of the wave parameters (as e.g., wave height) and wave-induced currents
(averaged over the wave-group cycle) for irregular waves are less significant
than those for regular waves, as shown in the experimental data and in the

model predictions as well.

e The present irregular wave model incorporated with the SC is capable of well
predicting the wave-group averaged wave height, mean water level, depth-
averaged quantities and depth variations of wave-induced currents under ir-

regular wave environments.

e The coupled wave-current model is also capable of predicting the temporal
variations of the wave height as well as the mean water level and wave-induced
currents. However, because of the slowly varying wave assumption of the kine-
matic approach, the irregular incident wave conditions need to be smoothed
before being used as the input for the wave model and thus the model predicts

less significant temporal variations than the measurements indicate.

8.2 Modeling Nearshore Sediment Transport and Beach Evolution

A sediment transport model has been developed to incorporate with the
wave models and the SC. The sediment transport model calculates transport rates
of bedload and suspended load in both the cross-shore and longshore directions as
well as the resulting beach morphology change, which would feed back to the wave
and current models.

After a review of the theoretical background of the two-phase flow theory,
a formula is derived for bedload transport rate starting from the two-phase flow
theory. This formula appears to be the improved version for both the Bailard and

Inman (1981a) formula and Engelund and Fredsge (1976) formula. Two approaches
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has been developed in this study for suspend sediment transport. The simpler one
is to modify the Bailard (1981b) formula to include the effect of wave breaking on
suspended sediment transport rate, and the other is to develop a detailed physics-
based phase-resolving diffusion-convection model for sediment suspension.

A presumed simple case, which is sediment transport on a plane beach un-
der combined regular-wave and current flows, was simulated using the developed
wave-current-sediment transport model system and extensive prediction results were
presented and analyzed. The purpose is to test the behavior of the present mod-
els, analyze the effects of the primary factors on sediment transport, and illustrate
some characteristics of nearshore sediment transport which are difficult to detect in

experiments. Some major conclusions can be described as follows:

e Because both the Bailard and Inman (1981a) formula and the Engelund and
Fredsge (1976) formula for bedload transport rate can be derived from the
two-phase flow theory and the major difference is the value of the bedload
efficiency coefficient, both formulas predict similar shapes but somewhat dif-
ferent magnitudes of the cross-shore distributions of bedload transport rates.
The present bedload formula theoretically improves the Bailard and Inman
(1981a) formula by including the effect of the critical bottom shear stress and
the Bailard and Inman (1981a) formula by correctly addressing the effect of
the bottom slope, though it only predicts a slightly different bedload transport

rates as compared to the two formulas.

e The suspended sediment transport rate predicted by the physics-based diffusion-
convection model shows significant difference both in variation and in mag-
nitude of the transport rate from those obtained by the original or modified
version of the Bailard (1981b) formula that is based on a simple energetic ap-

proach. In addition, after including the effect of wave breaking the modified
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version of the Bailard (1981b) formula predicts a much more intense suspended

sediment transport inside the surfzone than the original formula does.

The wave asymmetry about the horizontal axis plays an important role in
inducing net nearshore sediment transport in the direction of wave propaga-
tion, i.e., the shoreward and downstream direction. Depending on the balance
between the wave asymmetry and cross-shore currents, the net cross-shore
sediment transport can be shoreward outside the surfzone where undertow
currents are weak, and turns to seaward inside the surfzone as waves become
less peaked and undertow becomes stronger. The present sediment transport
model appears to be capable of well representing this effect of wave asym-
metry if incorporated with the cnoidal-bore wave model but fails if using the

sinusoidal wave model.

Wave motions contribute to sediment transport not only by inducing net trans-
port in the wave direction because of the wave asymmetry but also by intensi-
fying sediment entrainment from the bed and suspension in the water column
and thus providing more sediment for wave-induced currents to transport. It is
also found that for small wave angles the net longshore sediment transport flux
can be approximated by the product of the time-averaged concentration and
longshore current velocity because of the small contribution from the longshore

component of the oscillatory wave velocity and wave asymmetry.

The wave breaking process intensifies the flow turbulence and thus sediment
suspension inside the surfzone. Due to the combined effects of wave breaking
and significantly increased wave-induced currents, the vertical distribution of
suspended sediment is more uniform and a larger transport rate is predicted

in the mid surfzone.
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e The sediment convection caused by the vertical flow velocity in oscillatory
flows is included in the diffusion-convection model. The model shows that the
vertical flow velocity in combined wave and current flows tends to intensify
sediment suspension and this effect appears to be more eminent for the upper
water column outside the surfzone where the vertical flow velocity is relatively
large but the flow turbulence and thus sediment diffusion are weak. The com-
parisons reveal that a more significant temporal variation and a more uniform
vertical (logarithmic) distribution of sediment concentrations are predicted by
the diffusion-convection model for the region outside the surfzone. However,
because of the rapid decay of sediment concentration in the vertical direction,
only a slight or even indistinguishable difference is found in the predicted
net transport rates between the diffusion model and the diffusion-convection

model.

e The effects of two bottom boundary conditions on predicted sediment sus-
pension were examined. The instantaneous bottom sediment concentration
appears to have a much more significant temporal variation when specifying
the bottom reference concentration than when the pickup function is speci-
fied. The comparisons reveal that the model applying the bottom reference
concentration boundary condition predicts a larger wave-averaged sediment
concentration at the bottom but at the same time a faster vertical decay in
the near-bottom and thus predicts a net suspended sediment transport rate
surprisingly close to that obtained by the model applying the pickup function

for the test case.

e As aresult of the significant vertical and cross-shore variations of sediment con-
centrations and wave-induced currents, the predicted wave-averaged sediment
flux per unit area (i.e., c¢i@) shows even more significant variations vertically

and in the cross-shore direction, not only in magnitudes but also in directions.
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e Spatial variations of net sediment transport rates induce beach morphology
change, and the cross-shore sediment transport plays a primary role in beach
profile evolutions for a straight parallel beach. As model prediction shows,
an initial plane beach would gradually evolve to a beach with a sand bar
formed around the breaking and with a general erosion in the middle and inner
surfzone as a result of the cross-shore variation of the net cross-shore sediment
transport rates. The beach profiles predicted by the sediment transport model
using different wave models also show some differences in the location and size
of the breaker bar, slight beach evolution outside the surfzone and the width

of the erosion area inside the surfzone.

The wave-current-sediment transport model was tested against an experi-
ment (Test 1H) of sediment transport on an ”equilibrium” beach under irregular
wave environments in the LSTF. From the comparisons some conclusions may be

summarized as follows:

e As compared to sediment transport on a plane beach under regular wave envi-
ronments, less significant cross-shore variations of wave-induced currents and
longshore sediment transport rates are found in the experiment of sediment
transport on an ”equilibrium” beach under irregular waves. This is predicted
by the model as well. The less cross-shore variations result from the ”equi-
librium” beach profile, temporal variations of (irregular) wave conditions and

spatial variations of the wave breaking location.

e The Comparisons between the experiment data and model prediction reveal
that the phase resolving sediment diffusion-convection model and irregular
wave model incorporated with the SHORECIRC is capable of predicting rea-
sonably well the nearshore circulation, longshore sediment transport rates and
vertical profiles of sediment concentration and fluxes under irregular wave en-

vironments.
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e As a result of the initial ”equilibrium” beach profile in the experiment the
beach morphology change is negligible. The model also predicts a negligible
beach evolution. This somehow illustrates the capability of present model of

predicting cross-shore sediment transport and beach morphology change.

e However, the significant longshore sediment transport rate measured in the
experiment in the inner surfzone is apparently under-estimated by the model.
This could be because sediment transport is under sheet flow condition close

to the shoreline that is out of the capability of the current model.

8.3 Limitations of This Study

There are a number of limitations in this study that should be addressed
as a means for improvement or potential strategies for further study. Some of the
limitations are due to the formulation and methodology we used in this study, but
most of them are due to the status of the present (limited) understanding of the
coastal hydrodynamics and sediment transport. The main limitations of this study

include:

e The wave models developed in this study are limited to a straight beach
with parallel contour, and cannot be applied to a beach with a significant

bathymetry variation in the longshore direction.

e The criterion for wave breaking still remains quite uncertain for both reg-
ular and irregular waves. The location of wave breaking for regular waves
was determined by comparing the predicted wave height with experimental
data. The simple breaking criterion we used for an individual wave within an

irregular wave group seems not to work well for all the individual waves.
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There is no wave theory that is appropriate for describing surfzone waves, and
thus the phase variation of surfzone waves was represented by some empirical

formulations in this study.

While the wave and circulation models were tested using extensive experimen-
tal data, the sediment transport model was only tested with one experiment
(Test 1H) in the LSTF. Because of the complexity of nearshore sediment trans-

port, it is crucial to compare the model with more experimental measurements.

The wave-current-sediment transport model seems to be incapable of well pre-
dicting the significant longshore current and sediment transport rate that were
measured close to the shoreline in Test 1H (sediment transport under irregular

waves) in the LSTF.

The effects of coastal bedforms such as ripples on hydraulic roughness and
sediment transport are not directly addressed in the model. A larger bottom
friction coefficient (caused by the ripples) was used for the sandy beach test
(Test 1H) in order to match the reduced current as compared to that for the
concrete beach tests (Test 6N and Test 8E). However, the effect of ripples
on sediment suspension, which is believed to be sometimes important, is not

included in the model.
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