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Abstract

A fully nonlinear Boussinesq model for breaking waves is developed. The
model is derived from the Reynolds equations by assuming that the motion
of the breaking waves is rotational. The vorticity generated by the breaking
is determined by solution of the vorticity equation in addition to the Boussi-
nesq equations for the full motion. The model is an extension of the weakly
nonlinear model developed by Veeramony and Svendsen (2000) and the fully
nonlinear model by Veeramony and Svendsen (1999).

It was found that in the solution of those models, the accuracy of the ver-
tical part of the velocity field was limited by the overall numerical grid being
too coarse to resolve the rapid variations in the motion in the neighborhood
of the turbulent front of the breaking wave. This results in substantial un-
derestimation of the breaking terms and thereby the energy dissipation in the
Boussinesq equations. The latter leads to inaccurate prediction of the wave
height decay in the surf zone.

To improve the accuracy of this important detail, a self-adaptive, time-
varying sub grid has been implemented in the roller region of the waves. The
sub grid moves with the roller and is further refined at the toe where the most
rapid variations occur in the relevant variables. The computation of the time
derivatives was carefully addressed.

The model results have been compared with laboratory data for both regu-
lar waves published by Hansen and Svendsen (1979) (wave heights and selected
surface profile only), by Cox et al. (1995), and for irregular waves in the form
of wave groups by Svendsen and Veeramony (2001). The latter data set in-
cluded information about time and space varying break points similar to what
occurs in random waves.

The two data sets by Hansen and Svendsen (1979) and by Svendsen and
Veeramony (2001) mainly contained high density information about the wave
height variation which allowed a detailed assessment of wave height decay and
hence the accuracy of the breaking terms and the energy dissipation. The
data set by Cox et al. (1995) made testing of the velocity fields possible.
The analysis of the comparisons with experimental data showed that the self-



adaptive, time-varying grid approach allow better prediction of the effect of
breaking, particularly the wave height decrease and the changes of the surface
profile within the surf zone. Moreover, the comparisons with the very detailed
data from Hansen and Svendsen (1979) showed that the model is able to
predict quite accurately the flow conditions, both in the shoaling region and
inside the surf zone, supporting also the choice of the depth averaged velocity
as reference velocity for the Boussinesq model. A comparison with plunging
breaker data was also performed using the last dataset in Hansen and Svendsen
(1979). The results obtained were quite reasonable, even though, in principle,
this kind of breaking cannot be handled by a Boussinesq model.

Another critical point in the use of Boussinesq-type equations to model
the flow inside the surf zone is the choice of an appropriate breaking criterion,
since the equations by themselves are not able to decide where and when
a wave reaches the breaking conditions. The model developed here uses a
criterion based on the critical steepness of the wave front (Schéffer et al.,
1993). However, the tests performed in the regular wave case showed that the
well known and widely accepted breaking criterion, stating that a wave starts
to break if the surface velocity is bigger than the wave speed, is satisfied by
the model results, even though the breaking criterion adopted is a different
one, thus supporting the realistic behavior of the model.

The results about the velocity profiles induced some considerations on the
effects and the limits of assuming the eddy viscosity constant over depth.
In order to show how the variation of the value chosen for this parameter
influences the results, a sensitivity analysis has been carried out, suggesting
that the use of an eddy viscosity profile varying over depth would be more
suitable.

Finally, the quite good comparisons with the measurements of wave height
and surface profile in the case of groupy waves (Svendsen and Veeramony,
2001) also demonstrated that the model is able to recover the moving breaking
line, a characteristic of irregular waves, and the effects of the breaking process
on the groupiness of the waves.
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Chapter 1

Introduction

1.1 Context and practical relevance

The coastal areas have always had a strategic role in the history of mankind. In-
deed, human civilization has had, and has also nowadays, a dual conflictual percep-
tion of living close to the sea. Mostly, it tried to take advantage of the enormous
resources offered by the littoral regions, connected to the possibility of commu-
nications and exchanges. The glorious history of the Italian Marine Republics
represents just one of the countless examples of this kind of wealthy development.
On the other hand, due to the exposure both to the risk of flooding and to mili-
tary attacks, the protection of the coasts has always represented one of the major
problem to be solved.

In particular, in the last century the human pressure on coastal areas has grown
dramatically and at present the majority of the world’s population lives along a
narrow strip of land close to the sea. Let’s just think about the very different sit-
uations, from a geographic viewpoint, of Italy and the United States. The former
is a narrow peninsula in the Mediterranean Sea, where the majority of the pop-
ulation is forced to live along the coastlines, since the continental part is mainly
occupied by mountains, and the insularity index (defined as the ratio of shoreline
length to the circumference of the circle equivalent continental area) is pretty high,
being nearly equal to 4 (Franco, 1996). The latter is a much larger continental
"peninsula" located between two oceans, but also in this case the population is
concentrated along the coasts, giving raise to the chains of megapolis, typical of
both the Atlantic and Pacific regions.

In this context, both the scientific and the engineering communities have always
looked with a great interest at the hydrodynamic and morphodynamic problems
generated by the sea motion and its interactions with natural and anthropic ele-
ments located in the nearshore region. Nowadays, topics as different as environ-
mental control, survey and planning, water pollution, economics and management
of the coastal regions require advanced tools in order to analyze the evolution of
the littoral zones or to investigate effectiveness and the consequences of changes in
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Figure 1.1: Illustrations of wave breaking from the Codex Leicester of Leonardo,
a) folio 4 v., b) folio 26 v., ¢) folio 26 v., d) folio 4 v., e) folio 25 v.

those areas.

It is maybe superfluous pointing out that the hydrodynamics represents the
forcing of any phenomena taking place in the littoral areas, but in particular in the
nearshore region it is the wave breaking which plays a key-role in all the marine
physical process.

Wave breaking is perhaps one of the most fascinating natural hydrodynamic
phenomena, as it can be witnessed by the wide artistic production on this topic
(drawings, pictures, poems, etc.), by the attraction exerted on sportsmen, such as
surf lovers, or simply on beachgoers.

However, wave breaking is more than this and its importance was understood
since the ancient ages. One of the most admirable examples of this interest is rep-
resented by the comments and the drawings of Leonardo, who, in Codex Leicester,
tried to give a description and a physical explanation of the flow in the surf zone, of
the structure of the flow field under breaking waves of its impact on structures, very
similar to our modern breakwaters (see Figure 1.1). Leonardo’s observations and
drawings, where the vortical motion of the flow within the surf zone is detected as
one of the most characteristic features, are astonishingly close to what the modern
experiments have found out by using advanced measurements techniques, such as
Particle Image Velocimetry.

Moreover, from the engineering point of view, wave breaking represents a nat-
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ural phenomenon, whose understanding is crucial in order to manage the coastal
zone, and particularly to appropriately design coastal structures aimed both to
protect and to exploit littoral areas.

The present thesis must be framed in this context, the flow in the nearshore
region and particularly inside the surf zone is approached and a contribution to
the modelling of wave breaking is attempted through a numerical approach.

1.2 Aim of the study

Wave breaking influences large scale coastal phenomena, however an accurate de-
scription of the flow field of a breaking wave, although crucial for the overall un-
derstanding of the nearshore hydrodynamics, is still far to be attained. For this
reason in the last decades a lot of engineering studies were aimed at analyzing
these phenomena, mainly through developing numerical models of such complex
processes, which have to satisfy two requirements: to perform an accurate descrip-
tion of the flow and to be able to handle a large scale domain (i.e. significant from
an engineering viewpoint).

In particular, in this framework, the derivation and the application of Boussi-
nesq type of models have been largely investigated and developed. The attention
devoted to this type of models is essentially due to the fact that their use is suitable
to accurately describe the flow and also since they are computationally more eco-
nomic, with respect to more complicate approaches, like the Computational Fluid
Dynamics (CFD), which attempts a three dimensional modelling of the fluid mo-
tion. Indeed, as opposed to the simplistic approach of the nonlinear shallow water
equations, the Boussinesq models allow to extract information about the vertical
structure of the fluid motion, even though the equations are integrated over the
water columns. This last point, that is the use of depth averaged equations, allows
to reduce the number of independent variables, thus increasing the computational
efficiency of this kind of models. With respect to the problem of the surf zone mod-
elling, however, the approaches adopted have been often simplistic, aiming only to
model the macroscopic effects of wave breaking.

The aim of this work is to contribute to enhance the modelling capabilities of
Boussinesq models within the surf zone, in order to perform better predictions, on a
more physical basis, of the effects of wave breaking on the nearshore hydrodynamics
and, in turn, on littoral processes. The need for such a type of studies it is even
more impelling due to the lack of physical basis of most of the previous approaches
and to the demand of extremely accurate large scale models, in order to be able to
face many coastal engineering problems.

1.3 Research methodology
A numerical investigation was performed in order to analyze the flow inside the

surf zone, through developing a Boussinesq model able to describe the propagation
of breaking waves, and, in turn the flow field generated in these conditions. The
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weakly nonlinear model by Veeramony and Svendsen (2000) and the fully nonlin-
ear model of Veeramony and Svendsen (1999) were retained as starting points of
the model developed in the context of this thesis. The aforementioned approaches
seemed more suitable with respect to others proposed in literature, since the hy-
pothesis of irrotationality of the flow is removed. This step is considered crucial
from a physical viewpoint since the flow within the surf zone is characterized by a
huge amount of vorticity introduced by the breaking.

The rotational approach used in this work forces the adoption of an additional
equation to solve the problem; indeed the vorticity equation has to be solved as well.
Here an analytical solution to the vorticity transport equation has been carried
out by using the perturbation methods, under the assumption of eddy viscosity
constant over depth.

The hydraulic similarity between the surface roller on the front of a breaking
wave, characterized by strong turbulence and presence of a huge amount of air
bubbles, and the recirculating region typical of hydraulic jumps have been here
considered in order to specify a source of vorticity for the flow field, by using the
experimental analysis on the hydraulic jump peformed by Svendsen et al. (2000).

To give a more accurate description of the roller region, responsible of the input
of vorticity inside the domain, an original algorithm has been implemented, which
changes the uniform fixed grid previously adopted to discretize the domain into a
self adaptive time varying grid, more refined corresponding to the roller region.

The performances of such a model have been tested, by comparing the results
both with the numerical results obtained using the same model on a uniform fixed
grid and with laboratory literature data. In particular the first kind of comparisons
were performed in order to verify that the changes introduced gave the desired
effects of increasing the breaking generated dissipation within the surf zone, the
second ones to test the real effectiveness of the new approach.

Since theoretically the model should be able to handle the casea of both regular
and irregular waves, the model results have been compared with the measurements
of Hansen and Svendsen (1979), Cox et al. (1995) and Svendsen and Veeramony
(2001), where the last one refers to the breaking of wave groups.

The time series of the surface profiles, the spatial wave height distribution, the
vertical velocity profiles, the undertow profile, the variation of the mean water level
and the variation of the position of the breaking point have been analyzed.

The behavior of the model was also tested for different breaking criteria, to
verify the realistic prediction of the breaking point.

Finally, a sensitivity analysis of the effects of using different values of eddy vis-
cosity have been carried out, to test the physical validity of the adopted assumption
of an eddy viscosity constant over depth.

1.4 Main limits

The main limits of this work are essentially related to the hypothesis used to derive
the governing equations of the model.



1.5 Outline of the thesis 9

Since the model is a 1D Boussinesq model, it is of course not able to represent the
2D horizontal hydrodynamics which are related to nearshore circulation processes.
Moreover, since the formulation of the problem is done in terms of the stream
function, which by definition is a 2D variable (on the vertical plane), the extension
to the 2D horizontal case is not a trivial task and it would require complex and
computationally intensive procedures, such as the tracking of the wave rays at every
point of the domain.

Moreover, the analytical solution of the vorticity transport equation has been
derived by assuming a constant eddy viscosity over the water column. Laboratory
measurements (Cox et al., 1995; Svendsen et al., 2000) have shown that the real
structure of the turbulence under breaking waves is far from being constant over
depth, since the turbulence is much higher close to the surface then at the bottom.
Moreover a detailed analysis of the numerical results obtained in this study, showed
that the model is extremely sensitive to the chosen value of eddy viscosity and that
it would be more suitable to adopt a variable profile over the vertical coordinate.

1.5 Outline of the thesis

The aim of this study is to contribute to improve the modelling of breaking waves
within the surf zone. As first part of the work, the fully nonlinear Boussinesq model
of Veeramony and Svendsen (1999) has been derived anew and the numerical code
has been carefully debugged. Therefore, in order to get a more realistic modelling
of the breaking terms, a self adaptive time varying grid methodology has been
purposely developed and verified against literature laboratory data on regular and
irregular breaking waves.

In Chapter 2 a brief overview of the complex hydrodynamics related to the
nearshore region is presented, particularly focusing on the mechanics, not yet well
understood, of wave breaking. Even though some of this information can be easily
found in any textbook, they are reported here for the sake of completeness and to
introduce a notation adopted throughout the thesis.

In Chapter 3 the problem of modelling the wave motion in shallow waters is
presented, particularly focusing on the mechanics, not still well understood, of wave
breaking. Even though some of these information can be easily recovered in any
textbook, they are here reported for the sake of completeness end to introduce a
notation adopted throught the thesis.

In Chapter 3 the problem of the modelling the wave motion in shallow waters
through depth integrated equations is presented and discussed. Particularly the
Boussinesq types of models and their evolution is addressed with more attention,
focusing on the approaches which have been proposed in literature to model the
flow within the surf zone.

In Chapter 4 the governing equations of the present model, that is the con-
tinuity and the momentum equations, are derived, after removing the unrealistic
hypothesis of irrotational motion.

In Chapter 5, the vorticity transport equation is derived and solved analytically
by adopting a perturbation method. Moreover the similarity between breaking
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waves and hydraulic jump is presented in order to define the amount of vorticity
introduced inside the flow through the roller region.

Chapter 6 describes the procedures adopted in order to numerically integrate
the governing equations. The new self-adaptive time varying grid approach is de-
scribed more extensively along with some preliminary analysis on the effectiveness
of adopting such a methodology.

In Chapter 7 the model results using the moving grid methods are compared
with the uniform fixed grid case and with experimental data both on regular and
groupy waves. Finally some conclusive remarks are reported in Chapter 9.
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Chapter 2

Surf zone hydrodynamics

2.1 Overview

The surf zone is defined as the region near the coast between the breaking line,
that is where the waves start to break, and the swash zone, that is that part of the
beach, right close to the shoreline, which is alternately wet and dry.

In this region most of the relevant coastal processes take place, whose under-
standing is not only extremely fascinating from a physical point of view but also
dramatically important for engineering purposes. Just to consider few examples:
the physical phenomena playing inside the surf zone have a tremendous effects on
natural processes, such as beach erosion, which, in turn, affect the safety of hu-
man artifacts, such as building, roads, railways, which, especially in Italy, are often
located close to the coastline. Moreover, as most of the coastal structures, such
breakwaters and groins, are located in the shallow water region, the wave-structure
interaction represents one of the main problems to be analyzed during the design
stage.

It should be noticed that it is on gentle sloping beaches that the aforementioned
processes have a dramatic influence, while on very steep coasts the extension of the
surf zone is limited or even nonexistent. For this reason, the present work will focus
on relatively gentle beaches.

Because of the underlined importance, the surf zone hydrodynamics have been
widely investigated, but, despite the interest of the scientific community, still nowa-
days, it is not possible to affirm that a clear understanding of all the phenomena
taking place inside this zone is available yet. For this reason, here, just a "snap-
shot" of the processes inside the surf zone is given, more aiming both to organize
the description of the processes and to present the approaches which have been
used, than trying to give a complete and exhaustive picture of the pheonomena.

Indeed, in this narrow region, the wave energy is almost entirely dissipated by
the process of wave breaking, which is responsible for the transformation of the
organized wave motion into chaotic turbulence, giving raise also to low frequency
waves, traveling both in the longshore and cross-shore direction, the latter gener-
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Figure 2.1: Sketch of the complex surf zone hydrodynamics and of the adopted
reference system

ating the so-called nearshore circulation. On the other hand, the characteristics of
waves inside the surf zone are strongly related to the characteristics of the waves
arriving at the breaking point, i.e. after transformation processes in waters with
decreasing depth, such as refraction and shoaling, have contributed to change the
features of the wave motion from the deep water conditions. Moreover the break-
ing process plays a complex role in the coastal sediment transport and, in turn,
in coastal morphology. In fact, the breaking generated turbulence acts as a mobi-
lizing agent of the sediments comprising the beach, which is then transported as
suspended material besides, the breaking generated currents have the capability to
transport large amount of sediments from one location to another one, both in the
cross-shore and longshore directions.

A nonexhaustive overview of many of the phenomena influencing the flow inside
the surf zone is sketched in Figure 2.1. As can be easily seen, a comprehensive
and detailed modelling of the three-dimesional surf zone hydrodynamics is very
difficult, since it should take into account accurately either the short wave and
the steady motion and their interactions, let alone consider the sediment transport
problem. It is then necessary often to make some simplifications in the analysis,
here this has been done considering the short wave motion in two dimensions,
that is following the wave evolution on the vertical plane in the direction of wave
propagation. The reason for that is that the main purpose of this work is to
contribute to the modelling of the wave breaking process inside the surf zone,
which has a strong two dimensional behaviour on this plane, while the wave-wave
interactions in the direction perpendicular to that of propagation can be neglected,
as a first approximation.

For this reason, the presentation of the surf zone hydrodynamics will be orga-
nized here on two different levels. The wave breaking dynamics will be analyzed
more deeply, while all the phenomena which influence the breaking process, such as
shoaling, refraction, or are influenced by it, such as longshore currents, undertow,
set-up, sediment transport, will be briefly presented only for the sake of complete-
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Figure 2.2: Schematic representation of the energy contained in the surface waves
of the oceans (from Kinsman (1984))

ness. Some phenomena will be analyzed according to the simple linear wave theory,
which in many cases is sufficient to explain the majority of the coastal phenomena,
while, in the next chapters, in order to study some of the illustrated coastal pro-
. cesses, related to wave breaking, the nonlinear wave theory in shallow water will
be presented and discussed in more details.

Since it is the "history" of the wave, from its generation to the shoreline, which
strongly influences the characteristics of the flow within the surf zone, this pre-
sentation tries to follow it. In particular, the waves arriving at the beach can be
generated by a big variety of phenomena, such as earthquakes, ships in motion or
even by the gravitational attraction between the earth and the moon, the difference
between these cases being mainly the time scale (see Figure 2.2) of the phenomenon.
However, the most common and relevant agent of wave generation, from an engi-
neering point of view, is the wind action. Indeed, blowing on the water surface, the
wind transfers its energy to the water waves which then propagates in the same
direction of the generating wind, basically unchanged in shape and magnitude un-
til they arrive in regions of intermediate and shallow water, where the interaction
with the bottom forces some important changes of the wave characteristics. As
the wave propagates toward the shore important phenomena, namely refraction
and shoaling, contribute to dramatically change the physical characteristics of the
waves, these processes will be described in Section 2.2. Then, in Section 2.3, the
wave breaking will be analysed in more details and finally the breaking generated
hydro- and morphodynamics will be briefly illustrated in Section 2.4.
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2.2 Wave propagation phenomena

From the area of generation, where the surface water waves are induced mostly
by the action of the wind, during the propagation toward the shore, the waves
meet a region with decreasing water depth. Due to this bathymetric change, the
phenomena of wave refraction and wave shoaling take place. These phenomena
can be easily explained with the assumption of conservation of energy and gentle
sloping beach. Of course these concepts can be found in every coastal engineering
manual; however here they are briefly reported for the sake of completeness.

2.2.1 Wave refraction

Wave refraction generates the change in direction of the wave front of a wave
propagating from deeper to shallower waters. A simple explanation for this process
comes from linear theory, in fact, under the assumption of small amplitude waves,
the relationship between the wave frequency f, the local water depth h and the
wave lenght L, represented by the wave number k& = 27 /L, is

f? = gk tanh kh (2.1)

where g is the gravitational acceleration. Since in linear theory the period is as-
sumed to be an invariant, as the water depth decreases, the wave length decreases
with the water depth, and so does the wave speed c. In other words, if a wave
front is approaching the shore at an angle, the wave is forced to turn with the wave
front parallel to the shore, as it is shown in Figure 2.3. The process is analogous
to refraction in optics and similarly follows Snell’s law, under the hypothesis of
straight and parallel off shore contours,

sinfl  sinfy
c ¢

(2.2)

where @ is the angle representing the direction of wave propagation with respect
to the direction perpendicular to the shoreline, ¢ is the wave speed and the pedix
(o) represents the known values at a reference point, typically a location in deeper
waters.

The previous approach is the simplest method for calculating the direction of
wave propagation and it is also called the wave ray tracing method.

It should be pointed out that the refraction process takes place even after break-
ing, then the wave keeps refracting, orienting the wave front in a direction parallel
to the shoreline, being affected by breaking only in a minor way.

2.2.2 Wave shoaling

Wave shoaling induces a substantial increase of the wave height H as consequence
of the energy conservation principle. In fact, always according to linear theory, the
wave energy flux F is proportional to H and to the group velocity ¢,. Moving
toward shallow waters, the last one decreases as the wave celerity decreases, so,
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Figure 2.3: Sketch of wave refraction

since the wave energy flux has to be conserved between two transversal sections
delimited by two adjacent wave rays, the wave height must, in general, increase.

To take into account the effects of both refraction and shoaling on a wave ap-
proaching the shore, a simple formula is provided in linear theory for the prediction
of the variation of wave height

H=H:K, K, (2.3)

where Hp is the wave height at a reference point, K, = \/%‘ﬁ?‘l is the refraction

coefficient and K, = ,/ %f is the shoaling coefficient.

Due to the shoaling process, the wave not only increases its wave height, but is
also subjected to a deformation of the wave shape. In fact the wave crest travels
faster than the wave trough, making the wave shape asymmetric with respect to
both the vertical axis and the horizontal axis. As it can be observed in any field or
laboratory measurements of the water surface, in the shoaling region the wave front
is much steeper than the rest of the wave, the wave trough is basically flat while
the wave crest is much peaker. However this wave shape cannot be substained
and at some point, defined as breaking point (or breaking line in two dimensions),
the breaking occurs. From an energetic point of view, during the shoaling process,
the strong wave-wave interaction before the breaking point results in a transfer of
energy from low frequency to higher frequencies, then breaking occurs when this
transfer is not fast enough to balance the increase in energy density. At this stage
energy is still transferred to higher frequency, but in a region of energy saturation
and the energy excess is dissipated as turbulence (Thornton, 1979).



16 Surf zone hydrodynamics

The linear theory represents a useful tool for describing the two mentioned
phenomena of refraction and shoaling. However for a detailed description of both
refraction and shoaling, models which consider important nonlinear effects have to
be adopted. In literature the most widely-used models for engineering purposes
are the ones based on the nonlinear shallow water equations and the Boussinesq
equations. Indeed, both models, in particular the second one, give a much more
accurate description of the variation of wave heights across the beach, besides
performing a better prediction of geometric, kinematic and dynamic features of the
waves. The characteristics of these models will be illustrated in the next chapter.

2.3 'Wave breaking

Lots of hydrodynamics phenomena take place in the region between the breaking
line and the shoreline, where essentially the organized wave motion is transformed
into motions of different types and scales. In particular, not only the breaking event
generates small scale turbulence and macro vortices at the same time, but also low-
frequency waves and currents. Moreover, with respect to the morphodynamics of
the coastal regions, the breaking plays a key-role, being responsible for mobilizing a
big amount of sediment, and then strongly contributing to the sediment transport
in the coastal area.

For more details on wave breaking, the interested reader can be referred to
the classical reviews on breaking waves presented in Battjes (1988) and Peregrine
(1983). More recently Svendsen (2003) presented a review of the hydrodynamics of
the surf zone, while a review of the breaking phenomena in the spilling breaker case
has been illustrated in Duncan (2001). Moreover the most recent advances in the
numerical modelling and experimental techniques on breaking have been reported
in Christensen et al. (2002), who focused particularly on the vertical variation of
the flow across the surf zone.

For clarity’s sake, it should be noticed here that the phenomenon of wave break-
ing takes place not only inside the surf zone but also in deep waters. In particular,
breaking waves can be distinguished in steady breaking waves, such those produced
by ships or hydrofoils moving at constant speed, and unsteady, such those inside
the surf zone or in the area of wind generation. Even though the focus of this work
is the modelling of the wave breaking inside the surf zone, i.e. in shallow waters,
it should be acknowledged that many important advances, obtained by looking at
waves breaking in deep waters, since, from a fluid mechanics point of view, the
phenomenon is very similar in the two cases after the breaking have started and
for these reasons in the following reference will be made also to work on this kind
of breaking.

The first question in studying the surf zone hydrodynamics is whether the wave
breaks or not, distinguishing then if the beach has a reflective (non-breaking) or
dissipative (breaking) behaviour. The parameter widely used is the relative beach
steepness, also called Iribarren number or surf similarity parameter, introduced by
Iribarren and Nogales (1949). It represents the beach slope relative to the wave
steepness
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j A . (2.4)
Vv Ho/Lo
where h, is the beach slope, and Hy/Lg the wave slope, with Hy wave height and
Lo wave length in deep water.

An analytical solution for the onset of breaking has been proposed by Carrier
and Greenspan (1958) for the inviscid, nonlinear shallow water equations. In par-
ticular only the case of exact standing waves has been faced by assuming that the
critical condition for the starting of the breaking corresponds to a situation where
the surface is locally vertical. Keller (1963) then has extended this solution to
the case of arbitrary relative water depth, Keller’s criteria is similar to the one
introduced by Miche (1944) which found large diffusion.

After Galvin (1968), the classification of breaking which is traditionally adopted
distinguishes between plunging, spilling, collapsing and surging type of breakers,
depending on the Iribarren number (see Tab. 2.1 and Figure 2.4)

Plunging breakers are the most spectacular type of breakers, their characteristic
is the overturning of the front face of the wave, with a prominent jet falling
down on the base of the wave at the plunge point, followed by one or more
splash-ups due to the jet impinging on the water surface.

Spilling breakers have aereated water at the crest of the wave, which spills down
on the front face, while the wave shape is more or less maintained.

Collapsing breakers appear like truncated plunging breaker which occur on rel-
atively steeper beaches. For this reason the surf zone is a very limited area
close to the shoreline where no strong variations of the wave characteristics
oceur.

Out of this classification, Figure 2.4 shows also the surging breakers often con-
sidered, even though these are not true breakers. Indeed for these waves a variation
of the wave profile can be detected only close to the moving shoreline.

Focusing on the crest of the spilling breakers, it has been shown that the spilling
process starts with a small jet on the crest of the wave, only in the case of long
waves or if the surface tension can be considered weak, otherwise a surface-tension-
dominated ripple pattern occurs on the front of the wave (Duncan, 2001).

Different types of breakers can appear at the same location, depending on the
actual hydrodynamic and morphodynamic conditions of the site. However, the

Table 2.I: Iribarren number for different type of breakers

Type of breaker Iribarren number
spilling I, <0.46
plunging 0.46 < I, < 3.3
surging or collapsing I. >33
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Figure 2.5: Outer and inner region inside the surf zone (from Svendsen et al. (1978))

first two classes of breakers, characteristic of gentle sloping beaches, are the most
common and important. Indeed, the plunging kind is representative of swell condi-
tions, that is of very regular long waves, whereas the spilling type is characteristic
of storm wave conditions, that is to say of waves which are more irregular, both in
time and space.

In this work, the analysis has concentrated on the spilling breaker case, con-
sidering the fact that, as testified by Duncan (2001), probably this is the type of
breaker which occurs more frequently than plunging and gives rise to an important
amount of turbulence, spray and bubble generation at the water surface.

As a matter of fact, independently on the breaker types, after the breaking
point, the surf zone has been conventionally divided in outer region, or transition
region, and inner surf zone. This classification is particularly important for plung-
ing and spilling breakers. Indeed, as it can be seen in Figure 2.5, right after the
initiation of breaking the characteristics of the waves change rapidly and dramati-
cally. Macroscopically this can be observed as a strong decrease of the wave height
and an abrupt variation of the wave shape. After that, inside the inner surf zone
the wave shape is essentially stable, while the gradient of the wave height along
the cross-shore direction is much smaller than it is within to the outer region. In
this region, which is often the largest inside the surf zone, for beaches with a gen-
tle slope, there is a so-called bore-like propagation, where the definition recall the
hydraulic similarity of a breaking wave with a bore. As pointed out by Svendsen
(1984), the limit between the two regions is gradual, in particular looking at the
records of wave heights throughout the surf zone. Thus Svendsen proposed to de-
fine the limit between the two regions as the point where the slope of the mean
water level changes. In fact at some distance from the breaking point it can be ob-
served, from measurements, that the mean water level suddenly tends to increase.
This is known as the set-up phenomenon and it will be explained better later on
in this chapter.

The dissipation of energy during breaking, and the consequent decrease in wave
height, are mainly related to the energy exchanges taking place in the surf zone,
where the the organized and mainly irrotational wave motion is transformed into
vorticity, turbulence and currents. In the subsequent section a review of the studies
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dealing with vorticity generation and turbulence structure is given. On the other
gside, the modelling of breaking waves requires some idealizations, allowing both
to simplify the problem and to take into the right account the physics of the
phenomenon. Perhaps the most adopted one, in the modelling of breaking, is the
concept of the surface roller, which will be presented in Section 2.3.2, assuming that
the turbulent region on the front of the wave can be described as a recirculating
region which does not participate in the wave motion.

2.3.1 Vorticity and turbulence generated by breaking

The understanding of both the vorticity field and the turbulence structure in the
surf zone, both phenomena being strongly related, is crucial for any theoretical,
experimental or numerical speculation about the nearshore hydrodynamics.

A review of the study of turbulence in the surf zone has been recently presented
by Longo et al. (2002). In their paper Longo et al. deal also with the turbulence
inside the swash zone, as also the shoreline motion is strongly influenced by the
breaking processes.

Due to the difficulties in studying an unsteady, highly perturbated process such
that of breaking waves on beaches, the attempt to study the turbulence structure
in this kind of phenomena has given raise to studies of different flow fields, taking
advantage of the hydraulic similarities of the fluid motion inside the surf zone with
other kind of hydraulic processes, such as wall jets, hydraulic jumps, bores and
wakes.

Another typical characteristic of the breaking process is the presence of a huge
amount of air, which is entrained in the fluid, however, it must be stressed that the
presence of air bubbles is not a must for a strong turbulent motion, since this can be
present even without bubbles (Peregrine and Svendsen, 1978). However the white-
caps appearing on the surface and the air bubbles inside the flow make it possible
the easy visualization of the structure of vortices generated under the free surface.
As a matter of fact, it is very difficult to get three-dimensional measurements of the
detailed structure of the turbulence, using Laser Doppler Anemometry (LDA), due
to the signal drop-out within the areated region, even though some studies have
been successfully perfomed (Nadaoka et al, 1989; Ting and Kirby, 1994, 1995,
1996; Svendsen et al., 2000), but the measurements can be effectively performed
only below the trough level. Only very recently the measurements of the break-
ing generated turbulence started to be done using also Particle Image Velocimeter
techniques, which should allow for a simultaneous analysis of the velocity inside
the entire flow field to be performed (Haydon et al., 1996; Chang and Liu, 1996;
Emarat and Greated, 1999).

The mechanism of vorticity generation near the free surface is still to be es-
tablished firmly. It seems to be clear that the steepening of the wave naturally
induces high curvature and then vorticity inside the flow, even though several the-
ories have been proposed which attribute the breaker generated vorticity to the
pressure gradient or to the density gradient close to the overturning roller.

During the initial stages of the breaking event, the formation of the large scale
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vortex on the free surface, which gives rise to the generation of the surface roller on
the front of the wave, is preceded by a small scale capillary pattern related to the
value of the Froude number F,. This phenomenon has been experimentally investi-
gated by Lin and Rockwell (1995), by using high-density particle image velocimetry
in the case of spilling breakers. Lin and Rockwell (1995) showed that the train of
capillary waves tends to increase in wavelength, thus contributing to generate vor-
ticity inside a mixing layer beneath the surface. In particular the vorticity has a
maximum in the region of intense shear immediately downstream of the separation
from the free surface. They identified two mechanisms giving rise to the region of
highly concentrated vorticity: one, if the flow is not separated, about the trough
and the crest of the capillary pattern; the other, with flow separation, due to the
curvature of the free surface of the large scale breaker, which also contributes to
convect the vorticity downstrean in the mixing layer.

After its generation from the source region on the free surface, the consequent
downward vorticity flux is mainly due to viscous effects. A surface fluid layer is
accelerated in order to bring the tangential stress close to the tangential stress at
the surface (usually zero). Then, the free surface fluid decelerates with respect to
the fluid beneath it, creating a sharp velocity gradient growing into a shear layer
and convecting the vorticity downstream.

It is then clear, at this point, that right after the breaking point, the irrota-
tional flow becomes rotational. The rotational component of the flow is mainly
related to the presence of macro vortices, which are quickly formed after the onset
of breaking. Nadaoka et al. (1989) have studied and shown through an experimen-
tal investigation that the initially two-dimensional vortices break down forming
vortices descending obliquely downward. They attribute to the eddy associated
vorticity not only the increase of mass and momentum flux and, then, the conse-
quential decrease of wave height, but also the generation of Reynolds stress in the
upper layer of the water and the deformation of the mean flow. Nadaoka et al.
(1989) refer to the irrotational component of the flow as wave motion, and to the
rotational component as eddying motion.

However, from the earlier work of Duncan (1981) on breaking waves produced
by towing a submerged hydrofoil, it is shown that the vertical velocity distribution
under the crest of a breaking wave differs from the Stokes linear theory only close
to the surface, while near the bottom the hypothesis of irrotational flow, which
is the one adopted in linear theory, still holds as a good approximation to the
measurements. The experimental investigation on breaking waves on a sloping
beach from Cox et al. (1995) confirms this behaviour.

More recently, Melville et al. (2002) have deeply investigated the velocity field
under breaking wave using a DIPV (Digital Particle Image Velocimetry) technique.
Taking measurements of the mean velocity and then deriving the breaking gener-
ated vorticity and the kinetic energy, they found the presence, under a breaking
wave, of a large scale coherent vortex which slowly propagates downstream and
deepens. Moreover, from measurements of the Reynolds stresses, responsible for
the transfer of horizontal momentum vertically into the water column, Melville
et al. (2002) found that they are mostly negative, meaning that the horizontal
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momentum is transported vertically downwards. Moreover, averaging the mean
turbulent kinetic energy, the mean square turbulent vorticity and the Reynolds
stresses they found that the maxima of these quantities are not on the surface, but
in correspondence of the depth of the core of the mean vortex generated by the
breaking.

These recent analysis on breaking wave are in good agreement with the labo-
ratory measurements of velocity and surface elevation in three turbulent hydraulic
jumps by Svendsen et al. (2000), who used laser-Doppler velocimetry, particularly
looking at the flow in the roller region. From the experiments, the resemblance of
breaking waves and shear layers has been confirmed qualitatively, since the turbu-
lence generated vorticity by the roller spreads over the entire roller region.

As the breaking develops, the organized vortical motion is transformed into
small-scale disorganized motion, which can be treated as turbulence. In particular
on the front of the wave the decreasing scale and increasing disorder transform the
breaking wave in a turbulent bore propagating shoreward. It is at this stage that
the wave is characterized by the presence of a turbulent front and by an area of
recirculating flow, the surface roller, located between the so-called foe, that is the
point on the front where the overturning wave meets the undisturbed or inflowing
water, and a point of separation near the wave crest.

The mechanism of dissipation in the inner surf zone is due to continuous shearing
generated by the roller which allows for the transfer of energy from the wave motion
into turbulence. This phenomenon is responsible not only for the decrease of wave
height inside the surf zone but also for a proportional increase of momentum flux.
The latter is compensated by a corresponding increase in the mean horizontal
pressure gradient, thus resulting in a set-up of the mean water level. Regarding
this mechanism several experimental studies have been carried out.

Peregrine and Svendsen (1978), using a visualization of the turbulence under
bores and spilling breakers, proposed that the flow in a breaking wave is in part
like a mixing layer, in the region of the toe of the surface roller, and in part like a
wake, on the back of the crest of the wave, where the turbulence spreads downward
deepening the extension of the turbulent region.

For the spilling breaker case, Duncan (1981) demonstrated that the breaking
produces a shearing force along the forward face of the wave, while a turbulent wake
is left behind with a momentum deficit roughly equal to the maximum momentum
flux of a Stokes wave with the same speed as the breaker, with the vertical thickness
of the wake incresead according to the square root of the distance behind the wave.

Nadaoka et al. (1989) demonstrated that the generation of Reynolds stresses in
the region closer to the surface is due to large-scale horizontal eddies which then
affect also the deformation of the flow field when the wave is breaking.

Yeh and Mok (1990) proposed the similarity between bores and hydraulic jumps,
though pointing out the differences between the two types of flow, in particular with
reference to the velocity profiles, the vorticity distribution over depth, the surface
roller and the boundary layer. Yeh and Mok (1990) attribute to the presence of
the surface roller the turbulence generated inside the two flow fields.

The undertow and turbulence under both spilling and plunging breakers has
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Figure 2.6: Sketch of a surface roller of a breaking wave

been also extensively experimentally investigated by Ting and Kirby (1994), Ting
and Kirby (1995), Ting and Kirby (1996) using fiber-optic laser Doppler anemom-
etry. They found that the dynamics of turbulence is quite different in the two type
of breakers, in particular the results for the turbulent kinetic energy k¢, show that
there is a transport of k; seaward in the case of a spilling breaker and landward in
the case of a plunging breaker. Moreover, under spilling breaking waves the verti-
cal variation of mean flow velocity and turbulence intensity is much more evident
than in the plunging breaker case, allowing the large-scale eddies originated from
the surface roller to transport the turbulence offshore, slowing down its dissipation
mechanism. This kind of study is interesting not only from a fluid mechanics point
of view, but also in regard to the direction of the cross-shore sediment transport.
In fact when the turbulence is directed offshore, like in the spilling case of steep
winter storm waves, the suspended sand is carried relatively far from the beach to
create offshore bars, while swell plunging waves move the sand onshore, giving rise
to an accretionary beach.

Another topic about the turbulent motion under breaking waves is the wall
boundary layer generated turbulence, which is not discussed here, since it has been
recognized that the wall turbulence is an order of magnitude smaller than breaker-
generated turbulence (Hansen and Svendsen, 1984).

2.3.2 The roller

The idea of the roller, first introduced by Svendsen (1984), is crucially to under-
standing and to modelling the flow features inside the surf-zone and it is commonly
used in the studies of nearshore hydrodynamics. In particular, the roller is defined
as the recirculating part of the flow above the dividing streamlines, being located
on the front of a breaking wave and moving with approximately the same speed of
the wave, being carried shoreward as the wave propagates toward the shoreline In
Figure 2.6 a sketch of the roller as it models a breaking waves is presented.

Before being systematically defined by Svendsen (1984), the surface roller, its
geometry and its kinematics have been investigated by Duncan (1981). In this
work, Duncan was able to optically measure the area A of the roller and the angle
of inclination « of the breaking wave.
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Then Svendsen (1984) carried out a theoretical analysis in order to predict the
wave height and the set-up variation, considering the conservation of the phase av-
eraged energy and momentum and the effects of the roller inside the surf zone. It
has been shown that in the inner region, where there is a bore-like propagation, the
increases of both energy flux and radiation stresses is mainly due to the presence
of the roller, whereas in the outer region jump conditions similar to those used for
bores and hydraulic jumps must be considered. Considering the depth integrated
phase averaged momentum equation and the depth integrated phase averaged en-
ergy equation, Svendsen (1984) found an analytical solution for the variation of
wave height for the case of plane beach, which relates the variation of H to a value
of the wave height at some reference position, Hy, to the local water depth h, to
the water depth at a reference location, to the beach slope h., to the wavelength
L and to the energy dissipation D. This is clearly an improvement with respect to
the assumption that the wave height to the depth ratio is constant throughout all
the surf zone. The variation of wave height, in fact, is very different between the
transition region and the inner surf zone, as has been already explained. Taking
into account the effect of the roller on the flow, even by assuming a simplified ver-
tical velocity profile, with constant velocity under the roller and velocity equal to
the wave speed ¢ in correspondence of the roller region and an hydrostatic pressure,
Svendsen (1984) found that the presence of the roller contributes to dramatically
increase both the energy flux and the radiation stress. Moreover, he noticed that
the sudden change of wave shape after the breaking point cannot be immediately
transformed into dissipation of energy, but the lost potential energy is converted
into forward momentum flux, mainly concentrated in the roller. Therefore, during
the first stages of breaking, the radiation stress stays basically constant.

After this initial study the roller idea has been used quite extensively in order
to take into account the effects of the breaking waves in the modelling of the surf
zone, both in the modelling of the short wave motion inside the surf zone (Deigaard
and Fredsge, 1989; Brocchini et al., 1992; Schiffer et al., 1993; Madsen et al., 1997,
Veeramony and Svendsen, 2000, 1999)) and in that of the nearshore circulation,
and thus, in turn, in order to determine the short wave forcing terms (Svendsen
and Putrevu (1994)).

However, it should be noticed that, even if many scientists use the idea of the
surface roller in their theoretical and numerical models, there is not a complete
agreement about the role that the surface roller plays in the fluid motion. In
Deigaard and Fredsge (1989) and Brocchini et al. (1992), for example, the roller is
considered as a solid body, which exert its influence mainly through its own weight,
generating an additional pressure. In Veeramony and Svendsen (2000), Veeramony
and Svendsen (1999), instead, the action of the roller is modeled considering that
through its boundary an injection of vorticity into the remaining part of the fluid
domain takes place. This idea is supported by the experimental observations of
Lin and Rockwell (1994) on a stationary breaker, who claimed that the real surface
roller, intended as a strong , large-scale single vortex does not exists, at least in
an instantaneous sense, but showed that there is a concentration of vorticity in the
region right beneath the roller.
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2.4 Other surf zone phenomena

It has been recognized that the breaking process generates several phenomena,
giving rise to the complex picture of the surf-zone hydrodynamics which are the
subject of this chapter. Before starting the presentation of the physical processes,
the definition of some of the short-wave-averaged quantities, such as mass flux or
volume flux and radiation stress should be given, since the analysis of many of
the breaking generated phenomena is often pursued using the short-wave-averaged
(time averaged over a wave period) depth integrated equations of conservation of
mass and momentum.

The flow field is usually decomposed considering a mean flow field U, a flow
due to the wave motion u,, and the one due to the turbulence u’

u=U+u, +u (2.5)

The volume flux, or mass transport @, in the horizontal direction « is defined
as

<
G = / uqdz (2.6)
—h

where ( is the surface elevation and u, is the horizontal velocity in the direction
«, while the overbar indicates the time average over a wave period. It turns out
that, inside the surf zone, this transport is higher under the crest of the wave, and
it can be attributed to the contribution given by the surface roller.

The radiation stress is defined as the time average of the local horizontal mo-
mentum flux, and, in a synthetic form, can be written as

¢ 1
Sﬂ,& = /h(ﬁmwauwﬁ + P5aﬁ)dz = 6aﬁ§pgh2 (27)

where the S,z is the wave radiation stress in direction « across a surface normal
to the direction 3, p is the water density, %y« and u,p are the wave velocity in the
horizontal directions o and 3 respectively, p is the pressure, h is the local water
depth and d,p is the Kronecker’s delta. It must be noticed that the radiation stress
takes into account not only the momentum due to the convective terms, but also
the contribution from the pressure.

Moreover, it can be shown easily, even using the linear theory, that the radiation
stress is proportional to wave energy. Since in the surf zone, due to wave breaking,
the momentum flux decreases, this has to be balanced by forces acting in the
direction opposite to the wave, which are indeed represented by the radiation stress.
Using the concept of the radiation stress many of the breaking related phenomena
can be explained. To make things simple, the effects in the cross-shore and the
longshore direction can be considered separately, both to describe the steady motion
generated by the breaking waves and to illustrate the sediment transport processes.
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2.4.1 Wave set-up

In the cross shore direction, the variation of the radiation stress Sz, due to breaking
is balanced by generating a sloping mean water level, within the surf zone. This is
the set-up phenomenon, which shows up as an increase of the mean water level with
respect to the still water level as the water depth decreases. The wave set-up can
be simply described using the short-wave-averaged, depth integrated, horizontal
momentum equation in the cross-shore direction:

0S.0 . ¢

where { represents the difference between the mean water level and the still water
level, or, in other words, the wave set-up inside the surf zone. The main difficulty
in integrating eq. (2.8) is due to the evaluation of the radiation stress inside the surf
zone, where no wave theories are available. Since, as shown by Svendsen (1984)
there is a strong dependence of Sy on the value of the wave height, the calculation
of the set-up are very sensitive to the wave height estimate within the surf zone.
Moreover, it has been often observed comparing experimental data and prediction
of wave set-up, that whereas the rise of the mean water level is predicted to start
at the breaking point, it actually starts a bit shoreward of it. This agrees with the
fact that right after breaking the experimental measurements of radiation stress
show that this stays constant for a bit, before decreasing inside the surf zone.

A similar phenomenon takes place in the shoaling region, where instead there
is an increase of radiation stress, and consequentely the mean water level tends
to decrease in the offshore direction. Eq. (2.8) still holds, but { assumes negative
values.

(2.8)

2.4.2 Undertow

The undertow is a cross-shore seaward current associated with the mass flux near
the surface, above trough level, due to breaking waves. In fact, in order to balance
the shoreward mass flux associated to the water carried forward with the surface
roller, a return flow near the bottom must be generated. It has been found that the
undertow is a balance among forces on the fluid particle caused by a combination
of the radiation stress, the pressure gradient from sloping mean water surface and
turbulent shear stresses. The prediction of undertow is of great importance for
engineering purposes, because of its relevance on the sediment transport and the
coastal morphology.

2.4.3 Nearshore circulation

The longshore currents are only one of the complex nearshore horizontal circu-
lation driven by the variation of radiation stress due to breaking, but they are
extremely important from an engineering and environmental point of view, due to
their capability of drifting both sediments and pollutants.
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In the alongshore direction, the S, component of the radiation stress is re-
sponsible for driving steady currents, in fact, to balance the change in momentum
flux a longshore water level slope can be generated only for the case of bounded
shorelines, that is shorelines that are limited in the alongshore direction by some
obstacle, natural or man-made. In the case of infinitely long beaches, instead, a
longshore current is generated in order to balance the gradients in momentum flux
through the generation of bottom shear stresses, 72 and of the lateral transfer of

y

turbulent momentum due to the depth integrated Reynolds stresses, S7,. In the
simplest case of a longshore uniform beach, the equation for the longshore current

is simply

B
a(smy +8, +12)=0 (2.9)

By assuming an expression for the bottom shear stresses term very similar to those
used in pipe flow, that is using a Darcy-Weisbach-like friction factor, and by using
a simple eddy viscosity model for the turbulent shear stresses Longuet-Higgins
(1970) found an analytical solution for the longshore current V'(z), showing that
the longshore current increases with the water depth and with the incident wave
height and decreases with bottom friction factor.

However the causes generating or influencing longshore currents are not only re-
lated to the wave action. For example, also longshore topography changes generate
pressure gradient which can then drive longshore currents.

Within the nearshore circulation, there are also physical processes like rip cur-
rents, which are strong seaward-oriented, jetlike flows, often periodic in the long-
shore direction, which appear also under piers, alongside jetties, at the side of
breakwaters or on the rip channel of a longshore sandbar. This type of phenomenon
is extremely dangerous for unaware swimmers, and every year many deadly acci-
dents occur at the beaches due to them. However, field and laboratory observations
have shown that they disintegrate outside the surf zone.

2.4.4 Low frequency waves

Low frequency waves, or surf beats, are waves with periods between 20 and 200
sec, they are ubiquitous in the surf zone. The effects of such waves are especially
important in the shallow water region, where they increase in magnitude and, being
nonbreaking, they do not dissipate energy through breaking, as opposed to wind
waves. Moreover the interest devoted to the study of this kind of waves is due
to the fact that many coastal regions show morphological characteristics having
length scale much larger than a typical length scale related to wind waves and
which could be, perhaps, related to this kind of waves.

According to the direction of propagation, it is possible to distinguish: leaky
waves, in the cross-shore direction, and edge waves, in the longshore direction.

The first ones seem to be due to the breaking of wave groups, which radiates
seaward and shoreward free long waves. Moreover the reflection of this type of
waves due to the beach give rise both to a system of standing waves within the



28 Surf zone hydrodynamics

surf zone and to waves which, propagating seaward, superimpose to the outgoing
waves previously generated at breaking.

Edge waves are infragravity waves that are trapped in the nearshore region
by refraction. It seems they are responsible also for rip currents generation and
do influence topographic features. They are difficult to be generated in labora-
tory experiments and also to find them in the field has been quite hard, due to
contemporary presence of leaky waves.

Finally, the shear waves are low frequency waves which appear as oscillation of
the longshore currents. They move in the longshore direction, with a wave length
of the order of 100 m and period about 100 s and their kinematics seems to be
related to the strength of the mean longshore current, while their generation seems
to be related to an instability mechanism.

2.4.5 Sediment transport

Similarly to the other kind of breaking generated phenomena previously described,
the sediment transport processes can be distinguished according to their direction:
in longshore transport and cross-shore transport. Historically, the two types of
phenomena have been investigated separately, being the first one being caused by
longshore currents and the second one closely associated to the wave motion and
to the undertow current. The first one generates beachline erosion or accretion and
interacting with coastal structures, such as ports, jetties and groins, the second
one is responsible for the evolution of the beach profile and for the generation of
longshore sand bar.

On the other hand the sediment transport is usually distinguished as bedload
and suspended transport. While this last one is strongly related to the characteris-
tics of the breaking, since a portion of the available energy flux into the surf zone is
dissipated by the falling sand grains, it is a widely accepted idea that the longshore
transport is strongly related to the wave-driven currents, since it is assumed that
while the effects of the breaking is to stir up the sediments from the sandy bottom,
longshore currents transport the sand along the coast. It seems that the maximum
of the longshore transport is located between the breaking line and the midpoint
of the surf zone, however, both field and laboratory data, demonstrated that the
distribution of the longshore transport in the cross-shore direction is strongly cor-
related both to the local beach profile and to the type of breaker. An old, simple
model often adopted to calculate the longshore transport is the CERC-formula:

Py = Efyp, cos 0y sin 0, (2.10)

where Eyy is the wave energy flux at the breaking point, 6, is the direction of
wave propagation at breaking and P, is a quantity used to evaluate the submerged
weight if the transported sediment [;

I = K.P, (2.11)

with K. empirical constant. However the CERC-formula does not account neither
for the effects of the characteristics of sediments nor for the coastal morphology.



2.4 Other surf zone phenomena 29

Moreover the features of the longshore transport are closely associated with the
irregularities of the waves, since the near-bed orbital motion is irregular and only a
fraction of the waves are broken at a given point within the surf zone, while others
will break later or never.

The understanding of the cross-shore sediment trasnport is still a matter of
debate within the scientific communitee. Inside the surf zone, the wave-breaking-
generated turbulence is predominant in influencing the cross-shore transport with
respect to the other typical mechanisms. In fact in this region, the strong energy
loss due to breaking are compensated by the generation of shear stresses, which
strongly affects the vertical velocity distribution, which is also influenced by the
effects of the water carried forward by the surface roller on the front of the broken
wave and the consequent strong undertow profile close to the bottom and directed
offshore. As shown previously, the type of breakers, giving rise to different turbu-
lence structure and to a transport of turbulent kinetic energy seaward, in the case
of spilling breaker, and onshore, in the case of plunging, have a dramatic influence
on the direction of the net cross-shore transport. The first case, occuring mostly
during winter storm, contributes to the building of offshore sand bars.
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Chapter 3

Modelling the flow in the surf
zone

3.1 Overview

Modelling the flow inside the surf zone is crucial in order to understand and pre-
dict the complex surf zone hydrodynamics. It has been shown that, from a fluid
mechanic point of view, two different types of motion, both characteristics of the
nearshore circulation, can be distinguished: that is the short wave motion and
the wave induced steady motion. The approaches to model these processes are
consequently different, indeed depending upon whether the wave propagation is
solved in time or if the wave properties are averaged over a wave period. Hence the
models can be classified as phase-resolving models and phase-averaged models. The
latter are used for nearshore circulation modelling: the wave motion is considered
as an input, since the averaged wave properties, such as mass flux, wave energy
and radiation stress, represent the forcing of the longshore currents and related
phenomena.

Since the main purpose of this work is the modelling of the breaking of the
waves as they propagate over a sloping beach, here a closer overview of the most
used phase-resolving wave models in shallow and intermediate water regions will
be given.

In shallow water, the long wave theory is usually adopted, due to the fact that
the wavelength can be assumed as much larger than the wave height, and various
sets of equations are available. The level of accuracy performed and the kind of
phenomena which are modeled are usually related to the values of two dimensionless
parameters

= kh (3.1)

§ = (3.2)

&
h
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where k is the wave number, h is the local water depth and a is the wave amplitude.
The aforementioned parameters represent the dispersiveness of the waves and the
nonlinearity of the waves, respectively. Their meaning will be explained later on
in more detail.

The linearized equations, both the nondispersive and the dispersive ones, are
able to model the long wave motion only to a limited extent. For this reason only
the nonlinear depth averaged equations will be considered here, since they provide
a better representation of the wave motion in shallow waters, The depth averaged
equations are an useful and computationally economic tool for the modelling of
large scale phenomena, and have been widely used by the engineering community,
since, by reducing by one the number of unknown variables, they allow to speed
up the solution. Moreover, in the case of the Boussinesq models, they are also able
to give information on the vertical structure of the flow.

In particular, in Section 3.2 the nonlinear shallow water equations, or Airy’s
equations, will be discussed. In Section 3.3 both the standard versions of the
Boussinesq equations and their improved versions will be described in more details,
to underline the differences and the advantages of using the first or the second
set of equations. The proposed enhanced Boussinesq type of models, with better
dispersive and nonlinear characteristics, will be reviewed in Section 3.3.2, while
the approaches adopted in literature so far for modelling surf zone waves will be
presented in Section 3.3.3.

3.2 NLSWE models

The assumption in the nonlinear shallow water equations is that the wavelength
is much larger than the water depth. In terms of the dimensionless parameters
previously described, this means that ¢ << 1, while the parameter J is assumed
to be of order one. The first hypothesis is typical in the long wave approximation,
since in this case the horizontal scale is much larger than the vertical scale. Another
usual assumption of this type of models is that of gentle water surface slope, which
allows to assume that the water particle accelerations are negligible compared with
gravity, implying that the pressure has an hydrostatic distribution over depth.

Integrating over the water column, the conservation of mass and momentum
leads to the following equations:

ad

S+ Va(u(h+¢) =0 (3.3)
du
E +u-Viyu -HJV};C =) (34)

where ¢ is the surface elevation, w is the horizontal velocity vector, V), represents
the horizontal gradient operator (E%, 5%), and g is the gravity acceleration, and

where the contribution of the bottom stresses has been neglected in the momentum
equation (Peregrine, 1972).
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The main hypothesis here is that the pressure has an hydrostatic distribution
or, what is equivalent, that the horizontal velocity is constant over depth. It must
also be noticed that the previous equations do not include any dissipation terms
due to wave breaking.

Moreover, the nonlinear shallow water equations, also called finite-amplitude
shallow water equations, do not include any frequency dispersion mechanism. Then,
when using them, different waves travel with different velocities, according to the
dispersion relationship which links the wave speed c to the frequency f and the
local water depth h. However the nonlinear shallow water equation do include the
mechanism of amplitude dispersion. In order to explain both these statements, it
is useful to put egs. (3.3) and (3.4) in characteristic form (Peregrine, 1972). Let’s
consider, for simplicity, the two-dimensional case, thus the velocity vector u is
reduced to the scalar velocity u, egs. (3.3) and (3.4) become

%(u +42¢) =0 (3.5)

which is valid only along the characteristic curves

E:u:l:c (3.6)

Eq. (3.5) states that the wave amplitude and the velocity are constant along the
characteristic curve, then each portion of the waves travels at its own speed, u +c.
The dispersion relationship is represented by the equation

c=+/glh+ ) (3.7)

where the wave celerity ¢ only depends on the local total water depth h + ¢ and
not on the wavelength L. Then, eq. (3.7) shows that the crest of the wave travels
faster than the wave trough, generating a steepening of the front face of the wave,
which, in other words, represents the mechanism of amplitude dispersion. On the
other hand, in eq. (3.7) the wave celerity c is independent on the wave number, or
on the wave length, then no frequency dispersion mechanism can be modeled by
using this kind of equations.

The latter characteristic, even though reasonable in shallow waters, is not ap-
propriate for engineering purposes, since in this case also the accurate modelling of
the propagation in deeper waters is extremely important. Indeed, often, the wave
conditions (wave height, wave period, direction of propagation, etc.) are known in
deep waters, where the wave meters are usually placed. This is the most common
case, for example, along the Italian coastlines, where the SIMN (Hydrographic and
Mareographic National Service) has installed several buoys far from the beaches,
in order to perform the real-time monitoring of the offshore wave conditions. Thus
the aim of the wave propagation models is to bring the information about the wave
field, available far from the coast, to the nearshore region, where they are required
for practical applications.

Also, due to the lack of a frequency dispersion mechanism, the nonlinear shallow
water equation are not able to predict any solution of constant form, such as solitary
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or cnoidal waves, whose existence in nature has been proven in the case of constant
water depth. In fact, according to the nonlinear shallow water equations, the wave
will continue to steep until it reaches a vertical front. However, at that point, the
assumption that the horizontal scale is much larger than the vertical one does not
hold anymore.

Besides, this kind of equations do not include any mechanism representing the
dissipation of energy due to breaking, and do conserve energy even inside the surf
zone. Therefore, in order to describe the motion of a breaking wave, these equations
are often used along with a dissipative numerical scheme (such as the Lax-Wendroff
method). This approach has been developed starting with Hibberd and Peregrine
(1979), Packwood and Peregrine (1980) and Packwood (1983). Later Kobayashi
et al. (1989) and Kobayashi and Wurjanto (1992) used it to study the swash zone
in very steep bottom conditions, such as the ones characteristic of engineering
structures.

Svendsen and Putrevu (1995) give an overview of the advantages and disad-
vantages of using such an approach. In particular, they recognize the simplicity
and robustness of this method, its capability to deal with irregular waves, and, at
least in principle, obliquely incident waves and to handle every kind of topography.
Moreover, the nonlinear shallow water equations have been widely used in order
to model the shoreline motion, that is the uprush and backwash inside the swash
zone, on the strength of their simple shoreline boundary condition.

On the other hand, Svendsen and Putrevu (1995) notice that, by using this type
of models, the breaking point is strictly dependent on the distance of the offshore
boundary, which obviously does not have any physical meaning. In fact, being the
dissipation inside the surf zone only numerical, the waves will start to break at a
certain distance from the off-shore boundary conditions. This distance is fixed by
the grid size, once the distance from the initial computational point is established,
regardless the real physics of the phenomenon. Besides, an accurate modelling
of the front of the wave cannot be performed, since the front gets unrealistically
vertical and it is frozen by the numerical scheme.

On the other hand, Brocchini et al. (2001) and Peregrine (2002) claim that this
is a simpler and straightforward way to model breaking, compared to the semi-
empirical approaches used to insert the breaking effects in the Boussinesq models,
which will be discussed in Section 3.3.3. Furthermore, since according to the hy-
pothesis of hydrostatic pressure the horizontal velocity is assumed uniform along
the depth, by using the nonlinear shallow water equations only the mean velocity
can be determined, not allowing speculations about the velocity profile; whereas
the Boussinesq models, which will be presented in the following sections, do spec-
ify also the vertical distribution of the horizontal velocity (or flow potential). The
importance of a correct prediction of the velocity profiles is even more important
in the case of breaking waves, as it will be made clearer later.
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3.3 Boussinesqg-type of models

The Boussinesq equations, as well as the nonlinear shallow water equations, are
depth integrated equations used to model the short wave motion in the nearshore
region. Since their introduction, with the paper by Peregrine (1966), for the con-
stant depth case, and by Peregrine (1967), for the variable depth case, these models
have been widely adopted for engineering purposes, becoming one the most popular
tool for simulating the wave propagation both in the shoaling and, making some
simplifications, in the surf zone.

By assuming a velocity profile over depth and a non-hydrostatic pressure distri-
bution, the Boussinesq models include nonlinearity as well as frequency dispersion,
while the effects of breaking inside the surf zone has been incorporated following
several approaches. It comes out that the standard form of the Boussinesq equa-
tions, derived in the case of constant depth, differs from the nonlinear shallow water
equations only by a term in the momentum equation. This allows to represents the
frequency dispersion, taking into account the effects of the vertical acceleration on
both the horizontal velocity and the pressure.

In the following presentation the Boussinesq-type of models have been classified
as standard Boussinesq models, described in Section 3.3.1, and extended Boussi-
nesq models, discussed in Section 3.3.2. This is to clarify the difference between
the original models, which are rigorously valid in shallow waters, and those with
improved dispersive characteristics and better nonlinear properties, which allows
to get accurate results even when they are applyed in deeper waters. Since the aim
of this work is to contribute to the improvement of the modelling of breaking by
using a Boussinesq type of model, in Section 3.3.3 the approaches used in this type
of models to incorporate the surf zone energy dissipation, or, in other words, the
increase of momentum flux, are discussed.

3.3.1 Standard Boussinesq models

The Boussinesq equations were first derived in Peregrine (1966) and in Peregrine
(1967) as a better approximation for steep waves than the Airy equations, in par-
ticular by analyzing the case of a solitary wave propagating over constant depth
and over a gentle uniform sloping beach respectively. More specifically, Peregrine
(1967) derived the equations for varying depth under the assumption of irrotational
motion, that is of nonbreaking waves, integrating over depth the Euler’s equation
of motion and using a pertubation method. He obtained the following continuity
and momentum equations:

%tc— +V[(h+¢)u =0 (3.8)
X @ VTV = DY ()] - g V(YW (39)

where 1 is the depth averaged velocity ad the other symbols have the same meaning
as before.
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It should be stressed that one of the underlying assumptions of these equations
is that the slope varies gently, in such a way that the appearance of short waves
reflected by the beach, due to a relatively rapid change of water depth compared
to the variation of the incident wave, is avoided,

It must also be noticed that another important approximation here is the so
called Boussinesq approximation, that is, it is assumed that the nonlinearity effects
of the waves balance exactly the dispersive effects. In other words, it is assumed
that

0(s8) = O(u?) (3.10)

or

0 (%) = O(,) =1 (3.11)

where U, = §/u® is the Ursell number, representing the balance between the shallow
water steepening and the effect of water acceleration. Indeed, it is this balance
of frequency dispersion and nonlinearity effect which allows for the existence of
permanent form solutions for constant water depth, such solitary or cnoidal waves,
as exact solutions of the Boussinesq equations.

The aforementioned Boussinesq assumption is made in all the standard Boussi-
nesq models, the main difference being the definition of representative velocity:
depth averaged velocity, W, depth integrated velocity, Q, velocity at the bottom,
uy, or at the surface, u,. In some cases, as in Wei et al. (1995), also the velocity
potential, ¢,, has been adopted as dependent variables.

As noticed by Liu (1995), the limitations of the standard Boussinesq models are
mainly two. The first one is related to the hypothesis of weak nonlinearity, whereas
in very shallow water, close to the breaking point, the nonlinearity of the waves
is important. The second one, instead, is directly associated to the Boussinesq
approximation. In fact, while in shallow waters the nonlinear parameter 6 can
reach a relatively high value, the dispersive parameter becomes smaller as the
depth decreases. Then, Liu concludes that free surface profile close to breaking
obtained as solutions of the Boussinesq waves are usually more symmetric with
respect to the wave crest than those observed in the laboratory. Therefore, many
efforts have been put into applying the Boussinesg-type of equations within region
with larger water depth, i.e. with higher values of the parameter 1, and at the same
time to developing fully nonlinear models, i.e. with no limitation on the value of 4.

3.3.2 Extended Boussinesq models

The Boussinesq standard model previously described are called weakly-dispersive
weakly-nonlinear. The weak dispersiveness is due to the fact that they are re-
stricted to small values of u2, so that their applicability is restricted to the shallow
water region, where the dispersive effects are small; while in deep and intermediate
waters the exact linear dispersion relationship is not represented accurately by the



3.3 Boussinesq-type of models 37

linearized equations. It has been proven that different set of equations have dif-
ferent, depth limits, depending on the type of horizontal velocity (depth averaged,
at the bottom, at the surface, etc.) chosen as independent variable to express the
vertical distribution of the horizontal velocity wu.

On the other hand, the weak nonlinearity, due to the small values of §, does not
allow for a good representation of the highly nonlinear wave characteristics in the
shoaling region, just before the waves start breaking. To extend the validity toward
deeper waters, several kind of modified Boussinesq models have been proposed
during the last decade.

Witting (1984) used two calibration coefficients in the series expansion for the
horizontal velocity, in order to optimize the accuracy of the wave celerity in deeper
water, but his approach is difficult to be extended to two horizontal dimensions
and it is only valid in water of constant depth.

Madsen et al. (1991) noticed that the dispersion relationship can be written in
a general form for several kind of Boussinesq equations

& 1+ Bk%h?
gh 1+ (B+1)k2h?

with B constant. In Witting’s case, this constant is estimated as B = 1/15,
corresponding to the choice of the depth averaged velocity. From comparisons with
the first-order Stokes theory, it turns out that this is the optimal choice, meaning
that the approximation of the exact linear dispersion equation is good for a wider
range of water depth and not only in very shallow water.

Madsen et al. (1991) rearranged the terms in the standard Boussinesq equations,
by adding to the momentum equation some quantities depending on the third
derivatives of the velocity and of the surface elevation and from B itself. Without
affecting the accuracy of the Boussinesq equation in shallow waters, in this way
they improved the dispersive characteristics of the equations.

The same method have been used by Madsen and Sgrensen (1992), Madsen
et al. (1997), Madsen and Schéffer (1998), who applied the linear operator:

(3.12)

0%
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L =1+ Bu“h 922 (3.13)

to the terms in the momentum equation. This is basically equivalent to a rear-
rangement of the terms in the momentum equation and does not affect the order of
accuracy of the model. Veeramony and Svendsen (1999) applied the same operator
to its weakly nonlinear model.

In order to perform the same task, that is the enhancement of the dispersive
characteristics of the Boussinesq models, a different approach has been presented
by Nwogu (1993). He used as reference velocity a velocity at the arbitry level uq,
where the value of the level z, is chosen in order to minimize the errors between the
exact linear dispersion relationship and the one derived from the linearized form of
Nwogu'’s equations. Defining the parameter

a:%(j—?)ﬁ% (3.14)



38 Modelling the flow in the surf zone

it was found that the value o = —0.393 is the optimal value, i.e. the one that gives
the smallest errors.

Even though the approaches described before are quite different and the ap-
proach adopted by Madsen and collegues are very similar to those obtained by
Nwogu.

Nwogu’s approach has been followed by Wei et al. (1995), among others. The
latter pointed out the importance of removing the weakly nonlinear hypothesis, not
only to get a better prediction of the highly nonlinear characteristics of the waves
as they approach the breaking, but also to take real advantage from the improved
dispersive characteristics. They derived a fully nonlinear Boussinesq model for
surface waves, in terms of the velocity potential ¢, retaining all the terms in 4,
hence the attribute of fully nonlinearity.

Following Wei et al. (1995), in Gobbi and Kirby (1999) and Gobbi et al. (2000),
not only a Boussinesq model accurate up to order O(kh)* is derived, but also,
extending Nowgu'’s original idea, two reference velocities, at two different levels,
are adopted in order to give better linear dispersive characteristics.

Moreover, Madsen and Schiiffer (1998) and then Agnon et al. (1999) have de-
rived a procedure which allows to derive an infinite-order Boussinesq type differen-
tial equation, separately solving the linear part of the problem and the nonlinear
free-surface boundary conditions.

Kennedy et al. (2001), starting from Wei et al. (1995) equations, extended
Nowgu’s approach considering a time-varying component dependent on surface
elevation, with the aim of improving the nonlinear properties of the model.

More recently, Kennedy et al. (2002) have derived simplified higher-order Boussi-
nesq equations. Their equations were of O(p*) but showed only lower-order terms,
up to O(u?), in case of flat bed or slopes of O(Vh), obtaining good dispersion and
shoaling properties in the case of flat bed and improving the shoaling characteristics
on a sloping beach.

3.3.3 The approaches to breaking modelling

Although the Boussinesq model are able to handle very efficiently several nearshore
phenomena, such as refraction, diffraction, shoaling, dispersion and nonlinear in-
teractions, nevertheless no Boussinesq model is able to predict by itself if, when
and where a wave breaks. Therefore the effects of wave breaking , that is the dissi-
pation of wave energy and the corresponding increase of momentum flux, have to
be included into the equations.

Thus, in a Boussinesq model aiming to simulate the propagation of breaking
waves in the surf zone two crucial tasks need to be accomplished: first, it is nec-
essary to define a breaking criterion, depending on some wave characteristics, in
order to detect the location of the breaking point; second, the modelling of the
additional terms representing the excess of momentum needs to be performed in a
very accurate manner.

A very simple approach to parameterize the wave breaking is the one adopted
in Zelt (1991), where an additional artificial eddy viscosity v, is considered in the
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momentum equation to model the dissipation of energy, by conserving the overall
momentum. The diffusive effect due to v, tries to mimic the characteristics and the
action of the bore of a breaking wave. The breaking criterion used by Zelt is related
to a critical value of the velocity gradient in the cross-shore directions . (which for
breaking waves should be negative) and to the limiting ratio H/h = 0.7 +0.8, with
H wave height, obtained for solitary waves on constant depth. It can be written as

Ll T (3.15)
g

Karambas and Koutitas (1992) adopted an eddy viscosity approach too, but
their model lies on the consideration that the breaking can be treated as unre-
solved turbulent motion, both in presence of the large scale eddies within the outer
surf and within the inner surf zone. By using the mixing length hypothesis, they
determined the eddy viscotity coefficient from the numerical integration of the tur-
bulent transport equation. The breaking criterion used, instead, relates the crest
elevation at the breaking point, (., with the wave length in deep water, Lo.

The simple eddy viscosity approach by Zelt has been adopted also by Kennedy
et al. (2000) and Chen et al. (2000) for their 1D and 2D Boussinesq models, respec-
tively, but they considered a different criterion for the onset of breaking, relating
the position of the breaking point to the value of the variation in time of the surface
elevation, {;. In fact, noticing that once the wave has broken it will stop to break
either when it reaches the shoreline or when it attains a stable configuration, they
assume that the breaking begins if ¢; reaches a threshold value, and that then this
value decreases in time with the age of the breaking event.

A similar approach was adopted in the breaking criterion proposed by Schéffer
et al. (1993), where the breaking starts when the slope of the water surface « exceed
the threshold o4 (see Figure 3.1)

e (3.16)
and the breaking stops if

a<aop (3.17)

with the values of both oy and ag calibrated by using experimental observations.
Then, after the breaking has started, an exponential decrease in time of « is
hypothesized

tan o = tan o + (tan oy — tan og) exp [— ln2t T:b] (3.18)
where t;, is the instant of time at which the breaking event starts and T} is the
duration of the breaking event.

Schiffer et al. (1993) used the roller approach to incorporate the effects of
breaking inside the Boussinesq model. This was previously done by Brocchini
et al. (1992), who considered the contribution of the roller only by means of a
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Figure 3.1: Schiiffer et al. (1993) breaking criterion

pressure term in the momentum equation, due to the weight of the roller. Indeed
Brocchini et al. (1992), following Deigaard and Fredsge (1989), treat the roller as
a solid body, which does not participate in the fluid motion. In Schiffer et al.
(1993), instead, taking into account that the generation of the surface roller will
introduce a non-uniform velocity, the horizontal velocity is assumed uniform over
depth beneath the roller, and equal to uo, whereas in correspondence of the roller
the velocity is assumed equal to the wave speed ¢, that is

U.:{c ‘:_CESZSC

g —-h<z<(—-¢C (3.19)

where (. is the elevation of the lower edge of the roller (see Fig. 3.2).

This was the same vertical velocity profile assumed by Svendsen (1984) to study
the wave height distribution and the set-up inside the surf zone. The introduction
of this velocity profile leads to express the excess of momentum flux due to breaking
as function of the geometry of the surface roller, i.e. the thickness of the roller (s,
which they define through an artificially made-up shape factor.

In all the above models the assumption of irrotational motion is underlined,
whereas, as it has been already discussed in Chapter 2, right after the onset of
breaking a lot of vorticity from the surface is introduced inside the domain and
the hypothesis of irrotationality does not hold anymore. This is why, trying to use
a more physical approach, Veeramony and Svendsen (2000) removed the hypothe-
sis of irrotational motion and solved analytically the vorticity transport equation
coupled with a weakly nonlinear Boussinesq model with enhanced dispersive char-
acteristics. In their breaker model, Veeramony and Svendsen (2000) considered
that the injection of vorticity is due to the dynamics inside the roller and it is
spread toward the rest of the domain through the lower edge of the roller. Veera-
mony and Svendsen (2000) considered the similarity between hydraulic jumps and
breaking wave in order to specify both the boundary condition and the roller ge-
ometry; in fact they used the findings of the experimental investigations on three
hydraulics jumps with low Froude number (Svendsen et al., 2000) to get the values
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Figure 3.2: Velocity profile assumed under a breaking wave by Schéiffer et al. (1993)

for the thickness of the roller ¢; and the value of vorticity at the lower edge of the
roller wy.

The vertical velocity profile they used, thus, it is a generalization of that of
Schiiffer et al. (1993) and it takes into account the contribution due to presence
of vorticity inside the domain. Since this is the approach also adopted in the
present work, a more detailed discussion about it will be presented in the following

chapters.
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Chapter 4

The flow in the surf zone
through a 1D Boussinesq
model

4.1 Overview

The Boussinesq model adopted in this work is a modified version of the weakly
nonlinear model presented by Veeramony and Svendsen (2000) in order to investi-
gate the flow inside the surf zone. In particular the one presented here is a fully
nonlinear model, it is worth pointing out that a previous version of it has been
already introduced in Veeramony and Svendsen (1999). Thus the model developed
in the framework of this thesis can be seen, with respect to the last one an up-
dated version, while from the numerical one a debugged and improved release. The
main feature of the Veeramony and Svendsen’s model, and the reason for which
this model seems to be the most suitable for applications within the surf zone,
is that the hypothesis of irrotationality has been removed. This allows to take
into account that, after the onset of breaking, the flow cannot be considered to
be potential anymore, since, as it has been widely discussed in Chapter 2, a huge
amount of vorticity is produced by high surface curvature at breaking and then it
is convected inside the flow.

Generally speaking, the Boussinesq equations are depth averaged equations.
Indeed the procedure followed to get the equations starts from the continuity and
Reynolds equations. Then, assuming incompressible fluid, impermeable and fixed
bed, gentle beach slope and neglecting the effects of the bottom boundary layer,
by using the free slip condition at the bottom, the equations are integrated over
depth and the Leibniz rule is applied along with the boundary conditions at the
surface and at the bottom. The pressure term is eliminated from the equations
and an expression for the horizontal velocity is given, as a function of the depth
averaged velocity @. Since the Boussinesq equations are depth integrated equations,
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| crest
Roller region

toe

Figure 4.1: Formulation of the problem: reference system.

they cannot handle double connected domain, such as those typical of plunging
breaker. For this reason, this model, as all the other Boussinesq type of model, is
theoretically valid only for spilling breaker.

Since the aim of the present work is to contribute to an accurate understanding
and prediction of the breaking process, the Boussinesq model focus on the anal-
ysis of the flow only on the vertical plane corresponding to the direction of wave
propagation, or in other words, it is assumed that the waves are propagating in
a direction perpendicular to the beach. Indeed, it is right over this plane that
the main exchanges of vorticity take place, spreading from the region close to the
surface where the vorticity is generated to the interior of the domain. Hence, here,
wave-wave interactions in the transverse direction have been neglected.

We have largely followed Veeramony and Svendsen (1999) in the derivations of
governing equations, and in the following sections they are presented with some
details. This has been done for two reasons: to clearly show how the final expres-
sions are recovered and to clearly show the differences with the previous version of
Veeramony and Svendsen (1999). Moreover both a preliminary discussion of the
adopted scaling argument and a physical explanation of every term are given.

4.2 Formulation of the problem

Under the hypothesis of incompressible flow and fixed bottom, following Veera-
mony and Svendsen (1999), the Boussinesq type of equations have been derived by
integrating the Reynolds equations over the depth and applying the kinematic and
dynamic boundary conditions at the bottom and at the free surface. In particular
with reference to the scheme shown in Figure 4.1, by assuming (z, z) as reference
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system and by taking (u,w) as horizontal and vertical velocity components respec-
tively, the surface elevation, ¢, and the depth averaged velocity, %, can be taken as
dependent variables of the Boussinesq equations.

The scaling argument is here discussed at first in order to get the dimensionless
form of the equations. This is done in order to permit to bias the magnitude of
the terms and therefore to allow simplification of some of the smallest ones. The
dimensionless parameters,

= kohy and § = ol (4.1)
ho
whose function and importance have been discussed in Chapter 3, are introduced.
In shallow waters it is usually assumed that the changes in the horizontal di-
mension, scaled through the wave number ko, are much slower than the change in
the vertical direction, scaled by the water depth ho (or by the wave amplitude ao,
depending on the vertical scale of variation of the variable considered).
Therefore, it results that the independent variables, i.e. the horizontal coordi-
nates x, the vertical coordinate z and the time t, are scaled as follows:

z

x = kok; == t = ko/ghot (4.2)
ho
while the surface elevation ¢ and the stream function 4 becomes
i
(=2 (4.3)
v v (4.4)

) = s
Y= i T

where the pedix (o) indicates the values at a reference point in water of constant
depth and the symbol () indicates the dimensional value of the variables.

As a consequence, from the definition of the horizontal and vertical velocities,
u and w, through the stream function, v, and of the vorticity, w, through v and
w, the dependent variables are then scaled as

dY _ Shov/gho ¢ _

B = o 02 5/ ghou (4.5)
o 0
W= — Bg = —hobho Qhugfé = dpy/ghow (4.6)

ot 0w d\/gho Ou ow  0\/gho [Ou o Ow
i T o O == sunSohoko— = A 4.
=~ BE = he Bz MVIMMG = e P ) WO

By using this argument, in the case of irrotational motion, w = 0, the horizontal
velocity will be almost constant over depth, since eq. (4.7) will give du/8z ~ O(u?),
whereas within the surf zone, in presence of rotational motion, it is reasonable to
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assume that w ~ O(1). Indeed a strong vertical variation of u, particularly close
to the wave crest does show up.
It is worth pointing out that the beach slope is scaled as

hy = p2h (4.8)

Indeed the more obvious scaling argument used above, which would have given
he = phy, would leads to beaches too steep, whereas one of the assumptions of this
model is the gentleness of the slope.

4.2.1 Continuity equation

The continuity equation, stating the conservation of mass for an uncompressible
flow (p = const), reads

ou  Ow

pkius N gy | 4.
FERT 4.9)
integrating it over the water column, i.e. between the bottom, Z = —fa, and water
surface, Z = (, gives
¢ oa < o
—dz —dz=0 1
/_5 B:Edz + > 2 (4.10)
or
{ 84 - .
/_ 08 iz (&) —w(—h) =0 (4.11)
—h Ve

By inserting into eq. (4.11) both the bottom boundary condition, valid under the
hypothesis of impermeable and fixed bed,

(—h) = -a(-ﬁ)% (4.12)

and the kinematic free surface boundary condition

& .0 _ s
T #(C) 5z = ¥() (4.13)
and applying to it the Leibniz rule, the following depth integrated continuity equa-
tion is obtained

o o8 [¢
— o — idz =0 4.1
o o5 /_,»,” (4.14)
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4.2.2 Momentum equation

The horizontal and the vertical Reynolds momentum equation, for uncompressible
flow, are respectively

ot 04?2  Ouw 1dp 1 (OFus | OFs

awtost e " e E(—a;e + 53 (30)
o Ouw  ow? 189 .1 (8% . O
o B i QO A MR =il ) 1
o T oz T oz p32+p(3ﬁ:+82) \:16)

where 75, and 7. indicates the Reynolds stresses. Integrating over depth and using
the Leibniz rule

o ¢ ... o ¢ ... [.(8¢ ot
6_5./_f;udz t ﬁf_audz_ ol R .

j 19 [¢
= [ﬁ (ﬂ_a: + 'w)] =—— (=P + Toa)d2
; —h

poz J_j

+ }Oﬁ(—ﬁ)% 4 % l(ﬁu P Faa)e %]
_ lfn(—ﬁ} + %m(—ﬁ)g—i] (4.17)
which applying the boundary conditions (4.12) and (4.13) becomes
%/j‘ adz  + % jl 4%dz = %% j_l(—ﬁwxx)dé
+ %ﬁ(—ﬁ)g—i % [(fm + P — Taa); g—ﬁ]
- % lfu(—fa) + fm(—ﬁ}%] (4.18)

The last two terms represents the horizontal components of the forces on the free
water surface and at the bottom, respectively,

=]
s

pe Ll o
RS = = [('rm + P — Toa)g 6—] (4.19)

=

AxB = lii-xz(‘_'ﬁ) + %mm(—f‘)a—h:l (420)

oz

o=
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In dimensional form, the exact depth integrated momentum equation results

a > ¢ 1. +0h 10
P f : udz +% 42dz = ;p( h)b—;:- %% (-p+1'u)dz+RS B (4.21)
where no simplifying assumptions have been introduced yet.

Considering that the present model aims to analyze the flow within the surf
zone, where the bottom generated turbulence is at least one order of magnitude of
that due to the breaking, it is reasonable here to neglect the effect of the bottom
boundary layer. Thus, applying the free slip boundary condition, it is assumed that
the shear stresses at the bottom are zero, i.e. 72 = 0. From a scaling argument,
it can also been shown that the contribution of the deviatoric normal stresses, .o,
can be reasonably neglected if compared to the pressure, since it is p time smaller
than p. This, on the other hand, indicates that the structure of the turbulence is
only weakly anysotropic in the z direction.

Moreover, since the region of interest is the intermediate/shallow water area,
where the action of the wind on the free water surface is very weak, also the
horizontal forces on the surface, RS has been neglected.

According to the previous considerations, eq. (4.21) can be reasonable approx-
imated as:

6 ,\2 & 1 1 8
z / s+ g2 / itz = h) 5 pdz (4.22)

In order to transform eq. (4.22) in dimensionless form, the scalmg argument pre-
sented above must be applied

o [% a [ oh 0
Tk 5 oy 2 _ l'l e = .
= /_h udz + 55 /_h de = p(~h)5 — = pd (4.23)
To eliminate the pressure from eq. (4.23), the vertical momentum equation (4.16)
is integrated between £ and ¢, giving

z

s PE) 10 /f o g Eall)BE

— —— —_ —_ —_—— T d — i
9(C—2)+ s T35 ), = (4.24)

where the Leibniz rule has been applied. Substituting the kinematic free surface

boundary condition (4.13) and neglecting the stresses on the surface, the expression

for the pressure is
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The above expression indicates that the pressure is not only composed by the
hydrostatic part, as it is assumed in the nonlinear shallow water equations, but
has a non-hydrostatic contribution due to the vertical fluid motion, that is to
the vertical acceleration and to the action of the adjacent water columns, which
contribute to support the weight of the closer water columns.

In order to model the turbulent shear stress 7., it is useful now to introduce the
concept of the eddy viscosity. The eddy viscosity can be described as the product
of some length scale of the turbulence and of some characteristic velocity. From
the measurements of Cox et al. (1995), the eddy viscosity can be described as

oy ~ Cyhy/ gh (4.26)

where C,, is a constant value, which has been experimentally calibrated and taken
in the range 0.01 + 0.03. The scaling for & is then

= pho/ghovy (4.27)

where the anisotropy of the turbulence in the z direction has been taken into
account.
The scaling for the shear stress 7. is

A ou  ,0w
Toz = Oppghovy (8 +p 83:) (4.28)

and the expression for the total pressure, in dimensionless form, results

) = (C—f)—ﬁ 2w? + 22/“&!(1 +4 22/6Cuwdz
p(z) = 3) — oK > #Hags |

0 % du 6w
2
S e Tl = d 4.
8:1:]; t(Bz 5‘3:) . (4:20)

Neglecting terms smaller than O(x?), the following approximated relationship is
obtained:

r 8¢ ¢
p(z) = (C——-) wrw? + p B_f wdz+5,u—f uwdz

(é] du
2 4
.3 v,, By dz + O(p*) (4.30)

z

Taking the derivatives in = of eq. (4.30)

P 8 a,w 3‘2 8¢ 6'2 a¢
T = P -wg s aat/ wis 4 oyt iy [ o

2 19
B 2%[ ut%dz+0(p“) (4.31)
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integrating over the entire water column and applying again the Leibniz rule, the
pressure term to be inserted into the momentum equation is:

8 [* , [ ow? 5 g2 8¢
%z ), pdz = (h+8()C —op [‘h ~é—x—dz + 1t E -m/z wdzdz
8 02 8¢
+5,u2/ %] uwdzdz—#—p(—h}%
8¢ 2 8¢
—p / / vta " dzdz + ou") (4.32)

By using the continuity equation (4.9) and the bottom boundary condition
(4.12), the vertical velocity w can be expressed as function of the horizontal velocity
u

w(z) = —% ]:l udz (4.33)

Substituiting the eqs. (4.32) and (4.33) into the eq. (4.23), the momentum equation
is finally obtained

a %
55/ udz + / w?dz + (h+ 6¢)¢x

—h

8¢ 52 5 5

N / dx@t_/ /h udzdzdz
%€ 5 2 5 g2 5 5y

= 2 9 3 u

Sp / 2 (da,fhudz) dz /h 3:::2/z utazdzdz

5 g2 p8¢ )

- o /!; 3:32/2 Y /;h'udzdzdz:O(,u ) (4.34)

Eq. (4.34) is referred as combined momentum equation, since it is basically the
horizontal depth integrated Reynolds equation of momentum, where the pressure
and the vertical velocity have been eliminated by using the vertical depth integrated
Reynolds momentum equation and the continuity equation, respectively.

4.2.3 The approximate equation for the horizontal velocity

The approach followed to solve the Boussinesq equations, namely, in the present
model, eq. (4.9) and eq. (4.34), is to specify some reference velocity, such as the
depth integrated velocity, the bottom velocity, the surface velocity or the velocity
at some reference level, which are in some way representative of the entire velocity
profile over the water column. To obtain the expression of the characteristic veloc-
ities, an expression for u in terms of the vertical coordinate z must be considered.
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In the traditional Boussinesq model this is obtained expanding in powers of z
the potential velocity ¢ and then solving the Laplace equation along with the corre-
spondent boundary conditions, valid under the assumption of irrotational motion,
in order to obtain the coefficients of the power series and then to express u = d¢/0z.

For breaking waves a similar assumption is not adequate, since a very big
amount of vorticity is produced close to the surface and introduced inside the
flow, through the roller region. The hypothesis of irrotationality of the flow results
then irrealistic.

Let’s take instead the definition of the vorticity w

Boee + e = w (4.35)
where 1 is the stream function, defined as

_%
T 0z

oy
Ox
The boundary condition at the bottom for the eq. (4.35) is

U

P(—h)=0 (4.36)

which express the condition of impermeability of the bed. Considering that

5¢ 5¢
f udz = / %dz
—h —h 0z

Lle
$(6) — o) = [ uds

—-h

it is found the analogous boundary condition at the free surface

o¢
P(6¢) -—-/ udz (4.37)

—h

Thus, integrating eq. (4.35) between —h and =z

—h

P = — /z u2¢udz i "pz(_h‘) +/ wdz (438)
h

since u(—h) = (8y/82) -, = us is the velocity at the bottom (it should be recalled
here that in the present model the free slip condition at the bed is considered, so

uy # 0)

z -
P, = —f 1Whppdz +/ wdz + uy (4.39)

h —h

integrating again between —h and z
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_ f / Bl Aol / f s (b il (4.40)
—hJ=h ~h J—h

Since the term .. is already of O(p?), in order to derive its expression from
eq. (4.40), this last can be approximated up to the lowest order in p?

= /z /z wdzdz + (h + z)uy + O(u?) (4.41)
—hJ—-h

then deriving twice with respect to x

Yez = / f w‘g;;,_-dZdZ + (h + z)ubm:r e 2ub:chx + ubh:rx + O(P"z) (442)
hJ—h

Substituting in eq. (4.40)

z z z z
P = up(z2+4+h)— / / ,uz[/ / Weed2dz + Upaa(z + h)
—hJ—h —hJ—h

S 2ubmhz—|—ubhm]dzdz+f f wdzdz—l-()(p“) (4.43)
hJ—h

and expanding the integrals

2 2
W up(z + h) — ”—um(z - ~—(2ubzhz + Uphas) (2 + h)?

—p,/ / / / wudzdzdad3+/ / wdzdz
hJ— h hJ—

Finally, since u = 8v/8z, the expression for the horizontal velocity u is obtained
as

(4.44)

12
U = Up—p [2u1,,:h + uphza|(z + h) — 5 ubm(z & Wy*

—,u2/ / / wxzd/:dzdz-i-/ wdz 4+ O(u*) (4.45)
—hJ—hJ-h —h

It should be noticed that the splitting of the previous expression as

U= Up+ Uy (4.46)

follows naturally. Considering that the first term is a contribution having a quadratic
formulation in (z 4 h), as in the classical potential flow formulation of the standard
Boussinesq model, which will be called here the potential velocity u,
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2
Up = Up — p2[2ubzhr + uphzz)(z + h) — %ubm(z + h)?2 + O(u?) (4.47)

and that the second term is a contribution due only to the vorticity w, which will
be called the rotational velocity u,

u,=/ wdz—p2/ f / Wazdzdzdz + O(u?) (4.48)
—h ~hJ=nJ-n

The depth averaged potential velocity can be then express as

#2 ”2
= up — ?(h + 6C)[2ubmh: + ubhx:r] = ?(h + JC}zubxm -+ O(P-q)

= up— %2(11 + 0C) (hup) 2z — E;-(h, + 8¢) (g + %C- - h) Upgz + O(p?)
= = B 8 huhae + B (02 - EEE IR o 0t
= o 86 e+ (12— 52 s +OY) (4.49)
where
Ag = 82¢2 — 6Ch+ h? (4.50)

Inverting eq. (4.49), the velocity at the bottom can be expressed as

2

# A
up = Tp + l'%(h, + 6¢) (hup)za — %— (h2 - Tg) Upzz + O(u?) (4.51)

Deriving with respect to z and retaining the terms up to O(u?)

Upz = Upg + O(?) (4.52)

Upre = Tpgz + O(1?) (4.53)

Substituting back into eq. (4.47) it is possible to eliminate the dependence on
the velocity at the bottom in order to express the potential velocity
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2 2
up = TUp+ E—(h + 6¢) (hiip)aa — = =3 Upaa
2 2 3
12 (2 + h)[2haTips + haalip) — (Z + h)*pas + O(u*)

A
= Tyt Ty )aaloC — b 22] ~ s (<52 +27) 4 OY

2 A
= Ty + p?(htip)zs (% - z) + %ﬁpm (—32— — 22) +0(u")  (4.54)

where

Ay =8C—h (4.55)

The total velocity is then written as function of both the depth averaged po-
tential velocity and rotational velocity

A 2
uo= U +ﬂ2(ha}l)rz (Tl =" z) =+ %Epmn: (%?‘ = 22)

uy 4+ O(ut) (4.56)

4.2.4 The fully nonlinear model

Once the expression for the total velocity u is obtained in terms of the depth aver-
aged potential velocity @, and of the vorticity w, the equations, and in particularly
the momentum equation, can be specified by substituting eq. (4.56) into eq. (4.34).
The denomination fully nonlinear is used here, as briefly already discussed in Chap-
ter 3, to remark that no assumption on the order of the nonlinear parameter d = a/h
has been made. This, in turn, means that the traditional Boussinesq approxima-
tion, which postulate the balance between the dispersive and nonlinear effects has
been removed, in order to allow for the modelling of the flow close to the breaking
point, where the waves have highly nonlinear characteristics.

The characteristic velocity chosen within the present model is the depth aver-
aged velocity

.
U= s j;h udz (4.57)
From eq. (4.14) the continuity equation may be expressed as
0
X b2 fah+50)] =0 (458)

It should be noticed that the continuity expression is exact, since no approximations
has been made to get it.
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It is convenient here to rewrite again the combined momentum equation ex-
pressed by eq. 4.34

&
% / udz
—h

-+

5¢
3 / w2dz + (h + 860)s

8¢ 92 8¢ )

- / Bxat/ /hudzdzdz
% 9 € 52 5 gy

— o / ( / udz) dz — -[—-h @/3 t 5, —dzdz
8¢ 6‘2 8¢ z 5

- ouf / 69:2/2 ua /;hud.zdzd,.:O(,u)

The first term in eq. (4.34) represents the inertial term, and after substitution
of the eq. (4.57) and eq. (4.56) reads

o [%
Et' / udz
—h

|

2 fath + d¢)

(h + 6¢)u, — dufu(h + 6¢))=
(h + 6¢)a, — 8(h + 6¢)uu, — 6°u%, (4.59)

To calculate the second term in eq. 4.34, which represents the convective con-
tribution, some intermediate results are needed

2 A 2 A ?
u? = (up + u,.)z = [ﬁp F M7{hﬁp)m (—2—1 - z) -+ %—ﬁpm (Tz — 22) + u,.]

= a§+u3+2p2(
A
¥ e Y
(3
.l

= Ef,+u,.+2u2

% - z) (i) 22 Tp + 12 (% ~ z“) Tpuallp + 2Wplr
)

A
{hﬁp pxlly + }'_1.2 (—3—2 S 22) ﬁpa:zu?' + O(Jud)

A
% - z) (ATp)zet + u? (?2 - 22) Upzal + 2UpUy

A A
v (5= 2) () extir =) 42 (52 = 2) sl ~ 0
+0(u*) (4.60)
Moreover, since, from eq. 4.56

u = Ty + up + O(p?) (4.61)

then
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T = Ty + Ty + O(u?) (4.62)

or

Up =T -+ 0(p?) = u=T+u, — T +O0(?) (4.63)
It should be also noticed that

W2+ U2+ QU = T + (U — T7) + 20 (ur — Ty (4.64)

and that the following integrals are exactly equal to zero

[ (G [ ()i [Cmimo o

Thus, the convective terms can be calculated as

o 8¢ § 8 8¢ - 5 5 5 A] - B
oz |, uwdz = e /_h [u + (ur = %) + 2 (T - z) (ur — Ty ) (hTp) e

A
+p? (Tz - 22) (up — ﬁr)ﬁpm] dz

- 2 [@(h + 60)] +£/5C(u2_ﬁ2)dz
dz dr J v " "

g % A
+I%/ [20? (Tl —z) (Wtp)aa (tr — Tir)

—h
p? (% s 32) Upaz (Ur — ﬁ,)} dz (4.66)
The term

g 1%
(AM), = — [ (u2—u?)dz (4.67)
oz —h
represents the excess of momentum flux due to the variation of rotational velocity
u, along the water column, while the last integral, after some algebra, becomes

a6
(AM,), = (%— l—ﬁpm‘/ (2hz + 32)(1;,,, — . )dz + O(hg) (4.68)
. —-h

and has the same meaning of (AM).,, but has a minor effects into the equations,
since it is of O(u2). It should be noticed that here the assumption of gentle slop-
ing beach has been used in order to neglect the terms of O(h;), considering also
that here they would have been considered anyway of order p?, i.e. small. The
convective term can be then written as
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o [%

ou d
oz | wdz=(h+ 50552 + = [a(h +80)] + (AM)s +p*(AM)z  (4.69)

The third term in eq. (4.34) represents the hydrostatic pressure and remains
unchanged. The fourth and the fifth terms depends on the vertical acceleration
Ow/ot. In particular, considering eq. (4.63),the third term may be split as:

8¢ o2 8¢ a 5¢ o2 5¢ P
s _33:&/; fﬁ U dzdzdz—/ Smﬁtf /hudzdzdz+0(p )

6¢ H2 8¢ 9 5
+ | a f / (tr — Ty )dzdzdz + O(uAX.70)

in order to show the dependence of the second component on the rotational velocity
Up.
The first component, after some algebra, results:

% 0® 1% b 1 ;
[ W / / dzdzdz = Jlaei(h + 5¢)®

1
+ (h+8¢)? [5%(_, 4 Tathe + 0Tenle + 0TxCat + §mhu

£l

(o 80) [Pl T+ GTuhaGe + uzhaCy
+0ThesCy + mhmcﬂ] (4.71)

From the continuity equation (4.58) it is possible to express the time derivatives
of the surface elevation as

¢ = —T(h + 6¢) — Thy — 0, (4.72)

Cot = gz (h + 6C) — 2Uphy — 20U, (y — Bhye — 6UC s (4.73)
then, substituting eqs. (4.72) and (4.73) into eq. (4.71)
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(4.74)
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The second component, applying the Leibniz rule, becomes
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where AP has been defined as

8¢ pdC pz
—/ ] / (ty — Ty )dzdzdz (4.76)
—h Jz —h

and it models the contribution to the pressure due to the vertical motion.
The fifth term of eq. (4.34), substituting the expressions in eq. (4.64), becomes
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where it has been defined

Dyy= [s: % [(3% /:.(ur - ﬁ,.}dz) (% /_zh(zﬁ+u,. mﬁr)dz)] dz (4.78)

which represents the excess of momentum due to the vertical motion. The first
term in the eq. (4.77) can be rewritten expanding the integrals and derivatives

8¢ 6 8 = B 2 9 -
/_h o (E /_h“d") dz = 3(h+6) UsTlss

4+ (h+ 8C)? [@ighee + 202 hy + Wiy he
4+ (h+ 6¢)[20%hehes + 4TR2T,) + O(u?) (4.79)
The turbulent shear stresses, represented by the sixth term in eq. (4.34) can written

as

%9 X bu
=il e ] ;
Ly 8:{:2/2 G zdz (4.80)

which, if the eddy viscosity 4 is assumed constant over depth, can be rewritten as

-Ds — {h "|‘ 5()[Vtur(‘TC)]rz + 6(::[”:“7‘('5()]2
+4 [Vtur(JC)Cm]x = [V-‘.Ev'(h = 5C)]£2 (481)
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Finally, the last term results

5 g2 &¢ a [
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where the last term in eq. (4.82) is defined as

5 g2 8¢ L8 OF
D‘uw - /h-‘éﬁfz [(ur“ur‘)ﬁ —Iaua{z

@+ up — ﬁ,.)a—i f (- a,,)dz] dzdz (4.83)
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representing the action that is exerted by the adjacent column of fluid.

The first part of eq. (4.82) is, after some algebra,

o2 5 g opr
[h @l u a;‘[_h tdzdzdz
= (080 [ + |

+(h+ 6¢)2 [255%.:: +2(h + 60) T + Qizhs

5 1
+§ﬁrhm + aﬁmeﬁm ot §E2h:mx]

+(h 4 60)[6T%hplew + 66T heCe + 62TWUCE + 26U heaCe)
+O(u?) (4.84)

Substituting now eqs. (4.59)-(4.83) into the momentum equation (4.34) gives
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[6(AM); + p2(AP)gyy — p2 Dy + Sp*(AMy)z + 6p* Dy
+6p Dy (h + 6¢) ™" = O(u?) (4.85)

In order to enhance the dispersion characteristics of the model in deeper water it
would have been necessary to include high order terms into the equations. However,
some improvement can be obtained by using the approach by Madsen and Schéffer
(1998), where the use of the linear operator

L =1+ Bpu?h?v? (4.86)

has been proposed in order to obtain, at least, an enhancement of the linear dis-
pertion characteristics, that is to get a better mimic of the exact linear dispersion
relationship. After applying the operator £ into eq. (4.85), the following final
momentum equation, which has weakly non-dispersive characteristics, is obtained

1
O 2 + C'I: 3+ 4“2 [(B = ':'3”) hz.ﬁmxt = ';'hh:r:cﬁt - hhxﬁmt] + B.u'gh.zc:cza:

2 3
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[6(AM); + p2(AP) 2zt — p> Dy + Sp*(AM1); + 6p* Doy
+6.u'2Dmu}(h‘ + 5()_1 = O(nu‘ql) (487)

It must be noticed that the terms (AM)4,(AP)zzt,(AM1)z, Dw, Ds and Dy,
are all function of the rotational velocity u,, which, in turn, is function of the
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vorticity w, injected inside the flow by the breaking mechanism. This is the reason
why the aforementioned terms are called breaking terms and they represent the
excess of momentum flux (i.e. the dissipation of energy) due to breaking, allowing
for a modelling of the flow within the surf zone. In particular, Dy is the shear
stress inside the fluid, (AM), and (AM;), give the excess of momentum flux due
to the vertical variation of the rotational velocity, (AP)..¢ is the contribution to
the pressure due to the vertical motion while D,, is the excess of momentum due
to the vertical motion and D, represents the interaction between the waves and
the mean flow.

It may be worth recalling that these terms have been derived from the equations
with no artificial assumptions, simply considering the rotationality of the flow as
the breaking starts. In order to specify the magnitude of these terms, the vorticity
field has to be solved and it will be done in the next chapter.



63

Chapter 5

The vorticity equation

5.1 Overview

In the previous chapter the governing equations of the proposed fully-nonlinear
Boussinesq model have been presented, which describe the conservation of mass
and momentum within the flow. These equations are able to model the wave
propagation within the shoaling and the surf zone, after determing the unknown
variables, that is the surface elevation ¢ and the depth averaged horizontal velocity
.

However, it has also been shown that in order to describe more appropriately
the propagation of breaking waves, an additional dependent variable must be in-
troduced: the vorticity w. Indeed, the total velocity u was expressed as sum of
the potential and of the rotational velocity, the latter being function of w, which
allows to take into account the modification of the vertical velocity profile which
takes place under a breaking wave.

Since there are three unknowns, namely ¢, @ and w, and only two equations,
in order to close the problem one more equation has to be considered. Here the
vorticity transport equation, which will be derived in Section 5.2, has been taken,
which will be solved analytically by following the approach of Veeramony and
Svendsen (1999).

The vorticity structure of the flow in the surf zone, induced mostly by the high
curvatures attained by the unstable shoaling waves propagating toward the shore-
line, has been recognized by most of the experimental studies on wave breaking.
Thus, removing the often adopted irrotational hypothesis, by solving the vortic-
ity field, is crucial for any correct and physically based analysis of the surf zone
hydrodynamics.

Moreover, within the surf zone a huge amount of vorticity is introduced in the
flow, previously irrotational, due to the breaking process, therefore this source of
vorticity must also be modeled. The approach which has been used in the works
of Veeramony and Svendsen (1999) and Veeramony and Svendsen (2000) is that to
schematize the surface roller on the front of a breaking wave as a source of vorticity.
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They also adopted the hydraulic similarity between breaking waves and hydraulic
jumps in order to specify the amount of vorticity generated by the breaking process.
The same approach has been adopted here and will be illustrated in more details
in Section 5.3.

5.2 Formulation of the problem

One of the most important hydrodynamic effects of breaking is the generation of
vorticity. In the most general case, it has three-components, @ = (&4, @y, &:), but
since the aim of this work is the modelling of the propagation of a breaking wave
on a vertical plane, the reference to vorticity made here is always to the vertical
vorticity &, whose axis is horizontal and perpendicular to the flow and will be
hereinafter referred simply as @, or w in dimensionless form. Its definition in terms
of the horizontal and vertical velocities, @& and 1w, is

du  ow
0z 0%

The vorticity transport equation can be then derived from the horizontal and
vertical momentum equations described in (4.15) and (4.16). In fact, cross differen-

tiating these last ones and subtracting the second from the first one, the following
equation is obtained

W=

(5.1)

0 (ou 0Ow 01, Ot 1132'& +@@+1ﬂ62ﬁ
ot \9z o0z 0z 02 0z0& 0z 0z 02
Q0w M 0b b . 0%
0 0 012 0z 02 0202
N 4 0? 0%\ .
= 5 [gamattee e~ (5 - 5) ] (62)

Submitting eq. (5.1) and the continuity equation (4.9) into eq. (5.2), gives

Q‘E’._}.‘aﬁ:’_}“a&—li(f _“] ag_ﬁ T (r3)
ot oz Vs " plomer T Y T \oa2 T 922) " .

By using a Newtonian fluid approach in order to model the turbulent shear
stresses through the eddy viscosity 4, the T-terms can be expressed as

O 0,
P P B 5.4
Tij pl:t(a$3+8$i ( )
when eq. (5.4) is substituted into eq. (5.3) the final expression for the dimensional
vorticity transport equation is obtained

ow 0w 0w 9(62&' 82&)
=W

S %2 T o2

a + u-ég a2 (5.5)
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Figure 5.1: Formulation of the problem: boundary conditions of the vorticity trans-
port equation.

It is worth pointing out that a strong hypothesis has been introduced. Indeed, in
order to take out the v, from the spatial derivatives on the right hand side, the
eddy viscosity has been assumed to be constant over the depth.

Eq. (5.5) is able to model the transport of vorticity inside the flow, but in order
to have a non-zero vorticity field a source of vorticity must be included somewhere.
Being the breaking generated vorticity essentially due to the high curvature of
the flow and to the separation of the stream lines in correspondence of the toe of
the roller, here the region close to the lower edge of the roller is schematized as
source of vorticity. This approach is qualitatively confirmed by the experimental
results of Lin and Rockwell (1994), who analyzed the instantaneous structure of a
stationary breaking wave, showing as the discontinous slope of the free surface and
the occurence of the separation beneath the surface represent a powerful source of
vorticity and that a mixing layer is formed in correspondence of the toe of the roller.
However, it is useful to stress here that the surface roller does not correspond to
a detailed representation of the flow, but to a useful macroscopic schematization.
Indeed, as it has been evidentiated also by Lin and Rockwell (1994), the existence of
a large scale recirculating vortex with its center on the mixing layer, corresponding
to the roller, is an artifact of the particular frame of observation, moving at wave
speed.

With reference to the sketch shown in Figure 5.1, the previous considerations
allow to formulate the boundary conditions on the lower edge of the roller as

L:"(i1 2= C::sf) = Wy(Z, E) (56)
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where fe is the elevation of the lower edge of the roller and W, is the value of the
vorticity at this location, which must be specified. On the other hand, the vorticity
at the free surface, outside the roller region, is assumed to be equal to zero.

At the bed, the free slip boundary condition, neglecting the effects of the bottom
boundary layer, gives rise to the vorticity bottom boundary condition

O(&,2 = —h,f) =0 (5.7)

Moreover, since in all the simulation the waves are initially non-breaking, the
initial condition is

(2,2, =0)=0 (5.8)

Due to the definition of the previous boundary conditions, the domain where the
vorticity transport equation is solved is not the entire fluid domain, but the roller
region is left out, being the lower edge of the roller the upper boundary of the
computational domain for the vorticity equation. The region for the integration of
the vorticity equation is then defined as:
h<i< { C 01'1t.si‘de of the roller region (5.9)
(. within the roller region

Applying the scaling argument dicussed in Chapter 4 to eq. (5.5) the dimensi-
oless form of the vorticity transport equation is recovered:

Ow Ow Ow 20w B%w
while the boundary and initial conditions becomes
w(z,z = 6(,t) = w, (5.11)
w(z,z=—h,t)=0 (5.12)
w(z,z,t=0)=0 (5.13)
(5.14)

Veeramony and Svendsen (1999) proposed an analytical solution for w, since a
numerical solution of the previous equation would have required an heavy computa-
tional effort. Moreover in very shallow water regions the vertical grid size required
to get a sufficient accurate description would be very fine, leading to very small
time steps to obtain the numerical stability of the model. The approach of Veer-
amony and Svendsen (1999) will be followed here, the effects and the opportunity
of adopting such a solution will be discussed in the next chapters.

In order to get the analytical solution, the physical coordinates (z,z,t) are
changed into the computational coordinates (x, 0,t), where the new vertical coor-
dinate is defined as
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Figure 5.2: a) Physical and b) computational domain in o-coordinates
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so that the computational domain is changed from —h <z < (. to0 <o <1.

This change of coordinate system allows for stretching the domain in such a
way to follow the shape of the domain, so that every vertical section has the same
degree of representative points, even if the water is shallower. Moreover, by using o-
coordinates the irregular physical domain is transformed into a regular rectangular
computational domain (see Figure 5.2).

Due to the change of coordinate systems, also the expressions of derivatives
need to be modified. If ¢ is the generic variable, by using the chain rule

0q 0odq Oq bo  O¢e 8q+@

(5.15)

5t " otds "ot htoc ot 0o ' ot 519
0qg 0odq 1 9q
8z  0z00 h+0( 0o (8.17)
0% _ 0 (000g) _(0o\' % _( 1\ g
922 02z\0z00) \8z) 802 \h+6() Oo? '
O
dq 0odq  Oq bo  9C Oq & dq +O(hy) (5.19)

Bz 0200 9z h+0l 0z B0 ' Oz

Substituting the derivatives evaluated according to eqgs. (5.16)-(5.19) into eq. (5.10)
and neglecting terms of O(u?) gives

ow o 9|0 _+ @_52 uo 3¢ dw
ot h+6(, ot | do Oz h+ 6C. 0z Do
w ow vt w
v [h_+<5€e] 5o = o ity ot + O ohe) 20

while, in the computational domain, the boundary conditions and the initial con-
dition become respectively
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w(z,0 =1,t) = w,s(z,t) (5.21)
w(z,o=0,t) =0 (5.22)
w(z,o,t =0)=0 (5.23)

In order to homogenize the boundary condition, Veeramony and Svendsen
(1999) suggested to perform a new change of coordinate

w = ) + ow, (5.24)
then the derivatives become

Ow 09 Owg dows; OC

-0t o hted ot (8:25)
ow 08
%—5};4—&)3 (526)
e 5.27
0% ~ 802 (6.27)

ow 09 Ow, dows O,
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By substituting the previous expressions into eq. (5.20) gives

6_9. 4 g%_g W %_5 — 8':“_ w @.{_w
ot ot h+ 8¢, Ot h+6C 0t h+6C| \ o ¢
o5 Ow,g 5 uo 0 (00
+ 5ua+6m o -4 T oC 0z (Eg—l—w,)
w20,
= (hroc) g0z T OW0ha) (5:29)
while the boundary condition becomes homogeneous
Qz,0=1,t) =0 (5.30)
Qz,0 =0,t) =0 (5.31)
Qz,0,t =0) =0 (5.32)

Using a pertubation approach, that is by assuming that the solution can be
expanded as
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Q= w® 4 6@ 4 623 4 0(6*) (5.33)

and expanding in Taylor series about zero the following term as well

15 Vi 1 CE.' 2
=t 1— 2522 + 0(62) (5.34)
Rt 0C)? R N2 [ I

then the vorticity transport equation reads

Aw® Ow® Ows weo e
e e e
ot at ot h+ 6. Ot

s[@ dC, w Aw™® +66‘w(2) & & éuawm
vhe,.. W
h+6 0t h+dC do do dx

dw. v G\ (P | 82O "
+ Suo= _§(1—255)( oo+ 0505 ) HO@E)  (5.35)

Therefore, the problem has been decomposed into the sum of an infinite number
of simpler linear problems in which the forcing term is function of the solution at the
preceding order of approximation. The solutions at each order of approximation,
once found, can be added together to give the solution of the original problem. In
the following the analytical solution of the problems at O(1) and at O(8) will be
presented.

O(1): basic state
The problem at O(1) reads

Aw™® Ows v 02wV

o "ot W2 002 (5980
or, defining,
Vi
K= 3 (5.37)
it becomes
o™ 9%V Ows
o0 e T 7o e
which has to be solved along with the boundary conditions
wW(e=1,6)=0 (5.39)
w(o =0,t) = (5.40)

wW(a,t =0)=0 (5.41)
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The right hand side of eq. (5.38) is an odd function in o, then it can be expanded
as half-sine Fourier series

o0

Ows
—o;; :ZF,gl)sinmm (5.42)

n=1

where, by definition of coefficients of the Fourier series, for each n the corresponding
coefficient may be expressed as

1 1
dw, . Ow, ;
FY = / —0 222 sinnrodo = —2—&:—/ o sinnrodo
L ot ot Jo
(—1)" Bwy
= 2 —_ !
nr Ot (48
It is assumed that the solution has the form
w® =" G sinnmo (5.44)
n=1

where the coefficients of the series G% are only function of x and t. Substituting
expressions (5.42) and (5.44) in eq. (5.38) gives

el a2 00 00
% lz Gﬁ;l) sin n?r()'] = h‘.w lz G‘Ehl) sin nﬂ'o} = Z Fr(l]) Snnne (5.45)

n=1 n=1 n=1

which becomes, after expanding the second term on the left hand side:

=]
n=l1

The last equation must be true for all the values of o, then it has to be

(1)
0CGn” | jn2r2G) — R

ot sinnmo =0 (5.46)

(1)
BGn > nn27r26,(11) o F’(ll) =0 (547)

This equation is a nonhomogeneous first order differential equation in GS), which
may be solved by using the method of variation of parameters (Greenberg, 1988)
in order to get the following general solution

t
GS;I) — Ce—mazﬂzt _I_e—nn’wzt/ ngl)eunzﬂgrd,r (548)
0

where C is an integration constant which can be determined by using the initial
condition. In fact since
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wW (o, t = 0) Z GV sinnmo =0 = G (x,t = 0) = 0 for Vn (5.49)

n=1

and since the G\’ are the only functions of time in the expression of w(V, from
the previous equation the value of the constant C results

Cc=0 (5.50)
The solution of the basic state is then given by the following coefficients

G,(_‘l) ( 1)11__ 6&)3 K‘Hz'ﬂ'

2(r—t)
vl M dr (5.51)

O(§) perturbed state

Considering, now, the problem of O(d), this gives rise to the following equation

w?® 92
ot o2
whith the following boundary and initial conditions

= F(9) (5.52)

wP(=1,t)=0 (5.53)
wP(@=0,t)=0 (5.54)
w@(o,t =0)=0 (5.55)

and where the right hand side of eq. (5.52) has been defined as

2,1 a ¢, BwD A
@ _ G OwY’ 00 0K O
# 24y 5 T2y e YRt 00 Y os
fw, w [Owh
“UJE e ( B0 +w3) (556)

In the last expression the term (h 4 8¢.)~' has been expanded in Taylor series
about zero as

1
h+dC h i+ 00 (5:57)
Therefore, as already mentioned, the solution of the O(1) problem, wM| be-
comes the forcing for the problem to the next order of approximation.
In analogy with the first case, also here it is assumed that the solution has the
form
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w® = Z G2 sinnro (5.58)

n=1

Since eq. (5.52) is very similar to the eq. (5.38), following the same approach as
before, the function F' is expanded as half-range sinusoidal series

F® = Z F® sinnro (5.59)

n=1

and the coefficients of this series can be calculated as
1 1
F? = / F® sinnrodo = 2[ F® sinnnodo (5.60)
=1 0

According to eq. (5.58) the solution to eq. (5.52) is then given by the following
coefficients

t "
G = [ EDe =0 (5.61)
0

5.2.1 Complete solution

From the results presented in the previous sections, the total expression for vorticity
results

w=ow, + Z[GS:) +6G?)] sinnno (5.62)

n=1

Considering that the first term in eq. (5.62) can be also written as

oWy = Z GO sinnwo (5.63)
n=1
where GSP ) is determined as
1 (_l)n
GO = / owg sinnwods = —2ws——— (5.64)
1 nmw

more synthetically the solution for w can be written as

o0
w= Z: G, sinnro (5.65)

n=1

where the coefficients G,, have been defined as

Gn =GP +GP + 5GP (5.66)
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Figure 5.3: Sketch of the experimental set-up used for investigations on hydraulic
jump (Svendsen et al., 2000). The reference system is reversed with respect to the
conventional representation to stress the similarity with the surface roller.

5.3 Similarity with the hydraulic jump

In the definition of the problem a key-role is played by the definition of the geometry
of the domain, which is related to the definition of the geometry of the surface roller,
and by the indication of the value of w, along the lower edge of the roller, which
represents the only input of vorticity for the model. Therefore, in order to close
the problem both the horizontal and vertical dimesion of the roller and the value
of w, have to be determined.

The problem of the horizontal extension of the surface roller is solved if the
position of the toe of the roller and of the crest of the roller are specified. The
criterion which has been used to perform this task is the one defined by Schéffer
et al. (1993) based on the wave slope, which has been extensively described in
Section 3.3.3. This criterion allows not only to determine the toe location, ¢, and
as a consequence of that, the length of the roller, I, (since the end of the roller is
assumed to coincide with the crest of the wave at x.), but also to take into account
the time scale of the evolution of the roller, which as the breaking wave propagates
toward the shore tends to stabilize its shape.

As it has been stressed in Chapter 2, due to the difficulty of investigating
the breaking waves, many analogies with other different types of flow have been
adopted, such as hydralic jumps, bores, wall jets and wakes. In their model, Veer-
amony and Svendsen (2000) considered the hydraulic similarity between the roller
of a breaking wave and the turbulent region on the front of an hydraulic jumps in
order to specify the roller thickness, (,, and the vorticity at the lower edge of the
roller, w, by using two functions obtained as best fit of the experimental data of
Svendsen et al. (2000). In that work, three hydraulic jumps with Froude numbers
similar to those of breaking waves were investigated, particularly with the aim of
extracting information on the flow, on the stresses and on the extension of the
recirculating area, i.e. of the roller. The experimental set-up they used is sketched
in Figure 5.3

In the channel a steady jump was generated downstream of an undershot weir,



74 The vorticity equation

//""'.I Xe \ X X
R —— 7——— + t /'-_'.*-'-—

Figure 5.4: Reference system moving with the wave

the sections in Figure 5.3 indicate the locations where both the velocity profiles
and the surface profiles have been measured, by using a laser-Doppler velocimeter
(LDV) and a capacitance wave gage respectively.

Veeramony and Svendsen (2000) fitted the experimental data in order to get
the roller thickness, which in dimensonless form reads

Cs - ' $r2
=0.78¢"Ir K - -IE— (5.67)
The thickness of the roller is related to the elevation of the lower edge of the roller
Ce, since

Ce=C—Gs (5.68)
and the vorticity at the lower edge of the roller, which in dimensionless form is
wgho& '
=15.75(1— — /
7, (1 T ) (5.69)

where h; and ho represent the minimum water depth before the jump and the
undisturbed water depth downstream with respect to the jump, respectively, £ is
the ratio hy/hy and U, is the velocity of the flow beneath the weir. The coordinate
system is here fixed with the origin of the a’-axis at the toe of the recirculating
region of the hydraulic jump, as it is shown in Figure 5.3. When tranferred to
the case of a moving breaking wave, the coordinate =’ is equivalent to a reference
system moving at the same wave speed. Then the following transformation of
coordinate system should be considered (see Figure 5.4)

2 = —(z —z¢) (5.70)

Eq. (5.69) shows a discontinuity in correspondence of the toe of the roller, where
the vorticity goes from zero to its maximum value, decreasing to zero toward the
crest of the wave.
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Chapter 6

The proposed numerical
solution

6.1 Overview

The governing equations of the fully nonlinear Boussinesq model and the analytical
solution of the vorticity equation, valid under the assumption of eddy viscosity
constant over depth, have been derived and discussed in the previous chapters.
Since it is not possible to solve them in a closed form, a numerical integration of
the equations must be adopted.

It may be worth to stress that a numerical model such as the one presented in the
followings requires a special care about the order of the adopted numerical scheme.
Indeed, a careless use of a relative low-order scheme would generate truncation
errors having magnitude similar to that of the dispersive terms included into the
equations. In this way, the numerical diffusion due to the numerical scheme would
be undistinguishable from the physical dispersion due to wave propagation.

After the very simple second order centered in space, explicit in time scheme
used by Peregrine (1967) in its pioneeristic model, which required very small grid
spacing, both in time and space, Abbott et al. (1973) used a second order time
centered implicit scheme, with a back substitution of the truncation errors, in
order to reduce the numerical diffusion. Finally, Wei et al. (1995) found an efficient
way to fix the aforementioned problem, by using an higher order finite difference
scheme for the spatial derivatives and a high-order predictor-corrector scheme,
for the integration in time. The same approach has been adopted by Veeramony
and Svendsen (2000) and by Veeramony and Svendsen (1999) and it has been
maintained in the present work, since it allows to take advantage both of the
relatively fast explicit scheme and of the high accuracy of the spatial derivative
discretization.

The adopted finite difference scheme is described in Section 6.2. The problem
is formulated in such a way that a tridiagonal system has to be solved in order
to determine the velocity and the surface elevation. The use of this pre-calculated
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tridiagonal matrix helps to stabilizying the system, without affecting the computa-
tional time. The details of the procedure are given in the same Section 6.2, while
the description of the numerical integration to be performed for the solution of
the vorticity equation is the subject of Section 6.3. Then the treatment of the
boundary conditions is presented in Section 6.4.

About the solution of the vorticity equation and the calculation of the breaking
terms, it must be considered that the uniform spaced grid adopted to solve the
Boussinesq model in Veeramony and Svendsen (1999) seemed too coarse to accu-
rately describe the effect of the roller. Indeed, preliminary analysis have shown
that the use of this coarse grid induced losses of vorticity, which, in turn, led to
breaking terms with smaller gradient of increase, in particular close to the toe of
the roller, and smaller intensity with respect to that expected. In order to overcome
this problem in this work an accurate description of the roller has been performed
by implementing a self-adaptive-time-varying subgrid, which adjust its definition
according to the dimension of the surface roller. This new numerical strategy thus
allows to get a better resolution in the region where the vorticity is generated
through a nested subgrid, without affecting heavily the computational efficiency of
the model.

Moreover, in order to take into account the sudden increase of vorticity due to
the passage of the toe of the roller, a continuous tracking both of the roller toe and
of the crest is required, as opposite to the discrete tracking which was performed
in the previous version of the model. A more detailed description of the adopted
methodology will be given in Section 6.5. Finally, the treatment of the breaking
terms onto the subgrid will be presented in Section 6.5.2.

6.2 The adopted finite difference scheme

For an efficient numerical solution of the Boussinesq continuity and momentum
equations, it is convenient to write the governing equation in a more synthetic
form. Thus, let

G=FE (6.1)
U=F (6.2)
where
E = —[uh+Q) (6.3)
U = a+ KB - %) h*t,, — %hhmﬁ — hh,, (6.4)
F = F'(¢,u)+ F'(¢ ) + FP + F* (6.5)

The term F has been conveniently decomposed in order to separate the effects of
the spatial variations, F'; of the nonlinear time variations, F'; of the breaking
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terms, F®, and of the dissipation at the onshore boundary, F*7. This last term is
associated to the sponge layer put at end of the domain and it will described in
more detail in the next section.

The components of F' are then expressed as

F'(Ca U) = —Uly— gz —gBhZCm”:

1, L. 1t 3 - 1 5
+3h CTETE 3h Volzs + 2hhmuur “+ 2hhxmu
1
+hhy Ty, — Bh(W.)es + %h@ﬁm + 5 Wea(CO)s
2
_h(cﬁi)m + gh(cuu:cx)at st C:r,hxxﬁz + Chzﬁxz

1 3 1
+§Chmxrﬁz + §Ch:rzm:c + Cha T, + Eczmzxm

1
+CCJ:W:.::|: - CCxﬁi i “é'czﬁa:am:r (6'6)
b = - ;. =
F (Cv ut) = hé T, + EhC(u: ):rw + Chy T

halal + 3 Chasie — 5C@as + 5(C@N)e (6)

Fb = [_(AM)z = (Ap)xml'. + Ds - (AMI)': - Dw
—Dyul(h + €)™ (6.8)

where the hat sign, indicating dimensional variables, has been omitted for the sake
of simplicity.

As it has been pointed out by Veeramony and Svendsen (1999), to include the
linear terms involving time derivatives in the unknown U and the nonlinear terms
involving time derivatives in the right hand side of eq. (6.2) it is useful to solve the
tridiagonal system, thus improving the stability of the model.

The adopted scheme to numerically integrate the continuity and momentum
equations is one of the most popular predictor-corrector methods, namely the
Adams-Bashforth-Moulton scheme, which has good stability properties (Press et al.
(1992)). In particular, the scheme used here is the Adams-Bashforth third order
predictor, which reads in this case:

C;a+l - Ez + %[23.3? = 16E;1~1 4 55?—2] (6.9)

t
ugr‘rl — ugl o ?_2[2317;; ot 16F“"'_1 =R 5F¥n—2] (610)
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being accurate up to O(At?). The convention adopted is that the pedix (;) indicates
the section at which the variable is considered and the apix (") indicates the instant
of time.

At the corrector step the fourth order Adams-Bashforth-Moulton scheme, ac-
curate up to O(At?), gives

G = %[QE;'“ +19E} —5E} + E} %) (6.11)
A
Ut = Up + SE R 1087 — 5EP 4 B 612)

The corrector scheme is repetead until a minimum relative error is reached both in
the solution of the surface elevation, e¢, and of the depth integrated velocity, ez

o e=¢ -
ec = . .
Z?-; Cil

€ (614)

where i = 1,2, ..., N are the N points of the computational grid in the « direction,
¢; and @; are the values of the variables at the section i, at the current iteration,
while ¢} and W, are the values of the variables at the section 7, at the previous
iteration. The iterations are stopped when both the relative errors are less than
10~4, If the denominator is zero, the iterative cicle ends if the absolute errors on
both the variables is less than 1075,

At the predictor step, the time derivatives of @, to be inserted in F", are eval-
uated explicitly at every time step as

1
@) = 50w —aw !+ (615
@ = ol -w (616
T n—-2 _ __1_ a2 — 4! + 6.17
¢ 208t° g

and at the corrector step
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@)+ = [11—n+1 18%) + 9u ! — 2ul 7 (6.18)
@7 = 6m!2~**+‘+3w—6ﬁ:'-1+ﬂ:“21 (619)
@)™ = sAtlT"‘ +3T " — 6T + ] (6:20)
@R = gl - e w2 (62

where the apix "*! on the right hand sides indicates the values calculated at the
prediction stage.

For the spatial derivatives, in the interior region a five-point central difference
scheme has been adopted, both for the first order and the third order derivatives,
accurate up to O(Az*), while, for the second order derivatives a three-point scheme,
accurate up to O(Az?) have been used. At both the boundaries of the domain a
one-sided scheme has been used. The scheme is forward in the case of the offshore
boundary and backward in the case of the onshore boundary. The great accuracy
of the adopted numerical scheme, as already mentioned, it is required to avoid that
the truncation errors have the same magnitude of the dispersive terms presents
in the equations. However the aforementioned high-order schemes can generate
some instabilities at the boundary, for this reason particularly in the momentum
equation a lower order scheme, O(Axz?), has been used at the first and last point
of the domain.

The adopted finite-difference approximations of the derivatives, derived from a
Taylor series expansion around the point of interest, are reported in Appendix A,
for completeness.

In order to extract the information about the average velocity @ from the com-
putational variable U, since only the first one is the physical variable of interest,
the following tridiagonal linear system has to be solved

At + Bt + ot =yt (6.22)
where the coefficients, A;_;, B; and Cjy1, can be obtained by substituting the
expression of the term u.., discretized according to eq. (A.10), and of the term u;
discretized according to eq. (A.6), into eq. (6.4),

1 h? hg(hm)i
Aiy = (B~ 5) BoE 2 (6.23)
1 1\ 2h?
B, = 1- Ehi(hm),- - (B = 5) B (6.24)

1 h? hi(hm)g
Cinr = (B a _) (Azx)? T 2Ax o
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The linear system (6.22) can be solved by using a simple LU decomposition (Press
et al., 1992), where the coefficient matrix can be efficiently pre-factorized, before
starting the numerical integration, since from egs. (6.23)-(6.25) it comes out that
the matrix coefficients are not related to the flow.

Then, at each time step, the solution procedure is the following:

1. U is determined from the momentum equation;
2. the linear system in eq. (6.22) is solved to calculate the velocity u;

3. the values of T are substituted in the continuity equation in order to get the
surface elevation (.

6.3 On the integration of the vorticity equation

Under the hypothesis of an eddy viscosity 1, constant over depth, but variable in
time and space, following Veeramony and Svendsen (1999) the analytical solution
of the vorticity transport equation has been determined as

oo
w= E G, sinnme

n=1

where o represents the stretched vertical coordinate and the expressions for the
coefficients G,.'s have been defined by perturbing the solution of eq. (5.29). Ac-
cording to egs. (5.51), (5.61) and (5.64), a numerical integration would be required
in order to calculate the coefficients G,,’s. Let’s consider the simple case of the
solution up to order O(1), that is

GL =GP +GW (6.26)
which at the time ¢ may be written as

2 t 2,2
Gl e —(—1}“aw, ! + (—1)“% ¢ %e“ Ry (6.27)
The use of the classical trapezoidal rule to numerically solve the integral in (6.27),
which should be applied rigorously on an uniformly spaced grid, leads to quite
inaccurate results if a very high z-resolution is not used, since the entire function to
be integrated would be approximated piece-wise like a linear function. Therefore
a more efficient approach is adopted in this case and, under some simplificative
assumptions, a semi-analytical calculation of the integrals is performed.

At the instant ¢ + dt from eq. (6.27), the coeffiecient G/, results
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2 2 t4-dt aw -
GI = —{==1r_ Sy sl B Sk 2 n(r—t—dt)d
"legdr (=1) et +{=1) mr/(, at ¢ 4
2 2 2.2, b Ow, 2 2
= i ] ) s |l ndt/ ke i n(-r-r.)d

(-1) nr e tdt H=1) '’ o Ot 4 %
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Ho1 . (6.28)

From eq. (6.27) it is also given:

2 tOwe 2.2 2
=y L8 ot Rt e GI' —-1)*—w, ;
(=1)" — . g T=Gy|, +(=1)"—ws|, (6.29)
and moreover
t4dt n?w?ndt
P T—t) o 15 -1
[ et = e (6:30)

Now, for simplicity, it is assumed that the gradient in time of the vorticity at the
lower edge of the roller does not vary much instantaneously, that is:

Qoa . Gty
at I~ ot

Obviously this assumption does not hold properly close to the toe of the roller,
since at this point there is an abrupt variation of the value of w;.

By adopting the hypothesis in eq. (6.31), and by substituting the results in
(6.29)-(6.30) into eq. (6.28), after a little algebra, the final expression for G}, at the
next time step is

- (6.31)

2

—n?wirdt . (_ )n_

1

g
[Ws‘ —— {1-—6 nwndf.)
nmw t+dt nNe“m<K

e—'*z“"““] (6.32)

I _ 1
i — Gn
t+dt

_"“'3

t
The calculations to obtain the term relative to the solution up to O(d), G ], are
very similar.

6.4 The boundary conditions

In order to perform the numerical simulations a special care is required at the
boundaries of the domain, both at the offshore and at the onshore one. The ge-
ometry described by the numerical code can be better understood on the basis of
Figure 6.1, in which the sketched physical problem and the numerical one are both
represented.
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Figure 6.1: Sketch of the physical problem (a) simulated through the numerical
wave tank (b).

With reference to the offshore boundary, in nature, when waves propagate to-
ward the coastline, they may be reflected by obstacles or by the beach itself and
travel seaward in a direction opposite to that of propagation. To let the waves trav-
elling seaward leave the domain at the offshore boundary, the absorbing-generating
boundary condition developed by Van Dongeren and Svendsen (1997) for the case
of 2D shallow water models has been adopted. This boundary condition allows not
only to specify the incoming waves, but also to radiate of the outgoing waves.

On the other side, at the onshore boundary, in nature the swash zone follows
the surf zone. This region is alternatively wet and dry and the run-up and run-
down phenomena take place, defining, on average, the position of the shoreline. In
this model, the moving shoreline boundary condition is not modelled. Instead, as
shown in Figure 6.1, after the slope, a shelf with a sponge layer is adopted. The
sponge layer, which is located between the positions z, and z; (see Figure 6.1),
allows for absorbing the incoming waves and then it reduces as much as possible
the reflection from the beach.

At the offshore boundary, by using the mentioned methodology developed by
Van Dongeren and Svendsen (1997), the continuity and momentum equations, writ-
ten in the case of constant water depth and non breaking waves, are expressed in
characteristic form as
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opt apt
8+ (m+ved) L =g (6.33)
a8~ ap~
% 4 (- ved) % =g (6.34)

where d = h + ¢ is the total water depth and G is expressed as follows

g = — (B ot %) hg‘ﬁxzt e thzc:rzz (6'35)

AT and B~ are the incoming and outgoing characteristics respectively

Bt =u+2y/gd (6.36)
B~ =u—2/gd (6.37)

The outgoing waves are represented by the negative characteristic and are un-
known. In order to specify them, the equations have been linearized and the
assumption of linear superposition has been made (Van Dongeren and Svendsen
(1997)), then both surface elevation and velocity are decomposed in incoming and
outgoing components

C=Ci+ér (6.38)
U= + Uy (6.39)

and considering the exact expression @ = ¢(, valid for wave of permanent shape,
it can be written

G S g
R R

while, from shallow water theory, the phase speed may be expressed as

c=gh+0 (6.41)

The surface elevations of the incoming and of the reflected wave result then

(6.40)

G w 1T ua ¢

R = =tigtaatole (6.42)
¢ _ T 1T AT, ¢
Rl T +0( 75 (6.43)

where ¢y = \/gh.
Substituting eq. (6.39) in the second of (6.37), to determine 3~
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and then solving with respect to u,, gives the outgoing component of the depth
averaged velocity

” . 2 -
“_fz(_aﬁw)—z\/z”—*— E+4—(—+2) (6.45)
co co g o €0

where also the still water conditions %, = 0, %; = 0 and % + 2 = 0 has been taken
into account, in order to select the physical meaningful root between the two roots
of the second order equation (6.44). Therefore, at the offshore boundary only the
velocity @ has to be specified.

At the onshore boundary the effect of the sponge layer is modelled by including
a dissipation term in the momentum equation (see eqgs. (6.2) and (6.5))

Fy, =W(x)u (6.46)

where
W 0, D&, -
(=) = e R Y (6.47)

with the dimensioless x-coordinate inside the sponge layer equal to

T — Ty

(6.48)

. Sae—

where x, defines where the sponge layer starts and z; is the length of the computa-
tional domain. The sponge layer has then two parameters, a; and n. In particular,
the first one defines the strenght of the sponge layer (it ranges between 5 and 10 in
the simulation) and the second one contributes to ensure a smooth transition into
the sponge layer in order to avoid reflection from it (the value used is n = 2).

The boundary condition for the vorticity equation has been subject of great
attention in this study, since it is maybe one of the most delicate point of the
model. A detailed discussion about the reason for a special treatement of this
boundary and the description of the adopted methodology will be given in the
next sections. '

6.5 The self adaptive time varying grid

As it has been described in the Section 5.3, the vorticity at the lower edge of the
roller, ws, is expressed by the function

ws = 15.75 (1 ... - I‘) (6.49)
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Figure 6.2: (a) Sketch of the roller and (b) vorticity at the lower edge of the roller
(solid line fit of data from Svendsen et al. (2000); dashed line approximated curve
used in the numerical model).

where x; and [, are the position of the toe and the length of the roller, respec-
tively. In particular, the length of the roller is defined as the distance between
the position of the roller toe x; and of the wave crest, z.. Eq. 6.49 is just a fit
of the experimental data on hydraulic jumps analyzed in Svendsen et al. (2000).
At the toe of the roller the vorticity suddenly increases due to the breaking onset.
Since the sharp discontinuity at that location caused numerical instabilities during
the simulations, in the previous version of the model by Veeramony and Svendsen
(1999), the following approximation of eq. (6.49) has been used

w, =16.75 (1 - %) (1 -E7 x‘) (6.50)
T
In Figure (6.2) the solid line represents the regression of experimental data as
given by eq. (6.49) and the dashed line represents the values of wy obtained by
using eq. (6.50). The maximum value of vorticity occurs right close to the toe of
the roller with a very high gradient. Therefore, for an accurate prediction of the
flow of a breaking wave, it is crucial to have a good resolution in this region, in
order to avoid losses of vorticity and, in turn, underestimate of the breaking terms.
Thus, to achieve this resolution, the reduction of the spatial grid size Az would
become so small that the advantages of using a Boussinesq model would be strongly
reduced. In fact the length scale of the roller region is much smaller than the one of
the waves and, as a consequence of that, a grid optimized to solve the Boussinesq
equations is too coarse for modelling the roller. Therefore, a new numerical strategy
based on the adoption of a self-adaptive time varying grid has been implemented
here, thus getting high accuracy only whereas it is needed. The new grid follows
the evolution of the wave, or, in other words, of the surface roller, then it moves
and change size as the wave propagates toward the shore. In particular, since a
greater accuracy is needed close to the toe of the roller, in the roller region the grid
has a finer subdivision.
The multi-grid methods have been developed to describe phenomena where a
great accuracy is needed only locally, such as very irregular domain (Wu et al.,
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1997; Spitaleri and Corinaldesi, 1997; Kania, 1999; Papadakis and Bergeles, 1999;
Park and Borthwick, 2001), while time-varying grids have been used in some cases
to model phenomena quickly varying in time, but only in some part of the domain,
such as the evolution of the front of the free surface profile due to a dam break (Lie
et al., 1998; Jeong and Yang, 1998, 1999; Jha et al., 2001). Unfortunately, these
methods have been adopted often coupled to Volume of Fluid (VOF) methods,
which is not the case in the present work, and very few details are provided, to the
knowledge of the writer, by people that used them with finite difference schemes.
In the latter case, the difficulty derives from the fact that finite difference schemes
are based on uniform size grid, while it is known not only that for the same schemes
the accuracy is not exactly defined but also that this kind of schemes looses greatly
accuracy when the grid is not uniformly spaced. Moreover, the type of grid needed
here is also a time-varying grid, where the grid points move in time, therefore there
is also the problem of how to determine the celerity of the numerical cell.

6.5.1 Definition of the moving grid

As a first step, in order to better define the position of the roller, a redefinition
of the position of both the wave crest and the toe of the surface roller has been
performed. In fact while in the previous version of the model both the crest and
the toe are located on the uniform grid points, obtaining a discontinuous movement
of these points, in the present work both the crest and the toe are not tied up on
the numerical grid but they are allowed to move continuously onto the z-axis.

The position of the crest, z., is defined as the point where the slope of the
surface is zero, through a second order interpolation. On the other hand, in order
to define the position of the toe, zy, a little more complex procedure is required. As
a first approximation, z; is defined as the point where the second order derivative
of the surface elevation is equal to zero, that is the toe location coincides with the
position of the inflection point. If the condition & > e is satisfied, where aoe
is evaluated according to the criteria of Schiiffer et al. (1993) (see eq. (3.18)), then
the position of the toe is then redefined at the point where o = o, by using a
linear interpolation.

Finally the length of the roller is calculated as

L. =1y — @, (6.51)

For each roller, given the position of the crest x. and of the toe x¢, a subgrid, which
is finer close to the toe, is defined as in Figure 6.3.
The formulation used to define the subgrid is given by the following expression
Ty — Te

Az
= ) A = g
By ng Tog ng
where Az, is the interval for the first subdivision inside the roller, ng is the fun-
damental number of subdivisions, Az, is the interval for the finer subdivision of
the roller. .
The position «}, of a point inside the subgrid is then

(6.52)
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Figure 6.3: Scheme of the fixed grid (circles) and of the self-adaptive time varying
grid (dots) under the roller.

(6.53)
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Therefore, it can be noticed that the number of representative points inside the
roller is fixed, being equal to 2ng, and does not depend on the length of the roller.
Instead, the size of the subdivisions changes according to the roller dimensions,
keeping the same degree of accuracy inside, in particular close to the toe, where
the grid is finer. Moreover, the subgrid moves according to the movement of the
roller, while outside of this region the uniform grid spacing is kept.

By using this approach, the boundary condition for the vorticity transport equa-
tion, which represents also the source of vorticity for the model, can be specified
avoiding to loose accuracy due to the relatively coarse uniform grid. Both the
thickness of the roller, (s, and the vorticity at the lower edge of the roller, ws, are
then evaluated on the self-adaptive time varying grid points, according to eq. (5.67)
and (6.50).

Figures 6.4, 6.5 and 6.6 show the difference in evaluating ws using the uniform
fixed grid and the subgrid, for three values of ng. It can be noticed that by adopting
the subgrid, the calculated w, represents eq. (6.49) better, particularly close to the
toe, where the sudden increase of vorticity is considered and cumulated in the
solution. It should be noticed that assuming a value of ng = 8 the behavior is
already good.
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Figure 6.4: Discretization of the vorticity at the lower edge of the roller, ws, by using
the uniform fixed grid (circle) or the moving grid (dots). Fundamental number of
subdivisions ng = 4.
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Figure 6.5: Discretization of the vorticity at the lower edge of the roller, ws, by using
the uniform fixed grid (circle) or the moving grid (dots). Fundamental number of
subdivisions ng = 8.
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Figure 6.6: Discretization of the vorticity at the lower edge of the roller, ws, by using
the uniform fixed grid (circle) or the moving grid (dots). Fundamental number of
subdivisions ng = 16.
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6.5.2 On the evaluation of the breaking terms onto the mov-
ing grid

As it has been previously discussed, the aim of introducing the aforementioned
self-adaptive time varying grid is to avoid vorticity losses inside the model and to
have a bigger dissipative effects at the toe of the roller, where the flow separation
induces a strong shear layer. This, traduced in terms of the Boussinesq model
presented in Chapter 4, requires a more accurate evaluation of the breaking terms
(AM)z, (AP)zzt, Duy Duw and Dy, in order to take into account for the right
accumulation of vorticity.

In order to evaluate the aforementioned breaking terms, by using the expressions
determined in Chapter 4, the following spatial derivatives

¢ Ows Ju
oz’ Oz’ Oz
have to be evaluated. To avoid the loss of accuracy introduced by the use of
finite difference scheme with non uniformly spaced grid, the simplest method is to
calculate the previous derivates onto the fixed uniform grid and then to transfer
them onto the moving non uniform grid, through a linear interpolation.
Since the grid is moving, the procedure to calculate the time derivatives is more
complex. Let (z,t) be the real domain and (z*,t*) be the image domain

r — z* (6.54)
t — ¢ (6.55)

such that, being f a generic variable, the time derivatives should be evaluated, by
using the chain rule, as

dx
t Ot*

of

z‘_a

of
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x  Ot*

@
¢ Ot*

(6.56)

z*

where it could be assumed, as a first approximation, that

| e et D) (6.57)

Ot* |-
However, one of this derivation is only valid if there is a perfect correspondence
of the number of grid points between the real domain and the image domain,
meaning that the grid number have to be the same in both cases. Unfortunately,
this is not the case here, in fact the subgrid introduced in the previous section,
has a number of points greater than the uniform grid, in order to increase the
accuracy within the roller region. Moreover, since the roller moves and new rollers
are generated inside the domain as the wave propagates, the number of points of
the moving grid is not only greater, with respect to the fixed grid, but also it varies
in time. Nevertheless, the formulation in eq. (6.56) has been reported in order to
stress the influence of the celerity in the evaluation of the time derivatives.
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Figure 6.7: (a) Roller profile; (b) Spatial variation of the dw,/0t, by using the
uniform fixed grid (circle) or the moving grid (dots). Length of the roller I, =
0.245m.

Due to the aforementioned limit, a different procedure has been then adopted in
this work. In order to calculate the time derivatives, the old values of w, G.(;”, 5,2)
and of G! = G + GV have to be stored and transfered, by linear interpolation,
from the moving grid at the previous time step, n, onto the moving grid at the
next time step, n + 1. Then, the time derivatives are evaluated at the same point
onto the current moving grid.

Some comparisons of the time derivatives of w;, using the fixed grid and the
moving grid method, are showed in Figure 6.7 and 6.8, for two situations where
the surface rollers have different lengths.

The analysis of the effects of using the subgrid to evaluate the term %‘%‘ is
particularly relevant, since it is exaclty this term which is cumulated in the evalu-
ation of the integrals of egs. (5.51), (5.61) and (5.64) to obtain the solution of the
vorticity transport equation.

From the analysis of the figures it can be noticed that, when the subgrid is used
the sudden change of the term %%‘- is better represented, due particularly to the
redefinition of the toe position and to the higher resolution obtained close to it.
In Figure 6.8, by using the uniform fixed grid, the previous sudden change is not
present, while by using the self-adaptive time varying grid this behaviour is still
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Figure 6.8: (a) Roller profile; (b) Spatial variation of the dw,/0t, by using the
uniform fixed grid (circle) or the moving grid (dots). Length of the roller I, =
0.163m.
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represented.

Finally, after having cumulate the effects of the roller by using the refined
grid, the calculation of the breaking terms (AM),, (AP)zzty Dy, Duw and D,
is performed onto the fixed grid, since they appear into the momentum equation,
whose integration is done only onto the fixed grid.

For example, in Figure 6.9 are shown: the wave profile, with the roller position
evaluated both on the fixed uniform grid and on the moving refined grid; the
comparison between the excess of momentum AM evaluated onto the fixed grid
and onto the subgrid, on the same panel the linearly interpolated values of AM
coming from the subgrid are reported, and, finally, in the last panel the derivatives
(AM), calculated directly onto the fixed grid and the ones evaluated using AM
onto the subgrid are shown. As it can be noticed, there is a remarkable difference
for the term AM in the two cases, as the subgrid evaluation allows to catch its
sudden increase, corresponding to the position of the toe of the roller, and its higher
values. Besides, the interpolation from the subgrid toward the fixed grid of AM
does not seem to affect the accuracy too much. This change is also reflected by the
results about the the breaking term (AM),, which increases.

One more consideration need to be discussed here. In all the previous versions
of the model, a filter was used in order to smooth out the breaking terms and have
a more stable code. Moreover, when a more accurate modeling of the position of
the toe is performed, it it should be also expected that the term AM is zero before
the toe arrives and then it starts to growth. A similar behaviour it is expected also
for the term (AM),. If a filter is used, it is impossible to recover this behaviour
as it is shown by Figure 6.9, where (AM), is nonzero even when the wave is not
breaking yet, that is well outside of the roller region.

Since by using the subgrid approach the model becomes more stable, as it
is demonstrated by the fact that no instability problem did show up during the
calculations, the aforementioned filter has been removed. As a consequence of
that, the expected (AM,) behaviour is recovered, as it is shown by Figure 6.10.

Indeed, defining as «; the true position of the toe onto the moving subgrid and
as x! ized ¢he position of the toe onto the fixed grid (which always correspond to
the closest position on the fixed grid following the location of the true toe) and by
using a second order scheme to calculated (AM),

(AM), = AM**‘Q;:MH (6.58)

which gives onto the fixed grid
(AM), # 0 at z=az/" (6.59)
(AM), = 0 at z=az/""4 Az (6.60)

Of course, in order to certainly states the benifits of the proposed new approach,
the effects of the changes introduced here must be discussed by comparing the
numerical results obtained with the proposed version of the model both with the
updated and debugged version of the model by Veeramony and Svendsen (1999),
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Figure 6.9: Variation of the roller profile (dashed line: fixed grid model, solid line:
proposed moving grid model). AM (dashed-dot line: fixed grid model, solid-circle
line: proposed moving grid model, solid-dot line: results interpolated onto the fixed
grid from the self-adaptive time varying grid). (AM), calculated by using a filter
(dashed-dot line: fixed grid model, solid-dot line: proposed moving grid model)

which uses a uniform fixed grid, and with literature data. This will be presented
in the next chapter.
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Figure 6.10: Variation of the roller profile (dashed line: fixed grid model, solid line:
proposed moving grid model). AM (dashed-dot line: fixed grid model, solid-circle
line: proposed moving grid model, solid-dot line: results interpolated onto the fixed
grid from the self-adaptive time varying grid). (AM). calculated by using a filter
(dashed-dot line: fixed grid model, solid-dot line: proposed moving grid model)
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Chapter 7

Model results

7.1 Overview

The Boussinesq-type model presented here is able to represent the propagation of
regular and irregular waves both in the shoaling and in the surf zone. In order
to describe more accurately the sudden increase of vorticity due to wave breaking,
particularly in the region near to the toe of the surface roller, a new numerical
strategy, based on the adoption of a self-adaptive time varying grid, has been
implemented (see Chapter 6). The effects of the changes due to the implementation
of the proposed moving subgrid have been tested by comparing the results provided
by the proposed model, when this approach is adopted (hereinafter referred to as
Moving Grid or MG model), with both experimental data and results provided by
the same updated and debugged version of the model of Veeramony and Svendsen
(1999), in which the moving refined grid was not used (hereinafter referred to
as Fixed Grid or FG model). This double comparison allowed to enlighten the
effectiveness of the proposed upgraded Boussinesq model, particularly with respect
to the one of Veeramony and Svendsen (1999), which represents the starting point
of the present work. It is worth pointing out that the model of Veeramony and
Svendsen (1999), before being used, was carefully derived again and the numerical
code was debugged according to the derivations.

Before presenting the aforementioned comparisons with experimental data, a
validation of the model with particular emphasis to the breaking criterion and the
effect of the breaking process has been performed. The results about the validation
are both quantitative and qualitative: the former based on an agreement with
a different breaking criterion with respect to the one adopted in the presented
model; the latter was based on the qualitative analysis of the vorticity production
due to breaking and, in turn, on the estimate of the breaking terms obtained the
momentum equation with the assumption of rotational flow after the wave breaks.

The comparisons with experimental data have been carried out by using litera-
ture experimental data on regular breaking waves. The results of the comparisons
will be described in Section 7.3, particularly focusing on the main physical charac-
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Figure 7.1: Scheme of a breaking wave according to the breaking criterion defined
by Eq. (7.1). 1. us <ec. 2. us=ec. 3. ug >c.

teristics of the wave motion, such as surface elevation, wave height, velocity profiles
under the waves and wave speed. Since one of the peculiarity of the presented
model is that to be able to describe the undertow profile due to breaking waves,
some comparisons with experimental data about this phenomenon are discussed in
Section 7.3.4.

Finally, the model capabilities to simulate the propagation of irregular waves
have been tested here, especially with regards to wave groups generated in a wave
tank. Indeed, the time series of the surface elevation, the wave height spatial
distribution and the position of the breaking point have been deeply analyzed; the
results are then discussed in Section 7.4.

7.2 Model performances

7.2.1 Breaking criterion validation

It may be worth to pointing out that, as already stressed, the Boussinesq models
have a strong limit given by the fact that they are not able to predict the breaking:
an external criterion is thus necessary in order to trigger the breaking. Thus, first
of all, the proposed model has been validated by trying to verify that a different
breaking criterion, with respect to the one adopted here (Schiffer et al., 1993), was
fitted. Among several breaking criterion, the one chosen here to validate the model
is a physical based one.

Indeed, it is well known that the initiation of breaking starts when the surface
velocity at the crest u. is equal to the phase velocity ¢, or, in other words, when

—=1 (7.1)
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Figure 7.2: Dimensionless surface velocity w/c (solid line) and surface profile ¢/h
(dash-dot line) time series as obtained from the proposed model, when applied to
reproduce the data of the six gauges reported in Cox et al. (1995) located over a
sloping beach at different depth (see Table 7.I). (a), (b) and (c): transition region.
(d), (e) and (f): surf zone.
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0.4

Figure 7.3: Closer view of the surface velocity time series for the Cox et al. (1995)
case, L4 gauge. (solid line u,/c; dashed dot line {/h).

Indeed the surface particles, which are downstream respect to the crest, are acceler-
ated downward and move faster than the wave, then a turbulent shear is generated
to sustain this motion (point 3 in Figure 7.1). The particles on the surface, up-
stream respect to the crest, move with a velocity smaller than ¢, since there is no
force able of accelerating them upward (point 1 in Figure 7.1), while at the crest
the surface velocity is about equal to the wave speed (point 2 in Figure 7.1). Thus,
the turbulent front is counterbalanced by the creation of shear at the lower edge
of the roller, i. e. from toe to crest. Therefore a very delicate test for the model
prediction capabilities is the evaluation of u, compared to c. Figure 7.2 shows the
ratio uy/c at the six gauge locations of Cox et al. (1995). As a reference in the
same figure also the dimensionless surface profile (/h is reported. It may be noticed
that before breaking the ratio u,/c is always less than one, as expected, while for
breaking waves close to the front it is bigger than one. In particular, Figure 7.3
shows a closer view in correspondence of the front region of a breaking wave. From
this analysis it turns out that the model results are very close to the reality, at
least from a qualitatively viewpoint. In fact, the maximum of the velocity occurs
before the crest and the dimensionless surface velocity at the crest is very close
to one, satisfying the breaking criterion defined in eq. (7.1) while behind the front
the surface velocity is smaller than the wave velocity, thus satisfying a the different
situations the breaking criterion defined by eq. (7.1).

It is worth stressing that an important feature of the criterion based on the
surface velocity and the wave speed is that there are no empirical parameters to
be calibrated. Thus, from a physical point of view, it is remarkable that the model
results agree in a fairly good manner with this criterion, even though the breaking
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criterion implemented into the model is a different one, i.e. the one proposed by
Schiffer et al. (1993).

7.2.2 Breaking and vorticity production

The main improvement of the model of Veeramony and Svendsen (1999) and, in
turn, of the one presented here, as opposite to the majority of the Boussinesq-type
of models proposed in literature, is that the contribution of vorticity due to wave
breaking is retained in order to model the flow inside the surf zone. As a matter
of fact, the presence of vorticity inside the flow allows to derive the expressions for
the breaking terms, which represents the excess of momentum flux and the related
energy dissipation due to the breaking process in the nearshore region.

Figure 7.4 shows the contour lines of the time series over a wave cycle of the
calculated vorticity distribution under a breaking wave which has just started to
break, i.e. within the transition region. In particular, in Figure 7.4(a) the results
of the FG model are reported, while Figure 7.4 (b) reports those of the MG model.
It is worth to pointing out, for clarity sake, that the direction of wave propagation
here is from right to left, as it happens always when the represented results are
time series of the variables.

From the comparison with the previous version of the model, it can be noticed
that the proposed approach allows to recover greater values of vorticity on the
front of the wave, close to the roller region on the front of the wave, since the
vorticity losses due to the fixed grid have been removed. As a consenquence of
this, the vorticity is clearly spread more upstream in this last case. The increased
generation of vorticity leads, in turn, to larger values of the breaking terms. From
the analysis of Figure 7.5, which shows the breaking term evolution corresponding
to the wave conditions reported in the previous figure, obtained both with the
FG model (see Figure 7.5(a)) and the MG model (see Figure 7.5(b)), it happears
evident that the biggest breaking terms, which are (AM), (excess of momentum
flux due to the variation over the water column of the rotational velocity u,) and
(AP),4: (contribution given to the pressure due to the vertical motion) represented
by the dashed line in figure, are basically doubled by using the MG model. Another
effects of using the adaptive grid method is to increase the gradient of variation
of the breaking terms, modelling the fact that the phenomenon is really a shock
process.

Figures 7.6 and 7.7 are similar to the two previous ones, but they refer to a
section further onshore, in the inner surf zone. With respect to the situation in
the transition region, previously described, it can be noticed that the vorticity did
spread remarkably inside the flow, especially by using the MG approach. However,
the breaking terms are reduced and in particular, the contribution of (AP)qzt,
which was predominant before, is decreased.

The previous model of Veeramony and Svendsen (1999) did not provided an
accurate prediction of the breaking terms, as, from the analysis of the momentum
excess of hydraulic jump, bigger gradients of them where expected to describe the
impulsive breaking dissipation (Svendsen, 2001, personal communication). The use
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Figure 7.4: Transition region. Contour lines of the vorticity distribution under
a breaking wave. (a) FG model results; (b) MG model results (n.b.: the wave
propagates from right to left).
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Figure 7.5: Transition region. Time series of the breaking terms. (a) FG model
results; (b) MG model results (n.b.: the wave propagates from right to left).



7.2 Model performances 101

(@) w [Hz]

Figure 7.6: Inner surf zone. Contour lines of the vorticity distribution under a
breaking wave. (a) FG model results; (b) MG model results (n.b.: the wave prop-
agates from right to left).
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Figure 7.7: Inner surf zone. Time series of the breaking terms. (a) FG model
results; (b) MG model results (n.b.: the wave propagates from right to left).
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of the subgrid approach leads to a more realistic estimate of the vorticity introduced
inside the flow and, in turn, to a bigger dissipation particularly in the transition
region, where the fastest changes of the wave characteristics take place.

7.3 Comparison with literature regular wave data

The proposed model performances have been tested here by making at once two
different comparisons having different goals: a relative and an absolute one. As a
matter of fact the presented model has been implemented to simulate the reality
in a fairly good manner: thus comparisons with the experimental data of Hansen
and Svendsen (1979), Cox et al. (1995), Cox and Kobayashi (1997) have been
performed. Moreover, in order to show that the presented model, which adopts
a new numerical strategy of integration for the solution of the vorticity transport
equation, gives better results than previous similar models, therefore comparisons
with the updated and debugged version of the model of Veeramony and Svendsen
(1999) are also carried out.

For the sake of completeness, first of all, it is useful to present the aforemen-
tioned experiments along with the details of both the numerical setup and the
adopted simplifications, considered in order to carry out the numerical simulations
with the two aforementioned models.

The experimental studies of Cox et al. (1995) on the propagation of regular
waves over a constant slope have been carried out at the Ocean Engineering Labo-
ratory of the University of Delaware. The experimental flume was 33m long, 0.6m
wide and 1.5m deep, where the steepeness of the sloping part was 1:35, located
opposite to the pyston type wavemaker. The bottom was impermeable and it was
made rough by gluing natural sand to the bottom (dso = 1.0mm, diameters ranging
from 0.71 to 1.41mm). A schematic view of the experimental apparatus is shown in
Figure 7.8. The water depth on the horizontal bottom was ho = 0.4m. Six measur-
ing lines, L1, L2, L3, L4, L5 and L6, were located on the slope, whose positions are
reported in Table 7.I. The adopted reference system is the one shown in Figure 7.8,
with the origin at the first measuring line. The positions of the measuring lines was
chosen in such a way that L1 was in the shoaling region, L2 at the breaking point
defined in the experiments as the onset of aeration in the tip of the wave crest,
L3 in the transition region where the wave goes from an organized wave motion to
a turbulent bore, L4, L5 and L6 are in the inner surf zone. In correspondence of
the six measuring lines, surface elevation measurements were obtained by using six
capacitance wave gages and the velocities were measured over the water column by
using a Laser Doppler Velocimetry (LDV). It is worth pointing out that, due to the
dropouts of the LDV signal, the velocity measurements are significant only under
the level of the wave trough. Cox et al. (1995) simulated only one wave condition,
obtaining a spilling type of breaker.

The same experimental set-up and wave parameters were used for the measure-
ments of the undertow current of Cox and Kobayashi (1997).

Since the aim of the proposed numerical model is to describe the flow inside the
surf zone, in order to save computational time, the numerical wave tank is shorter
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Figure 7.8: Experimental set-up adopted in the experimental investigation on the
propagation of regular wave over a sloping beach in Cox et al. (1995)

than the real one, having a bathymetry similar to that reported in Figure 6.1, with
a total length of 18m, where the horizontal bottom is 1m long, with a water depth
of hg = 0.4m. At the onshore boundary a sponge layer is used, the onshore shelf
is 5.65m long, the water depth on the onshore shelf is 0.04m, while the sponge
layer starts 1.60m after the end of the slope. The wave generated at the offshore
boundary are cnoidal waves, with wave height H = 0.115m and period T' = 2.2s,
the critical value of wave slope at which the waves are considered to break is
ap = 29°.

The experimental set-up of Hansen and Svendsen (1979) is a wave flume very
similar to the one used by Cox et al. (1995). The flume was 60cm wide, 32m
long, the slope of the beach was 1:34.26 and the toe of the beach was 14.78m far
from the piston type wavemaker. The water depth on the horizontal bottom was
kept equal to hg = 0.36m during all the experiments. Eighteen wave conditions
were simulated and the wave heights were accurately measured at an enormous
number of locations, by using a wave gage mounted on a movable carriage, which

Table 7.I: Characteristic of gage locations of the measuring lines in the experiments
of Cox et al. (1995)

Line - h
no. | [em] | [cm]
L1 0 28.00
L2 240 | 21.14
L3 360 | 17.71
L4 480 | 14.29
L5 600 | 10.86
L6 720 | 7.43




104 Model results

Table 7.1I: Main wave characteristics and dimensionless parameters of the simulated
test cases from Hansen and Svendsen (1979) at the toe of the beach

Test | f H U I,
[Hz] | [mm]
0 0.5 | 37.5 | 10.70 | 0.38
Q 04 | 39.9 | 17.50 | 0.44
R 0.3 | 43.3 | 32.22 | 0.52

traveled slowly along the wave flume. Moreover, the time variation of the surface
elevation was measured at some locations, providing then measurements of the
surface profiles in the shoaling region up to the breaking point.

In order to test the capabilities of the model, only three of the eighteen wave
conditions of Hansen and Svendsen (1979) have been chosen here. Indeed breaking
did not occur during all the tests and when breaking waves were present, Hansen
and Svendsen (1979) recovered both spilling and plunging type of breakers. In
particular the cases reproduced here are Tests O, Q and R. Table 7.II reports the
wave parameters of the three simulated cases, that is the frequency f, the wave
height H, the Ursell number U, and the Iribarren number I..

Specifically the Ursell number, U, has been calculated as

_ HoL}
.= "

(7.2)

where h.. is the beach slope, the wave height H, the wave length L and the water
depth h have been evaluated at the toe of the slope. The Iribarren number I is
calculated as

ha
V' Ho/Lo

where the ratio between the wave height Hy and the wave length Ly on the horizon-
tal bottom corresponds to the measured value provided by Hansen and Svendsen
(1979).

The values of the Ursell number range from short waves (Test O, U, = 10.70),
to quite long waves (Test R, U, = 32.22). On the other hand, according to Galvin’s
criterion (see Table 2.I), Test O and Test Q should correspond to spilling breaker
conditions, even though in the second case the I value is very close to the critical
limit indicated by Galvin, I, = 0.46. Instead, the value of I, for Test R belongs to
the range of the plunging breaker conditions. In particular, this last case was chosen
despite of the limit of applicability of the model, which, as any depth integrated
model, is strictly valid only for spilling breaker, in order to test the behaviour of
the model in these conditions.

The numerical wave tank was shorter also in this case, being 14m long, where
the slope starts 1m far from the offshore boundary and ends after 12.35m. The

I, = (7.3)
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water depth on the shelf is 0.03m deep, while the critical surface slope at the
breaking point is a; = 35°.

Special attention should be devoted here to the assumed value of eddy vis-
cosity, which, in order to get the best agreement with the experimental data of
Cox et al. (1995) and of Cox and Kobayashi (1997) it is assumed to be equal to
vy = 0.035h+/gh, while in the Hansen and Svendsen (1979) case it is assumed to
be equal to vy = 0.01h+/gh. This difference is perhaps due to the fact that only
in the first case the bottom is rough, since natural sand was glued to the bottom,
thus the effects of the dissipation within the bottom boundary layer are magnified.

7.3.1 The surface profile

The time series of the surface profiles at various location, both inside the shoaling
region and within the surf zone, obtained by using the proposed model have been
also compared with laboratory data and with the numerical results got when the
conventional fixed grid approach is adopted.

Considering the wave condition of Cox et al. (1995), a comparison of the time
variation of the surface elevation at the six measuring sections is shown in Fig-
ure 7.9). The panels (a), (b), (c), (d), (e) and (f) correspond to the measuring
locations L1, L2, L3, L4, L5 and L6, respectively. The solid line represents the
experimental data, which are phase-averaged, the dashed line shows the results
obtained by using the FG model and the dashed-dot line shows the model results
when the MG approach is adopted. As expected, the two models gives exactly the
same results outside of the surf zone (see Figure 7.9 (a), (b) and (c)). Instead, the
effects of using the subgrid method start to be evident inside the surf zone. In fact
the new numerical strategy allows to have a greater excess of momentum flux, due
to the increased vorticity contribution coming from the roller region; this, in turn,
leads both to a greater dissipation inside the surf zone and to a faster decaying of
wave height. As shown by Figure 7.9 (d), (e) and (f), the model results obtained
by using the moving refined grid method are in better agreement with the exper-
imental data, also looking at the shape of the wave profiles, which show more the
saw-tooth form, typical of the bore like propagation within the surf zone.

It is worth pointing out that while the numerical results are instantaneous,
the experimental ones are phase averaged over a great number of waves (50 waves
for each location). The process of phase averaging leads to wave profiles which
are smoother than the instantaneous profile. Thus the above mentioned good
agreement of the model with experimental data can be considered better than it
appears at first sight.

Hansen and Svendsen (1979) provided for each test the instantaneous time series
of the surface profile at four sections, which were located inside the shoaling region
and, particularly the last one, as close as possible to the breaking point. Being
outside of the surf zone, the experimental data have been compared only with the
results obtained from the proposed model which uses the subgrid method, as there
is no difference between the two models within when the waves are not breaking.

The comparisons with the experimental data are shown in Figures 7.10, 7.11
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and 7.12, where the solid line represents the model results and the dashed line are
the experimental data. As it can be noticed, the agreement is quite good at all
the gage locations of the three cases, even though at the breaking point the wave
height is slight overpredicted, particularly for longer waves. Another apparent
feature, which could not show up from the comparison with the phase-averaged
data of Cox et al. (1995), here is that the experimental data show a secondary
oscillation of the wave profile, which is recovered also by the Boussinesq model.

The aim of this last analysis was obviously not to support the breaking model
adopted, but it helped to confirm the good dispersive and nonlinear properties of
the model. On the other hand the choice of the depth integrated velocity u as
dependent variable seems to be valid, at least in the nearshore region, even though
it has been demonstrated by Madsen and Schiffer (1998) and more recently by
Kennedy et al. (2001) that such a choice should theoretically provide poor results
in deeper water.

7.3.2 The wave height

The wave height represents one of the most important characteristics of the wave
motion, especially from an engineering point of view, since it represents one of the
most important parameter of every design problem. Inside the shoaling region the
wave height increases, as the wave propagates toward the shore, and at the breaking
point it reaches its maximum value. The breaking point represents the offshore
limit of the surf zone, right after that, within the transition region there is an
abrupt change of the wave characteristics, therefore the wave height decreases quite
quickly. More onshore, in the inner surf zone, where the bore-like propagation takes
place, the variation is slower, since the wave reaches a more stable configuration.
Here the behaviour of the model has been compared with the experimental data
of Hansen and Svendsen (1979). The wave height spatial distribution along the
x-axis is shown in Figure 7.13, where the diamonds are the measured wave heights,
the solid line represents the model results if the MG approach is adopted and the
dashed line represents the FG model results.

In the shoaling region the model results compare well with the experimental
data for both the three cases. It could be observed that the slow oscillations,
which appear in the measurements, are recovered also from the Boussinesq model
simulations, even though the numerical results are out of phase with respect to the
data.

About the model results inside the surf zone, which is the specific objective
of the present work, the comparisons deserve some more comments. First of all,
as already shown in the comparisons with the time series of the surface elevation,
the wave height at breaking is slight underpredicted. Moreover, although there
is a difference in the evaluation of the two models, this is more evident in the
inner surf zone than within the transition region, where the two types of models
provide essentially the same results. However, more onshore the results do show
some remarkable differences and the subgrid effects, increasing the dissipation, is
to reduce the wave height. The last behavior is clearly more consistent with the
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experimental data, particularly in the case of longer waves (Test O, see Figure 7.13
(b)). It has been mentioned in Section 7.3, describing the experimental data, that
Test Q should corresponds to conditions of plunging breaker, according to Galvin’s
criterion based on the Iribarren number. At least in principle, no Boussinesq model
should be able to handle such a case, since depth averaged equations can describe
only simple connected free surface flows, while in a plunging breaker the overturning
wave front gives clearly a double connected water surface, at least during the first
instant of breaking. The results shown in Figure 7.13 show this difficulty of the
model to represents these conditions. In particular within the transition region,
the dissipation is not strong enough to make the wave height results compare well
with data. However, going toward the inner surf zone the agreement tends to be
more acceptable and the overall model prediction, even if not very accurate, results
quite reasonable in the case of plunging breakers as well.
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(a)

Figure 7.9: Surface profile. Blue solid line: data by Cox et al. (1995); green dashed
line FG model results; red dash-dot line MG model results. (a) L1 measuring
section, (b) L2 measuring section, (c) L3 measuring section, (d) L4 measuring
section, (e) L5 measuring section, (f) L6 measuring section



7.3 Comparison with literature regular wave data 109

(a) )

008 0.08

0.04 004

Figure 7.10: Surface profile before breaking. Solid line, MG model results; dashed
line data from Hansen and Svendsen (1979) Test O: T' = 2s, Ho = 0.037m at (a)
h/ho = 1.00;(b) h/ho = 0.33; (c) h/ho = 0.25, (d) h/ho = 0.20.
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Figure 7.11: Surface profile before breaking. Solid line, MG model results; dashed
line data from Hansen and Svendsen (1979) Test Q: T = 2.5s, Hy = 0.40m at (a)
h/ho = 1.00;(b) h/ho = 0.38; (c) h/ho = 0.29, (d) h/ho = 0.27.
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Figure 7.12: Surface profile before breaking. Solid line, MG model results; dashed
lines data from Hansen and Svendsen (1979) Test R: T' = 3.33s, Ho = 0.042m at
(a) h/ho = 1.005(b) h/hg = 0.39; (¢) h/ho = 0.31, (d) h/ho = 0.26.
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Figure 7.13: Wave height comparisons on a plane beach. Red solid line MG model
results; green dashed line FG model results blue diamond Hansen and Svendsen
(1979) ho = 0.36m :(a) Test O: T = 2.0s, Hy = 0.038m; (b) Test Q: T' = 2.5,
Hy = 0.040m; (c) Test R: T' = 3.33s, Hyp = 0.043m.



7.3 Comparison with literature regular wave data 111

7.3.3 The velocity profile

One of the key point of the Boussinesq model introduced by the weakly nonlinear
model of Veeramony and Svendsen (2000), of the fully nonlinear model of Veer-
amony and Svendsen (1999) and finally of the present model, is the definition of
the velocity, which takes into account the contribution of the vorticity generated
by wave breaking, considering the rotational velocity u,. In fact, under a breaking
wave the horizontal velocity strongly deviates from the almost constant profile,
characteristic of shallow water conditions, and is much larger close to the surface
in correspondence of the wave crest.

The horizontal velocity profiles obtained both with the FG and the MG models
have been compared with the experimental results of Cox et al. (1995). Figure 7.14
shows the time series of the measured (black dots) and of the calculated horizontal
velocity profiles, obtained using both the FG model (green solid lines) and MG
model (blues solid line). Again the two models provide the same results in the
shoaling region before the breaking starts. The agreement is quite good at section
L1, that is the one located more offshore, and it remains good at the next two
sections, L2 and L3, where the measured profiles are very similar to the theoric
potential velocity profiles. However, as the wave shoals, there are some differences
in the region close to the crest, between measured and calculated velocity. Inside the
surf zone the measured velocity deviates from the pontential flow shape, especially
in correspondence of the wave front, where the profile is pretty constant only in
the lower part. The comparison between the FG and the MG numerical results
shows that in the surf zone the proposed self-adptive time varying grid approach
performs a slight better prediction of the velocity on the back of the front of the
wave, indicating that there is a bigger residual vorticity field (bigger than that
obtained with the FG model) left over by the moving breaker, which influences also
the shape of the velocity profiles. However, under the crest, where the strongest
deviation of the velocity from the constant profile takes place, both the FG and the
MG model give rise to a stronger deviation than the experimental data. Morever,
by using the subgrid approach, the velocity profiles deviate even more just in this
region.

To better understanding the reasons of such a behavior, the vertical profiles of
the rotational velocity u, have been also analyzed. Figure 7.15 shows the profiles of
u, obtained using the FG model (magenta dashed line), the MG model (cyan solid
line), s a reference, the experimental data (black dots) about the total velocity u
are reported too. It must be stressed that no velocity measurements were provided
above trough level, due to the dropouts of the signal in this region. In the following
figures, all the available data are shown, but it can easily be observed that the upper
two or three data are not to be considered as significative measurements.

Before breaking, that is at sections L1, L2 and L3, the rotational velocity is
equal to zero. After breaking, at sections L4 and L5 the calculated u,’s show a
trend similar to the measured u, confirming that having introduced the rotational
velocity is consistent with the physics of the breaking process. However, due to
the increased amount of w inside the flow caused by the adoption of the moving
grid, the profiles obtained using the MG model are more inclined with respect to
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the vertical than the FG model results.

On the other hand, it may be worth to remind here that the hypothesis of eddy
viscosity constant over depth has been made in order to get an analytical solution of
the vorticity transport equation. This simplistic hypothesis do not reproduce in a
good manner the real structure of the turbulence under a breaking wave. Indeed the
turbulence does not spread all over the water column, but it stays confined in the
upper part of the flow. This behaviour has been shown in the majority of the studies
on breaking generated turbulence, since the early flow visualizations of breaking
waves in Peregrine and Svendsen (1978). This phenomenon it is also confirmed even
by the velocity measurements of Cox et al. (1995), since the profiles are constant
in the lower region and only in the upper region deviate and are characterized
by larger values. Therefore, by assuming a constant eddy viscosity profile the
vorticity is spread uniformly everywhere, whereas it should be concentrated more
in the upper part of the flow, this leading in turn to the too much inclined velocity
profiles.

7.3.4 Undertow and volume flux

After the analysis of the velocity profiles, presented in the previous section, it may
be helpful to investigate another physical quantity related to the velocity field,
namely the undertow, that is the offshore current generated to compensate the
excess of net onshore volume flux due to wave breaking. The correct prediction
of the undertow profiles is extremely important as this phenomenon plays a key
role in the transport processes within the nearshore regions and, in turn, in the
morphodynamics of the beach profile.

The Boussinesq models, in general, are not able to predict the undertow because
they do not consider the roller effects, but only the Stokes’ drift, due to the fact
that the water goes up and down. Instead, because of the presence of the roller,
there is a huge amount of water, the one recirculating inside the roller itself, that
is carried with the waves and does not participate to the oscillating motion. Thus
the biggest part of the undertow is generated to balance this onshore volume flux.
An irrotational velocity profile cannot account for that, while the present model
is theoretically able to handle this process, as it takes into account also the roller
effects.

However, the simulation of the undertow profile is not as a trivial task as it
could seem and some care is required. Indeed, when simulating water waves, either
with a physical or a numerical model, a secondary slosh is generated within the
wave tank due to the difference of water levels. This secondary currents may affect
the estimate of the undertow current and of the wave volume flux, thus, here the
undertow current has been evaluated according to the following expression

Q
ho +¢
where the estimate of the undertow current is influenced also by the net volume
flux Q and by the mean water level (. The second term in eq. (7.4) represent the

(7.4)

Uun.dertaw (z) = Umean —
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slow oscillation within the tank, which has a much longer period and is essentially
driven by the pressure gradient. The interested reader can find the details of the
derivations of eq. (7.4) in Appendix B.

Figures 7.16 and 7.17 shows the comparisons of the model results (both FG
and MG models) with the experimental data of Cox and Kobayashi (1997) at
six sections over the slope, which are the same as in Cox et al. (1995) as this
measurements were obtained by using the same wave characteristics and the same
experimental apparatus as the former one. In particular Figure 7.16 refers to the
results obtained when it is assumed that @ # 0, while Figure 7.17 considers the
sloshing process within the tank (Q # 0). In the aforementioned figures the dots
represents the experimental data, the solid line the results obtained by using the
proposed moving grid model and the dashed line the results got by using the fixed
grid method. Even though the numerically simulated waves have reach an almost
steady condition, it can be noticed that by using eq. (7.4), that is by considering
the slosh phenomenon within the tank, it helps to improve the matching of the
numerical results with the data.

It should be here recalled that one of the limitations of both the MG and FG
models is that they do not take into account the presence of a bottom boundary
layer, as the free slip condition is introduced at the bottom. Therefore, very close to
the bottom, the comparisons are not very good. As expected the bottom boundary
layer strongly influences the undertow profiles close to the bottom.

Outside the surf zone the undertow current is constant over depth, see Fig-
ures 7.17(a) and (b), and both the calculated profiles match with the experimental
data. In the experiments, at section L3 (Figure 7.17(c)) the waves have already
started to break, while the two models start to break a little bit more downstream
from this section. This explains why the calculated undertow profiles have a con-
stant profile, which is different from the measured one.

Inside the surf zone, (see Figure 7.17 (d), (e) and (f)), the results for the un-
dertow current somehow confirm what was obtained for the instantaneous velocity
profiles. In fact the MG model overpredict the undertow at the bottom and the
slope of the vertical profiles is slightly larger than that of data. The reason such
a behavior could be again addressed to the fact that the vorticity is spread uni-
formly over depth, due to the constant eddy viscosity adopted to get the analytical
solution of the vorticity transport equation. However the effects of the turbulence
should be modeled by using an eddy viscosity profile variable over depth, which
would be probably much larger only at the surface.

It is worth stressing that the undertow current is generated to balance the
net wave volume flux directed onshore. Moreover, as eq. (7.4) states, to evaluate
correctly the undertow profile the net volume flux have to be estimated. Therefore
the mass transport represents an important parameter to be evaluated. The volume
flux time series obtained by using the MG model are reported in Figure 7.18, those
obtained with the FG model are shown in Figure 7.19 considering the same six
measuring sections (Cox and Kobayashi, 1997). In particular, the total volume
flux @ has been evaluated as
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¢
Q)= / udz (7.5)
—ho
The expression of Qappr is

anpr = (76)

where ¢ is the wave speed and 7 is the surface elevation with respect to the mean
water level. Eq. (7.6) is exactly valid under the hypotheses of wave of permanent
form and of no net wave volume flux (Van Dongeren and Svendsen, 1997). Finally,
the wave volume flux has been estimated as

¢ <

aw = / updz & Ql, = udz (7.7)
' e

where (; is the wave trough elevation (see Appendix B for a more detailed discus-

sion).

From the analysis of the figures, it may be observed that within the surf zone
(see Figures 7.18 and 7.19 (a) and (b)), the differences between @ and Qappr are
appreciable, then there is a residual net volume flux @ which cannot be neglected
and has to be taken into account for the undertow estimation for both models.
However, the fixed grid model provides slightly smaller values than the moving
grid approach. The aforementioned figures show also that the biggest amount of
mass transport is due to the effects of the wave motion above the trough level, more
specifically within the surf zone this is almost entirely due to it (see Figures 7.18
and 7.19 (d), (e) and (f)), as the curve for Q coincide with that for Q7.

Moreover, Table 7.III reports the values of the net volume flux at the aforemen-
tioned six wave locations, got with both models. The net volume flux is a little
bit smaller when the proposed numerical approach is used to evaluate the break-
ing terms, thus highlighting than in this case the steady configuration is reached
earlier.

Table 7.III: Calculated net volume flux
Measuring QMG Q MG
section "’i 1’;—1
L1 -0.00090 | -0.0010
L2 -0.00038 | -0.0009
L3 -0.00071 | -0.0009
L4 -0.00083 | -0.0013
L5 -0.00031 | -0.0012
L6 -0.00056 | -0.0004
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Figure 7.14: Time variation of the total velocity profiles under the waves; dots:
total velocity experimental data from Cox et al. (1995); cyan solid line: total
velocity profiles calculated through the FG model; magenta dashed line: total
velocity profiles calculated through the MG model. (a) L1 measuring section, (b)
L2 measuring section,(c) L3 measuring section, (d) L4 measuring section, (e) L5
measuring section, (f) L6 measuring section
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Figure 7.15: Time variation of the rotational velocity profiles under the waves; dots:
total velocity experimental data from Cox et al. (1995); cian solid line: rotational
velocity profiles calculated through the FG model; magenta dashed line: rotational
velocity profiles calculated through the MG model. (a) L1 measuring section, (b)
L2 measuring section,(c) L3 measuring section, (d) L4 measuring section, (e) L5

measuring section, (f) L6 measuring section
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Figure 7.16: Undertow profiles: circle data from Cox and Kobayashi (1997), solid
line MG model results, dashed line FG model results, when the slosh phenomenon
is not take into account. (a) L1 measuring section, (b) L2 measuring section, (c)
L3 measuring section, (d) L4 measuring section, (e) L5 measuring section, (f) L6

measuring section.
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Figure 7.17: Undertow profiles: circle data from Cox and Kobayashi (1997), solid
line MG model results, dashed line FG model results, taking into account the
slosh phenomenon. (a) L1 measuring section, (b) L2 measuring section, (c) L3
measuring section, (d) L4 measuring section, (¢) L5 measuring section, (f) L6
measuring section.
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Figure 7.18: Net wave volume flux calculated by the MG model in the case of of
Cox and Kobayashi (1997). Solid blue line: @; dash-dot green line: Qupp = cn;
dashed red line: Q/,. (a) L1 measuring section; (b) L2 measuring section; (c)
L3 measuring section; (d) L4 measuring section; (e) L5 measuring section; (f) L6

measuring section.
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Figure 7.19: Net wave volume flux calculated by the FG model in the case of of
Cox and Kobayashi (1997). Solid blue line: Q; dash-dot green line: Qupp = €3
dashed red line: @/,. (a) L1 measuring section; (b) L2 measuring section; (c)
L3 measuring section; (d) L4 measuring section; (e) L5 measuring section; (f) L6
measuring section.
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7.3.5 The wave speed

The wave speed or phase velocity c is defined as the celerity of propagation of the
surface profile. In particular a well defined point of the free surface, such as for
example the wave crest, is considered in order to determine ¢ at a fixed location.

To obtain the wave speed from the numerical results of the surface profiles, the
zero-up crossing point of the surface profile has been chosen here as characteristic
point to calculate the phase velocity ¢. In particular, the mean water level has
been subtracted from the time series of the surface profile in order to increase the
accuracy of the zero-up crossing identification procedure.

Therefore the wave speed ¢ has been evaluated by moving averaging the celerity
Cinst Of each individual zero-up crossing point, which is expressed as

Az

Cinst = —
Atzcra—up

(7.8)

where Az is the distance between two sections of the numerical grid and At.ero—up
is the time for the zero-up crossing point to go from the previous to the next section.

The phase speed ¢ calculated by the proposed moving grid model has been
compared with the experimental measurements of Hansen and Svendsen (1979),
for the three test conditions described in Table 7.1I. In particular, in Figure 7.20,
the red diamonds are the experimental measurements, while the blue solid line
are the results obtained by using the proposed moving grid model and the green
dashed line are those of the fixed grid model. The agreement of the numerical
results with the experimental data is always very good. More specifically, for the
spilling breaker cases, i.e. Test O and Test Q, the wave speed decreases linearly
as the wave propagates on the slope, both in the shoaling and in the surf zone
(the breaking point is located around = 10m in all the three cases). For the
conditions of Test R (i.e. the plunging breaker case), the data show an appreciable
scatter from the linear trend; however the same variability is also recovered by the
proposed numerical model.

7.4 Comparison with literature wave group data

The proposed model, adopting the self-adaptive time varying grid approach, has
been tested also for the case of a wave group propagation. The interest for such a
particular type of irregular waves is due to the fact that in nature waves approaching
the shore often show group characteristics, as a bunch of higher waves are cyclically
followed by smaller ones.

Comparisons of the proposed moving grid model results with the experimental
data of Svendsen and Veeramony (2001) are presented here, particularly analyzing
the agreement with the time series of the free surface and the spatial distribution
of the wave heights, both out and inside the surf zone. Moreover, for the case of
irregular waves in general the location of the breaking point is not defined uniquely,
as it changes in time and space. This is also true for breaking waves groups,
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Figure 7.20: Wave speed on a sloping beach (blue solid line, MG model results; green
dashed line, FG model results; red diamonds Hansen and Svendsen (1979) ho = 0.36m :(a) Test
O: T = 2.0s, Hy = 0.038m; (b) Test Q: T' = 2.5s, Hp = 0.040m; (c) Test R: T = 3.33s,
Ho = 0.043m)

therefore the calculated position of the breaking point has been analyzed here, by
comparing it with that of the measurements.

The experiments of Svendsen and Veeramony (2001) were carried out in the
same wave flume as in Cox et al. (1995) experiments, but in this case the adopted
1:35 plane sloping beach was smooth. The water depth at the constant depth
section was kept equal to ho = 0.40m during all the tests. By using a movable
carriage, several wave gages allowed to collect the time series of the surface profile,
both in the shoaling and in the surf zone. A wave gage located at a fixed position
7.25m offshore from the toe of the slope was used as a reference. In order both to
get a large surf zone and to avoid large free second harmonics, the wave groups were
generated in a non conventional way. Instead of addying together two sinusoidal
waves with slightly different frequencies, the wave groups were generated by packing
together five cnoidal waves with the same wave period but different wave heights.
Each individual wave of the group was added to the closest wave of the group at
the point where the particle velocity is zero, i.e. at the zero-up crossing point of
the surface profile. In particular the wave heights were specified as

H; = Hpn, (1+§smg;ri) T, I (7.9)
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Table 7.IV: Wave group parameters from Svendsen and Veeramony (2001)

Experiment Peak Groupiness
number frequency factor
fp H m / h(] G
W03 0.4 0.237 + 20
W06 0.625 0.25 + 50

where H; is the height of the ith wave, H,, is the mean wave height within the
group and G is the groupiness factor defined as

AH
Hﬂl

with AH difference between the heights of the highest and of the smallest wave of
the group.

Svendsen and Veeramony (2001) carried out seven tests, by considering groupi-
ness factors equal to +10%, +20% and +50%. Among these, two wave condi-
tions, one with medium groupiness (G = +20%) and one with high groupiness
(G = £50%), have been considered here to test the performances of the proposed
model when compared with experimental data. Table 7.IV shows the experiments
number, the peak frequency fp,, the dimensionless wave height H.,/ho (with ho
water depth at a section with constant depth) and the groupiness factor G, as
reported in Table 3 of Svendsen and Veeramony (2001).

As all the individual waves of a group have the same period T}, = 1/f,, the
period of the wave group is equal to 515,.

The numerical tank adopted for the simulations was 16.25m long, with a water
depth equal to ho = 0.4m at the section with constant depth and depth of 0.02m
on the shelf. The wave maker was 1m far from the toe of the slope, which ended
after 13.3m from that. The sponge layer did begin after 0.20m from the end of
the slope. The critical value of the breaking angle was chosen as ay = 27°, while
the chosen eddy viscosity was v; = 0.01hy/gh. It should be incidentally mentioned
that in order to simulate the wave group the numerical code was slightly modified,
since at the boundary the irregular signal of velocity had to be specified.

A preliminary analysis of the rough experimental data was carried out, in order
to specify the input wave group for the model. Indeed, due to the irregular charac-
teristics of the waves, a long-wave motion was also generated inside the laboratory
tank, as waves which have a period much longer than the individual waves of the
group were released. It must be stressed also that due to the differences between
the laboratory and the numerical wave flume, the infragravity waves generated in
the two cases were different, thus requiring the filtering of both the data and the
numerical results. As the specific aim of this work is to analyze the short wave
motion, a high pass filter has been adopted in order to cut off frequency bigger
than the peak frequency f,.

Since some discrepancies were found between the values of wave heights indi-

G =

(7.10)
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Figure 7.21: Comparison of the surface elevation time series for groupy waves. (a)
measured time series at the reference gage. (b) generated input wave group for the
numerical model.

cated by Svendsen and Veeramony (2001) as generated at the physical wavemaker
and those obtained by processing the time series at the wave gage taken as refer-
ence (at z = 7.25m offshore from the toe of the sloper), the latter ones have been
considered in order to get the input values for the model. More specifically, after
lowpass filtering the rough data, the mean wave group has been determined and
from that the wave heights, used to generate the wave groups, have been adopted.

Figure 7.21 shows a comparison between the measured time series at the refer-
ence wave gage and the generated wave group, which represent the input for the
model.

7.4.1 The surface profile

The comparisons of the surface profiles of groupy breaking waves is a very delicate
task. Indeed, as the waves propagating over the slope have different wave heights,
they increase the wave heights, due to the shoaling process, differently from one
another and an energetic exchange between different frequecies takes place. There-
fore each individual wave of the group reaches the breaking condition at a different
location and from that point on it continues to evolve. Therefore how and where
the single wave starts to break is extremely important to determine the pattern of
the free surface inside the breaking zone.

The free surface profiles calculated by the proposed model for both the tests of
Svendsen and Veeramony (2001), reported in Table 7.IV, have been tested against
the measured time series at eight sections in the wave tank. The comparisons are
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shown in Figures 7.22 and 7.23, for Test W03 and W06 respectively.

In particular, in Figures 7.22 and 7.23 the first four and two panels, respectively,
are located outside the surf zone, while the others are inside it. The red dashed line
represents the experimental measurements, the blu solid line represents the model
results

The agreement of the calculated free surface is fairly good, both in the shoaling
zone and in the surf zone for both the aforementioned tests. In particular it can be
seen that both in the experimental measurements and in the numerical data the
groupiness of the waves is still conserved after the breaking point.

It should be noticed that at some section there is a phase shift of some waves
within the group with respect to the data, however this is taken again, after a while.
As an example, see Figure 7.23 (d) where the four waves following the higher waves
are all out of phase with respect to data, and Figure 7.23 (e), where the first two
of these waves are again in phase with the measured ones.

Moreover, Svendsen and Veeramony (2001) noticed in their data a change of the
position of the highest waves of the group, related to the others. Indeed it seemed
that on the slope, higher height waves travel faster than the smaller ones, changing
also the period and the wave length. This is more evident when the groupiness is
higher. The model recovers pretty well the aforementioned features, such as the
changes of wave height distribution inside the group and the period and length
variation of the individual waves.

Particularly for the Test W06, with highest groupiness, another phenomenon
which can be noticed both in the data and in the numerical results is the bore-bore
capturing process, which occurs in the inner surf zone, far from the breaking point.
(see Figure 7.23(h)). This process is also often seen on natural beaches. Indeed,
two or more waves can be merged into one due to the difference of wave speed, as a
wave could be so slow to be reached by the following one and then absorbed by it.
As an effect of the wavelength variations and of the bore-bore capturing process,
the number of waves within the domain is reduced in the inner surf zone.

7.4.2 The wave height

Since the wave groups at the offshore boundary were generated as in the experi-
ments, i.e. packing together five different cnoidal waves with different wave heights
having the same wave period, here for each component of the wave group the spa-
tial distribution of wave height along the x-axis is shown and compared with the
experimental data.

The wave heights have been recovered from the time series of the surface profiles
by analyzing the history of the waves, that is following the waves as they move
forward, by using the zero-up crossing method to identify the individual waves of
the group and by numbering each single wave. Figure 7.24) shows the measured
time series of the surface profiles at several section along the tank. It is also shown,
by the red dashed line which links the different panels, as the Wave 3 propagates
in time along the tank. By using such a procedure, it is then possible to distiguish
the different component of the wave group.
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Figure 7.22: Comparison of the surface elevation time series for groupy waves. Solid
line: model results, dashed line: data from Svendsen and Veeramony (2001), Test
W03, H,./ho = 0.237; G = +20%), (a) h/ho = 1, (b) h/ho = 0.865, (c) h/ho =
0.730, (d) h/ho = 0.560, (€) h/ho = 0.490, (f) h/ho = 0.417, (g) h/ho = 0.347, (h)
h/ho = 0.275)
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Figure 7.23: Comparison of the surface elevation time series for groupy waves.
Solid line: model results, dashed line: data from Svendsen and Veeramony (2001),
Test W06, H,./ho = 0.25; G = £50%), (a) h/ho = 0.525, (b) h/ho = 0.454,
(¢) h/ho = 0.382, (d) h/ho = 0.311, (e) h/ho = 0.239, (f) h/ho = 0.168, (g)
h/ho = 0.096, (h) h/ho = 0.054)
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The above described procedure has been adopted both to recover the values
of the wave heights from the experimental measurements and to extract the wave
height distribution from the calculations. Figures 7.25 and 7.26 shows the compar-
isons for the W03 case and the W06 case respectively, distinguishing between Wave
1, Wave 2, Wave 3, Wave 4 and Wave 5. It should be noticed that all the available
data sets have been taken into account in order to draw the aforementioned plots.
Therefore the shown wave heights are referred to different runs of the wavemaker,
and this explains why it is possible to find more than one value associated to the
same spatial location.

For Test W03, which had a smaller groupiness (G = £%20) than the Test
W06, the agreement is very good both in the shoaling region and in the inner surf
zone. The very satisfactory wave height prediction within such a large surf zone
is extremely important, since it confirms the good dissipation properties of the
model, which is entirely due to the effects of the roller. In the transition region,
particularly for Wave 1 and Wave 2, which are also the smallest waves of the
group (see Figure 7.25(a) and (b)), the experimental data show a double trend.
One having a positive curvature of the distribution, with a trend more similar to
that the other components, the other with a negative curvature. The first type of
behavior is physically associated to a well defined position of the breaking point
and to smoother changes of the wave characteristics at the first instant of breaking,
while the other type could be attributed to the fact that the wave has a unstable
equilibrium configuration, such as the breaking can occur sooner or later, as the
breaking point is located more onshore when the curvature of the distribution is
negative. When the latter condition occurs, however the energy dissipation has
to be faster, as the total dissipation has to be always the same, no matter where
the wave did break. This is confirmed by the fact that at a certain point within
the inner surf zone the two conditions get to the same value of wave height (see
Figure 7.25(a)) and from there on have the same trend.

When the groupiness is bigger, as in Test W06 it seems that the shoaling is not
predict as well as before, even though the comparisons of the surface profiles were
good. This could be perhaps attributed to the difficulty of the zero-up crossing
method to correctly identify the individual waves, in order to recover the wave
heights values. The prediction of wave height inside the surf zone, however shows
an good agreement with the experimental data, particularly for the highest wave of
the group (see Figure 7.26(d) and (e)). Both in the measured and calculated wave
height distributions, it may be observed that the double trend recovered earlier
does not occur in this case.

7.4.3 The breaking point location

As mentioned before, the variation of the position of the breaking point, which
defines the offshore limit for the surf zone is extremely important, when looking
at surf zone irregular waves. Indeed in the latter case the concept of breaking line
should be intended not as real line, but as the average of the breaking locations of
the individual waves, which in general occurs in wider or narrower strip.
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Figure 7.24: Evolution of the wave group. Surface profiles at different section along
the tank: (a) h/ho = 0.554; (b) h/ho = 0.504; (¢) h/ho = 0.454; (d) h/ho = 0.404;
(€) h/ho = 0.354.
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Notwithstanding the difficulty of defining a breaking point, the values obtained
from the analysis of the experimental measurements, see Table 5 of Svendsen and
Veeramony (2001), have been compared with the location calculated by the model,
as the point where the breaking criterion defined by Schiffer et al. (1993) is satisfied.
In particular the mean location of this point have been considered by analyzing the
model results.

Figures 7.27 and 7.28 show the z-location of the breaking point for the five
individual waves of the group, the red circle-dashed line in the upper panel are the
experimental data, while the cross-solid line in the lower one are the model results.

It is clear that in both cases, the width of the region where the different waves
start to break is larger in the experimental data. In particular it seems that the
smallest waves (such as Wave 1 and Wave 2 in Test W03 and Wave 2 and Wave
3 in Test WO06) tends to break later in the experiments than during the numerical
simulations. The same behavior was already discussed when analyzing the wave
heights results. However the variability of the breaking point recovered in the
experiments is also reproduced by the numerical model.
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Figure 7.27: Breaking point z-location of the individual waves of the group (G =
+20%). (a) Red dash-circle line: experimental data from Svendsen and Veeramony
(2001); (b) blu solid-circle line numerical results of the proposed model
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Figure 7.28: Breaking point z-location of the individual waves of the group (G =
+50%). (a) Red dash-circle line: experimental data from Svendsen and Veeramony
(2001); (b) blu solid-circle line numerical results of the proposed model
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Chapter 8

Sensitivity analysis to the eddy
viscosity

8.1 Overview

The analysis of the results shown in Chapter 7 have shown that the adopted Boussi-
nesq model has reasonably good prediction capabilities when the self adaptive time
varying grid apporach is used. Less good results were recovered for determining
the velocity and the undertow profiles. This could be probably associated to a
not appropriate representation of the turbulence structure through a model with
constant over deth eddy viscosity.

Moreover, even though Cox et al. (1995) and Hansen and Svendsen (1979), for
example, used a similar wave tank, they used a different bottom situation: being
rough in the former case and smooth in the latter one. In order to simulate these
two situations with a more or less equal relative error, two different values of the
eddy viscosity were used (v; = 0.035h+/gh and v, = 0.010h+/gh, respectively). This
suggested to perform a sensitivity analysis of the model with respect to the eddy
viscosity. The results of such an analysis are reported here along with a discussion
of the influence of v; on the vorticity and on other wave characteristics.

It is worth pointing out that the model of eddy viscosity adopted, even though
a very simple and probably rough, it takes into account for variations along the
cross-shore direction according to the following expression

v = Cy,hy/gh (8.1)

The analyses have been carried out by using the following simplified vorticity
transport equation

ow 5 0w
ot 1922
in which the horizontal gradient (of order z?) has been neglected. Note that the

(8.2)
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Table 8.I: Values of dimensionless eddy viscosity 2, used

Test I
T1 0.035
T2 0.005
T3 0.01

“sign indicating dimensional variables has been here removed for simplicity sake.
Integrating eq. (8.2) between 2; and 2z, with z; < z3 and applying Leibnitz’s rule,
it follows that

dw

Zg 0z

o _, [0
ot ‘|0z

] (8.3)

where ) is the total vorticity between section z; and section zy defined as

2
Q:f wdz (8.4)

The sensitivity analysis has been carried out here by assuming values of #; in
the range 0.005 <+ 0.035; in particular the values indicated in Table 8.1 have been
considered.

8.2 Evolution of the vorticity profile under a break-
ing wave

The time evolution of the vorticity profiles has been analyzed in order to better
understand the mechanisms of diffusion of vorticity within the flow. Moreover, since
the total vorticity €2 is related, as a first approximation, to the vertical gradient of
the vorticity w, also the time series of the last quantity have been analyzed.

8.2.1 Test 1 (1, =0.035)

Let’s consider the time variation of the vorticity profile at a fixed z-position within
the transition region, that is where there are the most rapid and important vari-
ations of the wave characteristics due to the breaking. In Figures 8.1 the time
evolution of the vorticity profiles is shown within one wave period. The instant
t/T = 0 is assumed to correspond here to the breaking onset. At the dimension-
less vertical location o = 1 the vorticity is equal to the value w, specified at the
lower edge of the surface roller (i.e. forced by the boundary condition). Figure 8.2
shows the history of the vorticity profiles under a breaking wave, holding on the
previous profiles in the current plot. Such a representation allows to keep track of
the presence of vorticity within the flow field, providing a comprehensive picture
of the phenomenon.
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Figure 8.1: Test 1 (% = 0.035). Time evolution of the vorticity profiles at a section
within the transition region during a wave cycle (t/T = 0: initiation of breaking).
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Figure 8.2: Test 1 (# = 0.035). History of the vorticity profiles at a section within
the transition region during a wave cycle (t/T = 0: initiation of breaking).
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Figure 8.3: Test 1 (4 = 0.035). (a) History and (b) Time evolution of the vorticity
profiles at a section within the transition region (t/7" = 0: initiation of breaking).

It can be observed that at ¢ = 1 wy = 0 for most of the wave period. This is
due to the fact the roller passes fast at a chosen location.

Moreover, in order to give a closer view of the dynamics of vorticity generation
and spreading within the flow, Figure 8.3 shows only the very early stages after
the breaker passage.

By analyzing the evolution of vorticity as the roller passes by at the chosen
a-location, it is evident that there is an initially fast growth of vorticity up to the
time t,,q02 at which the vorticity reaches its maximum on the surface and then it
starts to decrease. It can be also noticed that by using the chosen value of eddy
viscosity (i.e. v = 0.035), the vorticity inside the flow is thoroughly dissipated
within half a wave period.

From eq. (8.3), the time variation of the total vorticity {2 between two vertical
elevations may be expressed as the difference between the values of the vorticity
gradient at two different z-locations. In order to investigate the evolution of the
total vorticity at the different stages of breaking, the time variation of w and of the
vertical gradient of it, namely g—“:, at four different elevations z is shown in Fig-
ure 8.4. In particular, the four z-elevations represented by the dots in Figure 8.4(a)
has been chosen between the bottom and the trough level. It can be noticed that
both the initial increase and the later decrease of %‘f are bigger as z increases. This
means that the right hand side of the eq. 8.3 is initially positive, thus the total
vorticity € increases with time, then in a portion of the vertical profile %‘n—l becomes
negative and thus 2 decreases accordingly. This region grows as the time goes on,
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or, in other words, as the roller moves shoreward, and the vorticity is dissipated.
Where the curves in Figure 8.4 collapse to zero the content of vorticity within the
flow is basically zero.

On the other hand, the initial increase of %—‘: is faster then its final decrease,

therefore the growth of € is larger at the beginning.
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8.2.2 Test 2 (v = 0.005)

The dimensionless eddy viscosity has been then reduced to the value of & = 0.005
in order to evaluate the sensitivity of the model to the change of eddy viscosity
and thus to have a picture of the limits of applicability of the model with respect
to this parameter in presence of breaking waves.

Therefore the evolution of the vorticity profiles at the same section within the
surf zone considered in the previous case has been reported in Figures 8.5 and 8.6,
by using the same type of representation adopted before. The results show that
the vorticity initially does not start from a zero constant distribution, as in the
previous case. Indeed, since the eddy viscosity is much more smaller, the modeled
turbulence is much weaker and therefore the vorticity w is spread downward slower.
At the time when the roller arrives a residual vorticity due to the previous roller
is thus still active.

From the analysis of both the aforementioned figures it is evident that the
vorticity is not completely dissipated within a wave cycle but a certain amount of
vorticity is available within the flow. As the figures show (for example compare the
first, t/T = 0, and the last panel, t/T" = 1 of Figure 8.5), the vorticity left over by
the previous roller is basically constant, in other words there is no accumulation of
vorticity within the field, as it should be expected.

In order to get a more significant comparison of the latter results with the ones
from the previous case, the initial distribution of vorticity may be subtracted from
the total vorticity profile, to get the net vorticity only due to the new breaking
effects. The results are shown in Figures 8.7 and 8.8 respectively.

Also here the evolution and the history of the vorticity profile related to the
first instant of breaking have been reported (see Figures 8.9 and 8.10).

By comparing the results obtained with 7, = 0.005 and with & = 0.035, it
can be stated some interesting conclusions. Indeed, it should be noticed that,
as expected, the values of vorticity are bigger when the eddy viscosity is smaller.
Moreover, in the latter situation, there are spurious oscillations in the initial vortic-
ity profiles and there is a not smooth decrease as the roller passes by the location.
The vorticity profiles show also a kink near o = 0.5, whose size decreases with
time. This behaviour is probably due to the fact that the vorticity is spread to-
ward the bottom really slowly, so the “initial” distribution which has been taken off
is quite different under the roller, because more vorticity has been included inside
the domain due to the roller.

In Figure 8.11, the variation of w and %“‘; with time, along four different z-
locations is reported. Comparing with Figure 8.4, due to the oscillations, there
is an initial negative value in g—‘: and then the curves, after reaching a maximum,
decrease faster. In this case, then, the decrease of ) starts earlier than in Test 1
which had a larger eddy viscosity.
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Figure 8.5: Test 2 (4 = 0.005). Time evolution of the vorticity profiles at a section
within the transition region during a wave cycle (t/7 = 0: initiation of breaking).
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Figure 8.6: Test 2 (#; = 0.005). History of the vorticity profiles at a section within
the transition region during a wave cycle (t/T' = 0: initiation of breaking).



8.2 Evolution of the vorticity profile under a breaking wave

145

¥T=0 YT=004  UT=007  ¥T=041  ¥T=0.15  ¥T=0.18  ©T=0.22
1 1 1 1 1 1 1
08 h.8 h.8 0.8 0.8 h.8 h.8
06 0.6 .6 .6 0.6 0.6 h.6
(=]
0.4 h.4 .4 h.4 0.4 0.4 .4
0.2 b2 b2 b2 b2 b.2 h.2
0 0 0 0 0 0 0
0 1020 0 10 20 0 10 20 ©0 1020 0 1020 0 10 20 0 10 20
YT=025  UT=020  tT=083  UT=0.36 YT=0.4 UT=044  ¥T=0.47
1 1 1 1 1 1 1
08 0.8 h.8 0.8 0.8 h.8 0.8
06 0.6 .6 h.6 0.6 b6 h.6
=]
0.4 b.4 h.4 h.4 0.4 0.4 .4
02 b2 02 b2 b2 0.2 .2
0 0 0 0 0 0 0
0 1020 ©0 10 20 ©0 10 20 © 10 20 ©0 10 20 ©0 10 20 ©0 10 20
UT=051  UT=055  UT=058  UT=062  ¥T=065  ¥T=069  ¥T=0.73
1 1 1 1 1 1 1
08 b8 h.8 b8 \ 0.8 \ h.8 h.8
06 0.6 .6 h.6 b6 0.6 h.6
=]
04 0.4 h.4 b.4 h.4 b.4 .4
02 b2 b2 h2 b2 h.2 .2
0 0 0 0 0 0 0
0 10 20 0 1020 0 1020 0 10 20 0 10 20 0 10 20 0 10 20
YT=0.76 YT=0.8 YT=084  UT=0.87  ¥T=091  T=095 YT=1
1 1 1 1 1 1 1
08 b8 h.8 0.8 0.8 h.8 h.8
0.6 b6 h.6 h.6 0.6 0.6 h.6
<] -] =] o] =3 +] =]
0.4 0.4 .4 h.4 b.4 0.4 .4
02 b2 b2 h2 b2 b.2 b2
0 0 0 0 0 0 0
0 10 20 0 1020 ©0 1020 O 10 20 0 10 20 0 10 20 0 10 20
w [Hz] w [Hz] w [Hz] w [Hz] w [Hz] w [HZ] w [Hz]

Figure 8.7: Test 2 (2 = 0.005). Time evolution of the net vorticity profiles at
a section within the transition region during a wave cycle (t/T" = 0: initiation of

breaking)
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Figure 8.8: Test 2 (2, = 0.005). History of the net vorticity profiles at a section
within the transition region during a wave cycle (/T = 0: initiation of breaking).
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Figure 8.9: Test 2 (4 = 0.005). (a) History and (b) Time evolution of the vorticity
profiles at a section within the transition region (t/7" = 0: initiation of breaking).
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Figure 8.10: Test 2 (& = 0.005). (a) History and (b) Time evolution of the net
vorticity profiles at a section within the transition region (¢/1" = 0: initiation of
breaking).
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8.2.3 Test 3 (1 = 0.035)

With this test a value of vorticity much closer to the original one has been consid-
ered, namely &, = 0.01.

In Figures 8.12, 8.13, the time evolution and the history over the water column
of the vorticity and of the net vorticity are shown.

Since also in this case a certain amount of vorticity is left in the field by the
breaking waves, the net vorticity has been represented by taking out the initial
distribution of vorticity from the field (see Figures 8.14 and 8.15).

For completeness, also here the evolution and the hystory of the vorticity profiles
only at the early stages of breaking using a smaller time interval have been reported
in Figures 8.16 and 8.17.

It results that by using a value of eddy viscosity more similar to the one normally
adopted, the expected smooth behaviour of the vorticity profiles is recovered, even
though some small initial oscillation still appears. Then it could be argued that,
as a indicative value, in the previous Test 2 the numerical model was not able to
handle such a low value of eddy viscosity, representing thus a limit for the model.

Finally, Figure 8.18 shows that the trend of the derivatives is quite similar to
the previous case.
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Figure 8.12: Test 3 (¥ = 0.010). Time evolution of the vorticity profiles at a
section within the transition region during a wave cycle (t/7" = 0: initiation of
breaking).
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Figure 8.13: Test 3 (2, = 0.010). History of the vorticity profiles at a section within
the transition region during a wave cycle (t/T = 0: initiation of breaking).
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Figure 8.14: Test 3 (2 = 0.010). Time evolution of the net vorticity profiles at
a section within the transition region during a wave cycle (t/T = 0: initiation of
breaking).
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Figure 8.15: Test 3 (#y = 0.010). History of the net vorticity profiles at a section
within the transition region during a wave cycle (t/T = 0: initiation of breaking).



154

Sensitivity analysis to the eddy viscosity

uT=0 VT=0.02
1 1
[ (@)
0.8 0.8
0.6 0.6
(=]
0.4 0.4
02 0.2
0 0
0 1020 0 10 20
vT=0 YT=0.02 UT=0.04 YT=0.05 VT=0.07 vT=0.09 VT=0.11
1 1 1 1 1 1 1
(b)
08 0.8 0.8 0.8 D8 0.8 0.8
0.6 0.6 0.6 0.6 D.6 0.6 0.6
L=] i+ -] (=] =] -] (-]
04 0.4 0.4 0.4 .4 0.4 0.4
02 0.2 0.2 0.2 0.2 P2 D2
(4] 0 4] 1] (1] o [+]
0 10 20 0 10 20 ©0 1020 0 1020 O 10 20 0 10 20 0 10 20
w[Hz] w [Hz] w[Hz) w [Hz] w[Hz) w[Hz] @ [Hz)

Figure 8.16: Test 3 (7, = 0.010). (a) History and (b) Time evolution of the vorticity
profiles at a section within the transition region (t/7' = 0: initiation of breaking).
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Figure 8.17: Test 3 (& = 0.010). (a) History and (b) Time evolution of the net
vorticity profiles at a section within the transition region (/T = 0: initiation of
breaking).
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Figure 8.18: Test 3 (¥ = 0.010). (a) Surface elevation, (b) Time variation of
vorticity and (c¢) Time variation of % at different elevations.
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Figure 8.19: Comparisons of the calculated surface and velocity profile for different
values of eddy viscosity. Test 1 (14 = 0.035): blue solid line ; Test 2 (v = 0.005):
red solid line; Test 3 (v, = 0.010): green solid line (a) measuring line L1; (b)
measuring line L2; (c¢) measuring line L3; (d) measuring line L4; (e) measuring line
L5; (f) measuring line L6
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8.2.4 Other results

The effects on the vorticity due to the variation of the eddy viscosity has impor-
tant consequences on all the other results provided by the model, such as surface
elevations, velocities, etc. Here the calculated surface elevation and the velocity
profile have been compared when different values of eddy viscosity are adopted (see
Figure 8.19). As expected, there are no appreciable differences inside the shoal-
ing zone, while the wave characteristics are strongly affected within the surf zone.
Indeed, when the eddy viscosity value is decreased, as the modeled turbulence is
weaker, the breaking generated vorticity dissipation, as well as the energy dissipa-
tion, are slower. Thus, as a consequence of that, much larger waves are obtained,
as the comparisons between the surface profiles in Figure 8.19 shows.

The variation of the eddy viscosity strongly affects also the trend of the horizon-
tal velocity profiles. More specifically, by using smaller eddy viscosity the velocity
profiles are more inclined and, in particular, a direction reversal of the horizontal
velocity is recovered earlier.

8.3 Suggested values of the eddy viscosity

The previous analysis have shown, as it was expected, that the performances of
the proposed model are strongly affected by the chosen value of the eddy viscos-
ity. Indeed, by changing this parameter, it is remarkable that the results on the
evolution of the vorticity profiles can be quite different from one another, as a
residual vorticity can be left over within the flow (v, = 0.005 or »; = 0.010) or not
(v = 0.035) by the passage of the previous breaking wave. As it has been demon-
strated, this, in turn, influences all the model results (surface profile, velocities,
etc.). In particular, it has been noticed that for v, too small (v = 0.005), the pro-
posed model shows some instabilities. Even though from the comparisons with the
velocity profiles it arose that a more realistic eddy viscosity model would be much
more suitable, i. e. variable over depth (see for example Section 7.3.3), however,
that would prevent from adopting the computationally economic analytic solution
for w and would require a very complicate treatment of the numerical solution of
the vorticity transport equation, in order to get an accurate solution. Here, as this
simplified model for the eddy viscosity has been used, it can be suggested that,
for breaking waves, v; should be of the order 10, and that smaller values should
not be taken into account. Moreover, as even in the suggested range there can be
remarkable differences a correct calibration procedure of this parameter has to be
considered for the specific case-study.
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Chapter 9

Conclusions

This work has been aimed to study the flow driven by breaking waves in the surf
zone. Among different numerical approaches to study the hydrodynamics, a new
Boussinesq model has been implemented. This model initially started as un up-
dated and debugged version of the existing one by Veeramony and Svendsen (2000,
1999), who removed the usually adopted limiting hypothesis of irrotational flow,
in an effort of giving more physical basis to the modelling of the flow within the
nearshore region. The studies performed suggested to consider for further enhance-
ments the fully nonlinear version of the aforementioned model, particularly in order
to have an improved description of wave characteristics right before breaking oc-
curs. Indeed, as a wave shoals, it acquires highly nonlinear properties, in particular
close to the breaking point, in the adopted model no restrictive hypotheses on the
order of magnitude of the nonlinear parameter 6 have been made. Also, in order
to extend the validity of the model toward deeper regions, the dispersive char-
acteristics of the model in deeper waters have been also enhanced by using the
methodology proposed by Madsen and Sgrensen (1992).

Particular attention has been devoted to the description of the breaking process,
which was described here using the well known surface roller approach. Following
Veeramony and Svendsen (1999), the coupling of this approach along with the
adoption of rotational flow, brought to solve the momentum equation in which so-
called breaking terms, which depend on the breaking generated vorticity and then
represented the signature of breaking, were present. To model these new terms ap-
propriately, the problem of describing the vorticity as forced by breaking was faced
as follows: (i) the vorticity transport equation was solved by assuming the analyt-
ical solution obtained by Veeramony and Svendsen (1999) under the hypothesis of
a constant eddy viscosity over the depth; (ii) the source of vorticity was assumed
to coincide with the lower edge of the surface roller, i.e. the boundary condition
which specifies the appropriate amount of vorticity introduced by breaking, was
implemented by assuming the hydraulic similarity between the recirculating region
of hydraulic jump and the surface roller of a spilling breaking wave.

However, since preliminary analysis did show that the discontinous inclusion
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of vorticity at the toe of the roller due to the breaking was not accurately taken
into account by the model of Veeramony and Svendsen (1999), a new numerical
strategy of solution has been implemented. This new algorithm is based on the
adoption of a self-adaptive time varying grid nested inside the uniform fixed grid in
the roller region. Two main goals were thus reached: (i) the grid moves following
the evolution of the roller, thus refining the position of the crest and of the toe of
the roller respectively; (ii) the grid is more refined only right close to the toe of the
roller and thus the grid accuracy is independent on the roller length.

The cell celerity was taken into account for the evaluation of the derivatives
term. Indeed as the proposed numerical model is more stable, it was also possible
to remove the filtering procedure introduced by Veeramony and Svendsen (1999),
further increasing the accuracy of the breaking term estimates.

By adopting such a numerical approach, the losses of vorticity observed by using
a uniform fixed grid to describe the roller were avoided, and this with a reasonable
computational effort.

As regard to the model performances, first of all, the onset of breaking as
described by the proposed model was validated. Indeed, the adopted breaking
criterion, based on the surface slope (Schiffer et al., 1993), has been validated
against the breaking criterion based on the comparisons between the values of the
surface velocity and the of wave speed. The advantages of using such a criterion is
to avoid any empirical estimates of breaking parameters, such as, for example the
critical wave slope or wave height.

The performances of the proposed model where then qualitatively compared
with those of a similar model in which the roller was described through a fixed
numerical grid, by comparing the vorticity field and the breaking terms. It appeared
that the new proposed approach alloed to obatain more reasonable results and
particularly a bigger amount of vorticity within the flow and thus higher breaking
terms. Indeed, these results were not only consistent with observations of the excess
of momentum flux in the hydraulic jump conditions, but the sudden and impulsive
effects of the breaking wave was better recovered by the proposed model.

The proposed model results have been then tested against literature data for
regular and groupy waves. In most cases also a comparison with the mentioned
reference numerical model which uses the fixed grid were also shown.

On the basis of such a comparison, it is possible to state that the new method-
ology provides more realistic estimates than the previous one especially for what
concerns the surface profiles and the wave heights. In particular, inside the surf
zone the free surface profile calculated by the proposed model showed more clearly
the saw-tooth shape typical of surf zone waves, and the agreement with experi-
mental data of the spatial distribution of the wave height inside the surf zone was
improved. Taking the data of Cox et al. (1995) on the surface profile, as an ex-
ample, the error is reduced from about 10% to 3%; while considering the data of
Hansen and Svendsen (1979) the error on the wave height prediction is reduced
from about 26% (model with a fixed grid) to 14% (proposed model with the mov-
ing grid). However, due to the bigger effects of the rotational velocity obtained by
using the new numerical strategy, as this velocity component is spread uniformly
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over the water column, since it is assumed that the eddy viscosity is constant over
depth, the new approach provided profiles of velocity and of undertow different
from those of the experimental investigations. These differences were also noticed
by applying the model of Veeramony and Svendsen (1999) and could be perhaps
overcome by adopting a more realistic eddy viscosity profile (that is by assuming
an eddy viscosity profile variable over depth).

The wave speed calculated by the model compares very well with the experi-
mental data of Hansen and Svendsen (1979), in the shoaling and in the surf zone,
both for spilling and plunging breakers. It is worth pointing out that the latter
situation is outside of theoretical limit of applicability of any Boussinesq model;
however not only the magnitude of the predicted phase velocity is the same of that
predicted by the model, but also the same scatter observed for this condition in
the data is reproduced by the model.

Some interesting conclusions can be drawn also from the comparisons with wave
group data. Indeed, not only the time series of the surface profile and the wave
height distribution along the domain were predicted in a fairly good manner by
the proposed numerical model, but also phenomena such as the conservation of the
groupiness after breaking, the change of wave height distribution within the group,
the variation of wave length and period and the bore-bore capturing process were
recovered by the model results as well as in the data. To give an order of magnitude
of the fairly good representativeness of the model, it is worth to stress that inside
the inner surf zone, the mean error on the wave height prediction is about 10% on
the highest waves of the group. As the individual waves within the groups break
at different locations, the prediction of the location of the breaking point was also
compared with the one detected during the experiments. It was observed that the
model is able to reproduce the same space variability of the breaking point, but it
underestimates the breaking point position of the smallest waves of the group of
about 1m, that is about 5% of the length of the domain.

Since, as already mentioned, a weak point of the model results was probably
related to the assumption of a constant eddy viscosity over the depth, a sensitivity
analysis was performed. It was shown, as expected, that this parameter strongly
affects the behavior of the model in terms of the distribution of vorticity over the
depth and, in turn, of other results, such as surface and velocity profiles. From
the analysis, it turned out that the use of values bigger than ¥, = 0.005h\/gh is
suggested, in order to avoid numerical instabilities to arise. This analysis thus
confirmed the need for treating this parameter in a more physically based way in
order to improve the application of such a model as a practical tool for solving
engineering problems related to coastal management or to the design of maritime
structures.
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Appendix A

Adopted finite difference
scheme

Let N be the total number of grid points used to discretize the domain, and f be
a generic variable:

First order derivatives , accurate up to O(Az").

(foi = Toac 251+ 480~ 36/s +16f1~3f] (A1)

(felo= popsl-3f1 — 100 +18fs — 6fs + fo (A2)
(fz)i= ﬁ[—f«sw +8fiy1 — 8fi—1 + fi-a)

fori=3,4,..., N—3,N—-2 (A.3)

(£ )m=1= —ﬁlvlﬁv —10fN-1+18fn_2—6fn_3+ fn_4a] (A.4)

(fa)n = —ﬁ[—%ﬂv +48fn—1—36fn_2+ 16fn_3 — 3fn-4]A.5)

First order derivatives accurate up to O(Az?). Centered scheme inside the
domain:

(fa)i = ﬁ[fiﬂ—fi—l] (A.6)
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One-sided scheme at the boundaries:

b = ~gx=[3fi—4f2+ fi

(fon = gaclfv-z—4fn-1+3fn]

Second order derivatives , accurate up to O(Az?).

(hadi = m—;)—z[2f1—5fs+4fa—fq]

1
(fax)i = W[fi+l =2fi + fi-1],
fori=2,3,.,.N—-2,N—-1

(Feod = Taaalef —5fwor+4fw-a— fr)

Third order derivatives , accurate up to O(Az?).

(fxm.’r)Z — _2[[fz = 2(f::)2 + (f:r)3]
(franly = 2(A )3 [(fixe — 2fix1 + 2fim1 — fi-o)
fori=3,4,...N—3,N -2
(eIt = aggallfel = 2fawos + el
1

(f.r:m}N = A )2[(fz N — 2(f:r).’\r 1"|“ fa:)N 2]

(A7)

(A.8)

(A.9)

(A.10)
(A.11)
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Appendix B

On the the undertow and the
wave volum flux in laboratory
and numerical wave tank

In the nearshore region, a shoreward net volume flux is associated to the wave
motion. In order to satisfy the conservation of mass, this wave volume flux is
balanced by the generation, under trough level, of a current directed offshore,
called undertow. When waves are generated in a wave tank, both for laboratory
and for numerical wave flumes, the usual initial condition is still water. Then, as the
wavemaker starts, together with the waves in the tank a slosh process is generated,
having oscillations period much longer than the short waves. The results is that
there is not a zero balance until a steady condition is reached.

A brief discussion is presented here to stress the difficulty of computing the
undertow and the volume flux according to a wave theory, both from laboratory
measurements and numerical calculations. This is mainly due to the definition of
the variables itself. Thus, at first, some definitions will be given, then the steady
flow case will be considered in order to provide an operational definition of volume
flux. Then it will be shown that, by changing the reference system, it is possible to
derive some considerations about the definition of the undertow current itself even
in the presence of sloshing.

B.1 Definitions

With reference to the scheme reported in Figure B.1, the horizontal velocity u can
be split into a mean and an oscillating part as

U= Usnean + Yw (B.1)

where Umean is the velocity averaged over a wave period 1" and defined as
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Figure B.1: Adopted reference system
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)

while u,, is the wave velocity, which has to satisfy the following condition

T
/ Updt =0 (B.3)
0

below the trough level ¢;. It must be noticed that the reference system used here
is the same as before (see Figure B.1), while the adopted symbology is slightly dif-
ferent for notation simplicity. In particular, here the local water depth is indicated
as ho when is referred to the still water level (which coincides with the z-axis) and
h when is referred to the mean water level, that is

b= b€ (B.4)

where ¢ is the mean water level.
Moreover, in the case of a laboratory or numerical wave tank to take into
account the slosh phenomenon, eq. (B.1) should be rewritten more properly as

= U+ Usiosh + tw (Bﬁ)

where U is the undertow current directed offshore and Uy represents the slow
oscillation inside the wave tank, generated by the slosh due to the wave motion
which starts from a still water condition (#mean = U +Usiosn). The slosh oscillation
is much slower than the wave motion, therefore it may be retained within the
definition of the mean flow.

The volume flux is defined instead as
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4 Gt ¢ Ce ¢
Q 2/ udz =/ (Umean + Uw)dz +f udz =f Unsanl2 +/ udz (B.6)
~ho t

—hg —ho '

In the previous definition, however, tmeqan can be rigorously defined only below
trough level, whether the definition of the same variable above trough level is not
trivial, as between ¢; and ¢ there is no water for some time during a wave period.

Moreover the definition of the net volume flux, which is averaged over a wave

period, is
G=n[ [ ua 3.7
= — udz T
T'do Wity
and, from the last expression, a fictious velocity can be defined as
- Q
Vi W (B.8)

It can be defined, but not calculate, the net wave volume flux

¢
i I8 :f Uydz (B.9)

while, from the operational viewpoint, the following quantity Zjiu

- <
Q, = | wudz (B.10)
Ce

can be instead calculated, which is associated to the volume flux through the fol-
lowing relationship

s
ij = c_j:.u = / Umeand? (B'll)

B.2 Steady flow

If the flow, is steady the net volume flux must be zero, meaning that the wave
volume flux must be balanced by a returning flow, the undertow indeed.

Q=0 (B.12)

¢
/ udz =0
—h(l
Ce ¢
/ udz + f udz =0
—hp t
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Gt _ 9
/ UmeandZz + umeaﬂ(c = Ct} + / Uydz =0

e I'Bn 13

Gt
f Umeand? + Q:_u =0 (Bla)
—ho

B.3 Changing the reference system

In a reference system which moves with the wave at the phase speed ¢ (see Fig-
ure B.1) the horizontal velocity seen from this reference system becomes

v=u—c¢ (B.14)

If there is no net volume flux, that is if @ = 0, and assuming a wave with
quasi-permanent form, it is possible to write the volume flux as

1
Q= ]_h udz = e (B.15)

then in the reference system moving with the wave

7 r;
/ vdz = (u—c)dz =en —e(h+n) = —ch (B.16)

—h —h

When there is a nonzero net volume flux (Q # 0) according to Van Dongeren
and Svendsen (1997)

Q:/_hudz=cn+Q (B.17)

then in the moving frame

n 1] - -
Q=/_hvdz=f_h(u—c)dz:cq+Q—c{h—|—n):Q—ch (B.18)

From the previous equation, the depth averaged velocity results

R

i (B.19)

>0l

thus recalling the expression for the fictitious velocity V it follows that

?I%éf”ﬁﬁ‘l‘czumeqn (B'ZU)

The equation for the current due to the oscillation in the wave tank is

0% oV aC
BT Vg

(B.21)
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since this current is driven only by the pressure gradient.
Assuming that ¢ << h, the pressure is hydrostatic and
V(z)=V (B.22)

that is, the current due to the oscillation generated by the slosh inside the wave
tank is constant over depth.

B.4 Undertow and wave volume flux

Since the undertow is defined as

ou
T(Z) = pU"a'; (B.23)
If the effect of the current V, which is constant over depth, is considered, the result

due to the undertow is not going to change, indeed

7(z) = = =PV, (B.24)

Thus the undertow variation over the water column is not affected by the oscilla-
tions (having constant velocity over depth) in the wave tank.
The real undertow should be

(B.25)

Uuﬂr!'er&aw(z) = Umean —

=)

and the wave volume flux

¢ 9 Gt 'Q'
Qw = / 1):'wd‘z = / U‘lmdertowdz = f (umﬂan = _) dz (B26)
Ce —ho —ho h
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A area of the roller region
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Cy group velocity
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d total water depth
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P pressure
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Qu wave volume flux
A operational wave volume flux
Q net volum flux over a wave period
Qo net wave volum flux over a wave period
Zj:” net, operational wave volum flux over a wave period
Qa volume flux in the direction o
RS horizontal component of the force on the free water surface
Sap radiation stress in the a direction across a plane normal to the
direction @
Sy lateral turbulent stress
t time in the physical domain
t* time in the image domain
T wave period
T mean wave period of a groupy wave
T duration of the breaking event
u horizontal velocity
Uy, wave velocity
u’ turbulent velocity
u horizontal velocity vector
U depth averaged velocity
i velocity at the bottom
 T——— time averaged velocity

potential velocity
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Up
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Uy
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Uslosh
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depth averaged potential velocity

rotational velocity

velocity at the surface

horizontal velocity in the direction o

Nwogu’s reference velocity

horizontal wave velocity in the direction o

horizontal wave velocity in the direction

undertow current

slosh velocity

average velocity upstream with respect to the jump

mean velocity

generalized u variable of the momentum equation

Ursell number

longshore current

fictious velcocity

horizontal velocity in a frame moving with the waves
dissipation function of the sponge layer

horizontal coordinate in the cross-shore direction

a-axis moving at the wave speed

horizontal coordinate in the image domain

z-position of the crest -

z-position of the point inside the subgrid

length of the computational domain

x-position where the sponge layer starts

dimensionless horizontal coordinate within the sponge layer
x-position of the toe

position of the toe onto the fixed grid

horizontal coordinate in the longshore direction

vertical coordinate

Nwogu’s reference level

wave energy flux

angle of inclination of a breaking wave

critical value of the water slope for the onset of breaking
threshold value of the water slope for the end od breaking
parameter of the sponge layer

incoming characteristic at the offshore boundary

outgoing characteristic at the offshore boundary

nonlinear parameter

Kroenecker’s delta

difference between the height of the highest wave and that of the
smallest wave of the group

excess of momentum flux due to the vertical variation of the ro-
tational velocity, O(1)

excess of momentum flux due to the vertical variation of the ro-
tational velocity, O(u?)
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(AP)zat contribution to the pressure due to the vertical motion

At uniform time grid step

Aty ero—up time for the zero-up crossing point to move from the previous to
the next section

Azx uniform space grid step

Az, interval for the first grid subdivision inside the roller

PAN interval for the finer grid subdivision of the roller

Al 5C — 2

Ag 0%¢2 — 6Ch + h?

¢ surface elevation with respect to the still water level

¢ difference between the mean water level and the still water level

Ceb crest elevation at the breaking point

Ce elevation of the lower edge of the roller

Cs thickness of the surface roller

G trough elevation

7 surface elevation with respect to the mean water level

0 angle representing the direction of wave propagation

o angle representing the direction of wave propagation at a reference

& l‘?lfg Eggpresenting the direction of wave propagation at the break-
ing point

K ratio between the eddy viscosity and the depth

L dispersiveness parameter

Vg eddy viscosity

Va Zelt's artificial viscosity

£ ratio between hs and hy

p water density

o stretched vertical coordinate

Th bottom shear stress

Tz normal Reynolds stress in the x direction

Tk shear Reynolds stress in the z direction

T horizontal component of the force on the bottom

¢ velocity potential

o velocity potential at a reference level

P stream function

w 3D vorticity

w vertical vorticity

Wy vorticity at the lower edge of the roller
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