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Abstract

A hybrid spectral-compact finite difference scheme for turbulent-resolving sim-

ulation of fine sediment transport in bottom boundary layer is presented. The

numerical model extends an earlier pseudo-spectral model for direct numerical

simulation (DNS) of turbulent flow with a sixth-order compact finite difference

scheme in the wall-normal direction on Chebyshev grid points. The compact fi-

nite difference scheme allows easy implementation of flow-dependent properties

(e.g., viscosity, diffusivity and settling velocity) and more flexible boundary con-

ditions while still maintain spectral-like accuracy. The numerical model is vali-

dated with analytical solutions of flow velocity and particle concentration of two

simple Newtonian rheology closures in laminar channel flow as well as prior lab-

oratory and DNS data of turbulent channel flow. Several numerical simulations

were carried out in a turbulent channel flow setting to investigate the interplay

between two turbulence modulation mechanisms induced by the presence of sed-

iment, namely the sediment-induced density stratification and the effects of rhe-

ological stress. We demonstrate that at the given Reynolds number, Richardson

number, and nondimensional settling velocity considered here, the flow remains

turbulent but sediment-induced density stratification already cause noticeable drag

reduction. By further introducing a Newtonian rheological stress into the system,

onset of laminarization is observed due to the enhanced viscosity.
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1 Introduction

Understanding the deposition, resuspension and transport of fine sediment in fluvial, es-

tuarine and coastal environments is vital to the prediction of a variety of water resource

problems. For example, to maintain the navigation of waterways, dredging is routinely

carried out in numerous inlets and estuaries throughout the world. Moreover, the disper-

sal and the fate of these dredged sediments, sometimes contaminated, become another

critical concern. Through flocculation, fine sediment transport becomes the vehicle for

the transport of carbon, nutrient and pollutant [Santschi et al.(2005)]. Hence, the timing

and amount of fine sediments resuspended by tidal currents and waves from the benthic

zone are critical to the geo-chemistry and biological response of an ecosystem.

There are several main challenges in modeling fine sediment transport in the bot-

tom boundary layer due to the co-existence and the strong coupling of several mecha-

nisms. The presence of fine sediments can attenuate flow turbulence, enhances mean

flow (i.e., drag reduction), and in turn suppresses sediment suspension. When sedi-

ment concentration becomes large, inter-particle (or inter-floc) interactions give rise to

rheological stress that can be parameterized with an enhanced viscosity (i.e., Newto-

nian [Einstein(1906), Krieger(1972), Krieger and Dougherty(1959)]) or a shear thin-

ning [Stickel and Powell(2005)] and a yield behavior [Kessel and Kranenburg(1996),

Liu and Mei(1990)]). It is well-established from experimental and field observations

that transport of fine sediment (i.e., mud) often experiences transition from turbulent to

laminar condition [Kessel and Kranenburg(1996), Sahin et al.(2012), Traykovski(2010)].

Such transition has critical implications to large-scale fluid mud transport and hydrody-

namic dissipation. For instance, Winterwerp (2001) demonstrated that the transition

between turbulent and laminar condition in a mud-laden tidal boundary layer is di-

rectly associated with the sediment carrying capacity. Under dilute flow assumptions

without the consideration of rheological stress, the laminarization can be attributed to
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sediment-induced stable density stratification [Winterwerp(2001), Cantero et al.(2009),

Cantero et al.(2012), Ozdemire et al.(2010)]. On the other hand, Kessel and Kranen-

burg (1996) model the observed turbulent-laminar transition of fluid mud on a sloping

bed solely based on rheological stress. Essentially, they show that through both en-

hanced effective viscosity and yield stress [Liu and Mei(1990)], rheological stress can

reduce the effective Reynolds number and trigger laminarization. In general, both tur-

bulence modulation and rheological stress co-exist in fine sediment transport. We are

motivated to develop a turbulence-resolving simulation model for fine sediment trans-

port that is capable of incorporating rheological stress and turbulence modulation in

order to investigate the inter-play between these two mechanisms in determining the re-

sulting turbulent-laminar flow transition.

To investigate the transition between laminar and turbulent conditions due to turbu-

lence modulation and rheological stress, a turbulence-resolving simulation approach is

adopted in the present study. Because our primary goal is to resolve a wide range of

turbulent length scales (at lower Reynolds number, all the scales of turbulence are re-

solved), a 3D numerical scheme with high accuracy is required. Pseudo-spectral meth-

ods are widely used in direct numerical simulations of turbulent flow [Kim et al.(1987),

Moser and Moin(1987), Spalart(1988)] due to its high accuracy. By using informa-

tion from the whole computational domain to calculate the derivatives, the pseudo-

spectral method converges exponentially towards the exact solution with high accuracy

for a wide range of scales. Pseudo-spectral method is, however, not flexible in terms

of boundary conditions[Boyd(2001), Gottlieb and Orszag(1987), Canuto et al.(2011)].

For sediment transport applications where the viscosity, diffusivity and settling velocity

are generally flow-dependent variables, the applicability of the pseudo-spectral scheme

is limited.

On the other hand, explicit finite difference and finite volume methods are the most
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widely used numerical schemes due to its robustness in handling complex boundary con-

ditions, flow properties and complicated geometries. However, these schemes only use

neighboring points provided by the given stencil size, and converge slowly to the exact

solution. To achieve the same accuracy as the pseudo-spectral method in a turbulence-

resolving simulation, grid refinement is required. With its spectral-like resolution, rea-

sonable computational cost and its robustness in terms of boundary conditions, com-

pact finite difference methods [Lele(1992)] are becoming popular in CFD community

[Shah et al.(2010), Hokpunna and Manhart(2010), Boersma(2011), Pereira et al.(2001),

Shukla et al.(2007)]. The first-order and higher-order derivatives are calculated implic-

itly with the information from all grid points of the computational domain for compact

finite difference schemes. Compared to explicit finite difference schemes, compact fi-

nite difference schemes provide significantly higher accuracy with the same stencil size

[Lele(1992)]. This point will be illustrated in more details in Section 3.6.

The purpose of this report is to present a 3D turbulence-resolving numerical simu-

lation model for fine sediment transport in the bottom boundary layer based on a hy-

brid spectral and compact finite difference scheme. Model formulation for fine sedi-

ment transport following equilibrium Eulerian approximation of Balachandar and Eaton

(2010), appropriate for small Stokes number, is briefly discussed in Section 2. The nu-

merical scheme of the present model, which extends from an earlier pseudo-spectral

scheme of Cortese and Balachandar (1995) with the implementation of compact differ-

ence scheme in the vertical direction is discussed in Section 3. Section 4 presents model

validations and applications. Specifically, we present a preliminary investigation in Sec-

tion 4.2 on how Newtonian rheology with an enhanced viscosity can trigger laminariza-

tion of fine sediment in a turbulent boundary layer in conjunction with sediment-induced

density stratification. Conclusion and future works are summarized in Section 5.
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2 Model Formulation

In this study, we consider fine sediment transport in a turbulent flow with the Stokes

number (St = τp/τf with τp the particle response time and τf the fluid time scale)

smaller than unity. Ferry and Balachandar (2001) demonstrated that for particles with

small Stokes number (St << 1), the equilibrium approximation can be adopted where

sediment phase velocity can be given explicitly as the sum of the fluid phase velocity, the

settling velocity of sediment particle, and an asymptotic expansion of the Stokes number

St (see also Ferry and Balachandar (2002) and a more recent review by Balachandar and

Eaton (2010))

ṽ = ũ + W̃s +O(St) (1)

ũ is the fluid phase velocity, ṽ is the sediment phase velocity and W̃s is the settling

velocity of particles. In this report, the variables with ˜ represents dimensional flow

variables. The key advantage of the equilibrium approximation is that the particle phase

velocity can be explicitly calculated via the algebraic relationship shown in equation

(1) without the need to solve the full momentum equations of the particle phase. As

shown by Cantero et al. (2009), by substituting equation (1) into the standard Eulerian-

Eulerian two-phase equations for fluid and particle phase and making the Bousinessq

approximation, the resulting governing equations for fine sediment transport become

∇̃ · ũ = 0 (2)
∂ũ

∂t̃
+ ũ · ∇̃ũ = −1

ρ
∇̃p̃+ ∇̃ · [ν(∇̃ũ + ∇̃ũT )] + gφ̃e3 (3)

∂φ̃

∂t̃
+ ∇̃ · (ṽφ̃) = ∇̃ · (κ∇̃φ̃) (4)

where ν is the effective kinematic viscosity of the fluid, and κ is the diffusion coefficient

of the sediment phase. In this set of simplified governing equations, which are appro-

priate for small Stokes number, the continuity and momentum equations of the carrier
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fluid phase are similar to the Navier-Stokes equations. The only coupling term between

the particle phase and the carrier fluid is the particle-induced density stratification (see

the last term in equation (3)). The sediment phase is calculated by the mass balance

with particle phase velocity computed by equation 1. In Section 5, we will justify that

the fine sediment transport problem investigated in this study satisfies the small Stokes

number assumption.

There have been many studies on the effective viscosity of fluid with the presence

of (sediment) particles. These rheology models consider the viscosity as a function

of the sediment concentration φ̃ and the shear rate[Stickel and Powell(2005)]. Since

the main purpose of this study is to introduce the numerical model and carry out pre-

liminary investigation on the interplay between rheology and turbulence closure, we

consider the effective viscosity to be only a function of sediment concentration, i.e.

Newtonian rheology with ν = ν0f̃(φ̃), where ν0 is the kinematic viscosity of the clear

fluid. Under the action of shear, the settled particles can be resuspended in turbulent

flow. This shear-induced dispersion is very important in mixing sediment particles,

and the shear-induced sediment phase diffusion coefficient has also been widely studied

[Schaflinger et al.(1990), Acrivos et al.(1993), Leighton and Acrivos(1986)]. The diffu-

sivity of sediment phase is given as a function of φ̃ only, κ = κ0h̃(φ̃).

If we choose the characteristic length scale L, the characteristic velocity scale U and the

volume averaged sediment concentration Φ =
∫
V
φ̃(x̃, ỹ, z̃)dṼ/V , define

x =
x̃

L
, t =

t̃

L/U
, u =

ũ

U
, v =

ṽ

U
, p =

p̃

ρU2
φ =

φ̃

Φ
(5)
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above governing equations can be non-dimensionalized

∇u = 0 (6)
∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇ · [f(φ)(∇u +∇uT )] + Riφe3 (7)

∂φ

∂t
+∇ · (vφ) =

1

ReSc
∇ · (h(φ)∇φ) (8)

v = u + Ws +O(St) (9)

where the non-dimensional groups are defined as

Re =
UL

ν0
, Ri =

gL(γ − 1)Φ

U2
, Sc =

ν0
κ0
, Ws =

W̃s

U
(10)

where γ = ρs/ρf is the specific gravity of sediment particles. The forms of f(φ) and

h(φ) depend on the rheological model adopted. In this study, we adopt simple Newto-

nian rheology closures that only involve f(φ) and the diffusivity of the sediment phase

is set to be a constant κ = κ0 (i.e., h(φ) = 1).

3 Numerical method

The mathematical formulation presented in the previous section is rather general for

fine sediment transport modeling. In this study, we utilize this formulation to study fine

sediment transport in the bottom boundary layer. A detailed description of the numerical

schemes along with boundary conditions are presented in this section. We modified the

spectral scheme developed by Cortese and Balachandar (1995) . The flow of interest is

periodic in both streamwise and spanwise directions and hence Fourier expansions are

implemented in these two directions. The top and bottom boundaries are specified to be

wall boundaries and in this study a 6th-order compact difference scheme is implemented

on a Chebyshev grid. We first introduce the governing equation in Fourier space and then
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Figure 1: Sketch of the computational domain.

the time integration and the spatial discretization are discussed.

3.1 Fourier expansion

As figure 1 shows, the flow is periodic in both stream-wise and span-wise directions,

therefore, Fourier expansion is implemented in these directions to enforce the periodic

boundary condition. In the vertical direction, no-slip and no-penetration velocity bound-

ary conditions are implemented for the wall boundary conditions. We employed a 6th

order compact finite difference scheme, which will be discussed later. The velocity field
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can, therefore, be written as

u(x, y, z; t) =
∑
kx

∑
ky

û(kx, ky, z; t)e
i(kxx+kyy) (11)

with û represents the Fourier transform of u.

To solve the governing equations 7 and 8 with the effective kinematic viscosity and

diffusivity as a function of concentration, convolution operation is required in Fourier

space for the viscous term. This makes the equations very difficult solve. We decompose

the function f(φ) in real space as f(φ) = f̄ + f ′, where

f̄ =< f(φ) >, f ′ = f(φ)− f̄ (12)

with < · > signifying the average operation over the x − y horizontal plane. Now

equation 7 can be written as

∂u

∂t
+ u · ∇u = −∇p+

f̄

Re
∇2u + Riφe3 +

f ′

Re
∇2u +

2

Re
∇f · S (13)

where S = (∇u +∇uT )/2 is the strain rate tensor.

By taking the Fourier transform, the above governing equation can be written as

∂û

∂t
+ F(u · ∇u) =−F(∇p) +

f̄

Re

[
−(k2x + k2y) +

∂2

∂z2

]
û + Riφ̂e3

+ F
(
f ′

Re
∇2u +

2

Re
∇f · S

) (14)

with F() as the Fourier transform operator.

To solve equation (9) for sediment concentration, we can take the same decomposition

with h(φ) =< h(φ) > +(h(φ)− < h(φ) >) = h̄ + h′, and the governing equation in
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Fourier space can be written as

∂φ̂

∂t
+ F(v · ∇φ) =

h̄

ReSc

[
−(k2x + k2y) +

∂2

∂z2

]
φ̂

+ F
{

1

ReSc
∇ · (h′∇φ) +

1

ReSc
∇h̄ · ∇φ

} (15)

The nonlinear terms in equation (14) and (15) are calculated in the real space and

dealiased using the two-thirds method[Boyd(2001), Moin and Kim(1982)].

3.2 Time integration

Equation 14 and 15 are solved with a standard projection method. The velocity is first

advanced to the intermediate level û∗, which is not divergence-free. Subsequently in

the correction step, the pressure is solved by the Poisson equation, then the intermediate

velocity û∗ is projected to the divergence-free field. In this paper, the nonlinear terms are

advanced by a third-order low-storage Runge-Kutta method [Williamson(1980)], and the

semi-implicit second-order Crank-Nicolson scheme is used for the diffusion terms. The

viscous terms are treated semi-implicitly in order to relax the strong stability restriction

on the time step. For the advection term, Arakawa scheme [Arakawa and Lamb(1980)]

is implemented, where for odd time step, the advection form is used and for even time

step, the divergence form is used.

To simplify the notation, we define the advection operators and the diffusion operator as

A(û) = −F [u · ∇u], D(û) =
f̄

Re
∇2û =

f̄

Re

[
−(k2x + k2y) +

∂2

∂z2

]
û (16)

Projection method [Chorin(1968)] is used to solve the Navier-Stokes equations. The

low-storage third order Runge-Kutta method is adopted for the time integral, and in the
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prediction step the intermediate velocity is calculated as

û(0) = û(t(n)) (17)

Ĥ(m) = ∆t

[
A(û(m−1)) + Riφ̂e3 + F

(
f ′

Re
∇2u(m−1) +

2

Re
∇f · S(m−1)

ij

)]
+ cnl1(m)Ĥ(m−1)

(18)

û(m∗) = û(m−1) + cnl2(m)Ĥ(m) + cd(m)[D(û(m−1)) +D(û(m∗))] (19)

At this point, the intermediate velocity is not divergence-free. In the correction step,

pressure Poisson equation is first solved, then the velocity field is projected to the

divergence-free field. The correction step can be written as:

∇2p̂ =
1

2cd(m)
∇ · û(m∗) (20)

û(m) = û(m∗) − 2cd(m)∇p̂ (21)

û(t(n+1)) = û(3) (22)

where m = 1, 2, 3 and cnl1 = {0,−5/9,−153/128}, cnl2 = {1/3, 15/16, 8/15},

cd = {∆t/6, 5∆t/24,∆t/8} with ∆t the time-step. The super script ∗ means variables

at the intermediate step. For our study, the time step is chosen based on CFL criterion.

3.3 Spatial discretization

A 6th order centered compact finite difference scheme is implemented in the vertical

direction in this study. A general compact finite difference scheme for one-dimensional

problems centered at xi has the form

u
(p)
i +

∑
j∈In

aju
(p)
j =

∑
j∈In

bjuj +
∑
j∈Im

bjuj (23)
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where uj are the function values given at the grid points xj ∈ In ∪ Im and u
(p)
j are

the values of the p-th derivative of the function given at the grid points xj ∈ In. For

the boundary layer flow, finer grid is required near the wall, therefore, non-uniform

grid is preferred for both computational efficiency and numerical stability. For high or-

der compact finite difference scheme on non-uniform grid, we need to solve for the

coefficients aj and bj . If Taylor’s expansion is used to solve for these coefficients,

the problem can be ill-conditioned and the results will be contaminated by the nu-

merical errors[Shukla and Zhong(2005)]. A general derivation of the compact finite

difference scheme on non-uniform grid based on Lagrangian Polynomial is given by

[Shukla and Zhong(2005)]. The use of non-uniform grid also can alleviate the numeri-

cal instability arising from the boundary treatment of compact finite difference schemes

[Pereira et al.(2001), Shukla and Zhong(2005)]. A tridiagonal 6th order compact finite

difference scheme is implemented in this study, where the point sets are chosen as

Im = {i − 2, i, i + 2} and In = {i − 1, i + 1}. Centered schemes are implemented

for the interior region, and one-sided scheme is utilized around the boundary. For the

interior grids, we have

ai−1u
′
i−1 + u′i + ai+1u

′
i+1 = bi−2ui−2 + bi−1ui−1 + biui + bi+1ui+1 + bi+2ui+2

ci−1u
′′
i−1 + u′′i + ci+1u

′′
i+1 = di−2ui−2 + di−1ui−1 + diui + di+1ui+1 + di+2ui+2

with a, b, c and d derived based on Lagrangian Polynomials [Shukla and Zhong(2005)].

The detailed derivation following [Shukla and Zhong(2005)] can be found in the Ap-

pendix. At the bottom wall boundaries, an one-sided scheme is used to keep the 6th

18



order accuracy:

a1u
′
1 + u′2 + a3u

′
3 = b1u1 + b2u2 + b3u3 + b4u4 + b5u5

u′1 + a2u
′
2 = b1u1 + b2u2 + b3u3 + b4u4 + b5u5 + b6u6

c1u
′′
1 + u′′2 + c3u

′′
3 = d1u1 + d2u2 + d3u3 + d4u4 + d5u5

u′′1 + c2u
′′
2 = d1u1 + d2u2 + d3u3 + d4u4 + d5u5 + d6u6

and at the top boundary, we have

aN−2u
′
N−2 + u′N−1 + aNu

′
N = bN−4uN−4 + bN−3uN−3 + bN−2uN−2 + bN−1uN−1 + bNuN

u′N + aN−1u
′
N−1 = bN−5uN−5 + bN−4uN−4 + bN−3uN−3 + bN−2uN−2 + bN−1uN−1 + bNuN

cN−2u
′′
N−2 + u′′N−1 + cNu

′′
N = dN−4uN−4 + dN−3uN−3 + dN−2uN−2 + dN−1uN−1 + dNuN

u′′N + cN−1u
′′
N−1 = dN−5uN−5 + dN−4uN−4 + dN−3uN−3 + dN−2uN−2 + dN−1uN−1 + dNuN

3.4 Matrix formulation

It is useful to rewrite the compact finite difference schemes in matrix form for the solu-

tion of the velocity Helmholtz equation and the pressure Poisson equation. The matrix

form of the first and the second order derivatives are

A1f
′ = B1f, A2f

′′ = B2f (24)

with ′ signifying the derivative with respect to z. The first derivative can be written as

f ′ = A1
−1B1f (25)
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Although matrix A1 is a tridiagonal matrix, the inverse of A1 is a dense matrix. There-

fore, the product A1
−1B1 is also a dense matrix. The same applies to the second order

derivatives. To take full advantage of banded property of matrix A1, A2 and B1, B2,

the numerical solution of the semi-discrete Helmhotz equation is accomplished by LU

decomposition with pivoting.

The semi-implicit time-integration method leads to a Helmholtz equation for the ve-

locity field in the prediction step. The diffusion operator can be written as D() =

DA2
−1B2 − (k2x + k2y)D, where D = diag(f̄i/Re), and equation 19 now becomes

D(û(m∗))− û(m∗)

cd(m)
= b̂

where b̂ = −[û(m−1) + cnl2(m)Ĥ(m)]/cd(m) − D(u(m−1)). We can then re-write the

above system as

DA2
−1
[
B2 − (k2x + k2y)A2 −

1

cd(m)
A2D

−1
]
û(m∗) = b̂ (26)

where A2 and B2 are both banded matrix. Thus, the final form can be written as

Cû(m∗) = b̂′ (27)

where b̂′ = A2D
−1b̂, and C = B2− (k2x+k2y)A2−AD−1/cd(m) . C is also a banded

matrix, the above equation can be direct solved using LU decomposition method (dgbsv

from LAPACK package).

In the correction step, projection method is used and pressure Poisson equation need to

be solved. The pressure Poisson equation is written as

∇2p̂ =
1

2cd(m)
(ûx + v̂y + A−11 B1ŵ) (28)
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where ûx = −ikxû and v̂y = −ikyv̂ in Fourier space. It has been pointed out that

for compact finite difference scheme, the second order derivative discretization is not

compatible with the first order derivative discretization [Boersma(2011)], which means

A−12 B2f 6= A−11 B1(A−11 B1f) (29)

This will introduce large numerical error if we direct use the second order derivative

scheme to solve the pressure Poisson equation and correct the velocity filed using the

first order derivative scheme. The right discretization for the pressure Poisson equation

[Boersma(2011)] will be

−(k2x + k2y)p̂+ A−11 B1(A−11 B1p̂) =
1

2cd(m)
(ûx + v̂y + A−11 B1ŵ) (30)

For medium sized problem (number of grid points in vertical direction Nz not very

large), direct solver is affordable and implemented in our study. Define F = (A−11 B1)2,

and take the eigen-decomposition (dgeev from LAPACK package), we obtain

F = RΛR−1 (31)

where Λ is a diagonal matrix with the eigen values of matrix F as its elements. The

above Eq. (30) now writes

R(Λ− (k2x + k2y)I)R−1p̂ =
1

2cd(m)
(ûx + v̂y + A−11 B1ŵ) (32)

and can be solved with given R, Λ and R−1.
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3.5 Boundary conditions

Flow velocity field u satisfies no-slip and no-penetration boundary conditions at the

wall boundaries. Because the projection method separates the momentum equation into

two parts, the no-slip boundary condition and incompressibility condition can not be

satisfied simultaneously. A proper choice of boundary conditions for the intermediate

velocity ũ must be made in order to minimize the slip at the correction step. A boundary

condition for pressure must also be specified. It can be shown that although there is no

natural boundary condition for pressure, a self-consistent, pure Neumann condition will

allow the slip velocity to be minimized.

An analysis of the pressure part of the time splitting routine yields all the necessary

boundary conditions. Defining τ to be the unit vector tangential to the wall, the tangen-

tial component of the pressure correction step is

τ · u(m)|z=±1 = τ · [u(m∗) − 2cd(m)∇p(m)]|z=±1 (33)

The no-slip condition requires the left hand side of equation 33 to be zero. This can be

used to obtain the boundary condition of the intermediate velocity ũ as

τ · u(m∗)|z=±1 = 2cd(m)τ · ∇p(m)|z=±1 (34)

Because the pressure p(m) has not yet been computed when the intermediate velocity

u(m∗) is calculated with the corresponding boundary condition needed, an approxima-

tion of ∇p(m) must be used instead. A second order accurate approximation is used in

this study, which gives

∇p(m) = ∇p(m−1)
[
1 +

cd(m)

cd(m− 1)

]
−∇p(m−2)

[
cd(m)

cd(m− 1)

]
+O(∆t2) (35)
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Hence, the corresponding boundary conditions for the intermediate velocity component

are

u(m∗)|z=±1 = 2cd(m)

{
∂p(m−1)

∂x

[
1 +

cd(m)

cd(m− 1)

]
− ∂p(m−2)

∂x

[
cd(m)

cd(m− 1)

]}∣∣∣∣
z=±1

(36)

v(m∗)|z=±1 = 2cd(m)

{
∂p(m−1)

∂y

[
1 +

cd(m)

cd(m− 1)

]
− ∂p(m−2)

∂y

[
cd(m)

cd(m− 1)

]}∣∣∣∣
z=±1

(37)

Moreover, the pure Neumann boundary condition for the pressure field

∂p(m)

∂z

∣∣∣∣
z=±1

= 0 (38)

gives the boundary condition for the vertical component of intermediate velocity

w(m∗)|z=±1 = 0 (39)

For sediment concentration, the boundary condition at both the top and bottom bound-

aries are given as

−Wsφ+
1

ReSc
∂φ

∂z
= 0 (40)

with the diffusivity of sediment set to be a constant in this study. This boundary con-

dition imposes no net deposition and suspension from the well boundary. It allows the

total mass of sediment in the computational domain to be conserved throughout the

computation.

3.6 Numerical analysis in the wall normal direction

In this section, we demonstrate the numerical accuracy of the present sixth-order com-

pact finite difference scheme on Chebyshev grid points. When a high order boundary

closure is implemented on a uniform grid in compact finite difference scheme, oscil-

lations arise at the boundaries. There have been plenty of studies focused on the nu-
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merical instability associated with the high-order boundary closures[Colonius(2004),

Zhong and Tatineni(2003), Shukla and Zhong(2005)]. By utilizing a non-uniform grid

which high resolution clusters at the boundaries, it has been shown that stable high-

order boundary closures with the same order of accuracy as the interior points can be

achieved [Zhong and Tatineni(2003), Shukla and Zhong(2005)]. The stable high order

compact schemes on non-uniform grids can be derived based on the Lagragian interpo-

lation polynomials [Shukla and Zhong(2005)].

To resolve the near-wall turbulence in a boundary layer, fine resolution is required very

near the wall. It is common to adopt the non-uniform Chebyshev grid, where grid points

cluster at the boundaries. In this study, the Chebyshev grid is implemented in the direc-

tion normal to the wall, which is given as

zi = cos(πi/N), i = 0, ..., N (41)

withNz = N+1 represents the total number of grid points in the z-direction. Compared

to compact schemes, standard finite difference schemes require more neighboring points

in order to achieve the same order of accuracy. For the same stencil size discussed in

Section 3.3, the standard finite difference scheme is only of 4th order accuracy. Here,

Fourier analysis on the Chebyshev grid is applied to study the dispersive and dissipative

errors of the compact finite difference schemes implemented in this study. Comparison

between the standard finite difference schemes and the compact schemes are made to

demonstrate the advantage of adopting a compact finite difference scheme. For the

trial function u(x) = eikx, the exact solutions of the first and the second derivatives

of u(x) are iku(x) and −k2u(x). The first order derivative computed by the compact

finite difference scheme at nodes xi is in the form of ik′eikxi with k′ the modified wave
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number

k′ = −ibi−2e
ik(xi−2−xi) + bi−1e

ik(xi−1−xi) + bi + bi+1e
ik(xi+1−xi) + bi+2e

ik(xi+2−xi)

1 + ai−1eik(xi−1−xi) + ai+1eik(xi+1−xi)

(42)

The dispersive and dissipative errors are given by the real part of k′−k, i.e., Re(k′−k),

and the imaginary part Im(k′ − k), respectively. In the present nonuniform grid, the

dispersive and dissipative errors also depend on the location of the grid points. The

maximum dispersion error and dissipation error for the first-order derivative are pre-

sented in figure 2 with Nz = 65, where h is the largest grid spacing for the Chebyshev

grids. Results of compact finite difference scheme are compared with those of standard

finite difference scheme with the same stencil size, which is 4th order accurate. It is

clear that the compact finite difference scheme performs much better in terms of both

dispersive and dissipative errors, especially at high wavenumber. The compact finite dif-

ference scheme almost follows the exact solution to around kh ≈ 2 while results of the

4th order standard finite difference scheme deviate from the exact solution at kh ≈ 1.

Hence, further grid refinement is required (i.e., more computational efforts) for standard

finite difference scheme in order to achieve the same accuracy of compact scheme.

The second-order derivative calculated by the compact finite difference scheme is in

the form of −k′′eikxi

k′′ = −di−2e
ik(xi−2−xi) + di−1e

ik(xi−1−xi) + di + di+1e
ik(xi+1−xi) + di+2e

ik(xi+2−xi)

1 + ci−1eik(xi−1−xi) + ci+1eik(xi+1−xi)
.

(43)

Figure 3 shows the dispersive and dissipative error for the second order derivative. Sim-

ilar conclusion can be drawn that the compact finite difference scheme outperforms the

standard finite difference scheme for the same stencil size.

We also carry out a convergence test for the Chebyshev grid and compact finite

difference scheme used in this study (see Figure 4). The test function is chosen as

f(z) = sin(πz). The number of grid points are chosen from 17 to 129. For the first
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Figure 2: Modified wavenumber for the first order derivative.
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Figure 3: Modified wavenumber for the second order derivative.
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Figure 4: Convergence test of the first order derivative (a) and the second order derivative
(b). The test function is chosen as f(z) = sin(πz), with the derivatives as f ′(z) =
πcos(πz) and f ′′(z) = −π2sin(πz). The average error is defined by equation 49.

derivative (see Figure 4(a)), the results give a slope of -6.5, while for the second deriva-

tive the results give a slope of -7.3 (see Figure4(b)). Analyses present here are con-

sistent with the order of accuracy of the sixth-order compact finite difference scheme

implemented in this study.

4 Results

Detailed validations of the present numerical model is presented in Section 4.1. The

numerical model is then used to investigate the effect of rheological stress and turbulence

modulation in determining the transition of the turbulent and laminar states due to the
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presence of sediments the bottom boundary layer (Section 4.2).

4.1 Model Verification

Two verifications/validations of the numerical model developed in this study are pre-

sented in this section. The numerical model is first verified with a laminar boundary

layer with simple sediment distribution and rheology closure where analytical solutions

are available (Section 5.1.1). In Section 5.1.2, we carry out Direct Numerical Simulation

of clear fluid channel flow with Reynolds number Re = ũ∗H/ν = 180 calculated based

on friction velocity ũ∗ and channel half-depth H . The present model results are verified

with earlier DNS results based on a pseudo-spectral method ([Kim et al.(1987)]).

4.1.1 Analytic solution of Poiseuille flow with simple rheology

We consider a pressure driven Poiseuille flow loaded with neutrally buoyant sediment

particles. The flow is laminar and homogeneous in both streamwise and spanwise di-

rections. By specifying the boundary condition for sediment concentration as φ̃|z̃=−1 =

0, φ̃|z̃=1 = Φ0 and assume a constant diffusivity with Sc = 0.5, the solution for sediment

concentration profile is written as

φ̃ = Φ0(z̃ + 1)/2 (44)

Utilizing the effective viscosity provided by Einstein’s formula ν(φ̃) = ν0(1 + 5/2φ̃)

[Einstein(1906)]. The governing equation for Poesuille flow now writes

∂

∂z̃

(
ν
∂ũ

∂z̃

)
=

1

ρ0

dP̃

dx̃
(45)

where dP/dx̃ is a constant.

The boundary conditions for velocity are no-slip at both top and bottom wall, i.e. ũ|z̃=±1 =
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0. Defining β =
1

ρ0ν

dP̃

dx̃
, the analytic solution for the velocity profile is

ũ =
−β(z̃ − 1) ln(4)− β(z̃ + 1) ln(4 + 10Φ0) + 2β ln(4 + 5Φ0(z̃ + 1))

5Φ0(ln(4)− ln(4 + 10Φ0))
(46)

We also include another commonly used rheology closure of Krieger-Dougherty (1959)

based on a power law

ν = νs

(
1− φ̃

φm

)−[η]φm
(47)

For cohesionless spherical particles, we use [η]φm = 2.0 and φm = 0.61. In this case,

the analytic solution for the velocity profile can also be given as

ũ =
a0 + a1z̃ + a2z̃

2 + a3z̃
3 + a4z̃

4

16(3− 3α + α2)
(48)

with α = Φ0/φm and

a0 = −24β + 48αβ − 33α2β − 9α3β + α4β

a1 = 24α2β − 16αβ − 12α3β + 2α4β

a2 = 24β − 48αβ + 30α2β − 6α3β

a3 = 16αβ − 24α2β + 12α3β − 2α4β

a4 = 3α2β − 3α3β + α4β

We solve the problem using the sixth-order tridiagonal compact schemes with Nx =

32 and Ny = 32. In the vertical direction, the non-uniform grid is applied with Nz =

33, 49, 65, 97 and 129. To quantify the accuracy, the average error is defined as

ε =

√∑Nz

i=0(< ũ >i −ũexact)
Nz

(49)

Figure 5 shows the comparison of model results with analytical solution with Φ0 = 1%
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Nz εE(Φ0 = 1%) εE(Φ0 = 5%) εKD(Φ0 = 1%) εKD(Φ0 = 5%)

33 2.50× 10−12 1.34× 10−12 1.61× 10−10 1.01× 10−12

49 2.43× 10−12 8.50× 10−13 1.33× 10−10 7.27× 10−13

65 1.67× 10−12 5.56× 10−13 1.16× 10−10 5.30× 10−13

97 1.81× 10−12 7.83× 10−13 9.48× 10−11 8.87× 10−13

129 1.31× 10−12 8.42× 10−13 3.55× 10−9 9.38× 10−13

Table 1: Results obtained from the numerical solution using Einstein’s and Krieger-
Dougherty rheology model. Here n denotes the number of grid points in vertical direc-
tion. ε is the error defined by above equation with Φ0 = 1% and Φ0 = 5%. The subscript
E and KD denote the Einstein and Krieger-Dougherty rheology model, respectively.

and Φ0 = 5%. By introducing the rheological stress, the mean velocity profile starts to

show asymmetry, especially for Φ0 = 5%. Table 4.1.1 shows the results of grid refine-

ment test. The model results show excellent agreement with the analytical solutions even

when the number of grid points Nz is as low as 33. At low concentration, the numerical

model performs better with Einstein’s rheology model because the Einstein’s rheology

model is a linear function of sediment concentration φ while the Krieger-Dougherty

rheology model is a nonlinear function of sediment concentration φ. For both rheology

models, the numerical model produces smaller numerical errors with higher sediment

concentration Φ0.

4.1.2 Direct numerical simulations of channel flow at Re=180

There has been many laboratory experiment ([Comte-Bellot(1963), Eckelmann(1974),

Wei and Willmarth(1989)]) and numerical ([Kim et al.(1987), Moser and Moin(1987),

Moin and Kim(1982)]) studies of fully developed turbulent channel flow. The second

model verification/validation reported here is the steady fully developed channel flow at

Reynolds number Re = 180. The Reynolds number is defined as

Re =
ũ∗H

ν
(50)
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Figure 5: Model results compared with analytical solution. a) Einstein’s rheology
model. b) Kreiger-Dougherty rheology model. Solid lines are analytical solution with
Φ0 = 1%, dash lines are analytical solution with Φ0 = 5%, circles represent model
results with Φ0 = 1% and diamonds represent model results with Φ0 = 5%.

where H is the half depth of the channel, and ũ∗ is the friction velocity (the Reynolds

number become 3240 if using the center-line velocity). At Re = 180, data obtained from

direct numerical simulation with a pseudo-spectral scheme is available ([Kim et al.(1987)]).

The fully developed channel flow is homogeneous in both streamwise and the spanwise

directions. The computational domain is chosen as 4πH and 2πH in the streamwise

and the spanwise direction, respectively, to assure the domain size is greater than the

largest eddies in the flow. Figure 6 shows a sketch of the computational domain and

the coordinate system. The computation domain is discretized using Nx × Ny × Nz =

128 × 128 × 193 grid points. Channel flow studies typically use wall unit to present

the result, with z+ = z̃ũ∗/ν [Kim et al.(1987), Moin and Kim(1982)]. In this study, the

first grid point away from the wall is at z+ ≈ 0.02, and the maximum spacing is about

2.9 wall units near the centerline of the channel. The grid resolution can be shown to

be sufficiently fine to resolve all the essential turbulent scales and no sub-grid closure is

needed [Moin and Kim(1982)].

In this study, the statistically-averaged mean flow quantities are computed by averaging
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Figure 6: A sketch of the model domain for channel flow. Periodic boundary conditions
are implemented for the four sides of the box and no-slip wall boundary conditions are
implemented for the top and bottom boundaries.

over x-y plane. The average operator < · > is defined as

< u >=
1

LxLy

∫ ∫ ∫
u(x, y, z; t)dxdy (51)

Figure 7 present the results of mean velocity. The solid curve shows the numerical

results of the present model, the dash curve shows the numerical results by Kim et

al. [Kim et al.(1987)], and the symbols represent experiment data from Eckelmann

[Eckelmann(1974)]. Within the viscous sublayer z+ < 5, the present numerical model

is able to predict the linear profile well. In the logarithmic region, our model results

agree very well with theoretical prediction. Model results also agree with earlier DNS

results of [Kim et al.(1987)] and laboratory data of [Eckelmann(1974)]. Figure 8 shows

the nondimensional RMS velocity fluctuations. The present model results agree very

well with the numerical solutions of Kim et al. [Kim et al.(1987)] based on the more ac-

curate pseudo-spectral scheme. Comparing to measured data [Eckelmann(1974)], both

models appear to slightly under-predict the RMS velocity fluctuations in spanwise and

vertical direction near the wall.
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4.2 The effect of rheology

There have been many studies on sediment transport in channel flow [Hopfinger(1987),

Zhou and Ni(1995), Winterwerp(2001)] as well as turbidity currents [Cantero et al.(2009),

Cantero et al.(2012)] focusing on the stratification effects on turbulence induced by

the suspended fine sediment. For stratified flow, a critical Richardson number can be

defined and the turbulent flow field collapses when the Richardson number exceeds

this critical value. For sediment-laden steady channel flow or gravity-driven flow, it

is proposed that a saturation concentration exists for fine sediment [Teisson et al.(1992),

Winterwerp(2001), Cantero et al.(2012)], above which the flow turbulence collapses and

the flow start to laminarize. Motivated by these prior studies, we first carry out several

numerical experiments for sediment-laden steady channel flow at Re = 180 and nondi-

mensional settling velocity of Ws = 0.02 without considering the rheological stress.

Our simulation results suggest that without including the effect of rheology, the criti-

cal Richardson number associated with the saturation concentration for Re = 180 and

Ws = 0.02 (see equation (11)) is around 15. We further investigate the effect of rheology

with simulations carried out at Ri = 11.43 and volume averaged sediment concentra-

tion Φ = 1%. In summary, four cases are presented here and they are summarized in

Table 2. Case 0 is a clear fluid (sediment-free) case at Re = 180. Case 1 includes fine

sediment with Ws = 0.02 but without the effect of rheology. In this case, attenuation

of flow turbulence due to sediment-induced density stratification already starts to play a

role but the flow remains to be sufficiently turbulent. In Cases 2 and 3, simple rheology

model by Krieger and Dougherty [Krieger and Dougherty(1959)] is implemented. For

cohesive sediments, flocculation produces large and more porous floc aggregates and the

value of φm corresponds to the gelling concentration in which flocs form a space-filling

network (e.g., Winterwerp [Winterwerp(2002)]). Although flocculation dynamics is not

explicitly simulated in this study, we can change φm value to represent different degree

of rheological stress due to flocculation. In this study, we fixed the power [η]φm = 2.0
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and used two different φm values to investigate the effect of increased effective viscosity.

Based on the Re, Ri, Φ and Ws = 0.02 used here, Case 2 with φm = 0.244 corresponds

to more densely packed floc with averaged floc size of 35 µm. Assuming an averaged

primary particle diameter to be 4 µm the resulting fractal dimension nf is around 2.3,

which is representative of typical floc consist of inorganic sediments. On the other hand,

Case 3 with φm = 0.122 corresponds to more porous, loosely packed flocs with aver-

aged floc size of 50 µm and fractal dimension of 2.0, typical of flocs with higher organic

content (e.g., Engel and Schartau [Engel and Schartau(1999)]). With lower φm in Case

3, it is clear that the ehnanced viscosity due to rheology is more intense than that of Case

2.

4.2.1 Mean profiles and turbulent intensities

At Richardson nunmber of Ri = 11.43, the suppression of turbulence due to sediment-

induced density stratification by sediments can be identified from the mean flow statis-

tics (see figure 9(a)). In the lower-half of the channel, the mean velocity starts to lose its

symmetry solely due to sediment-induced stratification (see solid curve) and combined

stratification and rheology effects (see the dash curve and the dash-dotted curve). In the

upper half of the channel, the mean velocity only differs slightly due to lower sediment

concentration. Specifically, for the Case 3 with φm = 0.122, the velocity in the lower

half of the channel derivates considerably from others, suggesting significant effect due

to rheological stress. For each case, we can also examine the friction velocity, which is

defined as

u∗ =

√
< f(φ) >

1

Re
d < u >

dz
(52)

and vertically-averaged flow velocity. Table 4.2.1 shows the computed friction velocity

at the bottom wall (u∗,b) and the top wall (u∗,t) along with vertically-averaged velocity.

The friction velocity at the top wall changes in respond to variation in sediment concen-

tration in the domain. Hence, we can qualitatively understand the process by focusing
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the discussion on the friction velocity at the bottom wall. When sediment is added to

the system, the friction velocity at the bottom wall drops for about 1% for Case 1 due to

sediment-indued stable density stratification suppressing the turbulence. The vertically-

averaged mean velocity also increases by about 2% comparing to that of the clear fluid

(Case 0), which illustrates the well-known drag reduction. Slight attenuation of turbu-

lence can be seen from the RMS velocity fluctuation profiles presented in Figure (10),

especially in the spanwise and vertical directions.

When moderate rheological effect (φm = 0.244) is considered in Case 2, which gives

enhanced viscosity by about 6 ∼ 14% throughout the channel (see figure 9 (c)), the fric-

tion velocity is reduced by 3% (see Table 2), suggesting that enhanced viscosity due to

Newtonian rheology can further attenuate flow turbulence. However, according the the

RMS velocity fluctuation profiles, the reduced turbulence is generally within 10% near

the bed (see the dash curves in Figure 10). The computed sediment concentration profile

is very close to that without rheology (see Figure 9(b)). Finally, the vertically-averaged

flow velocity decreases slighly due to the enhanced mean flow dissipation.

Most notably, for Case 3 with more intense rheological effects (φm = 0.122), the en-

hanced viscosity due to rheology ranges from 40% near the bed and reduces to about

10% near the top wall. Here, we observe a 20% drop of bottom friction velocity (Table

2). In the RMS velocity fluctuation profiles (see the dash-dotted curve in Figure 10),

turbulent fluctuations are significantly damped in the lower half of the channel where

sediment concentration is more significant. Clearly, significant attenuation of flow tur-

bulence due to enhanced viscosity via rheological stress is observed here. The computed

sediment concentration profile shows that large amount of sediment is accumulated near

the bottom wall and hence a sharp concentration profile with negative gradient is ob-

served. The shape of sediment concentration profile starts to resemble to that of laminar

solution (see symbols in Figure 9(b)), suggesting the onset of laminarization. When

the flow turbulence gets attenuated more significantly, the vertical turbulent suspension

mechanism is also reduced. This in turn results in an increased effective viscosity, which
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further damps flow turbulent. The combined effect of reduced turbulent dissipation and

increased mean flow dissipation gives a net increase of vertically-averaged flow velocity

of 3 %.

To better illustrate the onset of laminarization in Case 3, Figure 11 shows the mean

velocity profile in the lower half of the channel in terms of wall units in a semi-logarithmic

plot. The bottom friction velocity associated with each case is used to normalize its ve-

locity profile. Between the velocity profiles of Case 1 and Case 2, very near the wall,

a slightly decrease of mean velocity can be identified when enhanced viscosity via the

rheology closure is introduced into the simulation. In both cases, we can still identify

the existence of the log-layer. The slope (3.47 for Case 1 and 3.77 for Case 2) is larger

than that of the clear fluid case, which is 2.5. This is the well-established drag-reduction

phenomena where the presence of sediment damps the flow turbulence and the over-

all effect can be parameterized with a reduced Karman constant. Results from Case 1

suggest damping of turbulence due to sediment induced density stratification reduces

Karman constant κ from 0.4 to 0. 288. Mild enhancement of viscosity in Case 2 further

reduces κ to 0.265. More importantly, when the effect of Newtonian rheology is fur-

ther enhanced by using φm = 0.122, the log-layer completely disappears in Case 3 (see

the dash-dotted curve in Figure 11), suggesting that the flow is undergone considerable

turbulence suppression. The disappearance of log-layer, which is consistent with the

RMS velocity fluctuation profiles presented in Figure 10), provide further evidence on

the onset of laminarization.

4.2.2 Discussion

For boundary layer flow, it has been widely accepted that the auto-generation mech-

anism of hairpin and quasi-streamwise vortices is vital to sustain the flow turbulence
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Case No. φm u∗,b u∗,t U =
∫
z
udz/2H

0 - 1.00 1.00 15.95
1 - 0.99 1.04 16.27
2 0.244 0.97 1.00 16.17
3 0.122 0.80 1.09 16.40

Table 2: The friction velocity at both bottom and top for each cases.
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Figure 9: (a) Mean velocity profiles, symbols represent model results of clear fluid, solid
line represents model results for simulation without rheology model, dash line represents
results from simulation with φm = 0.244 and dash-solid line with φm = 0.122. (b) Mean
sediment concentration profiles, symbols represent laminar solution. (c) Mean effective
viscosity profiles, solid line represents model results for simulation without rheology
model, dash line represents results from simulation with φm = 0.244 and dash-solid
line with φm = 0.122
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Figure 10: Root mean square velocity profiles, solid line represents model results for
simulation without rheology model, dash line represents results from simulation with
φm = 0.244 and dash-solid line with φm = 0.122.
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([Zhou and Ni(1995), Zhou et al.(1999)]). After sediment is added, the generation of

hairpin vortices also has to overcome the stabilization effect due to sediment-induced

stratification. When sediment concentration is sufficiently large, the vortices are not

able to overcome sediment-induced stratification, which leads to collapse of flow turbu-

lence and laminarization. Figure 12 (a) to (c) shows the turbulent coherent structures

for Case 1, Case 2 and Case 3, respectively. λci method ([Zhou et al.(1999)]) is used

to identify the vortical structures and only the results in the bottom half of the channel

are presented. For Case 1 and Case 2, we observe the vortical structures are more or

less populated throughout the whole domain with only slightly less vortical structures

in Case 2. However, the vortical structures become much less populated in Case 3 (see

Figure 12(c)). When the strength of the vortical structures decreases significantly, the

auto-regeneration mechanism breaks down, and the flow tends to laminarize.

The transition from turbulent to laminar state has been attributed to the effect of rhe-

ology [Kessel and Kranenburg(1996), Liu and Mei(1990)] in the context of Bingham

plastic rheology and yield stress. In this study, we demonstrate numerically that simply

Newtonian rheology with a sufficiently enhanced viscosity can trigger collapse of turbu-

lence and onset of laminarization. Here, it is critical to identify the specific mechanism

such that rheological effect with an enhanced viscosity can suppress turbulence. Fig-

ure 13 (a), (b) and (c) shows the mean velocity gradient, Reynolds stress and turbulent

production profiles for Case 1, 2 and 3. It is evident that when rheology is included

in the simulation, the increased effective viscosity tends to reduce the velocity gradient

near the wall. Since velocity gradient is the main driving force of turbulence, reduced

velocity gradient also leads to reduced Reynolds stress and turbulent production. As can

be seen in Figure 13 (c), turbulence production in Case 3 is suppressed by almost one

order of magnitude due to enhanced viscosity .
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Figure 12: Turbulent coherent structures (a) Case 1 (without rheology), (b) Case 2 with
Krieger-Dougherty rheology model with φm = 0.244 and (c) Case 3 with Krieger-
Dougherty rheology model with φm = 0.122. The coherent structures are identified
with λci method with λci = 15 for (a) and (b) and 5 for (c). The iso-surface is colored
by sediment concentration.
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Figure 13: (a) Mean velocity gradient. (b) Reynolds stress profiles, (c) Turbulent Pro-
duction, solid line represents model results for simulation without rheology model,
dash line represents results from simulation with φm = 0.244 and dash-solid line with
φm = 0.122.
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5 Conclusion

To study fine sediment transport in turbulent boundary layers, a high accuracy turbulence-

resolving numerical model that utilizes Fourier expansion in the streamwise and span-

wise directions and sixth-order compact finite difference scheme in the wall-normal

direction on Chebyshev grid points is developed. This hybrid scheme allows easy im-

plementation of flow-dependent properties, such as viscosity, diffusivity and settling

velocity while still maintain spectral-like numerical accuracy, critical for a turbulence-

resolving model. The numerical model is validated with analytical solution for sim-

ple Newtonian rheology closure in laminar condition. To demonstrate the turbulence-

resolving capability, the numerical model is further validated/verified with prior labo-

ratory data and DNS results of turbulent channl flow at Reynolds number Re = 180,

defined by the half channel depth and friction velocity. With 128 × 128 × 193 mesh

points in the streamwise, spanwise and vertical directions, the present numerical model

is able to reproduce the mean velocity and RMS velocity fluctuations obtained by earlier

DNS study of Kim et al. [Kim et al.(1987)] with a psuedo-spectral scheme.

Previous study by Cantero et al. [Cantero et al.(2009)] investigated the turbulence mod-

ulation by sediment induced density stratification. For a fixed Re, they found that the

flow is characterized by two parameters, Richardson number and the non-dimensional

settling velocity of sediment. For the property of sediment given, a critical Richardson

number can be found, beyond which the flow turbulence collapses and flow undergoes

laminazation. Hence, we are motivated to carry out a prelminary investigation on the

modulation of flow turbulence by the presence of sediment due to sediment-induced

density stratification and enhanced viscosity due to Newtonian rheology at Reynolds

number Re = 180, Richardson number Ri = 11.43, nondimensional settling velocity

Ws = 0.02. A simple Newtonian rheology model developed by Krieger and Dougherty

[Krieger and Dougherty(1959)] is implemented where the magnitude of enhanced vis-

cosity can be adjusted via a maximum packing concentration, which is interpreted here
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as gelling concentration for cohesive sediment. By introducing rheology model into the

system, we found that flow turbulence is damped by the increased effective viscosity

and flow laminarization can occur at Richardson number below the critical value.

The rheology model used in this study is simple and idealized. In reality, the mud be-

haves as Non-Newtonian fluid and are often modeled as Bingham plastic fluid. In the

near future, the more realistic rheology model will be used to study the effect of rheol-

ogy on turbulence modulation. Also, we would like to apply this model to study the fine

sediment transport in wave boundary layer to investigate the effect of rheological stress

on turbulence modulation in the oscillatory bottom boundary layer.

A Appendix

A.1 Interpolation polynomials
For a given set of distinct points xi ∈ I and numbers ui, the lagrange polynomial is the
polynomial with least degree such that u(xi) = ui. The interpolation polynomial is just
a linear combination of the Langrange basis polynomials on the given set I

u(x) =
k∑
j∈I

ujlj(x) (53)

with the Lagrange basis polynomials specified as

li =
Πj∈I 6=i(x− xj)
Πj∈I 6=i(xi − xj)

(54)

with the operator of the product of a sequence defined as

Π(x) = Πj∈I(x− xj) (55)

A.2 First derivative
A 6th order centered compact finite difference scheme on non-uniform grid is imple-
mented in this study. The general form of compact scheme for the first derivative can by
given as [Shukla and Zhong(2005)]

u′i +
∑
j∈In

aju
′
j = biui +

∑
j∈Im 6=i

bjuj +
∑
j∈In

cjuj (56)
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with the coefficients given as

bi = lm
′

i (xi) + 2
Π′n(xi)

Πn(xi)
(57)

bj =

{
Πn(xi)

Πn(xj)

}2

lm
′

j (xi) (58)

aj =
(xj − xi)Π′m(xi)

Πm(xj)
{lnj (xi)}2 (59)

cj =
Π′m(xi)

Πm(xj)
{lnj (xi)}2

[
1−

{
2ln

′

j (xj) +
Π′m(xj)

Πm(xj)

}
(xi − xj)

]
(60)

with m and n representing the point set Im and In respectively.

ai−1u
′
i−1 + u′i + ai+1u

′
i+1 = bi−2ui−2 + bi−1ui−1 + biui + bi+1ui+1 + bi+2ui+2 (61)

For the interior domain, the point sets can be given Im = {i − 2, i, i + 2} and In =
{i− 1, i+ 1}, the coefficients can be given as

ai−1 =
(xi − xi−2)(xi − xi+2)(xi − xi+1)

2

(xi−1 − xi−2)(xi−1 − xi+2)(xi−1 − xi+1)2
(62)

ai+1 =
(xi − xi−2)(xi − xi+2)(xi − xi−1)2

(xi+1 − xi−2)(xi+1 − xi+2)(xi+1 − xi−1)2
(63)

bi−2 =
(xi − xi−1)2(xi − xi+1)

2(xi − xi+2)

(xi−2 − xi−1)2(xi−2 − xi+1)2(xi−2 − xi)(xi−2 − xi+2)
(64)

bi+2 =
(xi − xi−1)2(xi − xi+1)

2(xi − xi−2)
(xi+2 − xi−1)2(xi+2 − xi+1)2(xi+2 − xi)(xi+2 − xi−2)

(65)

bi =
1

xi − xi+2

+
1

xi − xi−2
+

2

xi − xi−1
+

2

xi − xi+1

(66)

ci−1 =
(xi − xi−2)(xi − xi+2)(xi − xi+1)

2

(xi−1 − xi−2)(xi−1 − xi+2)(xi−1 − xi)(xi−1 − xi+1)2(
2− 2

xi − xi−1
xi−1 − xi+1

− xi − xi−1
xi−1 − xi−2

− xi − xi−1
xi−1 − xi+2

) (67)

ci+1 =
(xi − xi−2)(xi − xi+2)(xi − xi−1)2

(xi+1 − xi−2)(xi+1 − xi+2)(xi+1 − xi)(xi+1 − xi−1)2(
2− 2

xi − xi+1

xi+1 − xi−1
− xi − xi+1

xi+1 − xi−2
− xi − xi+1

xi+1 − xi+2

) (68)
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A.3 Second derivative
The general form of the second order derivative can be written as

u′′i +
∑
j∈In

aju
′′
j = biui +

∑
j∈Im 6=i

bjuj +
∑
j∈In

cjuj (69)

with the coefficients given as

aj = −
{

Π′′m(xi)

Πm(xj)
l
n
j (xi) +

2Π′m(xi)

Πm(xj)
l
n′
j (xi)

} n∑
r=1

Br(xi − xj)
r −

2Π′m(xi)

Πm(xj)
l
n
j (xi)

n∑
r=1

rBr(xi − xj)
r−1

bj =

{
Π′′m(xi)

Πm(xj)
l
n
j (xi) +

2Π′m(xi)

Πm(xj)
l
n′
j (xi)

}
[1 +

n∑
r=1

Ar(xi − xj)
r
] +

2Π′m(xi)

Πm(xj)
l
n
j (xi)

n∑
r=1

rAr(xi − xj)
r−1

bi =
Π′′n(xi)

Πn(xi)
+ l

m′′
i (xi) + 2C2 + 2

Π′n(xi)

Πn(xi)
l
m′
i (xi) + 2C1

{
l
m′
i (xi) +

Π′n(xi)

Πn(xi)

}

cj =

{
Πn(xi)

Πn(xj)
l
m′′
j (xi) +

2Πn(xi)

Πn(xj)
l
m′
j (xi)

}
[1 +

n∑
r=1

Cr(xi − xj)
r
] +

2Πn(xi)

Πn(xj)
l
m′
j (xi)

n∑
r=1

rCr(xi − xj)
r−1

with Ar given as

2A2 + 2A1

{
Πm(x)lni (x)

Πm(xi)

}′∣∣∣∣
x=xi

+

{
Πm(x)lni (x)

Πm(xi)

}′′∣∣∣∣
x=xi

= 0, j = i,

n∑
r=1

Ar

[
(xj − xi)

r
{

Πm(x)lni (x)

Πm(xi)

}′′∣∣∣∣
x=xj

+ 2r(xj − xi)
r−1

{
Πm(x)lni (x)

Πm(xi)

}′∣∣∣∣
x=xj

]
+

{
Πm(x)lni (x)

Πm(xi)

}′′∣∣∣∣
x=xj

= 0, ∀j ∈ In, i ∈ In, j 6= i

Br given as

2B2 + 2B1

{
Πm(x)lni (x)

Πm(xi)

}′∣∣∣∣
x=xi

= 1, j = i,

n∑
r=1

Br

[
(xj − xi)

r
{

Πm(x)lni (x)

Πm(xi)

}′′∣∣∣∣
x=xj

+ 2r(xj − xi)
r−1

{
Πm(x)lni (x)

Πm(xi)

}′∣∣∣∣
x=xj

]
= 0, ∀j ∈ In, i ∈ Inandj 6= i

and Cr given as

n∑
r=1

Cr

[
(xj−xi)

r
{

Πn(x)lmi (x)

Πn(xi)

}′′∣∣∣∣
x=xj

+2r(xj−xi)
r−1

{
Πn(x)lmi (x)

Πn(xi)

}′∣∣∣∣
x=xj

]
+

{
Πn(x)lmi (x)

Πn(xi)

}′′∣∣∣∣
x=xj

= 0 j ∈ In, i ∈ Im

In the interior domain, the 6th order centered compact finite difference scheme for the
second derivative is

ci−1u
′′
i−1 + u′′i + ci+1u

′′
i+1 = di−2ui−2 + di−1ui−1 + diui + di+1ui+1 + di+2ui+2 (70)

Define

D
+
1 =

1

xi+1 − xi−2

+
1

xi+1 − xi

+
1

xi+1 − xi+2

D
−
1 =

1

xi−1 − xi−2

+
1

xi−1 − xi

+
1

xi−1 − xi+2

D
+
2 =

2

(xi+1 − xi−2)(xi+1 − xi)
+

2

(xi+1 − xi)(xi+1 − xi+2)
+

2

(xi+1 − xi−2)(xi+1 − xi+2)

D
−
2 =

2

(xi−1 − xi−2)(xi−1 − xi)
+

2

(xi−1 − xi)(xi−1 − xi+2)
+

2

(xi−1 − xi−2)(xi−1 − xi+2)
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and

D = 6 + 4(xi+1 − xi−1)(D
+
1 −D

−
1 )− 2(xi+1 − xi−1)

2
D

+
1 D
−
1

A
+
1 D = −4D

+
1 − 2D

−
1 + 2(xi+1 − xi−1)(D

+
1 D
−
1 −D

+
2 ) + (xi+1 − xi−1)

2
D

+
2 D
−
1

A
−
1 D = −4D

−
1 − 2D

+
1 + 2(xi−1 − xi+1)(D

+
1 D
−
1 −D

−
2 ) + (xi−1 − xi+1)

2
D
−
2 D

+
1

A
+
2 D = 4D

+
1 D
−
1 −D

+
2 −

2

xi+1 − xi−1

(D
+
1 −D

−
1 ) + (xi+1 − xi−1)D

+
2 D
−
1

A
−
2 D = 4D

+
1 D
−
1 −D

−
2 −

2

xi−1 − xi+1

(D
−
1 −D

+
1 ) + (xi−1 − xi+1)D

−
2 D

+
1

B
+
1 D = −

{
2

xi−1 − xi+1

+ D
−
1

}
(xi−1 − xi+1)

2

B
−
1 D = −

{
2

xi+1 − xi−1

+ D
+
1

}
(xi−1 − xi+1)

2

B
+
2 D = 1− (xi+1 − xi−1)D

−
1

B
−
2 D = 1− (xi−1 − xi+1)D

+
1

for C1j and C2j with j ∈ {i− 2, i, i+ 2}

C1jD =
xi+1 + xi−1 − 2xj

(xi+1 − xj)(xi−1 − xj)

{
10 +

4(xi+1 − xi−1)2

(xi+1 − xj)(xi−1 − xj)

}

+ 2(xi+1 − xi−1)

{
xi+1 − xj

xi−1 − xj

−
xi−1 − xj

xi+1 − xj

}
D

+
1 D
−
1

+ D
−
1

{
4(xi+1 − xi−1)

xi−1 − xj

+
4(xi+1 − xi−1)

xi+1 − xj

−
2(xi+1 − xi−1)2

(xi+1 − xj)2

}

−D
+
1

{
4(xi+1 − xi−1)

xi−1 − xj

+
4(xi+1 − xi−1)

xi+1 − xj

+
2(xi+1 − xi−1)2

(xi+1 − xj)2

}

C2jD = 2

{
1

(xi+1 − xj)2
+

1

(xi−1 − xj)2
+

1

(xi−1 − xj)(xi+1 − xj)

}
−

2(xi+1 − xi−1)2

(xi−1 − xj)(xi+1 − xj)
D

+
1 D
−
1

− 2D
+
1

xi−1 − xi+1

xi−1 − xj

{
1

xi−1 − xj

+
1

xi+1 − xj

}
− 2D

−
1

xi+1 − xi−1

xi+1 − xj

{
1

xi−1 − xj

+
1

xi+1 − xj

}

with the coefficients given as

ci−1 = 2(xi − xi−2)(xi − xi+2)[B
−
1 (2xi − xi+1 − xi−1) + B

−
2 (3xi − 2xi+1 − xi−1)]

+ 2(2xi − xi−2 − xi+2)(xi − xi+1)(xi − xi−1)[B
−
1 + (x− xi−1)B

−
2 ]

/(xi+1 − xi−1)(xi−1 − xi−2)(xi−1 − xi)(xi−1 − xi+2)

(71)

ci+1 = 2(xi − xi−2)(xi − xi+2)[B
+
1 (2xi − xi+1 − xi−1) + B

+
2 (3xi − 2xi−1 − xi+1)]

+ 2(2xi − xi−2 − xi+2)(xi − xi+1)(xi − xi−1)[B
+
1 + (x− xi+1)B

+
2 ]

/(xi+1 − xi−1)(xi+1 − xi−2)(xi+1 − xi)(xi+1 − xi+2)

(72)

di−2 =
2(xi − xi−1)(xi − xi+1)(xi − xi+2)

(xi−2 − xi+1)(xi−2 − xi−1)(xi−2 − xi+2)(xi−2 − xi)

{
C
−
12

(
1 +

xi − xi−2

xi − xi+1

+
xi − xi−2

xi − xi−1

)

+ C
−
22

(
2 +

xi − xi−2

xi − xi+1

+
xi − xi−2

xi − xi−1

)
(xi − xi−2) +

1

xi − xi+1

+
1

xi − xi−1

}

+
2(xi − xi+1)(xi − xi−1)

(xi−2 − xi+1)(xi−2 − xi−1)(xi−2 − xi)(xi−2 − xi+2)
[1 + C

−
12(xi − xi−2) + C

−
22(xi − xi−2)

2
]

(73)

di−1 = 2(xi − xi−2)(xi − xi+2)[1 + A
−
1 (2xi − xi+1 − xi−1) + A

−
2 (xi − xi−1)(3xi − 2xi+1 − xi−1)]

+ 2(2xi − xi−2 − xi+2)[1 + A
−
1 (xi − xi−1) + A

−
2 (xi − xi−1)

2
]

/(xi−1 − xi+1)(xi−1 − xi−2)(xi−1 − xi)(xi−1 − xi+2)

(74)
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di = 2C2i + 2C1i

{
2xi − xi−1 − xi+1

(xi − xi+1)(xi − xi−1)
+

2xi − xi−2 − xi+2

(xi − xi−2)(xi − xi+2)

}

+
2 + 2(2xi − xi+1 − xi−1)(2xi − xi−2 − xi+2)/(xi − xi−2)(xi − xi+2)

(xi − xi+1)(xi − xi−1)

+
2

(xi − xi−2)(xi − xi+2)

(75)

di+1 = 2(xi − xi−2)(xi − xi+2)[1 + A
+
1 (2xi − xi+1 − xi−1) + A

+
2 (xi − xi+1)(3xi − 2xi−1 − xi+1)]

+ 2(2xi − xi−2 − xi+2)[1 + A
+
1 (xi − xi+1) + A

+
2 (xi − xi+1)

2
]

/(xi+1 − xi−1)(xi+1 − xi−2)(xi+1 − xi)(xi+1 − xi+2)

(76)

di+2 =
2(xi − xi−1)(xi − xi+1)(xi − xi−2)

(xi+2 − xi+1)(xi+2 − xi−1)(xi+2 − xi−2)(xi+2 − xi)

{
C

+
12

(
1 +

xi − xi+2

xi − xi+1

+
xi − xi+2

xi − xi−1

)

+ C
+
22

(
2 +

xi − xi+2

xi − xi+1

+
xi − xi+2

xi − xi−1

)
(xi − xi+2) +

1

xi − xi+1

+
1

xi − xi−1

}

+
2(xi − xi+1)(xi − xi−1)

(xi+2 − xi+1)(xi+2 − xi−1)(xi+2 − xi)(xi+2 − xi−2)
[1 + C

+
12(xi − xi+2) + C

+
22(xi − xi+2)

2
]

(77)
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