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ABSTRACT 

The spatial variation of damage on the different sections of the trunk and head 

of a low-crested stone structure on a fixed bottom is examined using the cross-shore 

numerical model CSHORE extended to oblique waves. The computed wave 

transmission coefficient and damage on the front slope, back slope and total section of 

the trunk are compared with available data consisting of 188 tests. Similarity of trunk 

and head damage for a low-crested breakwater is proposed to predict damage on the 

front head and back head using the cross-shore model. The agreement is mostly within 

a factor of 2 but the model overpredicts damage on the back head of a submerged 

structure. An experiment was conducted in a wave flume for a low-crested stone 

structure located inside the surf zone on a sand beach. The model is shown to 

reproduce the measured cross-shore wave transformation on the beach without and 

with the structure as well as the measured small damage on the structure. Sand 

deposition inside the porous structure will need to be accounted for to predict toe 

scour and accretion. 
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Chapter 1 

INTRODUCTION 

Rubble mound structures with low crests have been constructed on beaches to 

reduce wave action landward of the structure during storms. Detached low-crested 

breakwaters have been used for shore protection to reduce the structure cost and allow 

water circulation. The design of the low-crested stone structure (LCS) against storm 

waves requires the analysis of armor stability on the entire emerged or submerged 

structure, because wave impact is not restricted to the seaward slope unlike a high-

crested structure with no or little wave overtopping. 

Vidal, et al. (1992) and Vidal and Mansard (1995a) conducted a three-

dimensional experiment in a wave basin at the laboratories of National Research 

Council (NRC) in Ottawa, Canada. The experiment was limited to unidirectional 

random waves normal to the trunk of a LCS in relatively deep water. The measured 

stone displacement and eroded profile on the different sections of the trunk and round 

head of the structure indicated the importance of the structure crest elevation relative 

to the still water level (SWL) in predicting the damage patterns on the trunk and head. 

Kramer and Burcharth (2003a) conducted a similar experiment using multidirectional 

random waves in shallow water at the Aalborg University (AAU) in Denmark and 

proposed an empirical formula for initiation of damage using available data. 

Burcharth, et al. (2006) reviewed the experimental findings of the hydraulic stability 

of low-crested stone structures located on fixed bottoms. 
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The cross-shore numerical model CSHORE was developed to predict irregular 

breaking wave transmission over a submerged porous structure (Kobayashi, et al., 

2007) and was extended to predict damage progression on a conventional stone 

breakwater with little wave overtopping (Kobayashi, et al., 2010) and deformation of a 

reef breakwater with wave transmission (Kobayashi, et al., 2013). 

In this study, CSHORE is extended to obliquely incident waves and compared 

with available data on oblique wave transmission over and through a low-crested 

breakwater. The NRC and AAU damage data are used to assess the capability of 

CSHORE for predicting the damage on the different trunk sections. The damage on 

the front and back sections of the round head is predicted assuming similarity of the 

head and trunk damage for low-crested breakwaters. An experiment was conducted for 

a low-crested stone structure located inside the surf zone on a sand beach during a 

storm in order to assess the utility of CSHORE for a typical field application. 

In Chapter 2 the numerical model CSHORE extended to oblique waves is 

described together with computation of wave transmission and structure damage. In 

Chapter 3 computed transmission coefficients by CSHORE are compared with the 

data of Vidal and Mansard (1995a) and Kramer and Burcharth (2003b), along with the 

empirical formula proposed by Goda and Ahrens (2008) and recalibrated by 

Tomasicchio, et al. (2011). In Chapter 4 available data on trunk damage of LCS by 

Vidal and Mansard (1995a) and Kramer and Burcharth (2003a) are analyzed and 

compared with computed results by CSHORE. Head damage prediction is devised in 

Chapter 5. Chapter 6 explains the setup, procedure and results of the experiment 

conducted to analyze a LCS located inside the surf zone on a sand beach. Conclusions 

of the study are presented in Chapter 7. Additional information is provided in 
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Appendices A to D. A concise summary of this study is presented by Garcia and 

Kobayashi (2014). 
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Chapter 2 

NUMERICAL MODEL 

This chapter explains the cross-shore numerical model CSHORE extended to 

oblique waves and its application to compute wave transmission and structure damage 

on a low-crested breakwater (LCS). The first section of this chapter gives a general 

description of the model. Computation of wave transmission coefficient and structure 

damage are described in the subsequent sections. The numerical model is described in 

detail in the report of Kobayashi (2013). 

2.1 General Description 

Figure 2-1 depicts an emerged LCS with a trunk and a round head. For a 

submerged structure, its crest is situated below the SWL. The structure is assumed to 

be parallel to the shoreline. The cross-shore coordinate ݔ is positive onshore with 

ݔ ൌ 0 at the seaward location of the incident irregular wave measurement. The 

irregular waves are represented by the spectral significant wave height ܪ and 

spectral peak period ܶ. The alongshore coordinate ݕ is parallel to the straight trunk. 

The incident waves are assumed to be unidirectional with ߠ ൌ wave angle relative to 

the shore normal. The vertical coordinate ݖ is positive upward with ݖ ൌ 0 at the SWL. 

The upper and lower boundaries of the stone structure are located at ݖ ൌ  ሻ andݔሺݖ

 ሻ, respectively, where the lower boundary is assumed to be impermeable andݔሺݖ

fixed. Stone movement results in the deformation of ݖሺݔሻ but ݖሺݔሻ ൌ  ሻ seawardݔሺݖ

and landward of the structure. The horizontal SWL and ݖሺݔሻ intersect at ݔ ൌ  ௌௐݔ
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For the swash zone of ݔௌௐ ൏ ݔ ൏  ௦, which is intermittently wet and dry, theݔ

wave angle	ߠ is assumed to remain the same as the computed angle ߠ at ݔ ൌ  .ௌௐݔ

The cross-shore variations of the mean and standard deviation of ߟ, ܷ and ܸ are 

computed using the probabilistic model of Kobayashi, et al. (2010) coupled with the 

time-averaged nonlinear shallow-water wave equations with the assumption of 

ሺߠ݊݅ݏௌௐሻଶ being much smaller than unity (Farhadzadeh, et al., 2012). The vertical 

water and cross-shore momentum fluxes into the porous structure are included in the 

time-averaged continuity and cross-shore momentum equations. In the landward wet 

zone of ݔ   ௦, the simple linear wave model including the water flux inside theݔ

porous structure (Kobayashi, 2013) is used to compute the cross-shore variations of 

the mean and standard deviation of ߟ and ܷ. The mean and standard deviation of ܸ are 

assumed to be negligible. 

2.1.2 Stone Movement Model 

After the computation of the hydrodynamic variables above the known bottom 

elevation ݖሺݔሻ for the specified values of ܪ, ܶ and ߠ at ݔ ൌ 0, the time-averaged 

cross-shore and longshore stone transport rates are computed using the bed load 

formula of Kobayashi, et al. (2009) with the criterion for initiation of stone movement 

proposed by Kobayashi, et al. (2010). The temporal change of ݖሺݔሻ is computed 

using the conservation equation of stone volume per unit alongshore width. The 

longshore stone transport rate does not contribute to the profile change because of the 

assumption of alongshore uniformity but the computed cross-shore and longshore 

transport rates are comparable for oblique waves. This computation procedure is 

repeated starting from the initial bottom profile until the end of a damage test. The 

computation time is of the order of 10-3 of the test duration. 
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2.2 Computation of Wave Transmission 

Wave transmission coefficient for a breakwater trunk on a flat bottom is 

defined as: 

 

௧ܭ  ൌ 	
ு
ு

 (2-1) 

 

Where 

 ௧ : transmitted significant wave height measured sufficiently landward ofܪ

the structure. 

  : incident significant wave height measured at the seaward toe of theܪ

structure. 

2.3 Computation of Structure Damage 

CSHORE computes the cross-shore bottom elevation ݖሺݔ, ݔ ሻ whereݐ ൌ cross 

shore coordinate and ݐ = profile evolution time. The erosion depth is then calculated 

as: 

 
 ݀ሺݔ, ሻݐ ൌ 	 ሾݖሺݔ, 0ሻ െ ,ݔሺݖ ሻሿݐ  0 (2-2) 

 

CSHORE can be set in two ways to compute the bottom elevation ݖሺݔ,  ,ሻݐ

depending on the specified value for the input parameter ISEDAV.  

When ISEDAV=1, erosion and deposition is allowed along the entire structure 

profile, corresponding to the standard case of armor stone movement. By integrating 

the erosion depth ݀ along a specific section of the trunk, the eroded area ܣ is 

obtained for each section. 
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If ISEDAV=2, erosion is allowed only on specified sections of the permeable 

stone structure, while deposition is allowed everywhere. This option is created to 

mimic the effect of a wire mesh over the structure, which is assumed to prevent 

erosion under it. The eroded area ܣ is obtained by integrating the erosion depth in the 

same way as ISEDAV=1.  

The damage based on the eroded area along the specified trunk section is then 

computed as: 

 
 ܵ ൌ  ହሻଶ  (2-3)ܦ/ሺܣ

 

Where 

ܵ : damage based on measured profile 

 . : eroded area on the cross-shore sectionܣ

ହ : nominal stone diameter ൌܦ ሺܯହ ⁄௦ߩ ሻଵ ଷ⁄  

 ହ : medium mass of the stoneܯ

 ௦ : density of the stoneߩ





 

 11

Chapter 3 

WAVE TRANSMISSION 

The numerical model CSHORE described in Chapter 2 is used to calculate 

wave transmission of normally and obliquely incident waves over low-crested 

breakwaters (LCS). The computed wave transmission coefficients are compared 

against available data of two wave basin experiments together with the empirical 

formula of Tomasicchio, et al. (2011). Available data and the empirical formula are 

described in the first section of this chapter. In the second section, numerical model 

input and calibration are described. Finally, compared results are shown. 

3.1 Available Data 

Use is made of two datasets on wave transmission over LCS by Vidal and 

Mansard (1995a) at the laboratories of National Research Council of Canada (NRC) 

and by Kramer and Burcharth (2003b) at Aalborg University, Denmark (AAU). 

Detailed information on test conditions and measured wave transmission coefficients 

are included in Appendix A. 

3.1.1 NRC – Wave Transmission Measurements 

Even though the primary goal of this experiment was to analyze stability of 

low-crested breakwaters, as described in the report of Vidal and Mansard (1995a), 

wave transmission was also measured. The experiment was conducted in two stages 

using two different wave basins. In both facilities a detached breakwater was built, 

with its longitudinal axis parallel to the wavemaker, as shown in Figure 3-1. 
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 Table 3-1: Experiment conditions. NRC. 

Parameter Value 

Number of tests 35 

Structure height (cm) 40, 60 

Crest width ܤ (cm) 15 

Seaward slope 1/1.5 

Landward slope 1/1.5 

Freeboard ܨ (cm) 5 to 6 

Armor stone size ܦହ (cm) 2.5 

Core stone  size ܦହ (cm) 1.9 

Wave angle ߠ (deg) 0 

Wave height ܪ (cm) 5 to 15 

Wave period ܶ (s) 1.4 to 1.8 

Test duration (min) 60 

 

3.1.2 AAU – Wave Transmission Experiments 

These experiments considered oblique wave transmission over and through 

low-crested rubble mound and smooth structures. Only rubble mound structure data 

are used in this study. Multidirectional random waves were generated and three 

different layouts were built in the wave basin using semidetached structures with 

different orientations to analyze a wide range of wave incidence angle ߠ, as shown in 

Figure 3-2. Two sets of five wave gauges were used to measure incident and 

transmitted waves seaward and landward of the breakwater. In each layout, 

transmitted waves were measured in an enclosed area to exclude diffracted waves. 

Test conditions and structure characteristics are summarized in Table 3-2. Detailed 

data are shown in Table A-2. 



 

Figure 3-2
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 Table 3-2: Experiment conditions. AAU Transmission (rubble structure). 

Parameter Value 

Number of tests 84 

Structure height (cm) 25 

Crest width ܤ (cm) 10 

Seaward slope 1/2 

Landward slope 1/1.5 

Freeboard ܨ (cm) 5 to 5 

Armor stone size ܦହ (cm) 4.7 

Core stone  size ܦହ (cm) 3.1 

Wave angle ߠ (deg) 14 to 67 

Wave height ܪ (cm) 6 to 17 

Wave period ܶ (s) 1.0 to 2.3 

Test duration (min) 15 

 

3.1.3 Empirical Formula 

The empirical formula proposed by Goda and Ahrens (2008) for the wave 

transmission coefficients over and through LCS was recalibrated by Tomasicchio, et 

al. (2011) using 3,327 points in 33 data sets. The recalibrated formulation is given by 

the following equations. 

 

 ሺܭ௧ሻ ൌ ݉݅݊ ቄ1.0,ඥሺܭ௧ሻ௩ଶ  ܭ
ଶሺܭ௧ሻ௧௨

ଶ ቅ (3-1) 

 
ܭ  ൌ ݉݅݊ሼ0.8, ݄ ሺ݄  ⁄ሻܪ ሽ (3-2) 
 ሺܭ௧ሻ௩ ൌ ,൛0ݔܽ݉ 1 െ ൫ܴܽൣݔ݁ ܪ െ ܴ,⁄ ൯൧ൟ (3-3) 
 
 ܽ ൌ ܤ݈݊൫	െ0.384ൣݔ݁	0.248 ⁄ܮ ൯൧ (3-4) 
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 ܴ, ൌ ቊ
	1.0																																																			 ∶ ܦ ൌ 0

,൛0.6,݉݅݊൫0.8ݔܽ݉	 ܪ ⁄ܦ ൯ൟ 		 ∶ ܦ  0
	 (3-5) 

 
 ሺܭ௧ሻ௧௨ ൌ 1 ሾ1  ܪሺ	ܥ ⁄ܮ ሻ.ହሿଶ⁄  (3-6) 
 

ܥ  ൌ 3.450	൫ܤ ⁄ܦ ൯
.ହ

 (3-7) 
 

Where 

  at the toe of the structureܪ  : incident wave heightܪ

  leeward of the structureܪ ௧  : transmitted wave heightܪ

 local wavelength : ܮ

  : deep water wavelengthܮ

݄ : water depth 

݄ : structure height 

ܴ : structure freeboard ܴ ൌ 	݄ െ ݄ 

  : effective width of the structureܤ

 (ହ for stonesܦ)  : effective diameter of the armor unitܦ

3.2 Numerical Model Setup 

Specified input and calibrated parameters for computation of wave 

transmission are described in the following sections. 

3.2.1 Specified Input 

Based on experiment conditions, the following data were specified as input for 

the numerical model CSHORE. 

 Homogeneous mound characteristics based on armor layer stone: 

 ହ  : nominal stone diameterܦ

ݏ ൌ ௦ߩ ⁄௪ߩ   : specific gravity, were ߩ௪ ൌ water density 
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ݓ   : fall velocity, calculated asݓ ൌ 1.8ඥ݃ሺݏ െ 1ሻܦହ 

 Structure cross section geometry specified for each experiment. 

 Measured wave conditions near the toe of the structure characterized by ܪ, 

ܶ and ߠ were specified for each test. 

3.2.2 Calibrated Parameters 

The effect of the bottom friction factor ݂ on the computed wave transmission 

coefficient ܭ௧ was examined for the AAU wave transmission experiments. Figure 3-3 

compares computed ܭ௧ for ݂ = 0.02 and 0.03. 

 

 
Figure 3-3: Comparison of computed Kt for fb = 0.02 and 0.03. AAU test 

conditions. 
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difficulty associated with the small water depth on the emerged crest of the structure 

for which the computed ܭ௧ was less than 0.3 in Figure 3-3. Finally, the bottom friction 

factor ݂ in the numerical model was set as: 

 ݂ ൌ 0.01 on the impermeable bottom 

 ݂ ൌ 0.02 on the permeable stone surface 

3.3 Comparison with Data 

Comparison of computed wave transmission coefficient against data is 

presented in the following sections. Computed wave transmission coefficients for each 

test are shown in Appendix B. 

3.3.1 NRC Data 

The wave transmission coefficients ܭ௧ measured in NRC experiments, 

computed by CSHORE and predicted by the empirical formula of Tomasicchio, et al. 

(2011) are shown against the normalized freeboard (ܨ ⁄ܪ ) in Figure 3-4. 

 

 
Figure 3-4: Comparison of Kt against normalized freeboard. NRC data. 
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The effect of the freeboard on wave transmission can be observed. The 

computed and empirical values show similar trends, although the former shows more 

scatter. The agreement is better for ܨ ൏ 0 corresponding to submerged structures. The 

measured ܭ௧ is larger than the computed and empirical values for emerged structures 

ܨ)  0), for which diffracted waves around the breakwater becomes as important as 

the transmitted waves over and through the structure. 

Figure 3-5 shows the computed and empirical ܭ௧ plotted against the measured 

value. The presence of diffracted waves results in the narrow range of about 0.4 to 0.6 

in the measured ܭ௧. 

 

 
Figure 3-5: Comparison of Kt against measured values. NRC data. 
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3.3.2 AAU Data 

The wave transmission coefficient varies with the incident wave angle. 

Figure 3-6, Figure 3-7 and Figure 3-8 show the comparison for freeboard values of 

 cm (structure with crest at SWL) and 0 = ܨ cm (submerged structure) 0.05- = ܨ

 .cm (emerged structure) 0.05 = ܨ

Agreement is good for the negative freeboard in the wide range of incident 

wave direction, where the absolute value of the angle ߠ is plotted because the values 

of ܭ௧ for ߠ and –  should be the same for the case of alongshore uniformity. For the ߠ

structure crest at the SWL, agreement is good for near normal incident conditions, but 

 ,For the positive freeboard .30° < |ߠ| ௧ is underpredicted for incident wave anglesܭ

agreement is found reasonable but the computed values of ܭ௧ scatter about the 

measured values of 0.2 – 0.3. 

The measured and computed transmission coefficients decrease somewhat with 

the increase of wave angle, regardless of the freeboard value. 

 

 
Figure 3-6: Measured and computed Kt for oblique waves and 0.05- = ܨ cm. AAU 

data. 
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Figure 3-7: Measured and computed Kt for oblique waves and 0 = ܨ cm. AAU data. 

 

 
Figure 3-8: Measured and computed Kt for oblique waves and 0.05+ = ܨ cm. AAU 

data. 
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as the most important parameter for wave transmission. The empirical formula has 

been developed for normal incident waves (0 = ߠ) but is included in Figure 3-9 

because transmission coefficients over low-crested breakwaters do not depend 

significantly on the incident wave angle within the tested conditions (0 < |67° > |ߠ and 

ܨ ൌ -0.05 cm to 0.05 cm). 

 

 
Figure 3-9: Comparison of Kt vs normalized freeboard. AAU data. 
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Figure 3-10: Comparison of Kt against measured values. AAU data. 
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Chapter 4 

DAMAGE ON TRUNK 

Damage variations on the trunk for low-crested breakwaters (LCS) were 

analyzed. Computed damage by CSHORE was compared with two wave basin 

damage data on LCS. 

The first section of this chapter describes the experimental setup for each data 

set. Then, analysis of experimental data is presented. In the third section, numerical 

model input and calibrated parameters are described. Finally, computed and measured 

values are compared. 

4.1 Available Data 

Use is made of two data sets on stability of LCS by Vidal and Mansard (1995a) 

at the laboratories of National Research Council of Canada (NRC) and by Kramer and 

Burcharth (2003a) at Aalborg University, Denmark (AAU). Detailed information on 

test conditions and measured damage are included in Appendix A. 

4.1.1 NRC – Structure Stability Tests 

The general objective of the NRC study was to analyze LCS stability and 

provide design guidelines. The experiment was conducted by Vidal and Mansard 

(1995a) in two stages using two different wave basins. In both facilities a detached 

breakwater was built and subjected to unidirectional irregular waves, as already 

described in section 3.1.1. Influence on structure stability of crest freeboard, wave 

height and steepness was studied. 
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In order to analyze damage on different sections and to avoid rebuilding the 

entire breakwater after each test, a steel frame and a wire mesh were used to partially 

cover the breakwater, exposing the specific sections to be analyzed. The trunk was 

divided into four sections: total section (TS), front slope (FS), crest (C) and back slope 

(BS). The head was divided into two sections: front head (FH) and back head (BH) 

with arc angles of 60° and 120°, respectively, as shown in Figure 4-1. 

After each test, structure damage was measured in two ways: by counting the 

number of displaced stones (damage ܵ௩) and by calculating the eroded cross-sectional 

area from profile measurements (damage ܵ), the latter being done only for trunk 

sections. Damaged sections were rebuilt after each test. Test conditions and structure 

characteristics are summarized in  Table 3-1. Detailed data are shown in Table A-1. 

 

 
Figure 4-1: Trunk and head sections of the LCS in NRC experiments. 
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4.1.2 AAU – Structure Stability Tests 

The stability tests were carried out using multidirectional waves in the wave 

basin at Aalborg University, Denmark. The objective of this experiment was to 

supplement existing stability tests on LCS and to identify the influence of: wave angle 

and directionality, wave height and steepness, crest width, freeboard and structure 

slope. 

A semidetached breakwater was built as shown in Figure 4-2. Colored stones 

were used to identify sections on the trunk and round head. The trunk was divided into 

three sections: seaward slope (SS) crest (C) and leeward slope (LS). The head was 

separated into: seaward head (SH), middle head (MH) and leeward head (LH), each 

covering an arc angle of 60° as shown in Figure 4-3. 

Tests blocks were defined by fixed water level, predominant wave direction 

and steepness. In each test block, incident wave height was increased until severe 

damage was observed on the LCS. Three to five tests per block were executed. 

Damage was measured after each test by counting the number of displaced stones. The 

breakwater was rebuilt after each test block. Tests conditions and structure 

characteristics are summarized in Table 4-1. Detailed data are shown in Table A-3. 
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 Table 4-1: Experiment conditions. AAU Stability. 

Parameter Value 

Number of tests 69 

Structure height (cm) 30 

Crest width ܤ (cm) 10, 25 

Seaward slope 1/2 

Landward slope 1/2 

Freeboard ܨ (cm) 10 to 5 

Armor stone size ܦହ (cm) 3.3 

Core stone  size ܦହ (cm) 1.4 

Wave angle ߠ (deg) 21 to 26 

Wave height ܪ (cm) 4 to 25 

Wave period ܶ (s) 0.9 to 2.5 

Test duration (min) 14 to 136* 
 
* Significant wave height was increased in test blocks until severe damage 
was observed. 

 

4.2 Data Analysis 

In NRC experiments, damage on trunk sections was measured in two ways, 

which are described in the following. 

4.2.1 Measured Damage Sv and Sp 

Damage ܵ௩ is calculated by counting the number of stones displaced at least 

one nominal diameter ܦହ and using the following formula: 

 

 ܵ௩ ൌ 	
ே	ఱబ
൫ଵି൯	

 (4-1) 
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Where 

ܵ௩ : damage based on number of displaced stones 

 ହ : nominal stone diameterܦ

௬ܰ : number of displaced stones over the alongshore length ݈௬ 

݊ : porosity of the armor layer 

݈௬ : alongshore length of armor layer 

 

Damage ܵ is calculated using the eroded cross-sectional area from profile 

measurements which is normalized by the nominal stone diameter. 

 

 ܵ ൌ 	


ఱబ
మ (4-2) 

 

Where 

ܵ : damage based on measured profile 

 . : eroded area of the cross-shore profile relative to the initial profileܣ

 

If the volume of the displaced stones is equal to the eroded stone volume, as 

indicated below, then damage ܵ௩ and ܵ are equal. 

 
 ܵ௩ ൌ ܵ; if  →  ௬ܰ	ܦହ

ଷ ൌ ൫1 െ ݊൯	ܣ	݈௬ (4-3) 

 

Dislodged stones can fall into the void left by other displaced stones. Hence, ܵ௩ 

is expected to be larger than ܵ. 

Relation between damage ܵ௩ and ܵ was examined using trunk damage 

measurements of NRC tests, where 6 tests exceeded destruction damage criterion 
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(removal of core stone) given by Vidal, et al. (1992). These 6 tests were excluded in 

the following. Figure 4-4 shows ܵ௩ vs ܵ for trunk sections TS, FS and BS. 

 

 
Figure 4-4: Measured damage Sv versus Sp for trunk sections. NRC data. 
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 ܵ௩ ൌ 1.26	ܵ (4-4) 
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Figure 4-6: Comparison of measured damage on trunk sections (TS) and 

(FS+C+BS). NRC data. 
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4.3.2 Calibrated Parameters 

Two parameters CSTABN and TANPHI in the numerical model affect 

computed damage. The damage sensitivities to these parameters are examined in the 

following. 

a) CSTABN 

This parameter is related to the critical stability number for initiation of stone 

movement. It determines the critical instantaneous velocity for stone movement, as 

described in the report of Kobayashi (2013). The decrease of CSTABN increases the 

probability of stone movement. 

Damage on TS section for CSTABN = 0.6, 0.5 and 0.4 was computed for NRC 

and AAU experiments. Results are shown in Figure 4-7 and Figure 4-8, respectively. 

For this analysis TANPHI parameter was 0.63. 

 

 
Figure 4-7: Calibration of CSTABN for damage Sp on TS section. NRC data. 
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Figure 4-8: Calibration of CSTABN for damage Sv on TS section. AAU data. 
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Figure 4-9: Calibration of TANPHI for damage Sp on TS section. NRC data. 

 

 
Figure 4-10: Calibration of TANPHI for damage Sv on TS section. AAU data. 
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following computations but the above calibrations indicate the empirical nature of the 

stone transport model in CSHORE. 

4.4 Comparison with Data 

Comparisons for damage on different trunk sections are presented for NRC and 

AAU data separately. 

4.4.1 NRC Data 

Damage for NRC data was computed in two different ways, as described in 

section 2.3. The first one (ISEDAV = 2) allows erosion only in sections of no wire 

mesh. The second one (ISEDAV = 1) neglects the effect of the wire mesh, and damage 

was obtained from the eroded profile computed for the case of no wire mesh over the 

entire trunk. 

The comparison for each trunk section depicted in Figure 4-5 is shown in 

Figure 4-11 (ISEDAV = 2) and Figure 4-12 (ISEDAV = 1). The numerical model does 

not account for the smaller size of the core stone with ܦହ = 1.9 cm underneath the 

armor stone with ܦହ = 2.5 cm of two-layer thickness and underpredicts the damage 

ܵ for 6 tests involving the core stone removal. These 6 tests are excluded from these 

figures. 



 

 38

 
Figure 4-11: Damage comparison on trunk sections. NRC data with ISEDAV = 2. 
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Figure 4-12: Damage comparison on trunk sections. NRC data with ISEDAV = 1. 

 

Regardless of the choice of ISEDAV, agreement for TS and FS sections is 

reasonable and damage is predicted within a factor of two for almost all tests. Damage 

on C section is overpredicted for both ISEDAV = 1 and 2, which might be related to 

the peculiarity of the crest (C) section in NRC experiment as discussed in section 

4.2.2. On the other hand, agreement for BS section is significantly improved with the 

choice of ISEDAV = 1. This implies that the back slope damage may be influenced by 

0 4 8 12
0

4

8

12

C
o

m
p

ut
e

d
 S

p

 

 

TS

y = 1.11 x

0 4 8 12
0

4

8

12

 

 

FS

y = 0.75 x

0 4 8 12
0

4

8

12

Measured S
p

C
o

m
p

u
te

d 
S

p

 

 

C

y = 1.45 x

0 1 2 3
0

1

2

3

Measured S
p

 

 

BS
y = 0.65 x



the ston

ISEDA

4.4.2 

stones (

The rati

	ହܦ

evaluate

homoge

compar

bottom 

for the i

4-13, is

for the 

separate

ne movemen

V = 1 is ado

AAU Data 

Damage in A

(ܵ௩ damage)

io between t

 ⁄	ହܦ

e the effect o

eneous struc

red with that

ሻ in Figݔሺݖ

impermeable

Computed d

s shown for t

structure wit

ed for norma

 

F

nt under the m

opted for NR

AAU experi

. The numer

the core and 

 = 0.42, w

of the differe

cture based o

t for the armo

gure 2-1 is c

e core comp

damage on e

the homogen

th impermea

al and obliqu

Figure 4-13: 

4

mesh seawar

RC data and n

iments was b

rical model a

armor layer

while this rati

ent stones si

on the armor

or layer with

hosen to be 

putation. 

ach trunk se

neous structu

able core in F

ue incident w

Trunk sec

 

 40

rd of the bac

no wire mes

based on the 

assumes a ho

stone sizes

io was 0.66 i

zes, the com

layer stone 

h impermeab

located at th

ection, depict

ure with perm

Figure 4-15.

waves. 

ctions. AAU 

ck slope. In t

h was used f

measured n

omogeneous

in AAU exp

in NRC exp

mputed dama

in the previo

ble core. The

he upper bou

ted schemati

meable core 

. In both figu

 experiment

the following

for AAU dat

number of di

s stone struct

periments wa

eriments. To

age on the as

ous computa

e impermeab

undary of the

ically in Fig

in Figure 4-

ures, data are

ts. 

g, 

ta. 

splaced 

ture. 

as 

o 

ssumed 

ations is 

ble 

e core 

gure 

-14 and 

e 

 



 

 41

 
Figure 4-14: Damage comparison on trunk sections. AAU data with permeable core. 
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Figure 4-15: Damage comparison on trunk sections. AAU data with impermeable 

core. 

 

Damage on TS section is predicted mostly within a factor of two under both 

assumptions: homogeneous permeable structure and impermeable core structure. The 

actual structure was somewhere between these two limiting cases. The computed 

damage is larger for the impermeable core as expected. 
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Damage on SS section turns out to be sensitive to the core permeability 

because of the noticeable difference in Figure 4-14 and Figure 4-15. The reason is not 

clear but may be related to the relatively small damage measured on SS section. 

Damage prediction in C section is similar to that on TS section, as C section accounts 

for the majority of damage in most of the tests. Finally, small damage on LS section is 

hard to predict accurately and the agreement is the worst of all trunk sections. The 

computed damage difference is minor in comparison with the prediction accuracy. 
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Chapter 5 

DAMAGE ON HEAD 

Similarity of trunk and head damage for low-crested breakwaters (LCS) was 

examined for head damage prediction with CSHORE. Comparison is made of 

computed and measured damage at different sections of round head LCS with base 

diameter equal to the trunk base width. Use is made of head damage in the NRC and 

AAU wave basin experiments where the measured trunk damage has been used in 

Chapter 4. 

First, similarity of trunk and head damage based on measured values in each 

experiment is examined. Second, comparison between computed and measured head 

damage is presented. 

5.1 Similarity of Trunk and Head Damage 

In NRC experiments, head damage was measured on two sections of the round 

head: front head (FH), with the front arc angle of 60°; and back head (BH), with the 

remaining arc angle of 120°, as depicted in Figure 4-1. In AAU experiments, the round 

head was divided into three sections with arc angles of 60°: seaward head (SH), 

middle head (MH) and leeward head (LH), as depicted in Figure 4-3. 

Similarity of head and trunk damage was analyzed by examining damage 

relations between front head sections FH and SH and back head sections BH and 

(MH+LH) with several different trunk sections in each experiment as explained in the 

following. 
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Figure 5-2: Similarity of measured head damage FH and measured trunk damage. 

NRC experiments. Sv damage. 

 

 
Figure 5-3: Similarity of measured head damage SH and measured trunk damage. 

AAU experiments. Sv damage. 
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Figure 5-6: Similarity of measured head damage BH and measured trunk damage. 

NRC experiments. Sv damage. 

 

 
Figure 5-7: Similarity of measured head damage (MH+LH) and measured trunk 

damage. AAU experiments. Sv damage. 
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5.2 Comparison with Data 

Head damage prediction with CSHORE, based on damage similarity, is 

compared with NRC and AAU data. 

5.2.1 NRC Data 

Figure 5-9 shows the measured damage on front head (FH) and back head 

(BH) sections of NRC experiments in comparison with the computed damage on front 

trunk (FT) and back trunk (BT) sections, respectively. 

 

 
Figure 5-9: Measured and computed damage Sv for head sections FH and BH in 

NRC experiment. 

 

Damage on FH section is predicted mostly within a factor of two. Damage 

prediction on BH section shows similar agreement, except for submerged structures as 

expected from the damage data analysis in section 5.2.1. 
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5.2.2 AAU Data 

Figure 5-10 shows the measured damage on the seaward head (SH) and the 

back head (MH+LH) sections of AAU experiments in comparison with the computed 

damage on front trunk (FT) and back trunk (BT) sections, respectively. 

 

 
Figure 5-10: Measured and computed damage Sv for head sections SH and 

(MH+LH) in AAU experiment. 

 

Agreement for SH section is not as good as for FH section of NRC 

experiments. For (MH+LH) section, damage is overpredicted for submerged structures 

and underpredicted for emerged structures, which suggests that the back head section 

is more sensitive to freeboard effects than trunk sections, as also reported by Vidal, et 

al. (1995b).
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Chapter 6 

EXPERIMENTS 

In NRC experiments the low-crested structure (LCS) was located outside the 

surf zone while in AAU experiments it was located outside the surf zone or in the 

outer surf zone. In both experiments, the structures were placed over fixed bottom. A 

low-crested breakwater constructed for shore protection is typically located on a sand 

beach and inside the surf zone during storms. Sumer, et al. (2005) investigated local 

scour around low-crested structures located outside the surf zone on sand bottoms. An 

experiment was conducted to examine damage on a low-crested stone structure and 

sand transport in the vicinity of the structure inside the surf zone in the presence of 

wave setup and undertow current. 

Experimental setup and test conditions are described in the first section of this 

chapter. Experimental procedure is described in the second section. Data analysis is 

presented in the third section. Finally, the numerical model is compared with the data. 

6.1 Experimental Setup 

The experiment was conducted in the wave tank of the Center for Applied 

Coastal Research of the University of Delaware, which was 30 m long, 2.5 m wide 

and 1.5 m high. The bottom consisted of fine sand on a plywood bottom slope. A 

partition wall in the middle of the wave tank reduced the amount of sand used for the 

beach and seiching development in the wave tank. The instruments used in this 

experiment were installed by Figlus, et al. (2011). 
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 Table 6-1: Cross-shore location of instruments. 

Instrument WG1 WG2 WG3 WG4 WG5 WG6 V1 V2 

x [m] 0.00 0.24 0.95 8.25 10.40 12.05 10.40 12.05 

 

A laser line scanner mounted on a motorized cart was used to measure three-

dimensional bathymetry between 4.9 m < 19.9 > ݔ m. An array of three ultrasonic 

transducers was used to measure the beach profile between 0 m < 5.9 > ݔ m, where the 

1 m overlapping zone ensured the smooth transition of the two measured profiles. 

A fixed camera was installed on the top of the flume to detect stone 

displacements after each test. A fixed video camera was also installed on the side of 

the wave flume to record wave transformation and stone displacements. 

6.1.2 Sand and Stones 

Beach sand and stones used to build the low-crested stone structure are 

described in the following. 

Well sorted sand was used in the wave flume, as summarized in Table 6-2. 

 
Table 6-2: Characteristics of sand used in experiment. 

Parameter value 

median diameter [mm] 0.18 

density [g/cm3] 2.6 

fall velocity [cm/s] 2.0 

 

Green (G), blue (B) and white (W) stones were used to build the breakwater. G 

and B stones were used as armor layers and W stones were used to build a small core. 



 

 58

A sample of 100 stones was taken to obtain the stone size distribution. For practically 

homogeneous B stones 50 stones were sampled. Each stone was weighted on a small 

scale in the range of 1 - 500 g. Stone density was estimated as the total weight of the 

sample divided by the stone volume measured using a graduated cylinder filled with 

water. The nominal diameter (ܦ) of each stone was then calculated using the 

following relation: 

 

ܦ  ൌ 	 ቀ
ெ

ఘೞ
ቁ
ଵ
ଷൗ
 (6-1) 

Where 

 mass of each stone [kg] :ܯ

 ௦: stone density [kg/m3]ߩ

 

The stone size distribution is expressed as the percentage finer by mass as a 

function of the corresponding value of ܦ. 

Stone porosity was measured by placing stones in a large bucket. Water was 

poured until stones were covered. The total stone weight and water weight were 

measured after separating the stone and water. The corresponding volume was then 

calculated from the known density. Finally, the stone porosity was calculated with the 

following relation: 

 

 ݊ ൌ 	
ೡ

ೞାೡ
 (6-2) 

Where 

௩ܸ: measured volume of voids (equal to measured volume of water) [m3] 

௦ܸ: measured volume of stones [m3] 
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The measured stone characteristics are summarized in Table 6-3. Details of 

stone measurements are provided in Appendix C. 

 
Table 6-3: Characteristics of three stones used in experiment. 

Parameter 
G 

(green) 
B 

(blue) 
W 

(white) 

 ௦ [g/cm3] 2.94 3.06 2.72ߩ

݊ 0.44 0.44 0.43 

 ହ (50% finer) [cm] 3.52 3.81 1.80ܦ

 ଼ହ(85% finer) [cm] 3.71 3.86 1.95ܦ

 ଵହ(15% finer) [cm] 3.33 3.75 1.61ܦ

 ଵହ 1.11 1.03 1.21ܦ/଼ହܦ

 

6.1.3 Test Conditions 

Two test series were conducted: with no structure (N) and with structure (S). 

Each series consisted of 10 runs of a 400 s burst of irregular waves corresponding to a 

TMA spectrum. The same burst was used for all runs. Target significant wave height 

and spectral peak period were approximately 17 cm and 2 s, respectively. Water depth 

at the paddle was kept at 78 cm in the experiment. 

6.2 Experimental Procedure 

The following procedure was followed to conduct the tests. 

6.2.1 Profile Construction 

In a preliminary test, the beach was exposed to the same wave conditions used 

for both test series (N and S), and the profile was regarded to be quasi-equilibrium. 
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6.2.3 Measurements 

Measurements were made of free surface elevations, velocities, bottom profile, 

structure damage and sand deposition. 

6.2.3.1 Wave Gauges 

Voltage signals from wave gauges WG1-WG6 were measured under quiet 

conditions to determine the still water level at each wave gauge after filling up the 

tank. Free surface elevations were measured at a sampling rate of 20 Hz by the six 

wave gauges installed along the flume. The first 20 s of the time series was removed to 

eliminate transitional waves. Bottom profile measurements required the drainage of 

the water in the flume every 5 runs. Wave gauges were calibrated before each profile 

measurement during the water draining. Figure 6-5 shows calibration relations for 

tests N01 to N05. A linear regression between voltage measurement and free surface 

level was accurate for all calibration relations. 

 

 
Figure 6-5: Calibration curves of wave gauges WG1-WG6. 
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6.2.3.2 Acoustic Doppler Velocimeters 

Two acoustic Doppler velocimeters, V1 and V2, were used to measured 3D 

velocity components at an elevation of 1/3 of the still water depth above the local 

bottom, at the same cross-shore locations of wave gauges WG5 and WG6, 

respectively. The free surface elevation and velocity data collection was synchronized 

at a rate of 20 Hz. 

6.2.3.3 Bottom Profile 

A laser line scanner mounted on a motorized cart was used to measure three-

dimensional bathymetry after lowering the water level, at the beginning (t = 0 s) and 

after 5 (t = 2,000 s) and 10 runs (t = 4,000 s) of each test series. Measurements were 

taken at 2 cm intervals along the flume, between 4.9 m < 19.9 > ݔ m. An array of three 

ultrasonic transducers submerged in water was used to measure the beach profile 

between 0 m < 5.9 > ݔ m, at 10 cm intervals along the flume. These measurements 

were made at the beginning and end of each test series. 

The three-dimensional laser data were averaged alongshore to get a two-

dimensional profile. The average of the three transducer measurements was used for 

the remaining part of the profile. The overlapping region between 4.9 m < 5.9 > ݔ m 

was used to merge both profiles smoothly. 

6.2.3.4 Structure Damage 

Structure profile measurements were also made at the beginning (initial 

profile) and after 5 and 10 runs (eroded profile). A fine resolution laser scan was used 

to measure the structure profile at 0.5 cm intervals, between 10.2 m < 11.3 > ݔ m. The 

measured profiles were used to compute the eroded area and damage ܵ using 

Equation (4-2). 
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After each run, photos of the structure were taken from a stationary camera. 

These pictures in conjunction with the fine resolution laser scan measurements were 

used to count the number of dislodged stones during each run. The cumulative number 

of displaced stones was used to examine the temporal increase of damage ܵ௩ using 

Equation (4-1). 

6.2.3.5 Sand Deposition 

After S test series, sand deposition inside the structure was measured. Stones 

were removed carefully and wetted sand attached to some stones was removed at the 

same location. Once all stones were collected, the sand was slightly compacted for a 

fine resolution laser scan to measure deposited sand on the bottom at 0.5 cm intervals, 

between 10.2 m < 11.3 > ݔ m. Then, the sand was removed for a second fine 

resolution scan to obtain the deposited sand thickness. The collected sand was dried in 

an oven for 24 hr and then weighted to obtain the deposited sand porosity. 

6.3 Analyzed Data 

The measured free surface elevations, velocities, sand profiles and structure 

damage are analyzed in the following sections. 

6.3.1 Free Surface Elevation 

Offshore incident wave characteristics and reflection coefficient were obtained 

from wave gauges WG1-WG3, as summarized in  Table 6-4 for each run, where: ܪ 

= spectral significant wave height; ܪ௦ = root-mean-square wave height; ܪ௦ = 

average height of the highest 1/3 waves; ܶ = spectral peak period; ௦ܶ = significant 

wave period; and ܴ = average reflection coefficient. 
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Mean free surface elevation (̅ߟ) and standard deviation of the free surface (ߪఎ) 

calculated from the time series collected by each wave gauge are listed in  Table 6-5 

and  Table 6-6, respectively. 

 
 Table 6-4: Incident wave conditions and reflection coefficient. 

Run 
Hm0 
[cm] 

Hrms 

[cm] 
Hs 

[cm] 
Tp 

[s] 
Ts 

[s] 
R 

N_01 16.40 11.60 15.77 1.71 1.77 0.11 

N_02 16.48 11.65 15.93 1.71 1.76 0.11 

N_03 16.59 11.73 15.98 1.71 1.75 0.11 

N_04 16.60 11.74 16.04 1.71 1.78 0.11 

N_05 16.59 11.73 15.99 1.71 1.78 0.12 

N_06 16.56 11.71 15.95 1.71 1.78 0.11 

N_07 16.66 11.78 16.05 1.71 1.78 0.11 

N_08 16.84 11.91 16.35 1.71 1.77 0.11 

N_09 16.92 11.96 16.37 1.71 1.78 0.11 

N_10 16.93 11.97 16.41 1.71 1.78 0.12 

S_01 16.52 11.68 15.91 1.71 1.76 0.14 

S_02 16.60 11.74 15.97 1.71 1.76 0.15 

S_03 16.72 11.82 16.11 1.71 1.76 0.14 

S_04 16.82 11.90 16.18 1.71 1.77 0.14 

S_05 16.86 11.92 16.25 1.71 1.76 0.14 

S_06 16.52 11.68 15.86 1.71 1.78 0.14 

S_07 16.73 11.83 16.11 1.71 1.78 0.15 

S_08 16.87 11.93 16.29 1.71 1.77 0.14 

S_09 16.91 11.96 16.30 1.71 1.77 0.14 

S_10 16.87 11.93 16.26 1.71 1.76 0.15 
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 Table 6-5: Mean free surface elevation ̅ߟ at wave gauges WG1-WG6. 

Run WG1 WG2 WG3 WG4 WG5 WG6 

N_01 -0.22 -0.19 -0.18 0.15 0.37 0.66 

N_02 -0.22 -0.20 -0.18 0.14 0.35 0.66 

N_03 -0.21 -0.18 -0.19 0.14 0.37 0.66 

N_04 -0.21 -0.17 -0.20 0.13 0.35 0.66 

N_05 -0.19 -0.16 -0.21 0.13 0.34 0.66 

N_06 -0.28 -0.20 -0.17 0.20 0.37 0.66 

N_07 -0.30 -0.23 -0.19 0.18 0.37 0.65 

N_08 -0.29 -0.23 -0.19 0.18 0.37 0.65 

N_09 -0.29 -0.21 -0.20 0.20 0.37 0.65 

N_10 -0.29 -0.19 -0.21 0.19 0.37 0.64 

S_01 -0.32 -0.25 -0.25 0.13 0.27 1.48 

S_02 -0.33 -0.24 -0.27 0.09 0.25 1.46 

S_03 -0.32 -0.22 -0.28 0.10 0.25 1.46 

S_04 -0.32 -0.21 -0.29 0.10 0.24 1.46 

S_05 -0.31 -0.21 -0.30 0.10 0.24 1.46 

S_06 -0.27 -0.24 -0.29 0.03 0.30 1.43 

S_07 -0.27 -0.22 -0.32 0.02 0.30 1.43 

S_08 -0.26 -0.21 -0.33 0.03 0.30 1.45 

S_09 -0.26 -0.20 -0.35 0.03 0.30 1.44 

S_10 -0.25 -0.17 -0.36 0.02 0.28 1.44 
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 Table 6-6: Standard deviation of the free surface ση at wave gauges WG1-WG6. 

Run WG1 WG2 WG3 WG4 WG5 WG6 

N_01 4.05 4.03 4.09 2.85 2.18 1.78 

N_02 4.08 4.05 4.11 2.86 2.17 1.78 

N_03 4.10 4.08 4.13 2.84 2.18 1.79 

N_04 4.11 4.07 4.13 2.86 2.19 1.78 

N_05 4.11 4.07 4.13 2.83 2.18 1.79 

N_06 4.09 4.11 4.10 2.90 2.27 1.84 

N_07 4.11 4.13 4.14 2.91 2.29 1.85 

N_08 4.16 4.17 4.17 2.91 2.29 1.85 

N_09 4.18 4.20 4.19 2.90 2.30 1.87 

N_10 4.19 4.20 4.20 2.90 2.30 1.88 

S_01 4.08 4.08 4.12 2.87 2.36 1.36 

S_02 4.10 4.10 4.13 2.86 2.37 1.38 

S_03 4.13 4.12 4.16 2.85 2.36 1.39 

S_04 4.16 4.16 4.18 2.88 2.38 1.42 

S_05 4.16 4.17 4.21 2.87 2.38 1.40 

S_06 4.07 4.07 4.13 2.88 2.40 1.42 

S_07 4.13 4.12 4.17 2.88 2.41 1.43 

S_08 4.17 4.16 4.20 2.87 2.43 1.43 

S_09 4.17 4.18 4.21 2.89 2.43 1.44 

S_10 4.17 4.16 4.20 2.89 2.44 1.44 
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6.3.2 Velocity 

Mean cross-shore velocity (ݑത) and standard deviation of the cross-shore 

velocity (ߪ௨) calculated from the time series collected by each ADV are shown in 

Table 6-7. 

 
Table 6-7: Cross-shore velocity statistics from velocimeters V1 and V2. 

Run V1 V2 

 [cm/s] ࢛࣌ ഥ [cm/s]࢛ [cm/s] ࢛࣌ ഥ [cm/s]࢛

N_01 NR NR -5.87 13.66 

N_02 -5.65 15.65 -5.18 13.68 

N_03 -5.45 15.66 NR NR 

N_04 NR NR NR NR 

N_05 -5.48 15.26 -5.22 14.01 

N_06 -5.00 15.29 -5.13 14.52 

N_07 -5.44 15.59 -5.28 14.10 

N_08 -5.16 15.56 -5.30 14.34 

N_09 -4.34 15.83 NR NR 

N_10 -4.96 15.96 -5.12 14.39 

S_01 -2.63 15.77 -2.31 9.86 

S_02 -1.68 15.52 -2.42 10.10 

S_03 -2.25 15.65 -2.74 10.22 

S_04 -2.65 17.25 -2.87 10.32 

S_05 -1.82 15.21 -2.16 10.30 

S_06 -1.68 15.39 -3.01 10.35 

S_07 -1.93 15.65 -3.03 10.38 

S_08 -1.91 15.43 -3.00 10.23 

S_09 -1.86 15.22 -2.89 10.17 

S_10 -1.84 15.08 -2.76 9.98 

NR: not reliable data 
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6.3.3 Bottom Profile 

The bottom profile was measured at the beginning, middle and end of each test 

series. Figure 6-6 shows measured profiles and eroded depth (positive for erosion) 

relative to the initial profile for test series N. Figure 6-7 shows measured profiles and 

eroded depth relative to the initial profile for test series S. 

In both test series, larger variations are seen in the zone measured by the 

ultrasonic transducers (0 ≤ x ≤ 4.9 m) at 10 cm intervals. These variations are possibly 

related to the sensitivity of sparse point measurements made with the transducers to 

bed forms. 

Variations of the bottom profile for N test series are smaller than 1 cm, except 

for the vicinity of the shoreline location near x = 16 m. Differences between profiles 

measured at t = 2000 s and t = 4000 s are smaller than 0.5 cm, indicating the quasi-

equilibrium condition of the sand profile. 

Variations of the bottom profile for S test series are also smaller than 1 cm, 

apart from few spikes related to ripples. Differences between profiles measured at 

t = 2000 s and t = 4000 s are mainly due to increased size of ripples. A sequence of 

eroded and deposited zones seaward of the structure is also apparent, possibly related 

to a partially standing wave formed in front of the structure. The measured reflection 

coefficient at WG1 was approximately 0.14 for S test in comparison to 0.11 for N test. 
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Figure 6-6: Measured bottom profile zb and eroded depth de for N test series. 

 

 
Figure 6-7: Measured bottom profile zb and eroded depth de for S test series. 
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6.3.4 Structure Damage 

Structure damage was measured in two ways: by a fine resolution laser scan 

profile measurement and by counting the number of displaced stones. 

The fine resolution laser scan profiles over the structure are shown in Figure 

6-8, where the averaged profiles at the beginning and end of the test series are shown 

together with the eroded depth. 

 

 
Figure 6-8: Measured structure profiles at the beginning and end of S test. 

 

Sand erosion and accretion occurred seaward and landward of the structure, 

respectively, probably because the structure interrupted the offshore sediment 

transport caused by the undertow current. Eroded depth of sand seaward of the 

structure is about 1 cm, while accretion landward of the structure is about 0.5cm. 

Eroded depth along the structure is about 2 mm, similar to the magnitude of the 

measurement error obtained from consecutive profile measurements over the structure, 
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6.3.5 Sand Deposition 

Deposited sand inside the structure was measured with the laser scan after S 

test. The deposited sand mass was also measured to estimate the porosity of the loose 

sand which was 0.53 in comparison to the porosity of 0.4 for the beach sand. The 

porosity difference was taken into account to convert the loose sand height to the 

beach sand height. Measured and adjusted values are summarized in Table 6-9. The 

converted sand height was about 0.3, 0.1 and 0.2 cm below the seaward slope, crest 

and landward slope of the structure, respectively, as shown in Figure 6-16. 

 
Table 6-9: Deposited sand measurements. 

Parameter value 

sand weight [g] 2,149 

sand density [g/cm3] 2.6 

sand volume [cm3] 827 

deposited area ܣௗ [cm2] 15.2 

flume width [cm] 115 

deposited volume [cm3] 1,748 

measured porosity  0.53 

adjusted porosity 0.40 

adjusted area ܣ [cm2] 12.0 
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Figure 6-16: Measured profile and deposited sand depth inside the structure after S 

test. 
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6.4 Comparison with Numerical Model 

Measured values of ̅ܪ ,ߟ and ܶ at 0 = ݔ (WG1) for each run are specified as 

input for the numerical model. Empirical parameters in the model are kept the same as 

in the computations made for the NRC and AAU data. 

For N tests, the plywood bottom slope of the flume was used to define the 

impermeable and fixed bottom ݖሺݔሻ in the numerical model. The measured sand 

profile at the beginning of the test (N 00) was used to define the deformable bottom 

 ሻ. In this computation, limited availability of sand above the fixed bottom isݔሺݖ

accounted for. 

For S test, the measured sand profile at the beginning of the test (S 00) was 

used to define the impermeable and fixed bottom ݖሺݔሻ in the numerical model, while 

the structure profile measured at the beginning of the test (S 00) was used to define the 

permeable bottom ݖሺݔሻ. 

The computational domain extended from 0 = ݔ to the sand dune located on 

the shoreward end of the flume. A local domain between WG 4-6 was used to 

compute damage on S test. Wave conditions at WG4 obtained from the entire domain 

computation were used as the offshore boundary conditions for the local domain 

computation. 

The hydrodynamic variables and structure damage computed and stored at the 

end of each run are compared with the measured data. 

6.4.1 Hydrodynamics 

Figure 6-17 compares the measured and computed cross-shore variations of the 

mean water level ̅ߟ, spectral significant wave height ܪ, and the mean ഥܷ and 

standard deviation ߪ of the horizontal velocity ܷ for 10 runs in N test. The ten 
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measured values and computed variations are plotted together to indicate the 

variability of 10 runs in N test. 

The mean water level ̅ߟ was negative (setdown) at WG 1-3 outside the surf 

zone and positive (setup) at WG 4-6 inside the surf zone. The wave height ܪ 

increased slightly due to wave shoaling and decreased almost linearly due to wave 

breaking. The numerical model overpredicts ̅ߟ and underpredicts ܪ slightly. The 

velocity comparison is uncertain because the computed depth-averaged velocity ഥܷ is 

not the same as the horizontal velocity measured at an elevation of 1/3 of the still 

water depth above the local bottom. The mean velocity ഥܷ is negative and represents an 

offshore return current (undertow). The standard deviation ߪ represents the 

magnitude of the oscillatory wave velocity. The degree of the agreement in Figure 

6-17 is similar to that of the previous comparisons by Kobayashi, et al. (2009) and 

Figlus, et al. (2011). 
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Figure 6-17: Initial bottom elevation zb and measured and computed cross-shore 

variations of ̅ߟ, Hm0, ഥܷ and σU for 10 runs in N test. 

 

Figure 6-18 compares the measured and computed cross-shore variations of the 

mean water level ̅ߟ, spectral significant wave height ܪ, and the mean ഥܷ and 

standard deviation ߪ of the horizontal velocity ܷ for 10 runs in S test. The local 

domain (8.25 m ≤ 12.05 ≥ ݔ m) near the structure is depicted for clarity. The effects of 

the structure are essentially limited to the local domain. The ten measured values and 

computed variations are plotted together to indicate the variability of 10 runs in S test. 
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Figure 6-18: Initial bottom elevation zb and measured and computed cross-shore 

variations of ̅ߟ, Hm0, ഥܷ and σU for 10 runs in S test. 
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structure. The cause of the reduced offshore current at WG5 is not clear but may be 

related to the vertical variation of the undertow current and the elevation of the 

velocimeter V1 well below the structure crest as shown in Figure 6-1. The numerical 

model reproduces the measured cross-shore variations but the computed variations 

over the structure are uncertain due to lack of data. 

6.4.2 Structure Damage 

Measured and computed temporal variations of damage ܵ௩ for G and B stones 

is shown in Figure 6-19. The computed temporal variation is smooth because the 

numerical model does not predict the displacement of individual stones.  

 

 
Figure 6-19: Measured and computed temporal variations of damage Sv in the 

experiment. 

 

The numerical model underpredicts the damage, partly because the measured 

damage includes three G stones and two B stones that were placed on the edge of the 
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3 cm (more than 0.5ܦହ but less than ܦହ) because of no toe protection. If these 

Measured Computed

0 1000 2000 3000 4000
0

0.2

0.4

0.6

G stone

time [s]

D
a

m
a

g
e

 S
v

 

 

0 1000 2000 3000 4000
0

0.2

0.4

0.6

B stone

time [s]

 

 



 

 84

displaced stones are excluded, the measured values of damage ܵ௩ would be 0.1 and 0.0 

for G and B stones, respectively. 
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Chapter 7 

CONCLUSIONS 

Wave transmission, structure damage as well as other related topics on low-

crested breakwaters (LCS) were analyzed in this study. Concluding remarks on each 

of these subjects are given in the following. 

The cross-shore numerical model CSHORE extended to oblique waves, as 

described in the report of Kobayashi (2013), is used to compute wave transmission 

and structure damage. 

The extended model is compared with available data on wave transmission 

consisting of 119 tests with normal and oblique wave incidence. When wave 

diffraction is excluded, the agreement between the measured and computed wave 

transmission coefficients is mostly within a factor of 2. 

The model is used to predict the spatial variation of damage on the trunk of 

low-crested breakwaters. Comparison with two data sets consisting of 104 tests 

indicates that the model can predict damage on the front slope, back slope, and total 

section mostly within a factor of 2 except for small damage on the back slopes. 

Computed damage can be sensitive to the cross-shore extent of the specified section 

for some tests. 

Similarity of trunk and head damage for low-crested structures is proposed to 

predict damage on the front head and back head sections using the cross-shore model 

developed for the trunk sections. The agreement for the head sections is not as good as 
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that for the trunk sections. The model overpredicts damage on the back head of a 

submerged structure, whose damage is sensitive to freeboard effects. 

The proposed damage similarity for the back head of a low-crested breakwater 

may not be very accurate but allows to estimate the head damage in a wave-flume 

experiment and using a one-dimensional numerical model such as CSHORE. 

The extended model may be used to predict damage progression during a 

severe storm with time-varying waves and water level conditions. Such a prediction is 

required for the design of a low-crested structure because of its sensitivity to both 

waves and water level. 

An experiment was conducted in a wave flume for a LCS located inside the 

surf zone on a sand beach. The numerical model is shown to reproduce the measured 

cross-shore wave transformation on the beach without and with the structure as well as 

the measured small damage on the structure. 

The measured beach profile change and deposited sand height inside the 

porous structure indicate that the interaction of sand and stone is important in 

predicting local scour and deposition in the vicinity of the porous structure. This 

interaction is not included in the present numerical model. 
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Appendix A 

AVAILABLE DATA ON LCS 
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Table A-1: Test conditions and measured data. NRC experiment. 

 
  

TS FS C BS TS FS C BS FH BH

1 0 0.15 0.40 0.00 0.048 1.39 0.016 0.54 0.78 0.23 0.54 0.14 0.45 0.45 0.72 0.00 0.39 0.39

4 0 0.15 0.40 0.00 0.075 1.40 0.025 0.45 1.85 0.63 1.07 0.51 1.27 0.81 1.00 0.09 0.00 1.97

5 0 0.15 0.40 0.00 0.075 1.40 0.025 0.45 1.07 0.18 0.19 0.12 2.08 0.36 1.09 0.18 0.66 0.98

2 0 0.15 0.40 0.00 0.094 1.41 0.030 0.45 5.06 2.12 4.29 0.52 4.53 2.90 4.98 0.45 2.38 2.38

3 0 0.15 0.40 0.00 0.111 1.41 0.036 0.41 5.15 2.64 1.71 0.47 5.16 3.44 3.08 0.18 3.73 3.47

13 0 0.15 0.60 0.00 0.127 1.40 0.042 0.47 17.61 9.19 9.83 0.99 0.82 13.73 12.12

9 0 0.15 0.40 -0.05 0.076 1.39 0.025 0.64 0.53 0.33 0.57 0.44 0.00 0.27 0.18 0.00 0.00 0.00

6 0 0.15 0.40 -0.05 0.092 1.41 0.030 0.60 2.31 0.12 1.15 0.42 1.63 0.63 1.36 0.09 0.40 0.00

7 0 0.15 0.40 -0.05 0.114 1.41 0.037 0.55 2.45 1.05 2.88 0.24 2.53 1.81 2.72 0.18 2.40 0.51

8 0 0.15 0.40 -0.05 0.126 1.41 0.041 0.54 4.06 3.50 1.92 0.35 5.07 5.89 2.44 0.27 1.93 0.64

14 0 0.15 0.60 -0.05 0.133 1.40 0.043 0.62 5.17 1.89 5.25 0.77 5.70 2.72 4.26 0.09 10.13 1.42

15 0 0.15 0.60 -0.05 0.151 1.41 0.049 0.60 10.72 4.70 10.22 0.57 5.61 0.54 14.33 3.30

16 0 0.15 0.60 0.02 0.052 1.40 0.017 0.46 2.02 0.70 0.44 1.15 1.36 0.27 0.09 0.18 0.00 1.16

12 0 0.15 0.40 0.02 0.075 1.41 0.024 0.39 2.53 0.98 0.67 0.02 3.89 2.44 1.09 0.27 1.48 3.55

10 0 0.15 0.40 0.02 0.094 1.41 0.030 0.38 6.43 3.26 0.46 0.31 6.70 6.07 1.27 0.27 1.63 6.35

11 0 0.15 0.40 0.02 0.105 1.41 0.034 0.36 8.80 5.10 2.84 0.32 11.04 6.61 3.80 0.63 5.34 8.62

17 0 0.15 0.60 0.02 0.146 1.40 0.048 0.43 43.76 11.83 8.63 2.18 1.54 23.18 15.38

18 0 0.15 0.60 0.04 0.046 1.41 0.015 0.48 1.24 0.60 0.17 0.35 0.45 0.27 0.09 0.00 0.85 0.71

19 0 0.15 0.60 0.04 0.079 1.40 0.026 0.43 3.45 1.42 0.79 0.36 4.62 2.81 1.27 0.36 3.68 4.36

20 0 0.15 0.60 0.04 0.096 1.40 0.031 0.43 6.68 4.39 1.38 1.22 5.07 1.99 0.54 13.78 12.18

21 0 0.15 0.60 0.04 0.117 1.40 0.038 0.41 22.31 11.22 1.19 0.78 2.62 1.27 19.14 18.24

22 0 0.15 0.60 0.04 0.136 1.41 0.044 0.41 4.62 0.31 4.89 0.91

23 0 0.15 0.60 0.04 0.151 1.41 0.049 0.40 2.46 1.39 3.44 3.62

H s

[m]

F

[m]

h c

[m]

B c

[m]
θ

[deg]
Test Measured damage S p Measured damage S vK ts 0T p

[s]
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Table A-1: Continued. 

 

 

TS FS C BS TS FS C BS FH BH

24 0 0.15 0.60 0.06 0.054 1.41 0.017 0.46 0.33 0.73 0.11 0.44 1.09 0.91 0.00 0.00 1.41 1.41

25 0 0.15 0.60 0.06 0.079 1.42 0.025 0.39 3.17 2.87 0.29 0.20 5.34 2.99 0.18 0.00 5.10 8.32

26 0 0.15 0.60 0.06 0.092 1.41 0.030 0.40 5.12 5.62 0.90 0.53 7.15 7.61 0.36 1.00 8.92 16.43

27 0 0.15 0.60 0.06 0.110 1.41 0.035 0.40 19.56 11.09 1.42 1.79 25.54 16.02 1.18 2.26 12.58

28 0 0.15 0.60 0.06 0.123 1.41 0.040 0.37 1.38 1.77 1.81 3.26

29 0 0.15 0.60 0.06 0.132 1.41 0.043 0.39 1.46 2.01 2.35 3.62

30 0 0.15 0.60 0.02 0.051 1.82 0.010 0.61 0.80 0.32 0.13 0.91 0.36 0.36 0.00 0.00 0.51

31 0 0.15 0.60 0.02 0.080 1.82 0.015 0.56 4.70 2.95 1.49 1.08 7.61 3.71 1.81 0.45 4.64 4.22

32 0 0.15 0.60 0.02 0.108 1.81 0.021 0.56 16.49 6.79 3.12 0.55 23.45 9.51 3.89 0.54 11.63 13.28

33 0 0.15 0.60 0.02 0.134 1.81 0.026 0.54 16.12 2.69 0.23 25.71 4.17 0.27 16.84

34 0 0.15 0.60 0.06 0.072 1.82 0.014 0.47 3.87 1.38 0.15 0.68 5.98 3.17 0.27 0.00 0.91 2.48

35 0 0.15 0.60 0.06 0.099 1.82 0.019 0.46 26.55 8.87 0.49 0.76 11.23 0.36 0.72 6.44 15.59

H s

[m]

F

[m]

h c

[m]

B c

[m]
θ

[deg]
Test Measured damage S p Measured damage S vK ts 0T p

[s]
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Table A-2: Test conditions and measured data. AAU wave transmission 
experiment. 

  

Test θ
[deg]

B c

[m]

h c

[m]

F

[m]

H s

[m]

T p

[s]

s 0 K t

1 -11 0.10 0.25 0.00 0.094 1.60 0.024 0.49

2 -11 0.10 0.25 0.00 0.120 1.83 0.023 0.45

3 -13 0.10 0.25 0.00 0.132 2.13 0.019 0.42

4 -6 0.10 0.25 0.00 0.063 1.22 0.027 0.51

5 -3 0.10 0.25 0.00 0.095 1.42 0.030 0.48

6 -9 0.10 0.25 0.00 0.112 1.51 0.032 0.46

7 -11 0.10 0.25 0.00 0.134 2.13 0.019 0.43

8 -9 0.10 0.25 0.00 0.127 1.60 0.032 0.45

9 -8 0.10 0.25 0.05 0.083 1.60 0.021 0.31

10 -9 0.10 0.25 0.05 0.096 1.60 0.024 0.32

11 -14 0.10 0.25 0.05 0.109 1.71 0.024 0.32

12 -7 0.10 0.25 0.05 0.060 1.07 0.034 0.23

13 -9 0.10 0.25 0.05 0.079 1.07 0.045 0.27

14 -8 0.10 0.25 0.05 0.095 1.35 0.034 0.29

15 -10 0.10 0.25 -0.05 0.094 1.60 0.024 0.65

16 -13 0.10 0.25 -0.05 0.131 1.97 0.022 0.57

17 -11 0.10 0.25 -0.05 0.157 2.13 0.022 0.52

18 -7 0.10 0.25 -0.05 0.076 1.42 0.024 0.68

19 -9 0.10 0.25 -0.05 0.106 1.42 0.034 0.61

20 -10 0.10 0.25 -0.05 0.144 1.51 0.041 0.53

21 38 0.10 0.25 0.00 0.095 1.60 0.024 0.44

22 38 0.10 0.25 0.00 0.127 1.71 0.028 0.42

23 45 0.10 0.25 0.00 0.129 1.83 0.025 0.39

24 32 0.10 0.25 0.00 0.120 1.71 0.028 0.45

25 36 0.10 0.25 0.00 0.144 1.97 0.024 0.42

26 32 0.10 0.25 0.00 0.072 1.11 0.037 0.47

27 35 0.10 0.25 0.00 0.103 1.22 0.044 0.47

28 41 0.10 0.25 0.00 0.110 1.22 0.047 0.41

29 31 0.10 0.25 0.00 0.103 1.28 0.040 0.49

30 35 0.10 0.25 0.00 0.130 1.42 0.041 0.44

31 36 0.10 0.25 0.00 0.144 2.13 0.020 0.44

32 35 0.10 0.25 0.00 0.131 1.51 0.037 0.45

33 36 0.10 0.25 0.00 0.123 1.51 0.035 0.48

34 34 0.10 0.25 0.00 0.133 1.51 0.038 0.47

35 38 0.10 0.25 0.05 0.080 1.60 0.020 0.24

36 41 0.10 0.25 0.05 0.096 1.71 0.021 0.24

37 40 0.10 0.25 0.05 0.120 1.97 0.020 0.25

38 47 0.10 0.25 0.05 0.114 1.97 0.019 0.23

39 35 0.10 0.25 0.05 0.116 1.83 0.022 0.28

40 28 0.10 0.25 0.05 0.060 1.11 0.031 0.20

41 30 0.10 0.25 0.05 0.084 1.22 0.036 0.21

42 37 0.10 0.25 0.05 0.099 1.28 0.039 0.24
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Table A-2: Continued 

 

Test θ
[deg]

B c

[m]

h c

[m]

F

[m]

H s

[m]

T p

[s]

s 0 K t

43 38 0.10 0.25 -0.05 0.102 1.60 0.026 0.64

44 34 0.10 0.25 -0.05 0.136 1.97 0.022 0.57

45 43 0.10 0.25 -0.05 0.135 1.97 0.022 0.54

46 26 0.10 0.25 -0.05 0.132 2.13 0.019 0.61

47 33 0.10 0.25 -0.05 0.165 2.13 0.023 0.51

48 30 0.10 0.25 -0.05 0.083 1.22 0.036 0.66

49 36 0.10 0.25 -0.05 0.123 1.42 0.039 0.55

50 44 0.10 0.25 -0.05 0.120 1.42 0.038 0.55

51 26 0.10 0.25 -0.05 0.124 1.28 0.048 0.60

52 34 0.10 0.25 -0.05 0.146 1.60 0.037 0.54

53 56 0.10 0.25 0.00 0.093 1.51 0.026 0.47

54 56 0.10 0.25 0.00 0.120 1.71 0.026 0.44

55 67 0.10 0.25 0.00 0.117 1.71 0.026 0.43

56 51 0.10 0.25 0.00 0.123 1.83 0.024 0.46

57 56 0.10 0.25 0.00 0.140 1.97 0.023 0.41

58 55 0.10 0.25 0.00 0.072 1.16 0.034 0.46

59 47 0.10 0.25 0.00 0.103 1.28 0.040 0.46

60 59 0.10 0.25 0.00 0.100 1.28 0.039 0.42

61 52 0.10 0.25 0.00 0.099 1.28 0.039 0.47

62 55 0.10 0.25 0.00 0.127 1.42 0.040 0.43

63 83 0.10 0.25 0.00 0.131 2.13 0.018 0.44

64 49 0.10 0.25 0.00 0.131 1.51 0.037 0.44

65 52 0.10 0.25 0.00 0.129 1.51 0.036 0.44

66 50 0.10 0.25 0.00 0.125 1.51 0.035 0.46

67 55 0.10 0.25 0.05 0.079 1.60 0.020 0.25

68 58 0.10 0.25 0.05 0.097 1.60 0.024 0.28

69 58 0.10 0.25 0.05 0.119 1.83 0.023 0.24

70 65 0.1 0.25 0.05 0.112 1.83 0.021 0.24

71 52 0.1 0.25 0.05 0.114 1.97 0.019 0.27

72 49 0.1 0.25 0.05 0.061 1.02 0.037 0.21

73 47 0.1 0.25 0.05 0.082 1.22 0.035 0.23

74 52 0.1 0.25 0.05 0.095 1.22 0.041 0.25

75 53 0.1 0.25 -0.05 0.104 1.60 0.026 0.65

76 54 0.1 0.25 -0.05 0.124 1.97 0.021 0.61

77 62 0.1 0.25 -0.05 0.133 1.83 0.026 0.56

78 47 0.1 0.25 -0.05 0.132 1.97 0.022 0.58

79 53 0.1 0.25 -0.05 0.157 2.33 0.019 0.49

80 50 0.1 0.25 -0.05 0.084 1.11 0.043 0.67

81 54 0.1 0.25 -0.05 0.123 1.35 0.043 0.58

82 64 0.1 0.25 -0.05 0.120 1.42 0.038 0.54

83 44 0.1 0.25 -0.05 0.124 1.35 0.044 0.58

84 53 0.1 0.25 -0.05 0.157 1.51 0.044 0.50
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Table A-3: Test conditions and measured data. AAU structure stability experiment. 

 

TS SS C LS SH MH+LH

1 0 0.10 0.30 0.05 0.049 1.27 0.020 0.11 0.11 0.00 0.00 0.00 0.00

2 0 0.10 0.30 0.05 0.065 1.55 0.020 1.94 0.91 0.46 0.57 0.00 1.04

3 0 0.10 0.30 0.05 0.092 1.79 0.020 4.33 1.25 1.14 1.94 1.11 4.17

4 0 0.10 0.30 0.05 0.120 2.00 0.020 8.78 3.65 2.28 2.85 5.94 7.92

5 0 0.10 0.30 0.05 0.037 0.90 0.035 0.00 0.00 0.00 0.00 0.00 0.00

6 0 0.10 0.30 0.05 0.062 1.10 0.035 0.00 0.00 0.00 0.00 0.30 0.45

7 0 0.10 0.30 0.05 0.091 1.27 0.035 1.48 0.34 0.91 0.23 0.84 1.67

8 0 0.10 0.30 0.05 0.117 1.42 0.035 3.08 0.80 1.14 1.14 1.51 3.89

9 0 0.10 0.30 0.00 0.051 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

10 0 0.10 0.30 0.00 0.076 1.55 0.020 1.03 0.11 0.91 0.00 0.00 0.00

11 0 0.10 0.30 0.00 0.095 1.79 0.020 1.25 0.23 1.03 0.00 0.00 1.31

12 0 0.10 0.30 0.00 0.121 2.00 0.020 4.33 1.71 2.62 0.00 3.50 2.55

13 0 0.10 0.30 0.00 0.038 0.90 0.035 0.00 0.00 0.00 0.00 0.00 0.00

14 0 0.10 0.30 0.00 0.062 1.10 0.035 0.34 0.11 0.23 0.00 0.00 0.24

15 0 0.10 0.30 0.00 0.085 1.27 0.035 0.57 0.23 0.34 0.00 0.40 1.01

16 0 0.10 0.30 0.00 0.109 1.42 0.035 1.71 0.46 1.14 0.11 0.68 1.03

17 0 0.10 0.30 0.00 0.126 1.55 0.035 2.28 0.80 1.37 0.11 1.55 2.01

18 0 0.10 0.30 -0.05 0.071 1.55 0.020 0.00 0.00 0.00 0.00 0.00 0.00

19 0 0.10 0.30 -0.05 0.095 1.79 0.020 0.34 0.00 0.34 0.00 0.00 0.00

20 0 0.10 0.30 -0.05 0.121 2.00 0.020 0.80 0.11 0.68 0.00 1.35 0.22

21 0 0.10 0.30 -0.05 0.143 2.19 0.020 2.62 0.23 2.39 0.00 2.28 1.52

22 0 0.10 0.30 -0.05 0.209 2.37 0.020 9.46 2.05 7.07 0.34 3.39 2.47

23 0 0.10 0.30 -0.05 0.063 1.27 0.035 0.00 0.00 0.00 0.00 0.00 0.00

24 0 0.10 0.30 -0.05 0.125 1.42 0.035 0.46 0.11 0.34 0.00 0.00 0.00

25 0 0.10 0.30 -0.05 0.149 1.55 0.035 1.25 0.11 1.03 0.11 0.00 0.18

26 0 0.10 0.30 -0.05 0.173 1.67 0.035 2.96 0.46 2.39 0.11 1.26 0.16

27 0 0.10 0.30 -0.05 0.191 1.79 0.035 4.22 0.91 3.19 0.11 1.71 0.29

Measured damage S vTest θ
[deg]

B c

[m]

h c

[m]

F

[m]

H s

[m]

T p

[s]

s 0
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Table A-3: Continued 

  

TS SS C LS SH MH+LH

28 0 0.10 0.30 -0.10 0.147 2.00 0.020 0.80 0.11 0.68 0.00 0.56 0.56

29 0 0.10 0.30 -0.10 0.189 2.19 0.020 1.37 0.34 1.03 0.00 0.39 0.59

30 0 0.10 0.30 -0.10 0.222 2.37 0.020 2.05 0.57 1.37 0.11 0.32 1.11

31 0 0.10 0.30 -0.10 0.247 2.53 0.020 5.47 0.57 4.45 0.46 0.83 1.66

32 0 0.10 0.30 -0.10 0.116 1.42 0.035 0.34 0.00 0.23 0.11 0.00 0.41

33 0 0.10 0.30 -0.10 0.139 1.55 0.035 0.68 0.11 0.34 0.23 0.00 0.31

34 0 0.10 0.30 -0.10 0.171 1.67 0.035 1.14 0.11 0.68 0.34 0.00 0.22

35 0 0.10 0.30 -0.10 0.189 1.79 0.035 1.82 0.11 1.25 0.46 0.00 0.20

36 0 0.10 0.30 -0.10 0.204 1.90 0.035 2.05 0.11 1.48 0.46 0.00 0.71

37 0 0.25 0.30 0.05 0.053 1.27 0.020 0.11 0.00 0.11 0.00 0.00 0.00

38 0 0.25 0.30 0.05 0.075 1.55 0.020 1.48 0.80 0.68 0.00 0.62 0.41

39 0 0.25 0.30 0.05 0.094 1.79 0.020 5.93 1.94 3.76 0.23 2.20 4.10

40 0 0.25 0.30 0.05 0.116 2.00 0.020 8.89 2.28 5.82 0.80 4.49 6.27

41 20 0.25 0.30 0.05 0.049 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

42 20 0.25 0.30 0.05 0.071 1.55 0.020 1.37 0.34 0.80 0.23 0.63 0.52

43 20 0.25 0.30 0.05 0.091 1.79 0.020 3.88 1.14 2.05 0.68 2.42 3.72

44 20 0.25 0.30 0.05 0.115 2.00 0.020 7.98 2.39 3.65 1.94 6.01 5.26

45 10 0.25 0.30 0.05 0.051 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

46 10 0.25 0.30 0.05 0.073 1.55 0.020 1.03 0.34 0.57 0.11 0.00 0.00

47 10 0.25 0.30 0.05 0.097 1.79 0.020 3.88 0.80 2.17 0.91 1.39 2.09

48 10 0.25 0.30 0.05 0.119 2.00 0.020 5.47 1.48 2.51 1.48 4.07 3.43

49 -10 0.25 0.30 0.05 0.054 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

50 -10 0.25 0.30 0.05 0.079 1.55 0.020 0.23 0.00 0.23 0.00 0.21 0.82

51 -10 0.25 0.30 0.05 0.099 1.79 0.020 2.28 0.46 1.25 0.57 0.79 3.87

Measured damage S vTest θ
[deg]

B c

[m]

h c

[m]

F

[m]

H s

[m]

T p

[s]

s 0
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Table A-3: Continued 

 

 

TS SS C LS SH MH+LH

52 -20 0.25 0.30 0.05 0.055 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

53 -20 0.25 0.30 0.05 0.075 1.55 0.020 0.34 0.00 0.34 0.00 0.21 1.04

54 -20 0.25 0.30 0.05 0.098 1.79 0.020 1.25 0.23 0.80 0.23 0.60 3.78

55 -20 0.25 0.30 0.05 0.116 2.00 0.020 2.28 0.80 0.91 0.57 2.62 5.99

56 30 0.25 0.30 0.05 0.050 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

57 30 0.25 0.30 0.05 0.069 1.55 0.020 0.23 0.00 0.23 0.00 0.00 0.42

58 30 0.25 0.30 0.05 0.092 1.79 0.020 1.71 0.34 0.91 0.46 0.20 1.81

59 30 0.25 0.30 0.05 0.110 2.00 0.020 5.82 0.91 2.96 1.94 1.72 4.49

60 0 0.25 0.30 0.00 0.048 1.27 0.020 0.00 0.00 0.00 0.00 0.00 0.00

61 0 0.25 0.30 0.00 0.069 1.55 0.020 0.11 0.00 0.11 0.00 0.28 0.28

62 0 0.25 0.30 0.00 0.098 1.79 0.020 2.28 0.23 2.05 0.00 1.71 2.08

63 0 0.25 0.30 0.00 0.127 2.00 0.020 6.50 0.46 5.70 0.34 3.24 2.92

64 0 0.25 0.30 -0.05 0.120 1.79 0.020 0.23 0.00 0.23 0.00 0.00 0.00

65 0 0.25 0.30 -0.05 0.153 2.00 0.020 2.51 0.00 2.39 0.11 0.00 0.36

66 0 0.25 0.30 -0.05 0.184 2.19 0.020 6.73 0.23 6.27 0.23 0.63 1.47

67 0 0.25 0.30 -0.10 0.147 2.00 0.020 1.03 0.00 0.91 0.11 0.00 0.16

68 0 0.25 0.30 -0.10 0.183 2.19 0.020 3.65 0.00 3.19 0.46 0.00 0.39

69 0 0.25 0.30 -0.10 0.222 2.37 0.020 7.18 0.23 6.39 0.57 1.10 1.87

Measured damage S vTest θ
[deg]

B c

[m]

h c

[m]

F

[m]

H s

[m]

T p

[s]

s 0
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Appendix B 

COMPUTED RESULTS 
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Table B-1: Computed wave transmission coefficient and damage Sp. NRC 
experiment. 

 

TS FS C BS FT BT

1 0.09 0.27 0.05 0.27 0.01 0.05 0.23

4 0.20 2.39 0.55 2.39 0.17 0.55 1.85

5 0.20 2.39 0.55 2.39 0.17 0.55 1.85

2 0.26 4.88 1.30 4.88 0.55 1.30 3.58

3 0.30 7.90 2.57 7.90 0.87 2.57 5.33

13 0.24 8.62 3.19 8.59 1.04 3.19 5.43

9 0.55 0.62 0.06 0.62 0.06 0.06 0.56

6 0.54 1.53 0.23 1.53 0.23 0.23 1.30

7 0.53 4.02 0.94 4.02 0.52 0.94 3.08

8 0.53 5.63 1.52 5.63 0.76 1.52 4.11

14 0.46 5.35 1.50 5.35 0.77 1.50 3.85

15 0.46 7.91 2.51 7.87 1.32 2.51 5.40

16 0.03 6.24 0.68 6.24 1.29 0.68 5.56

12 0.66 3.89 1.19 3.89 0.10 1.19 2.70

10 0.15 6.99 2.46 6.99 0.31 2.46 4.52

11 0.17 9.10 3.66 9.09 0.36 3.66 5.44

17 0.19 14.60 6.82 13.70 1.26 6.82 7.74

18 0.00 0.17 0.08 0.17 0.00 0.08 0.09

19 0.48 5.38 1.24 5.38 0.55 1.24 4.13

20 0.46 7.75 2.48 7.75 0.60 2.48 5.27

21 0.57 12.30 5.55 11.90 0.43 5.55 6.70

22 0.11 18.30 8.67 17.00 0.89 8.67 9.60

23 0.13 19.50 9.50 17.70 1.45 9.50 10.00

24 0.11 0.46 0.30 0.46 0.00 0.30 0.16

25 0.20 3.20 2.02 3.04 0.03 2.02 1.17

26 0.06 5.78 3.41 5.44 0.14 3.41 2.37

27 0.23 10.00 5.57 9.30 0.51 5.57 4.48

28 0.22 13.50 6.77 12.50 1.04 6.77 6.75

29 0.42 16.10 8.67 14.40 0.93 8.67 7.41

30 0.33 6.57 1.40 6.57 0.55 1.40 5.17

31 0.12 7.31 2.81 7.31 0.08 2.81 4.50

32 0.20 12.20 5.44 12.00 0.71 5.44 6.80

33 0.25 19.00 9.78 17.50 1.14 9.78 9.21

34 0.13 5.89 3.83 5.69 0.04 3.83 2.05

35 0.27 13.30 7.57 12.40 0.61 7.57 5.72

K t Computed damage S p  (ISEDAV=1)Test
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Table B-2: Computed wave transmission coefficient. AAU wave transmission 
experiment. 

 

Test K t Test K t Test K t

1 0.40 35 0.13 69 0.06

2 0.41 36 0.18 70 0.45

3 0.43 37 0.33 71 0.22

4 0.36 38 0.16 72 0.03

5 0.40 39 0.30 73 0.12

6 0.39 40 0.20 74 0.10

7 0.43 41 0.14 75 0.65

8 0.40 42 0.12 76 0.63

9 0.25 43 0.64 77 0.62

10 0.25 44 0.61 78 0.61

11 0.42 45 0.61 79 0.60

12 0.24 46 0.63 80 0.66

13 0.16 47 0.58 81 0.57

14 0.20 48 0.67 82 0.62

15 0.68 49 0.57 83 0.56

16 0.63 50 0.57 84 0.51

17 0.62 51 0.56

18 0.72 52 0.55

19 0.63 53 0.32

20 0.57 54 0.32

21 0.35 55 0.33

22 0.35 56 0.34

23 0.35 57 0.34

24 0.36 58 0.29

25 0.38 59 0.28

26 0.30 60 0.28

27 0.29 61 0.28

28 0.29 62 0.28

29 0.31 63 0.52

30 0.31 64 0.30

31 0.39 65 0.30

32 0.33 66 0.30

33 0.33 67 0.12

34 0.33 68 0.13
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Table B-3: Computed damage Sp. AAU structure stability experiment. 

   

TS SS C LS FT BT

1 0.03 0.01 0.01 0.00 0.02 0.01

2 0.07 0.02 0.04 0.00 0.04 0.03

3 0.71 0.22 0.41 0.08 0.34 0.37

4 2.45 0.64 1.29 0.52 1.00 1.45

5 0.00 0.00 0.00 0.00 0.00 0.00

6 0.01 0.00 0.01 0.00 0.00 0.01

7 0.23 0.08 0.14 0.02 0.12 0.11

8 0.87 0.25 0.45 0.16 0.37 0.49

9 0.01 0.00 0.01 0.00 0.00 0.01

10 0.22 0.01 0.16 0.05 0.05 0.17

11 0.87 0.08 0.56 0.23 0.22 0.65

12 2.20 0.28 1.23 0.68 0.60 1.59

13 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00

15 0.13 0.01 0.08 0.03 0.03 0.10

16 0.62 0.08 0.35 0.20 0.16 0.46

17 1.36 0.19 0.70 0.47 0.37 0.99

18 0.03 0.00 0.03 0.00 0.01 0.02

19 0.20 0.01 0.14 0.05 0.04 0.15

20 0.84 0.08 0.50 0.26 0.21 0.63

21 1.99 0.29 1.09 0.61 0.58 1.41

22 3.75 0.66 1.94 1.15 1.21 2.54

23 0.00 0.00 0.00 0.00 0.00 0.00

24 0.26 0.03 0.13 0.10 0.06 0.20

25 0.88 0.11 0.40 0.37 0.21 0.67

26 1.90 0.27 0.84 0.80 0.49 1.42

27 2.95 0.46 1.30 1.20 0.82 2.14

28 1.34 0.34 0.96 0.05 0.64 0.71

29 2.03 0.53 1.37 0.13 0.95 1.08

30 3.17 0.85 2.02 0.30 1.46 1.71

31 4.81 1.34 2.90 0.57 2.19 2.61

32 0.11 0.01 0.09 0.00 0.04 0.07

33 0.24 0.03 0.17 0.03 0.08 0.16

34 0.72 0.10 0.39 0.23 0.21 0.51

35 1.41 0.21 0.71 0.50 0.40 1.01

36 2.26 0.37 1.10 0.79 0.67 1.59

Computed damage S p  (permeable core)Test
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Table B-3: Continued 

  

 

TS SS C LS FT BT

37 0.03 0.01 0.02 0.00 0.02 0.01

38 0.26 0.10 0.16 0.00 0.15 0.11

39 0.96 0.32 0.64 0.00 0.49 0.48

40 2.45 0.73 1.68 0.04 1.10 1.35

41 0.04 0.02 0.02 0.00 0.03 0.01

42 0.45 0.17 0.28 0.00 0.26 0.18

43 1.67 0.57 1.11 0.00 0.87 0.81

44 4.17 1.27 2.85 0.05 1.92 2.25

45 0.03 0.01 0.02 0.00 0.02 0.01

46 0.32 0.12 0.20 0.00 0.19 0.13

47 1.18 0.38 0.80 0.00 0.58 0.60

48 3.01 0.88 2.07 0.06 1.32 1.69

49 0.05 0.02 0.03 0.00 0.03 0.01

50 0.38 0.13 0.25 0.00 0.21 0.17

51 1.48 0.47 1.01 0.01 0.71 0.77

52 0.08 0.04 0.05 0.00 0.06 0.02

53 0.58 0.21 0.37 0.00 0.34 0.25

54 2.88 0.94 1.94 0.00 1.41 1.47

55 8.31 2.62 5.63 0.06 3.84 4.47

56 0.07 0.02 0.04 0.00 0.04 0.02

57 0.21 0.06 0.16 0.00 0.10 0.11

58 2.40 0.77 1.63 0.00 1.16 1.24

59 5.63 1.68 3.89 0.05 2.53 3.10

60 0.01 0.00 0.01 0.00 0.00 0.01

61 0.08 0.00 0.07 0.00 0.01 0.06

62 0.96 0.06 0.83 0.07 0.17 0.78

63 2.94 0.25 2.31 0.38 0.59 2.35

64 1.14 0.16 0.98 0.00 0.42 0.73

65 2.36 0.30 1.95 0.11 0.72 1.64

66 4.50 0.53 3.45 0.52 1.20 3.30

67 1.54 0.27 1.27 0.00 0.58 0.97

68 2.52 0.41 2.11 0.00 0.86 1.66

69 4.22 0.72 3.42 0.07 1.39 2.83

Computed damage S p  (permeable core)Test
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Appendix C 

CHARACTERISTICS OF STONES USED IN THE EXPERIMENT 
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Table C-1: G stone measurements. 

 
  

2.94 g/cm
3

3.52 cm

12,787 g

Stone
#

Mass
[g]

Dn
[cm]

f F Stone
#

Mass
[g]

Dn
[cm]

f F

61 100.0 3.24 0.8% 0.8% 99 114.6 3.39 0.9% 21.7%

24 100.7 3.25 0.8% 1.6% 53 114.8 3.39 0.9% 22.6%

62 101.1 3.25 0.8% 2.4% 93 115.9 3.40 0.9% 23.5%

23 101.3 3.25 0.8% 3.2% 26 116.2 3.41 0.9% 24.4%

95 101.6 3.26 0.8% 3.9% 89 116.4 3.41 0.9% 25.3%

55 102.2 3.26 0.8% 4.7% 83 117.5 3.42 0.9% 26.3%

57 102.4 3.27 0.8% 5.5% 100 117.7 3.42 0.9% 27.2%

33 102.8 3.27 0.8% 6.4% 36 118.1 3.42 0.9% 28.1%

67 102.9 3.27 0.8% 7.2% 11 118.3 3.43 0.9% 29.0%

85 103.3 3.28 0.8% 8.0% 78 118.9 3.43 0.9% 30.0%

39 104.7 3.29 0.8% 8.8% 81 119.1 3.43 0.9% 30.9%

88 106.3 3.31 0.8% 9.6% 49 119.8 3.44 0.9% 31.8%

31 107.4 3.32 0.8% 10.5% 29 120.9 3.45 0.9% 32.8%

92 107.7 3.32 0.8% 11.3% 69 121.3 3.46 0.9% 33.7%

77 108.3 3.33 0.8% 12.1% 56 121.4 3.46 0.9% 34.7%

16 108.8 3.33 0.9% 13.0% 96 121.7 3.46 1.0% 35.6%

6 109.1 3.34 0.9% 13.8% 46 122.3 3.46 1.0% 36.6%

60 109.3 3.34 0.9% 14.7% 25 122.6 3.47 1.0% 37.5%

68 109.8 3.34 0.9% 15.6% 42 122.7 3.47 1.0% 38.5%

9 110.0 3.34 0.9% 16.4% 91 122.8 3.47 1.0% 39.5%

86 111.4 3.36 0.9% 17.3% 71 123.0 3.47 1.0% 40.4%

75 112.0 3.36 0.9% 18.2% 54 123.5 3.48 1.0% 41.4%

38 112.7 3.37 0.9% 19.0% 51 124.0 3.48 1.0% 42.4%

14 113.6 3.38 0.9% 19.9% 1 125.1 3.49 1.0% 43.3%

5 113.8 3.38 0.9% 20.8% 40 125.9 3.50 1.0% 44.3%

Total mass

Dn50

Stone density
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Table C-1: Continued 

 
  

Stone
#

Mass
[g]

Dn
[cm]

f F Stone
#

Mass
[g]

Dn
[cm]

f F

27 126.0 3.50 1.0% 45.3% 2 143.7 3.66 1.1% 71.6%

15 126.5 3.50 1.0% 46.3% 21 144.0 3.66 1.1% 72.7%

35 126.8 3.51 1.0% 47.3% 45 144.8 3.67 1.1% 73.8%

18 127.2 3.51 1.0% 48.3% 12 145.1 3.67 1.1% 75.0%

70 127.3 3.51 1.0% 49.3% 80 145.3 3.67 1.1% 76.1%

41 128.2 3.52 1.0% 50.3% 84 146.1 3.68 1.1% 77.2%

7 128.7 3.52 1.0% 51.3% 64 146.4 3.68 1.1% 78.4%

76 130.8 3.54 1.0% 52.3% 65 146.8 3.68 1.1% 79.5%

3 131.0 3.55 1.0% 53.3% 98 147.5 3.69 1.2% 80.7%

90 131.2 3.55 1.0% 54.4% 19 148.0 3.69 1.2% 81.8%

32 132.5 3.56 1.0% 55.4% 63 149.3 3.70 1.2% 83.0%

37 133.0 3.56 1.0% 56.4% 30 149.7 3.71 1.2% 84.2%

47 133.5 3.57 1.0% 57.5% 74 149.7 3.71 1.2% 85.3%

79 133.7 3.57 1.0% 58.5% 17 150.2 3.71 1.2% 86.5%

44 134.5 3.58 1.1% 59.6% 10 152.7 3.73 1.2% 87.7%

87 134.7 3.58 1.1% 60.6% 13 153.5 3.74 1.2% 88.9%

94 135.1 3.58 1.1% 61.7% 34 154.2 3.74 1.2% 90.1%

58 135.6 3.59 1.1% 62.8% 28 154.2 3.74 1.2% 91.3%

73 136.1 3.59 1.1% 63.8% 4 155.2 3.75 1.2% 92.5%

50 139.8 3.62 1.1% 64.9% 66 156.8 3.76 1.2% 93.8%

20 140.0 3.62 1.1% 66.0% 8 157.6 3.77 1.2% 95.0%

97 140.0 3.62 1.1% 67.1% 82 158.4 3.78 1.2% 96.2%

59 140.4 3.63 1.1% 68.2% 72 159.3 3.78 1.2% 97.5%

52 143.0 3.65 1.1% 69.3% 48 159.9 3.79 1.3% 98.7%

22 143.2 3.65 1.1% 70.4% 43 161.9 3.80 1.3% 100.0%
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Table C-2: B stone measurements. 

 
  

3.06 g/cm
3

3.81 cm

8,413 g

Stone
#

Mass
[g]

Dn
[cm]

f F Stone
#

Mass
[g]

Dn
[cm]

f F

3 151.8 3.67 1.8% 1.8% 11 168.6 3.81 2.0% 50.3%

18 157.1 3.72 1.9% 3.7% 2 168.8 3.81 2.0% 52.3%

10 158.8 3.73 1.9% 5.6% 38 169.5 3.81 2.0% 54.3%

24 159.9 3.74 1.9% 7.5% 43 169.6 3.81 2.0% 56.3%

22 160.4 3.74 1.9% 9.4% 25 169.9 3.81 2.0% 58.3%

35 160.5 3.74 1.9% 11.3% 36 170.3 3.82 2.0% 60.3%

17 160.6 3.74 1.9% 13.2% 30 171.8 3.83 2.0% 62.4%

28 160.7 3.74 1.9% 15.1% 33 171.9 3.83 2.0% 64.4%

26 160.8 3.75 1.9% 17.0% 49 172.9 3.84 2.1% 66.5%

50 160.8 3.75 1.9% 18.9% 4 173.2 3.84 2.1% 68.5%

46 162.0 3.75 1.9% 20.8% 31 173.2 3.84 2.1% 70.6%

12 162.4 3.76 1.9% 22.8% 20 173.9 3.84 2.1% 72.7%

19 162.5 3.76 1.9% 24.7% 37 173.9 3.84 2.1% 74.7%

42 162.6 3.76 1.9% 26.6% 40 173.9 3.84 2.1% 76.8%

23 162.8 3.76 1.9% 28.6% 7 174.3 3.85 2.1% 78.9%

34 163.7 3.77 1.9% 30.5% 47 175.0 3.85 2.1% 81.0%

39 164.1 3.77 2.0% 32.5% 21 176.4 3.86 2.1% 83.0%

13 164.6 3.77 2.0% 34.4% 32 176.4 3.86 2.1% 85.1%

45 165.1 3.78 2.0% 36.4% 15 176.6 3.86 2.1% 87.2%

5 165.2 3.78 2.0% 38.4% 8 177.0 3.87 2.1% 89.3%

14 165.3 3.78 2.0% 40.3% 29 178.2 3.88 2.1% 91.5%

41 165.7 3.78 2.0% 42.3% 6 178.5 3.88 2.1% 93.6%

48 166.8 3.79 2.0% 44.3% 9 178.5 3.88 2.1% 95.7%

1 167.2 3.79 2.0% 46.3% 44 180.1 3.89 2.1% 97.9%

27 168.1 3.80 2.0% 48.3% 16 180.8 3.89 2.1% 100.0%

Stone density

Dn50

Total mass
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Table C-3: W stone measurements. 

 
  

2.72 g/cm
3

1.8 cm

1,512 g

Stone
#

Mass
[g]

Dn
[cm]

f F Stone
#

Mass
[g]

Dn
[cm]

f F

63 2.9 1.02 0.2% 0.2% 40 11.9 1.64 0.8% 17.8%

70 8.5 1.46 0.6% 0.8% 73 12.0 1.64 0.8% 18.6%

98 8.7 1.47 0.6% 1.3% 62 12.1 1.64 0.8% 19.4%

27 9.3 1.51 0.6% 1.9% 3 12.2 1.65 0.8% 20.2%

65 9.3 1.51 0.6% 2.6% 15 12.3 1.65 0.8% 21.1%

92 9.6 1.52 0.6% 3.2% 97 12.3 1.65 0.8% 21.9%

64 10.1 1.55 0.7% 3.9% 55 12.5 1.66 0.8% 22.7%

6 10.2 1.55 0.7% 4.5% 58 12.5 1.66 0.8% 23.5%

94 10.4 1.56 0.7% 5.2% 41 12.6 1.67 0.8% 24.4%

1 10.5 1.57 0.7% 5.9% 60 12.8 1.68 0.8% 25.2%

88 10.7 1.58 0.7% 6.6% 61 12.8 1.68 0.8% 26.1%

100 10.7 1.58 0.7% 7.3% 99 12.8 1.68 0.8% 26.9%

96 10.9 1.59 0.7% 8.1% 8 13.0 1.68 0.9% 27.8%

74 11.0 1.59 0.7% 8.8% 59 13.0 1.68 0.9% 28.6%

46 11.1 1.60 0.7% 9.5% 13 13.1 1.69 0.9% 29.5%

71 11.1 1.60 0.7% 10.2% 42 13.1 1.69 0.9% 30.4%

18 11.2 1.60 0.7% 11.0% 72 13.3 1.70 0.9% 31.2%

67 11.3 1.61 0.7% 11.7% 93 13.5 1.71 0.9% 32.1%

89 11.3 1.61 0.7% 12.5% 84 13.6 1.71 0.9% 33.0%

51 11.4 1.61 0.8% 13.2% 90 13.8 1.72 0.9% 33.9%

80 11.4 1.61 0.8% 14.0% 75 13.9 1.72 0.9% 34.9%

82 11.4 1.61 0.8% 14.7% 22 14.0 1.73 0.9% 35.8%

37 11.5 1.62 0.8% 15.5% 45 14.0 1.73 0.9% 36.7%

38 11.7 1.63 0.8% 16.3% 91 14.1 1.73 0.9% 37.6%

77 11.8 1.63 0.8% 17.1% 76 14.2 1.73 0.9% 38.6%

Stone density

Dn50

Total mass
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Table C-3: Continued 

 

 

Stone
#

Mass
[g]

Dn
[cm]

f F Stone
#

Mass
[g]

Dn
[cm]

f F

20 14.9 1.76 1.0% 39.6% 85 17.9 1.87 1.2% 66.6%

32 14.9 1.76 1.0% 40.5% 14 18.0 1.88 1.2% 67.7%

53 14.9 1.76 1.0% 41.5% 2 18.1 1.88 1.2% 68.9%

66 14.9 1.76 1.0% 42.5% 47 18.1 1.88 1.2% 70.1%

11 15.0 1.77 1.0% 43.5% 52 18.7 1.90 1.2% 71.4%

83 15.7 1.79 1.0% 44.6% 23 18.9 1.91 1.2% 72.6%

10 15.8 1.80 1.0% 45.6% 24 18.9 1.91 1.2% 73.9%

30 15.8 1.80 1.0% 46.6% 86 18.9 1.91 1.2% 75.1%

56 15.8 1.80 1.0% 47.7% 54 19.2 1.92 1.3% 76.4%

29 15.9 1.80 1.1% 48.7% 7 19.3 1.92 1.3% 77.7%

33 15.9 1.80 1.1% 49.8% 50 19.3 1.92 1.3% 79.0%

36 15.9 1.80 1.1% 50.8% 16 19.4 1.92 1.3% 80.2%

5 16.1 1.81 1.1% 51.9% 35 19.5 1.93 1.3% 81.5%

81 16.2 1.81 1.1% 53.0% 79 19.9 1.94 1.3% 82.8%

9 16.3 1.82 1.1% 54.1% 95 20.1 1.95 1.3% 84.2%

21 16.4 1.82 1.1% 55.1% 49 20.5 1.96 1.4% 85.5%

78 16.5 1.82 1.1% 56.2% 25 20.6 1.96 1.4% 86.9%

26 16.6 1.83 1.1% 57.3% 31 21.6 2.00 1.4% 88.3%

19 17.0 1.84 1.1% 58.5% 87 22.8 2.03 1.5% 89.8%

4 17.1 1.85 1.1% 59.6% 43 23.9 2.06 1.6% 91.4%

39 17.1 1.85 1.1% 60.7% 44 25.1 2.10 1.7% 93.1%

28 17.4 1.86 1.2% 61.9% 12 25.7 2.11 1.7% 94.8%

68 17.5 1.86 1.2% 63.0% 34 25.9 2.12 1.7% 96.5%

17 17.7 1.87 1.2% 64.2% 69 26.6 2.14 1.8% 98.2%

48 17.9 1.87 1.2% 65.4% 57 26.7 2.14 1.8% 100.0%
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Appendix D 

LASER LINE SCANNER ERROR OVER THE STONE STRUCTURE 
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Figure D-1: Laser scan error over the structure. S 00 test. 
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Figure D-2: Laser scan error over the structure. S 05 test. 

  

10.4 10.5 10.6 10.7 10.8 10.9 11 11.1
-14

-12

-10

-8

-6

-4

-2

0

MEASUREMENT ERROR

Measured Profiles

x [m]

z 
[c

m
]

 

 

S_05 (1)

S_05 (2)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

Measurement Error Distribution

root-squared error [mm]

p
ro

b
a

b
ili

ty

RMS ERROR: 1.72 [mm]



 

 114

 
Figure D-3: Laser scan error over the structure. S 10 test. 
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