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Abstract

A turbulence-resolving numerical model for fine sediment transport in the bottom
boundary layer is developed. A simplified Eulerian two-phase flow formulation for the
fine sediment transport is adopted. By applying the equilibrium Eulerian approximation,
the particle phase velocity is expressed as a vectorial sum of fluid velocity, sediment set-
tling velocity and Stokes number dependent inertia terms. The Boussinesq approximation
is applied to simplify the governing equation for the fluid phase. This model utilizes a high
accuracy hybrid compact finite difference scheme in the wall-normal direction, and uses
the pseudo-spectral scheme in the streamwise and spanwise directions. The model allows
a prescribed sediment availability as well as an erosional/depositional bottom boundary
condition for sediment concentration. As an example, several numerical simulations are
presented to study how the bottom resuspension/deposition mechanisms, specifically the
critical shear stress of erosion and the settling velocity, can determine the sediment avail-
ability and the resulting transport modes. Meanwhile, the model also has the capability to
include the particle inertia effect and hindered settling effect for the particle velocity. This
report is written as the documentation of this open-source numerical model FineSed3D
and it includes the mathematical formulations, numerical methodology, brief model re-
sults, installation procedures and model input/output.
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1 Introduction
In many estuaries and continental shelves, the delivery and dispersal of fine sediment
play a critical role in determining coastal geomorphology (Friedrichs and Wright, 2004),
carbon cycle (Goldsmith et al., 2008) and ecosystem processes. In addition to currents,
waves are known to play a critical role in delivering these fine sediments (e.g., Wiberg
et al., 1994), especially in the cross-shelf direction via sediment flux gradients (Harris and
Wiberg, 1997, 2002) and sediment-driven gravity flows (Traykovski et al., 2000; Ogston
et al., 2000; Hale et al., 2014).

On this subject, several previous turbulence-resolving numerical studies also suggested
that sediment-induced density stratification plays an important role (e.g., Ozdemir et al.,
2010, 2011; Yu et al., 2014; Cheng et al., 2015a). Simulation results revealed that at a given
Stokes Reynolds number, the prescribed sediment load and settling velocity determine the
degree of sediment-induced density stratification and lead to four distinct flow regimes
(Ozdemir et al., 2010, 2011): Regime I is of very dilute flow (sediment concentration is
much smaller than ∼ 1 g/L), sediments are well-mixed and the carrier fluid turbulence
remains intact within the boundary layer. Regime II occurs when the near-bed sediment
concentration is in the range of O

(
1 ∼ 10

)
g/L, and lutocline, i.e., a sharp negative con-

centration gradient, is formed. Above the lutocline, the flow becomes quasi-laminar but
it remains turbulent beneath. Regime III takes place when the near bed sediment concen-
tration approaches several tens of g/L, carrier fluid turbulence is significantly attenuated,
and flow becomes nearly laminar. However, due to shear instability sediment burst events
occur during flow reversal. Regime IV is observed at sediment concentration of O

(
100
)

g/L or greater, in which a completely laminarized flow throughout the wave cycle is ob-
served. The existence of these regimes and the transition from one regime to the other
have critical implications to our capability in assessing the state of the muddy seabed and
to further understand various applications related to the fine sediment transport.

Flux convergence (e.g., Wright and Friedrichs, 2006) and bottom resuspension de-
termine the source of fine sediments in the water column (e.g., Wheatcroft and Borgeld,
2000; Fan et al., 2004; Bever et al., 2011). Hence, characterizing the resuspension of fine
sediment in the wave bottom boundary layer (WBBL) is an important segment of sediment
source to sink. There are many studies about the fine sediment resuspension and deposi-
tion for tidal bottom boundary layers (e.g., Winterwerp, 2006; Byun and Wang, 2005) and
WBBL (e.g., Hsu et al., 2009). However, these numerical studies are based on Reynolds-
averaged models. Due to underlying assumptions adopted in the turbulence closure (for
example, the assumption of fully turbulent flow) and the transitional nature of the WBBL
(e.g., Ozdemir et al., 2014), Reynolds-averaged models may not be sufficiently accurate
to investigate the effect of turbulence modulation due to sediment, especially when it is
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related to the onset of laminarization.
In most of the models for fine sediment transport, the particle velocity can be calcu-

lated by the equilibrium Eulerian approximation (Balachandar and Eaton, 2010), that is,
a vectorial sum of the local fluid velocity, the settling velocity and additional particle in-
ertia terms associated with the Stokes number. This approximation is only appropriate
for particles of Stokes number much smaller than unity. From the theoretical perspective
(Balachandar and Eaton, 2010), the particle inertia effect is another mechanism to deviate
the particle velocity from the fluid velocity, especially in turbulent flow with high accel-
eration (Cantero et al., 2008). However, these additional terms are also ignored in the
aforementioned turbulence-resolving studies (e.g., Ozdemir et al., 2010; Yu et al., 2013;
Cheng et al., 2015a). There is a need to quantify the effect of neglecting the particle in-
ertia on fine sediment transport for typical wave conditions encountered in the continental
shelves.

Meanwhile, the settling velocities are often assumed to be constant for simplicity in
the studies of Ozdemir et al. (2010) and Yu et al. (2014). However, due to interactions
among descending particles, upward flow motions are generated and hence the collective
settling velocity of particles is reduced from the single particle settling velocity. This is
the well-known hindered settling effect (e.g., Winterwerp and Van Kesteren, 2004; Fred-
soe and Deigaard, 1992). For non-cohesive sediments, hindered settling is a relatively
well-constrained process (Richardson and Zaki, 1954; Jimenez and Madsen, 2003). For
example, the reference concentration, often introduced in the hindered settling parame-
terization, is generally agreed to be the random-close-packing concentration of sediment
(around 0.6 in term of volumetric concentration). For fine sediments that often become
cohesive in the coastal waters, the hindered settling plays a critical role in the slow depo-
sition and consolidation processes. However, the parameterization of hindered settling for
cohesive sediment is poorly constrained due to uncertainties in flocculation. When flocs
are considered, the ‘gelling concentration’ is typically introduced to replace the reference
concentration in the hindered settling parameterization (Dankers and Winterwerp, 2007),
and it is defined as the concentration at which floc aggregates form concentrated aggregate
networks (Winterwerp and Van Kesteren, 2004). However, the gelling concentration has a
wide range of values due to variabilities in floc structures. For more organic and porous
flocs with low fractal dimensions, the gelling concentration can be as low as ∼100 g/L.

In summary, a turbulence-resolving model with the capability to study sediment trans-
port dynamics on an erodible bed is needed. The effects of particle inertia and hindered
settling need to be evaluated for a comprehensive understanding of the fine sediment trans-
port in natural environments. The objective of this report is to present such model. The
model formulations are discussed in Section 2. In section 3, numerical methodologies
are discussed. In section 4, results of numerical experiments are presented to illustrate
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the effect of sediment erodibility and settling velocity on controlling the resulting trans-
port characteristics. The sensitivities of the particle inertial effect and hindered settling
effect for typical energetic wave conditions in the inner-shelves are also evaluated. Con-
clusions and future works are presented in Section 5. Finally, the model installation and
input/output are documented in the Appendix.
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2 Model Formulations

2.1 Governing Equations
Although the present numerical model can be used to study fine sediment in the steady
flow boundary layer (see more details in Yu et al. (2013)), for conciseness, we will only
discuss the capability of studying fine sediment transport in the oscillatory boundary layer.
We consider a typical wave condition with a free-stream velocity magnitude of Ũ0 and
a wave period of T̃ , and the fine sediment is of grain size d̃ with a specific gravity s =
ρs/ρf , where ρs is the sediment density, and ρf is the carrier fluid density. A simplified
Eulerian two-phase flow formulation for the fine sediment transport is adopted (Ferry and
Balachandar, 2001). For fine sediment transport, the equilibrium Eulerian approximation
(Ferry et al., 2003; Balachandar and Eaton, 2010) can be applied (Ozdemir et al., 2010;
Yu et al., 2014; Cheng et al., 2015a,b). Thus, the particle velocity ũsi can be simplified to
be an algebraical sum of the fluid velocity ũi, the settling velocity W̃s0 and an expansion
in terms of the particle response time t̃p:

ũsi = ũi − W̃s0δi3 − t̃p(1−
1

s
)
Dũi

Dt̃
+H.O.T., (1)

where i = 1, 2, 3 represents streamwise (x), spanwise (y) and vertical (z) directions, re-
spectively. The settling velocity W̃s0 is calculated according to the Stokes’ law:

W̃s0 =
(s− 1)gd̃2

18ν
, (2)

where ν is the kinematic viscosity of fluid phase, and g = 9.81 m/s2 is the gravitational
acceleration. t̃p is the particle response time, which is defined as:

t̃p =
sd̃2

18ν
, (3)

The equilibrium Eulerian approximation is justified for fine particulate flows where the
particle response time is sufficiently smaller than the characteristic fluid time scale (Ferry
et al., 2003). In this paper, except for physical constants such as ρf , ρs, ν, g and the sedi-
ment diffusivity κ, variables without overhead ‘∼’ are non-dimensional variables.

For the suspended sediment transport in typical continental shelves, the volumetric
concentration of sediment is usually not significant (< 0.05) (Traykovski et al., 2007).
Therefore, the density variation is sufficiently small such that the Boussinesq approxima-
tion can be adopted to simplify the governing equations. By substituting Eq. (1) into the
Eulerian two-phase equations for the fluid phase (Cantero et al., 2008), and applying the
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Boussinesq approximation, the resulting continuity and momentum equations for the fluid
flow read as:

∂ũi
∂x̃i

= 0, (4)

∂ũi

∂t̃
+ ũj

∂ũi
∂x̃j

= − 1

ρf

∂p̃

∂x̃i
− Ũ0ω̃ sin

(
ω̃t̃
)
δi1 + ν

∂2ũi
∂x̃j∂x̃j

− (s− 1)gφδi3, (5)

where the fluid dynamic pressure is represented by p̃, and φ is the volumetric concentration
of sediment, which is dimensionless. The second term on the right-hand-side of equation
(5) is the streamwise pressure gradient that drives the prescribed wave motion, where
ω̃ is the wave angular frequency, ω̃ = 2π/T̃ . The last term on the right-hand-side of
equation (5) represents the coupling between the sediment phase and the carrier fluid via
the sediment-induced density stratification.

The governing equation of sediment concentration is written as:

∂φ

∂t̃
+
∂ũsiφ

∂x̃i
= κ

∂2φ

∂x̃i∂x̃i
. (6)

where the particle velocity ũsi is calculated by the equilibrium Eulerian approximation (Eq.
(1)).

To generalize the simulation results, flow variables are nondimensionalized and a set
of dimensionless equations are solved in the numerical model. The free-stream velocity
amplitude Ũ0 is chosen as the characteristic velocity scale, and the Stokes boundary layer
thickness ∆̃ is selected to be the characteristic length scale of the flow:

∆̃ =

√
2ν

ω̃
. (7)

Consequently, the flow characteristic time scale is calculated as t̃l = ∆̃/Ũ0, and the
non-dimensional flow variables can be defined as:

xi =
x̃i

∆̃
, t =

t̃

t̃l
, ui =

ũi

Ũ0

, usi =
ũsi

Ũ0

,Ws0 =
W̃s0

Ũ0

, p =
p̃

ρf Ũ2
0

. (8)

Normalized by the above characteristic flow scales, the non-dimensional particle ve-
locity usi becomes:

usi = ui −Ws0δi3 − St(1−
1

s
)
Dui
Dt

+O(St). (9)

where the particle Stokes number St = t̃p/t̃l is introduced to quantify the particle inertia
relative to the flow inertia.
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The resulting non-dimensional continuity and momentum equations for fluid flow are
written as:

∂ui
∂xi

= 0, (10)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
− 2

Re∆

sin

(
2t

Re∆

)
δi1 +

1

Re∆

∂2ui
∂xj∂xj

− 1

Fr2
φδi3, (11)

where Re∆ = Ũ0∆̃/ν is the Stokes Reynolds number, which is used to quantify the wave
intensity. In the previous studies of Ozdemir et al. (2010, 2011), the total amount of
sediment in the domain is prescribed and maintained as constant in each simulation (a
no-flux boundary condition for sediment at both the bottom and top boundaries are en-
forced) and hence the last term in equation (11) is represented by a bulk Richardson num-
ber (Ozdemir et al., 2010, 2011). Recently, an erosional/depositional bottom boundary
is implemented in the model and the total amount of sediment in the domain is part of
the solution of the model (Cheng et al., 2015a). Therefore, the particle Froude number

Fr = Ũ0/
√

(s− 1)g∆̃ is introduced instead.
The non-dimensional transport equation for sediment concentration is written as:

∂φ

∂t
+
∂usiφ

∂xi
=

1

Re∆Sc

∂2φ

∂xi∂xi
, (12)

where Sc is the Schmidt number, Sc = ν/κ. The right-hand-side of equation (12) accounts
for the sub-grid scale particle motion.

2.2 Boundary Conditions
The bottom boundary layer is idealized to be statistically homogeneous in streamwise
(x) and spanwise (y) directions (see Fig. 1). Periodic boundary conditions are used
along streamwise and spanwise boundaries for fluid phase velocities and the sediment
concentration. Two walls are located at the top and bottom boundaries and no-slip and
no-penetration wall boundary conditions are implemented for the fluid velocity. For the
sediment concentration, the no-flux boundary condition is applied at the top boundary:

wsφ− 1

Re∆Sc

∂φ

∂z

∣∣∣
z=Lz

= 0, (13)

where z = Lz is located at the top of the domain, and ws is the vertical component of the
sediment velocity.
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Fig. 1: Illustration of computation domain and coordinate system.

At the bottom boundary, an erodible/depositional boundary condition is implemented
for sediment concentration to allow resuspension/deposition at the bottom:

wsφ− 1

Re∆Sc

∂φ

∂z

∣∣∣
z=0

= E −D, (14)

where E and D are the non-dimensional erosional and depositional fluxes at the bottom,
respectively, and both E and D are normalized by the free-stream velocity magnitude Ũ0.
When the sediment availability is kept constant in the domain, no-flux boundary condi-
tion, i.e., E = D is enforced at the bottom boundary (Ozdemir et al., 2010, 2011; Yu
et al., 2014). Another option is to utilize the empirical bottom erosion and deposition
models for fine sediment and the sediment availability in the domain is determined by the
interplay of the sediment erosional flux and the depositional flux at the bottom boundary.
Since many empirical parameters involved in erosional/depositional formulas are mea-
sured or presented in dimensional forms (e.g., Hill et al., 2000; Sanford and Maa, 2001),
the dimensional forms of the depositional flux and the erosional flux are discussed here.
The depositional flux is specified following the continuous erosion-deposition formulation
(Sanford and Maa, 2001; Winterwerp, 2007):

D̃ = −w̃sφ
∣∣∣
z̃=0

. (15)

The erosion rate Ẽ is calculated by the Partheniades-Ariathurai type formulation (e.g.,
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Sanford and Maa, 2001), and it is presented here in the non-dimensional form:

Ẽ =

{
m̃e

( |τ̃b|
τ̃c
− 1
)
, |τ̃b| ≥ τ̃c

0, |τ̃b| < τ̃c
, (16)

where m̃e is the dimensional empirical coefficient of erosion rate, |τ̃b| is the magnitude of
the bottom shear stress, and it is calculated as:

|τ̃b| = ρfν

∣∣∣∣
∂ũ

∂z̃

∣∣∣∣
z̃=0

, (17)

and the critical shear stress of erosion is represented by τ̃c. For fine sediments, both m̃e

and τ̃c depend on the degree of consolidation, and need to be determined from erosion
tests.
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3 Numerical Method
A recently developed turbulence-resolving hybrid spectral-compact finite difference scheme
for the fine sediment transport in bottom boundary layer (Yu et al., 2013) is utilized. In this
numerical model, the computation domain (see Fig. 1) is assumed to be statistically ho-
mogeneous in the streamwise and spanwise directions. Fourier expansions are adopted in
both streamwise and spanwise directions, which enforce the periodic boundary conditions
in these directions, and uniform grids in both streamwise and spanwise directions. More
details on the pseudo-spectral scheme of the present model can be found in Cortese and
Balachandar (1995). In the vertical (wall-normal) direction, Chebyshev collocation points
are used, where more grid points are clustered at both the top and the bottom boundaries,
and a sixth-order centered compact finite difference scheme is implemented. With this ex-
tension, more complicated (nonlinear) boundary conditions, such as erodible/depositional
boundary condition for sediments, can be implemented while maintaining spectral-like ac-
curacy. More details on the compact finite difference scheme of the present model can be
found in Yu et al. (2013, 2014). Eq. (10) and (11) are solved with a standard projection
method (Chorin, 1968). For diffusion terms, the Crank-Nicolson scheme is used. Non-
linear advection terms are calculated by the Arakawa method (Arakawa and Lamb, 1981)
with the 2/3 de-aliasing law, and integrated by a third-order low-storage Runge-Kutta
scheme. A direct solver (Yu et al., 2013) is used to solve the pressure Poisson equation.
For the equation of sediment concentration, same numerical methods are used where ap-
plicable.

Notice that the effective settling velocity may vary with x and y if hindered settling or
particle inertia is considered. To satisfy the mass conservation at the top boundary, the no-
flux boundary condition (Eq. (13)) should be satisfied. In the present numerical schemes,
Fourier expansions are adopted in both streamwise and spanwise directions. If we transfer
Eq. (13) into Fourier space, convolution terms will arise from the nonlinear multiplication
term (first term on left-hand-side of Eq. (13)), which is difficult to handle. To resolve this
problem, the sediment velocity at the top boundary is decomposed into x-y plane-averaged
component 〈ws〉 and the fluctuation component ws′:

ws = 〈ws〉+ ws′. (18)

Substituting Eq. (18) into Eq. (13) will result in:

〈ws〉φ− 1

Re∆Sc

∂φ

∂z

∣∣∣
z=Lz

= −ws′φ
∣∣∣
z=Lz

. (19)

However, the sediment concentration φ on the right-hand-side of the above equation is
part of the solution, to make sure that the top boundary has the same accuracy in terms of
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time integration, the right-hand-side term is approximated by using a second-order accu-
rate scheme:

φ(n∗) =
[
1 +

c(n)

c(n− 1)

]
φ(n−1) − c(n)

c(n− 1)
φ(n−2)

∣∣∣
z=Lz

, (20)

where n denotes the time steps, and c = {dt/6, 5dt/24, dt/8} is the coefficient for the
diffusion term in the third-order low-storage Runge-Kutta method with dt being the time-
step (Yu et al., 2013). In this study, the constant time step is chosen based on the Courant-
Friedrichs-Lewy (CFL) criterion. φ(n∗) is the approximation of φ at the bottom at the
n step, and φ(n−1) and φ(n−2) are sediment concentration at the previous two time steps
(n− 1) and (n− 2), respectively.
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4 Model Results
With the erosion/deposition boundary condition for sediment concentration, the sediment
availability becomes a part of the solution. Cheng et al. (2015a) has demonstrated that at
a given wave condition, where the free-stream velocity is Ũ0 = 0.56 m/s and wave period
T̃ = 10 sec, the transport of fine sediment with a settling velocity of about W̃s0 = 0.5 mm/s
shows three distinct characteristics, ranging from the well-mixed transport (mode I), two-
layer like transport with the formation of lutocline (mode II) and laminarized transport
(mode III) as the critical shear stress of erosion reduces. Moreover, reductions in the
settling velocity also yield similar transitions of transport modes. In general, the settling
velocity is a flow variable due to the hindered settling and the particle inertia. It has been
shown that for a typical wave condition in continental shelves, the particle inertia effect is
very minor although it tends to further attenuate turbulence (Cheng et al., 2015b). On the
other hand, for non-cohesive sediment with a relatively high reference concentrations, the
hindered settling effect also plays a relatively minor role in the fine sediment transport in
the wave boundary layer, while for flocs with lower gelling concentrations, the hindered
settling effect can sustain a large amount of suspended sediment load and results in the
laminarized transport (mode III). More scientific details of these studies can be found in
Cheng et al. (2015a,b). The purpose of this report is to select a couple of simulations
carried out in Cheng et al. (2015a,b) as examples in order to illustrate model input/output,
model capability and to demonstrate the sensitivity of model results.

Table 1: List of simulations presented in this study.

Case τ̃c(Pa) Ws0 W̃s0(mm/s) St φref Φeq Transport mode
0 NA NA NA NA NA NA NA
1 0.01 9.0×10−4 0.5 NA NA 6.2× 10−4 III
2 0.02 9.0×10−4 0.5 NA NA 1.76× 10−3 II
3 0.6 9.0×10−4 0.5 NA NA 4.9× 10−5 I
4 0.02 3.0×10−4 0.17 NA NA 3.1× 10−3 III
5 0.02 18×10−4 1.0 NA NA 6.9× 10−4 II

2A 0.02 9.0×10−4 0.5 0.03 NA 1.8× 10−3 II
2B 0.02 9.0×10−4 0.5 NA 0.63 1.95× 10−3 II

The seven cases associated with the same wave condition as Cheng et al. (2015a,b)
are presented here and they are summarized in Table 1. The Stokes Reynolds number is
calculated to be Re∆=1000, which is in the range of intermittently turbulent flow where
fully turbulent condition can only be attained for a portion of the wave cycle (e.g., Jensen
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et al., 1989; Ozdemir et al., 2014). The computational domain (see Fig. 1) is kept the
same as the previous studies of Ozdemir et al. (2010) and Yu et al. (2014), which is L̃x ×
L̃y × L̃z = 60∆̃ × 30∆̃ × 60∆̃, and it has been shown to be sufficient to resolve the
largest turbulent eddies. Following Yu et al. (2014) and Cheng et al. (2015a), the model
domain is discretized into Nx ×Ny ×Nz = 128× 128× 257 with uniform grids in both
streamwise and spanwise directions, and Chebyshev collocation points are used in the
vertical direction. This discretization has been verified to be sufficient to resolve turbulent
scales. Taking the advantage of the statistical homogeneity in the streamwise (x) and
spanwise (y) directions, ensemble-averaged (turbulence-averaged) flow quantities can be
calculated approximately by averaging over the x-y plane. The Schmidt number is chosen
to be Sc = 0.5 by following the previous studies of Ozdemir et al. (2010) and Yu et al.
(2014). In this report, m̃e is assumed to be constant and its dimensional value is specified
to be 3.05 × 10−7 m/s for all the cases, and the selected values of τ̃c range from 0.01 to
0.6 Pa in order to study the effect of critical shear stress on a diverse range of transport
characteristics, and τ̃c is kept constant in each simulation.

In all the numerical simulations in Table 1, the initial condition for fluid flow is chosen
to be the fully-developed clear fluid oscillatory flow of Re∆ = 1000 (Case 0 in Table
1) for each numerical simulation. Once the bottom stress exceeds the threshold value
of erosion, sediments are then suspended from the bottom boundary following Eq. (16).
Meanwhile, sediments will deposit to the bottom through Eq. (15). The net flux through
the bottom boundary adjusts the total amount of sediment in the domain and if the wave
forcing condition remains unchanged, a statistical equilibrium can be reached where the
time-averaged net sediment flux over one wave period eventually become zero, or Ẽ = D̃,
where ‘ ’ represents wave-averaged quantities, i.e., time average over one wave cycle.

4.1 Transport Modes Under Different Critical Shear Stress of Ero-
sion

In the studies of Cheng et al. (2015a), the inertia terms associated with the particle Stokes
number St in the particle velocity expression (Eq. (9)) are neglected by assuming that the
Stokes number St is sufficiently small, and the particle velocity is calculated as:

usi = ui −Ws0δi3. (21)

Hence, by specifying W̃s0 = 0.5 mm/s (or Ws0 = 9 × 10−4), these simulations can
be interpreted as corresponding to fine silt (no flocculation) with a particle size of d̃ = 24
µm and the specific gravity is s = 2.65. According to Cheng et al. (2015a), the critical
shear stress of erosion τ̃c plays a key role in controlling the sediment availability and hence
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Fig. 2: Time series of the domain-averaged sediment concentration for Case 1 (curve with
circle symbols), Case 2 (dashed curve), Case 3 (curve with plus symbols)

the resulting transport characteristics. This is demonstrated here by comparing Cases 1-
3, where all the flow parameters are kept the same, except for the critical shear stress of
erosion τ̃c (see Table 1). Fig. 2 shows the temporal variation of the domain-averaged
suspended sediment concentration, which is defined as:

Φ =
1

Lz

∫ Lz

0

〈φ〉dz. (22)

We can see that a lower critical shear stress generally leads to a higher Φ in the domain
except for Case 1. When the domain-averaged sediment concentration increases to about
Φ = 1.3×10−3 in Case 1, a decrease in Φ is observed after the third cycle. Due to the rapid
resuspension associated with the low critical shear stress, the flow turbulence in Case 1 is
completely attenuated after a couple of wave cycles, and flow eventually becomes laminar.
For Cases 2-3, the corresponding τ̃c is larger and the amount of resuspended sediment from
the bottom at the initial stage increases more gradually (see Fig. 2). As we will demon-
strate next, the flows are still turbulent and the domain-averaged sediment concentrations
keep increasing until a quasi-equilibrium state (an equilibrium balance between the erosion
flux E and the settling flux D) has been reached. Hereby, the domain-averaged sediment
concentration at the quasi-equilibrium state will be referred to as sediment availability Φeq

(see Table 1).
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Fig. 3: Swirling strength (λci) at flow peak (ωt = 0)(a) Case 1, (d) Case 2 and (g) Case 3. The contour level used
here is 5% of the maximum λci value in Case 3. (b), (d) and (h) show the corresponding iso-surface of near-bed sediment
concentration. The contour level is chosen to be the average concentration at z = 2.5 with φ = 0.005, 8.2×10−3, 9.2×10−5

for Case 1, Case 2 and Case 3, respectively. (c), (f) , (i) show the corresponding iso-surface of sediment concentration in
the middle of the domain at flow peak. The contour level is chosen to be the average concentration at z = 20 with
φ = 2.2× 10−5, φ = 6.8× 10−4, 7.6× 10−5 for Case 1, Case 2 and Case 3, respectively.
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To further demonstrate sediment-turbulence interaction, the turbulence structures un-
der different critical shear stresses for Case 1, 2 and 3 are illustrated by the iso-surfaces of
local swirling strength (λci) during flow peak (see Fig. 3 (a),(d),(g)). λci is the imaginary
part of the complex eigenvalue of the velocity gradient tensor and its magnitude can be
used to quantify the strength of local swirling motion (Zhou et al., 1999). In Cases 2 and
3 (see Fig. 3 (d) and (g)), some vortex structures are clearly observed over a portion of
the bed. However, for Case 1 with the lowest critical shear stress of 0.01 Pa, no vortex
structure is observed (see Fig. 3(a)). Meanwhile, the corresponding iso-surfaces of con-
centration are also shown in Fig. 3 (b) to (i). To better illustrate the resulting sediment
concentration field near the bed (or in the middle of the domain), the contour level for
concentration iso-surface in Fig. 3 (b), (e) and (h) (or (c), (f) and (i)) is chosen to be the
plane-averaged concentration at z = 2.5 (or z = 20) in each case. Since there are no
turbulent coherent structures observed in Case 1 (Fig. 3(a)), a flat near-bed iso-surface
of concentration field is obtained in Fig. 3(b). However, irregular structures of very di-
lute concentration can still be observed at around z = 20 due to turbulence from the top
half domain (see Fig. 3(c)). As the critical shear stress is increased to 0.02 Pa in Case
2, sparse coherent vortex structures can be observed over a portion of the near-bed region
(see Fig. 3(d)). This region is corresponding to a stripe of more irregular/chaotic sediment
concentration structures shown in Fig. 3(e). In the middle of the channel at z = 20 (see
Fig. 3(f)), the iso-surface of sediment concentration is much less chaotic, which suggests
a much weaker turbulence. As the critical shear stress is further increased to 0.6 Pa in
Case 3, it is evident that the turbulence near the bed is much stronger with denser near-bed
turbulent structures (see Fig. 3(g)). In this case, the iso-surface of sediment concentration
in the middle of the domain (at z = 20, see Fig. 3(i)) is similarly chaotic, suggesting
that turbulence is sufficiently large throughout the domain. Comparing to iso-surface of
sediment concentration in Case 2, it is clear that fluctuations in sediment concentration are
much stronger in Case 3 (Fig. 3(i)), implying that the turbulence in Case 2 is significantly
suppressed in the middle of the domain despite the flow remains turbulent near the bed.

Turbulence-averaged flow statistics, namely the sediment concentration, streamwise
velocity and turbulent intensity during flow peak for Case 1, 2 and 3 are shown in Fig. 4.
Because the flow is statistically homogeneous in the streamwise and spainwise directions,
turbulence-averaged quantities are computed by averaging over the xy-plane. For a better
illustration, only the bottom half channel (z = 0 ∼ 30) is shown here. Several distinct
features can be observed from the concentration profiles (Fig. 4(a)). Firstly, sediment con-
centration profile of Case 3 is relatively uniform throughout the lower half of the domain
and although not shown here, the profiles of turbulent intensity and streamwise velocity
in Case 3 is almost identical to those of the clear fluid condition (Case 0), this flow fea-
ture is quite similar to a well-mixed condition (regime I) that was previously reported by
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Fig. 4: Ensemble-averaged profiles of (a) sediment concentration, (b) non-dimensional
streamwise velocity and (c) non-dimensional turbulence intensity during flow peak (ωt = 0)
for Case 1 (dashed curve), Case 2 (curve with triangle symbol), Case 3 (solid curve); In (a),
the top x-axis is the concentration scale for Case 3, and the bottom axis is the concentration
scale for Case 1 and Case 2.

Ozdemir et al. (2010). Distinctly, A nearly exponential sediment concentration profile (see
Fig. 4(a)) can be observed in Case 1, in which a high sediment concentration only accu-
mulates very close to the bed and decays rapidly away from the bed. This sharp decrease
of concentration is clearly associated with the strongly suppressed turbulent intensity (see
Fig. 4 (c)) throughout the lower half of the channel. Meanwhile, the streamwise velocity
profile in Fig. 4(b) is distinct from those of Case 2 and 3, and a reduction of boundary
layer thickness is observed. Flow features presented here are consistent with the regime
IV reported by Ozdemir et al. (2010), where the flow is completely laminarized by a large
availability of sediment. For Case 2, a relatively sharp negative gradient of sediment con-
centration (lutocline) can be seen around z = 10 ∼ 15, while this feature is absent in Case
1 and Case 3. A classic two-layer feature is characterized by the lutocline, which separates
the upper quasi-laminar layer from the lower turbulent layer. Such feature can be clearly
seen in the profiles of turbulent intensity shown in Fig. 4 (c). Below z = 10, the turbulent
intensity of Case 2 is comparable to that of Case 3 (or the clear fluid condition). However,
the turbulent intensity above z = 15 is less than 50% of that in Case 3. The two-layer-like
features of Case 2 are consistent with the regime II reported by Ozdemir et al. (2010) for
moderate sediment availabilities.

Based on the results presented so far, it is evident that the present turbulence-resolving

21



numerical model is able to study different transport characteristics due to different critical
shear stress of erosion. By varying the critical shear stress of erosion, three transport
modes, which are similar to the flow regimes I, II and IV described by Ozdemir et al.
(2010) are observed. It is found that under the Stokes Reynolds number Re∆ = 1000,
very low critical shear stress (very high erodibility) as low as 0.01 Pa can cause significant
turbulence suppression by sediment induced stable density stratification that further leads
to laminarized flow (transport mode III). Interestingly, slightly increased critical shear
stress (τ̃c ≥ 0.02 Pa) causes lower sediment availability, much less turbulence attenuation
and the formation of lutocline that separates the turbulent layer from the upper quasi-
laminar layer (transport mode II). When the critical shear stress is sufficiently large (τ̃c ≥
0.6 Pa), the sediment availability is very low such that the effect sediment-induced density
stratification on the turbulence is negligible (transport mode I).

4.2 Transport Modes Under Different Settling Velocities
To be consistent with the study of transport modes under different critical shear stresses
of erosion τ̃c, the particle velocity is calculated in the same manner as Case 1-3, i.e., Eq.
(21) is used. Cheng et al. (2015a) also demonstrated that the settling velocity is critical
in controlling the sediment availabilities and thus the resulting turbulence attenuation. In
this section, the capability of the model to study the effect of different settling velocities
are presented. While the settling velocity is kept constant in each simulation, a range of
settling velocity between 0.17 ∼ 1.0 mm/s is considered in Cases 2, 4 and 5 (see Table 1),
and this range of settling velocity is typical for fine sediment in the field condition (e.g.,
Hill et al., 2000). The critical shear stress of erosion is kept the same, τ̃c = 0.02 Pa.

Fig. 5 compares profiles of the turbulence-averaged concentration, the streamwise
velocity and the turbulent intensity for cases with a small (Case 4), medium (Case 2) and
large (Case 5) settling velocity (see Table 1). By keeping the critical shear stress constant,
it is shown here that different transport modes are realized with different settling velocities.
To better illustrate the differences, sediment concentrations are normalized by the domain-
averaged sediment concentration. As discussed previously, Case 2 with W̃s = 0.5 mm/s
corresponds to transport mode II. Decreasing the settling velocity to W̃s = 0.17 mm/s
in Case 4 shows a significantly different concentration profile (Fig. 5 (a)). The lutocline
is not present in the concentration profile of Case 4 and it is clear from Fig. 5 (c) that
flow turbulence in Case 4 is completely suppressed, which indicates that the laminarized
transport mode III is observed in Case 4.

On the other hand, increasing the settling velocity from W̃s = 0.5 mm/s to W̃s = 1.0
mm/s (Case 5) still produces the transport mode II (see Fig. 5). However, there is a slight
increase in the lutocline elevation. In Case 2, the lutocline is located at around z = 13,
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Fig. 5: Ensemble-averaged profiles of (a) sediment concentration, (b) non-dimensional
streamwise velocity and (c) non-dimensional turbulence intensity during flow peak (ωt = 0)
for Case 2 (solid curves), Case 4 (dashed curves) and Case 5 (dash-dotted curves).

while increasing the settling velocity twice (Case 5), the lutocline moves upward to about
z = 16. Moreover, the turbulent intensity above z = 5 in Case 5 is also larger. By ex-
amining the sediment availability (see Φeq in Table 1), it is clear that Case 5 with a larger
settling velocity has a much lower sediment availability. Hence, the higher lutocline loca-
tion and stronger turbulence (weaker turbulence attenuation) in Case 5 can be explained
by the lower sediment availability. In contrast, laminarized transport mode III, Case 4, is
caused by the high sediment availability and the significant turbulence attenuation.

4.3 Effect of Particle Inertia
To include the effect of the particle inertia, the sediment velocity is calculated by retaining
the first-order inertia term in Eq. (9):

usi = ui −Ws0δi3 − St(1−
1

s
)
Dui
Dt

, (23)

Here we demonstrate the particle inertia effect by comparing with the baseline Case 2 (see
Table 1). For Case 2, the particle response time and characteristic time scale of the flow
are t̃p = 8.5 × 10−5 s and t̃l ≈ 3.2 × 10−3 s, respectively. The resulting Stokes number
is St = t̃p/t̃l = 0.03, which is much smaller than unity. Except for the difference in the
particle velocity expressions, other flow and sediment parameters in Case 2 and Case 2A
are kept the same, and thus any difference between these two cases is due to the extra
inertia term in the particle velocity expression.
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The effect of the particle inertia is shown by comparing the ensemble-averaged pro-
files (see Fig. 6) of sediment concentration, non-dimensional streamwise velocity and
non-dimensional turbulent intensity for Case 2 (inertia effect neglected) and Case 2A
(St=0.03).
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Fig. 6: Comparison of the ensemble-averaged profiles of (a) sediment concentration, (b)
streamwise velocity and (c) turbulence intensity during flow peak (ωt = 0) for Case 2 (circle
symbol), Case 2A (solid curve); The relative difference (%) of these flow quantities are shown
in (d), (e) and (f), respectively; The dashed lines denotes the level of zero error.

It is reminded here that Case 2 belongs to transport mode II, in which the lutocline
separates the upper quasi-laminar layer from the lower turbulent layer. In this case, the
lutocline is located approximately at z = 13 ∼ 14 (see the solid curve Fig. 6(a)). By
including the first-order inertia term, the resulting sediment concentration profile (see Fig.
6(a)) is very similar to that of Case 2. Moreover, the relative difference of the sediment
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concentration is shown in Fig. 6(d), which is defined as:

Err(〈φ〉) =
〈φ2A〉 − 〈φ2〉
〈φ2〉

× 100%, (24)

where 〈φ2〉 is the plane-averaged sediment concentration in Case 2, and 〈φ2A〉 is the plane-
averaged sediment concentration in Case 2A. The relative difference of the streamwise
velocity Err(〈u〉) and the turbulent intensity Err(〈

√
2k〉) can be calculated in a similar

manner. We can see that the overall relative difference is small (< 10%). A reduction
of sediment concentration can be observed in the range of 13 < z < 21, and the peak
difference appears at around z = 18 (about −10%), which is close to the lutocline. On the
contrary, sediment concentration below z = 13 is increased by about 7%. This observa-
tion suggests the lowering of lutocline when inertia effect is considered. Meanwhile, the
streamwise velocity (see Fig. 6(b)) of both cases are again very similar, and the relative
difference (see Fig. 6(e)) is generally smaller than 5%, and the peak value can be observed
near the bottom. Furthermore, comparison of turbulence intensity is shown in Fig. 6(c).
Although the turbulence intensity profiles from Case 2 and Case 2A are also very close,
it is evident that the predicted turbulence is slightly lower by including the inertia effect
with the peak attenuation occurs at around z = 15 near the lutocline. More attenuated
turbulence is consistent with lowered lutocline (Ozdemir et al., 2011).

Moreover, the relative differences in effective settling velocity at three representative
instants are discussed in Fig. 7. The relative difference in the effective settling velocity is
calculated by the ensemble-average of the additional term associated with the inertia effect
normalized by Ws0:

Err(〈Ws〉) = St(1− 1

s
)
〈Dw
Dt
〉

Ws0

× 100% (25)

In Fig. 7(a), the wave phase (ωt) is defined such that ωt = 0 (ωt = π) corresponds to
the positive (negative) peak of free-stream velocity, and ωt = π/2 and 3π/2 correspond to
flow reversals. From the comparison of effective settling velocities (Fig. 7(b,c,d)), we can
see that the effective settling velocity is nearly unaffected above z = 20 due to very low
turbulence above the lutocline. Between 1.5 < z < 20, including the particle inertia re-
duces the effective settling velocity. However, the reduction is only within 3%. Moreover,
an increase of the effective settling velocity can be observed near the bottom 0 < z < 1.5,
and the peak value of the increment is about 5% at flow peak. However, the effective
settling velocity at the bottom is still reduced by about 2%. As the flow decelerates to
ωt = π/3, the increment of effective settling velocity at around z = 1.5 is decreased to
about 1%. After the flow reserves and accelerates to ωt = 2π/3, a uniform reduction of
effective settling velocity can be observed below the lutocline, and the reduction is less
than 2%. Overall, the inertia effect slightly reduces velocity fluctuation in the z-direction
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Fig. 7: (a) Time series of free-stream velocity U(t). Three representative instants (b,c,d) are
shown with open circles. The relative difference (%, solid curve) of effective settling velocities
between Case 2 and Case 2A at these three representative instants are shown in (b) flow peak
(ωt = 0), (b) ωt = π/3 and (d) ωt = 2π/3; The dashed lines denotes the level of zero error.

and hence the Reynolds stress is reduced (not shown here for conciseness). This can fur-
ther lead to a reduction of turbulent production and hence more attenuation of turbulence.
However, the Stokes number considered here remains to be too small (St = 0.03) to
trigger the transition to transport mode III.

As discussed in this section, the particle inertia effect can be included by retaining the
first order St term in the particle velocity expansion in our numerical model. Based on
Case 2 with St = 0.03, the inertia effect is demonstrated to be small on concentration
profiles, velocity profiles and turbulent intensity. This negligible effect is consistent with
the small Err(〈Ws〉) which is generally within 5%.
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4.4 Effect of Hindered Settling
To incorporate the effect of hindered settling, the particle velocity is expressed to account
for the hindered settling correction:

usi = ui −Ws0f(φ)δi3, (26)

where the dimensional Stokes settling velocity W̃s0 is calculated by Eq. (2). In our numer-
ical model, the hindered settling function f(φ) is introduced to correct the settling velocity,
and the model of Richardson and Zaki (1954) is chosen:

f(φ) =
(
1− φ

φref

)m
, (27)

where φref is the reference concentration, i.e., a maximum packing concentration (Richard-
son and Zaki, 1954; Mehta, 1986; Dankers and Winterwerp, 2007). Clearly, the degree
of hindered settling and hence the resulting transport is highly dependent on φref . For
non-cohesive sediments, φref corresponds to the maximum packing limit, which around
φref = 0.63, at which the mean distance between the edges of the nearest neighbors is
nearly zero (Berryman, 1983). Here, we present the case with a reference concentration
associated with non-cohesive particles (see Case 2B in Table 1). The empirical exponent
m is related to the particle Reynolds number (Rep = W̃s0d̃/ν):

m =





4.6, Rep ≤ 0.2
4.4Re−0.03

p , 0.2 < Rep ≤ 1
4.4Re−0.1

p , 1 < Rep ≤ 500
2.39, Rep > 500

. (28)

The ensemble-averaged flow statistics in Case 2 and Case 2B are compared in Fig. 8
to study the effect of the hindered settling for non-flocculated condition (φref = 0.63).
Case 2 and Case 2B show a similar feature of concentration profiles (Fig. 8(a)). Since
the lutoclines are observed in both Case 2 and Case 2B near z = 14, transport mode
II is also obtained for Case 2B. However, Case 2B shows slightly more sediment below
the lutocline. Although the increase is within 20%, this notable increment of total load
in the domain is clearly associated with the reduced settling velocity. Meanwhile, the
streamwise velocity profiles (see Fig. 8(b)) show that the overshoot near the bottom in
Case 2B is slightly larger (within 10%) than that of Case 2. Below the lutocline, the
turbulent intensity in Case 2B is consistently lower that that of Case 2 by about 5% to 20%
(see Fig. 8(f)). When settling velocity is effectively reduced by hindered settling effect,
more sediments are suspended in the domain (Cheng et al., 2015a), which leads to an
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Fig. 8: Comparison of the ensemble-averaged profiles of (a) sediment concentration, (b)
streamwise velocity and (c) turbulence intensity during flow peak (ωt = 0) for Case 2 (circle
symbols), Case 2B (solid curve); The relative difference (%) of these flow quantities are shown
in (d), (e) and (f), respectively; The dashed lines denotes the level of zero error.

enhanced sediment-induced density stratification and a stronger attenuation of turbulence
is observed.

Fig. 9 presents the normalized effective settling velocity, which is defined as the dif-
ference between the sediment velocity and the fluid velocity in the z-direction normalized
by the Stokes settling velocity. Since the features are similar during the entire wave cycle,
only the comparison at the flow peak is discussed here. We can see that hindered settling
renders a reduction in the effective settling velocity, and the reduction of effective settling
velocity is larger near the bottom, where the sediment concentration is larger. For Case 2B
(φref = 0.63), the reduction is less than 10% near the bottom. This reduction is consis-
tent with the enhanced sediment availability, as well as the resulting stronger turbulence
attenuation.
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5 Conclusion and Future Work
A 3D turbulence-resolving numerical model for fine sediment transport in the bottom
boundary layer has been developed. The numerical model has the capability to simu-
late fine sediment transport using two different approach for sediment availability, namely,
the prescribled sediment availability and the erosional/depositional bottom boundary. This
report further discusses simulation results using erosional/depositional bottom boundary
option. The transport mode of fine sediment due to critical shear stress of erosion and
settling velocities is successfully studied using this model, and model results reveal the
existence of three transport modes, namely, the dilute suspension in well-mixed condition
(transport mode I), the formation of lutocline due to moderately attenuated turbulence by
sediment-induced stable density stratification (transport mode II), and laminarized flow
due to a significant turbulence attenuation (transport mode III) (see more details in Cheng
et al. (2015a)).

Meanwhile, the model provides flexible options for the sediment phase velocity, and
particle inertia and hindered settling for fine sediment can be included. Though it is re-
vealed that at the Stokes number of St = 0.03, which corresponds to the value typical of
fine sediment transport in energetic continental shelves, the particle inertia makes a very
minor difference. More attenuation of turbulence is observed by considering the parti-
cle inertia at St = 0.03. It is interesting to further consider other flow conditions and
sediment properties, where the Stokes number is larger. Furthermore, the hindered set-
tling effect can be incorporated by using the model of Richardson and Zaki (1954). Only
non-flocculated sediment with φref=0.63 is presented in this report. Cheng et al. (2015b)
showed that by varying the reference concentration when floc properties are considered,
more significant hindered settling effect (lower reference concentrations) enhances sed-
iment availability, significantly attenuate flow turbulence and the laminarized transport
mode III is obtained. Moreover, interesting phenomenon such as gelling ignition (Kampf
and Myrow, 2014; Cheng et al., 2015b), where an unlimited increase of sediment in the
domain, can be obtained when the reference concentration is low enough.

Future extension of the present numerical model can be carried out in several direc-
tions. The effect of current in the wave boundary layer should be investigated. Moreover,
mixed grain size transport and bedform should be further studied to investigate their effect
on the resulting fine sediment transport mode.
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6 Appendix

6.1 Installation and Compilation
FineSed3D is distributed in a compressed file, FineSed3D.tar. To install the programs,
first, uncompress the package by using the command:

tar -xvf FineSed3D.tar

to extract files from the uncompressed package. The exacted files will be distributed in
three new directories: /Examples, /Src and /User Manual.

Before compilation, make sure the Intel Math Kernel Library (MKL) and FFTW pack-
ages are successfully installed. For more informations about these libraries, please go
to:

For MKL, go to: https://software.intel.com/en-us/intel-mkl
For FFTW, go to: http://www.fftw.org/

After installing the MKL and FFTW libraries, we can start to compile the numerical
model. First go to /Src and modify Makefile if needed. There are several necessary flags
in Makefile needed to specify below:

-EXEC: the name of executable command to be generated after compilation.

-TGZFILE: the name of the compressed file.

-INC: all the include files, which defines global variables, and mesh information.

-OBJS: the rule of generating the names of object files.

-MKL HOME: define the directory of mkl library.

-MKLIBS: define the library links for mkl.

-FLAGS: define code debug flags.

-DEBUGFLAGS: define flags for code debug.

-OPTFLAGS: define optimization option for compilation, use -O2 for optimization level
2.

-MPFLAGS: define parallelizatino library, use -openmp for openmp library.

-FCMP: define the include files for FFTW library.
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-FCSP: define the include files for FFTW library.

Meanwhile, the number of mesh grid points in each direction is defined in global.inc:

INTEGER nx,ny,nz
PARAMETER (nx=128, ny=128, nz=257)

6.2 Model Input
Take the model input for the hindered settling (φref = 0.63) as an example, the following
is a description of parameters in the file called initial, and variable names are added in
brackets above each variable values, and they are not a part of initial file:

#MAIN
vel
(istart iters ch_fin m_fin)
2880000 8000 1 0
(oi_chan out_press limit)
8000 1 0
(oi_timer oi_cfl oi_spec oi_mean oi_gbal oi_1d)
9999999 1 99999999 9999999 24000 9999999
(re gradpbar dt cflmax)
30000.d0 1.0 0.0001 1.0
(tt_yes twc_yes otau_yes)
1 0 1
#END_MAIN
#THRM
conc
(sc ri(or 1/Frˆ2) Tmax RR nbsq_yes md_rhs_yes)
0.5 3.264d-6 0 1.65 0 1
(ttab ttat =-w_settling)
-0.0009 -0.0009
(ttbb ttbt =-1/(re*sc))
-0.002 -0.002
(ttgb ttgt)
0.0 0.0
(w_settling tau_p beta_p rey_p phiave=1/phi_ref me tauc)
-0.0009 0.0 0.4762 0.0514 1.5873 3.05d-7 2.d-2
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#END_THRM
#SP_VISC
(epssvx epssvy)
0.0 0.0
(msvx msvy)
1 1
#END_SP_VISC

The detailed definitions are described as follows:

vel: output name for velocity.

istart: the time step to start the simulation, if it is not 0, ch fin needs to be set to 1 to
read the previous files at the starting time step.

iters: number of time steps to run, in addition to the istart.

ch fin: if hot start, set ch fin to 1, and the output files at the time step istart will be
read to initialize the simulation, or if cold start, set ch fin to 0 for cold start, and
initial perturbations are added to the prescribed velocity profile, which is defined in
initial compact.F.

m fin: if cold start (ch fin=0), to generate the initial perturbation, set to 0 if the mean
velocity is zero, else set to 1 to read mean velocity from ‘means.istart’, where ‘istart’
is specified as the starting time step.

oi chan: output interval (number of time steps).

out press: output pressure? set to 1 for yes, or 0 for no.

limit: set the limit for output? set to 1 for yes, or 0 for no.

oi timer: output interval for time information, set to large value if the output is not
necessary.

ch cfl: output interval for CFL number.

oi spec: output interval for spectral information, set to large value if the output is not
necessary.

oi mean: output interval for mean values, set to large value if the output is not necessary.
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oi gbal: output interval for TKE balances, such as TKE production, TKE dissipation,
etc, mode details can be found in source code stats.F.

oi 1d: output interval 1D average information, set to large value if the output is not
necessary.

re: define Reynolds number, Re∆, since the vertical domain (0 ≤ z ≤ 60) is scaled to -1
to 1, the Reynolds number is scaled by 30.

gradpbar: define magnitude of mean pressure gradient, dummy, because it is redefined
in rhs.F, since it should be function of time for oscillatory flow, however, a constant
pressure gradient can be specified for steady flow.

dt: time step, dummy, redefined in main.F.

cflmax: allowed maximum CFL number, a value of 0.3 is recommended.

tt yes: include sediment phase? set to 1 for yes, and sediment phase will be solved, or
set to 0 for clear fluid, and sediment phase is not solved.

twc yes: use two-way coupled formulas, set to 1 for yes, and 0 for no.

otau yes: include particle inertia? set to 1 for yes, and the material derive of fluid velocity
Du/Dt will be calculated and first order Stokes number term in the particle velocity
expression (see Eq. (23)) will be calculated, meanwhile, the special treatment of
top boundary condition will be adopted (see Section 3). or set to 0 to ignore inertia
effect, and particle velocity will be calculated by using Eq. (21).

conc: output name for sediment concentration.

ri or 1/Fr2: define the bulk Richardson number (Ribulk) or the particle Froude num-
ber (Fr). If no-flux boundary condition is used for the sediment concentration at
the bottom boundary, then a fixed sediment availability Φ can be specified, and
the bulk Richardson number Ribulk can be specified as Ribulk = (s − 1)g∆̃Φ/Ũ2

0 .
Notice that by spacifying the bulk Richardson number, the domain averaged sed-
iment concentration is equivalently specified. If the erosion/deposition boundary
condition is used for the sediment concentration at the bottom boundary, then the
inverse of the square of particle Froude number is specified, and it is calculated as
1/Fr2 = (s− 1)g∆̃/Ũ2

0 . Notice that vertical domain is scaled, the bulk Richardson
number and particle Froude number should be corresponding scaled.
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Tmax: set to 1 if the Boussinesq approximation is disabled, and the void fraction of
fluid will be included in the momentum equation for fluid phase, see rhs.F for more
details.

RR: (s-1), where s is the specific gravity of sediment.

nbsq yes: quit Boussinesq approximation? set to 1 for yes, or set to 0 for no.

md rhs yes: use right-hand-side of momentum equation to calculate material derivative
of fluid velocity? set to 1 for yes, or set to 0 for no, and left-hand-side of momen-
tum equation will be used to calculate the material derivative of fluid velocity. the
material derivative will be used when the particle inertia effect is considered.

ttab, ttbb: coefficients for the sediment bottom boundary condition, ttab = Ws0, ttbb =
−1/(Re∆Sc).

ttat, ttbt: coefficients for the sediment top boundary condition, ttat = Ws0, ttbt =
−1/(Re∆Sc).

w settling: Stokes settling velocity, Ws0 (see Eq. (2)), it is define in the way that it is
positive if upwards.

tau p: Stokes number, St, similar as Reynolds number and bulk Richardson number, it
shall be scaled as the domain is scaled in the numerical model.

beta p: 1/s.

rey p: particle Reynolds number, which is used in the hindered settling model, see Eq.
(28).

phiave: 1/φref for hindered settling (see Eq. (27)), set it to 0 to ignore hindered settling.

me: erosion rate coefficient me, non-dimensional.

tauc: critical shear stress of erosion, dimensional (Pa).

epssvx: set to greater than 0 if to use spectral viscosity in x direction.

espsvy: set to greater than 0 if to use spectral viscosity in y direction.

msvx: should be less than nx/2, used in spectral viscosity.

msvy: should be less than ny/2, used in spectral viscosity.

35



6.3 Model Output
Note that the executable file, initial file as well as the *.inc file from the folder /src should
be present in the present working directory in order to run. The code can be run using the
following command:

FineSed3D.x < initial

where FineSed3D.x is the executable file generated by the code compilation. The output
files are:

vel.*: fluid velocity, binary format, the I/O format can be found in io.F.

conc.*: sediment concentration, binary format, see io.F for detailed I/O information.

press.*: fluid dynamic pressure, binary format, see io.F for detailed I/O information.

vel p.*: difference of sediment velocity from fluid velocity, output if inertia effect or
hindered settling effect is considered, binary format, see io.F for detailed I/O infor-
mation.

DDt.*: material derivative of fluid velocity, output if inertia effect is included (tau p >
0), binary format, see io.F for detailed I/O information.

ushear.dat: time series of plane averaged bottom shear velocity, 〈u∗〉 =
√
|〈τ̃b〉| /ρf , it

is output every time step, ASCII format.

logfile: log of screen output to monitor the quantities such as CFL number, domain
averaged concentration, bottom concentration, etc., ASCII format.

these output files are saved under the same directory of the present working directory. large
output files are in binary format to save I/O time, and their format can be found in io.F in
the folder of /Src. The names of the binary output files are a combination of variable name
and an output time step such as vel.8000, vel.16000,....
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