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ABSTRACT

Existing theories of wave-current interaction mostly assume that waves prop-

agate on currents which vary weakly in the vertical direction. In most cases, the

assumption is satisfied. However, at the mouth of rivers with very energetic discharge

such as the Columbia River, the current becomes strongly sheared due to stratification

and tidal effects. The wave-current interaction for waves on strongly sheared current

needs to be discussed. In this study, a new theory is first developed to formulate the

interaction of small-amplitude surface gravity waves with strongly sheared current in

finite-depth water. In contrast to existing formulations, where waves at the leading

order respond to a depth-uniform current field, the present formulation allows for an

arbitrary degree of vertical current shear, leading to a description of wave vertical

structure in terms of solutions to the Rayleigh stability equation. The Rayleigh equa-

tion is then solved using both numerical and perturbation methods. The perturbation

solutions are recommended in numerical modeling to avoid directly solving Rayleigh

equation for each coupling time step (Dong and Kirby, 2012). As a special case, the

constantly sheared current profile is used to provide analytical wave solutions and to

evaluate the performance of numerical solver and different orders of perturbation solu-

tions. The leading order wave vorticity for constantly sheared current is discussed. The

magnitude of wave vorticity is determined by the current vertical shear and the oblique

wave angle to current direction. Wave orbital velocity and vorticity are calculated us-

ing the current velocity profile measured at the mouth of Columbia River (MCR). The

comparison of numerical solutions with perturbation solutions suggests that the second

order perturbation solution successfully captures the features of current shear effect on

the wave vertical structures. Furthermore, the solvability condition for the second order

inhomogeneous Rayleigh equation leads to the wave action conservation equation. The
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wave action equation is evaluated using wave solutions for constantly sheared currents.

Results show that both the wave action and action flux are modified by the current

vertical shear effect. For the mean flow part, the wave-averaged forcing terms for the

description of the mean flow dynamics are presented using the Craik-Leibovich vortex

force formalism. The present vortex force formulation is compared with the Uchiyama

et al. (2010) formulation using wave solutions for constantly sheared current. The

wave-current interaction theory is then applied to a coupled system of NHWAVE and

SWAN, which extends the existing formalism to include the strong shear effect. Three

cases have been tested in the numerical application part. Test case (1) is the obliquely

incident waves on a planar beach. As waves propagate onshore with an oblique angle,

they break near the beach face and generate offshore undertow in the cross-shore di-

rection and strong current in the alongshore direction. This case is used to compare

the present vortex force formulation with Uchiyama et al. (2010) without activating

SWAN. Test case (2) is wave propagation on highly stratified, vertically sheared current

at the mouth of Columbia River (MCR). During the ebb tide, the strong fresh water

discharge and ebb tidal current creates a strongly sheared offshore current at MCR.

The strongly sheared current meets and interacts with the incident waves. This case

is designed for the analysis of wave effects on currents and current effects on waves.

Both NHWAVE and SWAN are activated and coupled in the simulation. Test case (3)

is the formation of Langmuir circulation in the presence of wind-driven current and

waves. The water surface wind creates a wind-driven flow, which interacts with surface

gravity waves also propagating in downwind direction. The wave-current interaction

generates Langmuir cells in cross-wind direction.
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Chapter 1

INTRODUCTION

The study of surface gravity wave effects on nearshore hydrodynamics, marine

structures and sediment transport has been a main task for coastal engineers and

scientists. Given a certain time period in the ocean, waves are the periodic motions

while current is the continuous and directed movement. The definition of waves and

current depends on the spatial and temporal scales of interest. Diurnal and semidiurnal

tides, for example, can be treated as currents during several wind-generated surface

gravity wave periods, or as waves over time scale of a few hours. Ocean waves usually

consist of various wave periods and wavelengths, and are therefore called spectral

waves. The short waves actually ride on the long waves during propagation. In the deep

water, the longer waves propagates faster than the shorter waves. The relation between

wave number (k) and wave frequency (ω0) is called dispersion relation, expressed as

ω2
0 = gk tanh kh, where g is gravity and h is water depth. The short waves oscillate

within their own periods. At the same time, the short wave properties such as wave

amplitude, wave period and wavelength vary slowly due to the effects of long waves. If

the spatial and temporal scales of the long waves are much larger than the short waves,

the long wave-induced water particle flow can be treated as current within several short

wave periods.

Surface gravity waves usually coexist with currents generated by wind, tide, river

discharge and long waves. Thus wave-current interaction plays a very important role

in understanding the combined action of waves and current in coastal waters. Waves in

complex coastal environments are strongly affected by spatial and temporal variations

of current, which can induce wave shoaling, refractive and focussing/defocussing effects

in analogy to bathymetry variations. In turn, waves can force and modify the mean
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flow dynamics, strengthen ocean mixing processes and alter the wave-averaged bound-

ary layers. In wave models, the effects of current are usually realized through adding a

representative current velocity in the dispersion relation and wave action equation, as-

suming a depth-uniform current structure. Models of wave effects in ocean circulation

have also been extensively developed over the past decades, with the parameterized

wave-averaged forces extended to three dimensions based on either the radiation stress

formalism or the Craik-Leibovich vortex force formalism. The main idea is to include

the surface gravity wave effects on the large-scale mean flow circulation without deter-

mining phase-resolved wave motions. The coupled model system usually consists of a

wave model, with the evolution of wave action density affected by the mean flow, and

an ocean circulation model, with the wave-averaged forces driving or modifying the

mean flow. In most of the existing wave-current interaction formulations, the current

field may be strong (i.e., |u|/c = O(1)), but its variations over depth is assumed to

be weak or absent. Few existing studies have considered the interaction of waves with

strongly sheared current, in which the currents arbitrary vertical shear enters into the

leading order wave dynamics. It is true that, in most cases, current velocity magni-

tude is relatively small compared to wave phase speed in coastal regions. However,

strongly sheared currents are often observed in areas with abrupt bathymetry changes

or energetic river discharge. For estuaries such as the Columbia River, due to the

narrow outlet to the ocean, strong tidal currents and significant freshwater discharge,

the currents at the tidal plume often exceed 3 m/s during ebb tides. At the same time,

strong vertical current shear is formed due to the highly stratified condition at the

tidal plume front (Hickey et al., 2010; Kilcher and Nash, 2010). The current velocity

magnitude has been observed to be more than one third of the wave phase speed in

the tidal plume, and current shear is comparable to wave frequency (see Section 3.1

below). Therefore, the wave-current interaction theory needs to be extended to include

strongly sheared current (Dong and Kirby, 2012).
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1.1 Current Effects on Waves

Studies of wave motions in domains with background currents focus on the

current effects on waves. The current effects are mostly discussed in wave dispersion

relation, wave energy evolution as well as wave vertical structure. The simplest way

to include current effects is to consider waves propagating on a depth uniform current

(Ū). The Doppler-shifted intrinsic frequency (σ0 = ω0 − Ū · k) is then introduced in

dispersion relation σ2
0 = gk tanh kh. Wave energy is also advected by the current in

addition to the relative wave group velocity cga = cgr+Ū. cga is absolute group velocity

and cgr is relative group velocity. With the assumption of constant wave frequency ω0

and current-free environment, it is easy to prove that wave energy (E) is conserved

during the slow evolution without energy source/sink terms.

∂E

∂T
+∇H · (cgE) = 0 (1.1)

However, the conclusion becomes invalid in the presence of horizontally varying cur-

rent. If the current is time dependent and varying in horizontal direction, the intrinsic

frequency is no longer constant. The current then does work on the waves through the

interaction between strain rate of current and wave radiation stress (Longuet-Higgins

and Stewart, 1960; Whitham, 1962). Hence wave energy is not conserved. Instead,

wave action, defined as wave energy divided by intrinsic frequency, is conserved during

evolution over varying currents (Bretherton and Garrett, 1968). According to

∂

∂T
(
E

σ0

) +∇H · [(cgr + Ū)
E

σ0

] = 0 (1.2)

The derivation of a mild slope equation governing linear waves propagating over slowly

varying depth and currents also leads to the conservation equation for the wave action

without further approximation (Kirby, 1984).

According to the wave energy equation and wave action equation, waves can be

”stopped” by the opposing current when the current speed reaches the value of relative

wave group speed Ū = −cgr (Peregrine and Jonsson, 1983).

In the real world, currents can vary both horizontally and vertically. An easy

way to include vertical current shear is to assume constant shear in the current U =

3



Us + Ωsz, where Us is the surface current velocity and Ωs is the constant vertical

shear. Analytical solutions can be obtained for linear wave theory (Thompson, 1949).

Consequently, the current shear appears in the dispersion relation in addition to the

intrinsic frequency.

σ2
s = (g − σsΩ

s · k
k2

)k tanh kH (1.3)

where σs is the intrinsic frequency at the water surface. H = h+ η̄ is the actual water

depth including flow-induced surface elevation η̄. The dispersion relation is given for

the 2D current velocity. The expression of wave total energy is modified by current

shear. In this particular case, wave action conservation is proved for steady and 1D

constantly sheared current (Jonsson et al., 1978).

Additionally, a generalized Lagrangian mean (GLM) method has been developed

to study the nonlinearity of waves on rotational mean flows. The three-dimensional

wave action density is proved to be a conserved wave property on the mean flows

(Andrews and McIntyre, 1978a; Andrews and McIntyre, 1978b). However, the depth

integration of the equivalent form of wave action equation does not converge to those

obtained from former studies (Bretherton and Garrett, 1968; Jonsson et al., 1978). The

study of internal and surface gravity wave propagation on an inhomogeneous, slowly

varying mean flow leads to the wave action conservation equation (Voronovich, 1976).

The resulting equation is valid for arbitrary current profiles.

When considering strong currents with arbitrary vertical shear, the Laplace

equation is no longer valid to describe the wave motion. The strong current with strong

vertical shear assumption leads to the Rayleigh instability equation. Starting with the

Rayleigh equation, perturbation methods are used to examine the vertical current shear

effect on the linear wave orbital velocity and dispersion relation. Assuming either a

weak current or a strong current with weak shear, the Rayleigh equation may be solved

by perturbation method to introduce current effects in wave solutions (Kirby and Chen,

1989; Stewart and Joy, 1974; Skop, 1987). For the weak current case, currents do not
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affect the leading order solutions for waves. At first order, the concept of the depth-

weighted current (Ũ) is discussed.

Ũ =
2k

sinh 2kH

∫ 0

−H
U(z) cosh 2k(H + z)dz (1.4)

It is also noted that the depth-weighted current is function of wave number. In con-

sequence, the advection velocity in the wave action equation will have an extra term

related to changes in wave number. The second order approximation is shown to

improve the first order result significantly for long waves on the linear shear current

(see Figure 2 in Kirby and Chen, 1989 and Banihashemi et al., 2016). Shrira (1993)

showed how this can be extended to all orders. Additionally, numerical solutions to

wave Rayleigh equation based on measured current profile data have been utilized to

evaluate the approximation in the perturbation solutions (Dong and Kirby, 2012). The

comparison with numerical and analytical results demonstrates that the second order

perturbation approximation successfully captures the strongly sheared current effects

on wave vertical structures. The second order approximation can be used in wave-

current interaction models to avoid numerically solving wave Rayleigh equation, which

is time-consuming.

Meanwhile, several lab experiments have been done to measure the vertical

structure of wave orbital velocity and current velocity for waves following or opposing

the current (Klopman, 1992; Klopman, 1994). The wave orbital velocity profiles are

also studied using General Lagrangian Mean method. Results suggest that the vertical

gradient of the amplitude of horizontal orbital velocity decreases when interacting with

following current and increases with opposing current, which qualitatively agrees with

observations (see Figure 1.1 and Groeneweg and Klopman, 1998).

1.2 Wave Effects on Current

The wave effects on current have been explored to explain the nearshore phe-

nomena. As surface gravity waves propagate shoreward from the deep ocean to coastal

waters, the wave group velocity is decreased due to decreasing water depth and waves
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Figure 1.1: GLM results (Groeneweg and Klopman, 1998) and experimental results
(Klopman, 1994) for the first order Eulerian-mean horizontal velocity
amplitude profile. Both the model results and experimental results indi-
cate that the following current decreases the vertical gradient of velocity
amplitude, while the opposing current increases the vertical gradient. See
Figure 2 in Groeneweg and Klopman (1998)

begin to break. During wave transformation, several fundamental nearshore processes

are generated such as longshore current and undertow.

Wave-average impacts on current are interpreted either in the radiation stress

formalism or the vortex force formalism. The difference between the concepts of ra-

diation stress and vortex force lies in the treatment of the advection terms u·∇u in

momentum equation (Lane et al., 2007). The advection term, combined with conti-

nuity equation, yields wave-averaged forces in radiation stress formalism according to

u·∇u+u(∇·u) =∇·(u⊗u), while another operation on the advection term yields the

vortex force formalism according to u·∇u = 1
2
∇(u·u)− u× (∇× u). The first term

on RHS is the gradient of Bernoulli head, which contributes to the pressure gradient

force within the water column. The second term on RHS is called the vortex force.
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The flow vorticity is defined as Ω =∇× u.

Early studies focused on wave-averaging of the depth-integrated momentum

equation. The study of the interactions of short waves with long waves (or currents)

successfully explains the short wave steepening at long wave crests and flattening at

long wave troughs (Longuet-Higgins and Stewart, 1960; Longuet-Higgins and Stewart,

1961). As mentioned earlier, long waves or currents do work on short waves through

the interaction of a wave energy flux property called ”radiation stress” and the current

strain rate, where the radiation stress Sαβ for plane waves is given by

Sαβ =

Sxx Sxy

Syx Syy

 (1.5)

where

Sxx = [
k2
x

k2

cg
c

+ (
cg
c
− 1

2
)]E

Sxy = Syx = (
kxky
k2

cg
c

)E

Syy = [
k2
y

k2

cg
c

+ (
cg
c
− 1

2
)]E

Here, cg is wave group speed and c is wave phase speed. E is the wave energy given ear-

lier in this chapter. The divergence of radiation stress appears in the Lagrangian mean

flow momentum equation as a source/sink term, and can be used to predict several

important processes such as wave setup/down (Bowen et al., 1968), surf beat (Longuet-

Higgins and Stewart, 1962; Longuet-Higgins and Stewart, 1964) and the generation of

longshore current (Bowen, 1969; Longuet-Higgins, 1970a; Longuet-Higgins, 1970b).

The wave set-down and set-up are changes in mean sea level due to the cross-shore

gradient of radiation stress before and after the breaking point. Surf beat is caused by

the slow spatial variation in radiation stress of wave groups (long waves). The long-

shore current is formed from the balance between bottom stress and the cross-shore

gradient of the longshore component of radiation stress.

The radiation stress considered by Longuet-Higgins and Stewart (1960, 1961) is

based on the wave-averaging of depth-integrated momentum equation, which consists
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of both mean flow and the wave field. Hence the divergence of radiation stress implies

the changes in the overall flow momentum. It is not clear to describe the interactions

between the mean flow and waves (Hasselmann, 1971). The study of wave-induced

currents in the surfzone attempts to separate radiation stress into three components

in terms of wave energy dissipation, the gradient of a volume force and some extra

rotational terms (Dingemans et al., 1987). The extra rotational terms are related to

vortex force. The study indicates that the driving force to the mean flow is closely

proportional to the wave energy dissipation rate in the surfzone while the extra rota-

tional terms are insignificant. Outside of the surfzone, wave energy dissipation has less

effects than the other two terms. In the presence of opposing mean flows, the extra

rotational terms are responsible for the widening of jets. The simulated examples show

that driving force formulation in terms of wave dissipation gives better results than

radiation stress formulation. The resulting formulation by Dingemans et al. (1987) is

applied to the Delft3D model as wave-averaged driving forces.

Independently, the vortex force formalism has been developed to explain the

possible mechanism for the generation of Langmuir circulation (Craik and Leibovich,

1976; Thorpe, 2004). Langmuir circulation was first discovered and characterized by

Irving Langmuir in the Sargasso Sea in 1927 (Langmuir, 1938). As wind blows over the

surface of lakes or ocean, bands of foam or other floating materials are formed in the

downwind direction. These bands are produced by a spanwise flow convergence near

the surface. A downward flow is formed below the bands while an upward flow is formed

between the bands. The details of Langmuir circulation will be discussed in Chapter

6. It is suggested by Craik and Leibovich (1976) that the generation of Langmuir

circulation is due to a vortex force involving the interaction of Stokes drift induced

by wind waves and the vertical shear in turbulent fluid. Another attempt is then

made to derive the effect of wave-averaged forces on the depth-integrated mean flow

momentum equation in terms of Craik-Leibovich vortex force formalism (Smith, 2006).

It starts with the wave-averaged, depth-integrated Lagrangian mean flow, removes

wave momentum evolution terms based on wave action conservation and introduces
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wave dissipation Bb, the gradient of Bernoulli head ∇H κ̄ and the vortex force (J̄).

The depth-integrated wave forces (Fw) are given

Fw = Bbk̂ + Qst × (∇H × Ū)− Ū(∇H ·Qst)−H∇H κ̄ (1.6)

k̂ is unit wave number vector. Qst = Ek/σ0 is wave-induced Stokes transport. The

second term is the reaction to wave refraction by currents known as vortex force. The

third term comes from the surface boundary condition during depth-integration. It

represents the effects of wave-induced Stokes drift on the mean flow. The fourth term

is the gradient of Bernoulli head.

The original definition of radiation stress is based on the depth-integrated mo-

mentum equation. In three dimensional ocean circulation modeling, the depth depen-

dent radiation stress is apparent in the momentum balance. Efforts have been made to

study the mass and momentum transfer between short waves and large-scale flows in

a three dimensional Eulerian frame of reference (Hasselmann, 1971). It is found that

the wave effects on the mean flow can be described by an interaction stress tensor in

momentum T intij = −(u′iu
′
j + δijp

w) and a mass transfer at surface Mα =
∫ ζ+ζ′
ζ

uαdz. u′i

is wave orbital velocity. Operator ( ) is the wave average, pw is the wave contribution

to mean pressure field, ζ is the mean surface and ζ ′ is wave-induced instantaneous sur-

face. The mass transfer Mα is the Stokes transport Qst over the entire water column.

The depth integration of the interaction stress T intij is related but not equal to radiation

stress considered by Longuet-Higgins and Stewart (1960, 1964). The radiation stress

enters in the overall momentum balance consisting of both the mean motion and wave

field. The interaction stress describes the momentum transfer from wave field to mean

flow.

Later in the study by Newberger and Allen (2007a), the Eulerian analysis of the

wave-averaged forces on three dimensional mean circulation in the surf zone is discussed

and indicates that wave forces on the mean flow consist of a depth-dependent body
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force and a surface stress caused by wave breaking. The body force is given by

F b
x = −1

2

∂

∂X
(
E

H
) +

Eky
σ0H

(
∂V̄

∂X
− ∂Ū

∂Y
+ f0) (1.7)

F b
y = −1

2

∂

∂Y
(
E

H
)− Ekx

σ0H
(
∂V̄

∂X
− ∂Ū

∂Y
+ f0) (1.8)

where ∂/∂X, ∂/∂Y are the spatial gradient and current velocity Ū and V̄ are assumed

to be depth-independent in shallow water (surf zone). f0 is Coriolis force. The first

term in (1.7) and (1.8) represents the gradient of total wave energy. The second term

is related to the vortex force. The surface stress terms are proportional to wave energy

dissipation Bb, which is the main driving force to mean flow. The formulation is

applied to the extended Princeton Ocean Model (POM) to predict mean circulation

in the surf zone using the DUCK94 experiment (Newberger and Allen, 2007b). In

addition, a σ coordinate-based theory is introduced by deriving the depth-dependent

radiation stress in mean flow momentum equation (Mellor, 2003). The author assumes

monochromatic linear wave solutions and takes wave-average of the three dimensional

flow momentum equation without depth integration. The resulting equation separates

the wave-averaged forces from mean flow. The depth-dependent radiation stress terms

(Sαβ, s̃αp̃) are given by

Sαβ = kHE[
kαkβ
k2

FCSFCC + δαβ(FCSFCC − FSSFCS] (1.9)

s̃αp̃ = (FCC − FSS)E1/2 ∂

∂xα
(E1/2FSS) (1.10)

where

s̃α =
∂s̃

∂xα
s̃ = aFSS cosφ

FSS =
sinh kH(1 + ζ)

sinhKH

FCS =
cosh kH(1 + ζ)

sinhKH

FSC =
sinh kH(1 + ζ)

coshKH

FCC =
cosh kH(1 + ζ)

coshKH
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a is wave amplitude and φ is wave phase function. The term s̃αp̃ is an additional

radiation stress term that vertically integrates to zero. The term Sαβ, after depth in-

tegration, is identical to the original definition (Longuet-Higgins and Stewart, 1961).

The formulation is then applied to the wave-current interaction model, in which the

ocean circulation model (USGS/ROMS) provides sea surface elevation, water depth

and current velocity to the wave model (SWAN) while the wave model (SWAN) re-

turns bulk wave properties to the ocean circulation model (USGS/ROMS) to calculate

depth dependent radiation stress (Warner et al., 2008). Nevertheless, it is pointed out

that the formulation is problematic in a simple test case of shoaling waves because of

its inappropriate treatment of pressure terms in the radiation stress (Ardhuin et al.,

2008a). Instead, a generalized Lagrangian mean (GLM) theory of the current-wave-

turbulence combined three dimensional equation is provided by Ardhuin et al. (2008b).

It applies GLM average to the Reynolds-average Navier-Stokes equations. The mean

flow is allowed to have weak curvature in the vertical profile. The depth-weighted

current of Kirby and Chen (1989) is used to get linear wave intrinsic frequency. The

resulting wave force consists of a depth-uniform, wave-induced kinematic pressure term

SJ and a shear-induced pressure term Sshear. In response, a revised form of the radi-

ation stress in the Cartesian coordinates is provided by Mellor (2005, 2008). Mellor

(2015) combines the derivation of both vertically integrated and vertically dependent

radiation stress for consistency of theory. The formulation is adopted in the COAWST

model for surf zone and rip-current applications (Kumar et al., 2011). Several test

cases including longshore current and rip-current are performed and compared with

observations to evaluate the depth dependent radiation stress, which remains to be

controversial.

The vortex force formalism has been widely accepted as a dominant mechanism

for generating Langmuir circulation. The formalism has more recently been applied

to improve the description of wave-current interaction in ocean circulation models.

A multi-scale asymptotic theory of wave-current interaction using the vortex force

formulation is developed in coastal region (McWilliams et al., 2004). Both infragravity
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waves (long waves) and surface gravity waves riding on large scale weak current are

considered and separated by using a multi-scale asymptotic expansion. For the surface

gravity wave equations, a WKB representation is applied to get linear wave solution.

Then, the Fredholm Alternative theorem is used to get the wave action equation. The

slow variation of short waves in time and space appears in long wave and mean flow

equations as a wave-averaged force. The vortex force (J, K) are given by

J = −ẑ× qSt(χc + f)− wSt∂qc

∂z
(1.11)

K = qSt · ∂qc

∂z
(1.12)

where qSt is horizontal Stokes drift velocity. wSt is vertical Stokes drift velocity. qc is

horizontal mean flow velocity. χc is the vertical vorticity of mean flow. The currents

considered in the problem are too weak in comparison to wave phase speed to affect

the wave action equation at leading order, which means that waves can not feel the

current at leading order. Later the vortex force formalism is compared with the depth-

dependent radiation stress in coastal waters (Lane et al., 2007). It is suggested that

the vortex force formalism gives a clean decomposition of the physics. The Bernoulli

head is the pressure adjustment due to wave setup related effects. The vortex force is

the combined effects of Stokes drift and current vorticity. In comparison, the radiation

stress lacks of meaningful physical decomposition. Meanwhile, Mellor (2016) compares

both radiation stress and vortex force formulations and argues in favor of the radiation

stress theory. The vortex force formalism is later implemented in surf zone circulation

model in computing the effects of waves on currents (Uchiyama et al., 2010; Kumar

et al., 2012).

Shi et al. (2006) formulate a Craik-Leibovich wave vortex force for a quasi-3D

circulation model. In the model, numerical consistency in using two different types of

wave forces (radiation stress and vortex force) are discussed. The model is validated

in rip currents simulation. Results suggest that the Craik-Leibovich vortex force for-

mulation gives a closer result than the radiation stress formulation. The paper also

indicates that a tight model coupling plays a key role in the wave-current interaction.

12



1.3 Outline of the Thesis

In the dissertation, we first present a new framework to describe the wave-

current interaction for arbitrarily sheared current. Following McWilliams et al. (2004),

we consider motions which consist of superposition of small amplitude surface gravity

waves and a spatially and temporally slowly-varying current. In Chapter 2, the multiple

scale expansion and wave-averaging method are implemented to separate wave and

mean flow effects at different orders. Both momentum equations and vorticity equations

are examined in this chapter. In Chapter 3, we focus on the wave dynamics. The wave

Rayleigh equation is solved using both numerical solutions and perturbation solutions

up to the second order. As a special case, the constantly sheared current is adopted to

provide analytical wave solutions and validate the perturbation method and numerical

solver. The leading order wave velocity and vorticity are then discussed for constantly

sheared current. Measured current profiles at the mouth of the Columbia River (MCR)

are used to test the perturbation solutions. Additionally, the wave action equation for

the arbitrarily sheared current profile is derived and compared with Voronovich (1976).

The wave action equation is then simplified for the case of constant shear and compared

with Jonsson et al. (1978). The wave action and absolute group velocity are also

discussed using both numerical and perturbation solutions. In Chapter 4, equations

for mean flow dynamics with wave-averaged forces are presented. The resulting vortex

force formulation is compared with McWilliams et al. (2004) for constantly sheared

current. The wave-averaged forces based on perturbation solutions are provided for

later numerical application. In Chapter 5, the vortex force formulations from both

Uchiyama et al. (2010) and the present theory are implemented in NHWAVE/SWAN

coupled model (NHWAV E thereafter). The NHWAV E model is then applied to two

test cases: 1) Obliquely incident waves on a sloping beach. 2) wave-current interaction

at the mouth of Columbia River (MCR). In Chapter 6, the vortex force formulation

is used to simulate the formation of Langmuir circulation in an ideal computational

domain. Results are discussed and compared with Tejada-Martinez and Grosch (2007).

The conclusions of this study are presented in Chatper 7.
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Chapter 2

MULTIPLE-SCALE EXPANSION OF GOVERNING EQUATIONS

In this chapter, we separate wave motions and current using a multiple-scale

expansion. We start with the Euler equations and decompose the motion into wave and

current components. The current is treated as slowly varying motion with longer scales

in time and space compared to waves. Thus mean flow dynamics can be separated from

wave dynamics according to different scales. Following Phillips (1966), any variables

such as velocity, pressure, surface elevation and vorticity can be separated into waves

and current. We take φ for example. φ can be written as the superposition of currents

and waves.

φ = φc + φw (2.1)

where φc represents mean flow variable and φw represents the wave variable. The

mean flow is separated from oscillatory flows by applying wave-average ′′ < · >′′ to the

variable in Eulerian framework, which is defined as the average over the wave phase.

< · >=
k0

2π

∫ 2π
k0

0

· dx =
ω0

2π

∫ 2π
ω0

0

· dt (2.2)

Mean flow variables remain while the oscillatory variables are assumed to be removed

after wave-averaging. This is an Eulerian mean method.

< φc >= φc (2.3)

< φw >= 0 (2.4)

The linear wave solution can induce other harmonics of oscillation due to nonlinearity.

We apply the WKB representation to the wave motion to include the these harmon-

ics. In general, we expand all dependent variables in multiple scales. The Eulerian

equations are then sorted into mean flow equations and wave equations.
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2.1 Governing Equations

We consider incompressible, inviscid flow governed by the Euler equations.

Due to current vertical shear, wave motions are not typically irrotational. A tur-

bulence model and stratification effects can be added to our formulation later, follow

McWilliams et al. (2004). We separate our problem into horizontal and vertical direc-

tions by defining the coordinates (x, y, z, t) = (x, z, t), velocity u = (u, v, w) = q +wiz

and gradient vector ∇ = (∂/∂x, ∂/∂y, ∂/∂z) = (∇h, ∂/∂z). We use p for pressure, h

for still water depth and η for instantaneous water surface elevation. The governing

equations and boundary conditions are given by

∂u

∂t
+ u·∇u +

1

ρ
∇p+ giz = 0 − h ≤ z ≤ η (2.5)

∇·u = 0; −h ≤ z ≤ η (2.6)

w = −q·∇hh; z = −h (2.7)

w =
∂η

∂t
+ q·∇hη; z = η (2.8)

p = 0; z = η (2.9)

The curl of the momentum equation leads to a vorticity equation, which is used to

describe the motion’s vorticity dynamics.

∂Ω

∂t
+ (u·∇)Ω = (Ω·∇)u; −h ≤ z ≤ η (2.10)

where vorticity is defined by Ω = ∇ × u, and may be written in terms of horizontal

and vertical components as (ξ, χ). In our problem, the motion consists of strong

mean flows with long wave contributions and narrow-banded surface gravity waves.

Weakly nonlinear surface gravity waves have small surface slope so that parameter

ε = k0a0 � 1, where k0 is a representative wave number. And a is a representative

wave amplitude. All the scaling in our problem is done based on parameter ε. The

oscillatory wave motion is described using complex function eiΘ = cos Θ+i sin Θ, where

Θ(x, t) is the wave phase function, with wave number and absolute frequency defined

by

k(x, t) =∇hΘ(x, t)
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ω(x, t) = −∂Θ

∂t
(x, t)

k and ω are assumed to be slowly varying over horizontal and temporal scales. Wave

number conservation is given by cross-differentiating Θ to obtain

∂k

∂t
+∇hω = 0 (2.11)

2.2 Wave-averaged Forces

To begin with, we make our problem non-dimensional by introducing a set of

characteristic scales. We normalize horizontal distance x and y by the characteristic

wave length scale k−1
0 , vertical distance z and surface elevation η by water depth h0,

time coordinate t by wave period ω−1
0 , horizontal velocity q by wave phase speed

c0 = ω0/k0, vertical velocity w by µc0 with µ = k0h0 ∼ O(1) for consistency, and

pressure p by ρgh0.

With strong current and strong shear assumption, the current velocity can reach

the same magnitude as the wave phase speed, |uc|/c0 ∼ O(1). The current vertical

shear is comparable to absolute wave frequency, |∂uc/∂z|/ω0 ∼ O(1). The wave ampli-

tude is assumed to be far less than wave length, or a0k0 = ε� 1. The non-dimensional

wave variables are of order O(ε).

If we divide the motions into waves and current in the momentum equation and

apply wave-averaging, we get the momentum equation for the mean flow alone, given

by

∂uc

∂t
+ uc·∇uc +

1

ρ
∇pc + giz = −ε2 < uw·∇uw >; −h ≤ z ≤ η (2.12)

The RHS term − < uw·∇uw > is the wave-averaged force. It can be interpreted

either in terms of the radiation stress formalism or the C-L vortex force formalism.

In this study, we adopt the vortex force formalism since it gives a clearer physical

interpretation of the problem. Considering the relation u·∇u =∇(u·u)/2−u× (∇×

u), we define

κ = ε2 <
1

2
(uw·uw) > (2.13)

(J, K) = ε2 < uw × (∇× uw) > (2.14)
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where κ is Bernoulli head and (J, K) are vortex forces in horizontal and vertical direc-

tions, respectively. Therefore, the RHS term − < uw·∇uw >= −ε2(∇κ + J + Kiz).

The body force is the combination of Bernoulli head gradient ∇κ and vortex force

(J, K). The Bernoulli head gradient represents the wave-induced effects associated

with wave set down. The vortex force represents wave refraction caused by the current

field.

2.3 Linear Wave Problem in Two Horizontal Dimensions

Due to the retention of arbitrarily large shear in the formulation, the leading

order problem for wave motion will not be covered by the usual theory for irrotational

waves on a depth-uniform flow. Instead, the wave problem is described by a formulation

analogous to the Rayleigh stability equation, extended to allow for possible veering of

the horizontal component of the current vector with depth. A preliminary description

of the resulting system for the spatially uniform case is provided here. We consider

a current field which is constant in time and horizontal coordinates at leading order

but arbitrary in vertical direction z. We divide the velocity vector u = (q, w) into a

steady current component uc and wave component uw, where uc(z) = (qc(z), 0) and qc

is horizontal current velocity, and uw = (qw, ww) is wave orbital velocity. By applying

wave-averaging and linearizing boundary conditions after expansion about mean water

level ηc = 0, we obtain the equations governing wave motion

∂qw

∂t
+ qc·∇hq

w +
∂qc

∂z
ww +

1

ρ
∇hp

w = 0; −h ≤ z ≤ 0 (2.15)

∂ww

∂t
+ qc·∇hw

w +
1

ρ

∂pw

∂z
= 0; −h ≤ z ≤ 0 (2.16)

∇h· qw +
∂ww

∂z
= 0; −h ≤ z ≤ 0 (2.17)

ww = 0; z = −h (2.18)

ww =
∂ηw

∂t
+ qc·∇hη

w; z = 0 (2.19)

pw = ρgηw; z = 0 (2.20)
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We seek solutions in the form of plane periodic waves. Let

qw = q̂(z)eiΘ + c.c.

ww = ŵ(z)eiΘ + c.c.

ηw = aeiΘ + c.c.

pw = p̂(z)eiΘ + c.c.

where c.c. represents the complex conjugate. Using these definitions in Equation (2.15)

- (2.20) and choosing ŵ as the dependent variable leads to a Rayleigh equation describ-

ing the vertical structure of ŵ together with surface and bottom boundary conditions

σw
∂2ŵ

∂z2
− (σwk

2 +
∂2σw
∂z2

)ŵ = 0; −h ≤ z ≤ 0 (2.21)

ŵ = 0; z = −h (2.22)

σ2
s

∂ŵ

∂z
− (σs

∂σw
∂z

+ gk2)ŵ = 0; z = 0 (2.23)

σw(z) = ω − k·qc(z) (2.24)

where σs = σw(0), the intrinsic frequency at mean water surface level. Equations (2.21)

- (2.24) provide the basic linear boundary value problem for waves on a horizontally

uniform, vertically sheared mean flow. As is the case for flows in one horizontal dimen-

sion, analytic solutions for this problem in simple, closed form are rare; see Peregrine

(1975) for a review. Solutions in the case of weak shear may be obtained using a per-

turbation approach described in Kirby and Chen (1989). For the general case, series

solutions have been obtained by He (1988) and Shrira (1993), or numerical solutions

may be obtained using a shooting method due to Fenton (1973) and Dong and Kirby

(2012). In Chapter 3, we will look for the numerical solutions using Dong and Kirby

(2012) method.

2.4 Multiple-scale Approach

In most cases, the spatial and temporal scales of variations of the current and

of average properties of the wave field are much larger than the period and wavelength
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of individual waves. Thus the scales of wave and current variations may be treated

separately. We introduce multiple-scale format in horizontal scale x and temporal scale

t to describe the general modulations of variables,

x = x + εx = x + X (2.25)

t = t+ εt = t+ T (2.26)

We assume that motions contain both fast scale and slow scale variations. The fast

scales denoted by (x, z, t) are used to describe local wave-like behavior as well as vertical

variation, while slow scales are used to illustrate the slowly varying features of the mean

flow as well as properties of narrow-banded wave trains in horizontal space and time

denoted by (X, T ). The topography is also assumed to vary slowly in horizontal space

as h = h(X). In addition to the general multiple-scale approach, we apply a WKB

theory to wave motions to facilitate the isolation of problems at each order (n) for each

harmonic frequency (m) as shown below, where n denotes ordering in ε and m denotes

the harmonic number. We expand the variable φ, for instance, as

φ =
∞∑
n=0

εnφn(x, z, t,X, T )

=
∞∑
n=0

εn
n∑

m=−n

φn,m(z,X, T )Em (2.27)

where E = eiΘ. We require φn,−m = φ∗n,m, where φ is any physical variable and ∗

denotes complex conjugation (c.c. thereafter), in order to obtain real-valued physical

quantities. Specifically, the mean flow is represented by terms with m = 0, while linear

waves are represented by m = 1. Quadratic waves appear in terms with m = 2 plus

slow-scale derivatives of linear wave terms. We note that wave terms with Em(m 6= 0)

are formally removed by wave-averaging. It is thus easy to identify current terms and
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waves terms in the expansion. According to

φc =
∞∑
n=0

εnφn,0 = φ0,0(X, z, T ) + εφ1,0(X, z, T ) + ε2φ2,0(X, z, T ) + · · · (2.28)

φw =
∑
n

∑
m6=0

εnφn,mE
m

= ε[φ1,1(X, z, T )E + c.c.] + ε2[φ2,1(X, z, T )E + φ2,2(X, z, T )E2 + c.c.] + · · ·

(2.29)

Therefore, we expand all variables as follows

q

w

η

p

ξ

χ


=
∞∑
n=0

εn



qn

wn

ηn

pn

ξn

χn


=
∞∑
n=0

εn
n∑

m=−n



qnm(X, z, T )

wnm(X, z, T )

ηnm(X, T )

pnm(X, z, T )

ξnm(X, z, T )

χnm(X, z, T )


Em (2.30)

We adopt ε = ka as the only scaling parameter in our problem. The instantaneous

surface elevation η(x, t) consists of the wave-averaged component ηc(X, T ) and the

oscillatory component ηw(x, t,X, T ).

η = ηc + ηw (2.31)

The total mean water depth seen by waves is h + ηc, hence we expand the surface

boundary conditions in Taylor series about the slowly varying water surface level z = ηc,

which is consistent with subsequent use of the theory in numerical models.

(·)z=η = (·)z=ηc + ηw
∂

∂z
(·)z=ηc +

ηw2

2

∂2

∂z2
(·)z=ηc +O(ε3) (2.32)

In addition, both fast and slow scale variations are involved in our problem. To

simplify it, we use the relation between fast and slow scale coordinates x = X/ε, t = T/ε

and substitute for fast scale coordinates using slow scale coordinates. The horizontal

slow scale gradient is defined as ∇H . The local slow scale derivative is defined as
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∂/∂T . The phase function then becomes Θ(x, t) = Θ(X, T )/ε, and wave number and

frequency are defined as

k =∇hΘ(x, t) = ε∇H [
1

ε
Θ(X, T )] = O(1)

ω =
∂

∂t
Θ(x, t) = ε

∂

∂T
[
1

ε
Θ(X, T )] = O(1)

The governing equations are given with surface boundary conditions expanded at z = ηc

ε
∂q

∂T
+ ε(q·∇H)q + w

∂q

∂z
+
ε

ρ
∇Hp = 0; −h ≤ z ≤ ηc (2.33)

ε
∂w

∂T
+ ε(q·∇H)w + w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = 0; −h ≤ z ≤ ηc (2.34)

ε∇H·q +
∂w

∂z
= 0; −h ≤ z ≤ ηc (2.35)

w = −εq·∇Hh; z = −h (2.36)

p+ εηw
∂p

∂z
+
ε2ηw2

2

∂2p

∂z2
+
ε3ηw3

6

∂3p

∂z3
= O(ε4); z = ηc (2.37)

w + εηw
∂w

∂z
+
ε2ηw2

2

∂2w

∂z2
+
ε3ηw3

6

∂3w

∂z3
= ε

∂η

∂T
+ ε(q + εηw

∂q

∂z
+
ε2ηw2

2

∂2q

∂z2
)·∇Hη

+ O(ε4); z = ηc (2.38)

2.4.1 Multiple scale expansion of momentum equation and boundary con-

ditions

So far we have the full boundary value problem. Equation (2.13) and (2.14)

indicate that the major part of wave-averaged forces are up to O(ε3). Thus, we are

going to expand the governing equations and boundary conditions in multiple scales up

to O(ε3). We only give wave equations up to O(ε2), since higher order wave solutions

are not necessary to get the vortex force formulation in our problem. The expanded

equations without further simplification follow:
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Horizontal momentum equation:

∂q0,0

∂z
wn,m − imσwqn,m +

imk

ρ
pn,m = Mn,m; −h ≤ z ≤ ηc (2.39)

where,

M0,0 = 0

M1,0 = −[
∂q0,0

∂T
+ q0,0·∇Hq0,0 +

1

ρ
∇Hp0,0]

M2,0 = −[
∂q1,0

∂T
+ q0,0·∇Hq1,0 +

1

ρ
∇Hp1,0 + q1,0·∇Hq0,0 + w1,0

∂q1,0

∂z

+w1,1
∂q1,−1

∂z
+ w1,−1

∂q1,1

∂z
+ i(q1,−1·k)q1,1 − i(q1,1·k)q1,−1]

M3,0 = −{∂q2,0

∂T
+ q0,0·∇Hq2,0 + q1,0·∇Hq1,0 + q2,0·∇Hq0,0

+w1,0
∂q2,0

∂z
+ w2,0

∂q1,0

∂z
+

1

ρ
∇Hp2,0 + (q1,1·∇Hq1,−1 + q1,−1·∇Hq1,1)

+[−i(k·q1,1)q2,−1 + i(k·q1,−1)q2,1 − i(k·q2,1)q1,−1 + i(k·q2,−1)q1,1]

+w1,1
∂q2,−1

∂z
+ w1,−1

∂q2,1

∂z
+ w2,1

∂q1,−1

∂z
+ w2,−1

∂q1,1

∂z
}

M1,1 = 0

M2,1 = −[
∂q1,1

∂T
+ q0,0·∇Hq1,1 +

1

ρ
∇Hp1,1 + i(k·q1,0)q1,1 + q1,1·∇Hq0,0

+w1,0
∂q1,1

∂z
+ w1,1

∂q1,0

∂z
]

M2,2 = −[i(k·q1,1)q1,1 + w1,1
∂q1,1

∂z
]
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Vertical momentum equation:

−imσwwn,m +
1

ρ

∂pn,m
∂z

= Nn,m; −h ≤ z ≤ ηc (2.40)

where,

N0,0 = −g

N1,0 = 0

N2,0 = −[
∂w1,0

∂T
+ q0,0·∇Hw1,0 + w1,0

∂w1,0

∂z
+
∂w1,1w1,−1

∂z

−i(q1,1·k)w1,−1 + i(q1,−1·k)w1,1]

N3,0 = −[
∂w2,0

∂T
+ q0,0·∇Hw2,0 +

∂w1,0w2,0

∂z
+ q1,0·∇Hw1,0

+(q1,1·∇Hw1,−1 + q1,−1·∇Hw1,1) + ik·(−q1,1w2,−1 + q1,−1w2,1)

+ik·(−q2,1w1,−1 + q2,−1w1,1) +
∂w1,1w2,−1

∂z
+
∂w1,−1w2,1

∂z
]

N1,1 = 0

N2,1 = −[
∂w1,1

∂T
+ q0,0·∇Hw1,1 + i(k·q1,0)w1,1 +

∂w1,0w1,1

∂z
]

N2,2 = −[i(k·q1,1)w1,1 + w1,1
∂w1,1

∂z
]
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Continuity equation:

∂wn,m
∂z

+ imk·qn,m = Fn,m; −h ≤ z ≤ ηc (2.41)

where,

F0,0 = 0

F1,0 = −∇H·q0,0

F2,0 = −∇H·q1,0

F3,0 = −∇H·q2,0

F1,1 = 0

F2,1 = −∇H·q1,1

F2,2 = 0

Bottom boundary condition:

wn,m = Bn,m; z = −h (2.42)

where,

B0,0 = 0

B1,0 = −q0,0·∇Hh

B2,0 = −q1,0·∇Hh

B3,0 = −q2,0·∇Hh

B1,1 = 0

B2,1 = −q1,1·∇Hh

B2,2 = 0
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Kinematic surface boundary condition:

wn,m + imσwηn,m = Hn,m; z = ηc (2.43)

where,

H0,0 = 0

H1,0 =
∂η0,0

∂T
+ q0,0·∇Hη0,0

H2,0 =
∂η1,0

∂T
+ q0,0·∇Hη1,0 + q1,0·∇Hη0,0

+i(k·q1,−1)η1,1 − i(k·q1,1)η1,−1 − η1,1
∂w1,−1

∂z
− η1,−1

∂w1,1

∂z

H3,0 =
∂η2,0

∂T
+ q0,0·∇Hη2,0 + q2,0·∇Hη0,0 + q1,0·∇Hη1,0

+q1,1·∇Hη1−1 + q1−1·∇Hη1,1

+(η1,1
∂q1,−1

∂z
+ η1,−1

∂q1,−1

∂z
)·∇Hη0,0

+
∂q0,0

∂z
·(η11∇Hη1,−1 + η1,−1∇Hη1,1)

−η1,1η1,−1(
∂2w1,0

∂z2
− ∂2q0,0

∂z2
·∇Hη0,0)

+ik·(−q1,1η2,−1 + q1,−1η2,1) + ik·(−q2,1η1,−1 + q2,−1η1,1)

−(η1,1
∂w2,−1

∂z
+ η1,−1

∂w2,1

∂z
+ η2,1

∂w1,−1

∂z
+ η2,−1

∂w1,1

∂z
)

H1,1 = 0

H2,1 =
∂η1,1

∂T
+ q0,0·∇Hη1,1 + q1,1·∇Hη0,0 + η1,1

∂q0,0

∂z
·∇Hη0,0

+i(k·q1,0)η1,1 − η1,1
∂w1,0

∂z

H2,2 = i(k · q1,1)η1,1 − η1,1
∂w1,1

∂z
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Dynamic surface boundary condition:

pn,m = Sn,m; z = ηc (2.44)

where,

S0,0 = 0

S1,0 = 0

S2,0 = −(η1,1
∂p1,−1

∂z
+ η1,−1

∂p1,1

∂z
)

S3,0 = (η1,1
∂p2,−1

∂z
+ η1,−1

∂p2,1

∂z
+ η2,1

∂p1,−1

∂z
+ η2,−1

∂p1,1

∂z
)]

S1,1 = −η1,1
∂p0,0

∂z

S2,1 = −(η2,1
∂p0,0

∂z
+ η1,1

∂p1,0

∂z
)

S2,2 = −(η2,2
∂p0,0

∂z
+ η1,1

∂p1,1

∂z
)

2.4.2 Multiple scale expansion of vorticity equations

The vorticity equation is also expanded in multiple scales. First, we rewrite

Equation (2.10)
∂Ω

∂t
+ (u·∇)Ω = (Ω·∇)u; −h ≤ z ≤ η (2.45)

Letting Ω = ξ+χiz and considering slow scales, the vorticity equation can be rewritten

in horizontal and vertical directions respectively as

ε
∂ξ

∂T
= −ε(q·∇H)ξ + ε(ξ·∇H)q− w∂ξ

∂z
+ χ

∂q

∂z
(2.46)

ε
∂χ

∂T
= −ε(q·∇H)χ+ ε(ξ·∇H)w − w∂χ

∂z
+ χ

∂w

∂z
(2.47)

The expanded vorticity equations are given as follows.
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Horizontal vorticity equation:

∂q0,0

∂z
χn,m − wn,m

∂ξ0,0

∂z
+ im[σwξn,m + (k · ξ0,0)qn,m] = On,m; −h ≤ z ≤ ηc (2.48)

where,

O0,0 = 0

O1,0 =
∂ξ0,0

∂T
+ q0,0·∇Hξ0,0 − ξ0,0·∇Hq0,0

O2,0 =
∂ξ1,0

∂T
+ q0,0·∇Hξ1,0 + q1,0·∇Hξ0,0

−ξ0,0·∇Hq1,0 − ξ1,0·∇Hq0,0 + w1,0

∂ξ1,0

∂z
− χ10

∂q1,0

∂z

+i(k·q1,−1)ξ1,1 − i(k·q1,1)ξ1,−1 + i(k·ξ1,1)q1,−1 − i(k·ξ1,−1)q1,1

+w1,1

∂ξ1,−1

∂z
+ w1,−1

∂ξ1,1

∂z
− χ1,1

∂q1,−1

∂z
− χ1,−1

∂q1,1

∂z

O3,0 =
∂ξ2,0

∂T
+ q0,0·∇Hξ2,0 + w1,0

∂ξ2,0

∂z
− ξ2,0·∇Hq0,0

+(q1,0·∇Hξ1,0 − ξ1,0·∇Hq1,0) + (q2,0·∇Hξ0,0 − ξ0,0·∇Hq2,0)

+(w2,0

∂ξ1,0

∂z
− χ1,0

∂q2,0

∂z
− χ2,0

∂q1,0

∂z
)

+(q1,1·∇Hξ1,−1 + q1,−1·∇Hξ1,1 − ξ1,1·∇Hq1,−1 − ξ1,−1·∇Hq1,1)

+[−i(k·q2,1)ξ1,−1 + i(k·q2,−1)ξ1,1 − i(k·q1,1)ξ2,−1 + i(k·q1,−1)ξ2,1]

−[−i(k · ξ11)q2−1 + i(k · ξ1−1)q21 − i(k · ξ21)q1−1 + i(k · ξ2−1)q11]

+(w1,1

∂ξ2,−1

∂z
+ w1,−1

∂ξ2,1

∂z
+ w2,1

∂ξ1,−1

∂z
+ w2,−1

∂ξ1,1

∂z
)

−(χ1,1
∂q2,−1

∂z
+ χ1,−1

∂q2,1

∂z
+ χ2,1

∂q1,−1

∂z
+ χ2,−1

∂q1,1

∂z
)

O1,1 = 0

O2,1 =
∂ξ1,1

∂T
+ q0,0·∇Hξ1,1 + i(k·q1,0)ξ1,1 + q1,1·∇Hξ0,0

−ξ0,0·∇Hq1,1 − i(ξ1,0·k)q1,1 − ξ1,1·∇Hq0,0 + w11

∂ξ1,0

∂z

−χ1,0
∂q1,1

∂z
+ w1,0

∂ξ1,1

∂z
− χ1,1

∂q1,0

∂z

O2,2 = i(q1,1·k)ξ1,1 − i(ξ1,1·k)q1,1 + w1,1

∂ξ1,−1

∂z
− χ1,1

∂q1,−1

∂z
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Vertical vorticity equation:

im[σwχn,m + (ξ0,0·k)wn,m] = Pn,m; −h ≤ z ≤ ηc (2.49)

where,

P0,0 = 0

P1,0 = 0

P2,0 =
∂χ1,0

∂T
+ q0,0·∇Hχ1,0 − ξ0,0·∇Hw1,0 + w1,0

∂χ1,0

∂z
− χ1,0

∂w1,0

∂z

+i(k·q1,−1)χ1,1 − i(k·q1,1)χ1,−1 + i(k·ξ1,1)w1,−1 − i(k·ξ1,−1)w1,1

+w1,−1
∂χ1,1

∂z
+ w1,1

∂χ1,−1

∂z
− χ1,1

∂w1,−1

∂z
− χ1,−1

∂w1,1

∂z

P3,0 =
∂χ2,0

∂T
+ q0,0·∇Hχ2,0 + w1,0

∂χ2,0

∂z

+(q1,0·∇Hχ1,0 − ξ1,0·∇Hw1,0)− ξ00·∇Hw2,0

+(w2,0
∂χ1,0

∂z
− χ1,0

∂w2,0

∂z
− χ2,0

∂w1,0

∂z
)

+(q1,1·∇Hχ1,−1 + q1,−1·∇Hχ1,1 − ξ1,1·∇Hw1,−1 − ξ1,−1·∇Hw1,1)

+[−i(k·q2,1)χ1,−1 + i(k·q2,−1)χ1,1 − i(k·q1,1)χ2,−1 + i(k·q1,−1)χ2,1]

−[−i(k·ξ1,1)w2,−1 + i(k·ξ1,−1)w2,1 − i(k·ξ2,1)w1,−1 + i(k·ξ2,−1)w1,1]

+(w1,1
∂χ2,−1

∂z
+ w1,−1

∂χ2,1

∂z
+ w2,1

∂χ1,−1

∂z
+ w2,−1

∂χ1,1

∂z
)

−(χ1,1
∂w2,−1

∂z
+ χ1,−1

∂w2,1

∂z
+ χ2,1

∂w1,1

∂z
+ χ2,−1

∂w1,1

∂z
)

P1,1 = 0

P2,1 =
∂χ1,1

∂T
+ q0,0·∇Hχ1,1 + iq1,0·kχ1,1 − ξ0,0·∇Hw1,1 − i(ξ1,0·k)w1,1

+w1,1
∂χ1,0

∂z
+ w1,0

∂χ1,1

∂z
− χ10

∂w1,1

∂z
− χ1,1

∂w1,0

∂z

P2,2 = i(q1,1·k)χ1,1 − i(ξ1,1·k)w1,1 + w1,1
∂χ1,1

∂z
− χ1,1

∂w1,1

∂z
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The expressions for current vorticity components (m = 0) in terms of velocities

are given as

O(1) :

ξ0,0 = iz ×
∂q0,0

∂z
(2.50)

χ0,0 = 0 (2.51)

O(ε) :

ξ1,0 = iz ×
∂q1,0

∂z
(2.52)

χ1,0 = iz·(∇H × q0,0) (2.53)

O(ε2) :

ξ2,0 = iz ×
∂q2,0

∂z
+∇Hw1,0 × iz (2.54)

χ2,0 = iz·(∇H × q1,0) (2.55)

The expressions of wave vorticity components for (m 6= 0) in terms of velocities are

given by

O(ε) :

χ1,1 = −
(ξ0,0·k)w1,1

σw
(2.56)

ξ1,1 = −i[∂q0,0

∂z

w1,1(ξ0,0·k)

σ2
w

+
∂ξ0,0

∂z

w1,1

σw
]−

(ξ0,0·k)q1,1

σw
(2.57)

O(ε2) :

χ2,1 = −iP2,1

σw
−

(ξ0,0·k)w2,1

σw
(2.58)

ξ2,1 = −i[O2,1

σw
+ i

∂q0,0

∂z

P2,1

σ2
w

+
∂q0,0

∂z

w2,1(ξ0,0·k)

σ2
w

+
∂ξ0,0

∂z

w2,1

σw
]

−
(ξ0,0·k)q2,1

σw
(2.59)

So far, we have expanded equations in multiple scales. All terms that contain

products φ1,1φ1,−1, φ2,1φ1,−1, φ1,1φ2,−1 etc., represent contributions of wave terms to the

wave-averaged equations such as radiation stresses, dynamic set-up or set-down, etc..

In the next two chapters, we will examine wave dynamics and mean flow dynamics.
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Chapter 3

WAVE DYNAMICS

In this chapter, we present wave equations and wave solutions up to O(ε2). With

the strongly sheared mean flow assumption, terms related to the current vertical shear

appear in wave equations. Waves are described by the Rayleigh stability equation

after manipulation. For arbitrary current shear, series solutions have been obtained

by He (1998) and Shrira (1993). Meanwhile, the perturbation solutions based on weak

current assumption are provided by Stewart and Joy (1974) and Kirby and Chen (1989).

Numerical and perturbation wave solutions are compared for specific current profiles.

The constant shear current is adopted to provide analytical wave solutions for validation

of numerical and perturbation solutions. Current velocity profiles measured at the

mouth of Columbia River (MCR) are also used to compare numerical and perturbation

solutions. Wave vorticity is described. The wave orbital velocity and wave vorticity

are required to calculate wave-averaged forces. Additionally, the solvability condition

at O(ε2) for the wave problem leads to the wave action conservation equation, which

provides the governing equation for wave models including strong current shear effects.

3.1 First-order Wave Motions

The leading order wave equations are given by (n = 1,m = ±1) terms in the

expansion. As we can see, current vertical shear appears in wave momentum equation,
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which generates wave vorticity.

∂q0,0

∂z
w1,1 − iσwq1,1 +

ik

ρ
p1,1 = 0; −h ≤ z ≤ ηc (3.1)

−iσww1,1 +
1

ρ

∂p1,1

∂z
= 0; −h ≤ z ≤ ηc (3.2)

∂w1,1

∂z
+ ik·q1,1 = 0; −h ≤ z ≤ ηc (3.3)

w1,1 = 0; z = −h (3.4)

w1,1 = −iσsη1,1; z = ηc (3.5)

p1,1 = −η1,1
∂p0,0

∂z
; z = ηc (3.6)

To get the Rayleigh (or inviscid Orr-Sommerfeld) stability equation, we multiply Equa-

tion (3.1) by k and take its vertical derivative ∂/∂z. After combining (3.2) - (3.6), we

have the Rayleigh equation for the vertical component of wave velocity w1,1, given by

σw
∂2w1,1

∂z2
− (

∂2σw
∂z2

+ k2σw)w1,1 = C1,1 = 0; −h ≤ z ≤ ηc (3.7)

with combined surface boundary condition

σ2
s

∂w1,1

∂z
− (σs

∂σw
∂z

+ gk2)w1,1 = D1,1 = 0; z = ηc (3.8)

and bottom boundary condition (3.4). σs is the wave intrinsic frequency at mean

surface. The horizontal orbital velocity amplitude q1,1 and pressure field amplitude

p1,1 are given in terms of w1,1 by

q1,1(z) = − i

σw
[w1,1

∂q0,0

∂z
− σ2

wk

k2

∂

∂z
(
w1,1

σw
)] (3.9)

p1,1(z) =
iρσ2

w

k2

∂

∂z
(
w1,1

σw
) (3.10)

3.1.1 Linear wave vorticity

The leading order wave vorticity amplitude is obtained from wave vorticity

equation expansion (n = 1,m = 1) in Equation (2.56) and (2.57).

χ1,1 = −
(k·ξ0,0)w1,1

σw
(3.11)

ξ1,1 = −i[∂q0,0

∂z

w1,1(k·ξ0,0)

σ2
w

+
∂ξ0,0

∂z

w1,1

σw
]−

(k·ξ0,0)q1,1

σw
(3.12)
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where χ1,1 is wave vertical vorticity amplitude and ξ1,1 is horizontal vorticity amplitude.

It is clear that wave vorticity is induced by current horizontal vorticity ξ0,0. The non-

divergence of wave vorticity ∇·Ω = 0 at (n = 1,m = 1) yields

ik·ξ1,1 +
∂χ1,1

∂z
= 0 (3.13)

which is used in mean flow dynamics in Chapter 4.

3.1.2 Wave vorticity for constant shear current

The constant shear current is usually adopted to illustrate current effects on

linear wave solutions. The linear wave solutions for constant shear current are given in

Appendix A.3. Constantin (2011) considers a constant shear flow beneath a irrotational

wave train and above a flat bed and suggests that the flow only allows exactly following

waves or opposing waves to exist. The flow vorticity has to be orthogonal to the wave

direction. In other words, irrotational oblique waves are prohibited in the flow field.

Now let’s consider a constant shear current

q0,0 = qs0,0 + Ωsz (3.14)

where qs0,0 is surface current velocity and Ωs = ∂q0,0/∂z is constant shear as seen

in Figure 3.1. If qs0,0 and Ωs are not co-directional, the current velocity rotates over

depth. The Ekman spiral is a good example of current velocity rotating with depth.

In Chapter 2, we have obtained the flow vorticity

ξ0,0 = iz ×
∂q0,0

∂z
(3.15)

For the constantly sheared flow, the vorticity then becomes

ξ0,0 = iz ×Ωs (3.16)

When the waves are exactly following or opposing the two-dimensional constantly

sheared flow, the wave number vector is orthogonal to the flow vorticity

k·ξ0,0 = 0 (3.17)
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Figure 3.1: Waves propagating over a constantly sheared current. Suppose the flow
q0,0 and shear Ωs is in x-direction on a flat bed. The angle between wave
direction and flow direction is θ. Results from Section 3.1.2 indicate that
the amplitude of wave vorticity is affected by the oblique angle θ and
current shear. When θ = 0 or θ = ±π, waves are either exactly following
the current or opposing the current. Wave vorticity is zero in this case.
For a fixed θ 6= 0,±π and vertical level z, wave vorticity increases as
current shear turns larger and decreases as current shear turns smaller.
For a fixed current shear, wave vorticity changes with oblique angle θ in
a more complicated way as in Equation (3.33) - (3.35).

And the wave vorticity reduces to zero. The wave is still irrotational in Constantin

(2011)’s case.

χ1,1 = 0 (3.18)

ξ1,1 = 0 (3.19)

Thus, Constantin (2011)’s theorem is only applicable to irrotational waves. Ellingsen

(2016) suggests that waves that propagate in all directions over a constantly sheared

flow may become rotational. When the wave direction has an angle with the flow,

it is associated with an undulating perturbation of the vorticity field. The so-called

undulating perturbation in the vorticity field is the wave vorticity discussed here. Now,
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let’s discuss the effect of oblique wave angle on wave vorticity. The linear wave solutions

on constant shear currents is given by

w1,1(z) = −iσsη1,1Fss (3.20)

q1,1(z) = −σsη1,1Ω
s

σ
Fss +

σsη1,1k

k2
(kFcs +

k·Ωs

σ
Fss) (3.21)

σs = ω − k·qs0,0 (3.22)

σw = σs − k·Ωsz (3.23)

Fss =
sinh k(h+ z)

sinh kh
(3.24)

Fcs =
cosh k(h+ z)

sinh kh
(3.25)

The wave vorticity is re-written in terms of wave amplitude η1,1 as

χ1,1 = i
(k·ξ0,0)σsη1,1Fss

σw
(3.26)

ξ1,1 = −
(k·ξ0,0)

σw
[
σsη1,1k

k2
(kFcs +

k·Ωs

σw
Fss)] (3.27)

The horizontal component of wave vorticity (ξ1,1) follows the wave direction. As shown

in Figure 3.1, the flow is considered in x-direction. The current shear and flow vorticity

are given as

Ωs = Ωsix (3.28)

ξ0,0 = Ωsiy (3.29)

The waves propagate over the flow at an angle θ, so that

k = k cos θix + k sin θiy (3.30)

k·ξ0,0 = kΩs sin θ (3.31)

k·Ωs = kΩs cos θ (3.32)
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The wave vorticity now becomes

χ1,1 = i
kΩsσsη1,1

σs − (kΩs cos θ)z
Fss sin θ (3.33)

ξx1,1 = − kΩsσsη1,1

σs − (kΩs cos θ)z
[Fcs sin θ cos θ +

Ωs

σs − (kΩs cos θ)z
Fss sin θ cos2 θ]

(3.34)

ξy1,1 = − kΩsσsη1,1

σs − (kΩs cos θ)z
[Fcs sin2 θ +

Ωs

σs − (kΩs cos θ)z
Fss sin2 θ cos θ] (3.35)

The wave vorticity decreases from water surface to bottom. For a fixed oblique angle

θ 6= 0 or ± π and vertical level z, wave vorticity increases as current shear becomes

larger and decreases as current shear becomes smaller. However, the relation between

wave vorticity and the oblique angle is more complicated. For following waves, the

wave angle varies within −π/2 ≤ θ ≤ π/2; for opposing waves, the wave angle varies

within π/2 ≤ θ ≤ 3π/2. To illustrate the effects of oblique angle on wave vorticity, we

consider waves with amplitude 2 m propagate on a constantly sheared flow with surface

velocity qs0,0 = 3.5 m/s. The water depth is set as H = 25 m. Assuming that current

velocity drops to zero at the bottom, the current vertical shear is calculated as Ωs =

qs0,0/H = 0.14 s−1. We vary the oblique wave angle for both following and opposing

currents. The effects of wave length are also including by considering intermediate

water waves (kh = 1) and shallow water waves (kh = 0.2). The results of surface

wave vorticity are shown in Figures 3.2 and 3.3. In general, the wave vorticity of

intermediate water waves (kh = 1) is larger than the that of shallow water waves

(kh = 0.2). The results also indicate that wave vorticity is zero when waves and

current are co-directional. Otherwise, wave vorticity is nonzero. The magnitude of

wave vorticity increases with the oblique angle and reaches to its maximum when

waves are perpendicular to current (see red dashed line). The x-component of wave

vorticity reaches to its maximum when the angle between waves and current is π/4

(see blue dash-dotted line). The y-component of wave vorticity doesn’t alter signs for

this case (see blue starred line). Both y-component and z-component of wave vorticity

reach the maximum (or minimum) unless when the angle between waves and current
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is π
2
.

Figure 3.2: Surface wave vorticity changes with oblique wave angle (kh = 1). Upper:
waves following current. The oblique wave angle varies from−π/2 to π/2.
Lower: waves opposing current. The oblique wave angle varies from π/2
to 3π/2. Blue Dash-dot: x-component (ξx1,1); Blue Star: y-component

(ξy1,1); Blue Solid: z-component (χ1,1); Red Dash: total (
√
χ2

1,1 + ξ2
1,1).

Results are calculated based on Equation (3.33) - (3.35).

3.1.3 Numerical solution to wave Rayleigh equation

In the theory for depth uniform current and constant shear current, the wave

vertical orbital velocity can be written in terms of the hyperbolic sine function (see

Appendix A). However, in the presence of arbitrarily sheared mean flow, the vertical

structure of wave orbital velocity are no longer in this form. For the Rayleigh equation,

we non-dimensionalize w1,1(z) with wave amplitude η1,1 and surface intrinsic frequency

σs,

w1,1(z) = −iσsη1,1f(z) (3.36)

where f(ηc) = 1. The non-dimensional depth-dependent function f(z) can be obtained

numerically using a shooting method. σs is surface intrinsic frequency at the mean
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Figure 3.3: Surface wave vorticity changes with oblique wave angle (kh = 0.2).
Upper: waves following current. The oblique wave angle varies from
−π/2 to π/2. Lower: waves opposing current. The oblique wave angle
varies from π/2 to 3π/2. Blue Dash-dot: x-component (ξx1,1); Blue Star:
y-component (ξy1,1); Blue Solid: z-component (χ1,1); Red Dash: total

(
√
χ2

1,1 + ξ2
1,1). Results are calculated based on Equation (3.33) - (3.35).

surface, which is defined in Equation (2.24). We also introduce the vertical structure

function for the intrinsic frequency,

σw(z) = σsL(z) (3.37)

The Rayleigh equation can be rewritten as following

f ′′ − (k2 +
L′′

L
)f = 0; −h ≤ z ≤ ηc (3.38)

f(−h) = 0; (3.39)

f ′ = (L′ +
gk2

σs
)f ; z = ηc (3.40)

where

f ′ =
df

dz
(3.41)
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For a strong current with arbitrary shear, the Rayleigh equation has no analytical

solutions. Following Kirby and Chen (1989), two methods are used to solve Rayleigh

equation in this paper: direct numerical solution and perturbation approximation. A

numerical solution to Rayleigh equation can be obtained by transforming the boundary

value problem into an initial value problem and solving it using a shooting method.

First, we introduce the mean water depth H = h+ηc. The still water depth h and mean

water surface ηc vary slowly in time and space. Thus, the actual water depth H can be

treated as a constant for local waves. We introduce a new variable Q(z) = f/(Hf ′) and

a non-dimensionalized vertical coordinate ẑ = z/H. We have ẑ = −1 at the bottom

and ẑ = 0 at the water surface. After substituting them into Rayleigh equation, we

have

dQ

dẑ
= 1− γ2Q2; −1 ≤ ẑ ≤ 0 (3.42)

γ2(ẑ) = (kH)2 +
L′′

L
(3.43)

Q =
σ2
s

gk2H + σ2
sL
′ ; ẑ = 0 (3.44)

Q = 0; ẑ = −1 (3.45)

Now look at the relation between L(ẑ) and current profile. We also assume that current

horizontal velocity qc(ẑ) = qcsI(ẑ), where qcs is the surface current velocity magnitude

and the non-dimensional vector function I(ẑ) represents current direction and vertical

profile. It is noteworthy that the current direction may rotate over depth. The intrinsic

frequency is expressed using current as

σw(ẑ) = ω − qcsk · I(ẑ) = σsL(ẑ) (3.46)

So that

L(ẑ) =
ω

σs
− qcsk · I(ẑ)

σs
(3.47)
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Solving the problem requires that current velocity qc(z) distribution to be known. The

current velocity is approximated using a polynomial expansion as below.

I(ẑ) =
qc

qcs
+ A1ẑ + A2ẑ

2 + A3ẑ
3 + . . . (3.48)

L(ẑ) = 1 +B1ẑ +B2ẑ
2 +B3ẑ

3 + . . . (3.49)

Bn = −q
c
sk ·An

σs
(n = 1, 2, 3...) (3.50)

Then, we obtain numerical solutions for both Q(ẑ) and phase speed c using a shooting

method. Specifically, we first give a starting value for c, then march the solution from

bottom ẑ = −1 to the surface ẑ = 0 to get Q(0). We can use phase speed calculated

without current effects as the starting value. At the same time, we can get the value

of Q(0) directly through surface boundary condition. If the difference between these

two Q(0) value is within a tolerable limit 10−4, we find the solution for Q(z) and

c. Otherwise, we use the new c from the surface boundary condition and march the

solution again until we are satisfied with the magnitude of error.

3.1.3.1 Verification of numerical solution

We verify the numerical solution based on the shooting method to Rayleigh

equation by changing the vertical resolution dz. The current velocity profile measured

at the mouth of Columbia River (MCR) is used in the verification (see Figure 3.4).

This data set was taken from the R/V Pt. Sur, during the July 2004 RISE cruise

(http://makani.coas.oregonstate.edu/rise/). The shooting method can use any

dz, including an adaptive value. The convergence of the shooting method depends on

the size of dz. Figure 3.4 illustrates that numerical solutions converge as the resolution

dz gets smaller. When dz < 1 m, the numerical solution becomes stable.

The Rayleigh equation has analytical solutions for both depth uniform current

and constant shear current. Hence we compare the analytical solution and numerical

solution for these two cases as shown in Figure 3.5. Apparently, neither depth uniform

current nor constant shear current needs 6th order polynomial fitting. However, 6th

order polynomial fitting will later be used for measured current profiles. Here we use
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it for consistency. The plots indicate that numerical solutions converge to these two

analytical solutions.

Figure 3.4: Verification of numerical solution to Rayleigh equation. (Upper) Mea-
sured current velocity profiles at Columbia River mouth (blue solid line)
with 6th order polynomial curve fitting (red dashed line) (Kilcher and
Nash, 2010). The measured data indicates a strong surface current (up
to 2.3 m/s with strong vertical shear during ebb tide. (Lower) Abso-
lute wave phase speed c change over non-dimensional wave number kh
obtained from numerical solution.
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Figure 3.5: Verification of numerical solution to Rayleigh Equation. (Upper Left)
Depth uniform current velocity profile with 6th order polynomial curve
fitting (red dashed line). The current velocity is set as −3.5 m/s. (Up-
per Right) Comparison of analytical solution (blue ’+’) and numerical
solution (blue solid line). The vertical resolution dz = 0.1 m. (Lower
Left) Constant shear current velocity profile with 6th order polynomial
curve fitting (red dashed line). The current velocity is set as −3.5 m/s
at water surface and 0 m/s at the bottom. (Lower Right) Comparison
of analytical solution (blue ’+’) and numerical solution (blue solid line).
The vertical resolution dz = 0.1 m. The results indicate that numerical
solutions converge to these two analytical solutions.
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3.1.4 Perturbation solution to wave Rayleigh equation

In the coupled system of ocean circulation model and wave model, getting the

exact wave solutions from Rayleigh equation requires that we use the shooting method

at each time step and horizontal grid location unless the solution varies slowly enough,

which is computationally expensive. On the one hand, we want to include current

vertical shear effects on wave orbital velocity and vorticity to calculate wave forces.

On the other hand, we would like to avoid expensive computation cost by directly

solving the Rayleigh equation. Thus an alternative wave solution is needed.

By assuming strong current, we have the Froude number F = q0,0s/
√
gH ∼ 1,

where q0,0s is surface current horizontal speed and
√
gH is the wave phase speed in

shallow water. The representative mean water depth at the river mouth is h = 15

m. According to the observations at Columbia River mouth, the maximum surface

current speed can reach to 3.5 m/s, which means F = 0.28 (Hickey et al., 2010). This

Froude number is pretty large for most places. Hence it is possible that higher order

perturbation solution is a good alternative. Now we are going to examine it. The

approximate solution can be approached using perturbation method (Kirby and Chen,

1989) by assuming the current speed to be small relative to the wave phase speed in

the Rayleigh equation. Here we assume relatively weak current q0,0 ∼ εq0,0(z), and

retain solutions in order of O(εn).

c =
ω

k
= c0 + εc1 + ε2c2 + . . .+ εncn (3.51)

w1,1 = w
(0)
1,1 + εw

(1)
1,1 + ε2w

(2)
1,1 + . . .+ εnw

(n)
1,1

= −iσsη1,1
f0(z) + εf1(z) + ε2f2(z) + . . .+ εnfn(z)

f0(ηc)
(3.52)

where c is the absolute wave phase speed. We set fn(ηc) = 0 for n > 0. w1,1 is the

vertical component of wave orbital velocity amplitude and has to converge to kinetic

surface boundary condition at the mean water surface. Applying the perturbation

expansion to the Rayleigh equation, at order O(ε0), we obtain linear wave solutions for

the current-free case. We obtain a hyperbolic wave vertical structure and the classic
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dispersion relations.

f0(z) = sinh k(h+ z) (3.53)

c2
0 =

g

k
tanh kH (3.54)

Since the current velocity is weak, at leading order, waves feel no current. We move on

to O(ε) solutions. The vertical structure of wave orbital velocity is modified by current

profile shown in f1(z).

f1(z) = −[
k̂·q0,0(z) + k̂·q0,0(−h)

c0

+
2kI1(z)

c0

]f0(z) +
2I2(z)

c0

∂f0

∂z
(3.55)

I1(z) =

∫ z

−h
k̂ · q0,0(ζ) sinh 2k(h+ ζ)dζ (3.56)

I2(z) =

∫ z

−h
k̂ · q0,0(ζ) cosh 2k(h+ ζ)dζ (3.57)

c1 =
2k

sinh 2kH

∫ ηc

−h
k̂·q0,0(z) cosh 2k(h+ z)dz (3.58)

c2 =
c1

2c0

[4kI1(ηc)− (1 + 2 cosh 2kH)c1]

+
c0k

2

2gf 2
0 (ηc)

∫ ηc

−h
[k̂·q00(z)]2[1 + 2 cosh2 k(h+ z)]dz

+
2c0k

3

gf 2
0 (ηc)

∫ ηc

−h
[I2(z)

∂I1

∂z
− I1(z)

∂I2

∂z
]dz (3.59)

where k̂ = k/k is the unit wave number vector. c1 is the O(ε) correction to wave phase

speed and also known as the depth-weighted current in Kirby and Chen (1989). c2 is the

O(ε2) correction to wave phase speed. The current speed we use in Rayleigh equation

is the current velocity projection in wave direction k̂·q0,0(z). If we keep perturbation

solutions up to O(ε), we have the linear wave solutions in the form below.

w
(0)
1,1 = −iσsη1,1

f0(z)

f0(ηc)
(3.60)

w
(1)
1,1 = −iσsη1,1

f1(z)

f0(ηc)
(3.61)

σw(z) = k(c0 + c1)− k·q00(z) (3.62)
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We use perturbation solution as an approximation to Rayleigh equation. The horizontal

orbital velocity amplitude and wave pressure amplitude can be expressed using w1,1.

q
(0)
1,1 = − i

σw
[w

(0)
1,1

∂q0,0

∂z
− k

k2
(σw

∂w
(0)
1,1

∂z
− w(0)

1,1

∂σw
∂z

)] (3.63)

q
(1)
1,1 = − i

σw
[w

(1)
1,1

∂q0,0

∂z
− k

k2
(σw

∂w
(1)
1,1

∂z
− w(1)

1,1

∂σw
∂z

)] (3.64)

p
(0)
1,1 =

iρ

k2
(σw

∂w
(0)
1,1

∂z
− w(0)

1,1

∂σw
∂z

) (3.65)

p
(1)
1,1 =

iρ

k2
(σw

∂w
(1)
1,1

∂z
− w(1)

1,1

∂σw
∂z

) (3.66)

The O(ε) wave vorticity obtained in Chapter 2 can be re-written in terms of perturba-

tion solution.

χ
(0)
1,1 = −

(ξ0,0·k)w
(0)
1,1

σw
(3.67)

χ
(1)
1,1 = −

(ξ0,0·k)w
(1)
1,1

σw
(3.68)

ξ
(0)
1,1 = −i[∂q0,0

∂z

(ξ0,0·k)w
(0)
1,1

σ2
w

+
∂ξ0,0

∂z

w
(0)
1,1

σw
]−

(ξ0,0·k)q
(0)
1,1

σw
(3.69)

ξ
(1)
1,1 = −i[∂q0,0

∂z

(ξ0,0·k)w
(1)
1,1

σ2
w

+
∂ξ0,0

∂z

w
(1)
1,1

σw
]−

(ξ0,0·k)q
(1)
1,1

σw
(3.70)

So far, we have the numerical solution and perturbation solution up to O(ε)

for wave Rayleigh equation. In the next section, we will compare the wave phase

speed between numerical solution and perturbation solutions up to O(ε2). The O(ε2)

wave solutions are not necessary for our problem. Results indicate that perturbation

approximation up to O(ε) is a fairly good approximation.

3.1.5 Numerical and O(ε) perturbation solution comparison

In last section, both numerical method and perturbation method are used to

solve Rayleigh equation. As discussed in Kirby and Chen (1989), stronger surface

current velocity q0,0s, stronger current shear ∂q0,0/∂z and longer wave period 2π/ω

result in less accuracy of the O(ε) perturbation solution. In this section, we evaluate

the performance of perturbation solutions using numerical results.
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Three example profiles with known velocity distribution are given in Kirby and

Chen (1989). They are linear shear current (3.71), cosine profile (3.72) and power law

profile (3.73).

U(z) = Us(1 + α
z

h
) (3.71)

U(z) = Us cosα
z

h
(3.72)

U(z) = Us(1 +
z

h
)1/7 (3.73)

where α is a non-dimensional shear parameter. We use the three profiles along with

the depth uniform current to investigate the accuracy of perturbation solutions. The

water depth is set as 5 m for all the current profiles. The maximum velocity is set

as −3.5 m/s so that the Froude number F = 0.5. Larger Froude number indicates

stronger current effect. Hence, we use F = 0.5 to illustrate the upper limit of current

effect. We consider waves propagating against current. The wave number varies from

µ = kh ∼ 0.3 to µ = kh ∼ 3, which covers both short waves and long waves. The

numerical solution is first validated with decreasing the vertical resolution from dz = 5

m to dz = 0.1 m as shown in Figure 3.4. We give the perturbation solutions up to O(ε2),

numerical solution as well as solution using depth-averaged current. We use the ratio

c/cdir to illustrate the difference between numerical solution and other solutions, where

cdir is numerical solution of wave phase speed. The comparison results are shown in

Figure 3.6 and 3.7. In general, all the current assumptions gives better approximation

for long waves (kh � 1) than short waves (kh � 1). O(ε) perturbation solution is a

better approximation than the depth-average current (see Lower Right in Figure 3.6

and 3.7).
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Figure 3.6: Wave phase speed comparison between perturbation solution up to O(ε2)
and numerical solution with analytical current velocity profiles: Depth
uniform current (Upper Panel), Linearly sheared current (Lower Panel).
The maximum current speed is set as 3.5 m/s to meet strong current
assumption. The left figure of each panel shows original profile and 6th
order polynomial fitting curves. The right figure of each panel shows
the non dimensional wave phase speed normalized by the numerical so-
lution (cdir). As the figure indicates, shorter waves are more sensitive
to the ambient current than longer waves. Additionally, the accuracy
of perturbation solution goes higher with increasing orders. The O(ε)
perturbation solution is a good approximation to numerical solution.
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Figure 3.7: Wave phase speed comparison between perturbation solution up to O(ε2)
and numerical solution with analytical current velocity profiles: Cosine-
shape current (Upper Panel) and Power law shape current (Lower Panel).
The maximum current speed is set as 3.5 m/s to meet strong current as-
sumption. The left figure of each panel shows original profile and 6th
order polynomial fitting curves. The right figure of each panel shows the
non dimensional wave phase speed normalized by the numerical solution
(cdir). Figure indicates that shorter waves are more sensitive to the ambi-
ent current than longer waves. The O(ε) perturbation solution is a good
approximation to numerical solution.
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Figure 3.8: Measured cross-shore current speed profiles seaward from Columbia River
mouth during an ebb tide (Kilcher and Nash, 2010). This data was
taken from the R/V Pt. Sur, during the July 2004 RISE cruise (http:
//makani.coas.oregonstate.edu/rise/). The transect is one of the
cruise routes by the R/V Pt. Sur. The ship moves seaward from the
river mouth during an ebb tide. Therefore the current data have slight
time difference. The horizontal axis represents the cross-shore distance
seaward form the river mouth (x= 0 km). The vertical axis represents the
vertical elevation. Blue Solid: ocean bottom elevation along the transect.
Black Dash: zero current speed line at each cross-shore location. Blue
Dash: measured current speed at each cross-shore location. The length
of legend represents 2 m/s current speed. As the figure indicates, the
maximum current speed exceeds 2 m/s at the river mouth where water
depth is shallower. The current speed decrease seaward with increasing
water depth.

To give a general idea of how strong the current is in the real world, we use

the current velocity data measured at the mouth of Columbia River (MCR). The
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Columbia River is on the U.S. west coast and well known for its huge freshwater dis-

charge. Due to narrow outlet to the ocean, highly stratified density field and strong

tidal currents in addition to river flow, the surface current in the tidal plume can ex-

ceed 3 m/s during strong ebb tides as shown in Figure 3.8 (Hickey et al., 2010). It

is an ideal estuary to study the current shear effects on wave dynamics. The cur-

rent data used in the paper is from RISE (River Influences on Shelf Ecosystems)

project measured by Ocean Mixing Group, Oregon State University (Kilcher and Nash,

2010). This data was taken from the R/V Pt. Sur, during the July 2004 RISE cruise

(http://makani.coas.oregonstate.edu/rise/). The data set contains velocity with

two direction components based on 30 second-average, water depth and location of sam-

pling. Consider a group of waves with amplitude a = 1 m propagating shoreward on the

opposing current at MCR. The wave number varies from µ = kh ∼ 0.3 to µ = kh ∼ 3,

which covers both short waves and long waves. We take several current velocity profiles

at the river mouth and fit 6th order polynomial curves to the data points.

The comparison results of measured current profiles are shown in Figure 3.9

(opposing current) and 3.10 (following current). The measured current velocity profiles

have many zigzags, which require higher order polynomial fitting method to catch.

However, higher order polynomial fitting makes the numerical solver unstable for some

cases. The opposing Both opposing current and following current results suggest that

the O(ε) perturbation solution is a significant improvement compared to depth-average

current approximation, while the O(ε2) perturbation solution does not contribute more

than 5 % correction. Therefore, the O(ε) perturbation solution is a good approximation

to Rayleigh equation in our problem. It is noteworthy that Fmax ∼ 0.2 for this case.

We use the current profile in Figure 3.9 (Upper) to solve Rayleigh equation. The reason

is that this shape of current velocity profile is very typical during strong ebb tides at

river plume, where maximum current speed and strong vertical shear appearing near

the surface.

49

http://makani.coas.oregonstate.edu/rise/


Figure 3.9: Wave phase speed comparison between perturbation solution up to
O(ε2) and numerical solution with measured current velocity profiles
at Columbia river mouth - opposing currents. This data was taken
from the R/V Pt. Sur, during the July 2004 RISE cruise (http:
//makani.coas.oregonstate.edu/rise/). The Upper Panel shows a
typical current profile during ebb tide. The Lower Panel shows vertically
well-mixed current profile during ebb tide. Both no-current assumption
and depth-average current assumption cause wave phase speed to deviate
from the exact solution. The deviation depends on both current magni-
tude and current shear. Strong current with strong shear causes larger
deviation.
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Figure 3.10: Wave phase speed comparison between perturbation solution up to
O(ε2) and numerical solution with measured current velocity profiles
at Columbia river mouth - following currents. This data was taken
from the R/V Pt. Sur, during the July 2004 RISE cruise (http:
//makani.coas.oregonstate.edu/rise/). The current profiles are
exactly reversed from Figure 3.9 to provide waves solution when fol-
lowing current.
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The current profiles from the upper left of Figure 3.9 and 3.10 are used to

examine the current effect on wave vertical structures. The shape of current profile

is very typical during the ebb tide or flood tide at the MCR. The current is assumed

to be co-directional with waves. Thus, only one component of horizontal velocity is

considered.

Figure 3.11 and 3.12 illustrates the vertical structure of wave orbital velocity and

vorticity for the opposing current. Figure 3.13 and 3.14 illustrates the vertical structure

of wave orbital velocity and vorticity for the following current. Results of short wave

(kh = 2), intermediate wave (kh = 1) and long wave (kh = 0.4) are compared in the

plots. The comparison suggests that short waves have larger vertical gradient in orbital

velocities than long waves. In the presence of current shear, wave vertical structure is

significantly modified. The current shear effect is confined in the upper layer for this

case. The O(ε) perturbation solution successfully captures current shear effect on wave

orbital velocity and vorticity compared to the numerical solution.

The wave orbital velocity amplitude is increased by the opposing current (see

Figure 3.11) and decreased by the following current (see Figure 3.13). The compar-

ison of wave vorticity (Figure 3.12 and 3.14) also indicates that when current is co-

directional with waves, the wave vorticity is determined by current shear and not

related to wave number.
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Figure 3.11: Comparison of wave orbital velocity amplitude vertical distribution for
short wave (kh = 2), intermediate wave (kh = 1) and long wave (kh =
0.4) on the opposing current: (Upper) horizontal orbital velocity and
(Lower) vertical orbital velocity amplitude. The current is assumed to
be co-directional with waves. Therefore, only one horizontal direction
is considered. The vertical axis represents water depth. The horizontal
axis represents velocity. The comparison shows the wave orbital velocity
amplitude is increased by the opposing current. K&C O(ε) solution is
a fairly good approximation to numerical solution.
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Figure 3.12: Comparison of wave vorticity amplitude vertical distribution for short
wave (kh = 2), intermediate wave (kh = 1) and long wave (kh = 0.4) on
the opposing current. The current is assumed to be co-directional with
waves. Therefore, the wave vorticity is only in horizontal direction. In
this case, the vorticity is only determined by the current profile and not
related to the wave number. The values of wave vorticity are the same.
The vertical axis represents water depth. The horizontal axis represents
wave vorticity. The comparison shows that K&C O(ε) solution is a
better approximation to numerical solution.
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Figure 3.13: Comparison of wave orbital velocity amplitude vertical distribution for
short wave (kh = 2), intermediate wave (kh = 1) and long wave (kh =
0.4) on the following current: (Upper) horizontal orbital velocity and
(Lower) vertical orbital velocity amplitude. The current is assumed to
be co-directional with waves. Therefore, only one horizontal direction
is considered. The vertical axis represents water depth. The horizontal
axis represents velocity. The comparison shows the wave orbital velocity
amplitude is decreased by the following current. K&C O(ε) solution is
a fairly good approximation to numerical solution.
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Figure 3.14: Comparison of wave vorticity amplitude vertical distribution for short
wave (kh = 2), intermediate wave (kh = 1) and long wave (kh = 0.4) on
the following current. The current is assumed to be co-directional with
waves. Therefore, the wave vorticity is only in horizontal direction. In
this case, the vorticity is only determined by the current profile and not
related to the wave number. The values of wave vorticity are the same.
The vertical axis represents water depth. The horizontal axis represents
wave vorticity. The comparison shows that K&C O(ε) solution is a
better approximation to numerical solution.
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3.1.6 Depth-weighted current

The current in KC89 O(ε) perturbation solution is also known as depth-weighted

current, which has been proved above as a good approximation to numerical solution

in the last section. The advantage of using depth-weighted current velocity in wave

equations is that it considers the wave vertical structure as well as the wave length.

According to the classic wave theory, wave motions are confined near the water surface

and decay exponentially with depth. Thus current profiles with velocity confined to

the water surface have larger effects on waves than profiles with velocity confined to

the bottom such as undertow, where nearly no wave motions exist. Additionally, the

ratio of current velocity to wave phase speed U/c indicates current effect on waves.

Larger ratio suggests stronger current effect. Long waves have larger wave phase speed

than short waves. Thus, long waves get less current effect than short waves.

In this part, we consider analytical current profile with an exponential shape

U(z) = e−z as shown in Figure 3.15. The current velocity starts with 1 m/s at the

surface and decays exponentially to 0 m/s at the bottom. The depth-average value

of the current profile is rather small because of the rapid decrease of velocity over

depth. However, the depth-weighted current is very different. For long waves, wave

phase speed is relatively large. Depth-weighted current is closer to the depth-averaged

current. As waves become shorter, the current effect is increasing and depth-weighted

current is closer to the maximum velocity at the surface. Different current profile

shapes result in different depth-weighted current value. By using the depth-weighted

current, we can evaluate the effect of different current profiles on waves.

3.2 Second-order Wave Motions

To get wave-averaged forces, we need wave solutions up to O(ε2). Therefore the

second order wave equations are necessary in our problem, which are given by terms

in the (n = 2,m = 1)
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Figure 3.15: Depth-weighted current velocity for exponential current profile. Con-
sider the current speed is 1.0 m/s at the water surface and decreases
exponentially to zero over depth. The depth-averaged current speed for
this current profile is less than 0.1 m/s. If depth-averaged current is used
in wave solution, the current effect is negligible. However, the depth-
weighted current is very different and varies for different wave numbers.
The equivalent current speed is larger for larger wave number.

∂q0,0

∂z
w2,1 − iσwq2,1 +

ik

ρ
p2,1 = −[

∂q1,1

∂T
+ q0,0·∇Hq1,1 +

1

ρ
∇Hp1,1 + i(q1,0·k)q1,1

+ q1,1·∇Hq0,0 + w1,0
∂q11

∂z
+ w1,1

∂q1,0

∂z
]; −h ≤ z ≤ ηc

(3.74)

−iσww2,1 +
1

ρ

∂p2,1

∂z
= −[

∂w1,1

∂T
+ q0,0·∇Hw1,1 + i(q1,0·k)w1,1 +

∂(w1,0w1,1)

∂z
];

−h ≤ z ≤ ηc (3.75)

∂w2,1

∂z
+ ik·q2,1 = −∇H·q1,1; −h ≤ z ≤ ηc (3.76)
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w2,1 = −q1,1·∇Hh; z = −h (3.77)

w2,1 =
∂η1,1

∂T
+ q0,0·∇Hη1,1 − iσsη2,1 + q1,0·(ik)η1,1

− η1,1
∂w1,0

∂z
+ (q1,1 + η1,1

∂q0,0

∂z
)·∇Hη0,0; z = ηc (3.78)

p2,1 = −(η2,1
∂p0,0

∂z
+ η11

∂p1,0

∂z
); z = ηc (3.79)

The variations of leading order mean surface elevation η0,0 no longer appear

in wave surface boundary condition (3.78) after switching reference level. In the next

chapter, (n = 2,m = 0) mean flow dynamics indicate that q1,0 and p1,0 only yield trivial

solutions based on strong current assumption. The related terms are deleted in the

equations. We rearrange the wave equations in the same way as O(ε) wave equations

to get O(ε2) Rayleigh equation for O(ε2) wave vertical orbital velocity amplitude w2,1

with boundary conditions.

σw
∂2w2,1

∂z2
− (

∂2σw
∂z2

+ k2σw)w2,1 = C2,1; −h ≤ z ≤ ηc (3.80)

σ2
s

∂w2,1

∂z
− (σs

∂σw
∂z

+ gk2)w2,1 = D2,1; z = ηc (3.81)

w2,1 = E2,1; z = −h (3.82)

where
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−ik2[
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D2,1 = −{gk2[
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∂T
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1

ρ
k·∇Hp1,1]} (3.84)

E2,1 = −q1,1·∇Hh (3.85)
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The equations are identical to the results in Voronovich (1976). The remaining variables

p2,1, q2,1 and η2,1 are written in terms of w2,1 and slow scale derivatives of q1,1, w1,1,

p1,1 and η1,1. These variables can be calculated once we get the solution for w2,1.

p2,1 =
iρ

k2
[k·(∂q1,1

∂T
+ q0,0·∇Hq1,1 +

1

ρ
∇Hp1,1 + q1,1·∇Hq0,0 + w1,0

∂q11

∂z
)

+ σw(
∂w2,1

∂z
+∇H·q1,1)− ∂σw

∂z
w2,1] (3.86)
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ρ
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η2,1 =
i

σs
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+ q0,0·∇Hη1,1 − η1,1

∂w1,0

∂z

+ (q1,1 + η1,1
∂q0,0

∂z
)·∇Hη0,0)] (3.88)

3.2.1 Compatibility condition and wave action equation

For the O(ε2) wave equations to have non-trivial solutions, the compatibility

condition has to be satisfied. This condition then leads to the wave action equation.

We introduce variables f̂ in the Rayleigh equations.

f̂1 =
w1,1

σw
(3.89)

f̂2 =
w2,1

σw
(3.90)

The Rayleigh equation becomes

∂

∂z
(σ2

w

∂f̂n
∂z

)− σ2
wk

2f̂n = Cn,1; n = 1, 2 (3.91)

σw(σ2
w

∂f̂n
∂z
− gk2f̂n) = Dn,1 (3.92)

σwf̂n = En,1 (3.93)

The compatibility condition from Fredholm Alternative Theorem gives∫ ηc

−h
f̂1C2,1dz −

f̂1(ηc)

σs
D2,1 − σw(−h)

∂f̂1

∂z
(−h)E2,1 = 0 (3.94)
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It provides the basis for the construction of an action balance equation for slowly vary-

ing waves. The unwieldy manipulation of solvability condition yields the conservation

of wave action in strongly sheared flow, identical with Voronovich’s (1976) results.

∂N

∂T
+ ∇H·(cgaN) = 0 (3.95)

N = −
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1
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wk

2
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2

∂σw
∂z

)|w1,1|2|z=ηc (3.96)
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σwk2
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2
]|w1,1|2|z=ηc (3.97)

where w1,1 is the solution from Rayleigh equation, |w1,1|2 = w1,1w1,−1. N is the wave

action. cgaN is the wave action flux in the conserved form. The equation is for strong

current with arbitrary vertical shape and can be simplified to compare with several

special current profiles. The wave action isn’t clear in the form of wave energy divided

by frequency. However, it can regain this form for some special cases (McWilliams

et al., 2004; Jonsson et al., 1978), which are discussed later in this section. The absolute

group velocity cga can be obtained from wave action flux divided by wave action

cgaN/N . The absolute group velocity can also be obtained from the dispersion relation

by numerical solution. It is shown that the two forms of absolute group velocities

converge based on the numerical wave solution (see Figure 3.16 and 3.17).

3.2.2 Wave action equation for depth-uniform current

For depth-uniform strong current, we can get the linear wave solutions. Thus

the wave action equations (3.95) - (3.97) can be easily simplified to get the traditional

form of the wave action equation as described by Bretherton and Garrett (1968).

∂

∂T
(
2|η1,1|2

σw
) +∇H·[

2(cgr + q0,0)|η1,1|2

σw
] = 0 (3.98)

Where η1,1 and η1,−1 are wave amplitude complex conjugate and a2/4 = |η1,1|2, so that

total wave energy can be expressed as E = ρga2/2. The wave action is given as

∂

∂T
(
E

σw
) +∇H · [(cgr + q0,0)

E

σw
] = 0 (3.99)
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where the relative group velocity is

cgr =
∂σw
∂k

=
1

2
(1 +

2kH

sinh 2kH
)cr (3.100)

cr =
σw
k

(3.101)

3.2.3 Wave action equation for constant shear current

Jonsson et al. (1978) give the wave action conservation for 2D vertical current

with constant shear. We use wave solutions for linearly sheared current in Appendix

A.3. Note that the real value of wave amplitude a2/4 = |η1,1|2 and considering the

complex conjugate relations, Equation (3.96) and (3.97) are reduced to

N

ρ
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1

4
[2g − (k̂·Ωs)cr]

a2

σs
(3.102)

cgaN

ρ
= [cgr + q0,0s +

(k̂·Ωs)crcr −Ωsc2
r

2g − (k̂·Ωs)cr
]N (3.103)

where cr = σs/k and cgr = ∂σs/∂k. According to Equation (34) and (35) in Jonsson

et al. (1978), the wave action can be rewritten in the form of wave energy density

E/σ̄w, where wave energy

E

ρ
=

[2g − (k̂·Ωs)cr]a
2

4

σ̄w
σs

(3.104)

and the relative frequency based on depth-averaged current σ̄w = ω − k·q̄0,0. The

advection velocity in the wave action equation can be identified as

cga = cgr + q0,0s +
k̂(k̂·Ωs)−Ωs

2g − (k̂·Ωs)cr
c2
r (3.105)

The last term accounts for the effect when there is an angle between the wave direction

and the current shear. If the current shear and wave are co-directional, this term

disappears. For the 2D vertical case, the wave action conservation equation converges

to Jonsson et al.’s (1978) results.

3.2.4 Wave action equation for weak shear current

To compare with MRL04 wave action equation, we need to assume weak cur-

rent. Then the linear waves no longer feel current effects at the leading order. The
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governing equation is reduced to Laplace’s equation. We have the current-free linear

wave solutions as (A.1) - (A.3). The second order wave equations are reduced into

∂2w2,1

∂z2
− k2w2,1 =

C2,1

ω
; −h ≤ z ≤ ηc (3.106)

∂w2,1

∂z
− gk2

ω
w2,1 =

D2,1

ω2
; z = ηc (3.107)

w2,1 = E2,1; z = −h (3.108)

with

C2,1 = −{∂
2q1,1

∂T∂z
·k + ω∇H·

∂q1,1

∂z
+

1

ρ
k·∇H

∂p1,1

∂z

+i
∂

∂z
[(q0,0·k)(q11·k)] +

∂

∂z
(w1,1

∂q0,0

∂z
·k)

−ik2[
∂w1,1

∂T
+ i(q0,0·k)w1,1 +

∂

∂z
(w1,0w1,1)]} (3.109)

D21 = −{gk2[
∂η1,1

∂T
+ i(q0,0·k)η1,1] + ω[

∂q1,1

∂T
·k + ω∇H·q1,1

+i(q0,0·k)(q1,1·k) + w11
∂q0,0

∂z
·k +

1

ρ
∇Hp1,1·k]} (3.110)

E21 = −q1,1·∇Hh (3.111)

Current related terms appear in the second order wave dynamics according to weak

current assumption. According to wave ray theory for pure waves, we have

∂k

∂T
+ cg·∇Hk +

ωk

sinh 2kH
∇Hh = 0 (3.112)

∂ω

∂T
+ cg·∇Hω = 0 (3.113)

The resulting compatibility condition yields the slow dynamics of complex wave am-

plitude η1,1, which is analogous to (5.35) in MRL04.

∂η1,1

∂T
+ cg·∇Hη1,1 +

η1,1

2
∇H·cg + iη1,1

2k

sinh 2kH

∫ ηc

−h
k·q0,0(ζ) cosh 2k(h+ ζ)dζ = 0

(3.114)

Due to the scaling of our problem, the cubic nonlinear term is left in O(ε3). The mean

water surface contribution does not appear in the equation since we incorporate mean
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surface elevation ηc into actual water depth. The equation can be further separated

into wave action (N = E/ω)conservation equation and amplitude slow phase dynamics

by assuming η1,1 = |A|eiΘ/2.

∂N

∂T
+ ∇H·(cgN) = 0 (3.115)

∂Θ

∂T
+ cg·∇HΘ +

2k

sinh 2kH

∫ ηc

−h
k·q0,0(ζ) cosh 2k(h+ ζ)dζ = 0 (3.116)

In summary, we reproduce MRL04 wave action equation and wave amplitude phase

evolution.

3.2.5 Numerical study of wave action equation

Once we have obtained the wave action conservation equation for waves on

strongly sheared current, there are several choices for numerical application in wave

models in terms of different current assumptions including depth-averaged current,

depth-weighted current KC89 O(ε) and O(ε2) approximation and the Rayleigh numer-

ical solution. Undoubtedly, the numerical Rayleigh solution will yield the exact wave

action and flux. It also requires more computational time. We have to decide the

best choice to be implemented in wave models. We have compared wave solutions in

the previous section. As long as wave solutions are known, it is also easy to compare

the wave action equation. In this section, we compare wave action, action flux and

absolute group speed in wave action equation based on different wave solutions. We

use the constant shear current profile as shown in the lower panel of Figure 3.5. The

water depth is assumed to be h = 25 m. The surface current velocity is 3.5 m/s. The

bottom current velocity is 0 m/s. We consider waves over both opposing current and

following current. We also allow the wave number to vary from deep water to shallow

water conditions (0.3 ≤ kh ≤ 3).

3.2.5.1 Group velocity from wave action equation and dispersion relation

There are two ways to get the absolute group velocity in the Rayleigh equations.

One is obtained by taking the derivative with k of dispersion relation (∂ω/∂k). The
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other one is obtained by wave action equation (cgaN/N). In this case, the absolute

group velocity can be easily calculated based on the wave action and wave action

flux as shown in Equation (3.95) - (3.97). Now we examine these two absolute group

velocities. Both absolute group velocities are based on numerical solutions. Therefore,

the group velocity (cgaN/N) depends on sizes of vertical resolution (dz). The group

velocity (∂ω/∂k) depends on sizes of vertical resolution (dz) as well as wave number

resolution (dk).

We use the 2D constant shear current to calculate these two group velocity

estimates. The current velocity profile is shown in the lower panel of Figure 3.5.

We consider both opposing current and following current with the same shape. The

analytical wave group velocity is given by

cga = cgr + qs0,0 (3.117)

cgr =
g(1 +G)− ΩsGcr

2g − Ωscr
cr (3.118)

The lower panel of Figure 3.4 already shows the convergence of wave phase speed

for smaller vertical step (dz). Figure 3.16 and 3.17 show the convergence of these

two group velocities with different wave number steps (dk) for opposing current and

following current, respectively. The results indicate that

1). As dk becomes smaller, both dispersion relation and wave action group

velocities converge to the analytical group velocity.

2). Both numerical group velocities gradually deviate from analytical solution

as kh increases.

3). The following current case gives better numerical approximation to analyt-

ical solutions.
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Figure 3.16: (Opposing constant shear current) Convergence of group speed (∂ω/∂k)
and the group speed (cgaN/N) (3.96) and (3.97) with different wave
number steps (dk). Blue ’+’: Analytical absolute group velocity;
Red Solid: Absolute group velocity from wave action equation; Blue
Dash: Absolute group velocity from dispersion relation. Upper Panel:
dk = 0.014, Lower Panel: dk = 0.005. The figure indicates that the
group velocity (∂ω/∂k) converges to the group velocity (cgaN/N) as
dk becomes smaller. Both numerical group velocities gradually deviate
from analytical solution as kh increases (shorter waves). The differ-
ence between numerical group velocities and analytical group velocity
is within 7 %.
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Figure 3.17: (Following constant shear current) Convergence of group speed (∂ω/∂k)
and the group speed (cgaN/N) (3.96) and (3.97) with different wave
number steps (dk). Blue ’+’: Analytical absolute group velocity;
Red Solid: Absolute group velocity from wave action equation; Blue
Dash: Absolute group velocity from dispersion relation. Upper Panel:
dk = 0.014, Lower Panel: dk = 0.005. The figure indicates that the
group velocity (∂ω/∂k) converges to the group velocity (cgaN/N) as
dk becomes smaller. Both numerical group velocities gradually deviate
from analytical solution as kh increases (shorter waves). The differ-
ence between numerical group velocities and analytical group velocity
is within 3 %.
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3.2.5.2 Wave action and action flux comparison

The wave action and action flux are also calculated for the 2D constant shear

currents. The analytical expressions for wave action and action flux are given in Equa-

tion (3.102) and (3.103). We compare the analytical values with four solutions: nu-

merical solution, depth-averaged current, depth-weighted current. In wave models, the

depth-averaged current velocity is usually used as an approximation in the wave ac-

tion flux (Bretherton and Garrett, 1968). Another assumption is the depth-weighted

current provided by Kirby and Chen (1989). In contrast to depth-averaged current,

the depth-weighted current Ũ(k) is a depth uniform current, which varies with wave

number. Thus, the absolute group velocity has an extra term ∂Ũ/∂k as shown below.

This term can be very significant; see, for example, results shown in Banihashemi et al.

(2016).

ω = σ̃ + kŨ (3.119)

cga =
∂ω

∂k
=
∂σ̃

∂k
+ Ũ + k

∂Ũ

∂k
(3.120)

The depth-weighted current used in the comparison is actually Ũ + k∂Ũ/∂k. The

comparison results are given in Figure 3.18 and 3.19 for opposing current and following

current, respectively.

1). For both directions, the wave action difference between the analytical value

and the other solutions are less than 2 %.

2). The wave action flux is decreased by the opposing current and increased by

following current.

3). The wave action flux comparison indicates that the four solutions have less

accuracy on the opposing current. And the errors grow with non-dimensional wave

number kh. The error growth for depth-averaged current is the fastest.

4). Depth-weighted current is a fairly good approximation compared to numer-

ical solution.
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Figure 3.18: (Opposing constant shear current) Wave action and wave action flux
comparison. Blue ’+’: Analytical results; Red Solid: Numerical results;
Black ’*’: Results based on depth-averaged current; Green ’o’: Results
based on depth-weighted current. The dimensional wave action and ac-
tion flux are calculated using wave amplitude a = 1 m. Upper Panel:
Wave action on the left and non-dimensional wave action on the right.
The wave action comparison suggests that the differences between an-
alytical value and these assumptions are less than 2 %. Lower Panel:
Wave action flux on the left and non-dimensional wave action flux on
the right.
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Figure 3.19: (Following constant shear current) Wave action and wave action flux
comparison. Blue ’+’: Analytical results; Red Solid: Numerical results;
Black ’*’: Results based on depth-averaged current; Green ’o’: Results
based on depth-weighted current. The dimensional wave action and ac-
tion flux are calculated using wave amplitude a = 1 m. Upper Panel:
Wave action on the left and non-dimensional wave action on the right.
The wave action comparison suggests that the differences between an-
alytical value and these assumptions are less than 2 %. Lower Panel:
Wave action flux on the left and non-dimensional wave action flux on
the right.
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3.2.5.3 Absolute group velocity comparison

Now we compare the absolute group velocity in the wave action equation ob-

tained based on different current assumptions. We also use the 2D constant shear

current profiles. We compare numerical solution, depth-averaged current solution and

depth-weighted current solution for opposing current and following current, respec-

tively. The comparison results are given in Figure 3.20 and 3.21. The patterns of the

group velocity plots are very similar to the wave action flux.

1). The absolute group velocity is decreased by opposing current and increased

by following current.

2). The four solutions have less accuracy on the opposing current. And the errors

grow with non-dimensional wave number kh. The error growth for depth-averaged

current is the fastest.

3). Depth-weighted current is a fairly good approximation compared to numer-

ical solution.

In the COAWST model and Delft3D model, the depth-weighted current Ũ is

adopted as an alternative for depth-averaged current (Kumar et al., 2011; Kumar et al.,

2012; Van der Westhuysen et al., 2007). However, the depth-weighted current is cal-

culated with a fixed wave number, which usually corresponds to the peak frequency of

the wave spectrum. It is also assumed to be the same at all frequencies in SWAN. As

discussed above, the depth-weighted current is a function of wave number, Ũ = Ũ(k).

Therefore an additional term k∂Ũ/∂k will appear in absolute group speed. The de-

pendence on k is neglected in the present implementation of ROMS and Delft3D. Now

we evaluate the difference with and without this term. In Figure 3.20 and 3.21, we

plot the depth-weighted current including the term k∂Ũ/∂k. And the approximation

of the depth-weighted current to the analytical solution is fairly good. In Figure 3.22

and 3.23, we keep the depth-averaged current as a reference and compare the depth-

weighted current with and without the term k∂Ũ/∂k. Figures for both opposing current

and following current indicate that the term k∂Ũ/∂k is a significant correction to the

absolute group speed.
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Figure 3.20: (Opposing constant shear current) Comparison of absolute group veloc-
ities. Blue ’+’: Analytical results; Red Solid: Numerical results; Black
’*’: Results based on depth-averaged current; Green ’o’: Results based
on depth-weighted current. The dimensional group velocity is given at
the Left Panel. The non-dimensional group velocity based on analytical
solution is given at the Right Panel. The four solutions deviate from
analytical solution as kh increases.
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Figure 3.21: (Following constant shear current) Comparison of absolute group veloc-
ities. Blue ’+’: Analytical results; Red Solid: Numerical results; Black
’*’: Results based on depth-averaged current; Green ’o’: Results based
on depth-weighted current. The dimensional group velocity is given at
the Left Panel. The non-dimensional group velocity based on analytical
solution is given at the Right Panel.
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Figure 3.22: (Opposing constant shear current) Comparison of absolute group veloc-
ity for depth-weighted current with and without k∂Ũ/∂k. (Left Panel)
Absolute group velocity. (Right Panel) Non-dimensional absolute group
velocity based on analytical solutions. Figure indicates that there is big-
ger errors for by neglecting this term.
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Figure 3.23: (Following constant shear current) Comparison of absolute group veloc-
ity for depth-weighted current with and without k∂Ũ/∂k. (Left Panel)
Absolute group velocity. (Right Panel) Non-dimensional absolute group
velocity based on analytical solutions. Figure indicates that there is big-
ger errors for by neglecting this term.
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3.2.6 Second order wave vorticity

The second order wave vorticity is given by (n = 2,m = 1) vorticity equation

expansion. At this order, wave vorticity is induced by the slow scale variations of O(ε)

waves and O(ε0) currents.

χ2,1 = −iP2,1

σw
−

(ξ0,0·k)w2,1

σw
(3.121)

ξ2,1 = −i[Ø2,1

σw
+ i

∂q0,0

∂z

P2,1

σ2
w

+
∂q0,0

∂z

w2,1(ξ0,0·k)

σ2
w

+
∂ξ0,0

∂z

w2,1

σw
]

−
(ξ0,0·k)q2,1

σw
(3.122)

Ø2,1 =
∂ξ1,1

∂T
+ (q0,0·∇H)ξ1,1 + (q1,1·∇H)ξ0,0 − (ξ0,0·∇H)q1,1 − (ξ1,1·∇H)q0,0

− χ1,0
∂q1,1

∂z
+ w1,0

∂ξ1,1

∂z
(3.123)

P2,1 =
∂χ1,1

∂T
+ (q0,0·∇H)χ1,1 − (ξ0,0·∇H)w1,1

+ w1,1
∂χ1,0

∂z
+ w1,0

∂χ1,1

∂z
− χ1,0

∂w1,1

∂z
− χ1,1

∂w1,0

∂z
(3.124)

The non-divergence of wave vorticity at this order yields

∇H·ξ1,1 + ik·ξ2,1 +
∂χ2,1

∂z
= 0 (3.125)

which is also used in mean flow equations.

3.2.7 Perturbation solution to the second order wave Rayleigh equation

Now we apply perturbation method to O(ε2) wave Rayleigh equation. The O(ε0)

perturbation expansion gives:

kc0(
∂2w

(0)
2,1

∂z2
− k2w

(0)
2,1) = C

(0)
2,1 ; −h ≤ z ≤ ηc (3.126)

c2
0

∂w
(0)
2,1

∂z
− gw(0)

2,1 = D
(0)
2,1; z = ηc (3.127)

w
(0)
2,1 = E

(0)
2,1 ; z = −h (3.128)
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where

C
(0)
2,1 = −[

∂2q
w(0)
1,1

∂T∂z
·k + kc0∇H·

∂q
w(0)
1,1

∂z
+

1

ρ
k·∇H

∂p
w(0)
1,1

∂z
− ik2

∂w
w(0)
1,1

∂T
] (3.129)

D
(0)
2,1 = −{gk2∂η1,1

∂T
+ kc0[

∂q
w(0)
1,1

∂T
·k + kc0∇H·qw(0)

1,1 +
1

ρ
∇Hp

w(0)
1,1 ·k]} (3.130)

E
(0)
2,1 = −q

w(0)
1,1 ·∇Hh (3.131)

w
w(0)
1,1 , q

w(0)
1,1 and p

w(0)
1,1 are O(ε0) perturbation solution to the O(ε) wave equations, which

exclude current related terms.

w
w(0)
1,1 (z) = −ikc0η1,1Fss (3.132)

q
w(0)
1,1 (z) = kc0η1,1Fcs

k

k
(3.133)

p
w(0)
1,1 (z) =

ρ(kc0)2η1,1

k
Fcs (3.134)

Fss =
sinh k(h+ z)

sinh kH
(3.135)

Fcs =
cosh k(h+ z)

sinh kH
(3.136)

The O(ε0) perturbation solution for O(ε2) wave Rayleigh equation is given by

w
(0)
2,1(z) = − gη1,1

kc0 cosh kH
(k·∇HH) cosh k(h+ z)

− gη1,1

kc0 cosh kH
(k·∇HH)[k(h+ z)] sinh k(h+ z)

−g[
η1,1

2k2c0 cosh kH
(∇H·k) +

k

k
·∇H(

η1,1

kc0 cosh kH
) +

η1,1

2k3c0 cosh kH
(k·∇Hk)]

·[k(h+ z)] cosh k(h+ z)

− gη1,1

2k3c0 cosh kH
(k·∇Hk)[k(h+ z)]2 sinh k(h+ z) (3.137)

Thomas et al. (2012) give the second order wave solution for constant shear cur-

rent. The solutions are very similar to our perturbation results here. The contributions

to the second order wave solution w2,1 can be divided into three parts. The first part

is the spacial variation in bathymetry, or ∇HH related terms. It can be removed by

assuming flat bottom. The second part is the spacial variation in wave number and

frequency, which is ∇Hk,∇Hσw related terms. The third part is the spacial variations
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of O(ε) wave amplitude, which is ∇Hη1,1 related terms. It is apparent that the second

part contribution is far less than the third part.

The other O(ε2) wave variables can be written in terms of w
(0)
2,1.

p
(0)
2,1 =

iρ

k2
[k·(

∂q
(0)
1,1

∂T
+ q0,0·∇Hq

(0)
1,1 +

1

ρ
∇Hp

(0)
1,1 + q

(0)
1,1·∇Hq0,0 + w1,0

∂q
(0)
11

∂z
)

+ σw(
∂w

(0)
2,1

∂z
+∇H·q(0)

1,1)− ∂σw
∂z

w
(0)
2,1] (3.138)

q
(0)
2,1 = − i

σw
[
∂q0,0

∂z
w

(0)
2,1 +

ik

ρ
p

(0)
2,1

+ (
∂q

(0)
1,1

∂T
+ q0,0·∇Hq

(0)
1,1 +

1

ρ
∇Hp

(0)
1,1 + q

(0)
1,1·∇Hq0,0 + w1,0

∂q
(0)
1,1

∂z
)]

(3.139)

η
(0)
2,1 =

i

σs
[w

(0)
2,1 − (

∂η1,1

∂T
+ q0,0·∇Hη1,1 − η1,1

∂w1,0

∂z
)

+ (q
(0)
1,1 + η1,1

∂q0,0

∂z
)·∇Hη0,0)] (3.140)

Wave-averaged forces beyond O(ε4) does not contribute much to our problem.

Therefore we only keep w
(0)
2,1,q

(0)
2,1, p

(0)
2,1, η

(0)
2,1, χ

(0)
2,1, ξ

(0)
2,1,Ø

(0)
2,1, P

(0)
2,1 solutions. Meanwhile,

O(ε2) vorticity perturbation solutions obtained in Chapter 2 are rewritten as below.

χ
(0)
2,1 = −i

P
(0)
2,1

σw
−

(ξ0,0·k)w
(0)
2,1

σw
(3.141)

ξ
(0)
2,1 = −i[

Ø
(0)
2,1

σw
+ i

∂q0,0

∂z

P
(0)
2,1

σ2
w

+
∂q0,0

∂z

w
(0)
2,1(ξ0,0·k)

σ2
w

+
∂ξ0,0

∂z

w
(0)
2,1

σw
]

−
(ξ0,0·k)q

(0)
2,1

σw
(3.142)

Ø
(0)
2,1 =

∂ξ
(0)
1,1

∂T
+ (q0,0·∇H)ξ

(0)
1,1 + (q

(0)
1,1·∇H)ξ0,0 − (ξ0,0·∇H)q

(0)
1,1 − (ξ

(0)
1,1·∇H)q0,0

− χ1,0

∂q
(0)
1,1

∂z
+ w1,0

∂ξ
(0)
1,1

∂z
(3.143)

P
(0)
2,1 =

∂χ
(0)
1,1

∂T
+ (q0,0·∇H)χ

(0)
1,1 − (ξ

(0)
0,0·∇H)w

(0)
1,1

+ w
(0)
1,1

∂χ1,0

∂z
+ w1,0

∂χ
(0)
1,1

∂z
− χ1,0

∂w
(0)
1,1

∂z
− χ(0)

1,1

∂w1,0

∂z
(3.144)
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Chapter 4

MEAN FLOW DYNAMICS

In this chapter, we present wave-averaged momentum equations, continuity

equations, boundary conditions and vorticity equations up to O(ε3). Wave-averaged

forces in the momentum equations are identified in terms of the vortex force formal-

ism including the vortex force and the gradient of the Bernoulli head. Wave-averaged

terms also appear in the continuity equation and surface boundary conditions due to

Stokes drift. The depth-dependent, wave-averaged forces are discussed using the per-

turbation solution, and compared with MRL04 formula. Finally, the depth-integrated

momentum equations are compared with results from Smith (2006).

4.1 Mean Flow Momentum

First, we look at wave-averaged momentum equations in the multiple scale ex-

pansion from Chapter 2. At leading order, the mean flow equations at (n = 0,m = 0)

are given by

w0,0
∂q0,0

∂z
= 0; −h ≤ z ≤ ηc (4.1)

w0,0
∂w0,0

∂z
+

1

ρ

∂p0,0

∂z
+ g = 0; −h ≤ z ≤ ηc (4.2)

∂w0,0

∂z
= 0; −h ≤ z ≤ ηc (4.3)

w0,0 = 0; z = −h (4.4)

w0,0 = 0; z = ηc (4.5)

p0,0 = 0; z = ηc (4.6)
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Equation (4.3) - (4.5) generate a trivial solution for w0,0. Therefore, the vertical com-

ponent of leading order current velocity w0,0 is always zero and the flow is hydrostatic

at this order.

w0,0(z,X, T ) = 0; −h ≤ z ≤ ηc (4.7)

p0,0(z,X, T ) = ρg(ηc − z); −h ≤ z ≤ ηc (4.8)

At order (n = 1,m = 0), we get

∂q0,0

∂T
+ (q0,0·∇H)q0,0 + w1,0

∂q0,0

∂z
+

1

ρ
∇Hp0,0 = 0; −h ≤ z ≤ ηc (4.9)

1

ρ

∂p1,0

∂z
= 0; −h ≤ z ≤ ηc (4.10)

∂w1,0

∂z
+ ∇H·q0,0 = 0; −h ≤ z ≤ ηc (4.11)

w1,0 = −q0,0·∇Hh; z = −h (4.12)

w1,0 =
∂η0,0

∂T
+ q0,0·∇Hη0,0; z = ηc (4.13)

p1,0 = 0; z = ηc (4.14)

In Chapter 2, we divide the instantaneous surface elevation η into a wave-averaged

component ηc and an oscillatory component ηw. Consider the multiple scale expansion,

the wave-averaged component

ηc =
∞∑
n=0

εnηn,0 = η0,0 +O(ε) (4.15)

η0,0 is the leading order component of ηc. Based on Equation (4.10) - (4.14), we have

w1,0(z,X, T ) =
∂η0,0

∂T
+ q0,0·∇Hη0,0 +

∫ ηc

z

∇H·q0,0dz; −h ≤ z ≤ ηc (4.16)

p1,0(z,X, T ) = 0; −h ≤ z ≤ ηc (4.17)

∂η0,0

∂T
+ ∇H·(

∫ ηc

−h
q0,0dz) = 0 (4.18)

According to the continuity equation (4.11), w1,0 is induced by the slow scale horizontal

variations of the leading order current horizontal velocity q0,0. w1,0 is needed to get

wave action equation in Chapter 3. Equation (4.10) and (4.14) suggest that p1,0 is
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always zero, indicating that wave-induced mean pressure arises at O(ε2). Equation

(4.18) indicates mean flow mass conservation at leading order.

At order (n = 2,m = 0), quadratic wave terms appear. Based on the linear wave

continuity equation (3.3) and the relation between wave complex conjugates (4.19) -

(4.21),

w1,1ξ1,−1 = −w1,−1ξ1,1 (4.19)

χ1,1q1,−1 = −χ1,−1q1,1 (4.20)

(k·q1,1)η1,−1 = (k·q1,−1)η1,1 (4.21)

We rearrange the order (n = 2,m = 0) mean flow equations to get

∂q1,0

∂T
+ (q0,0·∇H)q1,0 + w1,0

∂q1,0

∂z
+

1

ρ
∇Hp1,0 + q1,0·∇Hq0,0 + w2,0

∂q0,0

∂z

= 0; −h ≤ z ≤ ηc (4.22)

∂w1,0

∂T
+ q0,0·∇Hw1,0 + w1,0

∂w1,0

∂z
+

1

ρ

∂p2,0

∂z
= − ∂

∂z
(q1,1·q1,−1 + w1,1w1,−1)

+ (q1,1 × ξ1,−1 + q1,−1 × ξ1,1); −h ≤ z ≤ ηc (4.23)

∂w2,0

∂z
+ ∇H·q1,0 = 0; −h ≤ z ≤ ηc (4.24)

w2,0 = −q1,0·∇Hh; z = −h (4.25)

w2,0 =
∂η1,0

∂T
+ q0,0·∇Hη1,0 + q1,0·∇Hη0,0; z = ηc (4.26)

p2,0 = −(η1,1
∂p1,−1

∂z
+ η1,−1

∂p1,1

∂z
); z = ηc (4.27)

The wave-average forces in (4.23) are represented in terms of the Bernoulli head gra-

dient and vortex force by expanding (2.13) and (2.14) at O(ε). It is obvious that only

the vertical component (4.23) of momentum equation has the wave-averaged force at

this order. The first part on the right hand side is the wave contribution to mean

pressure resulting from the vertical variation of Bernoulli head. The second one is part

of the wave vortex force. We assume that mean flow velocity is q0,0 and w1,0. The

wave-induced Stokes velocity is at the order of O(ε2). The horizontal component of the

momentum equation (4.22) is homogenous. Thus, q1,0 along with its corresponding
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vertical component w2,0 and η1,0 can be treated as trivial solutions or essentially ab-

sorbed in q0,0, w2,0, η0,0. We neglect these terms in the wave and mean flow equations

thereafter. The dynamic surface boundary condition (4.27) gives the wave-induced

pressure p2,0.

The order (n = 3,m = 0) mean flow equations are given by

∂q2,0

∂T
+ q0,0·∇Hq2,0 + w1,0

∂q2,0

∂z
+

1

ρ
∇Hp2,0 + q2,0·∇Hq0,0 + w3,0

∂q0,0

∂z

= [−∇H·(q1,1q1,−1 + q1,−1q1,1)] + [iz × (w1,1ξ2,−1 + w1,−1ξ2,1 + w2,1ξ1,−1 + w2,−1ξ1,1

−q1,1χ2,−1 − q1,−1χ2,1 − q2,1χ1,−1 − q2,−1χ1,1)]; −h ≤ z ≤ ηc (4.28)

1

ρ

∂p3,0

∂z
= [− ∂

∂z
(q1,1·q2,−1 + w1,1w2,−1 + q1,−1·q2,1 + w1,−1w2,1)]

+[(q1,1 × ξ2,−1 + q1,−1 × ξ2,1 + q2,1 × ξ1,−1 + q2,−1 × ξ1,1)]; −h ≤ z ≤ ηc (4.29)

∂w3,0

∂z
+∇H·q2,0 = 0; −h ≤ z ≤ ηc (4.30)

w3,0 − (
∂η2,0

∂T
+ q0,0·∇Hη2,0 + q2,0·∇Hη0,0) =

∇H·[(q1,1η1,−1 + q1,−1η1,1) +
∂q0,0

∂z
(η1,1η1,−1)]

+(η1,1η1,−1
∂2q0,0

∂z2
+ η1,1

∂q1,−1

∂z
+ η1,−1

∂q1,1

∂z
)·∇Hη0,0; z = ηc (4.31)

p3,0 = −(η1,1
∂p2,−1

∂z
+ η1,−1

∂p2,1

∂z
+ η2,1

∂p1,−1

∂z
+ η2,−1

∂p1,1

∂z
); z = ηc (4.32)

w3,0 = −q2,0·∇Hh; z = −h (4.33)

The wave-averaged forces in the momentum equations (4.28) and (4.29) are written

in terms of vortex force formalism at this order by expanding (2.13) and (2.14). For

each momentum equation, the first bracket on the right hand side denotes the gra-

dient of Bernoulli head, and the second bracket denotes vortex force. The kinematic

surface boundary condition (4.31) indicates that mean surface variations are affected

by horizontal divergence of depth integrated Stokes drift QSt and horizontal gradient

of leading order mean water surface elevation η0,0. The dynamic surface boundary

condition (4.32) gives the higher order wave-induced pressure p3,0. The Stokes drift

Qst is identified from (4.31) as

QSt = [q1,1(ηc)η1,−1 + q1,−1(ηc)η1,1] +
∂q0,0(ηc)

∂z
(η1,1η1,−1) (4.34)
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It is necessary to interpret the physical meaning of each mean flow variable in the

multiple-scale expansion. q0,0 and w1,0 stand for leading order current velocity. w1,0

is induced by the horizontal variation of q0,0 according to the leading order continuity

equation. q1,1 and w1,1 give O(ε) linear wave orbital velocities. q2,1 and w2,1 are O(ε2)

wave orbital velocities forced by slow variations of O(ε) waves along with current. q10 is

O(ε) current horizontal velocity and can be interpreted as weak current. w20 is induced

by horizontal variation of q10. These two terms only yield trivial solutions with strong

current assumption. Therefore they are neglected in our problem. q2,0 accounts for

mean flow velocity related to waves. w3,0 is induced by horizontal variation of q2,0. η0,0

is leading order mean surface elevation related to strong current dynamics. η1,0 is O(ε)

mean surface elevation related to q1,0 and w2,0, which are also neglected in our problem.

η2,0 represents wave-induced surface elevation variance known as wave set up/down.

p0,0 is leading order hydrostatic pressure. p1,0 is O(ε) mean pressure and is always

zero. p2,0 is mean pressure related to wave-averaged quasi-static pressure as well as

current dynamic pressure. p3,0 is mean pressure related to higher order wave-averaged

quasi-static pressure.

4.2 Mean Flow Vorticity

Mean flow quantities only vary over slow scales. Thus we can get mean flow

vorticity by taking the curl of mean flow velocity.

ξ0,0 = iz ×
∂q0,0

∂z
(4.35)

ξ1,0 = iz ×
∂q1,0

∂z
(4.36)

ξ2,0 = iz ×
∂q2,0

∂z
+∇H × izw1,0 (4.37)

and

χ0,0 = 0 (4.38)

χ1,0 = iz·(∇H × q0,0) (4.39)

χ2,0 = iz·(∇H × q1,0) (4.40)
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Mean flow vorticity equations are obtained through expansion of vorticity balance

equation (2.48) - (2.49). The vorticity equations below suggest that the slow variations

of mean flow vorticity are forced by the curl of wave vortex force.

The leading order vertical vorticity χ0,0 is always zero. O(ε) mean flow vorticity

equation only has the horizontal component.

∂ξ0,0

∂T
+ (q0,0·∇H)ξ0,0 + w1,0

∂ξ0,0

∂z
= (ξ0,0·∇H)q0,0 + χ1,0

∂q0,0

∂z
(4.41)

O(ε2) mean flow vorticity equations are given by

∂χ1,0

∂T
+ (q0,0·∇H)χ1,0 + w1,0

∂χ1,0

∂z
= (ξ0,0·∇H)w1,0 + χ1,0

∂w1,0

∂z
(4.42)

The ξ1,0 and χ2,0 only have trivial solution since q1,0 are trivial solutions. Therefore

we neglect the vorticity equations for ξ1,0 and χ2,0. We use the relation between linear

wave complex conjugate products (4.20) and non-divergence of O(ε) wave vorticity

(3.13). The O(ε3) mean flow vorticity equation is given by

∂ξ2,0

∂T
+ q0,0·∇Hξ2,0 + w1,0

∂ξ2,0

∂z
=
∂q0,0

∂z
χ3,0 − w30

∂ξ0,0

∂z
+ ξ2,0·∇Hq0,0

− (q2,0·∇Hξ0,0 − ξ0,0·∇Hq2,0) + χ1,0
∂q2,0

∂z

− ∇H·(q1,1ξ1,−1 + q1,−1ξ1,1) +∇H·(ξ1,−1q1,1 + ξ1,1q1,−1)

− ∂

∂z
(w2,1ξ1,−1 + w2,−1ξ1,1 + w1,1ξ2,−1 + w1,−1ξ2,1

− χ1,1q2,−1 − χ1,−1q2,1 − χ2,1q1,−1 − χ2,−1q1,1) (4.43)

To include O(ε3) vortex force terms in the vorticity equation, we need to look at

the O(ε4) vertical component of the vorticity equation. The horizontal component is

neglected. We also consider the non-divergence of O(ε2) wave vorticity (3.125) to get

∂χ30

∂T
+ q00·∇Hχ30 + w10

∂χ30

∂z
= −(q10·∇Hχ20 + q20·∇Hχ10)

+ (ξ00·∇Hw30 + ξ10·∇Hw20 + ξ20·∇Hw10)

− (w20
∂χ20

∂z
+ w30

∂χ10

∂z
) + (χ10

∂w30

∂z
+ χ20

∂w20

∂z
+ χ30

∂w10

∂z
)

+ ∇H·(w2,1ξ1,−1 + w2,−1ξ1,1 + w1,1ξ2,−1 + w1,−1ξ2,1

− χ1,1q2,−1 − χ1,−1q2,1 − χ2,1q1,−1 − χ2,−1q1,1) (4.44)

84



4.3 Wave-averaged Forces

We group the wave forces from the orders of mean flow momentum equations

and get the Bernoulli head κ and vortex force (J, K) as follows.

The Bernoulli head κ and vortex force (J, K) have the general form below.

∇κ = (ε∇H + iz
∂

∂z
)[ε2(q1,1·q1,−1 + w1,1w1,−1)

+ ε3(q1,1·q2,−1 + w1,1w2,−1 + q1,−1·q2,1 + w1,−1w2,1)] +O(ε4) (4.45)

J = iz × [ε2(w1,1ξ1,−1 + w1,−1ξ1,1 − q1,1χ1,−1 − q1,−1χ1,1)

+ ε3(w1,1ξ2,−1 + w1,−1ξ2,1 + w2,1ξ1,−1 + w2,−1ξ1,1

− q1,1χ2,−1 − q1,−1χ2,1 − q2,1χ1,−1 − q2,−1χ1,1)] +O(ε4) (4.46)

K = iz·[ε2(q1,1 × ξ1,−1 + q1,−1 × ξ1,1) + ε3(q1,1 × ξ2,−1 + q1,−1 × ξ2,1

+ q2,1 × ξ1,−1 + q2,−1 × ξ1,1)] +O(ε4) (4.47)

The Bernoulli head can be rewritten in terms of w1,1, w2,1 and their complex conjugates.

κ2, κ3 can be found in Appendix B, where

κ = ε2κ2 + ε3κ3 +O(ε4) (4.48)

We introduce a depth-dependent, slowly varying variable E?, which has the dimension

of energy. Detailed derivation of vortex force can be found in Appendix B.

E?(z,X, T ) =
σ2
wk

k2

∂

∂z
(
w1,1w1,−1

σ2
w

) (4.49)

Then the horizontal vortex force can be expressed in terms of w1,1 and its complex

conjugates. The vertical vortex force is also rearranged. (See (5.127) and (B.9) in
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Appendix B).

J(z,X, T ) = iz × {2[− D

DT
(
k·ξ0,0

σ2
w

E? +
∂ξ0,0

∂z

w1,1w1,−1

σ2
w

)− E?

σ2
w

D

DT
(k·ξ0,0)

− w1,1w1,−1

σ2
w

D

DT
(
∂ξ0,0

∂z
) + (−2w1,1w1,−1

σ2
w

∂q0,0

∂z
+

E?

σw
)·∇Hξ0,0 +

E?

σw

∂χ1,0

∂z

+ (
2w1,1w1,−1

σ2
w

∂ξ0,0

∂z
+

k·ξ0,0

σ2
w

E?)·∇Hq0,0 −
k·ξ0,0

σ2
w

E?∇H·q0,0

+ ξ0,0·∇H(
w1,1w1,−1

σ2
w

∂q0,0

∂z
) +

w1,1w1,−1

σ2
w

ξ0,0·∇H(
∂q0,0

∂z
)−

ξ0,0

σw
·∇HE?]

− χ1,0q
st(z)}+O(ε4) (4.50)

K(z,X, T ) = ε2K2 + ε3K3 +O(ε) (4.51)

where qst is depth-dependent Stokes drift velocity. In our problem, we allow strong

current with strong vertical shear. Thus, we have extra terms due to the difference in

direction between wave vector k and current velocity q0,0.

qst(z, T,X) =
∂

∂z
[

k

k2σw

∂w1,1w1,−1

∂z
− w1,1w1,−1

σ2
w

(
k

k2

∂σw
∂z

+
∂q0,0

∂z
)]

− w1,1w1,−1

σ2
w

(
k

k2

∂2σw
∂z2

+
∂2q0,0

∂z2
) (4.52)

In MRL04, the Stokes drift velocity excludes the current shear terms and therefore

(4.52) becomes

qst(z, T,X) =
∂

∂z
(

k

k2σw

∂w1,1w1,−1

∂z
) (4.53)

The MRL04 uses current-free linear wave solutions in the Stokes drift velocity, where

w1,1(z) = −iωη1,1
sinh k(H + z)

sinh kH
(4.54)

qst(z, T,X) =
a2ω

2 sinh2 kH
cosh 2k(H + z)k (4.55)

where |η1,1| = a/2. Equation (4.55) is the Stokes drift velocity obtained in MRL04.

It is also used in ROMS/SWAN coupled models (Uchiyama et al., 2010; Kumar et al.,

2011; Kumar et al., 2012).

4.4 Vortex Force for Strong Depth Uniform Current

The horizontal vortex force (4.50) is only related to slow variations of O(ε) waves

and the leading order current. Consider the simple case of depth uniform current, terms
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related to ξ0,0 vanish from horizontal vortex force (4.50) with only the last term left.

The vortex force now is the cross product of Stokes drift velocity and current vertical

vorticity.

J = −iz × qstχ1,0 (4.56)

K = 0 (4.57)

4.5 Vortex Force for Weak Current: Comparison with MRL04

The weak current assumption is used in wave-current interaction modeling as

discussed in MRL04. Here we provide the wave-averaged forces for the weak current

case and compare with their results. In MRL04, two horizontal space scales and three

time scales are considered. The fast scales (x, z, t) ∼ ε0 are used to describe wave

oscillatory motion and vertical variations. The slow scales (X, τ) ∼ ε−2 are used to

describe slowly varying features of both long waves and currents. The slowest time

scale T ∼ ε−4 is introduced as tidal current scale. The current velocities are assumed

to be weaker than wave orbital velocity, |qc/qw| ∼ O(ε) and therefore |qc/c0| ∼ O(ε2).

In our problem, we consider two horizontal space scales and two time scales.

The slow time scale T ∼ O(ε) in our paper is responsible for time variations of both

long waves and current. The weak current assumption with our scaling method is

|qc/c0| ∼ O(ε2). The wave forces are largely simplified as current related terms go at

least one order O(ε) higher. With the weak current assumption, the leading current

horizontal vorticity (4.41) is time independent up to O(ε2), see (4.58) below. Thus, the

time derivatives of ξ0,0 related terms are neglected in vortex force.

∂ξ0,0

∂T
= O(ε3) (4.58)

We apply weak current assumption and rescale the wave-averaged forces obtained in

previous section (see Equation (4.48), (4.50) and (4.51)). After manipulation, the
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vortex force (J, K) are simplified as

J = iz × {2[
E?

σw
·∇Hξ0,0 +

E?

σw

∂χ1,0

∂z
−
ξ0,0

σw
·∇HE?]− χ1,0q

st} (4.59)

K = − 1

k2

∂

∂z
(
w1,1w1,−1

σw
)k×

∂ξ0,0

∂z
(4.60)

We take the current-free linear wave solutions into Equation (4.59) and (4.60) and

reproduce equation (8.3) - (8.9) in MRL04 as shown below. Detailed derivation can be

found in Appendix C.

J = −iz × qstχ1,0 − wst
∂q0,0

∂z
−∇H [

∫ z

−H
qst(ζ)dζ·∂q0,0

∂z
] (4.61)

K = −
∫ z

−H
qst(ζ)dζ·∂

2q0,0

∂z2
(4.62)

E? = σ2
wa

2 sinh 2k(H + z)

4 sinh2 kH

k

k
(4.63)

qst = σwa
2 cosh 2k(H + z)

2 sinh2 kH
k (4.64)

wst = −∇H·[
∫ z

−H
qst(ζ)dζ] = −∇H·[

σwa
2k

4k sinh2 kH
sinh 2k(H + z)] (4.65)

where wst(z) is pseudo vertical Stokes drift velocity. Thus, the Stokes drift velocity

(qst, wst) satisfies the continuity equation.

∇H·qst +
∂wst

∂z
= 0 (4.66)

Additional manipulations of Equation (4.61) and (4.62) are needed to obtain the final

form of wave vortex force as widely used in ROMS/SWAN coupled model (Uchiyama

et al., 2010; Kumar et al., 2012). We rewrite the vertical vortex force K as

K = qst·∂q0,0

∂z
− ∂

∂z
[

∫ z

−H
qst(ζ)dζ·∂q0,0

∂z
] (4.67)

Following MRL04, the third term in horizontal vortex force (4.61) and the second term

in vertical vortex force (4.67) can be treated as pressure gradient and therefore moved

to the Bernoulli head term. The form of vortex force used in ROMS/SWAN coupled

model by Uchiyama et al. (2010) and Kumar et al. (2012) is given as

J = −iz × qstχ1,0 − wst
∂q0,0

∂z
(4.68)

K = qst·∂q0,0

∂z
(4.69)
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The vortex force with weak current assumption will be implemented in NHWAVE/SWAN

(NHWAV E thereafter) model to compare with the strongly sheared current formula-

tion. The comparison results are provide in Chapter 5.

4.6 Vortex Force for Constantly Sheared Current

In Chapter 3, we discussed the wave vorticity based on analytical solutions for

constant shear current. Here we also use the constant shear current case to compare the

present wave-averaged forces (DK16 thereafter) with MRL04 results. To simplify the

comparison, we assume that waves travel exactly on either opposing current or following

current over a flat bed. The constant shear flow is assumed to be in x-direction.

qx0,0 = qs0,0(1 + α
z

h
) (4.70)

qy0,0 = 0 (4.71)

α =
Ωsh

qs0,0
(4.72)

where α is the normalized form of the constant vorticity Ωs. The current vorticity is

given as

ξx0,0 = 0 (4.73)

ξy0,0 = Ωs (4.74)

χ0,0 = −(
∂qs0,0
∂Y

+
∂Ωs

∂Y
z) (4.75)

∂χ0,0

∂z
= −∂Ωs

∂Y
(4.76)

k·ξ0,0 = 0 (4.77)

The intrinsic frequency σ, surface intrinsic frequency σs and dispersion relation are

given as

σ = ω − kqs0,0(1 + α
z

h
) (4.78)

σs = ω − kqs0,0 (4.79)

∂σ

∂z
= −kΩs (4.80)

σ2
s = (gk − σsΩs) tanh kH (4.81)
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The wave-averaged forces are largely reduced. The vertical component of vortex force

is zero for this case.

J = iz × {2[(−2w1,1w1,−1

σ2
w

∂q0,0

∂z
+

E?

σw
)·∇Hξ0,0 +

E?

σw

∂χ1,0

∂z

+ ξ0,0·∇H(
w1,1w1,−1

σ2
w

∂q0,0

∂z
) +

w1,1w1,−1

σ2
w

ξ0,0·∇H(
∂q0,0

∂z
)−

ξ0,0

σw
·∇HE?]

− χ1,0q
st(z)} (4.82)

K = 0 (4.83)

qst =
∂

∂z
(

k

k2σw

∂w1,1w1,−1

∂z
) (4.84)

Since waves and currents are co-directional, waves are still irrotational for this case

(Constantin, 2011). The O(ε) wave solution for constant shear current are then given

as

w1,1 = −iσsη1,1Fss (4.85)

The vortex force involves the slow variation of current and waves. Hence we need to

specify the current and wave scales for comparison. Consider waves with amplitude

2 m propagate on a constant shear flow with surface velocity qs0,0 = 3.5 m/s and

shear |α| = 1. The water depth is set as 25 m. We vary the wave lengths so that

the non-dimensional wave number kh ranges from shallow water (kh = 0.2) to deep

water (kh = 3). The wave solutions for depth uniform current are applied to MRL04

vortex force (Uchiyama et al., 2010). The analytical wave solutions are applied to

DK16 vortex force. To calculate the spacial gradient of variables, the slow spacial scale

is assumed to be 5 km. The y-direction gradient of current shear is assumed to be

positive ∂Ωs/∂Y > 0. Both opposing current and following current are considered in

the comparison. The results are given for three cases: deep water (kh = 3) as shown

in Figure 4.1 and 4.2, intermediate water (kh = 1) as shown in Figure 4.3 - 4.4 and

shallow water (kh = 0.2) as shown in 4.5 - 4.6. The conclusions are given as below

1). The Stokes drift velocity is slightly modified by the current shear effect as

shown in upper right panel. DK16 Stokes drift velocity is slightly smaller than MRL04

near the water surface and larger near the bottom for the opposing current. This effect

90



reverses for the following current. The Stokes drift velocity magnitude is smaller for

long waves. The velocity profile tends to be depth uniform for shallow water.

2). The DK16 x-component vortex force magnitude is slightly larger than

MRL04 result for the opposing current and smaller for the following current. The

magnitude also decreases from deep water to shallow water. The vertical profile tends

to be linear for shallow water. The direction of x-component vortex force is determined

by the y-direction gradient of current shear ∂Ωs/∂Y .

3). The DK16 y-component vortex force deviates from MRL04 result from deep

water to shallow water. It decreases and changes sign as the shear effects become

larger for longer waves. After changing the sign, the DK16 y-component vortex force

magnitude increases. The MRL04 result is nearly zero for shallow water.

The effects of surface current velocity qs0,0 and current shear Ωs are also evaluated

in Figure 4.7 and 4.8. The figures indicate that DK16 Stokes drift velocity and vortex

force converges to MRL04 results for smaller surface current velocity or smaller current

shear.

4.7 Wave-averaged Forces with Full Perturbation Solutions

So far, we have obtained the general form of Bernoulli head and vortex force

for strong current with strong shear. We need to seek wave solutions to evaluate the

wave-averaged forces. There are two methods considered here to introduce the current

effects on wave solutions. One is following MRL04 and formulates the problem by

assuming weak current. This method leads to the current-free linear wave solutions at

the leading order and includes the current effects in order O(ε2) wave equations. The

other method is to following our strong current and strong shear assumption and get

the Rayleigh equation. However, to avoid directly solving the Rayleigh equation, we

obtain wave solutions from the KC89 perturbation method. The current effects will

then appear in O(ε) perturbation solutions for the leading order wave equation. In this

chapter, we focus on the reduction of our wave-averaged forces based on perturbation

solutions. The comparison between numerical solutions and perturbation solutions in
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Figure 4.1: Opposing constant shear current and deep water (α = −1, kh = 3). Blue
Solid indicates MRL04 results; Red Dash indicates DK16 results. Upper
Left: the surface current velocity is −3.5 m/s and bottom current velocity
is zero. Upper Right: DK16 Stokes drift velocity is slightly larger than
MRL04 for the opposing current. Lower Left: DK16 x-component vortex
force magnitude is slightly larger than MRL04. Lower Right: DK16 y-
component vortex force magnitude is smaller than MRL04.
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Figure 4.2: Following constant shear current in deep water (α = 1, kh = 3). Blue
Solid indicates MRL04 results; Red Dash indicates DK16 results. Upper
Left: the surface current velocity is 3.5 m/s and bottom current velocity
is zero. Upper Right: DK16 Stokes drift velocity is slightly smaller than
MRL04 for the opposing current. Lower Left: DK16 x-component vortex
force magnitude is slightly smaller than MRL04. Lower Right: DK16 y-
component vortex force magnitude is smaller than MRL04.
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Figure 4.3: Opposing constant shear current in intermediate water (α = −1, kh = 1).
Blue Solid indicates MRL04 results; Red Dash indicates DK16 results.
Upper Left: the surface current velocity is −3.5 m/s and bottom current
velocity is zero. Upper Right: DK16 Stokes drift velocity is slightly
smaller than MRL04 near the water surface and larger near the bottom.
The velocity profile tends to be depth uniform. Lower Left: DK16 x-
component vortex force magnitude is slightly larger than MRL04. Lower
Right: DK16 y-component vortex force changes sign compared to MRL04
due to the current shear effect.
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Figure 4.4: Following constant shear current and deep water (α = 1, kh = 1). Blue
Solid indicates MRL04 results; Red Dash indicates DK16 results. Upper
Left: the surface current velocity is 3.5 m/s and bottom current veloc-
ity is zero. Upper Right: DK16 Stokes drift velocity is slightly larger
than MRL04 near the water surface and smaller near the water bot-
tom. The velocity profile tends to be depth uniform. Lower Left: DK16
x-component vortex force magnitude is slightly smaller than MRL04.
Lower Right: DK16 y-component vortex force changes sign compared to
MRL04 due to the current shear effect.

95



Figure 4.5: Opposing constant shear current in shallow water (α = −1, kh = 0.2).
Blue Solid indicates MRL04 results; Red Dash indicates DK16 results.
Upper Left: the surface current velocity is −3.5 m/s and bottom current
velocity is zero. Upper Right: DK16 Stokes drift velocity is slightly
smaller than MRL04 near the water surface and larger near the bottom.
The velocity profile tends to be depth uniform. Lower Left: DK16 x-
component vortex force magnitude is slightly larger than MRL04. Lower
Right: DK16 y-component vortex force changes sign compared to MRL04
due to the current shear effect. The MRL04 result is nearly zero.
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Figure 4.6: Following constant shear current and deep water (α = 1, kh = 0.2). Blue
Solid indicates MRL04 results; Red Dash indicates DK16 results. Upper
Left: the surface current velocity is 3.5 m/s and bottom current velocity
is zero. Upper Right: DK16 Stokes drift velocity is slightly larger than
MRL04 near the water surface and smaller near the bottom. The velocity
profile tends to be depth uniform. Lower Left: DK16 x-component vortex
force magnitude is slightly smaller than MRL04. Lower Right: DK16 y-
component vortex force changes sign compared to MRL04 due to the
current shear effect. The MRL04 result is nearly zero.

97



Figure 4.7: Following constant shear current in shallow water (α = 0.2, kh = 0.2).
Blue Solid indicates MRL04 results; Red Dash indicates DK16 results.
Upper Left: the surface current velocity is −3.5 m/s. Upper Right: DK16
Stokes drift velocity converges to MRL04 for smaller current shear. Lower
Left: DK16 x-component vortex force converges to MRL04 result. Lower
Right: DK16 y-component vortex force converges to MRL04 result for
smaller current shear. The MRL04 result is non-zero and proportional
to Stokes drift velocity.

98



Figure 4.8: Following constant shear current in shallow water (α = 1, kh = 0.2). Blue
Solid indicates MRL04 results; Red Dash indicates DK16 results. Upper
Left: the surface current velocity is−0.5 m/s. Upper Right: DK16 Stokes
drift velocity converges to MRL04 for smaller surface current velocity.
Lower Left: DK16 x-component vortex force converges to MRL04 result.
Lower Right: DK16 y-component vortex force converges to MRL04 result
for smaller surface current velocity. The MRL04 result is non-zero.
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Chapter 3 suggests that the KC89 O(ε) perturbation solution is a good approximation.

Hence, we follow the work done by KC89 to take O(ε) perturbation solutions to the

wave-averaged forces (see Equation (4.48), (4.50) and (4.51)). It is noteworthy that

slow scale variations (∂/∂T,∇H) are not involved in O(ε) wave solutions. We may

represent wave variables as the function of vertical coordinate z only. The Bernoulli

head and vortex force can be rewritten as follow

κ = ε2κ
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2 + ε3(κ
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2 + κ
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where w
(0)
1,1 and w

(1)
1,1 are the O(ε0) and O(ε) perturbation solutions, respectively. The

wave-averaged forces in terms of perturbation solutions will also be implemented in

our NHWAV E model as formulation for the strongly sheared current.

4.8 Depth-integrated Equations for Wave-averaged Flow

In this section, we integrate the horizontal momentum equation for mean flow

with wave-averaged forces over depth. The resulting equations are the barotropic

mode governing equations for a 3D ocean circulation model. We have left out density

variations at this point. We combine all the orders of mean flow equations (n =

0, 1, 2, 3) in this section and use φc as the mean flow variables and φw as wave variables.

φc =
∞∑
n=0

εnφn,0 = φ0,0(X, z, T ) + εφ1,0(X, z, T ) + ε2φ2,0(X, z, T ) + · · · (4.98)
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(4.99)

We integrate the horizontal momentum equation over depth. The results give the

depth-integrated equations for wave-averaged flow. First we look at the surface bound-

ary conditions.

The surface kinematic boundary condition is given by

wc − ∂ηpc

∂T
− qc·∇Hη

pc = ε2[
∂ηst

∂T
+ qc·∇Hη

st +∇H·QSt

+ (< ηw
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∂z
> +

1

2

∂2qc

∂z2
< ηw2 >)·∇Hη

c]; z = ηc (4.100)

Here we treat the instantaneous surface elevation η = ηc + εηw, where ηc is mean

water surface level including wave setup/down. Therefore we can further divide ηc =

ηpc+ε2ηst, where ηpc stands for pure current and long wave contribution to mean water

surface level and ηst accounts for wave setup/down. Then we expand kinematic surface
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boundary condition at z = ηc to be consistent with multiple scale expansion. We also

consider the definition of Stokes drift in Eulerian framework.

QSt = ε2(
1

2

∂qc

∂z
< ηw2 > + < qwηw >)|z=ηc (4.101)

The expression is equivalent to Equation 4.34 up to O(ε2). Term ∇H·QSt is the mass

transfer at the surface as mentioned in Hasselmann (1971) and Newberger and Allen

(2007a). The last term on the right hand side in (4.100) is usually neglected as mean

surface elevation is assumed to be much smaller than the water depth ηc/h ∼ O(ε).

However, this term can’t be neglected in the surf zone. We keep it here in case that

long wave amplitude is comparable to still water depth in shallow water region.

The surface dynamic boundary condition is given by

pc = − < ηw
∂pw

∂z
>; z = ηc (4.102)

The wave pressure term in (4.102) corresponds to MRL04 (9.11) in Section 9.3.

The vertical momentum equation gives the wave-averaged pressure pc(z). Here we only

consider the wave-induced dynamic pressure.

pc(z) = pc(ηc) + ρg(ηc − z) + ρ[ε3
∫ ηc

z

∇H· < qwww > dz

+ ε2(< ww2(ηc) > − < ww2(z) >)]; −h ≤ z ≤ ηc (4.103)

The term
∫ ηc
z
∇H· < qwww > dz is always zero because qw and ww are out of phase.

The O(ε) wave equations satisfy ηw∂pw/∂z|z=ηc = ρ < ww2(ηc) > at the free surface

(see Equation (3.2) and (3.5)). Thus the wave-averaged pressure pc(z) can be reduced

to

pc(z) = ρg(ηc − z)− ρ < ww2(z) >; −h ≤ z ≤ ηc (4.104)

The bottom condition is given by

wc = −qc·∇Hh; z = −h (4.105)
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The depth-integrated continuity equation is given by
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The depth-integrated horizontal momentum equation is given by
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To compare with Smith’s (2006) mean flow equation (2.28 and 2.29), we adopt the

leading order wave solutions for depth-uniform current and assume ηc/h ∼ O(ε) .

Terms related to ∇Hη
c in surface boundary condition and depth-integrated continuity

equation are neglected. The mean pressure (4.103) is kept up to O(ε2). The first

term on the RHS of (4.108) is the combined term of Bernoulli head and wave-induced

dynamic pressure, which causes wave setup/down (4.109). The second term is the

depth-integrated vortex force based on J in (4.56) and qst in (4.65). The third term

is the momentum change due to wave-induced mass source/sink at the surface. If we

consider wave dissipation during propagation, we can add a dissipation term Dw as a

driving force on the RHS, which is identical to Smith’s (2006) results.
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−h
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c = ε2{gH∇Hη
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+QSt × (∇H × qc|z=ηc)− qc|z=ηc [∇H·QSt]}+ Dw (4.108)

ηst = − 1

2g
< qw2 − ww2 >; z = ηc (4.109)

QSt =

∫ ηc
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qstdz (4.110)
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wc − ∂ηpc

∂T
− qc·∇Hη

pc = ε2[
∂ηst

∂T
+ qc·∇Hη

st +∇H·QSt]; z = ηc (4.112)

pc = − < ηw
∂pw(ηc)

∂z
>= −ρ < ww2(ηc) >; z = ηc (4.113)

pc(z) = ρg(ηc − z)− ρ < ww2(z) >; −h ≤ z ≤ ηc (4.114)
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Chapter 5

THE COUPLED NHWAVE/SWAN MODEL (NHWAV E)

The wave-current interaction theory and application for waves propagating on

a strongly sheared current have been presented in the last few chapters. The wave-

averaged forces in the mean flow momentum equation are given in terms of the Craik-

Leibovich vortex force formalism. The wave action conservation equation including

the effect of vertical current shear is derived. Solutions to wave Rayleigh instability

equation are required to obtain the wave-averaged forces. The comparison with numer-

ical solutions and perturbation solutions of the wave Rayleigh equation based on the

measured current velocity profile is discussed. Results suggest that the perturbation

solution up to O(ε) is a fairly good approximation to wave solutions for the real cur-

rent velocity profile. Furthermore, the numerical study of the wave action conservation

equation recommends that the depth-weighted current be used as the equivalent uni-

form current in the wave action flux. In addition, the dependence of the depth-weighted

current on wave number should also be considered in the wave action advection veloc-

ity for the spectral wave model. Finally, the wave-averaged forces are computed using

the perturbation solution instead of the numerical solution to avoid extra computation

time. The formulation is an extension of the McWilliams et al. (2004) vortex force for-

malism to include strong current vertical shear effects. The ultimate goal of the study

is to apply the wave-current interaction theory to the coupled ocean circulation/wave

model system.

Efforts have been made in the numerical modeling of wave-current interaction

during the past decade. Warner et al. (2008) developed a three-dimensional wave-

current interaction model based on the USGS/ROMS and SWAN wave model. The
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wave-averaged forces in the coupled model are based on Mellor’s (2003, 2005) depth-

dependent radiation stress formulation. The model coupling of ROMS and SWAN

relies on the Model-Coupling Toolkit (MCT), which provides protocols for the decom-

position and allocation of model grids among different processors and efficient data

transfer between models. SWAN sends wave heights, wavelength, averaged wave pe-

riods at surface and bottom, wave direction, near-bottom orbital velocity and wave

energy dissipation to ROMS. ROMS sends water depth, mean surface elevation and

depth-averaged current velocity to SWAN. In the COAWST model, the depth-weighted

current derived by Kirby and Chen (1989) is implemented by Kumar et al. (2011). The

time interval of data exchange between wave model and flow model can be adjusted

for different cases.

The formulation obtained by Dingemans et al. (1987) is adopted in the cou-

pled Delft3D-FLOW and SWAN model. The radiation stress is separated into three

components in terms of wave energy dissipation, the gradient of a volume force and

some extra rotational terms. In the 3D implementation, the wave dissipation due to

depth-induced breaking and whitecapping is applied to the top layer and the wave

dissipation due to bottom friction is applied to the bed layer. The remaining terms

are added to the momentum equation and spread over the water column. The depth-

weighted current of KC89 also included as an option passing to SWAN in the coupled

Delft3D-FLOW and SWAN model (Lesser, 2009; Elias et al., 2012).

The wave-averaged forces that consist of a surface stress caused by wave dis-

sipation, a body force which is related to the vortex force and a gradient part of the

radiation stress are derived by Newberger and Allen (2007a). The formulation is ap-

plied to the extended Princeton Ocean Model (POM) and validated with DUCK94 data

(Newberger and Allen, 2007b). Shi et al. (2006) formulate a Craik-Leibovich wave vor-

tex force for a quasi-3D circulation model. In the model, numerical consistency in using

two different types of wave forces (radiation stress and vortex force) are discussed. The

model is validated in rip currents simulations. Results suggest that both formulations

generate identical results when the wave and circulation models are closely coupled.
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The Craik-Leibovich vortex force formulation gives a closer result than the radiation

stress formulation, when the models are not closely coupled at each time step. The

paper also indicates that a tight model coupling plays a key role in the wave-current

interaction. Uchiyama et al. (2010) present a wave-current interaction model with the

vortex force formulation based on UCLA/ROMS and SWAN (McWilliams et al., 2004;

Uchiyama et al., 2010). The wave dissipation driving force is divided vertically by us-

ing a depth-dependent function that represents the vertical penetration of momentum

induced by breaking waves and rollers from the surface. Several alternative shapes

of the vertical function are provided including the first one as proposed by Warner

et al. (2008). The function is designed to vertically distribute the stress terms related

to wave rollers and exponentially decays with depth. The model is validated using

DUCK94 experiment (Newberger and Allen, 2007b). Kumar et al. (2011, 2012) apply

both revised version of radiation stress by Mellor (2008) and vortex force formulation

by McWilliams et al. (2004) in USGS/ROMS and SWAN. Several simulations such

as longshore current, rip current and DUCK94 are presented and the cross-shore and

vertical distribution of wave forces are illustrated.

In this paper, the coupling of a wave-averaged version of the NHWAVE (Ma

et al., 2012) non-hydrostatic circulation model with the SWAN wave model is devel-

oped. The McWilliams et al. (2004) vortex force formalism is first utilized and tested

in this coupled model. An extension to the strong current shear discussed in Chapter

4 is then added and compared with McWilliams et al. (2004) vortex force formalism.

5.1 Introduction to NHWAVE Model

A non-hydrostatic model (NHWAVE) for simulating dispersive free-surface hy-

drodynamics has been developed by Ma et al. (2012). The model solves the incom-

pressible Reynolds-Averaged Navier-Stokes equations in surface and terrain-following

form using a σ-coordinate transformation. A hybrid finite-volume and finite-difference

scheme is adopted to discretize the equations. A staggered grid framework is pro-

vided, in which the velocity is at the cell center and the pressure is at the cell vertical
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face. Thus the pressure boundary condition at the free surface can be precisely im-

posed. A Shock-capturing Godunov-type scheme is used to solve the momentum equa-

tions. Bottom movement is considered in order to simulate the underwater landslide-

generated tsunamis. The hydrostatic equations are solved by a well-balanced finite

volume method. The fluxes at cell faces are estimated by HLL Riemann approxima-

tion. To obtain the second-order temporal accuracy, the nonlinear Strong Stability-

Preserving (SSP) Runge-Kutta scheme is adopted for adaptive time stepping (Gottlieb

et al., 2001). The model is parallelized using the Message Passing Interface (MPI). The

high performance pre-conditioner HYPRE software library is used to solve the Poisson

equation (http://acts.nersc.gov/hypre/).

5.1.1 Governing equations

Following Ma et al. (2012), the incompressible Navier-Stokes equations in Carte-

sian coordinates (x∗, y∗, z∗, t∗) are transformed into σ-coordinates (x, y, σ, t), where

σ = (z∗ + h)/H. h(x, y, t) is still water depth, η(x, y, t) water surface elevation, and

H(x, y, t) = h+η is the total local water depth. The final form of momentum equations

are given below. g is gravitational acceleration. u(x, y, σ, t), v(x, y, σ, t), w(x, y, σ, t) are

the flow velocity. ω(x, y, σ, t) is the vertical velocity in σ-coordinates, which is defined

as the velocity normal to a constant σ level. ρ is water density. p(x, y, σ, t) is pres-

sure. pd(x, y, σ, t) is dynamic pressure. p and pd are related by p = pd + ρg(η − z∗).

τij, (i, j) = x, y, z is the turbulence stress. The resulting equations are given by

∂H

∂t
+

∂Hu

∂x
+
∂Hv

∂y
+
∂ω

∂σ
= 0 (5.1)

∂U

∂t
+

∂F

∂x
+
∂G

∂y
+
∂H

∂σ
= Sh + Sp + Sτ (5.2)

U = (Hu,Hv,Hw)T (5.3)

F = (Huu+
1

2
gH2, Huv,Huw)T (5.4)

G = (Huv,Hvv +
1

2
gH2, Hvw)T (5.5)

H = (uω, vω, wω)T (5.6)
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Sh = (gH
∂h

∂x
, gH

∂h

∂y
, 0)T (5.7)

Sp = (−H
ρ

(
∂pd
∂x

+
∂pd
∂σ

∂σ

∂x∗
),−H

ρ
(
∂pd
∂y

+
∂pd
∂σ

∂σ

∂y∗
),−1

ρ

∂pd
∂σ

)T (5.8)

Sτ = (HSτx, HSτy, HSτz)
T (5.9)

Sτx =
∂τxx
∂x

+
∂τxx
∂σ

∂σ

∂x∗
+
∂τxy
∂y

+
∂τxy
∂σ

∂σ

∂y∗
+
∂τxz
∂σ

∂σ

∂z∗
(5.10)

Sτy =
∂τyx
∂x

+
∂τyx
∂σ

∂σ

∂x∗
+
∂τyy
∂y

+
∂τyy
∂σ

∂σ

∂y∗
+
∂τyz
∂σ

∂σ

∂z∗
(5.11)

Sτz =
∂τzx
∂x

+
∂τzx
∂σ

∂σ

∂x∗
+
∂τzy
∂y

+
∂τzy
∂σ

∂σ

∂y∗
+
∂τzz
∂σ

∂σ

∂z∗
(5.12)

where ω is defined as the vertical velocity in σ-coordinates. ω is zero at the surface

and the bottom.

ω = H
dσ

dt∗
= H(

∂σ

∂t∗
+ u

∂σ

∂x∗
+ v

∂σ

∂y∗
+ w

∂σ

∂z∗
) (5.13)

ω(1) = 0 (5.14)

ω(0) = 0 (5.15)

The turbulent stress is expressed using velocity strain rate and turbulent viscosity νt.

τxx = 2νt(
∂u

∂x
+
∂u

∂σ

∂σ

∂x∗
) (5.16)

τyy = 2νt(
∂v

∂y
+
∂v

∂σ

∂σ

∂y∗
) (5.17)

τzz = 2νt(
∂w

∂σ

∂σ

∂z∗
) (5.18)

τxy = τyx = νt(
∂u

∂y
+
∂u

∂σ

∂σ

∂y∗
+
∂v

∂x
+
∂v

∂σ

∂σ

∂x∗
) (5.19)

τxz = τzx = νt(
∂u

∂σ

∂σ

∂z∗
+
∂w

∂x
+
∂w

∂σ

∂σ

∂x∗
) (5.20)

τyz = τzy = νt(
∂v

∂σ

∂σ

∂z∗
+
∂w

∂y
+
∂w

∂σ

∂σ

∂y∗
) (5.21)
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The relation between σ with x∗, y∗, z∗, t∗ is

∂σ

∂t∗
=

1

H

∂h

∂t∗
− σ

H

∂H

∂t∗
=

1

H

∂h

∂t
− σ

H

∂H

∂t
(5.22)

∂σ

∂x∗
=

1

H

∂h

∂x∗
− σ

H

∂H

∂x∗
=

1

H

∂h

∂x
− σ

H

∂H

∂x
(5.23)

∂σ

∂y∗
=

1

H

∂h

∂y∗
− σ

H

∂H

∂y∗
=

1

H

∂h

∂y
− σ

H

∂H

∂y
(5.24)

∂σ

∂z∗
=

1

H
(5.25)

5.1.2 Boundary Conditions

In NHWAVE, boundary conditions are required to solve the governing equations.

At the free surface, the continuity of normal and tangential stresses are enforced.

Without wind stress, the tangential stress equals zero. If we assume that the mean

water surface is never steep or wavy and neglect ∂σ/∂x∗ and ∂σ/∂y∗ terms in higher

order derivatives (Derakhti et al., 2016), the surface boundary condition can be written

as

∂u

∂σ
|z=η =

∂v

∂σ
|z=η = 0 (5.26)

The kinematic boundary condition at the free surface is

w|z=η =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(5.27)

Without atmospheric pressure changes, tangential stress or normal stress, the zero

pressure condition is enforced at the free surface when solving the Poisson equation.

p|z=η = 0 (5.28)

At the bottom, the tangential stress and normal velocity are prescribed. The normal

velocity w includes the rate of change of bottom with time to generate landslide (Ma

et al., 2013).

w|z=−h = −∂h
∂t
− u∂h

∂x
− v∂h

∂y
(5.29)
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For the horizontal velocities, either free-slip boundary conditions

∂u

∂σ
|z=−h =

∂v

∂σ
|z=−h = 0 (5.30)

The Neumann boundary condition is used to get the dynamic pressure, which is directly

obtained from the vertical momentum equation.

∂p

∂σ
|z=−h = −ρH dw

dt
|z=−h (5.31)

where w is given by the bottom boundary condition.

5.1.3 Turbulence Model

In this study, the nonlinear k−ε model (Lin and Liu, 1998) is applied to simulate

the turbulence generated by sheared current. The equations are given by

∂Hktur

∂t
+∇·(Humk

tur) = ∇·[H(ν +
νt
σk

)∇ktur] +H(Ps + Pb − εtur) (5.32)

∂Hεtur

∂t
+∇·(Humε

tur) = ∇·[H(ν +
νt
σε

)∇εtur]

+
εtur

ktur
H(C1εPs + C3εPb − C2εε

tur) (5.33)

where um is the mixture fluid phase velocity considering both liquid and bubble. ktur

is turbulent kinetic energy, εtur is turbulent dissipation rate, σk = 1.0, σε = 1.3, C1ε =

1.44, C2ε = 1.92, C3ε = −1.4 are empirical coefficients (Rodi, 1980). Ps is the shear

production. Pb is the buoyancy production, which is described as

Pb = − 1

ρ0

gνt
∂ρm
∂z

(5.34)

ρ0 is the reference density of the incompressible liquid, and ρm is the mixture fluid

phase density.

5.2 Introduction to SWAN Wave Model

The calculation of the wave-averaged driving forces in the momentum equations

requires wave properties such as wave height, wave direction, wave length and wave en-

ergy dissipation. Wave period and bottom orbital velocity are needed for wave-averaged
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bottom stress. In the coupled numerical model, these variables are obtained from the

third-generation numerical wave model SWAN (Simulating Waves Nearshore) (Booij

et al., 1999). The model governing equation is the wave action conservation equation

for each discrete spectral component, which accounts for wave refraction by bathymetry

and ambient currents. The model is driven by local winds and boundary data. Physical

processes such as wind generation, white-capping, bottom dissipation and quadruplet

wave-wave interactions are explicitly represented. Depth-induced wave breaking and

triad wave-wave interactions are also included. The numerical propagation scheme is

implicit.

5.2.1 Wave Action Balance Equation

In SWAN, wave propagation is described using the two-dimensional wave action

density spectrum N(σw, θ), where σw is wave intrinsic (relative) frequency and θ is

wave direction. The reason to using the wave action as the computing property is

because wave energy density is no longer conserved in the presence of the slowly varying

ambient current (Bretherton and Garrett, 1968). Therefore the evolution of wave action

spectrum is described in the Cartesian coordinates.

∂N

∂t
+

∂

∂x
(cxN) +

∂

∂y
(cyN) +

∂

∂σw
(cσN) +

∂

∂θ
(cθN) =

S

σw
(5.35)

The first term on the LHS is the local changing rate of wave action density with

time. The second and the third term account for the wave action density propagation

in horizontal space. The fourth term stands for the shifting of the intrinsic frequency

due to the variations in bathymetry and ambient currents. The fifth term represents

wave refraction induced by varying bathymetry and currents. Both the wave action

density and the propagation speeds in SWAN are based on linear wave theory. The

term S on the RHS contains all the source terms such as wind-generation, dissipation

and nonlinear wave-wave interactions. The introduction to each source term included

in SWAN is given by Booij et al. (1999).
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In our coupled model, we provide the depth-weighted current by Kirby and Chen

(1989) as an alternative. The effects of depth-averaged current and depth-weighted

current on wave action have been compared in Chapter 3. In the strongly sheared

current case, the current velocity (see Equation (3.97)) is applied.

5.3 Coupling Scheme of NHWAVE and SWAN

Following the coupling scheme of SHORECIRC-SWAN by Shi et al. (2013),

we subdivide the NHWAVE code into multiple regions using a domain decomposition

technique and assign each sub-domain to a separate processor core. The Message

Passing Interface (MPI) with non-blocking communication is used to exchange data in

the overlapping region between neighboring processors.

For the SWAN code, we keep the existing domain decomposition scheme which

is slightly different from the NHWAVE code (see Figure 5.1). The version 40.51AB

of SWAN uses a single-direction domain decomposition and takes into account the

number of dry points in the grid splitting. Due to the different domain decompositions

between NHWAVE and SWAN, it is difficult to directly pass variables between the

decomposed domains. We now use a two-step mapping method which first gathers a

passing variable into the global domain and then distributes it into each sub-domain.

The input parameters and variables are merged into one single input file. The

computation time duration and interval are defined in SWAN input part. The NHWAVE

and SWAN are coupled at each time step. During the coupled model run, SWAN passes

to NHWAVE the significant wave height, peak direction, peak period, wave bottom ve-

locity, dissipation by white-capping, dissipation by breaking, dissipation by friction,

total dissipation rate and fraction of breaking waves. NHWAVE passes to SWAN the

depth-averaged current and water surface elevation. To avoid directional spreading ef-

fect in lateral direction, the SWAN variables at the center line of computation domain

are extracted and passed to NHWAVE.
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Figure 5.1: Domain decomposition of SWAN and NHWAVE. SWAN uses a single
direction domain decomposition. The direction is chosen for dimension
with more grid cells. NHWAVE uses a more flexible decomposition tech-
nique.

5.4 Numerical Application of Vortex Forces by Uchiyama et al. (2010)

5.4.1 Governing equations

The NHWAVE and SWAN are first coupled using vortex force formulation orig-

inally from McWilliams et al. (2004). The asymptotic theory has been rearranged and

applied in numerical model ROMS/SWAN and validated with measurements (Uchiyama

et al., 2010). With the weak current assumption, our theory yields exactly the results

obtained by McWilliams et al. (2004). It is easier to start with this version of forcing

formulation since the arbitrary vortex force formulation is largely reduced. We extend

it to include the present strong shear formulation in the next section. The governing

equations with wave vortex force are first given in Cartesian coordinates for comparison
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purpose.

∂qc

∂t
+ (qc·∇h)q

c + wc
∂qc

∂z
+

1

ρ
∇hp

c = −∇hκ+ J + Fw (5.36)

∂wc

∂t
+ (qc·∇h)w

c + wc
∂wc

∂z
+

1

ρ

∂pc

∂z
+ g = −∂κ

∂z
+K (5.37)

∇h·qc +
∂wc

∂z
= 0 (5.38)

wc|−h + qc|−h·∇hh = 0 (5.39)

wc|ηc −
∂ηc

∂t
− (qc·∇h)η

c = ∇h·Qst (5.40)

pc|ηc = Pw (5.41)

In the momentum equations, the Coriolis force and turbulence Reynolds stress are

firstly neglected, which can be easily added to the equation later. The wave-averaged

forces consist of the gradient of Bernoulli head κ, vortex force (J, K) as well as the

non-conservative wave dissipation forces Fw. (qc, wc) represent the Eulerian mean flow

velocity. The depth-dependent continuity equation indicates the mass conservation of

the mean flow with the wave part removed after wave-averaged. The divergence of

the depth-integrated Stokes drift ∇h·Qst appears on the RHS of the kinematic surface

boundary condition as a wave-induced mass source/sink term (Hasselmann, 1970). The

mean water surface elevation ηc includes wave setup/setdown. Pw is the wave-averaged

forcing term at z = ηc. The Stokes drift velocity is given

qst(z) =
A2σwk

2 sinh2 kH
cosh 2k(z + h) (5.42)

wst(z) = −∇h·
∫ z

−h
qstdz′ (5.43)

where A is defined as wave amplitude. qst and wst satisfies the mass conversation law.

∇h·qst +
∂wst

∂z
= 0 (5.44)

The Stokes transport is the depth integral of qst,

Qst =

∫ ηc

−h
qstdz =

A2σwk

4k sinh2 kH
sinh 2kH =

E

ρc

k

k
=
N

ρ
k (5.45)
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where E is the total wave energy and N is wave action. In addition, the surface

roller is usually introduced to better represents surf zone currents (Svendsen, 1984).

Surface rollers are defined as onshore-traveling bores of broken primary waves. As

waves propagate onshore, a fraction αr of wave energy is converted to rollers before

dissipating, while the remaining fraction 1 − αr causes local dissipation. The rollers

store the dissipated wave energy and gradually transfer it to the mean flow causing a

lag in the transfer of momentum. αr varies between 0 and 1. αr = 0 means that no

wave energy converts to roller energy, while αr = 1 means full wave energy converts to

roller energy. The roller area (AR) is obtained from Svendsen (1984).

AR = 0.06HwLw (5.46)

where Hw is the wave height and Lw is the wave length. The roller action density (N r)

is then defined as

Ir =
ρgHARQs

2Lwσw
(5.47)

where Qs is the fraction of broken waves obtained from SWAN model (0 ≤ Qs ≤ 1).

σw is wave intrinsic frequency. A wave roller model is provided to describe the wave

roller energy evolution by Reniers et al. (2004).

∂N r

∂t
+∇h·(N rc) =

αrε
b − εr

σw
(5.48)

where c is the wave phase speed; εb is wave dissipation as a source passed from SWAN

to NHWAVE; εr is the roller dissipation rate as a sink. According to Svendsen (1984),

the roller transport is

Qr =
N r

ρ
k (5.49)

The total wave-induced transport considering wave rollers is rewritten as

Qst =
N +N r

ρ
k (5.50)

We assume that the wave-induced transport is vertically distributed similarly to Stokes

velocity, then the horizontal Stokes velocity is rewritten as

qst =
σ2
w cosh 2k(z +H)

g sinh2 kH
(N +N r)k (5.51)
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The vortex force is represented in terms of current shear and Stokes drift velocity.

J = −iz × qstχc − wst∂qc

∂z
(5.52)

K = qst·∂qc

∂z
(5.53)

The Bernoulli head is given by

κ = −1

4

σwA
2

k sinh2 kH

∫ z

−h

∂2σw
∂z′2

sinh 2k(z − z′)dz′ (5.54)

According to Uchiyama et al. (2010), the non-conservative wave forces Fw contain the

depth-induced breaking and roller accelerations Bb, the wave-induced bottom stream-

ing Bwd and the wave-enhanced turbulent vertical mixing Dw at the surface and bottom

layers. We introduce each of the terms below. The expression for Fw is given by

Fw = Bb + Bwd + Dw (5.55)

The wave breaking acceleration Bb is used as a body force in mean flow momentum

equations, which is given by

Bb(z) =
εbk

ρσw
f b(z) (5.56)

We introduce a vertical distribution function f b(z) that represents vertical penetra-

tion of momentum associated with breaking waves and rollers. The shape function is

normalized as ∫ ηc

−h
f b(z′)dz′ = 1 (5.57)

Three alternative shapes for the vertical distribution are given by Uchiyama et al.

(2010).

f b1(z) = 1− tanh4 kb(η
c − z) (5.58)

f b2(z) = 1− tanh2 kb(η
c − z) (5.59)

f b3(z) = cosh kb(z + h) (5.60)

where the vertical length scale k−1
b is determined either by the wave height or by the

wave length. k−1
b represents the penetration depth of each shape function. We usually
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represent k−1
b = abHw or kb = 2k, where ab is an O(1) constant, Hw = 2A is wave

height and k is wave number. For long waves, kb = 2k may give a penetration depth

larger than wave height. k−1
b = abHw is then recommended.

In the presence of the bottom friction, the horizontal and vertical wave orbital

velocities (qw, ww) are slightly in phase, causing a net-Reynolds stress < qwww >.

This stress generates bottom streaming (Longuet-Higgins, 1953; Xu and Bowen, 1994).

Wave-induced bottom streaming Bwd is similarly represented as a body force

Bwd(z) =
εwdk

ρσw
fwd(z) (5.61)

Three types of vertical distribution function are given by

fwd1 (z) = 1− tanh4 kwd(h+ z) (5.62)

fwd2 (z) = 1− tanh2 kwd(h+ z) (5.63)

fwd3 (z) = cosh kwd(η
c − z) (5.64)

where the vertical length scale k−1
wd is determined by the wave boundary layer thickness.

k−1
wd is typically a few centimeters. When k−1

wd is too thin to be resolved by the model

grid, the bottom streaming acceleration is applied only as a stress in the bottom grid

cell.

In the presence of waves, the eddy viscosity νt is augmented by wave breaking

at the surface and current drag at bottom.

Dw =
∂

∂z
[(νbrkt + νcdt )

∂qc

∂z
] (5.65)

Following Uchiyama et al. (2010), the mixing induced by surface wave breaking

νbrkt is vertically distributed with a shape function f ν(z).

νbrkt = cb[
(1− αr)εb + εr

ρ
]1/3HwHf

ν(z) (5.66)

where Hw is wave height, cb is an O(10−1) constant. The vertical distribution function

f ν(z) is very similar to f b(z). The vertical scale k−1
ν in the shape function is usually

determined by wave height with k−1
ν = aνHw, where aν is an O(1) constant. Both wave
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breaking and wave roller-enhanced mixing are considered in the model. In the bottom

boundary layer, the wave motions enhance the bottom stress τ cdbot (Soulsby, 1995). νcdt

is determined by τ cdbot.

τ cdbot = τ c[1.0 + 1.2(
|τw|

|τw|+ |τc|
)3.2] (5.67)

τ c = ρ[
κ

ln (zm/z0)
]2|qc|qc (5.68)

|τw| =
1

2
ρfw|qworb|2 (5.69)

where τ c and τw are bottom stresses due to current and waves, respectively. κ is the

von Karman constant; z0 is the bed roughness; zm is a reference depth above the bed,

nominally equivalent to a half bottom-most grid cell height; fw = 1.39(σwz0/|qworb|)0.52

is the wave friction factor given by Soulsby (1997). |qworb| = σwHw/(2 sinh kH) is the

bottom wave orbital velocity.

Wave set-down is given by

ηst = − A2k

2 sinh 2kH
(5.70)

Surface pressure term is integrated and manipulated as in McWilliams et al. (2004).

Pw =
2gA2k2

σw

tanh kH

sinh 2kH

∫ ηc

−h
(k·qc) cosh 2k(h+ z)dz =

Ũ(k)gA2k2 tanh kH

σw
(5.71)

where Ũ(k) is the depth-weighted current speed (Kirby and Chen, 1989).

5.4.2 Application in model

5.4.2.1 Stokes drift velocity

First, we give wave-induced Stokes drift velocity (qst, wst) in σ coordinate. The

expression is given below

qst =
A2σwk

2 sinh2 kH
cosh 2kHσ (5.72)

wst = −∇h · [
A2σwk

4k sinh2 kH
sinh 2kHσ] (5.73)
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The mean water surface level is

ηc = ηpc + ηst (5.74)

H = h+ ηc (5.75)

σ =
z + h

H
(5.76)

There is no change in the form of the Stokes transport.

Qst =
A2σwk

4k sinh2 kH
sinh 2kH (5.77)

5.4.2.2 Vortex force

The wave vortex force (J, K)and Bernoulli head κ are re-written in σ-coordinates.

Jx = vstχc − wst

H

∂u

∂σ
(5.78)

Jy = −ustχc − wst

H

∂v

∂σ
(5.79)

K =
ust

H

∂u

∂σ
+
vst

H

∂v

∂σ
(5.80)

κ =
σwA

2

4k sinh2 kH
[−(

kx
H

∂u

∂σ
|−h +

ky
H

∂v

∂σ
|−h) sinh 2kHσ (5.81)

+2k

∫ σ

0

∂(k · qc)
∂σ′

cosh 2kH(σ − σ′)dσ′]

5.4.2.3 Wave dissipation

The shape functions for wave breaking accelerations are rewritten in σ coordi-

nates. f b3 is used here.

f b1 = 1− tanh4 kbH(1− σ) (5.82)

f b2 = 1− tanh2 kbH(1− σ) (5.83)

f b3 = cosh kbHσ (5.84)
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The shape functions for wave bottom streaming acceleration are rewritten in σ coor-

dinates. fwd3 is used here.

fwd1 = 1− tanh4 kwdHσ (5.85)

fwd2 = 1− tanh2 kwdHσ (5.86)

fwd3 = cosh kwdH(1− σ) (5.87)

5.4.2.4 Continuity equation

In the presence of waves, the wave-averaged continuity equation may include

Stokes drift velocity. However, the Stokes drift velocity has already been assumed to

satisfy mass conservation as shown in (5.44). Stokes drift velocity is unnecessary in

continuity equation. Thus, we write the σ-coordinates continuity equation in terms of

Eulerian velocity (uc, vc, wc).

∂H

∂t
+
∂Huc

∂x
+
∂Hvc

∂y
+
∂ωc

∂σ
= 0 (5.88)

5.4.2.5 Boundary condition

The wave-averaged surface boundary condition is given by

wc|ηc =
∂ηc

∂t
+ uc|ηc

∂ηc

∂x
+ vc|ηc

∂ηc

∂y
+∇h·Qst (5.89)

pc|ηc =
2gA2k2

σw

tanh kH

sinh 2kH

∫ 1

0

(k·qc) cosh 2kHσHdσ (5.90)

The wave-induced mass source/sink term∇h·Qst is represented by the depth-integration

of continuity equation. In σ-coordinates, the surface boundary condition satisfies

ωc|ηc = 0 (5.91)

The bottom boundary condition is

wc|−h = −(
∂h

∂t
+ uc|−h

∂h

∂x
+ vc|−h

∂h

∂y
) (5.92)

It is noteworthy that the boundary conditions are also valid for non-hydrostatic case.
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5.4.2.6 Momentum equation

The momentum equation is given with wave-averaged forces in σ-coordinate.

∂U

∂t
+

∂F

∂x
+
∂G

∂y
+
∂H

∂σ
= Sh + Sp + S(1)

w + S(2)
w + SNC

w + Sτ (5.93)

U = (Huc, Hvc, Hwc)T (5.94)

F = (Hucuc +
1

2
gH2, Hucvc, Hucwc)T (5.95)

G = (Hvcuc, Hvcvc +
1

2
gH2, Hvcwc)T (5.96)

H = (ωcuc, ωcvc, ωcwc)T (5.97)

Sh = (gH
∂h

∂x
, gH

∂h

∂y
, 0)T (5.98)

Sp = (−H
ρ

(
∂pcd
∂x

+
∂pcd
∂σ

∂σ

∂x∗
),−H

ρ
(
∂pcd
∂y

+
∂pcd
∂σ

∂σ

∂y∗
),−1

ρ

∂pcd
∂σ

)T (5.99)

S(1)
w = (−H(

∂κ

∂x
+
∂κ

∂σ

∂σ

∂x∗
),−H(

∂κ

∂y
+
∂κ

∂σ

∂σ

∂y∗
),−∂κ

∂σ
)T (5.100)

S(2)
w = (H(vstχc − wst

H

∂uc

∂σ
), H(−ustχc − wst

H

∂vc

∂σ
), ust

∂uc

∂σ
+ vst

∂vc

∂σ
)T (5.101)

SNCw = HFw (5.102)

χc = (
∂vc

∂x
+
∂vc

∂σ

∂σ

∂x∗
)− (

∂uc

∂y
+
∂uc

∂σ

∂σ

∂y∗
) (5.103)

Sτ = (HSτx, HSτy, HSτz)
T (5.104)

Sτx =
∂τxx
∂x

+
∂τxx
∂σ

∂σ

∂x∗
+
∂τxy
∂y

+
∂τxy
∂σ

∂σ

∂y∗
+
∂τxz
∂σ

∂σ

∂z∗
(5.105)

Sτy =
∂τyx
∂x

+
∂τyx
∂σ

∂σ

∂x∗
+
∂τyy
∂y

+
∂τyy
∂σ

∂σ

∂y∗
+
∂τyz
∂σ

∂σ

∂z∗
(5.106)

Sτz =
∂τzx
∂x

+
∂τzx
∂σ

∂σ

∂x∗
+
∂τzy
∂y

+
∂τzy
∂σ

∂σ

∂y∗
+
∂τzz
∂σ

∂σ

∂z∗
(5.107)

S
(1)
w is the wave-induced Bernoulli head gradient. S

(2)
w is the rearranged wave vortex

force. The wave-induced dynamic pressure is included in S
(1)
w and S

(2)
w . Thus Sp

accounts for mean flow and long wave dynamic pressure. The multiple scale expansion

procedure preserves the non-hydrostatic behavior in the momentum equation. The

non-hydrostatic motion can appear in pressure p2,0 and vertical velocity w1,0. In the

hydrostatic mode, the contribution of w1,0 to p2,0 is neglected. Thus, p2,0 only contains

wave-induced pressure. SNC
w is non-conservative wave forceing including wave breaking

and whitecapping dissipation Bb, bottom streaming Bwd and wave-induced mixing Dw
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(see Equation (5.55)). Wave mixing contains wave effect on eddy viscosity and bottom

drag. Sτ only accounts for mean flow turbulent stresses.

The vortex force formulations in Uchiyama et al. (2010) and Kumar et al. (2012)

are very similar. Here we compare our governing equations with Kumar et al. (2012).

First of all, our governing equations are based on Eulerian velocity while Kumar et al.

(2012) are based on Lagrangian velocity. However, the Eulerian velocity and Stokes

velocity are written separately in Kumar et al. (2012) momentum equations (Equation

11, 12). Specifically, ∂U/∂t is the local acceleration (marked as ACC in Kumar et al.,

2012 and thereafter). The momentum flux part of (∂F/∂x + ∂G/∂y + ∂H/∂σ) gives

the horizontal advection (HA) and vertical advection (VA). Compared to Kumar et al.

(2012), Stokes velocity terms are not showing in our momentum equations because we

use Eulerian continuity equation. The Coriolis forces induced by Eulerian and Stokes

flow (COR and StCOR) are not considered in our problem and therefore neglected. The

pressure part of (∂F/∂x+ ∂G/∂y + ∂H/∂σ), S(h) and S
(1)
w give the pressure gradient

(PG). The horizontal component of S
(2)
w gives the horizontal vortex force (HVF). SNC

w

is corresponding to the contribution of breaking (BA) and roller (RA) acceleration,

bottom (BtSt) streaming terms and the wave-induced mixing terms (BF + HM +

VM). In conclusion, the expressions in Uchiyama et al. (2010) and Kumar et al. (2012)

are not exactly the same as our implementation.

5.5 Numerical Application of the Present Formulation

5.5.1 Governing equations

The wave vortex force formulation for strongly sheared current are similarly ap-

plied to NHWAV E model. With the strong current shear assumption, the expressions

of Stokes velocity, vortex force and Bernoulli head are modified. All the other formula

remain the same as in Uchiyama et al.’s (2010) vortex force formulation. The governing
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equations keep the same form except the surface kinematic boundary condition.

∂qc

∂t
+ (qc·∇h)q

c + wc
∂qc

∂z
+∇hp

c = −∇hκ+ J + Fw (5.108)

∂wc

∂t
+ (qc·∇h)w

c + wc
∂wc

∂z
+
∂pc

∂z
+
gρ

ρ0

= −∂κ
∂z

+K (5.109)

∇h·qc +
∂wc

∂z
= 0 (5.110)

wc|−h + qc|−h·∇hh = 0 (5.111)

wc|ηc −
∂ηpc

∂t
− qc|ηc·∇hη

pc = ε2[
∂ηst

∂t
+ qc|ηc·∇hη

st +∇h·QSt

+ (< ηw
∂qw

∂z
> +

1

2

∂2qc

∂z2
< ηw2 >)·∇hη

c] (5.112)

pc|ηc = Pw; z = ηc (5.113)

The difference from the former surface boundary condition is that (< ηw∂qw/∂z >

+∂2qc/∂z2 < ηw2 > /2)·∇hη
c is added. To include current shear effects, O(ε) wave

perturbation solutions are adopted.

w1,1 = w
(0)
1,1 + εw

(1)
1,1 = −iσsη1,1

f(z)

f(ηc)
(5.114)

w
(0)
1,1 = −iσsη1,1

f0(z)

f(ηc)
(5.115)

w
(1)
1,1 = −iσsη1,1

f1(z)

f(ηc)
(5.116)

σw(z) = k(c0 + Ũ)− k·q0,0(z) (5.117)

where

f(z) = f0(z) + f1(z) (5.118)

f0(z) = sinh k(H + z) (5.119)

c2
0 =

g

k
tanh kH (5.120)

f1(z) = −[
k̂·q0,0(z) + k̂·q0,0(−h)

c0

+
2kI1(z)

c0

]f0(z) +
2I2(z)

c0

∂f0

∂z
(5.121)

I1(z) =

∫ z

−H
k̂ · q0,0(ζ) sinh 2k(H + ζ)dζ (5.122)
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I2(z) =

∫ z

−H
k̂ · q0,0(ζ) cosh 2k(H + ζ)dζ (5.123)

Ũ(k) =
2k

sinh 2kH

∫ ηc

−H
k̂·q0,0(z) cosh 2k(H + z)dz (5.124)

The strong current shear vortex force formulation is given in Chapter 4. Components

κ3 in Bernoulli head and K3 in vertical vortex force are expressed using O(ε2) wave

perturbation solutions, which make very little contribution compared to other compo-

nents. Thus, the two components are neglected in the model. In addition, the time

derivatives in horizontal vortex force are neglected since these terms are relatively small.

Let f̂(z) = f(z)/f(ηc), the equations used for numerical application are rearranged in

terms of wave amplitude A as below.

κ =
σ2
sA

2

4
[

1

k2
(
∂f̂

∂z
)2 + f̂ 2 +

f̂ 2

σ2
w

∂q0,0

∂z
·∂q0,0

∂z
− f̂ 2

σ2
wk

2
(
∂σw
∂z

)2] (5.125)

J = iz × {(−
σ2
sA

2f̂ 2

2σ2
w

∂q0,0

∂z
+

E?

σw
)·∇hξ0,0 +

E?

σw

∂χ1,0

∂z

+ (
σ2
sA

2f̂ 2

2σ2
w

∂ξ0,0

∂z
+ k·

ξ0,0

σ2
w

E?)·∇hq0,0 − k·
ξ0,0

σ2
w

E?∇h·q0,0

+ ξ0,0·∇h(
σ2
sA

2f̂ 2

4σ2
w

∂q0,0

∂z
) +

σ2
sA

2f̂ 2

4σ2
w

ξ0,0·∇h(
∂q0,0

∂z
)

−
ξ0,0

σw
·∇hE

? − χ1,0q
st(z)} (5.126)

K =
σ2
sA

2f̂ 2

2σ2
w

∂q0,0

∂z
×
∂ξ0,0

∂z

− σwσ
2
sA

2

4k2

∂

∂z
(
f̂ 2

σ2
w

)k× (
∂q0,0

∂z
k·
ξ0,0

σw
+
∂ξ0,0

∂z
) (5.127)

E? =
σ2
sA

2k

4k2
(
∂f̂ 2

∂z
− 2f̂ 2

σw

∂σw
∂z

) (5.128)

qst =
σ2
sA

2

4

∂

∂z
[

k

k2σw

∂f̂ 2

∂z
− f̂ 2

σ2
w

(
k

k2

∂σw
∂z

+
∂q0,0

∂z
)]

− σ2
sA

2f̂ 2

4σ2
w

(
k

k2

∂2σw
∂z2

+
∂2q0,0

∂z2
) (5.129)

QSt =
A2

2

kσs
k2

(
∂f̂

∂z
− 1

σs

∂σw
∂z

)|ηc −
A2

4

∂q0,0(ηc)

∂z
(5.130)
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Equation (5.126) and (5.127) indicate that vertical Stokes drift velocity wst is not

needed for wave vortex force. The wave forces (∂κ/∂z,K) in vertical momentum

equation indicate that the wave-induced dynamic pressure is included in the Bernoulli

head gradient and vortex force terms. The dynamic surface boundary condition (5.113)

is consistent with Bernoulli head gradient and vortex force at surface.

pc = − < ηw
∂pw

∂z
>; z = ηc (5.131)

The wave dissipation accelerations are assumed to be the same as the weak current

assumption in last section. The wave set-down ηst is the combined effect of leading order

Bernoulli head and wave-induced dynamic pressure and included in the momentum

equation. S2
w needs to be modified since the vortex force for strongly sheared current

loses the concise form as in Uchiyama et al. (2010). The general form is given by

S(2)
w = (HJx, HJy, HK)T (5.132)

where Jx and Jy are the components of the horizontal vortex force.

5.6 Application to Longshore Current Simulation

5.6.1 Model setup

To test the wave vortex force formulations for both weak current assumption

and strongly sheared current assumption, an ideal longshore current case is used. This

problem was first presented by Haas and Warner (2009). The purpose was to compare

a quasi-3D model (SHORECIRC) with a fully-3D model (ROMS) based on radiation

stress formulation. It was also used by Uchiyama et al. (2010) and Kumar et al. (2011,

2012) for both vortex force formulation and radiation stress formulation. The test

case simulates longshore current driven by obliquely incident waves on a planar beach

with constant slope of 1/80. Following Uchiyama et al. (2010), the offshore waves

are specified by the JONSWAP spectrum with 2 m significant wave height, 10 s peak

period and an angle 10◦ off the shore-normal direction. The wave fields are obtained

from an independent SWAN run and used here as input in the coupled model. The wave
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parameters such as significant wave heights, peak wave period, peak wave direction and

wave dissipation are provided as input files to NHWAVE without necessarily activating

SWAN.

The longshore current case is only used to test the vortex force formulation.

SWAN is not activated. The model results will be compared with the previous results

(Haas and Warner, 2009; Uchiyama et al., 2010; Kumar et al., 2012). The incident

waves are idealized in input files. The horizontal domain is 1260 m in cross-shore

direction (x) and 140 m in longshore direction (y). The size of grid cell is constant

∆x = ∆y = 20 m. The water depth h starts at 12 m offshore and decreases to 0.01

m. The vertical direction (z) is discretized with 20 uniform vertical σ levels. The

model imposes a solid wall boundary with minimum actual water depth hmin = 0.01 m

(wave set up included) at the shoreward boundary. The longshore boundary condition

is set as periodic to obtain the longshore uniform wave forcing and current velocity.

The earth rotation is neglected since the space scale is relatively small. There is

no lateral momentum diffusion or stratification. Wave roller and bottom streaming

accelerations are also excluded (Uchiyama et al., 2010). During the model run, the

breaking acceleration Bb uses a type (3) shape function (see Equation (5.84)) with

kb = 2k. The wave up is generated by the cross-shore wave dissipation. The k − ε

turbulence model is used in the simulation. The bottom stress model is used as τ cdbot =

ρcD|ū|u, where the drag coefficient cD = 0.0015. |ū| is depth-averaged horizontal

current velocity. u is the horizontal current velocity at the bottom-most grid cells.

The time integration is continued until a steady solution occurs. The cross-shore

distribution of wave height and wave dissipation is shown in Figure 5.2. The shoreward

decrease in Hsig is caused by wave breaking. The shoreline is at x = 1000 m in cross-

shore distance. The wave breaking occurs between x = 500 m to x = 1000 m with the

wave dissipation peak near x = 750 m.
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Figure 5.2: (Upper) Cross-shore distribution of water depth and incident significant
wave height. Solid line: water depth; Dotted Line: significant wave
height. The bathymetry is idealized as a planar beach with slope 1/80.
The incident significant wave height is set as 2 m offshore. As waves
approaching nearshore, the wave height increases due to shoaling effect
and decreases to zero due to break at the surfzone. (Lower) Cross-shore
distribution of wave dissipation (εb/ρ0).
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Figure 5.3: (Upper) Cross-shore and vertical distribution of undertow with maximum
velocity 0.15 m/s . Black dotted line: zero-velocity at each cross-shore
location; Blue solid line: x-direction velocity at each cross-shore location.
(Lower) Color map of eddy viscosity in x − z coordinate plane. Results
are based on Uchiyama et al. (2010) vortex force formulation and k − ε
turbulence model.

5.6.2 Results from Uchiyama et al. (2010) vortex force

The model results based on 3-hour run using Uchiyama et al. (2010) vortex force

formula are given as below. The upper panel of Figure 5.3 illustrates the undertow

distribution in the x− z coordinate plane. The maximum horizontal velocity is about

0.15 m/s. The lower panel of Figure 5.3 gives the distribution of eddy viscosity in

x − z coordinate plane. The maximum eddy viscosity occurs between x = 0.6 km

and x = 0.7 km in cross-shore direction, where the maximum current vertical shear

happens.

In the cross-shore direction (see upper panel of Figure 5.4), the depth-integrated
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(2D) Eulerian onshore transport Hūst induced by Stokes drift in the surfzone is bal-

anced with the offshore undertow Hūc according to mass conservation.

ūc = −ūst (5.133)

In the longshore direction (see middle panel of Figure 5.4), a strong current velocity

is driven by wave breaking-induced dissipation. The analytical solution of the long-

shore current velocity v̄ is obtained from the depth-integrated (2D) momentum balance

of wave breaking acceleration and bottom drag as shown in Equation (5.134), where

Equation (5.133) implies separate sub-balances between vortex force Jy and along-

shore advection −ūst∂v̄/∂x = ūc∂v̄/∂x. The model output longshore current velocity

is compared with the analytical solution in the middle panel of Figure 5.4. Overall, v̄

corresponds to the analytical solution fairly well. The model output maximum long-

shore current velocity v̄max agrees with analytical solution. The model results give

slightly larger v̄ landward of v̄max and smaller v̄ seaward of v̄max because of the 3D

current in the bottom drag force and residual vortex force term −wst∂v/∂z.

ρ0cD|ū|v̄ =
εbky
σw

(5.134)

The wave-induced set up/down in the cross-shore direction is shown in the lower panel

of Figure 5.4. The cross-shore barotropic momentum balance is dominated by the wave-

average pressure gradient and wave breaking-induced acceleration as shown below.

g
∂ηc

∂x
=

εbkx
ρ0Dσw

+ g
∂ηst

∂x
(5.135)

where ηst is wave set-down. The analytical mean surface elevation ηc can be retrieved

by integrating Equation (5.135) from the offshore boundary where ηc = ηst (assuming

εb = 0 at offshore boundary). We compare the analytical mean surface with the model

output in the lower panel of Figure 5.4. The model results agree well with analytical

solution outside of surf zone (see lower panel of Figure 5.4). The model output wave

setup is slightly smaller than the analytical solution in the surf zone, which is caused

by the residual Bernoulli head effect.
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Figure 5.4: (Upper) Cross-shore distribution of depth-averaged x-component Stokes
drift velocity ust and undertow uc. Solid line: undertow; Dotted line:
Stokes drift velocity. (Middle) Cross-shore distribution of depth-averaged
longshore current. Solid line: model output; Dotted line: analytical so-
lution. (Lower) Cross-shore distribution of mean surface elevation. Solid
line: model output; Dotted line: analytical solution. The analytical
cross-shore profile of ηc is approximately retrieved by integrating Equa-
tion (5.135) from offshore boundary with ηc = ηst. Results are based on
Uchiyama et al. (2010) vortex force formulation.

131



Figure 5.5: Color map of current velocity in cross-shore section (x − z coordinate
plane). (Upper) cross-shore (x-component) current velocity uc. (Mid-
dle) longshore (y-component) current velocity vc. (Lower) vertical (z-
component) current velocity wc. Results are based on Uchiyama et al.
(2010) vortex force formulation.
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Figure 5.6: Color map of wave Stokes drift velocity in cross-shore section (x− z co-
ordinate plane). (Upper) cross-shore (x-component) Stokes velocity ust.
(Middle) longshore (y-component) Stokes velocity vst. (Lower) vertical
(z-component) Stokes velocity wst. Results are based on Uchiyama et al.
(2010) vortex force formulation.
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The color map of current velocity and Stokes drift velocity are given in Figure

5.5 and Figure 5.6, respectively. Figure 5.5 gives the vertical distribution of undertow

(x) in the upper panel, longshore current (y) in the middle panel and vertical velocity

(z) in the lower panel. The onshore mass transport induced by Stokes drift creates a

descending flow near the bottom in the surf zone. The vertical velocity is relatively

small compared to undertow and longshore current. Figure 5.6 gives the vertical struc-

ture of wave-induced Stokes velocity ust (upper), vst (middle) and wst (lower). The

flow patterns of x-component mean velocity u and y-component velocity v are pro-

vided by Uchiyama et al. (2010) in Figure 18. The flow patterns of both mean velocity

and Stokes drift velocity are also provided by Kumar et al. (2012) in Figure 2. The

comparison among these results indicates that the flow patterns are very similar.

The vertical distribution of wave breaking dissipation is calculated using Type

III shape function in (5.84) with kb = 2k (Figure 5.7). The vertical distribution of

wave breaking acceleration can largely affect the flow patterns of both undertow and

longshore current as indicated in Figure 2 of Uchiyama et al. (2010). The more surface-

confined wave breaking force (Column a in Figure 2) generates stronger surface onshore

transport and weaker longshore current compared to the more uniformly distributed

wave breaking force (Column b in Figure 2).

The vortex forces and Bernoulli head gradient are shown in Figure 5.8 and

Figure 5.9, respectively. The x and y components of vortex force in Figure 5.8 are

very similar to Figure 3 in Kumar et al. (2012). However, the z-component vortex

force is not given in either Uchiyama et al. (2010) or Kumar et al. (2012) results. As

discussed in Chapter 4, the wave-averaged pressure consists of the hydrostatic pressure

ρg(ηc−z) and the wave-induced dynamic pressure −ρ < ww2(z) > in hydrostatic mode

(4.104). In our model, the Bernoulli head includes the wave-induced dynamics pressure

−ρ < ww2(z) > and wave set-down ηst. The wave set-down is reflected in x-component

Bernoulli head gradient as the upper panel of Figure 5.9. The x-direction gradient of

wave set-down is depth-uniform. The wave-averaged force is the sum of vortex forces

and Bernoulli head gradient, which is shown in Figure 5.10.
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Figure 5.7: Color map of wave breaking dissipation force (Bb) in cross-shore sec-
tion (x − z coordinate plane). The wave disspation force is applied in
wave directon and therefore has cross-shore and longshore component.
(Upper) cross-shore (x-component) wave dissipation. (Lower) longshore
(y-component) wave dissipation. Results are based on Uchiyama et al.
(2010) vortex force formulation.
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Figure 5.8: Color map of wave vortex force in x − z coordinate plain. (Upper) x-
component vortex force. (Middle) y-component vortex force. (Lower)
z-component vortex force. Results are based on Uchiyama et al. (2010)
vortex force formulation.
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Figure 5.9: Color map of wave Bernoulli head gradient in x − z coordinate plain.
(Upper) x-component Bernoulli head gradient. (Middle) y-component
Bernoulli head gradient. (Lower) z-component Bernoulli head gradient.
Results are based on Uchiyama et al. (2010) vortex force formulation.
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Figure 5.10: Color map of wave-averaged force (- Bernoulli head gradient + vor-
tex force) in x − z coordinate plain. (Upper) x-component wave-
averaged force. (Middle) y-component wave-averaged force. (Lower)
z-component wave-average force. Results are based on Uchiyama et al.
(2010) vortex force formulation.
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5.6.3 Results from the present vortex force

The model results based on the present theory described in Chapter 3-4 are

shown in Figure 5.11 - 5.15. The present results are subtracted by Uchiyama et al.

(2010) formulation results for comparison. In the MC vortex force formulation, the

gradient part of vortex force is moved to the Bernoulli head. Thus, the difference

comparison of wave-averaged force is based on the sum of vortex force and Bernoulli

head gradient.

In the cross-shore direction, the comparison of undertow velocity profile between

Uchiyama et al. (2010) formulation (thereafter MC) and Dong & Kirby (thereafter

DK) formulation is given in the upper panel of Figure 5.11. The color map of DK eddy

viscosity is shown in the lower panel of Figure 5.11. Overall, the undertow profiles and

eddy viscosity are very similar. However, in the surf zone (between x = 0.5 km and x

= 0.7 km), the DK undertow is slightly larger near the bottom and smaller near the

surface. Outside of the surf zone (x ≤ 0.5 km), the DK undertow is slightly smaller

near the surface and larger near the bottom. The color map of mean current velocity

difference (see the upper panel of Figure 5.13) gives a better view. In addition, the

magnitude of DK depth-averaged Stokes drift and undertow is slightly larger than MC

results (see the upper panel of Figure 5.12). It is because DK model gives a larger

onshore Stokes transport than MC (see the upper panel of Figure 5.14). The mean

surface elevations between MC and DK are also identical (see the lower panel of Figure

5.12). The DK wave-averaged force is larger than MC results landward of surf zone (x

≥ 0.7 km) and smaller seaward of surf zone (x ≤ 0.7 km) as shown in the upper panel

of Figure 5.15.

In the longshore direction, the bottom drag is balanced with wave-breaking

induced acceleration. There is no change in the wave dissipation driving force and

therefore the DK and MC depth-averaged longshore current velocities are very similar

(see the middle panel of Figure 5.12). However, the DK longshore current is slightly

larger than MC longshore current near the surface and smaller near the bottom (see

the middle panel of Figure 5.13). It is because DK wave-averaged force is smaller than
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MC results near the bottom (see the middle panel of Figure 5.15). The magnitude of

difference is less than 0.01 m/s. The longshore Stokes drift velocity comparison (see

the middle panel of Figure 5.14) indicates that DK longshore Stokes drift velocity is

smaller than MC results near the surface and larger near the bottom. It is because the

current vertical shear is included in the DK longshore Stokes drift velocity.

The magnitudes of vertical mean velocity difference and vertical Stokes drift

velocity difference are less than 0.001 m/s.

Figure 5.11: (Upper) Cross-shore and vertical distribution of DK undertow and MC
undertow. Black dotted line: zero-velocity at each cross-shore location;
Blue solid line: MC undertow at each cross-shore location. Red dotted
line: DK undertow at each cross-shore location. (Lower) Color map of
DK eddy viscosity in x− z coordinate plane. Results are based on the
present vortex force formulation.
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Figure 5.12: (Upper) Cross-shore distribution of depth-averaged x-component Stokes
drift velocity ust and undertow uc. Blue solid line: MC undertow; Black
solid line: DK undertow; Red dotted line: MC Stokes drift velocity.
Black dotted line: DK Stokes drift velocity. (Middle) Cross-shore dis-
tribution of depth-averaged longshore current. Blue solid line: MC
longshore current; Black starred line: DK longshore current; Red dot-
ted line: analytical solution. (Lower) Cross-shore distribution of mean
surface elevation. Blue solid line: MC mean surface; Black starred line:
DK mean surface; Red dotted line: analytical solution. Results are
based on the present vortex force formulation.
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Figure 5.13: Color map of current velocity difference (DK - MC) in x− z coordinate
plain. (Upper) x-component current velocity uc difference. (Middle)
y-component current velocity vc difference. (Lower) z-component cur-
rent velocity wc difference. Results are based on present vortex force
formulation.
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Figure 5.14: Color map of wave Stokes drift velocity difference (DK - MC) in x− z
coordinate plain. (Upper) x-component current velocity ust differ-
ence. (Middle) y-component current velocity vst difference. (Lower)
z-component current velocity wst difference. Results are based on the
present vortex force formulation.
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Figure 5.15: Color map of wave-averaged force difference (- Bernoulli head gradi-
ent + vortex force, DK - MC) in x − z coordinate plain. (Upper) x-
component wave-averaged force. (Middle) y-component wave-averaged
force. (Lower) z-component wave-averaged force. Results are based on
the present vortex force formulation.

5.7 Application to Columbia River

5.7.1 Model Setup

The Columbia River is the largest river in the Pacific Northwest region of North

America. It accounts for 77 % of the drainage along the U.S. West coast north of San

Francisco (Barnes et al., 1972). The river originates from Rocky Mountains and flows

westward into the Pacific Ocean between the states of Washington and Oregon. Due

to the narrow outlet to the ocean, significant freshwater discharge and strong tidal

currents, the westward surface current speed at the river mouth usually exceeds 3 m/s

during ebb tide (Hickey et al., 2010). Meanwhile, the stratification at the river mouth

generates a strong vertical shear in the current velocity profile. Thus the Columbia

River is an ideal case for the interaction of waves and strongly sheared current.
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In this section, we setup a model to simulate wave-current interaction at the

mouth of Columbia River. To simplify the simulation, we consider a longshore uniform

case. In the cross-shore direction, we use the profile of real bathymetry along the

green solid line in Figure 5.16. The bathymetry data is extracted from a Digital

Elevation Model (DEM) of Astoria V3, Oregon developed by the National Geophysical

Data Center (NGDC) in 2016 (http://www.ngdc.noaa.gov/dem/squareCellGrid/

download/5490). The DEM has 1/3 arc-second horizontal resolution and is referenced

to mean high water (MHW). To better represent the wave climate, we analyze the

wave hindcast data at USACE Wave Information Studies (WIS) station 83014 and

83015, which are the closest to the study area (See yellow points in Figure 5.16). The

wave roses at WIS station 83014 and 83015 indicate that the dominant offshore wave

direction is from west to east and the dominant significant wave height is between 1 m

and 3 m (see Figure 5.17, 5.18).

We use 128 grid cells in cross-shore (x) direction, 4 grid cells in along-shore (y)

direction, and 20 vertical levels. The cross-shore distance is 14.3 km as drawn in Figure

5.16. The cell size ∆x = 112 m and ∆y = 112 m. Therefore the total computation

domain size is 14336 m * 448 m. The water depth along the cut profile starts with 26.4

m at the river mouth and ends with 91.3 m offshore. The water depth at the sand bar

is about 16.5 m as shown in Figure 5.19.

The SWAN model is not suitable for the periodic boundary condition as in

NHWAVE. Thus we take SWAN output at the center line of computational grid in

cross-shore direction and populates in alongshore direction to get the longshore uniform

wave field. Meanwhile, we extract mean water level and depth-averaged current velocity

at the center line in NHWAVE grid and pass them to SWAN. In NHWAVE, the x-

direction boundary condition is set as influx at east with salinity = 0 PSU and outflux

at west with salinity = 30 PSU. The y-direction boundary condition is set as periodic

and free-slip. The bottom boundary condition is set as bottom friction with roughness

zob = 0.001 m. We impose the volume flux to force the river flow from east to west.

The volume flux at both sides is set to zero at t = 0 s and gradually decreases to −20
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Figure 5.16: Aerial view of the mouth of Columbia River. Green solid line: profile of
bathymetry used in the model setup. The distance is about 14.3 km Yel-
low point: USACE Wave Information Studies (WIS) station locations
(83014, 83015)

m2/s (westward) to minimize mean surface variation. To simulate the stratification,

we set the initial salinity at 30 PSU in the computational domain.

Three scenarios are included in the test: NHWAVE only, SWAN only and

NHWAV E (NHWAVE-SWAN coupled). In this way, we can analyze the wave ef-

fects on current and current effects on waves. The first run uses the NHWAVE module

alone. The model is run for 5 hours to simulate the ebb tide. The current velocity

profiles at t = 3 hour are shown in Figure 5.19. The current profiles are plotted every

1120 m across shore. The maximum current speed is about 1.46 m/s, which appears

above the sand bar. A reverse flow appears near the plume front between x = 10 km

and x = 14 km. This reverse flow is driven by the pressure gradient from salt water

to freshwater. The contour map of the current velocity (u,w) is given in Figure 5.20.
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Figure 5.17: Wave Rose at WIS station 83014. Plots are based on
wave hindcast model data from 1980 to 2011. The wave
rose suggests that the dominant wave direction is from west
to east. The dominant significant wave height is between 1
m 3 m. Figure provided by USACE WIS website (http :
//wis.usace.army.mil/data/pac/wvrs/ST83014 WAV E allyrs.png)

The simulation is actually 2D vertical. Thus, the y-direction component is neglected.

Equal volume fluxes are applied at both sides of the cross-shore domain. Due to mass

conservation, the u component reaches its maximum over the sand bar. There is a

downwelling velocity beneath the plume front due to the spreading of plume. The w

component of velocity is also negative landward of the sand bar, which is generated by
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Figure 5.18: Wave Rose at WIS station 83015. Plots are based on
wave hindcast model data from 1980 to 2011. The wave
rose suggests that the dominant wave direction is from west to
east. The dominant significant wave height is between 1 m
and 3 m. Figure provided by USACE WIS website (http :
//wis.usace.army.mil/data/pac/wvrs/ST83015 WAV E allyrs.png)

the reverse flow. Its magnitude is much less than the u component.

After running NHWAVE only, we run the SWAN model alone to analyze the

wave climate. The JONSWAP waves are applied at the western boundary (offshore).

The significant wave height is set at 3 m and peak period at 20 s. The waves propagate

toward the river mouth from offshore. The SWAN model is also run for 5 hours to
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Figure 5.19: NHWAVE only result. Cross-shore bathymetry, water surface level and
current profiles at mouth of Columbia River (MCR). The water depth
starts with 26.4 m at the river mouth and ends with 91.3 m offshore.
The water depth at the sand bar is about 16.5 m. The mean water
surface ranges from -0.27 m to -0.02 m. Current profiles are plotted
every 1100 m across shore. The maximum current speed is about 1.46
m/s appearing above the sand bar. A reverse flow appears near the
plume front between x = 10 km and x = 14 km due to pressure gradient
from salt water to fresh water.

allow the dominant waves to arrive at the river mouth. SWAN time step is 20 s. The

model results are given in Figure 5.22. The wave height gradually increases towards

to the river mouth due to shoaling effect and then decreases after passing the sand bar

(see upper panel of Figure 5.22). The wave direction at the offshore boundary is mostly

from the west. The wave directional spreading effect is minimized by extracting the

wave information at the center line of computational grid in x direction (see middle

panel of Figure 5.22). The wave dissipation is mainly due to the bottom friction, and

therefore is very small (see lower panel of Figure 5.22). The depth induced breaking

and wave white-capping in the simulation are negligible in this case.
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Figure 5.20: NHWAVE only result. Contour map of current velocity components.
Upper: current velocity in x-direction (cross-shore). Equal fluxes are
added at both sides of cross-shore domain. Due to the mass conser-
vation, u component reaches its maximum over the sand bar. Lower:
current velocity in z-direction (vertical). Its magnitude is much less
than u component.

Next we run NHWAVE and SWAN coupled model using the present formula-

tion. All the input parameters in NHWAVE and SWAN remain the same. The coupling

time interval is 20 s. The flow outputs are shown in Figure 5.23 - 5.29. The compari-

son between NHWAVE only and NHWAV E coupled model results indicate that the

opposing waves significantly affects the current velocity profiles. The plume front is

thickened and extended offshore by the opposing waves.

The maximum cross-shore velocity is increased to 1.58 m/s near the sand bar

as shown in Figure 5.23. Compared with NHWAVE only result (red dashed), there

is an obvious offshore velocity near the bottom between x = 6 km and x = 8 km in

NHWAV E result. Meanwhile, there is an onshore velocity in middle layer between x

= 7 km and x = 8 km. The cross-shore velocity difference is obtained by subtracting
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Figure 5.21: NHWAVE only result. Contour map of water salinity and density. The
freshwater flows into the salt water domain from eastern boundary and
forms a plume near the surface due to buoyancy.

NHWAVE only velocity from NHWAV E velocity as shown in Figure 5.24. The veloc-

ity difference indicates that waves create vertical variations in current profile. At the

water surface, a negative difference appears between x = 5 km and x = 6 km while a

positive difference appears between x = 6.5 km and x = 12 km. The difference profile

changes signs several times as it goes to the bottom. It is caused by the combination of

vortex force and Bernoulli head gradient (see Figure 5.31, 5.32). The 27 PSU salinity

contour comparison indicates that the plume front is extended and thickened by waves.

Waves also creates oscillatory features at the plume base over the sand bar as seen in

green dotted line of Figure 5.24. The current shear ∂u/∂z profile is given in Figure

5.25. Most of the current shear appears at the plume base. There is also shear near

the bottom.

151



Figure 5.22: SWAN only result. Upper: Significant wave height; Middle: Peak wave
direction; Lower: wave dissipation. The wave height at the western
boundary is 3 m. Then wave height increases before the sand bar and
decreases after the sand bar. The wave direction is mostly from the
west. The wave dissipation is very small since waves are in deep water.

The contour map of NHWAV E current velocity is given in Figure 5.26. The

u component has an offshore velocity near the bottom between x = 6 km and x = 8

km. The w component has an upwelling seaward of the plume front and a downwelling

beneath the plume front. There are also pulses in w component between x = 9 km and

x = 13 km. The salinity comparison between NHWAVE only and NHWAV E coupled

model also indicate that the plume front is extended offshore and disturbed vertically

by the opposing waves (see Figure 5.21 and 5.29).

The current velocity anomaly between NHWAV E and NHWAVE is given in

Figure 5.27. The u velocity is accelerated by waves between x = 8 km and x = 12

km. The u velocity at the plume front is slowing down. An offshore velocity anomaly

is generated near the bottom right beneath the plume front. In w velocity, there is an

upward anomaly landward of the plume front and downward anomaly right beneath the

plume front. The current velocity anomaly with Uchiyama’s vortex force formulation
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Figure 5.23: Cross-shore bathymetry, water surface level and comparison of current
profiles at Columbia River mouth. Red Dash: NHWAVE only current
profile as shown in Figure 5.19; Blue Solid: NHWAV E coupled cur-
rent profile. The mean water surface ranges from -0.37 m to -0.1 m.
Current profiles are plotted every 1120 m across shore. The maximum
current speed is about 1.58 m/s appearing above the sand bar. Com-
pared with NHWAVE only result, there is an offshore velocity near the
bottom between x = 3 km and x = 9 km in NHWAV E coupled result.
Meanwhile, there is an onshore velocity in middle layer between x = 3
km and x = 9 km.

is given in Figure 5.28. The patterns of current anomaly are very similar. However,

the present formulation gives larger velocity anomaly at the plume base and front.

The wave-induced Stokes drift velocity is given in Figure 5.30. The x-direction

Stokes drift velocity component reaches its maximum at the sand bar, which is about

0.04 m/s. In the present formulation, the Stokes drift velocity is also affected by the

current shear as shown in the upper panel of the figure. The y-direction Stokes drift

velocity component is negligible since waves mostly propagate in cross-shore direction.

The vertical direction Stokes drift velocity component is generated by the bathymetry

variation and mass conservation in Stokes drift velocity (Figure 5.44). Specifically, the
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Figure 5.24: Cross-shore bathymetry, water surface level, salinity contour and current
velocity difference profiles at Columbia River mouth. The green dotted
line is 27 PSU salinity contour of NHWAV E result. The red dotted
line is 27 PSU salinity contour of NHWAVE result. The cross-shore
velocity difference is obtained by subtracting NHWAVE only result from
NHWAV E coupled result. The mean water surface ranges from -0.37
m to -0.1 m. Current velocity difference is calculated by subtracting
NHWAVE only output from NHWAV E coupled output. The profiles
are plotted every 1120 m across shore. The maximum current speed
difference is about 0.31 m/s appearing near x= 6 km. The plots indicate
that the opposing-waves create vertical variations in current cross-shore
velocity.

vertical Stokes drift velocity is positive near the bottom because of decreasing depth

between x = 8 km and x = 10 km. The mass conservation equation requires that it

has to be negative near the surface. The vertical Stokes drift velocity then becomes

negative near the bottom between x = 12 km and x = 14 km. It is positive near the

surface.

The contour map of vortex force is given in Figure 5.31. The x component

vortex force is positive at the plume front. Due to the longshore uniform assumption

and onshore wave direction, the x-component vortex force is mostly determined current
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Figure 5.25: Cross-shore bathymetry, water surface level and current shear ∂u/∂z
profiles at the mouth of Columbia River. The plot indicates that most
of the current shear appears at the plume front. There is also shear
near the bottom.

shear and vertical Stokes drift velocity according to term−wst∂u/∂z. The current shear

∂u/∂z is negative along the density plume and changes to positive as approaching to

the bottom. Meanwhile, the vertical Stokes drift velocity alter signs from surface to

bottom, resulting in the negative vortex force above the plume and positive vortex

force below the plume. The y-component vortex force is neglected. The z-component

vortex force is determined by x-component Stokes drift velocity ust and current shear

according to term ust∂u/∂z. The z-component of vortex force emerges near the plume

front with negative values up and positive values down due to the current shear. There

are also pulses in both x and z component of vortex force, which are caused by cross-

shore variation of current shear.

The Bernoulli head gradient is given in Figure 5.32. The x-component of

Bernoulli head gradient is positive (negative forcing) offshore of the sand bar and
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negative (positive forcing) onshore of the sand bar. It is because the wave height in-

creases at the sand bar and decreases after passing it as shown in Figure 5.22. The

gradient is larger over shallow water area than deep area. The x-component gradient

drives the current offshore seaward of the sand bar and extend the plume front. At the

plume front, the vortex force applies a landward force, which slows down and thickens

the plume. Both y and z components of Bernoulli head gradient are negligible.

The SWAN outputs are shown in Figure 5.33. The depth-weighted current is

compared with the depth-averaged current. In the presence of the opposing current,

the significant wave height at the sand bar is slightly larger than SWAN only case.

The total wave dissipation at the sand bar is also larger than the SWAN only case due

to increasing wave height. The current velocity is too small compared to wave phase

speed to make significant impacts on wave. The results of depth-weighted current and

depth-averaged current are very similar for this case.
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Figure 5.26: Contour map of current velocity components generated by NHWAV E
coupled model. Upper: current velocity in x-direction (cross-shore).
Equal fluxes are added at both sides of cross-shore domain. Due to the
mass conservation, u component reaches its maximum over the sand
bar. The magnitude of u is confined near the surface due to stratifi-
cation. Lower: current velocity in z-direction (vertical). There is an
upwelling seaward of plume front and downwelling beneath the plume
front. Its magnitude is much less than u component. There are pluses
in w velocity near the plume base over the sand bar.
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Figure 5.27: Contour map of current velocity anomaly generated by NHWAV E -
NHWAVE results. Black Solid: 27 PSU salinity contour of NHWAV E
results. Pink Solid: 27 PSU salinity contour of NHWAVE results. Up-
per: current velocity anomaly in x-direction (cross-shore). The u ve-
locity is accelerated by waves between x = 8 km and x = 12 km. The
u velocity at the plume front is slowing down. An offshore velocity is
generated near the bottom beneath the plume front. Lower: current
velocity anomaly in z-direction (vertical). There is an upward anomaly
landward of the plume front and downward anomaly right beneath the
plume front.
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Figure 5.28: Contour map of current velocity anomaly generated by NHWAV E
- NHWAVE results with Uchiyama’s vortex force formulation. Black
Solid: 27 PSU salinity contour of NHWAV E results. Pink Solid: 27
PSU salinity contour of NHWAVE results. Upper: current velocity
anomaly in x-direction (cross-shore). The u velocity is accelerated by
waves between x = 8 km and x = 12 km. The u velocity at the plume
front is slowing down. A offshore velocity is generated near the bottom
beneath the plume front. Lower: current velocity anomaly in z-direction
(vertical). There is an upward anomaly landward of the plume front and
downward anomaly right beneath the plume front.
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Figure 5.29: Contour map of water salinity. The water flows into the salt water
domain with 0 PSU at eastern boundary. The flow is stratified and
forms plume front at the upper layer. The comparison with NHWAVE
only salinity (Figure 5.21) indicates that the plume front is thicken and
extended offshore by waves.
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Figure 5.30: Contour map of wave-induced Stokes drift velocity. Upper: x-direction
Stokes drift velocity component. u component reaches its maximum
at the sand bar, which is about 0.04 m/s. Middle: y-direction Stokes
drift velocity component. v component is negligible since waves mainly
propagate in cross-shore direction. Lower: vertical direction Stokes drift
velocity component. w component is generated by the bathymetry and
mass conservation in Stokes drift velocity (Figure 5.44).
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Figure 5.31: Contour map of vortex force. Upper: x-component. The x component
of vortex force is about 10−4 m/s2. There is a positive vortex force at
the plume front, where the fresh water is mixing with salt water. The
x component vortex force appears along the plume base with negative
value up and positive values down. Lower: vertical component of vortex
force emerges at the sand bar. The vertical component of vortex force
emerges near the plume front with negative values up and positive values
down. There are pulses in both x and z component of vortex force,
which is caused by the cross-shore variation of current shear.
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Figure 5.32: Contour map of Bernoulli head gradient. Upper: x component of
Bernoulli head gradient is positive offshore of the sand bar and neg-
ative onshore of the sand bar. It is mainly because of the wave set
down near the sand bar. The gradient is larger over shallow water area
than deep area. The gradient drives the current offshore at the sand
bar area. Both y and vertical components of Bernoulli head gradient
are negligible.
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Figure 5.33: Comparison of significant wave height and total wave dissipation be-
tween SWAN only and NHWAV E coupled. Upper: significant wave
height. Lower: total wave dissipation. Red Dash: results from SWAN
model only; Blue Solid: results from NHWAV E coupled model depth-
averaged current. Green Dash: results from NHWAV E coupled model
depth-weighted current. The wave height at the western boundary is
set as 3 m. The wave height gradually increases as approaching to the
river mouth due to shoaling effect. In the presence of the opposing cur-
rent, the significant wave height at the sand bar is slightly larger than
SWAN only case (see Figure 5.22). The total wave dissipation at the
sand bar is also larger than the SWAN only case due to the increasing
wave height. The depth-weighted current generates very similar result
as depth-averaged current.
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Chapter 6

APPLICATION OF WAVE VORTEX FORCE TO LANGMUIR
CIRCULATION USING NHWAV E

Langmuir circulation was first discovered and characterized by Irving Langmuir,

who observed the windrows of seaweed in the Sargasso Sea in 1927 (Langmuir, 1938).

At the surface of lakes or oceans, bands of foam or other floating material are developed,

which align with the downwind direction. Bands are produced by a flow convergence

near the surface. A downward flow is formed below the bands while an upward flow

is formed between the bands. The circulation can be represented as a set of vortices

of alternating signs in horizontal direction (see Figure 6.1), known as Langmuir cells

(LC). Among all the possible generating mechanisms of Langmuir cells, the interaction

between the wind-driven shear current and the wave Stokes drift is widely accepted as

the main driving force (Craik and Leibovich, 1976). Langmuir cells can extend from

tens of meters to kilometers in downwind direction. The distance between the bands

ranges from meters to kilometers. Thus Langmuir circulation is very important mixing

process in the upper ocean (Thorpe, 2004).

Most observations of Langmuir cells are in the upper mixed layer over relatively

deep water. However, recent field observations suggest that Langmuir cells can extend

to the bottom boundary layer in shallow shelf coastal regions (Gargett and Wells, 2007).

Langmuir cells in shallow water are believed to play a key role in sediment re-suspension

and transport. Large-eddy simulation (LES) studies of Langmuir circulation in the

wind-driven shear current in shallow water have been conducted (Tejada-Martinez and

Grosch, 2007; Kukulka et al., 2009). In the LES model, the Langmuir circulations are

generated using the Craik-Leibovich vortex force formulation (Craik and Leibovich,

1976). According to the theory, a small spanwise perturbation in downwind Stokes
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Figure 6.1: The Langmuir circulation flow pattern. The wind-generated mean flow
is developed at the ocean surface with spanwise variations. Meanwhile,
a downward flow is formed below the windrows while an upward flow is
formed between the windrows. The cell is roughly in square form with
size ranging from 2 m to 300 m. The circulation can be represented as
a set of vortices of alternating signs in horizontal direction. Figure from
Thorpe (2004).

drift and mean flow generates a vertical component of vorticity. The coupling of ver-

tical vorticity with Stokes drift introduces a horizontal vortex force, which leads to a

circulation with downwind vorticity.

In this chapter, the simplified wave vortex force is applied to NHWAV E with

k − ε turbulence model to simulate Langmuir cells. We follow the model setup in

Tejada-Martinez and Grosch (2007) in order to directly compare the results.

6.1 Model Setup

6.1.1 Governing Equations

In Chapter 4, we have obtained expressions for wave-averaged forces for the

mean flow equations. We add viscous forces (ν∇2q, ν∇2w) and turbulent stresses
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ν is the kinematic viscosity. At the bottom and surface viscous boundary layers, the

viscous forces can become very significant. The Langmuir number Lat and Reynolds

number Re are defined as

Lat = (
uτ
ust∗

)
1
2 (6.4)

Re =
uτδ

ν
(6.5)

uτ = (
τs
ρ

)
1
2 (6.6)

ust∗ = a2σwk (6.7)

where uτ is the friction velocity defined by constant wind stress τs in x-direction applied

over the surface, ρ is water density, δ = H/2 is half of water depth, ν is the kinematic

viscosity, a is wave amplitude, σw is wave frequency and k is wave number. ust∗ is

defined as the characteristic Stokes drift velocity. The Langmuir number Lat indicates

strength of wave effects. Smaller Lat represents stronger wave effects. The vortex force

in the governing equation is the cross product of Stokes drift velocity and mean flow

vorticity. The Reynolds number is determined by friction velocity, water depth and

kinematic viscosity.

We also give a simple version of vortex force formulation in terms of Stokes

velocity ust = (ust, 0, 0), current velocity uc and current vorticity Ωc as in Tejada-

Martinez and Grosch (2007). The results of the present formulation and the simple

version of formulation are compared.

(J, K) =
1

La2
t

ust ×Ωc (6.8)

κ =
1

2
(ust·ust + uc·ust) (6.9)
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6.1.2 Model Setup

The simulation is to test whether NHWAV E can generate Langmuir cells using

k − ε turbulence model. Following Tejada-Martinez and Grosch (2007), two scenarios

are considered in the simulation. Case (1) is wind-driven shear flow with C-L vortex

force. Case (2) is wind-driven shear flow without C-L vortex force. During the sim-

ulation, all the other parameters are set to be the same for both cases. The water

depth is H = 15 m. The wind stress is applied to the surface only in x-direction.

Monochromatic waves are considered to propagate in the downwind direction. The

wave length is set as L = 2πH = 94.2 m which is the same as in Tejada-Martinez

and Grosch (2007). The domain size in x (streamwise) and y (spanwise) directions are

set as Lx = 2πH = 94.2 m and Ly = 4π/3H = 62.8 m, respectively. The reason of

choosing these lengths is that the observed crosswind scale of Langmuir cells is roughly

3-6 times their vertical scale (3H − 6H). The computational grids for both cases are

4 in x-direction (streamwise), 64 in y-direction (spanwise), 60 in z-direction (vertical)

(4*64*60). In x-direction, the boundary conditions are set as periodic to allow the cur-

rent to fully develop. All the variables are uniform during the simulation. Thus 4 cells

are good enough for model. Langmuir cells develop in y (spanwise) and z (vertical)

directions therefore we need more grid cells in y and z to resolve the structure. We

also need more grid cells in z-direction to resolve bottom and surface boundary layers.

The y-direction (spanwise) boundary condition is also set as periodic to avoid lateral

wall boundaries.

We consider a set of realistic parameters here. The range of observed wind

velocity 10 m above sea surface is around 7.8− 11.0 m/s in most of cases (Gargett and

Wells, 2007). Therefore we set wind velocity in x-direction equal to 10 m/s. The wave

amplitude set is a = 0.74 m. Wave length is 2πH, where k = 2π/L = 1/H so that

intermediate-depth waves are considered with kH = 1. The wave frequency is obtained

based on dispersion relation σw =
√
gk tanh kH. Langmuir number and Reynolds

number can be determined based on these parameters, in this case Lat = 0.7 and

Re = 9450 based on viscous kinematic viscosity or Re = 94 based on eddy kinematic
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viscosity.

To generate the wind-driven shear flow, the model was first run for 50 hours

without C-L vortex force to get a steady velocity profile (Figure 6.2). The shear

flow velocity is about 0.48 m/s at the surface and 0.23 m/s near the bottom. The

following cases adopted the steady velocity profile as the initial velocity condition. For

convenience, the velocity components are labeled as U in x-direction, V in y-direction

and W in z-direction. The horizontal velocity variations are necessary to form the

Langmuir cells. To simulate Langmuir circulation, perturbations in horizontal velocity

(∆U) with magnitude up to 0.025 m/s were added to initial velocity of U . The initial

condition is U0 = U(z) + ∆U , V0 = 0, W0 = 0. No perturbation is added to initial

surface elevation η0. The model was run for 1 hour for cases with and without C-L

vortex force. The model results for both cases are compared as below.

Figure 6.2: Wind-driven shear flow (x-direction) velocity profile after 50 hour run
U c(z). Maximum velocity is 0.48 m/s at the surface and minimum veloc-
ity is 0.23 m/s near the bottom. Wind velocity (10 m above sea surface)
is 10 m/s in x-direction only. Drag coefficient is set as 0.0013

169



6.2 Results

6.2.1 Comparison with Tejada-Martinez and Grosch (2007)

In Tejada-Martinez and Grosch (2007), Langmuir cells generated with C-L vor-

tex force were shown in Figure 6.3. On the other hand, no Langmuir cells were gener-

ated in flow without C-L vortex force in Figure 6.4. The partial-averaging in the paper

(Equation 3.1 in Tejada-Martinez and Grosch, 2007) is defined as the average over time

and horizontal (x, y) directions. The fluctuating velocity is the difference between the

instantaneous velocity and the partially averaged velocity.

Figure 6.3: Color maps of partially (time, x and y direction) averaged fluctuating
velocity components on the y − z plane for flow with LC at Re=395
(Lat =0.7, L=6H). Velocity normalized by mean center line velocity in
x-direction. (a) Normalized x-direction fluctuating velocity U . (b) Nor-
malized z-direction fluctuating velocity W . (c) Normalized y-direction
fluctuating velocity V . Cited from Figure 3 in Tejada-Martinez and
Grosch (2007).
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Figure 6.4: Color maps of partially (time, x and y direction) averaged fluctuating
velocity components on the y − z plane for flow without LC at Re=395
(Lat =∞, L=6H). Velocity normalized by mean center line velocity in
x-direction. (a) Normalized x-direction fluctuating velocity U . (b) Nor-
malized z-direction fluctuating velocity V . (c) Normalized y-direction
fluctuating velocity W . Cited from Figure 4 in Tejada-Martinez and
Grosch (2007).

The NHWAV E model results illustrate the same pattern for flow with C-L

vortex force in Figure 6.5 except some detailed features near the surface and bottom.

Color map of x-direction velocity components U in both Figure 6.3 and Figure 6.5

indicate larger positive velocity anomalies appear near the surface and bottom and

negative velocity anomalies appear in the lower water column on both sides. Velocity

component V both have vortices with alternating signs in both y and z directions.

Regions of positive W are referred to as upwelling limbs and regions of negative W

are referred to as downwelling limbs. Figure 6.5 also indicates that the downwelling

limbs have greater intensity than the upwelling limbs (Tejada-Martinez and Grosch,
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Figure 6.5: Color maps of fluctuating velocity components on the y − z plane for
flow with LC (Lat = 0.7, L=2πH). Results are based on the present for-
mulation. Velocity normalized by the total mean velocity in x-direction.
(Top) Normalized x-direction fluctuating velocity U . (Middle) Normal-
ized y-direction fluctuating velocity V . (Bottom) Normalized z-direction
fluctuating velocity W . Perturbations with magnitude up to 0.025 m/s
are added to only U in initial condition.

2007). No Langmuir cells are generated without C-L vortex force. Results based on

the simpler version of vortex force formulation (Equation (6.8) and (6.9)) are given in

Figure 6.6. The flow pattern is very similar to the NHWAV E results. The Langmuir

cells are unsteady and constantly evolving during the simulation. It is because the

vortex force is determined by the velocity anomalies and forces the velocity anomalies

in return.

The vortex force for the present formulation and the simple version of formu-

lation are given in Figure 6.7 and 6.8, respectively. Overall, the vortex forces of the

present formulation are confined near the upper layer, while the simple version vortex

forces extend deeper in vertical direction. The x component vortex force in the present
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Figure 6.6: Color maps of fluctuating velocity components on the y − z plane for
flow with LC (Lat = 0.7, L=2πH). Results are based on the simple
version formulation. Velocity normalized by the total mean velocity in x-
direction. (Top) Normalized x-direction fluctuating velocity U . (Middle)
Normalized y-direction fluctuating velocity V . (Bottom) Normalized z-
direction fluctuating velocity W . Perturbations with magnitude up to
0.025 m/s are added to only U in initial condition.
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formulation is generated by term −wst∂u/∂z (see upper in Figure 6.7). The x compo-

nent in the simple version of formulation is zero since wst is equal to zero (see upper in

Figure 6.8). The y component vortex force in the present formulation is confined near

the surface with alternating signs in spanwise direction (see middle in Figure 6.7). The

y component vortex force in the simple version of formulation is larger in magnitude

than the present formulation. In addition, the vortex force is symmetric with positive

value at the left half and negative value at the right half (see middle in Figure 6.8). It is

because the present vortex force includes the y derivative of term
∫ z
−H qst(ζ)dζ·(∂qc/∂z)

as shown in Equation (4.61). The simple version vortex force doesn’t include this term.

The z component vortex force in the present formulation is negative in the upper layer,

while the simple version give positive value. It is also because the present vortex force

includes the vertical derivative of term
∫ z
−H qst(ζ)dζ·(∂qc/∂z) (see Equation (4.67)),

which is not in the simple version. This term is moved to Bernoulli head in Uchiyama

et al.’s (2010) vortex force formulation.

6.2.2 Flow structure

The crosswind distributions of velocity for both cases at different vertical levels

are shown in Figure 6.9 and Figure 6.10, respectively. The three vertical levels are

chosen as near surface (z = −1.25 m), middle depth (z = −7.5 m) and near bottom

(z = −13.75 m). For the flow without LC, the crosswind variations of velocity are

very small (see Figure 6.10). In the presence of LC, the vertical mixing is significant

(see Figure 6.9). Through the water column, velocity component U is strengthened

in the middle and diminished at both sides. The spanwise variations become smaller

as vertical level gets closer to the bottom. The sign of velocity component V near

the surface is opposite to the one near the bottom. At the middle depth, the flow is

slightly affected by the lower cells. The magnitude of downwelling velocity is larger

than upwelling velocity as shown in velocity component W . On the other hand, the

regions of downwelling limbs are narrower than the regions of upwelling limbs.
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Figure 6.7: Color maps of vortex force on the y − z plane for flow with LC (Lat =
0.7, L=2πH). Results are based on the present formulation. (Upper)
x component of vortex force. The x component is nonzero. (Middle) y
component of vortex force. The y component has alternating signs in
spanwise direction. (Lower) z component of vortex force.
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Figure 6.8: Color maps of vortex force on the y−z plane for flow with LC (Lat = 0.7,
L=2πH). Results are based on the simple version formulation. Results
are based on the present formulation. (Upper) x component of vortex
force. The x component is all zero. (Middle) y component of vortex
force. The y component is symmetric in spanwise direction. (Lower) z
component of vortex force.
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Figure 6.9: Crosswind distribution of mean velocity components on the y − z plane
for flow with LC (Lat =0.7, L=2π H). Velocity normalized by the total
mean velocity in x-direction. (Top) Normalized x-direction fluctuating
velocity. (Middle) Normalized y-direction fluctuating velocity. (Bottom)
Normalized z-direction fluctuating velocity. Perturbations with magni-
tude up to 0.025 m/s are added to U and V in initial condition. Solid
line: flow near surface (z = −1.25 m); Dash-dot line: flow at middle
depth (z = −7.5 m); Dotted line: flow near bottom (z = −13.75 m).
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Figure 6.10: Color maps of partially averaged fluctuating velocity components on
the y− z plane for flow with LC (Lat =∞, L=6H). Velocity normalized
by the total mean velocity in x-direction. (Top) Normalized x-direction
fluctuating velocity. (Middle) Normalized y-direction fluctuating veloc-
ity. (Bottom) Normalized z-direction fluctuating velocity. Perturba-
tions with magnitude up to 0.025 m/s are added to U and V in initial
condition. Solid line: flow near surface (z = −1.25 m); Dash-dot line:
flow at middle depth (z = −7.5 m); Dotted line: flow near bottom
(z = −13.75 m).
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Figure 6.11: Profile of the averaged velocity over horizontal directions (x and y)
with LC (Lat =0.7, L=2π H). Velocity normalized by the total mean
velocity in x-direction. (Top) Normalized x-direction mean velocity U .
(Middle) Normalized y-direction mean velocity V . (Bottom) Normal-
ized z-direction mean velocity W . Perturbations with magnitude up
to 0.025 m/s are added to U in initial condition. The vertical and
crosswind transport is nearly zero.
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Figure 6.12: Profile of the averaged velocity over horizontal directions (x and y)
with LC (Lat =∞, L=2π H). Velocity normalized by the total mean
velocity in x-direction. (Top) Normalized x-direction mean velocity U .
(Middle) Normalized y-direction mean velocity V . (Bottom) Normal-
ized z-direction mean velocity W . Perturbations with magnitude up to
0.025 m/s are added to U in initial condition.
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The velocity profiles with and without LC are given in Figure 6.11 and 6.12, re-

spectively. All the velocity components are normalized by the horizontal mean velocity

in the x-direction. The crosswind and vertical mean velocities are nearly zero for both

cases. However, the x-direction velocity profile (with LC) is affected by the waves.

In the results above, Langmuir cells are generated by waves propagating in wind

and shear flow direction. We simulated another case with waves propagating against

wind and shear flow. The results suggest that no Langmuir cells are generated in this

case.

Figure 6.13 illustrates the effect of Langmuir number Lat and wave length Lw

on shear flow velocity profile. The Lat denotes the relative magnitude of C-L vortex

force. The smaller Langmuir number indicates stronger C-L vortex force. In the figure,

three velocity profiles are considered: Lat =0.7, L=2πH, Lat =0.4, L=2πH and Lat

=0.7, L=4/3H. C-L vortex force strengthens the vertical mixing and homogenize the

shear flow in vertical direction.
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Figure 6.13: Profile of the averaged velocity component U over horizontal directions
(x and y) with LC. Velocity normalized by the total mean velocity in
x-direction. Solid line: Lat =0.7, L=2π H; Dash-dot line: Lat =0.4,
L=2π H; Dotted line: Lat =0.7, L=4/3 H. Figure indicates smaller
Langmuir number Lat and longer wave length Lw tend to homogenize
shear flow in vertical direction.
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Chapter 7

CONCLUSIONS

The interactions between surface gravity waves and vertically sheared current

have been discussed in the thesis. The study consists of two parts: wave-current

interaction theory and the numerical application.

7.1 Theory

In the theory part, a new framework is presented to describe the wave-current

interaction for arbitrarily sheared current. The flow motions are considered to be the

superposition of waves and currents. The wave equations are then separated from

the mean flow equations by applying multiple scale expansion and wave-averaging.

Both perturbation and numerical solutions to the resulting wave Raleigh equation have

been discussed. The solvability condition of the second order wave Raleigh equation

leads to the wave action equation for arbitrary current profile. The wave-averaged

forces in terms of vortex force formulation are obtained from the mean flow equations.

Conclusions are summarized as below:

(1) The discussion of wave vorticity for constant shear current indicates that the

magnitude of wave vorticity depends on the current vertical shear Ωs and the oblique

angle θ between waves and flow direction. Specifically, for a fixed oblique angle, wave

vorticity increases as current vertical shear becomes larger and decreases as current

shear becomes smaller. When the waves and current are co-directional (θ = 0 or

θ = ±π), the wave vorticity is always zero and waves are irrotational. Otherwise,

the magnitude of wave vorticity increases with the oblique angle and reaches to the

maximum when waves are perpendicular to the current. With all the other variables

set the same, waves with longer period have smaller wave vorticity.
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(2) The comparison between numerical solution and perturbation solution to

wave Raleigh equation indicates that O(ε) perturbation solution is a fairly good ap-

proximation. It is recommended in the numerical application as a substitute of nu-

merical solution for computational efficiency. In addition, the vertical gradient of wave

horizontal orbital velocity is increased by the opposing current and decreased by the

following current.

(3) The resulting wave action equation for strongly sheared current reproduces

the work done by Voronovich (1976). The reduction of wave action equation for depth-

uniform current and constantly sheared current agrees with previous study. The numer-

ical study of wave action equation suggests that the absolute group velocity obtained

from the wave action equation converges to the group velocity obtained from the disper-

sion relation ∂ω/∂k. The current shear effects on the wave action are relatively small

compared to effects on the group velocity. The combination of depth-weighted cur-

rent Ũ(k) and its wave number derivative k∂Ũ/∂k is a good approximation to current

advection velocity in wave action equation.

(4) The wave-averaged forces for strongly sheared current are written as vortex

force and Bernoulli head gradient. The reduction of the present vortex force formula

for weak current assumption agrees with MRL04 results. The numerical study of wave

vortex force for constantly sheared current indicates that the magnitude of vortex

force decreases from deep water (kh � 1) to shallow water (kh � 1). The present x-

component vortex force magnitude is slightly larger than MRL04 result for the opposing

current and smaller for the following current. The present y-component vortex force

also deviates from MRL04 result in both deep water and shallow water. It can change

sign as the shear effects become larger, while MRL04 does not. It is because the present

vortex formulation includes additional shear-related terms.

(5) The Stokes drift velocity for strongly sheared current is also extracted from

the vortex force. The reduction of Stokes drift velocity for weak shear agrees with the

MRL04 results. The numerical study indicates that the Stokes drift velocity magnitude

is smaller for long waves. The velocity profile tends to be depth uniform for shallow
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water.

7.2 Numerical Application

In the numerical application part, both the present and Uchiyama et al. (2010)

vortex force formulations are implemented in the NHWAV E coupled model. Three

cases have been tested:

1) Obliquely incident waves on a planar beach.

2) Wave propagation on highly stratified, vertically sheared current at Columbia

River mouth.

3) Formation of Langmuir circulation in the presence of wind-driven current and

waves.

Test case (1) is used to compare the present vortex force formulation with

Uchiyama et al. (2010) formulation. The SWAN module is not activated in this simu-

lation. Instead, the waves are provided using an input file. Test case (2) is designed for

the analysis of wave effects on currents and current effects on waves. Both NHWAVE

and SWAN are activated and coupled in this simulation. Test case (3) is the applica-

tion of the present formulation to Langmuir circulation. Conclusions are summarized

as below:

(1) For the test case of obliquely incident waves on a planar beach, both the

present and MRL04 vortex force formulations are implemented in the NHWAV E

coupled model for comparison. In general, the two formulations generate very similar

wave set up/down, undertow profiles and longshore currents. The flow patterns are

corresponding well to the previous studies by Uchiyama et al. (2010) and Kumar et al.

(2012).

(2) The wave-current interaction test case at the mouth of Columbia River

(MCR) suggests that waves have significant impacts on current velocity profiles. The

plume front is thickened and extended offshore by the opposing waves. The Bernoulli

head gradient applies an offshore forcing that strengthens the surface current velocity.

The x and z component vortex force emerge along the plume base where most of the
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current shear exists. The Bernoulli head gradient is responsible for extending the plume

offshore. The combined effects of vortex force and Bernoulli head gradient thicken the

plume front.

(3) The formation of Langmuir cells in an ideal computational domain indicates

the present vortex force formulation successfully generates Langmuir cells. The x

component velocity U indicates the larger positive velocity anomalies appear near the

surface and bottom and negative velocity anomalies appear in the lower water column

on both sides. The y component velocity V have vortices with alternating signs in both

y and z directions. Regions of positive W are referred to as upwelling limbs and regions

of negative W are referred to as downwelling limbs. The Langmuir cells are unsteady

and constantly evolve during the simulation, since the vortex force is determined by

the velocity anomalies and forces the velocity anomalies in return.
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Appendix A

WAVE SOLUTIONS FOR SPECIAL CURRENT PROFILES

A.1 Waves in a stationary domain with slowly varying depth

O(ε) wave solution:

w1,1(z) = −iωη1,1Fss (A.1)

q1,1(z) = ωη1,1Fcs
k

k
(A.2)

p1,1(z) =
ρω2η1,1

k
Fcs (A.3)

ω2 = gk tanh kH (A.4)

Fss =
sinh k(H + z)

sinh kH
(A.5)

Fcs =
cosh k(H + z)

sinh kH
(A.6)

O(ε2) wave solution:

w2,1(z) = − gη1,1

kc0 cosh kH
(k·∇HH) cosh k(H + z)

− gη1,1

kc0 cosh kH
(k·∇HH)[k(H + z)] sinh k(H + z)

− g[
η1,1

2k2c0 cosh kH
(∇H·k) +

k

k
·∇H(

η1,1

kc0 cosh kH
)

+
η1,1

2k3c0 cosh kH
(k·∇Hk)][k(H + z)] cosh k(H + z)

− gη1,1

2k3c0 cosh kH
(k·∇Hk)[k(H + z)]2 sinh k(H + z) (A.7)
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q2,1(z) = −igk
k
{ η1,1

kc0 cosh kH
(k·∇HH) sinh k(H + z)

+ [− η1,1

2k2c0 cosh kH
∇H·k +

η1,1

2k3c0 cosh kH
(k·∇Hk)] cosh k(H + z)

+ [
η1,1

2k2c0 cosh kH
∇H·k +

k

k
·∇H(

η1,1

kc0 cosh kH
)

+
η1,1

2k3c0 cosh kH
(k·∇Hk)][k(H + z)] sinh k(H + z)

+
η1,1

kc0 cosh kH
(k·∇HH)[k(H + z)] cosh k(H + z)

+
η1,1

2k3c0 cosh kH
(k·∇Hk)[k(H + z)]2 cosh k(H + z)}

(A.8)

p2,1(z) = iρg{[( η1,1

kc0 cosh kH
)T +

c0k

k
·∇H(

η1,1

kc0 cosh kH
)

+
η1,1

2k2 cosh kH
(∇H·k)− η1,1

2k3 cosh kH
(k·∇Hk)] cosh k(H + z)

− η1,1

k cosh kH
(k·∇HH)[k(H + z)] cosh k(H + z)

+ [
η1,1

2k3 cosh kH
(k·∇Hk)− η1,1

2k2 cosh kH
(∇H·k)

− k

k2
·∇H(

η1,1

cosh kH
)][k(H + z)] sinh k(H + z)

− η1,1

2k3 cosh kH
(k·∇Hk)[k(H + z)]2 cosh k(H + z)} (A.9)

η2,1 = − i

kc0

{η11T +
gη1,1

kc0 cosh kH
(k·∇HH) cosh kH

+
gη1,1

kc0 cosh kH
(k·∇HH)(kH) sinh kH

+ [
gη1,1

2k2c0 cosh kH
(∇H·k) +

gk

k
·∇H(

η1,1

kc0 cosh kH
)

+
gη1,1

2k3c0 cosh kH
(k·∇Hk)](kH) cosh kH

+
gη1,1

2k3c0 cosh kH
(k·∇Hk)(kH)2 sinh kH} (A.10)

Only the O(ε2) pure wave solutions are used in perturbation approximation.

Current related terms are in higher order. We will not provide O(ε2) or higher order

wave solutions for the other special current profiles since they are out of our interests

in this problem.
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A.2 Depth uniform current

In our problem, only O(ε) wave solutions for depth uniform current are needed.

Thus, the O(ε2) solutions are not provided here.

w1,1(z) = −iση1,1Fss (A.11)

q1,1(z) = ση1,1Fcs
k

k
(A.12)

p1,1(z) =
ρσ2η1,1

k
Fcs (A.13)

σ2 = gk tanh kH (A.14)

σ = ω − k·q0,0 (A.15)

A.3 Constant shear current

Assume current profile has a constant shear as below.

q0,0(z) = qs0,0 + Ωsz (A.16)

where Ωs stands for current vertical shear. Ωs does not have to be collinear with either

qs0,0 or k. Now Rayleigh equation is reduced to the Laplace equation. (The possibility

of σ taking on a value of zero at a critical level is not typically of interest in surface

wave dynamics.)

σ(w1,1zz − k
2w1,1) = 0; (A.17)

w1,1(−H) = 0; (A.18)

σ2
sw1,1z = (gk2 − σsΩs·k)w1,1; z = 0 (A.19)

The solutions are given by
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w1,1(z) = −iσsη1,1Fss (A.20)

q1,1(z) = −σsη1,1Ω
s

σ
Fss +

σsη1,1k

k2
(kFcs +

Ωs·k
σ

Fss) (A.21)

p1,1(z) =
ρσsη1,1

k2
(Ωs·k)Fss +

ρσsη1,1

k
σFcs (A.22)

σ2
s = (g − σsΩ

s·k
k2

)k tanh kH (A.23)

Apparently, constant current shear affects the vertical structure of wave orbital

velocity and wave pressure by modifying the dispersion relation and twisting wave

horizontal velocity in the current shear direction. Now we may take a look at wave

phase speed c and group speed cg. ca is absolute phase speed. cr is relative phase speed

at the surface.

ca =
ω

k
= cr + k̂qs0,0 (A.24)

cr =
σs
k

(A.25)

cgr =
∂σs
∂k

=
g(1 +G)− (Ωs · k̂)Gcr

2g − (Ωs · k̂)cr
cr (A.26)

G =
2kH

sinh 2kH
(A.27)

where k̂ = k
k

is non-dimensional wave number vector.
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Appendix B

DERIVATION OF GENERAL FORM OF WAVE-AVERAGED FORCES

B.1 Bernoulli head: κ

The original definition of Bernoulli head is given in Chapter 4. Now we use the

relation between q1,1 and w1,1 in Chapter 3. The O(ε2) Bernoulli head κ2 is evaluated

in terms of w1,1 and its complex conjugate.

κ2 =
1

k2

∂w1,1

∂z

∂w1,−1

∂z
+ w1,1w1,−1 +

w1,1w1,−1

σ2
q0,0z·q0,0z −

w1,1w1,−1

σ2k2
(σz)

2 (B.1)

We use the relation between q2,1 and w2,1 in Chapter 3. The O(ε3) Bernoulli head κ3

is evaluated in terms of w1,1,q1,1, w2,1 and their complex conjugates.

κ3 =
1

k2
(w1,1zw2,−1z + w1,−1zw2,1z) + (w1,1w2,−1 + w1,−1w2,1)

+
w1,1w2,−1 + w1,−1w2,1

σ2
q0,0z·q0,0z −

w1,1w2,−1 + w1,−1w2,1

σ2k2
(σz)

2

+ Q?
1,1·q1,−1 + Q?

1,−1·q1,1 (B.2)

where Q?
1,1 is a variable with the dimension of velocity.

Q?
1,1 =

i

σ
[
k

k2
k·(Dq1,1

DT
+

1

ρ
∇Hp1,1 + q1,1·∇Hq0,0)

− (
Dq1,1

DT
+

1

ρ
∇Hp1,1 + q1,1·∇Hq0,0) +

k

k2
σ∇H·q1,1] (B.3)

Where
D

DT
=

∂

∂T
+ q0,0·∇H + w1,0

∂

∂z
(B.4)

Apparently, Q?
1,1 can be evaluated only using w1,1.
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B.2 Horizontal vortex force J

We use expressions forO(ε2) wave vorticity, consider complex conjugate relations

and rearrange horizontal vortex force. The manipulation of the vertical component

vortex force is not clear and therefore we keep the original expression. To identify Stokes

drift in the vortex force, we introduce variable q?1,1, which is analogous to Lagrangian

disturbance velocity in Andrews & McIntyre (1978a).

q?1,1(z) = q1,1 +
iw1,1

σ
q0,0z (B.5)

The vortex force can be reduced to the form

J = iz × ε3
i

σ
[(w1,1

Dξ1,−1

DT
− q?1,1

Dχ1,−1

DT
) + (w1,1q1,−1·∇Hξ0,0 − q?1,1w1,−1χ1,0z)

− (w1,1ξ1,−1·∇Hq0,0 − χ1,−1q
?
1,1w1,0z)− (w1,1ξ0,0·∇Hq1,−1 − q?1,1ξ0,0·∇Hw1,−1)

− χ1,0(w1,1q1,−1z − q?1,1w1,−1z)] + c.c.+O(ε4) (B.6)

In our case, the depth dependent Stokes drift velocity can be expressed as

qst = w1,1q1,−1z − q?1,1w1,−1z + c.c. (B.7)

B.3 Vertical vortex force K

We use the relation between q1,1, ξ1,1 and w1,1 in Chapter 3. The O(ε2) vertical

vortex force K2 is written as

K2 =
2w1,1w1,−1

σ2
q0,0z × ξ0,0z

− σ

k2
(
w1,1w1,−1

σ2
)zk× (q0,0z

ξ0,0·k
σ

+ ξ0,0z
) (B.8)

The O(ε3) vertical vortex force K3 is given by

K3 = iq1,1 × [
O2,−1

σ
− iq0,0z

P2,−1

σ2
+ q0,0z

w2,−1(ξ0,0·k)

σ2
+ ξ0,0z

w2,−1

σ
]

− iq1,−1 × [
O2,1

σ
+ iq0,0z

P2,1

σ2
+ q0,0z

w2,1(ξ0,0·k)

σ2
+ ξ0,0z

w2,1

σ
]

+ { 1

σ
[w2,−1q0,0z −

k

k2
(σw2,−1z − w2,−1σz)] + Q?

1,−1} × [q0,0z

(ξ0,0·k)w1,1

σ2
+ ξ0,0z

w1,1

σ
]

+ { 1

σ
[w2,1q0,0z −

k

k2
(σw2,1z − w2,1σz)] + Q?

1,1} × [q0,0z

(ξ0,0·k)w1,−1

σ2
+ ξ0,0z

w1,−1

σ
]

(B.9)
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Appendix C

DERIVATION OF WAVE-AVERAGED FORCES FOR WEAK
CURRENT

For weak current assumption, the forms of O(ε) wave perturbation solution

w1,1, χ1,1 remain the same, but q1,1, p1,1, ξ1,1 are slightly changed.

q
(0)
1,1 =

i

σ

k

k2
σw

(0)
1,1z

(C.1)

q
(1)
1,1 = − i

σ
[w

(0)
1,1q0,0z −

k

k2
(σw

(1)
1,1z
− w(0)

1,1σz)] (C.2)

p
(0)
1,1 =

iρ

k2
σw

(0)
1,1z

(C.3)

p
(1)
1,1 =

iρ

k2
(σw

(1)
1,1z
− w(0)

1,1σz) (C.4)

ξ
(0)
1,1 = −iξ0,0z

w
(0)
1,1

σ
−

(ξ0,0·k)q
(0)
1,1

σ
(C.5)

ξ
(1)
1,1 = −i[q0,0z

(ξ0,0·k)w
(0)
1,1

σ2
+ ξ0,0z

w
(1)
1,1

σ
]−

(ξ0,0·k)q
(1)
1,1

σ
(C.6)

(C.7)

Derivation of Bernoulli head uses equations for w
(0)
1,1,q

(0)
1,1, w

(1)
1,1,q

(1)
1,1, w

(0)
2,1,q

(0)
2,1.

κ = ε2κ
(0)
2 + ε3κ

(1)
2 +O(ε4) (C.8)

κ
(0)
2 =

1

k2
w

(0)
1,1z

w
(0)
1,−1z

+ w
(0)
1,1w

(0)
1,−1 (C.9)

κ
(1)
2 =

1

k2
w

(1)
1,1z

w
(0)
1,−1z

+
1

k2
w

(0)
1,1z

w
(1)
1,−1z

+ w
(1)
1,1w

(0)
1,−1 + w

(0)
1,1w

(1)
1,−1 (C.10)

Terms only related to O(ε) wave solutions yield Bernoulli head for weak current case.

Terms related to O(ε2) wave solutions vanish after manipulation.
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For vortex force J, K, we have

J = iz × {−(
ξ0,0·k
σ2

E?(0) + ξ0,0z

w
(0)
1,1w

(0)
1,−1

σ2
)T −

E?(0)

σ2
(ξ0,0·k)T

+
E?(0)

σ
·∇Hξ0,0 +

E?(0)

σ
χ1,0z −

ξ0,0

σ
·∇HE?(0) − χ1,0q

st(0)(z)}

+ O(ε5) (C.11)

K = − σ

k2
(
w

(0)
1,1w

(0)
1,−1

σ2
)zk× ξ0,0z

+O(ε4) (C.12)
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