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1 Summary

This document is the final report for the ONR project N00014-89-J-1717, which was
the second phase of a study entitled “Modelling Bathymetric Control of Near Coastal
Wave Climate”. Most of the effort in this phase of the study was centered around
a study of Bragg reflection of waves by nearshore bars. Additional effort has been
expended in the development of angular spectrum models for intermediate depth
wave propagation. Finally, preparations are being made for an extensive laboratory
of wave-induced mean flows in the surfzone, and the associated operation of a passive
syphon system driven by the pressure head developed by setup in the surfzone. Each
area of progress is discussed below. The project has been further extended through
1990 by the Office of Naval Research through contract N00014-90-J-1678.

2 Bragg Reflection from Bars

The principle results of progress in this area have been the master’s theses of Anton
(1989) and McSherry (1989), and a further contribution by Kirby (1989). Kirby
(1989) has examined the equations governing the propagation of linear water waves
over a small-amplitude bar field (Kirby; 1986), and has shown that the problem may
be cast in the form of a Mathieu equation, following Davies et al (1989). The paper
by Kirby (1989) is included as Appendix A. Anton(1989) used these formulations to- - -
study the effect of discrete bars which were evenly spaced on a flat bottom. Anton
demonstrated analytically that a resonant reflection peak arrises due to each of the
Fourier components describing the shape of the bar field, as conjectured by Mei, Hara
and Naciri (1988). He also demonstrated the existence of the second peak (associated
with the second harmonic of the bar spacing) experimentally. Agreement between
theory and experiment for reflection coefficients is still weak due to finite amplitude
bar effects. This effect is being further studied using a boundary element method
in order to represent the finite-amplitude bars without approximation. The thesis of
Anton is included here as Appendix B.

McSherry (1989) made an attempt to model the wave induced flow over a finite-
length bar field, using a grid of radiation stresses derived from the output from a
parabolic model for the coupled incident and reflected wave train (Kirby; 1986).
This work still contains errors and is being extended and refined during the 1990
budget. The model is also being extended to include nonlinear effects, using coupled
parabolic models for the incident and reflected waves (following Liu et al; 1985). An
initial example of the Bragg reflection effect in shallow water waves was studied by
Kirby and Vengayil (1988), which is included here as Appendix C. (This work was
completed under Phase 1 funding, N00014-86-K-0790).

3 Angular Spectrum Modelling

Early work on angular spectrum modelling of intermediate depth waves was described
in Kirby (1988) and has been published by Dalrymple and Kirby (1988) and Dalrym-
ple, Suh, Kirby and Chae (1989). This work has been extended to include a correct



representation of Stokes third-order nonlinearity by Suh, Dalrymple and Kirby (1990).
This work is included here as Appendix D.

Work along these lines has begun for the case of shallow water waves. A model
for the evolution of a directional wave spectrum over laterally-uniform bottom topog-
raphy is presently being developed and will be completed during the 1990 funding
cycle. This model will be followed by a model for waves over bathymetry with weak
longshore variations, and for the reflection of waves by on-offshore variations in depth
associated with bar fields.

To date, the work mentioned here is represented by a short document (Kirby, 1990)
which describes some computational problems associated with the choice of steady
wave solutions to use in a model simulation. This work is included as Appendix E.

4 Mean Flow and Passive Syphon Effects in the Surfzone

The 1989 funding cycle has assisted in the development of a two-component laser-
doppler flow measurement system and associated analysis software, and in the con-
struction of a wavemaker and precision wave flume in the Ocean Engineering Labo-
ratory of the Center for Applied Coastal Research, Department of Civil Engineering,
University of Delaware. This system will be used during the 1990 funding cycle to
study various aspects of undertow in periodic and random waves, and to study the
operation of a passive syphon system driven by wave setup. In the studies of un-
dertow, we intend to place more emphasis on measurement of Reynolds stress —puw
than has appeared in previous studies, and we intend to construct a model of the time
variation of the Reynolds stress and eddy viscosity with wave phase for the case of
periodic waves. We are also going to attempt to directly measure 3 point correlations
using the 2-component LDV and two hot-film probes.
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Recent results of Davies et al. [Phys. Fluids A 1, 1331 (1989) ], which cast the problem of
scattering of long surface waves by sinusoidal bed undulations into a Mathieu equation, are
extended here to include the case of dispersive, intermediate depth waves. The present
formulation is restricted to linear monochromatic wave motions and the bed undulation
amplitude is assumed to be small relative to the total water depth.

The problem of reflection of surface water waves by un-
dulating bottom forms has drawn considerable attention in
recent years because of its possible importance in the context
of coastal geomorphology. In a recent paper, Davies ef al.'
have considered the case of a sinusoidal bed undulation of
small amplitude superimposed on a region of otherwise con-
stant depth, and have shown that the wave field is governed
(to first order in a small parameter based on bar amplitude)
by the Mathieu equation. The analysis is restricted to non-
dispersive, linear, monochromatic long waves. Davies et al.
also showed that, in the case of nonresonant reflection, a
subsequent expansion assuming a reflected wave of
O(€e = bar amplitude/water depth€1) and transmitted
wave of O(1) recovers the long-wave limit of the reflection
coefficient found by Davies and Heathershaw.? Close to the
Bragg resonance condition, a rescaling is necessary, with
both incident and reflected waves taken to be O(1) and the
frequency detuning away from resonance to be O(¢€). Analy-
sis of this case recovers the long-wave limit of the results of
Mei.?

Here, we point out that the analysis given by Davies et
al. may be extended simply to intermediate depth, dispersive
waves, yielding the Mathieu equation formulation with al-
tered coefficients. Thus the limitation to nondispersive long
waves is alleviated. We also consider the case of oblique inci-
dence on the bar field.

For the case of waves in intermediate water depth
[kh = O(1)], we may regard the depth A(x,y) to be com-
posed of a slowly varying mean component k(x.y) and a
rapid superposed undulation 8(x,y), according to

h=h(xy) — 8(xy). (N
We assume the scaling restrictions
|Vh /kh | = OC(e), |6/h | =0(¢), €<l (2)

Under these conditions, Kirby* showed that the surface dis-
placement 7(x,y) of a time-periodic wave of frequency w is
governed by an extended mild-slope equation, given by
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V-(TCT, V) + KT, 1

— (g/cosh? kh)V+(8 Vq) =0, (3)
correct to O(¢€). Here,

@* = gk tanh kh,

- =  dw

C=g, C =5
k )
Since derivatives of cosh kh are of O(¢€), we may write to the
same level of approximation®

(4)

Vo(fV7) +k’py =0, , (5)
where

p=CC,, f=p— gb/cosh’ kh. (6)
Employing the change of variable

n=f""W (7
changes (5) to the form

VW 4+ [k + Ak + V?6/2)|W =0, (8)
where

A =g/CC, cosh’ kk (9)

and where terms proportional to the (slope)? and curvature
of & have been neglected as being of O(€?). (These terms
must be retained in the vicinity of shorelines.) Note that as
kk -0, A—~[1+ O(kk)?)/h.

We restrict our attention to the case & = A(x),
8 = 8(x), and d /dy=0, where (x,p) is the horizontal plane.
Equation (8) reduces to

W+ [k +A(Kk*6+85,,/2)]W=0. (10)
Consider the case & = const and
5(x) = — €hcos Ix, (1)

which corresponds to Davies et al. Here, € = b /h, b is the
bar amplitude, and / is the bar wavenumber. Using the
change of coordinates Ix = 2z, we obtain

© 1989 American Institute of Physics 1898



W, +A1 —eAR[(A2 —2)/A%)cos 22} W =0,
(12)

whered ? = (2k /)*. Askk ~0, 4k~ 1 + O(kk)? and we re-
cover the model given by Davies et al. Equation (12) is the
Mathieu equation

W.+ (a—29cos2z) W=0,
with

a=A4% g=edh(A*—-2)/2. (14)

The revision of the parameter ¢ in Davies et al. by the form
given in (14) then allows for the recovery of the general
results of Davies and Heathershaw” and Mei,? rather than
just the long-wave limit.

For the case of a bar field of finite extent, matching con-
ditions between the solution over the bar field and the solu-
tions in the uniform domains to either side are required. We
take §(z) #0in theinterval — 7/4 <z< (N — })w, where N
is the number of full bar wavelengths and the shift of 45°
causes the undulation to have a value of zero at the bar field
edges. Equation (12) may then be solved in the finite domain
with the use of appropriate boundary conditions. In
z< — w/4, W may be written as

W=W, +Wy=*4+Re % z¢—a/4, (15)

where R is a complex reflection coefficient. Inz> (N — }),
we have

W=W,=Te" z>(N-m, (16)
where T'is the complex transmission coefficient. Noting that
the reflected wave W, and the transmitted wave W should
satisfy appropriate radiation conditions in their respective
domains, we obtain the mixed boundary conditions on W,

W,=iAQW,- W), z= —7u/4, 17

W, =AW, z=(N—-})=. (18)

Equations (17) and (18), together with (13), may be
used as a basis for direct numerical computations. Kirby*

(13)
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has compared a direct solution of (3) with the experimental
data of Davies and Heathershaw.? Solutions of (13) are not
substantially different and show good agreement with ex-
perimental data. .
We further show the extension to the case of oblique
incidence on the one-dimensional bar field. Returning to the
dispersive wave model, we obtain
W, + (K2 —m) + AKX —5,./2)|W=0,
W= fw""’,
where 6§ = 8(x) only, and
m =k sin 6 = const. (20)
The transformations presented above give the Mathieu
equation (13) with g given by (14) and
a=A%—9, y=2m/l= (2k/Dsin 8.
Then
a=[(2k/Ncos8]*>0 (22)

always, and the basic form of the equation is unchanged.
Explicit results near resonance for this case have recently
been given elsewhere.®

(19)

(21)
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Appendix B: Resonant and non-resonant reflection of linear
waves over rapidly varying bottom undulations
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Recent studies have shown that waves propagating over a bottom with rapid undulala-
tions may experience reflection as a result of the wave interacting with the bottom. The
strength of reflection is dependent on the ratio of the wavenumber of the surface wave and
the wavenumber of the bottom undulations. Specifically, if the wavenumber of the surface
wave is close to being one-half of the wavenumber of the undulations, strong resonant re-
flections are indicated. Weaker non-resonant reflection takes place when this criterion is
not met.

This thesis is the culmination of investigations of both resonant and non-resonant inter-
actions of waves propagating over rapid undulations on an otherwise flat bottom. Results
are compared numerically and in a laboratory study. A theory for the case of a mildly slop-
ing beach is developed as well. The possibility for large amplitude standing waves between

a series of undulations in front of a shoreline and wall is investigated.
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CHAPTER 1
INTRODUCTION

Observations of naturally occurring phenomena often give rise to ideas of how man may
alter, control or redirect the forces of nature. Observation and explanation are the purpose
of science, application of such phenomena that of engineering. Coastal geomorphologists
have observed periodic shore parallel bars formed on mild sloping beaches on which plunging
breakers occur. There has been speculation that once one such bar existed, others would
form, propagating a bar field outward. Also, of interest to coastal scientists and engineers
was the possiblity that once the bar field formed, resonant and non-resonant reflections of
surface waves propagating over the bar field would occur.

Several theories have been put forth as to the evolution of the observed bar fields. Evans
(1940) suggested that the first bar is formed when a plunging breaker stirs up sediment on
the bottom and the falling crest behind the breaker deposits the sediment behind the wave.
It has been suggested by Carter, Liu, and Mei (1974) that this breakpoint bar will initiate
reflection of incident wave energy seaward, setting up a standing wave pattern. Due to
Lagrangian drift, causing sediment to converge at the nodes and diverge at the anti-nodes,
additional bars may form. In addition to seaward growth, it will be pointed out in the
present study that due to the possibility of a trapped resonant wave field shoreward of the
barfield, the field may also grow shoreward, as observed by McSherry (1989). Hypotheti-
cally, the growth of the bar field is a self maintaining process, where, as the bar field grows,
stronger reflection occurs causing addition growth. The initial phase of this growth has in
fact been observed in laboratory studies by Davies and Heathershaw (1984).

The wave length of the barfield on the bottom has a direct relationship with the relative

strength of reflection of a surface wave of a particular frequency. As a scientific problem,
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investigators have been interested not only in the evolution of the undulations, but in their
effects as well. The evident strength of reflection has captured the att.ent.ioq of coastal
scientists. In this study, one of the primary discussions will be the nature of the reflection
resulting from the existence of a periodic bottom disturbance. Two domains of reflection,
those being resonant and non-resonant reflection, have been identified by workers in the
field.

Resonant reflection may be described as a strong backscatter of wave energy due to a
tuning mechanism between the surface wave and the bottom undulations. Specifically, for
regularly spaced undulations, or bars, resonant reflection will occur when the wavelength
of the bottom undulation is half that of the surface wave, or, equivalently when twice the

wave number k of the surface wave equals the wave number A of the bottom undulations,

2k
< = (1.1)

The similarity to Bragg resonant reflection in crystallography, where strong backscatter of
certain frequencies of x-rays has been used to determine the spacing between atoms in a
crystal lattice, has brought that name to the resonant backscatter of water waves. Non-
resonant reflection, while not as strong but of no less importance, can be described as
reflection away from the resonant peak.

Once the science of a phenomenon is well on its way to being worked out, the inevitable
progression is the application of the new knowledge - the task of the engineer. The develope-
ment of wave reflection technology is of interest to coastal engineers as a shore protection
measure where it may provide a means to redirect the destructive energies back offshore. It
will be shown later that it is possible to choose an artifical bar configuration such that more
undesirable frequencies may be more strongly reflected. Naciri and Mei (1988) have been
studying the possibility of using the reflective characteristics of a doubly reflective structure
on a subsiding bottom to protect the oil rigs in the Ekofisk field of the North Sea. Yoon
and Liu (1987) have suggested the use of barfields to replace harbour resonators.

The purpose of this study is not to invent specific applications of the theories introduced
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above, but rather to explore the existing solutions to the reflection predictions and offer some
deeper insight to potential advantages and problems with employing such a mechanism as
an engineering application. The primary goal of this study is to present solutions, through
various means, to the problem of predicting the reflective characteristics of shore parallel
bars.

The obvious embarkation point of the journey though this thesis will begin with a
review of the investigations and discoveries of previous scholars. Non-resonant interaction
was studied and quantified by Davies and Heathershaw (1984), while Mei (1985) and Yoon
and Liu (1987) neglected non-resonant cases and concentrated on resonant reflection. Kirby
(1986) presented a general equation describing the interaction of waves propagating over
rapid undulations of small amplitude on an otherwise slowly varying bottom and solved it
using a numerical method.

Next, an extension of the non-resonant interaction theory of Davies and Heathershaw
(1984) will be developed to accommodate oblique incidence and to solve for the reflec-
tion from individual Fourier components of the bottom undulations. Multiple component
barfields will be compared to single component bedforms as previously studied in non-
resonant interaction investigations. In effect, it will be shown that this method will provide
the engineer with a tool to construct a tuned barfield.

Returning to the differences between the forms of the solutions in the literature review,
a comprehensive comparison of the existing resonant interaction theory by Mei, the newly
developed Fourier extension of the non- resonant interaction, and the numerical solution
provided by Kirby will be presented.

Recently, Davies et al.(1989) solved the wave equation in the long wave limit by trans-
forming the water surface variable n to a variable W = f iq that will be forced to zero
at a shoreline. It will be developed in the final chapter how this uniquely allows the solu-
tion of the wave field (neglecting energy dissipation) over bars on a mild slope continuing

to the shoreline. Also, the indication of shoreward propagating bars will be theoretically



supported.

Lastly, to add physical support to the menagerie of theory, data from a laboratory inves-
tigation are presented. While monochromatic waves were used in the wave flume, spectral
analysis was employed to ensure the assumption of a single frequency. An exposition on the
wonders and idiosyncracies of analysis of monochromatic fields with spectral analysis is also
presented. The results of the laboratory experiments are plotted against and compared to
theoretical results of the models.

1.1 Review of Weak Reflection Theories

1.1.1 Non-Resonant Interaction

Davies (1982) studied the interaction between surface waves and a finite periodic ripple
patch on an otherwise flat bed in a t.wo-dimensioﬁal domain. The problem had previously
been examined assuming a ripple patch infinite in horizontal extent. However, the solution
of the problem is valid only for small reflections of O(¢) <« 1, away from the Bragg resonant
condition where 2k/A — 1. k is the wave number of the surface wave and A is the wave

number of the sinusoidal ripple patch. The reflection coefficient is given by

2kD 2k

R= 2k |sin(2k/A) Ny x
" sinh2kh + 2kh A

(2k/A)2 -1
where N, is the number of periods in the ripple patch and D is the amplitude of the ripples.

(1.2)

This theory breaks down where 2k/A — 1, since R becomes unbounded as N, increases.
Davies and Heathershaw (1984) re-addressed the problem in an effort to combine the
effects of non-resonant reflection and the Bragg resonant condition. The study involved two
particular cases, one in which no attenuation of the incident wave occurs as it propagates
over the ripple patch, allowing the wave transmitted past the barfield to be equal in ampli-
tude to the incident wave. Thus, if any energy were reflected, the conservation of energy
would be violated. To address this problem, another solution was posed in which an ad hoc
linear attenuation of the incident wave amplitude was imposed to ;l.chie\re an energy balance

between the incident, reflected and transmitted wave-energy fluxes. It was further assumed



Figure 1.1: Domain definition sketch

that the flow is non-separating from the ripples and it is irrotational, thus no provision is
made for the thin bound.ary layer above the impermeable bed. The ripple patch (Figure
1.1) is the same as used in Davies (1982).
1.1.2 Formulation of Davies and Heathershaw for Non-Resonant Interaction

Constant water depth —h is assumed and the ripples are defined as the departure §(z)

from this mean. The barfield §(z) has characteristic small amplitude D such that

D

Water surface elevation is defined as n(z,t) referenced to the still water level, z = 0. Since
the flow is assumed to be irrotational in two-dimensions, Laplace’s equation is satisfied by
the velocity potential ¢(z, z,t).

Vig=0 (1.4)
Proceeding with a perturbation expansion of ¢,7n and § in powers of a small parameter ¢
d=c€h+ ¢+ ... (1.5)

n=en+€n+ .. (1.8)

§=eby+ 5+ ... (1.7)



The bottom boundary condition (to first order) which requires that flow normal to the
bottom must vanish on the boundary which would be present without the ripple patch, is
now treated as new source of fluid motion (in second order) on the plane surface, z = —-h.

The boundary condition on the bottom may be stated
¢s —¢:6: =0 on z=-h+§6 (1.3)

and the free surface boundary conditions

M+¢s—@m:=0 on z=1 (1.9)
2 4 42
ontb+ B0 on 2oy (1.10)

The boundary conditions are treated by expanding the governing equations 1.8, 1.9 and
1.10 in Taylor series about y = 0. This allows the original nonlinear problem to be reduced

to sets of linear problems, grouped in terms of powers of €. The first order problem may be

stated
V¥¢1=0 in -h<z<0,-c0<z<00 (1.11)
Mme+é1:=0 on z2=0 (1.12)
gm-¢u=0 on z=0 (1.13)
1 =0 on z=-h (1.14)

which describes waves propagating over a flat bottom. The bottom boundary condition to
second order contains the effect of the bottom undulations on the water motion. Spmiﬁcdly,
the second order problem is solvable in two separable parts, one the Stoke’s theory second
order approximation, and the other which expresses the interaction between the first order
motion and O(¢) bed undulations. Pursuing the second of these, the governing equation

and free surface boundary conditions remain in essentially the same form

V=0 in -h<z2<0,-c0<z<00 (1.15)
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Mme+¢2=0 on z=0 (1.16)

gm—¢2,=0 on z=0 (1.17)
while the bottom boundary condtion may be expressed

P25 + 610125 — $12612 =0 (1.18)

The bed form required for Davies solution is that depicted in Figure 1.1. The assumption
is that the bottom undulations will be sinusoidal in profile and small amplitude. Also, the
incident wave is restricted to be normally incident on the ripple patch.

The assumption by Davies and Heathershaw (1984) that all reflection taking place is
of second order or O(€) with respect to the incident wave causes the violation of energy
conservation to leading order. To account for this, an artificially imposed energy attenuation
correction was added to the solution procedure. The effort was to calculate the energy
carried by the wave incident on the ripple patch, calculate the sum of the reflection and
transmitted wave energies, which from the assumptions made would be greater than the
incident wave energy, and adjust the amplitudes of the transmitted and reflected waves to
the point where energy is conserved.

Included in the studies mentioned above were investigations into the possibiltiy of ripple
patch growth seaward as a result of Lagrangian drift below the standing wave field in front
of the ripple patch. Laboratory studies of the reflection characteristics of a ripple patch
on a movable bed on an otherwise flat bottom indicated some propagation of the ripple
patch. Shoreward growth downwave of a barfield on a sloping beach has been observed
in a three-dimensional laboratory study (McSherry 1989), probably a result of trapping a
resonant frequency between the barfield and the shore. This phenomena will be discussed
further in a later chapter.

1.1.3 Miles’ Oblique Surface Wave Diffraction

Miles (1981) solved the same problem but allowed an arbitrary bottom form and in-

cident waves propagating at oblique angles to the bottom perturbations. A form of the



was assumed, that is, incident and reflected waves are allowed at the offshore boundary
and a transmitted wave allowed at the nearshore end. The governing equation was reduced
to a solvable form by making the assumption again that the reflection is small. Miles
then employed a finite cosine transform, solved the transformed equations, then applied the
inverse transform to obtain the solution.

The results of Miles’ solution are

R = [il(h + K~'sinh kh)] "} (1* — m?) f = e?25(z)dz (1.19)
- Q0
and
T =1 - [il(h + K~"sioh kh)]~1(i? — m?) [ * §(z)dz (1.20)
-00

where
ktanh kh = w?/g = K, (1.21)
?+m?=k? (1.22)

and R is the reflection coeffecient, T is the transmission coefficient and §(z) describes the
bottom deformation.

It can be seen from the approximations R = O(e) and T = 1 + 10(¢). Conservation of
energy implies |T'|? = 1 — |R|?, which is not satisfied by the solution to O(¢). Also, where
| = m (45° angle of incidence), R = 0.

1.2 Review of Strong Reflection Theories

While Miles and Davies and Heathershaw were exploring weak non-resonant reflection,
Mei (1985), Yoon and Liu (1987), and Benjamin et al. (1988) explored resonant interac-
tion between the surface waves and rapidly varying bottom undulations. Of these, Mei
in particular has performed a number of studies on resonant interaction. The inadequacy
of Davies and Heathershaw’s theory to handle resonant reflection prompted further study
into resonant interaction and obliquely incident waves. Resonant interaction occurs where
2k/X = 1, and for the purposes of the present discussion, A will be understood to be the

wavenumber of a sinusoidal bottom perturbation.



1.2.1 Mei’s Resonant Interaction Solution

Mei (1985) solved Laplace’s equation with an undulating bottom as described by Davies
and Heathershaw, but solved assuming coupling between the incident and reflected waves,
requiring that they be of the same order. The governing equations were linearized with
respect to the mean free surface and the mean sea bottom. The velocity potential was

given by
Vie+ ¢ =0; —h<z<0 (1.23)

The bottom boundary condition is given by

$s=—-Vah-Vad +€Vy- (6Vag) +O(); z=—h (1.24)
where
a a
w=[2, F‘y] (1.25)

and § = §(z) describes the bottom pertubation. Employing the ray approximation and

allowing the wave to be modulated in time and space, the first order potential is taken as
¢ = (y*eST +.) + (v +.) (1.26)

where S is the phase of the +z or —z propagating waves and the velocity profile ¢ is given

by
+ _ t'_gcoshk(z-{-h)Ai

v 2w coshkh

(1.27)

where A* are the complex wave amplitudes.

The assumptions in the solution procedure are that the small order undulations are su-
perimposed on a slowly varying depth (mild slope), the form of incident wave is constructed
such that it may be modulated in time and space, and a small parameter ¢ characterizes
the slope of the free surface, the mean bottom, the bar amplitude, and C/C,. Lastly, the
bottom contours are shore parallel, although this condition is relaxed in a later paper on a

doubly periodic bottom.
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Mei introduces a frequency-like term (2, which is defined as the cutoff frequency.

wkD
o= 2 sinh 2kh

(1.28)
The reflected wave is formulated such that its amplitude is O(1) in anticipation of strong
reflection. The solution is restricted in the sense that reflection must be strong, ie. resonant
or close to resonance. Therefore, wave parameters are described in terms of their deviation
from the true resonant case. This process is defined as detuning the wave from resonance
where k represents the perfectly tuned or resonant wavenumber. The solutions are worked
out in form of ratios between the tuned and detuned parameters. The incident wave is

slightly detuned from the Bragg resonant condition such that its wave number is k+eK,

where K is O(1). The detuning implies a frequency deviation of €2, where
N=C,K (1.29)
The incident wave potential is given by 1.23 and the amplitude by
A= A, K== (1.30)

where z and t are slow variables. The governing equ:‘;t.ion of the wave outside the domain
defined by the ends of the bar field is reduced to

a

(% $ C’E)A =0 (1.31)

Over the bars, the governing equations become nonhomogeneous and coupled

d a .

(5:+Crzz)d=-iflB (1.32)
0 a .

(3; ~ Coz;)B = —11A (1.33)

where A is the +z propagating amplitude and B is the —z propagating amplitude and

_ gk*D
®™ 4wcosh® kh (134
Continuity of A and B at the ends of the domain gives four conditions so the solution in
all three regions may be easily found, where B =0 if z > L, so no —z propagating waves

occur in this region.
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The solution is split into four regions with respect to the cutoff frequency 2,. The
cutoff frequency provides a quantitative point at which the resonant approximation becomes
unreliable, that is, where R becomes small. The reflection coefficients as a function of
distance into the bar field for the four regions are defined as follows

{) 1 > 2, Detuning frequency above cutoff

—1{1,8in P(L — z)

R(2) = &, cos PL - itisin PL (£23)
where the envelope wavenumber P is
_ (- oy
P= c, (1.36)
and 0 < z < L and L is the length of the barfield.
11) 0 < 1 < N1, Detuning frequency is below the cutoff
Denoting
2 _ 02\1/2
Q=iP, where @={Te-T) " (1.37)
Cy
the reflected wave amplitude is
,sinhQ(L - z)
R =
(=)= 75C, cosh QL + Asinb OL (1.38)
i11) 1 = O Perfect tuning
Q reduces to K
—isinh 82 (L - z)
R(z) = !
(z) — %.'k (1.39)
iv) 2 = 0, At the cutoff frequency
Q—0
_ —=i0(L - z)/C,
R(z) = 1-:0L/C, (1.40)

The reflection coefficient measured upwave of the bars is given by R{0).
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The above presentation is for normally incident waves over a sinusoidal barfield on
an otherwise flat bottom. Mei also provided a solution extending the theory to oblique
incidence and a mild slope. The reader is directed to the original work for further details.

It will be shown in a later section that the resonant peak may be somewhat underes-
timated since the non-resonant interaction of severely detuned modes are neglected, and
thus not added to the resonant peak. This is especially apparent when additional Fourier
components are added to the bottom profile, in that only the dominant Fourier component
of the bottom perturbation is considered in the resonant interaction. As will be pointed
out later, second harmonic resonant peaks may become important for arbitrarily shaped
bottoms.

Benjamin et al. (1987) provided a similar solution to the resonant case but instead of
using a detuning variable, allowed the wavenumber and angular frequency of the incident
wave to be defined as physical parameters. The cutoff frequency feature does appear as
in Mei’s solution. The solution is arrived at using a conformal mapping procedure. The
interested reader is encouraged to consult the original work.

1.2.2 Depth-Integrated Equation for Small Undulations on Mild Slopes

Kirby (1986) derived a depth-integrated mild slope equation for waves propagating
over an arbitrarily shaped bed restricted to small amplitude. The equation in its homoge-
neous form is Berkhoff’s (1972) equation for waves propagating over a mildly varying slope.
The equation is solved in Chapter 3 using a finite difference scheme once the appropriate
boundary conditions have been established.

Berkhoff’s equation is stated

V. (CCyVn) +kCCyn =0 (1.41)
where
G
C=1 (1.42)
ow
Cy= 3z = #(1+5him) (1.43)

D
o
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The depth-integrated equation applies to waves propagating over small amplitude bed un-
dulations superimposed on a mild slope. The smallness of the rapid variation allows the
bottom boundary conditions to be expanded about the slowly-varying mean depth. Using
the Green’s formula approach of Smith and Sprinks (1975), let h'(z, y) denote the total still
water depth where

h(z,y) = h(z,y) - §(z,y) (1.44)
and h(z,y) is a slowly varying depth satisfying the mild slope condition

Vah

T e, (1.45)
where
a 9
Vy=|—,— :
" [ax'ay (1.48)

and &(z, y) satisfies a small amplitude condition. Figure 1.1 illustrates the individual depth
components.
The problem is considered linear in wave amplitude but the first-order terms in bed-

undulation amplitude are retained, where

o (v—k';‘—") ~ O (k) < 1 (1.47)

Linearizing the free-surface boundary conditions and expanding the bottom boundary con-

dition about z = —h, yields to O(k§)

Vid+¢ss=0 on -h<z<0 (1.48)
$te+9¢s=0 on z=0 (1.49)
¢s=-Vph-Vpd+ V) (6Vpg) on z=-h (1.50)

Equation 1.50 has been given by Mei(1985) and separately by Davies and Heathershaw

(1984). To leading order (§ — 0), the solution to 1.48, 1.49 and 1.50 is

#(z,2,t) = f(z,2)$(z,t) + Y _ non — propagating modes + O(ké) (1.51)
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where f = cosh k(h + z)/cosh kh is a slowly varying function of z and y, and where
w? = gktanh kh (1.52)

locally, with w being the fixed angular frequency and k the wavenumber. Using Green’s

second identity to extract the propagating component of ¢

[ 16 d~ [ $luds= (6, - 41,12 (1.53)
ik 3 - 3 f ] z|-h .

Manipulating the integrals and neglecting terms of second order in k§ yields

b — Vi (CC,Vad) + (w? — K2CC,)é + c—mﬁv, . (6VAd) = O(k6)? (1.54)

Here ¢ is the velocity potential in the plane of the free surface, C = w/k, and C; = dw/dk.
Also note, neglecting the § terms yields Berkhoff’s equation for the slowly varying bottom
alone.

In the absence of currents, 5 is simply related to surface displacement n through a
constant of proportionality, thus n is substituted in place of é. In the monochromatic wave

case, the spatial surface displacement 7 can be described as

n(z,v,t) = ii(z,y)e" (1.55)
Substituting n for ¢ in equation 1.54, in reduced form is given by

V. (CC,Vi) + k*CC,fi - —%—V - (6Vij) = 0. .
(CC, V1) + k*CCyny mh,khv (6Va) =0 (1.56)

1.3 Indirect Solution of Surface Elevation
Davies et al. (1989) solved the shallow water wave equation by making the substitution

n=f""w (1.57)

where

f=g(h-9) (1.58)
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and where [ is the shallow water limit of

9(z)

=CC, - ——
/ ¥ cosh’kh

(1.59)

and rearranging the equation into a solvable Mathieu equation form. The principal as-
sumption made is that the solution is valid only for long waves over an undulating bed.
As pointed out in a discussion by Kirby (1989), when the mild slope equation is restated
using the above transform, and is solved for the case of 2k/) # 1 the non-resonant solution
of Davies (1982) is recovered. Additionally, solving the case of 2k/A = 1, Mei’s resonant
solution is recovered.

The advantage of using the substitution above is that it allows for a solution at the
shoreline with no restrictions on n or its derivatives. A more complete formulation of the

equation and a numerical solution to it will be presented in a later chapter.



CHAPTER 2
EXTENSION OF NON-RESONANT INTERACTION THEORY

2.1 troducti

Non-resonant interaction theories are extended to allow waves incident at oblique an-
gles over a one-dimensional topography. Then a bottom with regularly spaced bumps is
decomposed into individual Fourier components, the contribution to reflection is calculated
and the reflection coefficient calculated as the sum of the contributions.

2.2 Governing Equation

The solution given by Davies and Heathershaw results from a perturbation expansion
to second order of the components of the wave field propagating over a sinusoidal bottom of
finite length. The major assumption made is that all reflection takes place at O(¢), or the
wave is weakly reflected. Thus the leading order component incident on the ripple patch
propagates over it unabated. As recognized previously, this assumption violates energy
conservation in the domain if any reflection were to take place. To account for this, Davies
and Heathershaw artificially impose a linear attenuation on the +z propagating wave, then
adjust the solution to match the requirements of energy conservation. Two additional
drawbacks to this solution are its inability to adequately handle the Bragg resonant case
of strong reflection in the area where O(1) reflection occurs, and in its original form, the
inability to solve the problem allowing waves incident at oblique angles.

Miles (1981) solved the same problem for an arbitrary bottom and oblique incidence.
The solution method employed involved assuming a form of the incident, reflected and
transmitted wave fields and applying them to the problem. The solution method is very

similar to the one explained below. It should be noted here, however, that all three solutions,

16
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(Miles, Davies and Heathershaw, and the present work) are in agreement in the final result.

Begin with the governing equation developed in Kirby (1986),

V.[CC,V¢] + k*CC,¢ = ;j,-ﬁv - (6V¢) (2.1)

where C and C, are wave celerity and group velocity, and k is the wavenumber derived

from the local value of the slowly varying depth h. The total depth is given by

h'(z,y) = h(z,y) - 6(z,y) (2.2)

where §(z,y) is the rapid bed undulation. Consider the case of undulations placed on an

otherwise constant depth h; let
a = g/ cosh? kh = constant, (2.3)

then C,Cy, k are all constants as well. This allows 2.1 to be simplified to the equation

v? T - 1
¢+ k¢ cc, (6V¢) (2.4)
Simplifying further, let
R 4k
@ = CC, ~ 2kh + sinh 2kh (28]
Then, equation 2.4 may be rewritten as
V3 + k¢ = a'V(6V9) (2.6)

2.3 Two Dimensional Wave Field
The problem will be extended to solve for wave propagation over a one dimensional

topography. Requiring & to be a function of z only, equation 2.6 becomes
Vi + k¢ = a'b:4: + a'6V?¢ (2.7)
Assume the form of the general solution of ¢ to be

#(z,y) = $(z)e"™ (2.8)



18
where

m=ksin5__ (2.9)
is a constant following Snell’s law. Then
k? — m? = k(1 - sin?0) = k? cos 0* = I? (2.10)
Equation 2.7 now becomes
ez + 124 = 0'6:6: + a'6¢,; — m?a'6$ (2.11)
Allowing &(z) — O for a physically flat bottom, the solution would be given by
$= A" 4 Bel® (2.12)

A and B will be allowed to have complex values to allow for relative phase shifts for the

most general solution.
Now, developing the boundary conditions at the ends of the domain for the case of a

device causing reflection but still allowing some transmission at the shoreward limit yields
$(z — —00) = €% + Re™¥= (2.13)

where the incident amplitude is taken to be 1 and R is the amplitude of the reflected wave.
The reflection coefficient is then given by |R|. Likewise, with T being the transmitted

amplitude, the boundary condition is
#(z — 00) = Te'* (2.14)
Strictly, conservation of energy requires
IR +|T =1 (2.15)

if no energy attenuation occurs in the domain and the mean depth doesn’t change.
For an arbitrary but finite bottom undulation in (z), assuming o'6 ~ (D/h) is small,

or |a'§| < 1, where D is the amplitude of the undulation, let

e(a')" = (a'6) (2.16)
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and expand in powers of ¢

= ¢otehr+edrt ...

Ro+€Ry+ €Ra + .....

e | T Sa
I

= To+Ti+ET2+.....

Collecting first order terms gives

0,22 + ‘,950 =0

Assuming reflection is of O(¢) at leading order, the solution of 2.20 is given by

po=¢", Ro=0, To=1
Collecting O(e) terms,

1,22 + 71 = a'6:00,2 + a'690,22 — m*a'80
Substituting 2.21 into 2.22 and rearranging gives
b1.2: + 1241 = |ila'é; — a'§(m? + I"')] Pl

where (m? + 1?) = k%. The general form of the solution is

$1= 1™ + cae=" + ¢y

where ¢y, is the particular solution.

To solve the non-homogenous part, let
q(z) = [ﬂa’&, - a'6(m? + Iz)] =
The particular solution is obtained by variation of parameters, and is given by

$1 = €'%[e - %/; g(€)e ™ de] + e [cs + %/:., q(€)e"Cde]

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

where £ is a dummy variable of integration. From the expansion at the offshore limit,

I — —00

$o+€h1 + ... = €%+ Roe % + Ry + O(e?)

(2.27)
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the homogeneous solution of the second order terms gives

c;=0 c2 =Ry (2.28)
At the nearshore limit, z — oo,
$o + €b1 + ..... = Toe"'* + €Ty e'* (2.29)
80
¢1 =T z =00 (2.30)

From equation 2.25 and the two solutions for ¢; above, the reflection and transmission at

O(¢) are given by

—g [ .
Ry = — g(z)e"*dz (2.31)
-—o0
i [ :
Ty=- q(z)e " *dz (2.32)
2 J-oo

Evaluating the expression 2.30 for R, yields
—ia’ , n [* 2l
Be 220w )f §(z)e?*dz (2.33)

Equation 2.32 is an expression for the weak, or non-resonant, reflection of a wave of
wavenumber k over an arbitrary bottom at any angle of incidence. In its current form, it
provides the same results as determined by Miles (1981), and restricted to normal incidence
and a sinusoidal bottom would be identical to the result of Davies and Heathershaw (1984).

2.4 Solution for Periodic Bars

For the case of a sinusoidal perturbation (as assumed by Davies and Heathershaw)
§(z) = Dsin2xz/L (2.34)

where L is the spacing between crests and A = 2x/L, it can be seen that the solution of
the non-resonant case by Davies and Heathershaw will be recovered in the case of normal

incidence.
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where | = k. The result for this case is plotted in Figure 2.1. The solution at resonance

(2.35)

2l = ) is given by

_ =iad o 2 Nz
B = =gl =~ ) o (2.36)
For the plotted case, the bottom configuration is
6(z) = 0.05msin 2xz/1.0m (2.37)

2.5 Fourier Decomposition of the Bottom

Exploring now the case where §(z) is a field of discrete cosine shaped bumps with

arbitrary, but even spacing, such that

hz) = { Dsin(2x(z — b1/2)/bL) ;(nL/2-b1/2) <z < nL/2+by/2

0.0 ;otherwise (2.38)

n=0,1,2,3
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Figure 2.2: Definition sketch of four cosine bumps on a flat bottom

where L is the spacing between crests and by is the length of a single undulation, it can be

seen that the field may be described by a Fourier series expansion,

2nxz

§(z) = i-‘-’:o Dy, cos I (2.39)

The Fourier coefficients for the case of four cosine bumps shown in Figure 2.2 on a flat

bottom are given by

D
Dy = -; (2.40)
-D
D, = = (2.41)
cos nT
Dy, = D’—(l—-_—-nL,)(l-}-cosmr] (2.42)

The cosine transform is used in this case since it is even about the starting point of the

domain.

R; becomes

R, '“' m?) f [Z 2"" le?*=dz (2.43)

n=0
where N, is the number of bars in the field. For purposes of creating the most effective

design, it would be helpful to determine the relative contribution of each Fourier component
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stant wave field, that is

A
2l,m(l m*) = constant

Combining this constant with Dy, let

2.39 reduces to

R =

Letting

the integral part of the solution

8n = Dn—r '(I’ m?)

NoL
Z“ﬂ/ e 2n:rz iz g,

2x
—E—A

may be expressed by

NyL ]
I= [ (cos nAz)e?**dz
0

Expressing the cosine term in its exponential form, I becomes

L
- _;_ j . (ei{zl+u.\)z+ei(ﬂ—n.\):) i
2.5.1 The Resonant Case
In the special case of

2l =nA

it can be seen
RICTE S

so I becomes

i(2A+nANGL _ ML

) + m\ e 1+ 2

Since

I can be simplified to

1“4:[

2
4\_“

= TV N 1+ N;L

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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By factoring e'2™™N¢ out of the bracketed term, thereby forcing it into a sine form with an
argument of 2xrnN, where nNN, are integer, it can easily be shown that the final form for

the case of 2l = n) is

_NL _ Nyx
I= S iy (2.55)
2.5.2 The Non-Resonant Case
In the case where the z component of the wave is away from resonance or
2l -n)#0 (2.56)
I will change considerably. The integral portion is stated
inNy2r i(§)2xNy _ —inNy2x i(3)2xNy _
1= | O B : (2.57)
2iA 20+ nA 2l - nA
Letting
2!
m= - (2.58)
2.58 becomes
= =2 irN, (ei"’”‘ = c-u‘r-]rN;)
I'= A(n? - 1’)8 21 (2.59)
Applying trigonometric identities and rearranging, gives
¢l
I= ————e'"MLginIN L (2.60)

T Iy = n)
2.5.3 Full Solution

For a bottom with the positve branch of a cosine curve imposed on a flat bottom, the
reflection coefficient for a given wavenumber component of the wave field , R, would be
calculated by summing the effect of all non-resonant Fourier components of the bottom

plus the effect of the resonant component. The full solution is given by

o~ 1 ‘72 i . st
R= z#an?h—z_-——n—z—)-e e sinIML + an—=|,_u (2.61)
n#

where n is the n** Fourier component of the bottom perturbation, A is 2x /L with L being

the bar spacing, N; is the number of bars in the field, and | = kcos#d.
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Plots of the contributions to the reflection of the first five modes of the barfield are shown
in Figure 2.3. The abscissa is marked for the mode, with the space between them allowed
for the reflection coefficient plot. The ordinate is referenced to the a.urface wavenumber over
the wavenumber of the fundamental mode of the barfield. Additionally, the total reflection
coefficient for a normally incident wave, = 0, is shown in Figure 2.4. The ordinate units
again are 2k/), where k is the surface wavenumber, and A is the wavenumber of the bar
spacing, or A = 2x/L. This unit designation will be irrelevant for mixed spaced bars, thus
the ordinate units would be changed to period, T, or some equally pertinent parameter.

The calculation of the reflective characteristics of a given bottom perturbation in this
manner allows the prediction of which components of the bottom may be most strongly
reflective for a particular wave frequency. However, the true power of this technique is that
it would easily lend itself to customizing a barfield to be more strongly reflective of certain
frequencies, simply by building the Fourier series of the bottom that would best reflect
the more undesirable frequencies. While the maximum reflection for a particular frequency

occurs when one of the primary components in the bottom has wavelength twice that of the
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surface wavelength, it should be noted as additional components are emphasized the peak

reflection of other de-emphasised components are reduced.



- CHAPTER 3
COMPARISON OF SOLUTIONS

3.1 Introduction
The development of a finite difference scheme to solve the mild slope equation (Kirby
1986) will be presented. The numerical results will then be compared to the analytic
solutions of Mei (1985) and the extension to the non-resonant interaction solution.

3.2 Derivation of a Complete Governing Equation

Kirby (1986) developed an extension to the mild slope equation of Berkhoff (1972)
for shoaling waves to allow rapid, small-amplitude variations in depth. This equation was

presented in Chapter 1. This equation is again stated

v. Vi) + k2CC.i — —1—V . (6V7) = 0. ;
(CC, Vi) + K*CCyfi — — =gV - (69) =0 (3.1)

The undulating bottom on a mild slope is described by

h'(:, 9) =~ h(:l 9) = 5(2, y) (32]

where h(z,y) is the slowly varying component, and §(z,y) describes the undulations. Re-
stricting the model topography of equation 3.2 to one dimension in the z direction, equation

3.1 is reduced to
6
CC,(V¥ + K37) + (CC,)sfis — —aa—V3ij — —2—b,1, = :
o(Vi07 + i) + (CCy)zs coahE kh n 2oshd A 6202 =0 (3.3)
Allow the two dimensional surface 7j to represent a wave of arbitrary amplitude and
frequency which will refract over the slowly varying topography h(z) according to Snell’s

law of refraction. For a given wave of frequency w incident at angle 8o in deep water, Snell’s

law is

ksin @ = kosindo (3.4)

27



where
it
ko = 7 (3.5)

Split the local wavenumber into z and y components

| =kcosd (3.6)
m = ksin 8 = ko sin 8 (3.7)

and
k? =1? + m? (3.8)

Since m < ko from equation 3.7, f; may be expressed as
- ko )
n =/g¢ q(::,m)e""'dm (3.9)

Substituting 3.9 into 3.3 then yields a second-order ODE for 7j(m)

cosh? kh cosh? kh

Equation 3.10 is a well posed problem for the reflection of waves incident at any angle after
specifying boundary conditions. Formally, the problem is posed on the interval —co < z < 0,
where z = 0 is the shoreline and z = —o0 is deep water. The solution over this interval
is, however, unwieldy. A simplification at the limits of integration is attained assuming the
incident wave condition at some finite distance offshore, z;, is known, and neglecting the
region of the surfzone, establish a second station, z3, between the topography in question
and the surfzone. The energy propagating past z; is assumed to be fully dissipated in
breaking. Equation 3.10 is solved only in the domain z; < z < z; with boundary conditions
known at z; and z3; thus the reflection from shoreline conditions will not be included.
The boundary condition at the shoreward station, z;, is assumed to be a wave propa-

gating out of the solution domain in the +z direction

fe=1l(z)) ; z=12; (3.11)
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At the seaward station, z;, the boundary condition 7, is assumed to be a superposition
of an incident wave 1j; propagating in the +z direction from deep water, and a reflected
wave 1j, propagating in the —z direction out of the solution domain. The incident wave 1;
is assumed to be known, and the reflected wave 1j, must satisfy a radiation condition for

propagation out of the domain
ez = —sl(z), ; z=2 (3.12)

Noting that
”fr — ':‘ - (3-13)
and substituting into 3.12, the condition at z, is thus described.
iz =820 —19) ; z=2, (3.14)

The problem to be solved is fully specified by equation 3.10 and the boundary conditions
3.11 and 3.14.

3.3 Numerical Approximations

Proceeding further from Kirby (1987), the problem specified in the previous section
may be solved using a finite-difference scheme. The “superscript will be dropped here and

the notations

p=CC, (3.15)
1= (3.16)
cosh® kh S

are defined. The domain zy < z < 3 is discretized according to

=z+(+1)Az ; 1<i<n (3.17)
where
o T — I
Az = —_— (3.18)

All other coefficients and the variable n are affected by local conditions in the grid and

are defined in discrete form at the grid locations z'. From this, a centered finite-difference



scheme is developed and is given by

gl =) b b " = 0)

28z _
4 5 = o) — (B4 ) =0t
2Az?
[(I‘)’p‘ + m"y‘&‘] " =0 (3.19)
Equation 3.19 may be simplified to the form
A '+ B +C'*t =0 ; i=2,3,.n-1 (3.20)
where
Bi — _(pl'+l +2P‘+Pi-l) +1i(6i+l +25! +6i—l)
+2Az%((I")?p" + m?4'6"] (3.22)
Ci - pl"l-l + pi _ ,fi(éi-i-l + 5!) (323)

In order to simplify the application of the boundary conditions, the input topography

is restricted to a flat bottom at the edges of the domain;
A = 72 (3.24)
Ol (3.25)

The bed undulations are also subject to this restriction in order that the waves radiating

at the boundary are not interacting with the rapid variationﬁ. Thus it is also required that
Bl=="1="=0 (3.26)

Now to express the boundary conditions in finite difference form, equation 3.11 is

7"(1 - a®) = 1"} (1 + a") (3.27)
where
o= O (3.28)

2
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Defining 3.11 in the finite difference form,
B*"=1-a" (3.29)
A" = —(1+a") (3.30)
Likewise, at station z; the boundary condition may be restated as
(1+a')n? - (1 — a')n! = 2a(m)a’[e* + 1] (3.31)

where
1" Az

= ! (3.32)

a
and it is assumed the incident wave is described by

ni(z) = am)e' (=== (3.33)

Again, putting 3.14 into the finite difference form gives

B' = —-(1-a') , (3.34)
c! = 1+a (3.35)
D' = 2a(m)al[e*® +1] (3.36)

The problem may be written in the form of a linear matrix equation
An=D (3.37)

where D is a column vector with D? — Dn = 0, n is a column vector with elements n! — ™,
and A is a tridiagonal matrix with diagonal vectors A', B* and C*. The solution is obtained
using the double sweep algorithm as given by Carnahan, Luther and Wilkes (1969).
Reflection and transmission coefficients may be determined once the solution for n has
been calculated. Two estimates for the reflection coefficient R are obtained at z;. From

equation 3.31 n, at z; may be written

ne =n' - a(m) (3.38)
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n? = n? - a(m)e**’ (3.39)

Define the two estimates for reflection coefficients as

_ I}l

Ry = ) (3.40)
_ |nd|

Ry = m (3.41)

and R as the average of R; and R;. Transmission coefficients at z; are estimated by

1= I:;:)l (3.42)
;= -‘-1?—':!) (3.43)

which are likewise averaged to obtain T. A test of the a.ccurac;v of the solution is obtained

by checking the conservation of energy requirement

R*+T? (C:I"k‘) =

Cii (3.44)
By applying this model at a number of discrete frequencies and angles of incidence, predic-
tion of the reflection characteristics for a frequency and dimensional spectrum may be built.
The results of this full numerical solution will be used to compare against the oblique and

arbitrary bottom extension of non-resonant solution, and the resonant detuning solution.

3.4 Comparison to Existing Theories

The numerical solution to the mild slope equation offers a method to calculate the
reflection coefficient valid for all values of 2k/A. In this section, the numerical solution will
be used to compare the existing resonant and non-resonant interaction theories.

3.4.1 One-dimensional Wave Field

The initial investigations of this topic concentrated on bottoms of sinusoidal form.
Figure 3.1 is a plot of the three methods described previously, Mei’s resonant interaction
(Mei) presented in Chapter 1, the extension of the non- resonant interaction (Non-Res

Extension), and the numerical solution of the mild-slope equation (Numeric). It can be
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Figure 3.1: Reflection coefficient vs. 2k /A for sinusoidal bottom. A(z) = 0.15m, four cycles
§(z) = 0.05msin2x/1.0m

seen from figure 3.1 that the resonant interaction agrees well with the numerical solution
near the resonant peak. Conversly, the non-resonant extension solution agrees well in areas
of small reflection, except for a slight shift in phase with respect to 2k/A. It is also very
obvious that the non- resonant solution severely overpredicts the reflection at the resonant
peak.

Now a case of discrete but evenly spaced bumps will be investigated. The bedform
used in these calculations are identical to that described in chapter 2. It should be noted
that while the numerical solution will calculate the reflection coefficient using a discretized
bottom, the non-resonant extension and Mei’s solution is a summation of the reflection
coefficients from the Fourier components of the bottom. From the plot of the numerical
solution and non-resonant extension in figure 3.2, it can be seen that a second peak of
substantial reflection occurs due to the interaction with the second Fourier component of

the bar field. The resonant peaks for the first two Fourier components were calculated inde-
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Figure 3.2: Reflection coefficient va. 2k/)A for four cosine bumps. h(z) = 0.15m,
5(z) = 0.05mcoe2x /1.0m, A = 2x /L,

pendently assuming the theory to be valid near resonance. Agreement between all theories
is poor. Surprisingly, the non-resonant theory resonant peaks show smaller reflection than
the numerical solution. It is possible that first order solutions may not adequately predict.
the reflective characteristics of such a field.

3.4.2 Obliquely Incident Waves

Bars placed in the environment will have waves incident at all angles. The contour
plots to follow are reflection coefficient solutions for various wave numbers k propagating at
angles # from normal incidence. The bottom form assumed for these plots is a shore parallel
(6 = &(z)) sinusoidal bar field. The solution for the extension of non-resonant theory for
obliquely incident waves is presented in Chapter 2 and the mild slope solution is presented
in previous sections of this chapter. The extension of Mei’s resonant interaction theory is

achieved by allowing
- 2cos'(m2coﬂ)

(3.45)
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and the cutoff frequency to be defined by

cos 20
cos? §

No=0—s5 (3.46)

It can easily be seen from these plots, as the theories indicate, that the bar field is
invisible to waves incident at 45 degrees.

Figures 3.6, 3.7 and 3.8 are plots of the differences of the predicted reflection between
theories. Angles of incidence range from 0° to 45° since the large values of reflection and
slight phase shifts at higher angles may cause the differences to be as large as the peaks,
thus the additional information would be irrelevant.

3.5 Application of the Solutions

Kirby (1987) presented model test examples for directional and frequency spectra with

various bottom configurations. Of principal interest from a practical engineering standpoint,



Angle of Incidence 6

Figure 3.4: Non-Resonant Extension, reflection coefficient vs. angle of incidence ¢ and
offshore wavenumber k,

are the cases of discrete artificial bars. The probable prototype design is a series of artificial
bars consisting of specifically shaped bumps whose longitudinal axes are shore parallel and
are laid on the bottom at predetermined spacings in the offshore direction. The process
of determining the optimum spacing is defined by Kirby as tuning the barfield. The study
assumes that the bed is non-movable, thus the seaward propagation of additional bars in
the form of sand waves as proposed by Davies and Heathershaw (1984) and scour between
the bars will not affect the reflection characteristics of the topography. In addition to the
directional spectrum comparison with previous solutions to the problem, the numerical
model was used to predict the reflection characteristics of a bar patch to be verified in
a laboratory study using normally incident waves. The laboratory study is presented in

Chapter 5.



37

Angle of Incidence 6

Figure 3.5: Numerical Solution, reflection coefficient vs. angle of incidence # and offshore
wavenumber k,
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Figure 3.7: Non-Resonant Extension - Mei’s Solution vs. angle of incidence ¢ and offshore
wavenumber k,



Figure 3.8: Mei’s Solution - Numerical Solution vs. angle of incidence # and offshore
wavenumber k,



CHAPTER 4
ANALYSIS TECHNIQUE FOR LABORATORY STUDY

4.1 Introduction

A formulation for the calculation of two wave field spectra travelling in opposite di-
rections to be used in analyzing the laboratory data from the experiments described in
Chapter 5 is developed. The method used is a three point method using a least squares
analysis for decomposing the measured spectra into incident and reflected spectra (Funke
and Mansard, 1980). This method requires a simultaneous measurement of the wave field
at three positions which are in reasonable proximity to each other and in a line parallel to
the direction of wave propagation.

4.2 Theoretical Background

Although these calculations may be made by measuring the wave field with two gages of
known distance apart and solving two linear equations directly, Funke and Mansard (1980)
put forth a method for resolving the wave train spectra using multiple gages to measure the
wave field and a least squares fit to resolve the incident and reflected wave spectra, in an
effort to improve accuracy and reduce sensitivity to signal noise and non-linearities of the
waves. The theory makes use of the axiom that an irregular sea state may be described as

the superposition of an infinite number of discrete components

n= i fn (4.1)

where

= Aggiton=vaf), (4.2)

and the assumption that each component will travel at a unique speed in a given water

depth. The superposition will result in a time series 7;(t),n2(t), and ns(t) of the water

41
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elevation at each gage position. The spacing between the gages is known, and wave celerity

may be determined by

w
C= T (4.3)
where
2x
w = F (4.4)
where T is the wave period. Solving the implicit equation
w? = gktanh kh (4.5)

for k iteratively, where g is the acceleration of gravity, k is the wave number, and h is the
water depth, it is possible to calculate the phase relationships between the wave trains as
they pass the probes.

Beginning by executing a Fourier transform on each signal,

B(w) = /ao n(t)e *'dt (4.6)

the discrete Fourier components may be resolved and written in polar form as
By = Agaet®rn (4.7)
or in rectangular form as
Byn = Ap ncosappn + 1Ay nsinap, (4.8)

where Ap, is the amplitude of the n** component at gage p, and « is the phase relative to
the time origin of the record. The Fourier transform will enable the calculation of half as
many frequency components as data points, N.

These coexisting amplitude-phase spectra determined at the gage positions are a result,
as stated above, of the superposition of the discrete frequency components, and are in fact,
each a measurement of the same wave fields. The goal is now to separate out the two

interacting fields, those being the incident and reflected wave fields. Making use of the
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dispersion relationship, it can be seen that it is possible to calculate the phase relationships
of each component as they are measured at each gage. By assuming superposition of two

wave fields travelling in opposite directions, the time series will be

N N
'71(‘) — z Al‘ne—i(kn:—u..!} £ Z: Aﬂ'ﬂe—i(k..(z+2:r;}+u..!} (4.9]

n=1 n=1
where Ay and Agr are the component amplitudes of the incident and reflected spectra, and
zr, is the distance from gage 1 to the point of reflection, arbitrarily set at the center of the
bar field. The record at the second gage will be identical in form, except that the phases

will be

PH;.n = k,.(z + zu) — wpl (4.10)

for the incident wave train, and
PHRg12 = k(z + 2(zr1 — z12)) — wat (4.11)

for the reflected wave train, where z;; is the distance between gages 1 and 2. The phases
will be likewise for the third gage record, with the obvious replacement of a 3 where 2
appears.

The phase lag between probes is preserved in the Fourier transform, and since it is only
these that are required to complete the calculation, the initial phase, or the phase at the
first gage can be factored out of each component at each gage. Thus, with phases referenced

to the phase at the first gage, the spectrum at a given gage may also be described by
By = Zp a1 4 Zp peitnmir 4 2y (4.12)

where Z is the n'* Fourier component of the wave field, k is the wave number of the n'*
component, and X;p is the distance between the first gage and the gage in question.

It can be seen that, given only two gage spectra of known distance apart, the simulta-
neous equations may be solved for Z; and Zr. However, to improve accuracy, additional

gages may be added, and Z; and Z solved for using a least square error approach, where
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Zy is the error spectrum for a particular gage. Following directly from Funke and Mansard

(1980), define

fr= = (4.13)
M=o (4.14)

Equation 4.12 may be restated for all three gages as

€in = Zipn+2Zpn— Bin (4.15)
€30 = Zpae? + Zpae P - By q (4.16)
esn = Z1ne™ + Zpne™ — By (4.17)
where
€pk = —ZNpn + fe(Z1,n,ZR,n) (4.18)

where f, is an expression for the error associated with the entire domain, thus common to
all three gages.
Now a least squares fit may be used to find those values of Zr and Z; for which the

sum of the squares of ¢, », for all values of p is a minimum. This will occur at
fg(zl.n, zR,n) =0. (4-19)
Therefore, it is required that the sum of the squared error over each gage

3 s
E (‘P-ﬂ)z =~ E (Z;.,.e""v-" * zR.ne_i"'" == Bp,n)z (4.20)
p=1 p=1
be minimized, where ), » is either 8 or 4.

It is assumed that a minimum will be reached when both partial derivatives are zero.

Differentiating 4.20 with respect to Z; and Zy results in,

s
Z (Zr ne'¥r= + Zpne~'¥rn — B, )e¥rn =0 (4.21)
p=1
and
s 3 - -
Z (zf.ncw"- T zﬁ.ue_‘ﬁ"" - Bp,n)c_'*"” =0 (422)

=1
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Expanding the terms in the sum and rearranging terms results in two equations
Zin(1+ € 4 ¢7) 4 3Zp 0 = By + Byne'P + By pet™ (4.23)

Zpn(l+ €7 4 e73M) 4 32, o = By o+ Byne Pn 4 By pe=n (4.24)

which may be solved simultaneously in terms of 8,4, and B, ,. Let

_'331,11 + Bl,n + Bg,,.c"'ﬂ" + Bs',.c_"""

Zrn = ok ] (4.25)
substitute 4.25 into 4.23
28 o 110y 2 (3210 + Bun+ Byne™ P + By pein)
120n 129n W n 2,n 3n _
Zia(1+ €Pr 4 ) 4 (Lt e 4 o) =
Bin+ Bypne'®™ + By ne™ (4.26)

The n subscript will be dropped here to ease the derivation, although it is understood
to be attached to all terms. Multiply both sides by (1 + e™*?/ 4+ ¢7'27) and subtract the
gage spectra on the left hand side to get

Zi(1+ P + M) (1 + e 4 e707) - 9) =

(B1+ Bze® + Bse)(1+ ¢7%% + ¢727) — 3(B, + Bye™*# + Bse™™) (4.27)

and finally,

_ (By+ B3¢ + B3e*7)(1 + e7*% 4 ¢7¥27) — 3(B; + Bye~*P + Bse™7)

21 (1 + €% + &77)(1 4 28 + ¢-177) — 9)

(4.28)

By rearranging terms, and applying the proper trigonometric identities, it can be shown
that the coefficients for the gage spectra that will solve this equation are as follows: The

divisor for the right hand side D is
(14 ¢ +¢27)(1 + 2P + ¢27) — 9) = 2(sin? B + sin? v + sin? (v-8) (4.29)
The By coefficient, R; + 1Q,

(78 4 927 — 2) =sin’ B +sin®y + #(sin B cos B + sin y cos ) (4.30)



the B3 coefficient, Rz + Q3
(=2¢7% 4 ¢ + £(~31+9) = gin ysiny — B + i(sin y cos (y — B) — 2sin f) (4.31)
and the Bj coefficient, Rs + 1Qs
(—2¢7%7 + €7 + ¢7*2P47) = —sin Bsiny — B + i(sin fcos (y — B) — 2sin~) . (4.32)
The incident spectrum may then be expressed
Zr = (Ba(Ry+iQu) + (Ba(Rs +iQa)) + (Bs(Rs +4Qs))  (43)
and the reflected spectrum
Zr = 5(Bi(Ri - iQu) + (Ba(Ra - iQ2)) + (Bs(Rs - iQw))  (434)

The coefficients are all in terms of v and g which are found by the geometry of the gage
array and the wavenumber k.
As Z; and Zpg represent amplitude spectra, the energy density spectra may easily be

determined by squaring the amplitude and dividing by the increment in angular frequency,

or
_ 2
Ep = SAL (4.35)
where
2x
Aw = Nat (4-36)

where At is the sampling rate.

In an effort to assure that the experiment was running correctly, and that the data were
being collected and analyzed properly, the energies of the reflected and transmitted wave
fields were compared by conservation of energy to the wave field incident from the paddle.

(see Chapter 5)

Er = Eg+ Er (4.37)
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4.3 Inputs to Least Squares

Two methods of calculating the amplitude spectra for each gage were used and their
results compared.

4.3.1 Direct Signal Processing

The first method used the full record of 2048 points. The Fourier Transform was per-
formed on each of the gage records, after the mean was taken out, using an FFT algorithm.
The resulting amplitude and phase spectra were used directly in the least square calcula-
tion of the incident and reflected wave field spectra. Note that there was no smoothing

performed on the data in this method. Demeaning the data

. 1 2048
P e ‘Z_; nl (4.38)
St=n-9P (4.39)
sPEEL pr = o7 —p? (4.40)

where n? is the elevation time record at gage p, n? is the mean over all elements in the

record at gage p, S is the demeaned signal, and B is the complex amplitude spectrum.

4.3.2 Ensemble Averaging of Cross-Correlation Spectra

The second method is the same as the one proposed in Funke and Mansard (1980).
This method applies an ensemble averaging to the data by separating the time series into,
in this case, four separate r_ealizations, in an effort to reduce noise effects. Of course, in
applying any type of averaging window, one sacrifices resolution in the resultant spectrum.
The second difference in this method, is that after each Fourier component is determined,
its amplitude is joined with the phase lag of that component relative to the first gage in the
series, the first gage having phase lag of zero. The computations of the gage spectra are as
follows:

The time series of 2048 points is split into four realizations of 512 points each. The



48

mean is computed by

1 512 &
T L — -
n 512 g’h . : (4-41)

where p is the gage number 1,2 or 3, and m is the realization number, and 7 is the water
elevation read in the time series n at time t. This value is then subtracted from each data
point

Sp™ = np™ — nPm (4.42)
to yield the demeaned record S. The Fourier Transform is obtained for each realization in

an FFT algorithm resulting in
gpm EEL ppm — gpim _ jppm ' (4.43)

or in polar form
BP™ = APmeiTT (4.44)
Next, the absolute amplitude spectrum is extracted from the Fourier series,

258" 5™

..

AP™ = (4.45)

where B* is the complex conjugate of B, and averaged by component n over the number of

realizations.

L]
=13 apm (4.46)

4 m=1]

The phase of the cross correlation between the first gage and subsequent gages is at-
tached to the respective amplitudes at each frequency component. The cospectrum is
calculated by;

C,3 = B'B* (4.47)
where B* is the conjugate of the transform. Note that the m and n notations have been

dropped merely for convenience at this point, and will reappear later. Thus,

Cu = (61 - !'bl)(dz + l.bz) (4.48)

ayaz + by by + i(a1bs — azby) (4.49)

= Ay (4.50)
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So,
_ albg - ﬂgbl
tan ¢12 = m (451)
Averaging by frequency over the four realizations,
1 El . a™hm™ — gMmp™
=T e 4.52
i Yo s —1ala] + b]b] (4.52)
or
Sh=1(a1bs — azby)™
tan ¢z = 4.53
Thus the gage spectra used in the analysis are given by
B, = 4, (4.54)
BY = TAL . (4.55)
B = Al (4.56)

4.4 Results of Least Square Error Fit

As stated above, the ensemble averaging was performed to reduce noise interactions at

the cost of resolution. Assuming the resolution of the full record analysis looks like

Aw,2Aw,3Aw, 4Aw, 5Aw... (4.57)

where
T 4.58
~ NAY (4.58)

the resolution of the smoothed spectrum is
4Aw,8Aw,12Aw, ... (4.59)

and the number of spectral components will be one quarter the number in the full record

analysis. The range of frequencies covered will be the same for both spectrum lengths.
The resulting incident and reflected spectra from the full record transform behaved very

nicely and predictably. However, for the output from the smoothed spectrum scheme, this

was not the case. After a few trial runs of the program with artificial data at a discrete
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frequency, it became apparent that the reflection coefficient (as would the energy densities)
would be significantly over or underestimated, unless the frequency picked was resolvable

in both the full record and the quarter length cross correlation method, ie.
wp‘.k - mAw (4-60)

if m = 4,8, 12, ... in which case the reflection coefficient was identical using both resolutions.
No particular pattern in over- or underestimation was readily apparent, except that the
reflection coefficient spectrum in the vicinity of the chosen frequency would follow a general
upward or downward trend rather smoothly. It is probable that this phenomena is due to
leakage from the dominant frequency to adjacent frequencies. The mechanism by which this
is working is not yet understood, but would involve the interaction of the leaked spectral

data in the two Fourier spectra combined in estimating the cross-spectrum. See Figure 4.1.

The above explanation does not resolve the problem of obtaining a resultant reflection
coefficient spectrum (as well as the incident and reflected spectral energy densities) that is
smoothed or has the system noise and nonlinear effects filtered out, but rather compounds
the problem. However, the potential for extracting a reasonable result did present itself
when it was noticed that the reflection coefficient at the dominant frequency, as calculated
by the full record analysis was between those at the frequencies directly on either side of
the dominant frequency as calculated from the smoothed spectrum. See Figure 4.3. By
performing a linear interpolation between the values at these two frequencies, it was found,
for synthetic data, to yield a value very close to that calculated by the unsmoothed data.
More precisely stated, for values of w = mAw where m is equal to an integer multiple of
4, the reflection coefficients would be equal. But if m were other than a multiple of 4, a
resonable estimate of the reflection may be calculated by linearly interpolating between the

nearest resolved frequencies.
Assuming a monochromatic wave field, a dominant frequency may be picked out by

finding the frequency with the greatest value of the power spectrum from a particular gage

spectrum in the full record analysis. Then finding the frequencies between which it lies
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52

Energy
Density

T

T
1
]
|
!
1
[
I
I
1
1
i
I
]
I
:
1
1
[
8 9 10 11 12 13 ndw

| | | | m

—— Calculated by full record analysis
-=-- Calculated by cross correlation method

Linear interpolation

Figure 4.2: Interpolating resolved frequencies in the smoothed monochromatic spectrum to
estimate the energy density at the true frequency



53
in the smoothed spectrum, a resonable estimate for the true reflection coefficient may be
established by linear interpolation. For instance, assume the dominant frequency as resolved
by the full record is

This frequency is bounded by the frequencies
w = 8Aw (4.62)

and

w= 12w (4.63)

which are resolvable by the smoothed spectra. The reflection coefficient at one of these
bounding frequencies will be higher than the reflection coefficient at the dominant frequency
calculated using the full record, while the other will be lower. The linear interpolation is

simply

_ (‘fl? = ‘rs)

Krio = 2 — e (12 - 10) + xvg (4.64)

where x,m is the reflection coefficient of the m‘?

component of the full record spectrum. By
assuming a local linear relationship between frequency and energy density, this interpolation
can be easily be adapted for energy density calculation.

This method was developed by observing the interaction of a synthetically generated
monochromatic spectrum, which by its nature is very clean, ie. no energy at frequencies
other than the one defined. Therefore, it is justifiable to use this technique to analyze the
data collected in the laboratory experiments explained in Chapter 5, since that data itself
is very clean. Viewing a typical energy density spectrum shown in figure 5.8, it is apparent

that all of the significant energy is contained at one frequency.

4.4.1 Results

The result of performing the smoothing and interpolation scheme presented above on
the data collected in the laboratory experiments proved to be minimal. The change in the

resulting reflection coefficients was generally on the order of 1073, It is therefore suggested
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that the full record of a monochromatic wave field, transformed to the resolution allowed
by the recording apparatus, be used in determining incident and reflected energies, and

reflection coefficients in a monochromatic wave field.



CHAPTER 5
LABORATORY STUDY

5.1 troductio

A laboratory experiment was performed to verify the predictions of the numerical so-
lution for monochromatic waves of normal incidence. The laboratory set up used was very
similar to that of Davies and Heathershaw (1984) except that, where Davies and Heather-
shaw used a sinusoidal ripple patch, a set of four discrete bars with positive amplitude only
on an otherwise flat bottom were installed in the wave flume. In the present study two bar

fields were tested, both with the same shaped bars but with different spacing between them.

5.2 Equipment
5.2.1 Wave Flume

The tests were done in a 26m x 0.6m x 1.1m wave flume at the Coastal and Oceano-
graphic Engineering Laboratory (COEL) at the University of Florida. The water depth
was 15 c¢m in the flume. The bar patch began 14m down wave of the wave generator and
ended 7.8m up wave of an energy absorbing beach at the end of the lume. Waves were
generated by a Seasim piston wave maker .4 m high. Although the Seasim system is capable
of generating a 16 band spectral wave field, only monochromatic waves were used in order
to achieve better resolution and accuracy. The paddle was driven by a servo-controlled sys-
tem with pneumatic hydrostatic balance. The signal generator was capable of accurately
controlling the period of the paddle stroke to one hundredth of a second. This provided
good resolution for the comparison curve at low frequencies and thus small values of 2k/),

but resolution decreased at higher frequencies. The range of periods was from 0.6667 s to
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Figure 5.1: Profile of bar field

the system maximum of 2.5 s. The range of 2k/A was from 0.45 to 2.5.

The bar patch can be described by

n=0,1,2,3 (5.1)

A= 0.05sin(2xz); 0+ nly <z <0.5+nl,
~ ] 0.0; 054 nl <z<nl

Iy = bar spacing
Two bar spacings were used, 0.8 m and 1.2 m on center. For purposes of comparison,
2x

assuming /) is wavelength of the dominant Fourier component of the barfield. The bars
were constructed of fiberglass resin and mat in a female mold constructed of sheet metal
on a wood frame. They were trimmed to a tolerance of .005 m in length and .002 m in
height. Any holes that remained after curing were filled to yield a smooth surface, and
edges meeting the bottom of the flume were sanded to a sharp edge to allow a smooth
transition from bottom to bar. Pin holes were drilled into the tops of the bars to allow
trapped air to escape while the flume was filling to avoid buoyant forces on the bars during
the experiment. The bars were installed using a small amount of silicone caulk on each edge
of the bar where it met the flume side or bottom.

At the down wave end of the flume, a wave absorbing beach was constructed of rub-

berized horsehair and bagged stone. The horsehair was held in place with wire mesh in a
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convex up shape in order to dissipate wave energy in the most effective manner. This beach
extended 1.5 m up wave of the bagged stone. It was important to minimize reflection off of
this beach so as not to pollute the reflection of the bar patch.

Measurements prior to bar installation showed reflections from the beach of less than
15 percent, and generally less than 10 percent. During these measurements, the array that
was to be up wave of the bar field, the stationary array, was installed 12 m up wave of
the beach. The array on the cart was placed 2 m up wave of the beach in an effort to
determine the change in reflection coefficient due to position and examine energy decay of
the reflected wave. However, during this portion of the experiment, one of the gages in the

cart array malfunctioned and only a few runs were made with both arrays in operation.

For verification of each coefficient, two runs were made at each frequency and the results
averaged. An attempt to test the algorithm described in the the previous chapter was
performed using a hand held vertical wall in an attempt to achieve near total reflection.

The results of these tests are presented in Table 5.1.

Table 5.1: Percent Reflection from Flume End w/o Bars

[ Frequency Hz. | Stationary | Cart |

0.4 10.6 na
0.5 8.4 na
0.6 6.9 na
0.7 4.7 na
0.8 4.6 na
0.9 5.8 na
1.0 6.6 6.6
1.2 6.4 13.7
1.3 114 10.4
1.4 6.7 8.2
1.5 4.0 84
1.6 20.2 41.9
vert board 1.3 785 79.1

The very high reflection at 1.6 Hz remains a mystery. However, the highest frequency
used in tests once the bars were installed was 1.5 Hz so no further investigation of this

phenomenon was deemed necessary.
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5.2.2 Electronic Measurement

Two arrays of three gages each were employed, one 1.8 m up wave of the bar patch
and the other 1.2 m down wave. The gages were a standard in house design with minor
alterations to improve sensitivity. The gages operate by comparing the frequencies of two

inductive-capacitive (LC) circuits where:

1
" 2xV/IC

Inductance and capacitance were adjusted in a reference circuit to run at a constant fre-

/ (5.3)

quency around 1 MHz. The sampling circuit was identical to the reference circuit except
that an additional ’capacitor’ was added, that being the capacitance contained between
the probes, that is to say the probes act as capacitance plates with water being a variable
dielectric. Since the wave amplitudes were to be less than 1.5 cm to maintain linear theory,
the probes were only 6 cm long. Normally these gages are used with probe lengths 0.5 m
or longer and the capacitance contained between them is of the order of 100 microfarads,
while the 6 cm probes contained less than 10 microfarads. This made tuning the sample and
reference circuits to be of greater importance than normal for these gages. The sampling
circuit was tuned to run at a slightly lower frequency than the reference circuit for the full
range of capacitance change in the probes. The two frequencies were subtracted in a chip
and the difference frequency sent in the form of an RF signal to the signal conditioner.
Therefore, as water level increased, the capacitance between the probes increased resulting
in a drop in the frequency in the sampling circuit thus increasing the difference between
the two frequencies, which, when processed in the signal conditioner, showed an increase in
voltage.

The signal conditioner worked somewhat like a radio receiver, converting a RF signal
to a voltage. The signal conditioner had adjustable gain and zero offset controls. The zero
offset control allowed for the positioning of the mean voltage output, and was set, such that

at still water the output was close to zero, (usually + 0.2 volts). The gain was adjusted so
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that immersing the length of the probe corresponded to a 10 volt change in output from
the signal conditioner. Thus, full immersion of the probe resulted in an output of +5 volts
and an output of -5 volts if just the tip of the probe was immersed.

The output voltage was then fed through an analog to digital conversion board mounted
on the back of a Digital Equipment Corporation Micro PDP-11 (PDP- 11). This board read
the voltage and converted it to an integer value corresponding to the voltage. A voltage
in the range of -5 to +5 volts corresponded to an integer between 0 and 4096. Thus, the
resolution achieved between discrete voltages was

47.-1506;5::;%; = 0.00244volts/division (5.4)
translating into a resolution of the probes of

6cm
10volts

0.00244volts/division = .00122cm/division (5.5)

The PDP-11 would sample 2048 points at each gage location at a rate of 0.1 s or frequency

of 10Hz for one complete data set.

5.3 Data Analysis
5.3.1 Acquisition

The gages were set in two arrays of three each with 19 cm. between the first and second
gages and 31 cm. between the second and third. The choice of this spacing will be expanded
upon in the next section. Each gage in the array was attached to a rigid bar connected to a
rack and pinion vernier marked in millimeters. The rigid bar was stabilized by two vertical
parallel bearing tracks which in turn were connected to an aluminum frame. The array up
wave of the bar patch (reflected end or R-array) was mounted directly to the sides of the
flume, while the down wave array (transmitted end or T-array) was attached to a cart that
is capable of moving along the length of the flume.

The vernier allowed for precise static calibration of the gages. Calibration data was

taken at water elevation values of 2.60 ¢m, 1.50 cm, 0.00 cm, -1.00 cm, and -2.00 cm. The
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Figure 5.2: Typical calibration curve

voltages for each gage at each elevation were stored in the PDP-11. The raw elevation vs.
voltage data was used to calculate the coefficients of a fourth order curve to account for any
subtle nonlinearities in the gage response. A typical calibration curve with the calibration
data points is shown in Figure 5.2.

Gages were calibrated at the beginning of a laboratory session. They were recalibrated
when the difference in voltage between two gages in the same array, at still water, drifted
0.1 volt, translating to a mean water shift of approximately 0.05 cm, from the reading at the
previous calibration. This would keep gage error to less than 5 percent for a 1 cm (typical)
wave, which is less than the amplitude of the measured electronic system noise.

The PDP-11 was programmed to simultaneously sample the voltage output of each gage
circuit for 2048 points at a frequency of 10 Hz. (Simultaneous sampling is suggested al-
though the computer can sample only one circuit at a time, the time difference between the
samples of adjacent gages being considered negligible.) A frequency of 10 Hs was adequate

since the range of wave frequencies was between 0.4 and 1.6 Hz allowing measurement of at
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least the fifth harmonic of the base frequency of the wave in question. The time series of

integer values was stored in a data file in the PDP-11.

5.3.2 Data Processing

The first step in processing the data received from the PDP-11 was to convert the
voltages into real water elevations using the calibration constants. The data was then run
through the algorithm developed by Funke and Mansard (1980) described in chapter 4.
Briefly, this algorithm employs the use of the Fourier transformed data of three gages, of
known spacing, to calculate the incident and reflected spectra of a wave field passing through
the array. Any arbitrary choice of spacings will work well for this algorithm except those
spacings where the distance between the second and third gages are integer multiples of the
spacing between the first and second gages, especially in ratios of 1:2, 1:3, and 2:3. If the
gages are spaced at such a ratio, the algorithm will "see’ a virtual standing wave that will fit
inside the gages with nodal points at the gages. Thus it will calculate a fully reflected wave,
at a wave length equal to twice the distance of the spacing between the first two gages. (See
Figure 5.3.)

For each data set, four energy density spectra were calculated, viz., incident (flux to the
right) and reflected (flux to the left) spectra at the reflection end (R-array) of the barfield,
and the incident (right) and reflected (left) spectra at the transmission end (T-array). Since
the model was one dimensional, this has the effect of measuring the wave field energy passing
the boundaries established by the arrays at either end of the bar field into or out of the
control volume. Thus the incident and reflected spectra at the T-array represent the energy
transmitted over the bar field and the reflected energy off of the beach at the end of the
flume. (See Figure 5.4) During the laboratory trials, the dominant frequency, or that with
the highest energy, in each spectrum was picked out and displayed for ease in calculation
of the reflected energy ratio and reflection coefficient. A listing of the processing program

is presented in the appendix.
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Figure 5.5: Typical energy density spectrum for incident wave

Since the spectra passing each array were referenced to a physical scale, that is water
elevation, one could assume by the law of conservation of energy, that the energy measured
going into the system (incident energy at the R-array only, assuming the energy re-entering
the system from the reflection of the beach at the T-array is negligible) should equal the
energy leaving the system in either direction (reflected and transmitted energy). Again, the
reader is reminded that although the energy density spectrum is used in these calculations,
the assumption that all of the energy is contained in a single frequency band and that all
spectra used in the calculation are of the same frequency resolution, this description is valid.

After the spectra had been calculated, the peak value of each spectrum was found and
displayed along with its corresponding frequency. This frequency was usually in very good
agreement with the expected peak frequency as established by the output of the signal
generator control of the wave paddle. The spectra were plotted (Figures 5.5, 5.6, 5.7)
and higher harmonics of the base frequency are evident in these plots. However, only the

characteristics of the base frequencies were investigated. With the incident, reflected, and
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transmitted energies established, the transmitted and reflected energy ratios and reflection
coefficient could be determined. Also, total energy of the system could be tested against
the incident energy by adding reflected and transmitted energy and dividing by incident
energy. Since by linear theory

1
E= Eng’ (5.6)

and reflected and transmitted energy ratios

o= o (5.7)
T, = E.E':- (5.8)
r = Reflected at R-array
| t= Inci.de.nt-;t-T-arrny
1 = Incident at R-array
(5.9)
Then the reflection coefficient is,
Ky = % (5.10)
By conservation of energy
E,=E, + E (5.11)
Or, since h(zl) = h(z2),
1=R 4+ T2 (5.12)

As will be seen in section 5.4, for most runs only about 75 percent of the energy
measured entering the system was measured exiting the system through reflection and
transmission. Again using linear theory, estimates of the energy attenuation due to bottom
and side boundary friction were calculated. In a channel of uniform width b and depth h,

the damping of a linear wave propagating over a distance ! may be estimated to be

a=age™ 2/t (5.13)
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2k kb + sinh 2kh 5
V 2w 2kh + sinh 2kh (5.14)

ao is the wave amplitude incident on the barfield, a is the attenuated wave amplitude (Hunt

where

1957) and v is the kinematic viscosity at 1.005E — 6 m?/s. For shallow water where kh — 0

this reduces to

_k 2_u(b+2h)
Af_‘lh w b

(5.15)

Length of travel of the waves was assumed to be the distance between the arrays for
both the transmitted and reflected waves. The approximation that the distance the reflected
wave travel equals to the total distance between the arrays is chosen by assuming that all
of the reflection would take place exactly in the middle of the bar field. Over the range of

frequencies used in the experiment, theoretical predictions showed a 10 percent attenuation

to total energy due to friction.

5.3.3 Verification of Analysis Technique

The analysis technique, being relatively new, was verified using established technique of
measuring wave envelopes using a moving wave gage. Actually, three gages were used simul-
taneously on the same cart since they were already mounted on the cart for the technique
described above. Data were collected in the same manner as with the six stationary gages.
However, since measurement of envelopes is a relative maximum amplitude measurement
of with respect to position in the wave field, and is dependent only on what the individual
gage measures, the data were not converted into true elevation but left in the form of a volt-
age reading. The data were then processed in a routine that picked out the local maxima
(crests) and minima (troughs) which were subtracted from each other and stored as a wave
height. (This data was smoothed since, often, small peaks in the raw data due to tank and
system noise resulted in gaps in the resulting envelope.) The maxima and minima of the
resulting envelope wave were then picked out in the same manner, representing maximum

(Hmaz) and minimum (Hpin) wave heights. A reflection coefficient was then calculated
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using the theory described in Dean and Dalrymple (1984).

Hm: = Hfm‘n

o Hms + Hm.in

(5.16)

While envelope measurement is considered to be more exact, due to its simplicity and di-
rectness of calculation (i.e., no resolution or aliasing problems resulting from Fourier trans-
forming of data) it did not lend itself well to this experiment because 1) the rails supporting
the cart were trued to & .3 cm which would have added a random mean shift in the data,
2) vibrations caused by the motor transmitted to the gages would have added substantial
noise, 3) it provided no means of measuring the transmitted wave, and 4) provided no means
to calculate the energy of the incident, reflected, and transmitted wave fields.

In only one out of the four tests did the moving gage and Funke“and Mansard mea.sul;e:-
ment techniques provide inconsistent results. Although no cause for this discrepancy was
established, it was assumed that it was just a bad data set, most likely due to the stationary

gages being out of calibration.

5.4 Results and Conclusions

The final result desired from the data after reduction was a reflection coefficient for
each spectral band. Although the reduction of data in the lab was referenced to frequency,
the final spectral output was in the form of the ratio of twice the water wavenumber to
wavenumber of the bar field, or 2k/A. The plot of the lab reflection coefficients along with
the numerical prediction for each bar spacing is shown in Figures 5.8 and 5.9. It is possible
that the disagreement in phase with respect to 2k/A may be due to the numerical solution
being a first order solution. Further investigation into the effects of higher order terms may
be required.

The total energy in the system was measured as one of the steps to determining the
reflection coefficient and was used to check the effectiveness of the measuring technique using

conservation of energy. The sum of energy leaving the system should equal that coming into
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the system, less the energy dissipated inside the system. Theoretical predictions show this
value of dissipation to be around 10 percent, or rather 90 percent of the energy should be
leaving. However, the sum total of energies usually measured less than the 90th percentile
(See Figure 5.10). Significant scatter is apparent in this measurement. No relationship
between the deviation in total conserved energy, and deviation in the reflection coefficient
is apparent. Scatter of the energy attenuation seems to be independent of frequency as
well. Looking at the energy levels did aid in quickly determining if a given sample was
giving unreasonable results. The energy plotted in Figure 5.10 is the sum of the ratios of
the transmitted and reflected energy of the single band being tested.

The ratios of energy contained in the full spectra were also determined and viewed.
These were slightly higher than the single band but were usually very close to the single

band ratios.



CHAPTER 6
BARS ON A MILD SLOPE

6.1 Introduction

In this chapter, the effects of a series of undulations placed on a mildly sloping beach are
investigated. The equations presented remain in linear theory, thus no energy is dissipated
in breaking. Also no damping due to bottom friction is applied. It will be shown that for
this case, reflection in steady state will be complete for the whole system. The interest, then,
lies in the displacement response at the shoreward boundary and between the shoreline and
barfield.

6.2 Reformulation of the Mild Slope Equation

Davies et al. (1989) developed a linearized equation for non-dispersive long waves
propagating over sinusoidal undulations on an otherwise flat bottom. The analytic solution
was obtained by transforming the surface displacement variable and solving the resulting
Mathieu equation form. The form of the solution is restricted to two forms, or cases, those
being where 2k/A = 1 and where 2k/) # 1. The governing equation presented in Chapter

2 is restated as the well known Mathieu equation

*w

2_2
-é?-+s’W l—f'gi-—'—)

= cos2z| =0 (6.1)

where x? = 4w?/gH,)? ¢H, is the amplitude of the bed undulations and ¢ <« 1. The

transform variable is

W = HY?¢(z) (6.2)

where H(z) is the total depth according to
H(z) = Ho(1+ €cosAz) and n(z,t) = §(z)e " (6.3)
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This form of the governing equation was then solved analytically. Kirby (1989) develops
essentially the same form but for intermediate depth, dispersive waves. Also, the form of
the governing equation is extended to accomodate obliquely incident waves. Since the
derivatives of cosh kh in the extended mild slope equation (Kirby, 1986) given in Chapter

2 are of O(€) and using the same variable definitions, it may be rewritten as

V- (fVn)+k*pn=0 (6.4)
where
=CC , =p— _gﬁ__ (5 5)
P=%%  TE P Cosh kh ‘
Introducing the variable transformation
n=f""w, (6.6)
6.4 becomes
2 2 25, V26
VW + [k* + Ak 6+—§-)]W=0 (6.7)
where
k
A 9 = o (6.8)

= CC,cosh® kh  2kh + sinh 2kh
as in Chapter 2.

If (z,y) is the horizontal plane and h = h(z),é = §(z),d/dy = 0, equation 6.7 becomes
8.
Wes + [k* + A(K*6 + %)]W =0 (6.9)

Allowing oblique incidence, let

m = ksinf = constant (6.10)
equation 6.9 becomes
Wee + [(k* — m?) + A(K*6 + 5_’3)]:&‘/ =0 W=We™ (6.11)

2
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It becomes apparent, however, that as h — 0, 1/f1/? = 1/\/gh — oo explicitly violating
the restriction that n remain bounded at the shoreline. The only recourse to remedy this

situation is to require the boundary condition at the shore to be
W(zs) =0 (6.12)

The seaward boundary conditions are again specified in the form of radiation conditions
with and incident wave propagating in the +z direction and a reflected wave propagating
in the —z direction. The incident wave sj; is assumed to be known, and the reflected wave

1, must satisfy a radition condition for propagation out of the domain
W,(z) = -il(z)W, ; z== (6.13)
Similar to the boundary condition as in chapter 4,
W, =W - W; (6.14)
and substituting, the boundary condition at z, is thus described.
W(z) =il 2W; -W) ; z=12 (6.15)

6.3 Numerical Solution

The problem specified in the previous section may be solved using a finite- difference
scheme very similar to the one used in the previous chapter. The full form of the transformed

mild slope equation will used in the scheme, which when expanded, becomes

(kz o "")P f: Jz2z _
Wee + '—-—'!—"i"i—f—z"'z—f W=0 (615)

The domain z; < z < z; is discretized according to

=z+(+1)Az ; 1<i<n (6.17)
where

n-1
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All other coefficients and the variable W are affected by local conditions in the grid and
are defined in discrete form at the grid locations z*. From this, a centered finite-difference

scheme is developed and given by

Wi-l = zwi re WH-I (kz = m’}p fxz f:z i
o + 7t |7 =0 (6.19)
where
fi-l-l_ fl’-l fl'+.l__2)ﬂ'+f1'—l
fai= P 2z = ~ 3 (6.20)
The scheme may be simplified by
AWl BW +CW*tl=0 ; i=2,3,.n-1 (6.21)
where
A =1 (6.22)
_ B .om? 2 »
B = -2+az | - e, 4’;';, - ’;—f (6.23)
c =1 (6.24)

The bed undulations are subject to the restriction that they do not affect the wave in
the locale of either boundary in order that the waves radiating at the boundary are not

interacting with the rapid variations. Thus it is required that
Sl=fP="1="=0 (6.25)
Expressing the boundary conditions in finite difference form, equation 6.15 is
w"=0 (6.26)
Defining 6.29 in the finite difference form

B"=1 (6.27)

A"=0 and C"=0 (6.28)
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At station z; the boundary condition may be restated as
(1+a)W? = (1 - o)W = 2fY2a(m)a’ e +1] (6.29)

where
1_ 1Az

1
== (6.30)

o
and it is assumed the incident wave is described by

ni(z) = a(m)e™' (=-=1) (6.31)

Again, putting 6.34 into the finite difference form, gives

B' = —(1-a') (6.32)
c! = 1+ (6.33)
D = 2[1“""a(1r:r*a)cul[e""l +1] (6.34)

The problem may be written in the form of a linear matrix equation
AW =D (6.35)

where D is a column vector with D*— DW = 0, n is a column vector with elements W!-W",
and A is a tridiagonal matrix with diagonal vectors A', B* and C*. The solution is again
obtained using the double sweep algorithm as given by Carnahan, Luther and Wilkes (1969).

The reflection coefficient may be determined once the solution for W is obtained. The
reflection coefficient may be extracted directly since W is a propagating term and f will
be the same for the +z and —z propagating components at any particular point. Two
estimates for the reflection coefficient R are obtained at z,. From equation 6.34 W, at z,

may be written

W}!=w!-a(m) (6.36)
w2 =w? - a(m)e?®' (6.37)

Define the two estimates for reflection coefficients as

1= l—p(‘% (6.38)
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3= -clt_(p% (6.39)

and R as the average of R; and R;. This calculation, however, is trivial for this solution,
since no damping due to bottom friction exists in the present solution, no energy is dissap-
ated in breaking in linear theory, and no energy is transmitted past the shoreline. Therefore,
in order that energy be conserved, the energy carried by the reflected wave must be equal
and in opposite direction to the energy carried by the incident wave in steady state.

Since the boundary condition at the shoreward end of the domain is restricted to keep
n bounded, the response at the shoreline may be estimated by extrapolating the surface

displacement directly seaward of the shoreline by

r"m—l = qn-z

il e e e (6.40)
which can easily be seen reduces to
n" = 29" - g2 (6.41)
where
Il = 17 (6.42)

Additionally, from 6.45 the magnitude of the surface displacement in the domain may
be calculated.

6.4 Model Tests and Examples

6.4.1 Response Over a Barfield in Front of a Wall

In order to verify the validity of the model formulated above, it will first be compared
to a case that the model in the form of equation 6.4 can easily handle. This would be the
case where the restriction

an _

= (6.43)

is valid. This boundary condition is required for a wave field at a vertical wall. In the finite

difference scheme, the boundary condition is applied by

" -n""1=0 (6.44)
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Figure 6.5: Wave amplitude at the wall for n directly and n = f‘”zW numerical schemes,
d=4.5

are allowed to propagate to the shoreline. It is assumed that no breaking occurs as the wave
shoals and no attenuation due to bottom friction is present. The solution of the equation
in the form of 6.4 cannot be used since unrealistic restrictions on n; at the shoreline are
required. The finite difference scheme developed in section 6.3 is now employed with its
pertinent boundary condition at the shoreline. The adjusted domain can be seen in Figure
6.6.

Since the bottom is sloping, and the wavelength changes as the wave shoals, the exact
value of L,, that would result in strong tertiary reflection is not as easily determined.
However, wave envelopes are plotted for the same frequency near resonance for two choices
of d. The bottom is plotted below the envelopes. The bottom parameters, except d, are
identical for both cases where, h = .15m, the bumps, shaped §(z) = 0.05m sin 2x /0.5m for
the positive branch only, are spaced 1.0m apart. For Figure 6.7 d = 10.0, and d = 10.5 for

figure 6.8.
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Figure 6.1: Definition sketch of bar field in front of a wall

A"=-1 and B"=1 (6.45)

The results for a wave at normal incidence where 2k/)\ = 1 with ) being the fundamental

mode (A = 2x/L,) of the barfield described by

- { 0.05sin(27z); 0+ nly <z < 0.5+ nl) n=0,1,23 (6.46)

0.0; 05+ nl<z<nl

Iy = bar spacing

The bottom otherwise is assumed flat.

Also, the length L;,, between the barfield and wall is defined as a function of L,
Lyy = L)d (6.47)

where d is any real value. The domain is depicted in Figure 6.1.

Let d = 4, an integer value, such that the wall rises 2 surface wavelengths (for the
resonant case) past the barfield. The incident wave is arbitrarily set at 1 since linear theory
is being used. Also, the absolute value of the wave field is being plotted below, thus no
phase shifting or time dependence is evident. The results plotted in Figure 6.2 show the
wave envelope as calculated by both schemes for the resonant condition. The amplitude of

the wave at the wall boundary is plotted in Figure 6.3 as a function of 2k/A.
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Surface Envelope

0
0

Figure 6.4: Wave envelope in front of a wall for n directly and n = {~Y2W numerical
schemes, d = 4.5

Now let d = 4.5, such that barfield lies 2.25 surface wavelengths in front of the wall.
The wave envelope for this case is plotted in Figure 6.4 and the maximum displacement at
the wall in Figure 6.5.

It- can clearly be seen that the choice of Ly, can have drastic effects on the wave field
between the barfield and the wall. What seems to be happening is if the spacing is an integer
multiple of half of a surface wave length, the wave field becomes trapped between the bars
and the wall. This would be due to tertiary reflection of the wave field, primary being
offshore reflection, secondary being reflection off the wall and tertiary being the reflection
by the barfield of the wave reflected off the wall. The final effect is the standing wave in
front of the wall is resonated, and potentially quite violent oscillations may occur.

6.4.2 Response Over a Barfield in Front of Beach

From the above section, it is seen that the new form of the mild slope equation is valid.

Now, attention is restricted to the case where a barfield is placed on a mild slope and waves
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Figure 6.6: Definition sketch of bar field on a sloping bottom in front of a shoreline
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Figure 6.8: Wave envelope on a sloping beach with 4 sine shaped bumps, d = 10.5

Lastly, for the two cases above, the amplitude at the shoreline is plotted against 2k/\

in Figures 6.9 and 6.10.

Looking at the last two plots, it can be seen that very small changes in frequency
will change the resonant response between the barfield and shoreline drastically. Since the
response at the shoreline is unreasonably large,the envelope amplitude at a point (x=7 m)

midway between the barfield and shoreline will be plotted in Figures 6.11 and 6.12.

The wave envelope again is sensitive to small changes in frequency, yet the trapped
wave amplitudes are a bit more beliveable at this point in the wave field. However, it is
also clearly evident that the presence of the barfield can cause large standing waves in the
nearshore zone. Interpreting the plots, any surface displacement above 2 (the incident wave
amplitude of 1 superimposed on the reflected wave amplitude) would be identified as a
trapped mode. |



50 L T L T [ T T L L I Ll L] L] LB

40

30

20

Shoreline Response

10

llllIlllTlll‘l‘ll"TllTl

II'lllllll]llllllll]lll!_l

o
—
n
(]

2k/\

Figure 6.9: Wave amplitude at the shoreline vs. 2k/A,d = 10.0

60 T T T T I T L T T I T T T T

40

30

20

Shoreline Response

10

'll1llYIlI'lllll'llll||l
lllll_l.]_llillllllllllllli

(=]
-
N =
[~

2k /A

Figure 6.10: Wave amplitude at the shoreline vs. 2k/A,d = 10.5



83

5 T 7 T '[ L] T | T T ¥ r I T 5 f T

IJ]..I_I_t_.l_lJ.ll.j.ll

(]
ll'l"l'll'l‘l"‘_llll!lI

Standing Wave Amplitude

I'H ‘l | Hu

1 L L1

T1I—I]'tl

0 Il L A A 1 A i A I A i | | i L - |

0.5 1.0 1.5 2.0 2.5
2k/A

Figure 6.11: Wave amplitude at x= 7 m vs. 2k/)\,d = 10.0

Standing Wave Amplitude

r.
o A A Il A ] A [ ] " 1 | S T I L A A i
05 1.0 1.5 20 25

2k /A

Figure 6.12: Wave amplitude at x= 7 m vs. 2k/),d = 10.5



84
6.5 Conclusions

In the previous section, it was pointed out that the installation of a bar field described
may cause the trapping of waves in the nearshore zone. The calculations made were done
assuming no energy dissipation due to breaking or bottom friction, which may reduce the
resulting large amplitudes considerably. It may be surmised from the results that the
standing wave between the bars and shoreline may cause shoreward growth of the barfield,
just as it has been hypothesised that the standing wave seaward of the bars may cause
seaward growth of the barfield. This phenomena has been observed in the laboratory using

a barfield placed on a sand bottom by McSherry (1989).



CHAPTER 7
CONCLUSIONS

In this thesis, an extension to non-resonant interaction theories was developed to ac-
commodate oblique incidence and seabeds of other than sinusoidal shape, specifically, a
series of cosine bumps on a flat bottom. The new theory was compared to existing theories
for normal and oblique incidence. Agreement between all theories for arbitrary bottoms
was fair.

Additionally, the numerical solution of a complete governing equation for undulations
on a mild slope was compared to laboratory data. The comparison shows a slight shift
in frequency at resonant peaks. This may due to inadequate description of the bottom
boundary condition used in the solution. Included in the laboratory study was an applica-
tion of using spectral analysis to determine the incident and reflected wave energies for a
monochromatic wave field.

Finally, an investigation of wave fields between a barfield and beach was performed.
The numerical predicitions, although neglecting wave damping and nonlinearities, show
the potential for large amplitude trapped modes between the barfield and shoreline. It is
apparent additional work in this application is necessary before implementing prototypes

in the environment.
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NONRESONANT AND RESONANT REFLECTION OF LONG WAVES IN VARYING CHANNELS

James T. Kirby and Padmaraj Venglyul

Coastal and Oceanographic Engineering Department, University of Florida, Gainesville

Abstract. One of the principal drawbacks
associated with the use of equations of Korteweg-
deVries (KdV) or Kadomtsev-Petviashvili (K-P) form
to model wave propagation in a varying channel is
the implicit neglect of reflection in those equa-
tions. This study formulates pairs of KdV or K-P
equations which are coupled through inhomogeneity
in bottom slope or channel width, and applies
these equations to several propagation problems
involving aperiodic and periodic wave motion. The
formulation eliminates the neglect of reflection
effects in the single KdV or K~P equation
approach. Forms of the KdV equations are given
which totally account for mass flux balance
between the incident and reflected wave. We then
examine several cases involving waves propagating
in variable channels and compare model results to
previously available data.

1. Introduction

Evolution equations for weakly dispersive waves
in the form of the Korteweg-deVries (KdV) or
Boussinesq equations have long been known to be
reasonably good predictors of wave form and
propagation in channels of uniform and shallow
depth, with the Boussinesq equations being able to
describe general two-dimensional (in plan) motions
but the KdV equation or its variants being limited
to strictly one-dimensional, one-way propagation.
Recently, the weakly two-dimensional equation of
Kadomtsev and Petviashvili [1970] (K-P), which
describes nearly one-dimensional propagation with
weak transverse modulation, has been added to the
arsenal of equations describing uniform depth
sotion.

Recently, interest in shallow water wave motion
has been extended to the consideration of shoaling
and other effects due to propagation in an inhomo-
geneous domain. This interest has lead to a
number of variable depth extensions to the evolu-
tion equations listed above. Peregrine [1967] has
provided a variable depth extension to the
Boussinesq equations which allows for the shoaling
and reflection of waves incident on a bottom
slope. Peregrine's and other equations of similar
form may be regarded as genmeral models for two-
dimensional propagation in regions of gradually
varying depth. Variable depth forms of the KdV
equation have also been developed which similarly
allow for shoaling effects in one-dimensional
propagation; a relevant form of equation of this
type is chosen for this study from the work of

1 Now at Civil Engineerisg Department,
Massachusetts Institute of Technology, Cambridge.
Copyright 1988 by the Aserican Ceophysical Uniom.

Paper number BCO0415.
0148-0227/88/008C~01455%05.00

Svendsen and Buhr Hansen [1978]. Liu et al. [1985]
have similarly provided a variable depth form of
the K-P equation and have applied that equation to
the study of wave focusing and refraction by
variable topography; a derivation of the variable-
depth K-P equation appearing in that study is
given here.

Despite their usefulness in describing the
evolution of the dominant incident wave over
topography, the KdV and K-P equations are consid-
ered by a number of investigators to be flawed,
since the reflected wave is implicitly neglected
and hence may be constructed only after identifi-
cation of a mass sink in the incident wave, which
then serves as a source for the reflected wave
calculation [Miles, 1979; Knickerbocker and
Newell, 1985]. The purpose of this study is to
derive a set of coupled evolution equations for
incident and reflected waves which account for

~ mass exchange directly, and thus restore the

direct applicability of the KdV and K-P equations
in regions where strong reflection may signifi-
cantly affect wave evolution.

In section 2 we outline a scheme for construct-
ing coupled equations of KdV or K-P form using a
heuristic approach based on the method of operator
correspondence. Domain inhomogeneity is limited
to variations in etill water depth. In sectiom 3
we turn our attention to propagation in channels
and extend the KdV form of the equation to include
variations in channel width as well as depth.
Development of the model equations in mass-
conserving form is considered in section 4. In
section 5 the ability of the model to predict
reflection is tested by comparison with the
previous results of Goring [1978], who studied
transmission and reflectiom of solitary waves at a
sloping step. In section 6, examples of the
scattering of a solitary wave in a channel with
gradually varied width are given, and the influ-
ence of mass balance effects on wave evolution in
the study of Chang et al. [1979] are investigated.
Finally, in section 7 we turn to the problem of
scattering of periodic waves by periodic bottom
disturbances, and extend the study of the gradual
reflection of a cnoidal wave by a sinusoidal bed
started recently by Yoon and Liu [1987]. Two-
dimensional calculations based on the K-P forms of
the model equations will be reported separately.

2. Reflection From Varying Bottom Topography

The goal of this sectioa is to derive a set of
coupled equations of KdV or K-P type to model the
forward-scattered and backscattered wave traine in
a variable domain and to describe the exchange of
energy between the waves due to interaction with
bottom topography. The derivation is based on
heuristic arguments and is aided by several key
points. First, we neglect nonlinear interactions
between imcident and reflected waves to the order
of terms considered. 1In perticular, consideration
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of the three-wave resonance conditions for oppo-
site going periodic waves shows that no resonant
interaction takes place between the waves at the
order of quadratic nonlinearity. For the different
case of aperiodic waves such as solitary waves,
previous results (Maxworthy [1976] and Su and
Mirie [1980], among others) have documented a
phase-shifting, nonlinear interaction between
colliding solitary waves. The present formulation
neglects this possibility, which should not be of
importance in the present study of reflection
because of the expected smallness of the reflected
wave, O(ea), relative to the incident wave at
0(e), where a characterizes a bottom slope or
channel width variation. (The case of resonant
reflection of periodic waves represents reflection
+ 0(e); however, the conclusion on three-wave
interactions covers this case.)

The scaling for weakly nonlinear, weakly
dispersive shallow water waves in a varying domain
is

0(e) = 0(p2) = 0(a) << 1

where € denotes nonlinear effects and is charac-
terized by max(|n|/h), u? denotes dispersive
effects and is proportiomnal to uzh!g. and a char-
acterizes maximum bottom slope. Further, m is the
surface displacement, h is water depth, g is grav-
itational acceleration, and w is a characteristic
frequency. It is clear that under the scaling used
here, nonlinear, dispersive, and wave-bottom
coupling effects need only appear at leading order
in equations involving all three effects. As a
consequence, the coupling due to bottom slope
effects may be derived directly from the nondis-—
persive linear wave equation for variable depth,
after which the terms describing nonlinearity and
dispersion may be added in a consistent manner.

The method of operator correspondence is used
to derive the set of coupled linear equations
describing wave-bottom coupling effects. The
general wave equation describing the propagation
of linear, nondispersive waves over a variable
topography is given by

Moy = svh.(hvh") =0 (1)

where here n represents a general two-dimensional
surface displacement. Substituting frequencies
for time derivatives in (1) according to

1
n, = - dwn; w= (gh) By ex (2)

t

equation (1) is rewritten as

hx 2
et B YT =
where
2 w 1
- — + — (h &
Yn P ( n,)y (4)

The surface displacement n is written as the sum
of the displacements of the forward-scattered wave
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traveling in +x direction, n*, and the backscat-
tered wave traveling in -x direction, n~. Coupled
equations of the form

+ + + -
n, = iyn ¢+ F(n ,n ) (5a)

o= - dyn - F(n',n) (5b)

are sought, where F is the desired unknown
coupling function. Repeated substitution of (5)
in (3) gives

(n"=n) (6)

From (4), Yy is a pseudo differential operator
which may be approximated by binominal expansion
if the following assumption holds:

2
193 3 0
hay (M 3y) < gn B

This indicates a restriction to small propagation
angles with respect to the x direction. This re-
striction is analyzed (and the connection to the
parabolic approximation is discussed) in
Appendix A.

Using a binomial expansion, the general
expression for vy is

8o B e O
TR (b ) (8)
To leading order, y is given by (from Appendix A)
Y =24 0¢e%) )

where 6 denotes a necessarily small propagation
direction with respect to the x axis, (we assume
82 = 0(e)) and hence

(10)

:’Ixﬂ'

w w
Y. - czc -—E

Using (9) and (10), equation (6) is rewritten
as

- c -
P--;—%(n+-n)--f(n+-n) (11)

The coupled equations are obtained from (5) using
the expressions for F and Y and are written
together as

+ C ic E
b 7 B o (h“y)y (12)

Inverting the operator form of the iunt terms and
further using w=kc in the y derivative terms, (12)
is written as
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:

c
+ X + A 1 2 +
—— - m § oo
+ ik {nt - 5 eny + 2 n=m )} %c (c ny)y

(13)

Allowing 1/ik to correspond to an integral over x,

1

+ + -
" - [ nax =e [ nax (14)

X x

(13) may be rewritten as

C
n* * cn e X (a*en") ¥ I 2c (c ny ) dx = 0

(15)

This corresponds to the integro-differential form
of the K-P equation, which has proven to be more
convenient for numerical computations (see, for
example, Katsis and Akylas [1987]). The set of
coupled equations (15) represents linearized,
nondispersive K-P equations describing incident
and reflected wave fields which are linearly
coupled through the bottom slope hy.

It may be shown by back substitution that the
set of linear nondispersive equations neglecting ¥
derivatives are completely equivalent to the one-
dimensional form of (1). Similar correspondence
between (15) and the original model (1) does not
exist, of course, because of the binomial approxi-
mation used. For the case of localized
disturbances vanishing at x+i= together with their
derivatives, summing the two components of (15)
(neglecting y derivatives) and integrating from —=
to += gives

S ] max =0 (16)

The linear nondispersive reflection process thus
conserves the total mass of displacement in the
two wave trainms.

The equations (15) may be extended to include
weakly nonlinear, weakly dispersive effects. The
variable depth KdV equation in stationary coordi-
nates, given by Svendsen and Buhr Hansen [1978],
may be written as

2
c 3cnnx A

X h
e % Ny " Ty * 2h + 6 M oxx 0

(17)

Equation (17) is valid for the scaling assumed
here. The appropriate forms of the nonlinear term
and linear dispersive term of (17) can be added
directly to (15) to give the coupled equations for
weakly nonlinear, weakly dispersive shallow water
waves. Adding the appropriate terms in equations
(15) gives the K-P type coupled evolution
equations for monlinear shallow water waves

t
c 3en™n 2
+ ;3 x L AP h'c %
n, en +3 (n-n) % e O
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B [ 2c (c? n, ) dx = 0 (18)

The variable depth K-P equation given by Liu et
al. [1985] is obtained by neglecting the coupling
in (18) and differentiating with respect to x.
Further, neglecting y dependence yields the
desired coupled KdV equations, while further
neglecting coupling recovers (17) for the incident
wave alone.

To the order of approximation assumed, spatial
derivatives may be replaced by time derivatives in
the linear dispersive terms to improve estimates
of linear dispersion. We adopt a form of the
equations incorporating one time derivative in the
dispersive term, leading to equations analogous to
the regularized long wave (RLW) equation of
Peregrine [1966] and Benjamin et al. [1972]. The
resulting model for one-dimensional propagation is
then taken to be

+ +
c 3en™n 2
+ + S0 e X _h-.4
np teng 457 (n-n) & —50 T 0t =0
(19)
We further mote here that the form
iw X
iy, = N th (hn ) (20)

from (12) may be inverted twice in time to obtain

c

X
n + ¢cn + 7 n

T o2
e - - 3‘(0 “y)y (21)

t

This is equivalent to the second approximation to
a radiating boundary condition obtained by
Engquist and Majda [1977], further extended to the
case of variable depth.

3. Equations for a Gradually Varied Channel

Shuto [1974], among others, has considered an
extension to the one-dimensional KdV equation for
the case of waves propagating in a long channel of
depth h(x) and half width b(x). Shuto's equation
may be written in dimensional form and stationary
coordinates as

(bC)x e 3be & bch2
2 2h x

bnt + bcnx +
(22)

The extension to Svendsen and Buhr Hansen's [1978]
equation to account for varying channel width is
readily apparent. In this section, we extend (22)
to account for reflections from changes in channel
width as well as depth.

Starting with the linear wave equation (7), we
impose lateral boundary conditions

ny~ bn =0 y = & b(x) (23)

Integrating (1) from y=-b to b, applying Leibnitz
rule, and assuming cross-channel variations of n
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to be weak enough to ignore, we obtain an
integrated wave equation given by

1
e =% (ghbnx)x 0 (24)

Following the procedure of section 2, we expand
(24) and employ operator correspondence in the
time domain to obtain

(bh) 2
Lt gty 0 (25)
where now Y2 is given simply by
2
2 W
Y e (26)

Employing the procedure of section 2 leads to
coupled equations of the form (5) with F(n*,n7)
given by

(bec)
b4 +
2be (n

-1n)

$u = (27)

Use of (27) in the coupled equations along with

mem " (28)
then leads directly to the coupled linear
equations

(be)
) W * P =
S, B b= n)=0 (29)
Assuming bottom slope and width changes to be
small, we consistently add dispersive and
nonlinear effects to obtain
(be)
+ t T o - 3be £ %
+ - —_=
bn, & ben 7 (n n)xF=an
shnl e g (30)
6 XXX

Neglecting coupling in each component equation of
(30) leads to two separate equations of Shuto's
type describing waves propagating in each direc-
tion in the channel. The coupling term implies
that any varying channel whose variations maintain
the constancy of bc is completely transparent to
the passage of a wave, even though the wave itself
undergoes evolutiom due to variations in h(x). As
was the case with the results of section 2, the
model equations (30) may be arbitrarily altered to
RLW form. :

4. Mass-Conserving Forms of the KdV Equations

The sets of coupled KdV equations (21) and (30)
may be written in forms which lead to exact
conservation of mass in the total wave system, to
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the level of the approximation used here, follow-
ing the arguments of Miles [1979]. Rearranging
the nonlinear and dispersive terms in (30) gives

(be) _
2 (' -0

+ +
(bn )t + bcnx +

12 2
+ {3bcn + bch

ih 3 = O(su,uza) (31)

-
nxxx}x

Terms appearing on the right-hand sides of (31)
are formally small with respect to the present
approximation and may be dropped, leaving the
proposed mass-conserving form of the equation.
Corresponding results for a channel of constant
width follow by setting b = l.

For the case of disturbances n~ which vanish as
|x|+=, mass conservation in the total system
follows simply by adding the component equations
of (31) and then integrating over x, to obtain

v {- b(n" +n) dx = o= [ bndx =0 (32)

—

An alternate arrangement of equations (31) and
integration from some fixed position %y to =
yields the relations

d t ~t 1
g5 ) =T 25 [ (be)ndx  (33)
xo xo
where
£2 2
ot - +  3ben ~  bch &
Q (xy) {ben™ + T € nxz}xo (34)

represents flux of mass across station xp into x
> xp» The integral term on the right~hand side of
(33) represents the sink or source of mass flux
into or out of each wave system, which is seen to
be equal and opposite in sign for each equation,
indicating equivalence of interchanged mass in
each subsection of the x interval. For the case
of weak reflection, 0|n~| << 0|n*|, the integral
on the right hand sides of (33) reduces to the
approximate form

| (be) ndx = J (bc)xn+dx + 0(eta)
x x

(35)

We note that Miles [1979], who analyzed Shuto's
one-way equation, gave the mass flux Q*(x) as

) =T + 5[ (be) n'ax (36)
x

and then identified the approximation in (35) as
the principal source of mass to the reflected wave
because of its dominance of the term Q*(x)

as x + - =, This interpretation arises naturally
here through the analysis of the corresponding
equation for the reflected wave motion, with the
addition that the integral may be immediately
identified as a source-sink mechanism without the
intermediate analysis of residual fluxes. In
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addition, we obtain the complete feedback between
the reflected and incident wave through the
unapproximated form of (35).

In the following, we use the mass-conserving
equations (31) written in RLW form, which gives

(be)
* F X + -
bn, % ben_ + —5— (n - n)

+2 2
3ben bh™ &
L. -
- [ 4h 6 nxt)x 9 (37)
The corresponding nonconservative forms are
obtained from (30) after multiplying by bc. The

numerical scheme used in the following two
sections is a simple extension of the three-level,
implicit scheme developed by Eilbeck and McGuire
[1975]), extended to account for variable
coefficients. Details are omitted and may be
found in the work of Vengayil and Kirby [1986] for
the nonconservative forms of the RLW equations.

5. Solitary Waves Propagating Onto a Shelf

We first test the ability of the linear
coupling mechanism to calculate reflection. An
accurate set of measurements of reflections from a
solitary wave propagating over a slope is avail-
able from the study of Goring [1978]. We consider
waves of initial height Hy, in water of depth
hy, which propagate into water of depth hy over
a linear transition of length L and slope
(hj=h2)/L. The depth transitions considered here
are fairly short (L/f = O(l), where £ is a charac-
teristic wave length) and the mass balance correc-
tions discussed im the preceding section are not
significant, with results of conservative and non-
conservative calculations agreeing to within 1-2%.
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Reflection and transmission of a solitary wave propagating onto a shelf. (a)
(b) Hy/hy = 0.05, L/% = 4.0, hy/hy = 3.0.

5.1. Reflected Waves

The independent length scales involved in the
reflection problem are the incident wave height
Hy, upstream water depth h), downstream water
depth hy, and slope length L. The reflected wave
height is given by Hg. A characteristic hori-
zontal length £ of a solitary wave is completely
defined by the incident wave height Hy and
upstream depth h), and is defined by Goring [1978]
as

)
- 2
L 1:5 (Hlfhl) hl (38)

The reflection process is characterized by three
nondimensional parameters; the relative incident
wave height, Hy/hj, the length ratio L/L, and the
depth ratio, hy/hy. Choosing specific values for
the nondimensional parameters L/L and hj/hj
characterizes the slope as mild or steep.

In Figure la, an example of the propagation of
an incident wave of Hy/h] = 0.15 over a fairly
steep slope of L/t = 0.5 and h)/hgy = 3 is
presented. As the wave propagates up the slope, a
reflected wave similar in shape to the incident
wave and nearly a fifth of the incident wave
amplitude emerges. As it propagates on the shelf,
the transmitted wave disintegrates into a series
of solitary waves with the leading wave being the
largest. The mildly sloping shelf shown in Figure
Ib produces a reflected wave which is less peaked
than the incident wave. The rear end of the wave
shows a higher amplitude, indicatimg an increase
in reflection as the incident wave moves up the
slope. For this case, L/L = 4.0, hy/hy = 3,
and Hy/h) = 0.05. Goring [1978) presented an
extensive study of the effect of the length ratio
L/% on the shape of the reflected wave. Results
obtained in the present study are in excellent
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Fig. 2. Variation of reflection coefficient
Hg/Hy with length ratio L/%, for a depth
ratio hj/hgy = 4.0. The solid line shows the
present results, the dashed line shows Goring's
[1978) nonlinear dispersive results, and the
dashed-dotted line shows Goring's [1978] linear
nondispersive results. Data from Goring [1978].

agreement with the results obtained by Goring
[1978] using linear nondispersive theory.

In Figure 2, the reflection coefficient Hg/Hp
is plotted as a function of the length ratio L/2,
for a solitary wave of Hy/h) = 0.1 and a depth
ratio hy/hy = 4. The reflection coefficients are
compared with Goring's nonlinear dispersive and
linear nondispersive theories and with his
experimental results for various slopes and
relative incident wave heights. The numbers next
to the points indicate the values of the relative
incident wave height Hy/hj. Since the coupled
evolution equations are valid only for mildly
varying topographies, slopes with length ratio L/%
< 0.25 are not considered. In all cases the
present theory underpredicts the reflection
coefficient when compared with Goring's nonlinear
dispersive theory, but it is in reasonable
agreement with results of Goring's linear nondis-
persive theory. The effect of the relative
incident wave height on wave reflection is seen to
be almost negligible from the results presented in
Table 1, where reflections computed by the present
method are compared with Goring's results obtained
using linear nondispersive theory.

TABLE 1. Reflection Coefficients Hg/Hy for
Various Length Ratios L/L and Relative
Incident Wave Heights Hy/h) for the

Depth Ratio hy/hy = 3.0

Hy/hy
L/2 0.05 0.10 0.15
0.53 0.214 (0.218) 0.212 0.212
1.03 0.151 (0.152) 0.155 0.155
1.56 0.108 (0.110) 0.106 0.111
2.00 0.088 (0.089) 0.087 0.095

Goring's [1978] linear results are given in
parentheses.
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Fig. 3. Comparison of numerical reflected wave -
profiles with experimental results of Goring
[1978] for (a) L/% = 1, and (b) L/L = 2.
Numerical results are shown for — Hj/h; = 0.05
(solid line), Hy/h) = 0.10 (long-dashed line),
and -+-+ Hy/h] = 0.15 (short-dashed line), and
experimental results are shown for Hy/h; = 0.0522
(pluses).

In Figure 3 the predicted wave profile of the
reflected wave is compared with experimental
results of Goring. The amplitude of the reflected
wave is normalized with respect to the incident
wave height so that reflected waves corresponding
to different incident wave heights can be compared
directly. The experimental results are for a wave
of Hy/h) = 0.0522 and numerical results are
presented for three cases of Hj/h) = 0.05, 0.10,
and 0.15. 1In Figure 3a the reflected waves from a
slope (L/L = 1.0 and hj/hp= 3.0) are compared with
the experimental data and the agreement is fairly
good, except at the crest. This discrepancy may
be due to the neglect of friction in the numerical
model. The results for a slope L/L = 2.0 and
hyj/hy = 3.0, presented in Figure 3b, are not in
agreement with the data, but the overall shape of
the predicted wave is similar to the experimental
data. Accuracy of measurement of the reflected
waves, which are very small compared with the
incident wave, may influence the shape of the wave
considerably. In view of the close agreement in
the profiles of waves of different relative wave
amplitudes, it may be postulated that reflection
may be considered to be a linear process dependent
on the parameters L/L and h)/hj characterizing the
slope, a view which was also put forward by
Goring. These results support the use of the
simple coupling mechanism assumed here.

5.2. Transmitted Waves

Results for evolution of the transmitted wave
in the constant depth region beyond the slope
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Fig. 4. Plan view of wave channel in experiments of Chang et al. [1979].

exhibit the usual features of disintegration into
a train of several solitary waves and are not
reproduced here. Numerical results for surface
displacement were found to agree well with the
experimental results presented by Goring. We
remark here that the integrable property of the
KdV equation in the transmitted-wave region would
allow for a prediction of the number of solitons
which evolve out of the wave computed at the top
of the slope. No data are available to confirm or
deny these predictions, so we have not pursued
this question further.

6. Solitary Waves in Diverging
and Converging Channels

We now consider a case of waves in a much more
gradual transition, consisting of a linear varia-
tion in channel width. A comprehensive set of
data is provided by Chang et al. [1979] (herein-
after referred to as OM). Because of the slow
variation of the channel width used here, reflec-
tion is of only minor importance in determining
the height of the transmitted wave; however, the
mass balance correction discussed in section 4
becomes quite important.

0.5

Fig. 5. Normalized amplitude of solitary waves
in diverging channel with h = 20 cm and initial
amplitudes Hg/h = 0.088, 0.185, and 0.259.
Circles show data from OMM, solid lines show the
total wave train, and dashed lines show the
incident wave alone.

6.1. CMM Experiments

CMM measured the evolution of wave height of an
initial solitary wave in both a diverging and a
converging laboratory flume. A schematic of the
channel geometries is given in Figure 4, which is
adapted from Figure 1 of CMM. CMM measured waves
for a range of initial wave heights and still
water depths. The most detailed sets of results
are for the cases of 20 cm depth in a diverging
channel (three initial amplitudes [CMM, Figure 2])
and 30 cm depth in a converging channel (four
initial amplitudes [CMM Figure 4]). Data consist
of measured maximum n(t)/h versus position along
the channel. Reflections were not reliably
measured. The data given by CMM are reproduced in
Figures 5 and 6. CMM provided numerical computa-
tions based on the nonconservative form (equation
(22)) further transformed to a coordinate system
moving at the linear long-wave speed. For the
case of the diverging channel, numerical results
indicated asymptotic agreement with results for
the adiabatic evolution of a solitary wave, which
gives [Miles, 1979]

-2/3

A = By (2R (39)
0

Fig- 6!
in converging channel with h = 30 ca and initial
amplitudes Hg/h = 0.043, 0.093, 0.140, and

Normalized amplitude of solitary waves

0.174., Circles show data from CMM, solid curves
show the total wave train, and dashed curves show
the incident wave alone.
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Fig. 7. Total mass in wave train components.
Diverging channel. Circles, triangles, and
squares show total, incident wave, and reflected
wave mass, respectively; solid and dashed curves
show mass-conserving and nonconserving equations,
respectively.

where by is the initial channel width and Hg and
H(x) are the initial and evolved maximum wave
heights. The numerical results reproduce the data
well up to 40 water depths beyond the initial
measurement station, beyond which the data drop
progressively further below the asymptotic - 2/3
slope. This drop in experimental wave height is
presumably due to frictional damping.

For the case of a converging channel, the
experimental wave height evolves according to a
much flatter, — 1/2 slope which mimics a Green's
law evolution. The numerical results of CMM
reproduce this behavior. CMM offered, as
explanation of the - 2/3 and - 1/2 slope discrep-
ancies, an argument based on nonlinear distortion
of the linear characteristics in the converging
channel case. CMM's results are questioned below,
however. It is noted that the numerical results
of CMM for the converging channel actually tend to
underpredict wave height at large distances from
the initial measuring station and thus do not show
any accunulating effect of frictional damping.
(CMM provide a discussion of the asymptotic wave
height resulting from additional damping in the
diverging channel case, but do not apply the
results to converging channels or provide any
explicit computations). )

The results of the following two sections
indicate that the agreement between data and
computations found by CMH in the converging
channel case may have been fortuitous, and we thus
will concentrate on this point where appropriate.

6.2. Numerical Computations

The mass-conserving RLW equations (37) were
used first to compute wave evolution in the con-
verging and diverging channels. Results are shown
in Figures 5 and 6. The numerical channels were
taken to correspond to the experimental channels
as closely as possible; the small tails of com-
stant amplitude on each curve correspond to the
constant width entrance channels. In each figure,
solid curves correspond to maximum wave height in
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the combined transmitted-reflected wave system (n
= n*+ n7), while the dashed curves correspond to a
transmitted wave alone (n = n*) when reflection is
neglected.

In both the cases of channel divergence and
convergence, the wave heights computed from mass-
conserving equations evolve largely according to
the - 2/3 slope, adiabatic relation. For the
diverging channel (Figure 5), these results are in
close agreement with CMM's results, with the only
deviation between experiment and numerical results
being presumably due to the slow accumulation of
frictional effects. For the converging channel
case, the results here differ markedly from CMM's
numerical results and from data, which essentially
evolves at a different (- 1/2) slope right from
the initial measurement point. These results are
initially discouraging, since it is not apparent
that the deviation is due to a similar slow
accumulation of frictional damping (however, see
section 6.3).

Corresponding results were computed using non-
conservative RLW equations obtained from (30).
The evolution obtained from the nonconservative
equations differs markedly from the conservative
evolution, with wave heights evolving approxi-
mately along a (- 1/2) slope. This leads to
(again fortuitous) agreement between data and
computations for the converging channel (again
with slight underprediction of data at large
distances), but significant overprediction of data
for the diverging channel case.

The fact that CMM obtained agreement, in the
diverging channel, with the - 2/3 slope evolution
in the data rather than with the present, non-
conservative estimate of a - 1/2 slope, is due in
part to their idealization of the channel geometry
as a uniform wedge with no uniform entrance
channel. Wave height in the idealized channel was
initialized according to data from the first
measurement point in the model channel, which is
located approximately 38 cm back in the uniform
5-cm channel before the junction with the
expanding channel, or 225 c¢m from the virtual
origin of the idealized wedge (judging from Figure
2 of CMM). The measured wave is thus placed in a
numerical channel ~ 15% narrower than the physical
channel and consequently has 15% less total mass
than the experimental wave. Using the present
nonconservative model with the idealized geometry
and the initial measured wave heights at the first
measuremént point, we obtained numerical results
which are in agreement with those presented by
CMM. We believe these to be in error because of
the idealization of the channel geometry.

We finish here with a discussion of mass
balance in the conserving and nonconserving
equations. Since the differences between
conserving and nonconserving equations lie in
terms which are small compared to the orders of
magnitude considered in obtaining the original KdvV
equations, it would be expected that local errors
in the nonconserving equations should be small
over several wavelengths. This argument does not
hold up for the propagation distances considered
in the experiments.

In Figures 7 and 8, we show the evolution of
total, incident wave, and reflected wave mass with
time in the computations described above. Results
are for the largest-amplitude cases in each of
Figures 5 and 6; since the reflection mechanism is
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Fig. 8. Total mass in wave train components.
(converging channel). Symbols are as in
Figure 7.

linear, little variation occurs for different
initial amplitudes in each case. For all the
computations above, the implicit schemes were run
at a Courant number of 1, as suggested by Eilbeck
and McGuire [1975]. No attempt was made to
optimize accuracy of results by varying grid
spacing and Courant number. For the mass-
conserving results (indicated by solid lines),
total mass was maintained to an accuracy of three
significant figures in double precision computa-
tions, which is sufficient for the comparisomns
given here. Deviations in transmitted, reflected,
and total mass for the nonconserving results
(indicated by dashed lines) are significant for
the propagation distances considered. 1In each
case, the majority of deviation from the mass-—
conserving results is contained in the transmitted
wave. These results indicate that the modifica-
tions to the basic forms of the equations employed
by Miles [1979] to construct mass balance argu-
ments should be incorporated in the governing
equations themselves in any practical calculation
involving waves in a slowly varying channel.

6.3. Linear Damping Effects

We now consider the effect of a simple linear
damping as a possible explanation of the discrep-
ancy between data and numerical results in the
previous section. Rather than attempting to
obtain a damping coefficient analytically, we
posit a simple coefficient B with initially
unknown value, and modify the KdV-RLW model
equations into the revised forms

+
x

bni & benl + ... 4 B(b + 20t = 0 (40)
The factor (b + 2h) is retained to include the
varying effect of channel width and depth (i.e.,
the relative importance of sidewall and bottom
friction) as channel geometry changes. The
quantity (b + 2h) is the wetted perimeter of the
channel in the linear approximation. The
inclusion of the damping term modifies the
conclusions on total mass balance. Adding the
component equations of (40) and integrating out to
t @ yields the expression

$c ] bndx =-8 [ (b+ Zhnax (41)
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The sink term then represents a loss of mass from
organized wave motion due to frictional damping of
the fluid velocity. This loss of mass would
necessarily be absorbed by the stationary (non-
wave) water column, leading (at t+=) to a dis-
tributed increase in depth commensurate with the
total initial mass of the organized wave form.

We proceed by examining the largest-amplitude
diverging channel case. The value of B is
adjusted to obtain reasonable agreement between
data and numerical wave height over the entire
range of evolution. (This agreement is evaluated
purely qualitatively; small changes in B do not
significantly alter the results.) On the basis of
this procedure, a value of B = 0.004 is chosen and
then is held fixed for the remainder of the compu-
tations. Calculations for the three initial
amplitudes of the diverging channel case are shown
in Figure 9. The linear damping mechanism is
successful in representing the gradual accumu-
lation of damping in the diverging channel case.

Turning to the converging channel case, we keep
B = 0.004 and compute the results presented in
Figure 10. 1In this case, linear damping effects
accumulate immediately and are seen to account for
the general lower slope evolution of the wave
height. It is thus apparent that the discrepancy
between data and the preferred mass-conserving
computations is explainable by simple laminar
damping in both the diverging and converging
channels, even though the discrepancies accumulate
differently. We feel that these results support
the validity of the present computations over
those given by CMM. There is some indication from
the low-amplitude converging channel case that the
tuned value of B is somewhat too high. This would
be expected, since the converging channel water
depth is 50% greater than the diverging channel
depth, and thus laminar damping effects would be
somewhat reduced.

We remark that a somewhat more standard means
of adding a damping term would be to add Burgher's
type (second derivative) terms to the equations.

0.01 1 N R O 05O
10 2 0 60 100
]

Fig. 9. Linear damping of solitary wave in
diverging channel. Conditions are as in

Figure 5. Circles show data from CMM, dashed
curves show the undamped wave, and solid curves
show the damped wave.
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1 L

1 1 1
10 0 .Y
Fig. 10. Linear damping of solitary wave in
converging channel. Conditions as in Figure 6.
Circles show data from CMM, dashed curves show
the undamped wave, and solid curves shown the
damped wave.

However, the factors which make this type of
damping term appropriate in studying shock
dynamics are inappropriate for the application
here. In the case of a dissipative shock forming
in a nondispersive environment, numerical results
become contaminated by high-frequency noise which
is essentially a parasitic addition to a low-
frequency (infinitely long wavelength) process.
The second-derivative damping term concentrates
damping in the high-frequency components. In the
present case, where well-organized wave motions
are present at a range of frequencies in evolved
wave fields, experience would indicate that bottom
boundary layer damping of high-frequency compo-
nents should be lower than for low-frequency
components, because of increasing relative water
depth. The present model distributes damping
uniformly over all frequencies; this is not a
completely desirable result but is certainly more
appropriate than the Burgher's form.

7. Reflection of Time-Periodic Wave Trains
by Undular Beds

We now turn to a case where strong reflections
arise due to a resonant reflection mechanism. 1In
particular, we study the reflection of a cnoidal
wave by a field of sinusoidal bars placed on the
bottom of an otherwise uniform channel. This
problem has been studied in the linear wave limit
by Davies and Heathershaw [1984] and Mei [1985].
Recently, Yoon and Liu [1987] have considered the
problem studied here from the point of view of
resonant interaction theory, where attention is
restricted solely to the interaction of the funda-
mental Fourier component of the cnoidal wave and
the bottom undulation, and all simple shoaling
effects are neglected. A more complete set of
calculations is provided here which exhibit
several physical features which do not arise in
the results of Yoon and Liu.

7.1. Evolution Equations for
Time-Periodic Waves

Neglecting transverse (y direction) variations,
the surface displacements of time-periodic inci-
dent and reflected waves governed by (19) may be
expressed as a sum of Fourier modes with variable
amplitudes:
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N A (x) -
n= 1 [-EL-—— ein(fkdx “t)+ c.c.) (42a)
n=1
N B (x) -
gw § (B int-fRax cwr), o azm)
n=1

where n = nt and £ = n~ for convenience and c.c.
denotes the complex conjugate. Substituting the
forms of n and ¢ in the coupled KdV equations (19)
yields the lowest order coupled evolution equa-
tions for the incident wave amplitude

3.3.2
h in"k’h
X -24n[kdx
Anx * 4h [An - Bne ] - 6 An
- N-n
3ink
il Zx Mgy * 2 lEl MAg] = 0

(43)

and a corresponding equation for the reflected
wave amplitude. These equations represent a more
complete model of the wave propagation problem
than the final equations employed by Yoon and Liu
[1987) to study resonant reflection. Equations
similar to theirs are derived in Appendix B, and
the effect of using the more complete form (43) is
discussed below.

Energy conservation in the reflection process
may be analyzed using the coupled evolution equa-
tions and is used below as a test of accuracy for
the numerical scheme. The conservation law
derived from (43) and its counterpart is given by

(e 3 Iagi2l, - (e I Ial2, -0
n=1 n=1

or

Y 2 2
ef 1 (a|® = |8_| )} = constant (44)

n=1

In the case of a rippled bed in constant mean
depth (Figure 11), the conservation equation (44)
becomes

N
I (1 - Ri -1¥) .0 (45)
n=]
I
=
'\5,2'11 ¥
h hix)
D
50
T rA o -' paless

Fig. 11. Geometry of the sinusoidal bed form.
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where
[a (L)] |B_(0)]
T = n R = L
n |Al(0)| n |A1(0)|
[a (0]

(46)

L ® 5,1

Here, I, represents a measure of each harmonic
amplitude to the fundamental amplitude in the
steady incident wave, and R, and T, are reflection
and transmission coefficients for each mode,
normalized by the fundamental incident amplitude.

7.2. Numerical Scheme

Reflections from a rippled bed with periodic
sinusoidal depth variations are studied using the
evolution equations (43) developed in numerical
form. A finite difference scheme centered on x
= (m + 1/2)Ax is used for the equations, giving

m+1 m m+] n
A il . (x™! _ pm 4 A)
Ax dAx (hm-l-l 4 h-]
1n3(k3h2.\n)"ﬂ 1n3(k3h2An)-
- 12 - 12
. | n-1
3in w1 k m
*1 LG 1 aa )7+ (3 1 oAan )
g=1 t=1
N-n N-n
2k w+l 2k m
* [E_ lzl A:“nﬂ] * (E_ 121 AtAn+l] ]

o+l m
o+l =21 =21
(hn+l_ hw] [Bn P B B:e By )

4Ax {hﬂl"'l

+ 1"

(47)

and a similar form for the reflected wave
component .

The reflected and transmitted waves are
obtained by an iterative procedure. First for
k=0, using initial values for A (m=0) as specified
by the permanent cnoidal wave solution, the
incident wave (obtained using equation (47)) is
marched in x (without considering the reflected
wave) using an iterative scheme to linearize the
quadratic terms. Then using the present value of
the incident wave field along the disturbance, the
equations for the By are solved by starting at a
point downstream of the disturbance where reflec-
tion is absent and marching backwards to solve for
the reflected wave field. The incident wave and
reflected wave are then successively updated until
the relative error between two successive solu—
tions (k and k+l) of the reflected and incident
wave field is less than a predetermined value p,
i.e.,
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k+1 k
- A%

NE ’

k+1
B3It - a2

A2

mk
81
(48)

where k+l and k represent the current and the
previous iterations. For 9-10'“, only three
iterations are required to obtain solutions of A,
and B,. The phase § = Ikdx is calculated using
the trapezoidal rule.

7.3. Reflection From a Rippled Bed

For the present numerical calculations, a
rippled bed is defined by

h =h - §(x) 0<x<L (49)

where L is length of the ripple patch, h is the
constant depth and § is a small but rapid
variation to the depth. Choosing sinusoidal bed
variations as in previous works, § is given by

§ = DsinAx 0<x<L (50)

where D is the ripple amplitude and A is the
ripple wave number.

We first consider the propagation of linear
waves over the ripple patch. Linear wave reflec-
tion from the ripple patch is a function of the
number of ripples in the patch, the ripple
amplitude and the ripple length. To examine the
effects of the ripple length on reflection,
calculations are carried out for a wide range of
values of the parameter ZK);/A, where K| is the
wave number of the fundamental component of the
incident wave, correct to O(kh)2. The parameter
ZK1/A is varied by changing the ripple length for
a fixed wave number. This approach is preferred
to varying wave period for a fixed rippled length
because in the latter approach the waves in the
short-wave regime (K) large) may not satisfy the
shallow water scaling. In all the cases analyzed
here, waves of period T = 1.8 s in water depth h =
0.1 m are used, corresponding to a value of u2 -
wlh/g = 0.124. To study the effect of the number
of ripples in the patch, two patches, one con-
sisting of two ripples and another of four
ripples, are modeled.

In Figure 12, results for propagation of a
linear wave over rippled beds are presented for a
ripple amplitude D/h = 0.4. All calculations were
carried out using a Ax = w/20\ to obtain accurate
results at large 2)/A. Resonant Bragg scattering
is observed at 2K;/A = l. The conservation law
(equation (45)) reduces to .

RZ + T2 = ) (51)

for linear waves. For small ripple amplitudes,
the conservation law is satisfied for the entire
range of 2K)/\ values with errors less than 1073,
For D/h = 0.4 in the region 0.95 < Z;/A < 1.05
the scheme is not convergent owing to overpredic-
tion of the reflection on the first pass. To
rectify this problem, the numerical scheme is
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075

24/ A

2Kyl h

Fig. 12. Variation of reflection and trans-
mission coefficients with ZK;/A for linear waves
normally incident on a sinusoidal patch, for (a)
n=2, D/h = 0.4 and (b) n = 4, D/h = 0.4.

solved by an iterative procedure. First, the
incident and_reflected wave field for ripple
amplitude D/h = 0.2 is calculated. Using the
calculated wave field as the initial value for the
incident and reflected wave fields, the numerical
scheme is solved for increasing ripple amplitude
with an increment AD/h = 0.05, until D/h = 0.4 is
reached. This approach reduced the errors in the
conservation law to less than 102 for the range
0.95 < 2K;/A < 1.05.

Reflection and transmission coefficients R, T
are presented as a function of Z)/A im Figure
12. Figures 12a and b show results for ripple
patches containing two and four ripples, respec-
tively. The major effect of increasing the number
of ripples, while holding ripple amplitude and
water depth constant, is to tune the resonant
response of the ripple bed and increase the
magnitude of the resonant reflection. These
effects are similar to the general tremd of
results in intermediate depth, as studied by
Davies and Heathershaw [1984) and Kirby [1986].

Reflection of nonlinear waves from a rippled
bed is next studied. The propagation of a cnoidal
wave of period 1.8 s and wave height 0.02 m is
considered. In Figure 13a, the reflection and
transmission coefficients of the fundamental
component (Ry, T]) as defined in (46) are
presented. The ripple amplitude D/h = 0.4 and the
number of ripples is 2 for this case. There is no
appreciable change in the values of reflection
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coefficient from the linear case, but there is a
small shift in the peaks and zeros of R} which is
presumably due to nonlinear distortion of the
incident wave length. In the near-resonance
region there is no appreciable change in the
transmission coefficient T; with respect to the
linear result. The total energy transmitted (Er)
and reflected (ER), normalized with respect to
initial energy, are shown as dotted lines. Energy
conservation defined by (45) is satisfied with an
error < 1073,

We note that in the region of 2K;/A > 1, the
transmission coefficient of the fundamental com—
ponent, T}, experiences a significant drop even
though the value E7 indicates that no significant
reflection 1s occurring. In this region the
sinusoidal ripples are becoming comparable in
length to or longer than the surface wave length,
and the surface waves are able to evolve by
nontrivial amounts as they shoal over the ripple
crests. The reduction of T] represents a
destabilization of the incident wave, after which
energy is transferred to higher harmonics. This
effect would not appear in the results of the
model developed by Yoon and Liu [1987] where
nonresonant shoaling effects are neglected.

We also note a rise in Eg and a drop in ET as
2K1/A + 0.5. This represents the resonant inter-

0.7s -

Fig. 13.

Variation of reflection and trans-
mission coefficients of fundamental harmonic

with 2K)/) for nonlinear wave propagation over a
sinusoidal patch for (a) n = 2, D/h = 0.4 and (b)
n=44, D/h = 0.4. The normalized reflected and
transmitted energy Ey and Er are shown.
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Fig. l4.

Variation of component amplitudes of
transmitted and reflected waves with x, at Bragg
resonance for nonlinear wave propagation over a
sinusoidal patch of 4 ripples and D/h = 0.4
(first three harmonics).

action between the first superharmonic of the wave
field and the ripple patch. The modification to
the- total transmitted energy is them due to the
decreasing energy content in the harmonic ampli-
tude.

Figure 13b presents nonlinear results for the
patch with four ripples. Differences between
linear and nonlinear results are more accentuated
than in the two bar case. In the region of
resonant reflection, T is greater in the
nonlinear case than in the linear case. This
result is due to the fact that the transmitted
component continually gains energy from its
harmonics as it 1s lost to reflection over the bar
field, and thus ends up with a surplus in
comparison to the linear case. In contrast, the
reflection coefficient R} is again little changed
from the linear case. The maintenance of a higher
value of the incident amplitude Aj(x) over the bar
field should lead to greater energy transfer to
the reflected wave component Bj(x). This effect
is balanced by the fact that the B) component
loses energy through harmonic generation as the
reflected wave height increases, and in the
present case, the two effects nearly cancel each
other.

After the incident and reflected waves move
into the region of constant depth, the waves
evolve as they propagate owing to nonequilibrium
between the Fourier components of the surface
displacement. To illustrate this evolution, the
transformation of the component amplitudes of the
incident and reflected wave are analyzed for the
case of resonant Bragg scattering. In Figure 14,
the evolution of the component amplitudes of the
incident and reflected wave is presented, for
waves propagating over a_patch of four ripples,
with ripple amplitude D/h = 0.A. Results were
calculated for an initial permanent form wave
consisting of 20 harmonics, although only the
evolution of the first three harmonics are
presented. The loss of energy in harmonics of the
incident wave and the gain of energy in the
reflected wave harmonics are both apparent. Also
apparent is the disequilibriuvm of the transmitted
waves and reflected waves as they leave the area
of the ripple patch. This disequilibrium leads to
a continuous evolution of the reflected wave and
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transmitted wave away from the ripple patch. This
effect presents serious difficulties in the prac-
tical measurement of reflection and transmission,
since these quantities are essentially functions
of space. (The only spatially uniform quantity
would be the energy flux of the reflected and
transmitted wave trains.)

8. Conclusions

The present study has developed a scheme for
obtaining the linear coupling between opposite
going, weakly dispersive long waves due to channel
variations in the direction of propagation. The
model is shown to predict the generation of a
reflected wave quite well in one case where com—
prehensive data are available.

Computational results have indicated that
errors in mass conservation embedded in standard
forms of the KdV-RLW evolution equations, which
are locally of smaller order than the approxima-
tion employed in the equations, nevertheless
interfere in numerical integrations over length
scales appropriste to existing physical experi-
ments. By extension, these effects would be
expected to have serious impacts in field
applications. Appropriate mass-conserving forms
of the equations have been provided which are
accurate to the same degree of approximation as
the original equations.

It is noted that the neglect of nonlinear
interaction between opposite going waves in this
study renders the model inapplicable to the study
of details of the head-on collision of solitary
waves of comparable amplitude. Derivation of the
appropriate coupling terms would represent a
valuable addition to the present model. Further,
application of the weakly two-dimensional model
obtained in sections 2 and 3 would be of value;
cases employing only the forward-propagating
component will be reported on shortly.

Appendix A: Approximate Angular Relations
in K-P Dispersion

The restriction to small angles of propagation
implied in the K-P equation may be analyzed by
looking at the propagation of a plane wave given
by

n = gel(kcosdx + ksinby - wt) (A1)

The expression an in (4) is then given by

2

2
[ 2
Y"l'["—h--k

-1n20) ns= kz(l - uinzﬂ}n (A2)

An expression for yn based on the binomial
expansion employed in section 2 is then

1
yn = k(1 - liuze) ;ZH - k(1 - % -1n29)n (A3)

which is only valid if sin 8 = 8 <{ 1. The
direction of wave propagation is thus only allowed
to deviate slightly from the preferred x
direction.

This scaling distinction may be further under-
stood by comparing the model K-P equations
obtained here with the usual parabolic approxima-
tion for time-harmonic linear waves. The set of
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coupled equations (15) in differential form may be
compared with the coupled parabolic equations
given by Liu and Tsay [1983] by making the
substitution

n+ R ei{kox—ut)
_ i(—kox—ut)
n = B(x,y) e (A4)
to yield
2ikbA, + 2kh(k-kg)A + 1(kh) A + (hAy)y
= 1(kh), Be™Hkx (AS5a)
21khB, - 2kh(k-ko)B + 1(kh),B - (hBy),
= 1(kh)  AeZikx (ASb)

which are essentially similar to the shallow water
limits of the coupled parabolic equations of Liu
and Tsay [1983, equations (2.12-2.13)].

Appendix B: Simplified Equations for
Near-Resonant Reflection

The set of equations (43) represents a general
model for reflection of periodic waves from bottom
topography h(x) and covers the special case of
reflection of waves from a bed of sinusoidal rip-
ples of small amplitude. Yoon and Liu [1986] have
provided a more restricted theory for near-
resonant interaction (small detuning with respect
to the Bragg condition) which meglects contribu-
tions to reflection which are far from resonance
and which also neglects shoaling effects in each
wave component alone. Here, we obtain an
analogous dimensional form of the governing
equations as a reduction of the general theory
(equation (43)).

We consider the depth h(x) to be split into a
slowly varying portion h(x) and a rapidly varying,
small-amplitude portion &(x), with §/h = 0(a).

The coupling coefficient hy/4h is then given by
(to 0(a))

i RO SRS | (B1)

Since simple shoaling effects do not lead to
resonant reflection, (43) may be rewritten as

3=3=-2 .
An - 28 t B An i 3iEk { I ‘l‘n—l
x 8h =1
N-n § -
+2 5 AA b =-28 e Unfkdx , o(e2)
t=1 n+l &h n
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1n kb 3ak (23!
Bn = 6 n - { I 'lnn-l
x 8h =1
N-n 8 =
i Z""'B,*_Bn_!} --Xy e?.infkdx - 0(ed)
=1 4h "

(B2b)

We note here that the wave phase may be written
with respect to k to 0(l1). The dispersion term
may be eliminated by the transformation

inndx

einfkdx o A; v ;

A
n

-1JK dx

—1n]§x
e = B; e

Bn (B3)

where

=2=2
j.er] (B4)

to give

(B5a)

(B5b)

where the Aa~, are detuning parameters given by

3
nt
£ _1 =3=2

ba, = 57 0t (24n) [k h“dx (86)

Finally, we take the bottom displacement to be
given by

- D
6= 1 (3 lPfrax oy (87)
p=1



10,796

where XA is the characteristic wave number of the
bottom undulation. We assume that A adjusts
according to the shoaling effect of the mean
slope, i.e., A/k = constant. Differentiating (B7)
and substituting in (B5) then gives

= n=1 1Aa_, x
A+ Ay AAL e W
x  8h &=l o

Nin iaa:lx}
+ A'A' e =
1=1 L n+k
ipAD 1j(px-zxn)dx
W i B; e (B8a)
8h
= n-1 -iAa_
By - MRk Ty g e ™
" 8h =1
Nin —1ﬂu:£x}
+ 2 ‘&' e =
oy b mel
ipAD -1[(pA-Z )dx
- —2P pr o » (B8b)
ﬁ n

where the near-resonant component p is chosen as
being that one which minimizes the quantity (pA-
2Kp) and thus minimizes the rate of oscillation of
the coupling coefficient. 1ldentifying the factor

1
nsnp- s fC 2K _-p))dx

(B9)

completes the comparisons to Yoon and Liu's model,
which is essentially similar to (B8). We further
note that the coefficient AD/8h is the appropriate
shallow water limit of the coefficient derived
from Kirby's [1986] intermediate depth theory.
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An angular spectrum model for propagation of Stokes waves
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Center for Applied Coastal Research, Department of Civil Engineering
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Abstract

An angular spectrum model for predicting the transformation of Stokes waves on a mildly-
varying topography is developed, including refraction, diffraction, shoaling and nonlinear wave
interactions. The equations governing the water wave motion are perturbed using the method
of multiple scales and Stokes expansions for the velocity potential and free surface displacement.
The first-order solution is expressed as an angular spectrum, or directional modes, of the wave
field propagating on a beach with straight iso-baths whose depth is given by laterally-averaged
depths. The equations for the evolution of the angular spectrum due to the effects of bottom
variation and cubic resonant interaction are obtained from the higher-order problems. Com-
parison of the present model with existing models is made for some simple cases. Numerical
examples of the time-independent version of the model are presented for laboratory experi-
ments for wave diffraction behind a breakwater gap and wave focusing over submerged shoals:
an elliptic shoal on a sloping beach and a circular shoal on a flat bottom.

1 Introduction

Since Booker & Clemmow (1950) clarified the concept of the angular spectrum of plane waves, it
has been applied in various branches of physics and engineering that deal with wave propagation,
see Ratcliffe (1956), Gabor (1961), and Clemmow (1966). In water wave propagation problems,
Stamnes et al. (1983) have used an angular spectrum model to study wave focusing by a lens
in water of constant depth. Recently Dalrymple & Kirby (1988) developed an angular spectrum
model for propagation of linear water waves on a beach with straight and parallel bottom contours.
This model was extended to the case of irregular bathymetry by Dalrymple et al. (1989). These
models are solved by a marching method starting from given wave data offshore and give accurate
results for waves propagating at large angles from the assumed propagation direction (positive z
direction in this paper) if the bottom variation in the y direction is not severe.

The governing equation in the models of Dalrymple & Kirby (1988) and Dalrymple et al. (1989)
is the linear mild-slope equation developed by Berkhoff (1972). Dalrymple et al. incorporated
nonlinearity in the model by correcting the wave parameters iteratively using an empirical nonlinear
dispersion relationship proposed by Kirby & Dalrymple (1986). In the present study, we develop
an angular spectrum model for the propagation of Stokes waves over a mildly-varying topography,
including nonlinearity in a more rigorous fashion. In §2, a simple angular spectrum model for water
of constant depth is derived, illustrating the angular spectrum and its physical significance. In §3,
the equations governing the water wave motion are perturbed using the method of multiple scales
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and Stokes expansions for the velocity potential and free surface displacement, yielding a set of
perturbation equations at each order in wave steepness. In §4, the first- and second-order problems
are solved completely and a set of equations governing the slow evolution of the angular spectrum
is obtained. In §5, we explore some subsets of the equations derived in §4 and they are compared
with some existing models. Numerical examples to show the ability of the model are presented in
§6, and finally a summary of the main results of the paper is given in §7.

2 The angular spectrum and its physical interpretation

In order to illustrate the concept of the angular spectrum and its physical significance, we consider
the Helmholtz equation in &(z,y) in water of constant depth:

e 0% .,

3;;4-'87-}&0—0. (2.1)
where k is the constant wavenumber and the complex wave potential $(z,y) is related to the total
velocity potential for the wave motion, #(z,9,2,t), by

6= 8(z,y)coshk(h + 2)e™, (2.2)

where i = /=1, w is the angular frequency of the wave, h is the constant water depth, and the
vertical coordinate z is measured vertically upwards from the still water line.

Suppose that a wave field represented by (0, y) is incident on the line z = 0, propagating into
the half-plane y > 0. The Fourier transform of &(0,y) in the y direction is

80,0) = [ #0.y)e My, (2.3)
—oo
where the caret denotes a transformed variable and A is the coatinuous Fourier parameter. The
inverse Fourier transform is

20.9) = 5 [ #O.N (2.4)

" Noting that the unit-amplitude plane wave propagating in the direction of k = (V&? - .\’_ ,A) is
expli(vE? - 23z + Ay)), exp(i\y) may be regarded as a unit-amplitude plane wave propagating
in that direction at z = 0. The complex amplitude of that plane wave component is simply
(1/2x)$(0,A)d) as can be seen in (2.4). For this reason, $(0,1) is called the angular spectrum
of the wave field #(0,y). The angular spectrum is merely the Fourier transform of a wave field
along a straight line, each component of which represents the complex amplitude of the plane wave

propagating in a certain direction.

The Fourier transform of (2.1) in the y direction provides aa equation for the evolution of the
angular spectrum #(z,2):



$..+ (K2 -2)é=0, (2.5)

where subscripts denote partial differentiation. An elementary solution to this equation for constant
kis

8(z,\) = 8(0,2)VF V=, | (2.6)

This result will be interpreted differently depending on the magnitude of (k% - 2%). If (k2 -2%) >0,
then the effect of propagation over a distance z is simply a change in the relative phases of the
various components of the angular spectrum. Since each plane wave component propagates at a
different angle, each travels a different distance to reach a given observation point and relative
phase delays are thus introduced. If (k? = A?) < 0, these wave components decay exponentially as
they propagate in the z direction. Such components of the angular spectrum are called evanescent
modes. The limiting case, (k? — A?) = 0, corresponds to the plane wave propagating in the y
direction, contributing no net energy flow in the z direction.

Finally, the inverse Fourier transform of (2.6) gives the solution to (2.1) in terms of the initial
angular spectrum #(0,2):

$lxyy) = ;1; f_: #(0,2) VFT = v g, @.7)

In the actual computation using discrete data values on a computational grid, a discrete Fourier
transform is used under the assumption that the model domain is periodic in the y direction. By
discretizing the domain of width £ by N +1 equidistant points of spacing Ay = ¢/N, the velocity
potential ®(z,y) defined on these points can be transformed into discrete Fourier modes by

o 1 ~ . -iprjAy N N
b(z.0) =5 Y #(2,jAy)e v p=0,2142 (5 - D- g (2.8)
j=0

which describe the wave components propagating in different directions as indicated in figure 1.
The inversion formula is

8(z,jAy) = T #(z,) PV, j=0,1,2,-,(N-1), (2.9)
’
where
2x
A= Nay (2.10)

which is different from the continuous Fourier parameter A used previously. These transforms can
be performed efficiently by using a fast Fourier transform.
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3 Governing equations and multiple-scale perturbation expan-
sions

The exact equations governing the velocity potential #(z,y,2,t) and the free surface n(z,y,t) of
the waves propagating in water of finite depth, assuming incompressible fluid and irrotational flow
motion, are given by

Vig=0 (-h<z<n), (3.1)
96, + du+ V9l + 3(V8-V)IVO =0 (=), - (32)
i + %IW]’ +gn=0 (z=n), (3.3)
¢: = —-Vh¢° th (z = =h), (3.4)

where V and V), are the three-dimensional and horizontal gradient operators, respectively, g is the
gravitational acceleration, and h(z,y) is the water depth measured from the still water line.

The method of multiple scales has been proven to be a powerful tool for problems of weakly-
nonlinear waves by Benzey & Roskes (1969), Yue & Mei (1980), and Kirby & Dalrymple (1983),
among others. In the present multiple-scale analysis we introduce the following slow variables:

z) = €z, 33=¢€z,---; Hh=a, ty =€, -, (3.5)

where ¢ is the Stokes-wave steepness parameter, so that the derivatives with respect to z and t are
replaced by

B ¥. 8 30 . . 0. 0. 8,38 .
n mtmtmt Attt (3.6)

where z and t relate to the fast wave-like characteristics while z,, 23, - -+, and t,, t3, - -, cover the
slower modulation of the wave field.

No assumption is made yet for scales for y since the lateral variation of the wave field will be
taken care of later by its angular spectrum representation, which therefore makes it possible to
model the large-angle components and the small-angle components of the wave field equally well
(cf. figure 1). This differs from previously derived models in which appropriate scaling for y was
also made depending on the problem to be considered. In the parabolic models of Yue & Mei (1980)
and Kirby & Dalrymple (1983), for example, they chose two scales £ and 23 in the z direction,
while in the y direction only one variable, y, = ey, was chosen under the assumption that no fast
wave-like variation occurs in the y direction, consistent with the parabolic approximation, but the
effect of finite angles of propagation with respect to the z axis allows the amplitude to vary in the
y direction O(¢™") times faster than in the z direction.

The bottom boundary condition (3.4) is defined for different water depths at different locations
in the y direction. For its angular spectrum represeatation, however, we need to express it for a
reference depth which is constant in the y direction. This is chosen, in this study, as the laterally
averaged depth, h, given by



M) = [ Mendn (3.7

so that

h(z,y) = h(1 —»), (3.8)
where

W(z,y) = i(,i;? (3.9)

Here §(z,y) is the deviation of the actual bottom from the laterally averaged depth, as indicated
in figure 2. Note that A is a function of z only and the variability of depth in the y direction is
contained in ¥(z,y), whose magnitude is usually much smaller than unity if the topography does
not deviate greatly from straight and parallel contours.

In order to determine the point at which the effect of bottom slope and bottom irregularity (in
the y direction) enters the bottom boundary condition, we need to choose the scales for V), h and

¥(z,y). Assuming mildly-varying topography, we restrict Vy A to be O(e?), that is,

hy ~ €@hsy, hy~ Ehy,, (3.10)
where an additional scale, y; ~ €y, was defined. Accordingly, we assume

he ~ @hgy, bz~ Cbsy, b~y (3.11)

The bottom is then effectively locally flat up to the third order in ¢. These scales for bottom slopes

were chosen by Djordjevi¢ & Redekopp (1978) and Kirby & Dalrymple (1983). With this choice
the effect of bottom slope becomes as important as the nonlinearities; that is, both the bottom

slope terms and the cubic nonlinear terms appear first in the equations at third order.

For the magnitude of the lateral bottom irregularities, we assume v ~ O(¢) so that

6(z,y) = chu(z,y), (3.12)

where, u(z,y) ~ O(1) is introduced for later convenience. The effect of lateral bottom irregularities
then appears at the second order in ¢. This scale necessitates the choice of the slow variables
2, and t; which are omitted in Yue & Mei (1980) and Kirby & Dalrymple (1983) based on the
argument that for Stokes waves the modulation scales in horizontal space and time are O(e7?)
times greater than the waveleagth and wave period, respectively. Without these slow variables, the
én problem in §4.2 becomes unsolvable since it is then identical to the homogeneous first-order
problem except for the inhomogeneous bottom boundary condition. The bottom forcing term in
the second-order problem is introduced by the process of modifying the actual bottom boundary
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condition (3.4) to one on the laterally averaged depth. In the models of Yue & Mei and Kirby &
Dalrymple, this process is not necessary and the ¢z problem is identical to the first-order problem,
5o they neglected the solution for ¢z . If we assumed » ~ O(¢?), this difficulty could be avoided;
the bottom topography, however, then could be assumed as straight and parallel contours.

We proceed by expanding the free surface conditions (3.2) and (3.3) about z = 0 and the bottom
boundary condition (3.4) about z = —h(z) in Taylor series. Substitution of Stokes expansions for

¢ and 7
=Y dni =2 M ' (3.13)
n=1 n=1

into these equations, with the scales (3.6), (3.10) - (3.12), then gives a boundary value problem in
z for each order of n:

V¢, = F. (-h<z2<0), (3.14)

9bn, + ne = Ga (2=0), (3.15)
O+t 9m = H. (2= 0), (3.15)
¢n, = Ba (z=-h), (3.17)

where F,, Gn, Hpn, Ba are the forcing terms determined by lower-order solutions and are given in
the appendix. . ' '

4 Evolution of the angular spectrum

The boundary value problems (3.14) - (3.17) need to be solved up to the second order in order to
obtain the third-order forcing terms which describe the cubic nonlinear interaction. The first-order
solution is expressed in terms of the angular spectrum. Since the higher-order problems are linear
in ¢n, the method of superposition allows the solution in the form, ¢ = én1 + $az + -+ - + Gan,
where ¢y is the waves proportional to the first harmonics, ¢uz is the sum and difference waves,
and so forth. Then since the problem of ¢a is inhomogeneous and its homogeneous version (i.e.,
the first-order problem) has ¢; as a pontrivial solution, they must satisfy a solvability condition,
which follows by applying Green’s second identity to ¢, and ¢.; and leads to the so-called evolution
equations governing the slow modulation of the angular spectrum.

4.1 First-order solution

For n = 1, the problem (3.14) - (3.17) is homogeneous. This problem describes waves propagating
on a beach with straight and parallel bottom contours whose depth is given by A(z). The solutions
for ¢, and g can be readily obtained in the form of discrete Fourier transform (cf. equation 2.9)

as
& =Z':(-%’:IA,J#+1:J:.); h= ;(-422;-"' +c.c.), (4.1)



. where c.c. is the complex conjugate, ¥, is the phase function:

= [VP-Ga eyt (4.2)

in which ) is given by (2.10), and the angular frequency w is related to the laterally averaged depth,
h(z), and the corresponding wavenumber k(z) (hereafter we use k = k for simplicity) by

w? = gktanh kh. (4.3)

Ap(z1,23,t,1) is the slowly varying complex amplitude of the wave component propagating in

the direction k = (VEZ — (pA)3, pA), and

_ cosh k(h + z)
e (4.4)

The index p varying from -q— to (q- —1) (cf. equation 2.8) describes the plane wave components
propagating in different directions as indicated in figure 1. The wave components for which (pA)? >
k? represent the evanescent modes which decay exponentially in the z direction. Since in general
k has the minimum value at the offshore boundary, some evanescent modes become progressive
modes as they propagate into shallower region. In this study, these evanescent modes are neglected
and only the progressive modes at the offshore boundary are carried into the domain, assuming the
energy of the evanescent modes is negligibly small compared with that of the progressive modes.
We close this section by mentioning that k; ~ €’ks, and f; = €*f,, since we assumed h; to be

O(€?).

4.2 Second-order solution
Since the second-order problem is linear in ¢; and ny, it can be advantageously solved by assuming
G2=déutém  m=ma+m (4.5)

in which ¢; and nz; are taken to satisfy the problem with the forcing terms proportional to the
first harmonics (i.e., exp(£it,)), while ¢33 and ;7 should satisfy the problem with the remaining
forcing terms proportional to exp|i(¥, % ¥,))-

Assuming ¢2; and 51 to have the forms

g 2 [(h)'ciﬂ"irh $ c.c.] : = Z [(m,),einnim + c.c.] " (4.6)
- ?

where



0= [ it - papes - o, (47)

and recalling the formula for inverse discrete Fourier transform (2.9), we observe that (¢2; ), exp(if2,),
p = 0,%1,---, represent the discrete Fourier components of ¢;; neglecting its conjugate part. Ex-
pressing the forcing terms in the same form as equation (4.6), for example,

Fu = 3 [(Pu)yel®e™ 4], (4.5)
. :

the discrete Fourier transform of the ¢2; problem, neglecting the conjugate part and dividing
through by exp(if2,), is given by

(,é‘;’-,»-v) (buh = (Fu)y (-h<z<0), )
95 Gu) - duly = (Gu)p (:=0) (4.10)
“i(dn)y +gm) = (Hn)y (:=0), (411)
> ($u) = (Bu)y (s=-h) (412)

Before proceeding to solve this problem, we need the evolution equation for A, at the second
order. By letting

6= 3 [(bu)pe™e? +cc], (4.13)
r

the boundary value problem for (¢11), is the homogeneous form of the equations (4.9) - (4.12).
Applying Green’s second identity to (¢11), and (¢ ),, we obtain the solvability condition

B
[ (Fantdz =3 Gn)p - 0% (4.14)

Performing the integration over depth and noting that

CC,
20y o —d
j;jd:— i (4.15)

where C = w/k, C, = 8w/8k, leads to the evolution equation for A,

VE = (pA)? wkh i
Ap, = =S Cohy,, + g e 0l (4.16)
where




* /' k? - (pA)? dz, (4.17)
and
1} = F, [u(z,)F! (A.;ei*'-)] | (4.18)

represents the forcing due to the interaction between surface wave modes and lateral bottom vari-
ation. F~! and F, on the right side denote the inverse Fourier transform and the pth component
of the discrete Fourier transform, respectively. The superscript 1 in I} is used because other wave-
bottom interaction terms of the similar form will appear later. Each mode of the angular spectrum,
Ap, thus can be modified at the second order through the interaction of surface waves with the
lateral bottom variation. On straight and parallel contours, the wave-bottom interaction term /)
vanishes since pu(z,y) = 0 everywhere. The effect of bottom slope has not entered yet at the second
order. Without the wave-bottom interaction term, thus equation (4.16) describes the wave envelope
A, propagating without change of form on a locally flat bottom at the speed (/K7 — (pA)?/k)C,
in the z direction which is the z component of the group velocity C,.

The solution for (¢31), is obtained by using the method of variation of parameters as

_ E9".___.__\/ F"';: (p2)? (h + ,)“‘_“‘..(_{'_ti)A,,l = i."_'“’"(_"ii) "°’I‘ (4.19)

(¢n)p = b L R

The corresponding free surface displacement (n;), is

_ i JE-(pAP ; , kh(2sinb*kh - 1) _ig_ .3
(m)p = = 5o Y= (C, +whtanh kR)A,,, + == m—cemor L), (4.20)

The solution for the sum and difference waves is given, as in Sharma & Dean (1979), by

2 = zz[c; j;,A,A.e‘“'”-’ + C;f;A.A:ei“"*"] + cc., (4.21)
g T

2 = Z}:[D;,A,A,ei(*#*’ + D;A,A:ei“""’] + cc., (4.22)
9 r

whete * also denotes the complex conjugate and

r
- —
Cor = gk3: tanh k.*,}: - (wtw)?’ ; (58)
D: = i [a% +itw  w)c], (4.24)
P | 2
2 = i'-:; (,ﬁ:’ - (qA)’Jk’ =(rA)? + (¢A)(rA) ¥ gn’ + %) ; (4.25)



Ak = _5 (,/:eT — (@AP\/k2 = (rAP + (QAXrN) F R - zk') ; (4.26)

-
R = ktanhkh= ‘L;:, (4.27)
_ cosh kx(h +z)
fo = coshkEh ' (4.28)
k:, = |-k-' + E.l ¥ | (4.29)
E, = (K- @07+ (V)7 (4.30)

where T and 7 are the unit vectors in the z and y directions, respectively. It can be shown for the
case of a single wave train that this solution reduces to that of Stokes second-order theory, i.e.,

3. cosh2k(h+:z ;
on(g= r)= - -1—6- w —m-—hETl A,e’“" + c.c. (4.31)

4.3 Evolution equations for the angular spectrum A,

For n = 3, again the problem is linear in ¢3 s0 that we can assume the solution as ¢3 = ¢a1 +¢a2+éx
as in the second-order problem. Neglecting the forcing terms, F33, Gy; and Ba;, representing
quadratic resonances which can occur only in shallow water, and expressing ¢3; as

o = 3 [ 4 ec] (3

the discrete Fourier transform of the ¢3; problem, neglecting its conjugate part, is given by

(:‘32:; - p) (¢n)ee™ = (Fa )ecie (-h<z2<0), (4.33)
g 2 (@)% - uA(gu)id™ = (Gad®™ +(Gx) (2 =0), (34)
% (¢n)ee™ = (B )™ (2= -h). (4.35)

The forcing terms, (F3 )., (G31)as and (B3;),, are obtained from the third-order forcing terms
directly proportional to the first harmonics, and the cubic resonant interaction term (Gs3), due
to the interactions between the primary waves and the sum and difference waves or among the
primary waves themselves is

(Gau)s = Z ZZQApAcA: expi(2p + Ny - Q) s=ptg-rs (4.36)
P ¢

where the interaction coefficient Q is given by
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@ = -s[VkT- 27 (VI - @ - V=037 (2er + 2
— R}, tanh(k%,R) + %k:’;.]cf, - i-,i:(k’ - R?)D}, - D, - D}y)

L[V ey - @ (25— 7 - - ()
HEANGANPAN2(PA) - () + LR 4 2,/ — (P2 /b3 = (rA)2(eA)(pA - 72)
+2/5 = PR — (@A) - 4B (B = AR = (1A + 02X
-2R? (\/H - (PR - (gA) + (r'\)(qa\))], (4.37)

and the Kronecker delta, 6,=p4q-r, describing the resonant condition has the value 1 ifs=p+q-r

is satisfied and is 0 otherwise. For the self-interactioa of a single wave train (p = ¢ =r =), this
reduces to

_i , cosh 4kh + 8 — 2tanh? kh
Q =gk 8sinh® kh : (139

which is the coefficient of the cubic nonlinear term ia the nonlinear Schrodinger equations of Yue
& Mei (1980) and Kirby & Dalrymple (1983).

Again applying Green's second identity to (e#;l),cjn‘ and (dbu),ein', we obtain the solvability
condition

[ (Pasds = 2 [Gah+ Guobe™] - g (4.39)

cosh kh’

which leads to the evolution equation for A, at the third order:

BT = (o) VET = (sA¥CC,

A*: + —k_.i- ClA’-: + [ y 0] ']n A, +iD,A
AVE-TY (G ) -ie,

+ = sinh 2kh ( 3 +whtanb kb }emOL

h C 5 i
— H ’ — -le. 2
=y (S 426, - € sind? B 2€) 12
wk?h - -i0,
TR T (l-l-{fmnh L-E)c 5

= Mm:h, ik el (R+13) + %(Gn).e""' =0, (4.40)

823y

where

3. 2 2 - - "
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and the new wave-bottom interaction terms are

P = F, :p(:,y)F" (\/k’ - (mA)2Am,, eio")] ‘ (4.42)
B = F [s,,rl (\/v - (m,\)=A...ei°-)] , (4.43)

I8 = F[5F" ((m)And®)], (4.44)
15 = FpznF" (An,¢%)], (4.45)
12 = F[@F? (Anel®=)]. (4.46)

Adding the equation (4.16) with s instead of p and ¢ times the equation (4.40), ;:onsidering A, as
functions of z; and t; only, that is,

a 9 9 a a (i)

7 b —an b~ (4.47)
yield
=% -, [VF 'i""FCC-]!, .
Alll 3 _'_k_ g/t + € 2% A, +I‘D'Alq¢,
Ty AR RA Y S +whtaahkh ) el
h C = 4
_h (%4 (ac, - C)sinh? kh - ) -ie,
+£sinh2kh( 2 4 (2C, - C)sinh? kh - 2€) 71012
iwk?h - o -4
... hsinh? kh) e~1:
€2 sinh? 2kh (1 + 4h sind® kR ) €714 17
. : .
-(m 1o (R +13) + - (Ga3)se™'™ = 0. (4.48)

Using the scales, 8/8t, ~ ¢~'(8/dt), 8/8zy ~ 1(8/8z), 8/023 ~ € *[0z), p ~ € v,
bpy ~ €365, 6, ~ ¢~ %6, finally we obtain the evolution equation for A, in the physical coordinates

(z,v.t):

Ay +

- JE=GAYCC
—-——-Vw C, A, + [ (;w) il A, +iD,A,,.

iwkh o F, [vF" (A...eie")]

" sinh 2kh
+;‘__r.v:n;2£‘n (%l + wh tanh kﬁ) e-i®.F, [”F_' (Aﬂ- éo-)]

+m5m (% +(2C, - C)sinh? kh - zc) 19 F, v (\/kT-Tnx_)u,.,ei%)]

-ﬁ% (1 + 4hsind? kh) e-i®: F, [v’r" (A..ei"-)]

___”’::;'k R [6.F! (ver = (may Anéi®=) +4,F" ((m,\)A..é‘*-)]
+§ (Gx)ee ™ = 0. (4.49)
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The ordering parameter ¢ was removed from the last term since it has served its purpose. This
equation governs the slow evolution of the wave component A, due to refraction, diffraction, shoal-
ing, and nonlinear wave interactions. The third term represents the shoaling /refraction of each
wave component on laterally averaged depth. The complicated periodic convolution terms repre-
sent wave diffraction due to the interaction between surface wave and the lateral bottom variation,
which disappear on straight and parallel contours, and the last term is the cubic nonlinear terms.

The time-dependent equation (4.49) is of parabolic type. This equation represents a very general
approach to the solution of wave propagation in a domain with properly posed initial condition (at
t = 0) and boundary conditions (at z = 0 and z = b where b is the length of the domain in the z
direction). In many practical applications, however, the assumption of steadiness of the wave field
may be appropriately utilized. The time-independent equation for A, cannot be obtained simply
by dropping the first term in (4.49) since the time dependency of A, was extensively involved in
deriving other terms. One may obtain it by setting the derivatives with respect to the slow times
t; and t; to be zero from the outset and repeating the derivation. The resulting expression for the
time-independent evolution equations for A, is

Voo  PYRRLEL G R A )

* = 1 Ginh 2kh

. wlk‘ﬁ? -ie, _ 1 y i0u
H G =z T [pF l{mr" e (e )]}]

s
. wk?R?* (C O -ie, 2 p-1 Om
5 C, sinh 2kh (2 RS RN w cosh? kﬁ) ¢ k [p F (A,.e )]
ge‘ie‘ 1 ie_) 1 iOm

i [ (V- And=) + 8,57 (ma)Anele-)]

+§ (Gn).t—in' =0, (4.50)
where

E—.l. Q+M i+ﬁmh’kﬁ—tmhk£ (4.51)
*Ta2% 2wk? k ' '

The angular spectrum-A, is now phase-shifted by the substitution

A, = A (VR - [ V-3 de) (4.52)

where k, is a fixed reference wavenumber at z = 0 (the offshore boundary). A/ is then the angular
spectrum of the velocity potential ¢; given by

6 = ; (_% IA:ei(Ja‘l'»""F"l'“) + C.C.) ) (453)

By this procedure, we can eliminate the integral of the wavenumber component in the z direction,
J* /KT —(sA)? dz, which introduces errors when it is computed numerically. Substitating (4.52)
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into (4.50) and multiplying through by k/(/k¥ = (sX)2C,) give

A, =i (\/k' ~ (82 - /2 - (a,\)=) A= [2—‘/,:,—(-3,—1"__ i'; j(fé]’ A,

wk?h

' imc'w:ﬂ vF! (A:_,c‘"-)]
: S2kSh? -ie! { 1 e
' C3(7 — (sA)?)sinb? 2k, 1*¢ P'["F- {7?—(="’m,\) Fu [vF-1 (A1 )]}]

. wk3h? C . g ) -0l p [L2p-1{ ar _i®!
ol e e [} & m
4 le;ki = (s sinh 2kh (2 SELK wcosh? kk/ F ly . (A,,,e )]

- .
¥ 2CC,\/E'79_8 (sV)? cosh? kh F, [5:1"" (\/B - (ml)’A:,,e"‘-)

+6,F! ((mx)A:,,ei"f-)]

k i) - .
= m (Gm),e 4 s=0,%1,%2,---, (4,54)
where
o, = \/kg - (s2)3z, (4.55)
(Gn), = T S QAL AT exp [i (2 + % - )] buzpiyr, (4.56)
| B | r
Q= 0 - wt. (4.57)

Equation (4.54) is coupled nonlinear first-order ordinary differential equations for A}, s = 0, £1,
-+, which can be solved by standard numerical methods provided initial conditions for A, at z = 0
(offshore boundary) are specified. In this study, we use the fourth-order Runge-Kutta method.
The details of finite-differencing and stability analysis of the numerical method are referred to Suh

(1989).

5 Comparison with previously derived models for some simple
cases

In this section, we explore the correspondences of our evolutioa equations to previously derived
models.
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5.1 Time-dependent models

5.1.1 Evolution of wave envelopes propagating normal to shore on a beach with
straight and parallel contours.

Djordjevi¢ & Redekopp (1978) derived an evolution equation for wave envelopes propagating normal
to shore (positive z direction in this study) on a beach with straight iso-baths. Simplification of
the evolution equation (4.48) to this case can be made by setting s = 0 (A4 = Ao), dropping all the
wave-bottom interaction terms, and using the scales 3/8t; ~ ¢(8/33) and 3/3z, ~ €(8/01;), to
yield

kCC i 500w ;
Ay +CoA, + [——2‘—:&' A - 3 é Y75l Aps, + iK|A’A =0, (5.1)
where

whcosh’kh 18w

C!
= =4 - - —-
D,(s=0) R + Cyh tanh kh Feinh 2kh 395 (5.2)
was used and i ; - I
. 2
¥ =l cosh 4kh 4+ 8 — 2tanh kh. (5.3)

16 sinh* kh

On a constant depth, the third term ia (5.1) disappears and the equation reduces to the two-
dimensional version of Davey & Stewartson (1974) equation without the term representing the
effect of first-order long waves, which were omitted in the present study.

By introducing the following variables:

T = ¢ ‘—d—:—— =¢! & - ¢!
- [j Cy(8) "] ‘ j( G ¢ 5 4
£ = Ez=129 (5.5)

into (5.1) as in Djordjevié & Redekopp (1978), we obtain, after neglecting the terms of O(¢) or
smaller, the evolution equation for A(,r) as

w

— — ’ -_— -
& or A WwK|APA=0 (5.6)

2iwCy Ag +i[kCCylc A +
In the notation of Djordjevi¢ & Redekopp, this equation can be written as
%wC,A¢ - i,,.k.{(l - kho)A - -’-’-'-(1 - kho)1 - 0%) } A,,
k [
g (9 4\ 14124 =
. ;(;;-124:13"-20)“!4—!. (5.7)
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where o = tanh kh. Except for some algebraic differences in the last term, this equation is identical
to Djordjevi¢ & Redekopp equation without the term involving long waves. The fourth term in
their equation is dimensionally incorrect.

5.1.2 Resonant interactions between two trains of deep-water gravity waves

Following the analysis of Phillips (1960) for the growth of a tertiary wave by the resonant interaction
among three primary waves, Longuet-Higgins (1962) studied the resonant interaction between two
trains of deep-water gravity waves which is a simpler case of the three-wave interaction when two of
the three primary waves are identical. Studies for the nonlinear evolution of wave envelopes due to
cubic resonances were also made in parallel. Based on the work of Benney & Newell (1967), Roskes
(1976a) presented a nonlinear Schrodinger equation system of the following form to describe the
slowly varying amplitudes of two deep-water waves:

- yA -
Asy + Cyy -V hr —ie Y, gyav — ik [Buldsl? + BualAal?] = o, (5.8)
iJ Sl
PAr .
Az + Cp - Vyhr - i€ Y1, 5 ~ iehs [BalAil® + BalAal?] = o0, (5.9)
iJ E

where T = «, X = e, Bi; is the interaction coefficients, and the dispersion tensors v, , 1=12,
are defined by

1 8 _ =
n, = Emh’(h)- (5.10)

For an angular spectrum which varies only in the z direction, (5.8) and (5.9) can be simplified by
dropping the terms involving the derivative of the amplitude with respect to X; which corresponds
to the y direction in our notation. If we consider two components of an angular spectrum, each
propagating in directions kp = VKT = (mA)? T4 (md)jand k, = VEE=(mA)27 + (n))j with the
same frequency w, (5.8) and (5.9) can be written in the present notation as

PR L 'k‘"'“’c,A..., 41D Am,,,, - €Am [BulAnl + Bualdal’] =0, (511)

£ VE 3 (N7 . A, +i€DaAn,,,, — icAn [BnlAnl? + BalAdl] = 0, (5.12)

which are equivalent to (4.48) in deep water. For this case, Roskes (1976b) gave the interaction
coefficients §;; as

Bu=Bn = -wk/2, (5.13)
Bu=Bn = -wklkm + Eal lin’; - 4wk|km + E.Isin’-;sin’ %/ (IE.. + ko - 4k)
. 30 L 9
+2wk? sin? 5 wk? (un’ 2 cot’i + l). (5.14)
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where @ is the angle between E.. and E,.. and ¢ is the angle between -—i:'.. and (Em +E,.) as indicated
in figure 3. Comparing the cubic nonlinear terms in equations (4.48) and (5.11), it can be shown
(see Suh, 1989) that )

Qp=g=r=m)=-ighy, (5.15)
Qp=mg=r=n)+Q(p=n,q=m,r=n)=-igh. (5.16)

5.2 Time-independent angular spectrum models

The simplest case to be considered of the time-independent model (4.50) may be waves propagating
on a constant depth. Neglecting nonlinearity, it becomes

A, =0 (5.17)
whose solution is
A,(z) = constant = A,(0), (5.18)

implying the angular spectrum does not change as it propagates on a constant depth.

Another simple case is when waves propagate on a beach with straight and parallel depth con-
tours. For this case, taking the Fourier transform of the mild-slope equation of Berkhoff (1972)
in the y direction, splitting the velocity potential into forward-propagating and backscattered po-
tentials, and neglecting the assumed small backscattered potential, Dalrymple & Kirby (1988)
constructed an angular spectrum model given by

2,/k3 - (s0)2CC, 8%, - 2 (k- (sA)?) CC, 9}
+ [mcc,] # =0, (5.19)

where the superscript + denotes the forward-propagating component of the wave potential @ in
the mild-slope equation. After substituting for ®} by

8t = A bl VPO (5.20)

equation (5.19) becomes

VI CC
YE-G ., -Pee, Ay (5.21)

which can be obtained by linearizing (4.50) on straight and parallel contours. Thus, (4.50) on
straight and parallel contours is the nonlinear extension of Dalrymple & Kirby’s wide-angle wave
propagation model.

Dalrymple & Kirby’s model was extended to the case of irregular bathymetry by Dalrymple et
al. (1989) in the following form:
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2/k7 = (a2) 82, - 2 (B - (a2)?) &7 + [\/P - (.A)*l & +ik?F, [»’F-‘(i;)] =0,(5.22)

where & = \/CC, ® and again the superscript + denotes the forward-propagating wave. Instead
of using a laterally averaged depth they used an averaged wavenumber

. __ ¢
< - % fo k2 dy, (5.23)
where
vz
kz s k3 2 ﬂ’ 5 (524)

so v in (5.22) defined by

[ ]

k

z,9)=1-15 a5

”n

is different from v in the present study (cf. equation 3.9) even though both of them represent
lateral depth variation. The last term in (5.22) representing wave diffraction due to the interaction
between surface wave and lateral bottom variation is replaced by more complicated wave-bottom
interaction terms in (4.50).

6 Numerical examples

In order to test the capability of the model for various physical phenomena such as combined
refraction-diffraction and nonlinearity, we apply the time-independent model (4.54) to several differ-
ent water wave problems for which experimental data are available. These include wave diffraction
through a breakwater gap and wave focusing behind submerged shoals.

6.1 Wave diffraction behind a breakwater gap

The problem of breakwater gap wave diffraction is important for studying calmness in a breakwater
harbor. The experiments of Pos & Kilner (1987) show that linear theory overpredicts wave heights
in the open region behind the gap, but underpredicts them in the shadow zones. We apply our
nonlinear model to this problem to examine the effect of nonlinearity.

The wave basin used in Pos & Kilner experiment consists of two impermeable shore-attached
breakwaters lying on the y axis seaward ends of which are extended offshore by jetties separated by
a distance B, as shown in figure 4. The wave propagating in the positive z direction between the
jetties is diffracted into the basin. In order to investigate the pure diffraction without distortion
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of the diffracted wave field by reflection from the circumferential beaches, they used a photogram-
metric wave height measurement technique. Some uncertainties associated with this technique are

discussed later.

Six tests of various gap widths and wave characteristics were carried out in the experiments
of Pos & Kilner. Here we test our model for only one case for which detailed measurement data
along a cross-section are provided in their paper. The constant water depth is 0.125 m. The period
and amplitude of the incident wave are 0.67 sec and 2.775 ¢m, respectively. The wavelength, L,
computed by linear theory is 0.604 m and the gap width, B, is 0.99 m, so that B/L = 1.64.

Since laterally periodic boundary condition is assumed in the present model, in order to assure
negligible effects of the side gaps on the gap being modelled the width of the model domain should be
taken large enough compared with the gap width. The model width is taken as sixteen wavelengths
so that the ratio of the gap width to the breakwater length is 0.1025. The initial condition is given
by the Kirchhoff condition on & along the breakwater, ie.,

o= {44 B3R ‘

where #*+ is the velocity potential in Dalrymple & Kirby equation (5.19) and A, is the initial
amplitude assumed to be constant at the gap. &} (0) is obtained by an FFT of (6.1), and then
$1(0) is computed by

®7.(0) = iy/k? — (s2)? 87(0), (6.2)

which is the reduced form of (5.19) on a constant depth. Finally A,(0) = A,(0) = &}(0) by the
equations (4.52) and (5.20).

Angular spectrum models using the Fourier transform technique have, in principle, infinite
order of accuracy, if the solution is smooth (see Osher 1984). However, the situation changes
drastically when discontinuities are present as in equation (6.1). Gibbs phenomenon occurs near
the discontinuities and high-frequency oscillations pollute the solution globally since we use a finite
Fourier transform in practice. Several smoothing techniques have been used to eliminate this
deterioration. The simplest way is to merely set to zero all of the wavenumber spectrum beyond a
prescribed magnitude. A slightly more elegant technique is to utilize a Jow-pass filter which consists
of an exponential cut-off of high wavenumbers (e.g., Majda et al. 1978). However, by using this
kind of smoothing technique, we loose the most advantageous feature of our model in which the
waves propagating at large angles from the predominant wave direction are carried by the high
wavenumber components.

Another way to resolve the high-frequency oscillation is to weight-average the solution in the
physical domain rather than in the Fourier domain, see, for example, Gottlieb et al. (1981). In this
pumerical example, we apply a 5-point averaging in the y direction to the final solution A(z,y). A
5-point averaging in general has the following form:

Aj=aAj-a+ PAjr + vA; + BAjn + ahjsa, (6.3)
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in which the subscripts denote the location in the y direction (e.g., A; = A(z,jAy)), 2(a+8)+7=1
and usually 7 > 8 > a > 0. Applying this averaging to the complex solution A(z,y) smooths not
only its magnitude but also its phase. However, we want to smooth the magnitude of the solution in
a row with its phase unchanged. For this purpose, we propose the following smoothing procedure.
First, the averaged magnitude of the solution at the jth point is calculated by

|4;] = alA;-al + BlAjal + 7141 + BlAj41] + alAj4al. | (6.4)

The actual smoothed solution is then calculated by

THEE (6.5)

=

Aj= ’
j

Note that this smoothing is applied to the final solution so that the smoothing effect does not enter
the model during the computation of the angular spectrum. In this computation,a = 0.1, § = 0.2,
and v = 0.4 were used.

The computational results of the present model (both linear and nonlinear) are presented in
figure 5 along with the experimental data in terms of diffraction coefficient across the cross-section
at z/L = 3. The solution of Penney & Price (1952) is also presented for comparison with the linear
model result. Since the problem is symmetric about the z axis, only the right half is presented.
As expected, the nonlinear model predicts smaller wave height in the open region and larger wave
height in the shadow zone compared with the linear model results, giving better agreement with
the experimental data than the linear model.

The nonlinear model underpredicts the measurements throughout the cross-section, and the
linear model also provides severe underprediction except at the centerline where it slightly over-
predicts the measurement. In the experiments of Pos & Kilner, the photographs of the wave field
were taken when the first wave front arrived at the toe of the back wall beach to avoid the contam-
ination of the diffractive wave field by waves reflected from the beaches. By this time, however,
the area near the gap would most likely have been contaminated by wave reflection from the side
wall beaches since the distances from the gap to the side wall beaches are only about half of that
from the gap to the back wall beach. Another question in their experiments is whether the wave
field in the basin had reached a steady state at the instant when the photograph was taken, as it is
known that there are modulations in wave amplitude at the leading edge of transient wave trains.
Upwave reflection in the entrance channel due to the abrupt channel transition may also contribute
to the discrepancy between the measurement and model prediction. Assuming perfectly-reflecting
side walls, Dalrymple (1989) estimated the reflection at 6 %. This upwave reflection and its re-
reflection from the wavemaker will produce partial standing waves in the entrance channel. It is
not clear if this was taken into consideration in their experiment.

6.2 Wave focusing behind an elliptic shoal on a sloping beach

For the purpose of testing the model for the prediction of wave deformation on an irregular
bathymetry, we have chosen the experiment reported in Berkhoff et al. (1982). The experimental



Section Linear Noanlinear

no. N “DSKC Present DSKC Present
1 28 0.852 0.897 0.913 0.897
2 28 0.847 0953 0.945 0.952
3 28 0.946 0.995 0.986 0988
4 27 0.898 0.976 0.991 0.993
5 28 0.706 0944 0.982 0.988
6 23 0.472  0.883 0.970  0.969
7 23 0.699 0.972 0.954 0981
8 23 0.844 0.930 0.796 0.901
Total 208 0867 0.973 0.982  0.987

Table 1: Indices of agreement for comparing the numerical model results against the measurements
for the experiment of Berkhoff et al. (1982).

bathymetry consists of an elliptic shoal situating on a sloping beach with a slope 1:50. The slope
rises from a region of constant depth h = 0.45 m, and the entire slope is rotated at an angle of 20°
from the y axis as shown in figure 6, where the solid lines indicate bottom contours and the dashed
lines are the transects along which data from the experiment of Berkhoff ef al. are available. The
details of the geometry of the shoal in the present coordinate system are referred to Dalrymple et
al. (1989). The wave propagating in the positive z direction at z = 0 bas 2.32 ¢cm amplitude and

1 sec period.

The graphical comparison between the model results and the measurements along the transects
1-8 is given in Suh (1989), showing that the nonlinearity is important at the transects 4 and 5 where
the wave has passed through the caustic cusp. Here we present a more quantitative comparison
using a statistical parameter proposed by Willmott (1981). As a measure of the degree to which
a model's predictions are error-free, he introduced a dimensionless quantity, d, as an index of

agreement

N
Y (P - 0)?
d=1- —= A (6.6)
) (IP.' -0| +10: - UI)’
=1 g

where O is the mean of the observed variates O;, and P;, i = 1 to N, are the predicted variates.
The values for d vary between 0 and 1.0, where 1.0 indicates perfect agreement between observation
and prediction, and 0 connotes complete disagreement.

" The indices of agreement computed for each transect in figure 6 and for total measurement points
are given in table 1, in which the results of Dalrymple et al. model (5.22) (abbreviated to DSKC in
the table) are also preseated for comparison. For all the transects, the present linear mode! gives
better agreement with the measurements than the DSKC linear model, probably because the wave-
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bottom interaction is represented in a more elaborate manner in the present model. On transects
2, 3 and B, the present linear model gives even better agreement than the nonlinear models. The
indices of agreement do not show big difference between the two nonlinear models and are close to
1.0, indicating that the DSKC nonlinear model is as good as the present nonlinear model.

6.3 Wave focusing behind a circular shoal resting on a flat bottom

The most advantageous feature of the angular spectrum model is that it permits solution by a
marching method like the parabolic model but is valid for waves propagating at large angles from
the assumed propagation direction. For the purpose of testing the model for waves propagating
over an irregular bathymetry at large angles of incidence, we have chosen the experiment reported
by Ito & Tanimoto (1972). Their experimental bathymetry consists of a circular shoal resting on
a flat bottom. A monochromatic wave train propagates over the shoal and wave focusing occurs
behind the shoal. Due to the axisymmetry of the circular shoal, the wave focusing pattern behind
the shoal should be independent of the angle of incidence, if the model predicts it ‘correctly’.

The geometry of Ito & Tanimoto experiment is shown in figure 7. The water depth on the flat
bottom Ay = 0.15 m, and the water depth in the shoal region is described by

h= hy +0.15625 [(z - 1.2)* + (v - 1.2)?] (6.7)

where hy.= 0.05 m is the depth at the shoal crest. A monochromatic wave train with 1.04 em
wave height and 0.511 sec period enters the domain at #, = 0°. For the three different sections
indicated in figure 7, data from the experiment of Ito & Tanimoto are available. Comparison with
the model results along these sections are shown in figure 8 (a—) in terms of normalized wave
amplitude with respect to the incident amplitude. In each figure, nonlinear results of the present
model are given by solid lines, while triangles indicate measured data points. The results of the
large-angle parabolic model of Kirby (1986) are also given by dashed lines. This model uses the
minimax approximation to obtain better accuracy for waves propagating at large angles. Both
models predict the measurement reasonably well.

In order to test the model for a large angle of incidence, the flat bottom in figure 7 is extended
to y ~ 4.8 m and the wave focusing is modelled for two different incident angles: #, = 45° and
8, = 60°. For satisfying the lateral periodicity of the wave field, the model width is taken to be an
integer times the lateral wavelength of the incident wave field but close to 4.8 m. Otherwise the
discontinuity of the initial wave field at the side boundaries propagates into the domain, poluting the
solution. A qualitative comparison with the results of normal incidence can be made by comparing
the contour maps of wave amplitude or instantaneous surface elevation for each incident angle. For
a more quantitative comparison, the variation of the normalized amplitude along the section 3 (in
figure 7) for different angles of incidence is plotted in figure 9. The values of normal incidence are
indicated by a solid line, and the solid and opea circles indicate the values at 0, = 45° and 60°,
respectively, which were obtained by digitization from the contour maps of normalized amplitude.
A similar figure for the parabolic model of Kirby (1986) is also presented.

The results of the present model for #, = 45° closely follow those of mormal incidence except
near the right depression, whereas for #, = 60° the disagreement is more pronounced, especially



on the right side of the caustic cusp. The overall shapes of the results of the parabolic model for
§, = 45° and 60° are very similar to that for pormal incidence, but they are shifted to the left,
indicating that the focused wave fields for 8, = 45° and 60° rotate towards the positive z direction.
The shift becomes severe with increasing angle of incidence, and it is more prominent on the right
side of the caustic cusp. '

Dalrymple et al. (1989) have presented 2 simple theoretical analysis regarding the accuracy
of their angular spectrum model in terms of lateral depth variation and wave propagation angle,
concluding that in order for their model to be accurate for a large angle of incidence, the lateral
depth variation should be small. A similar analysis can be applied to the wave-bottom interaction
terms involving v in the present model (4.54). The height of the shoal in the above example is
2/3 of the water depth on the flat bottom (unusually high considering the normal situation in
real cases). In order to examine the effects of the magnitude of the lateral bottom variation, we
have tested the model for a shoal having one half of the height of the shoal shown in figure 7 (i.e.,
h, = 0.1 m in equation 6.7). Figure 10 presents results similar to those presented in figure 9 for
smaller shoal height. The results for 0, = 45° almost exactly match those of normal incidence in
both models and those for 8, = 60° also give good agreement with the normal incidence.

There are some other problems associated with the large-angle propagation in this example.
Firstly, the constant-depth region before the shoal (z < 0.4m in figure 7) should be affected by the
presence of the shoal if a large angle of incidence is modelled, but this is not detected by the model
since it does not include backscattering waves. Secondly, the assumption of lateral periodicity
makes the effect of the upwave shoal appear in the domain to be modelled when wave is incident
at a large angle. The latter problem can be resolved by taking a wider domain.

7 Conclusions

The present study has developed an angular spectrum model for predicting the transformation
of Stokes waves due to refraction, diffraction, shoaling and nonlinear wave interactions in water
of varying depth but free of ambient currents. The bottom slope is assumed to be O(¢?) and
the deviation of the actual depth from the laterally-averaged depth is assumed to be O(¢) of the
laterally-averaged depth. In order for the model to be valid for the case in which waves propagate
at large angles from the £ direction, the second assumptioa should not be violated.

Through the example for wave focusing behind an elliptic shoal on a sloping beach, the present
linear model has proven to predict the wave transformation on an irregular bathymetry much better
than the linear model of Dalrymple et al (1989), probably due to the more elaborate expressions
for the wave-bottom interaction in the present model. The nonlinear models, however, did not
show big difference between each other and both predicted the measurement reasonably well. The
advintages of Dalrymple et al. nonknear model are that it can be applied over entire range of water
depths and that the effects of ambient current can be included easily by modifying the dispersion
relationship. The advantage of the present model is that it can be extended to a random directional
wave field including the nonlinear interaction among the waves with different frequencies as in Suh

(1989).
This work is partly a result of research sponsored by NOAA Office of Sea Grant, Department
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Appendix — Summary of the forcing terms

The forcing terms in the boundary value problems (3.14) - (3.17) are summarized as follows:
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Captions of Figures

Diagram of the Fourier decomposition of the wave field on a row with an angular spectrum
(with lateral wavenumbers, pA,p=0,%1,%2,.--). k; and k, are the wavenumbers in the z
and y directions, respectively.

Definition of depth components.
Definition of # and ¢.
Layout of the wave basin in the experiments of Pos & Kilner (1987).

Comparison of the model results against the experimental data of Pos & Kilner (1987) in
terms of diffraction coefficient (Kg4). o = experiment, dotted line = Penney & Price solution,
dashed line = linear model, solid line = nonlinear model.

Bathymetry of the computational domain for the experiment of Berkhoff et al. (1982). Dashed
lines indicate the transects of wave measurement.

Geometry of the computational domain for the experiment of Ito & Tanimoto (1972).

Comparison of the model results against the experimental data by Ito & Tanimoto (1972) in
terms of normalized wave amplitude with respect to the incident amplitude: A = experiment;
solid lines = present nonlinear model; dashed lines = nonlinear parabolic model.

Comparison of the model results of 8, = 45° and 8, = 60° against those of normal incidence
in terms of normalized wave amplitude with respect to the incident amplitude at the section 3
indicated in figure 7: (a) present model, (b) parabolic model; solid lines = normal incidence,
o = 45°, o = 60°.

Same as figure 9 for the results of the test with smaller shoal height.
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Intercomparison of Truncated Series Solutions for Shallow
Water Waves

James T. Kirby
Center for Applied Coastal Research, Department of Civil Engineering
University of Delaware, Newark, DE 19716

Abstract

The relationship between truncated Fourier series solutions of various long wave
evolution equations is explored. It is found that the problem of obtaining a steady
golution in a coupled-mode model of shallow-water wave evolution is related more to
the problem of properly choosing the corresponding time-dependent evolution equation
than to the problem of truncating the infinite series representation of the solution to
that equation. In the process, existing lowest-order coupled-mode models are related to
a particular modified form of the Kortweg-deVries equation.

1 Introduction

There has recently been a great deal of interest in solving the Boussinesq equations for
weakly dispersive, weakly nonlinear shallow water waves in the frequency domain, as a
means of describing the shoreward evolution of complex nonlinear wave fields. In related
studies, Freilich and Guza (1984) modelled the evolution of a broad spectrum of waves
with vanishingly small directional distribution using a set of coupled-mode, ODE evolution
equations, while Liu et al (1985) used the parabolic approximation to model the two-
dimensional spatial evolution of the spectrum over topography. Liu et al’s applications
were restricted to simple periodic waves with finite resolution of higher harmonics.

When applying models of the form described here to laboratory data, it is desirable to
choose initial conditions for the model integration which lead to the maintainance of steady
wave forms in regions before the waves interact with topography or obstacles. Yoon and
Liu (1989) have discussed this problem in a recent paper describing the Mach reflection of
a cnoidal wave at a vertical wall. Yoon and Liu used a truncated spectral model similar to

that described in Liu et al (1985). Restricting attention to one-dimensional propagation,



we write a model which is equivalent to the one given by Yoon and Liu, but in dimensional

form, as
0A, i 3ink ("2 g
—% _ —aPh2A,+ Y AlAni+2 ) AfAny ) =0; n=1,---,N, (1)
ax 6 8h =1 =1

where h is the still water depth, w = 27 /T, T is the wave period, and k is the linear

non-dispersive wavenumber given by
w
=i ¢=Vgh (2)

The function A,(z) is the complex Fourier amplitude of the n'th harmonic, or spectral com-

ponent of a periodic-in-time wave form, and is related to the physical surface displacement

through
1 :
q(z,t) = 5 ZAR(:)eln(kr—wt} (3)
Nondimensionalization of time by w and horizontal distance z by k leads to the dimensionless
parameter
2h
W= = (k) < (4)

Further, if a characterizes the maximum surface displacement, then we define ¢ = a/h € 1
as the dimensionless parameter expressing the weakness of nonlinearity in the problem. The
model being considered is also analogous to the “consistent shoaling model” investigated
by Freilich and Guza. A form more in keeping with their formulation would be obtained by

allowing complex A,(z) to be represented by
An(2) = ay(z)e’ ),

where a, and @, are real-valued amplitude and phase. Substituting for A, in (1) and
separating real and imaginary parts would then give coupled evolution equations for a, and
#,, as in Freilich and Guza.

Yoon and Liu (1989), in discussing the problem of providing initial conditions for (1),

have shown that model results based on a truncation of the Fourier spectrum of the cnoidal



wave solution of the Korteweg-deVries (KdV) equation (Flick et al, 1981; Cayley, 1895)
show a degree of unsteadiness when 7 harmonics are retained as input to the numerical
model, whereas initial conditions based on direct solutions of (1) with the same number
of harmonics as employed in the numerical computation produce a steady solution. (This
latter result is, of course, simply a test of the accuracy of the numerical integration scheme
for equation (1) ). This problem is investigated further in this note, and we show that the
problem of obtaining initial conditions for use in the spectral wave model is related more
to the choice of the corresponding model equation than to the fact that the infinite series
solution must be subsequently truncated. We first show that permanent-form solutions of

(1) are related most closely to the modified KdV equation

+ .. h—2 =0 5
Mt + Cl)z 2hﬂfh 6e2 Thtt = (5)
rather than the standard KdV model equation
3¢ ch?
N+ cn: + ﬁ'ﬂn:: ¥ ?U:r: =0 (6)

We then compare results for harmonic amplitudes for the extremes of the range of KdV-
type equations for several values of relevent parameters. Although the main emphasis in
the literature has been on the distinction between members of the KdV-type family caused
by variations in linear dispersion effects in the deep-water limit, we see from comparisons
here that alteration of the nonlinear term leads to differences in the model results which
are most apparent for higher waves in the long wave limit. The implications of both choice
of model and truncation of the series solution for input into numerical integration schemes
are investigated. Finally, for completeness we give the cnoidal and solitary wave solutions
for the family of model equations, and compare results for phase speed and length scales

for the solitary wave.



2 Steady Fourier series solutions for the family of KdV
equations

We begin here by writing a general KdV-type equation in symbolic form:
2

3
M+ ene + e + e3¢ = 0 (7)

where

C=-z- or (=-t (8)

and where any combination of choices of { may be made, leading to eight possible members
of the family. This family is described in section 11.5 of Mei (1983), and each member is
an equivalently valid asymptotic representation of the physics to O(e, u?). Aside from the
KdV equation (6), the most-studied member of the family is the so-called regularized long
wave equation (RLW) or BBM equation, described by Benjamin, Bona and Mahony (1972).
M +en: + g—;ﬂnz = %znm =0 (9)

For each of the equations described in (7), we write a permanent-form solution in Fourier

series form, given by

n= % z aqe™(se—wt) 4 e (10)

n=1

where k is a wavenumber based on the true wavelength L; x = 2r /L. Here, the a,, are real
constants due to the assumption of steady form. The wave height of the resulting wave
form follows from the sum of the odd components of the series,

o0

H= 22(12,‘-1 _ (11)

i=1
The series in (10) is first truncated to a finite number of terms N. Substituting (10) in (7)
and grouping the terms at each harmonic n leads to N equations,

n?h 3o 2 s
(w—nc+-—a3)an———(2a;an,1+2Ea;a,H.; = (: n=1---,N (12)
ﬁg 8h =1 =1



where

a=w if (=-t (13)

and where, again, any combination of values of a may be chosen depending on the choice of
governing equation. An N + 1’th equation is provided by (11). Then, given h and assuming
that the a, are to be determined, we further require two values of the set H, T or L. In
this note, it will be assumed that the wave height and period are known, and thus « is the
N + I'th unknown. The resulting set of equations are solved using a standard first-order
Newton-Raphson technique, using either a linear nondispersive wave (a; = H/2,k = k) or
a previous nonlinear solution for nearby parameters as the starting guess.

The equivalence of (1) (and thus the models of Liu et al and Yoon and Liu and the
“consistent” model of Freilich and Guza) with the modified KdV equation (5) follows by

noting that

=i mga = (14)

from (3) and (10), and then substituting (14) in (1) to obtain equation (12) with a = w in
all instances. The correspondence is complete and thus exact solutions of (1) would come

from (5) rather than (6).

3 Comparison of Fourier solutions for the family of KdV
equations

We consider several examples here in order to investigate the effect of choice of KdV-type
model on predicted wave lengths and Fourier spectra. Yoon and Liu considered cases with
H/h = 0.2 and 0.4, and chose a uniform depth and wave period such that the parameter
p? = 0.11. Results are presented here for the same choices of wave height and for a range
0.0 < p? < 0.5, which covers the reasonable range of validity of the weakly-dispersive theory.

Figures 1 - 3 present results for the smaller amplitude wave H/h = 0.2 and show the

difference between predictions of the KdV equation and the alternate model (5). Figure

5



1 presents results for the KdV equation. Figure la compares predicted wavelength L/h,
and Figure 1b displays predicted harmonic amplitudes an/h for Fourier series solutions
with N = 7 and 20. (In all cases, it was verified that the large N solutions of the KdV
equation were accurate in comparison with solutions obtained from the elliptic functions
using algorithms presented by Goring (1978). For other members of the family of equations,
sufficient convergence with increasing N was investigated.)

Figure 1 demonstrates that for the low-amplitude case considered in Yoon and Liu,
there is little effect due to truncation of the series solution in the range of u? of interest.
Differences due to truncation do become apparent for longer waves and could be quite severe
in the solitary wave limit, as would be expected. Similarly, Figure 2 demonstrates a similar
lack of difference between N = 20 and N = 7 solutions of the model equation (5).

Figure 3 compares N = 7 term results for the KdV equation and model equation (5),
which corresponds exactly to the numerical propagation model. In this case, differences
in predicted wavelength are apparent over the range of higher values of u?, as would be
expected due to the different linear dispersion relations for the two models. Figure 2b
demonstrates that an additional difference in the predicted Fourier amplitudes exists over
the entire range of wavelengths. Given that the N = 7 spectra are good representations of
the full solutions in the range u? > 0.1, it is apparent that the main problem in obtaining
steady solutions in the numerical model lies with choosing the KdV equation as an analog

for the numerical code. The correct choice is model equation (5).

We illustrate the effect of switching between sets of Fourier solutions as initial conditions
for the computational model in Figure 4. For this case, we take KdV and equation (5)
solutions for N large and then truncate them to N = 7. In either case, we would expect to
see some resulting unsteadiness in the highest retained harmonics. The two sets of initial
conditions are used to start the integration of equation (1); results are presented for a
distance z/h = 120, or about 6.1 wavelengths. The figure displays the absolute values of

the computed Fourier amplitudes |A;| — |A7| on a logarithmic scale, in order to accentuate



unsteady behavior in the higher harmonics. Figure 4a displays the results for the model run
started with the KdV solution, while Figure 4b displays results using the truncated solution
of equation (5). The effect of initiating the computation with a solution from the wrong
evolution equation is clear, as evidenced by the unsteadiness in all Fourier components in
Figure 4a. In contrast, unsteadiness in Figure 4b is limited to the highest harmonics, as
anticipated.

Turning to the higher of the two wave heights considered, we compare N = 7 solutions to
high-order converged solutions for the KdV equation (Figure 5a) and equation (5) (Figure
5b). Typically, for this increased wave height it was neccessary to retain up to N = 30 terms
to obtain reasonable convergence. For example, significant divergence between N = 30 and
N = 20 results occurred for y?> < 0.02. Figure 5 indicates that truncation effects are
apparent for both models at u? = 0.1, which is the range of interest, and are somewhat
more severe in the KdV results. We would thus expect a truncation of a high-order solution
to perform less well than in the example in Figure 4, even if the correct model equation
were utilized. The results of a sample numerical integration are shown in Figure 6. Figure
6b displays results using the N = 30 equation (5) result truncated to 7 terms, and shows
that unsteadiness is still relatively minor and is limited principally to higher modes. In

contrast, use of the truncated KdV result (Figure 6a) leads to significant unsteadiness.

4 Solitary and cnoidal wave solutions for the family of model
equations

In this section, explicit results are given for the family of solitary and cnoidal wave solutions
to the generic model equation (7). Turning first to the case of solitary waves, we assume

that solutions may be written in the form

n(z,t) = Hsech?y; ¢ = B(z — e1t) (15)



where H is the wave height, 3 is an inverse length scale, and ¢; is the phase speed correct

to O(e,u?). Substituting (15) in (7) gives the generic results

3H [ Avyu
h)? = —
& ). 4h (717273) Wt
and
1H
€qg—c= 5;7,;1 (17)

where v takes on a value of ¢ when it corresponds to a space derivative, and ¢; when it
corresponds to a time derivative. The subscript nl denotes the derivative appearing in the
nonlinear term, and subscripts 1,2,3 denote the three derivatives in the dispersive term.
The second relation (17) implies that all models with a space derivative in the nonlinear
term lead to a phase speed of

1 H

a=cl+ 2h (18)

while models with a time derivative in the nonlinear term lead to solitary wave phase speeds

given by

e
A =7_"1H
1“‘2;.

(19)

The two results (18) and (19) are asymptotically equivalent for small ¢, but differ by large
amounts in the range of waveheights close to limiting values, as indicated in Figure 7.
Further, the trend of increasing phase speed relative to the KdV result, as seen in the models
with a time derivative, is in opposition to the known decrease in phase speed relative to (18)
as predicted by higher-order theories (see, for example, Fenton (1972)). This feature may
render models with a time derivative in the nonlinear term unsuitable as relatively accurate
leading-order approximations for steep waves, and we caution that equation (1) falls into
this category of models.

The remaining problem for the inverse length scale of the solitary wave depends on the
choice of derivatives in the dispersion term, and there are thus 8 distinct solutions, 4 for

each choice of nonlinear term. For the choice of an z derivative in the nonlinear term, we



obtain the family of approximations

R’ (Bh)’ = o (20)
Nest : (Bh)* = (1:1%) (21)
Tett © (Bh)? = m"); (22)
T (Bh)? = (H"T)@, (23)
where
o= % (24)

For the case of a t derivative in the nonlinear term, we obtain the family of approximations

cxx h 2 = —_—
Y (Bh) (1- %_;Al) (25)
Next * (BR)? =0 (26)
Mett (Bh)? = o(1 - 1£ (27)
Meit * (5-‘“)2 =o(l- ‘—)2 (28)

The variations of length scales with wave height in the various solutions are shown in
Figure 8 for KdV type nonlinearity and in Figure 9 for time-derivative type nonlinearity.
For the case of cnoidal waves, we obtain the usual solution form

ert) = m+ (s =~ m)en? (2 (2 — e10) (29)

where 7 is the minimum water level and 13 — 1, is the wave height H. K(m) is the complete
elliptic integral of first kind with parameter m. The phase speed ¢; for the case of KdV
(z-derivative) nonlinearity is given by

e=dlts(2-m 'f((“‘)))] (30)

where E(m) is the complete elliptic integral of second kind. For the case of t-derivative

nonlinearity, the phase speed is given by

g = = : 31
Y- e - m - B e
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The wavelength L depends on the mix of derivatives in the dispersive term, and is given by

m h 1/2
L = 4hK(m) (%) (32)

Two parameters (here, H and m or H and period T' = L/¢;) need to be specified in order
to calculate a solution. Goring (1978) has presented efficient algorithms for specifying the
cnoidal wave form given any combination of specified independent parameters.

Defining a non-dimensional wavenumber squared in terms of (32), we obtain

122y

h)? = :
(ah) TmK (m)’*117273

w="2rlL (33)

where ¢ is defined above in (24).

5 Conclusions

We have shown here that the solutions for periodic waves produced by the various members
of the KdV family of equations are distinctly numerically different in parameter ranges of
interest, despite the asymptotic equivalence of the models in a formal sense. These dif-
ferences lead to anomalous behaviors when the solutions are utilized as initial conditions
in numerical computation schemes. We have further shown that the shift from a space
derivative to a time derivative in the nonlinear term has effects (in high waves) which over-
shadow the more typically investigated effects arising when the dispersive term is altered.
The effect of changing the nonlinear term is most pronounced in the solitary wave limit.
Further, results for the time-derivative form diverge from the KdV results in a sense which
is opposite to the divergence between KdV and higher-order solutions at large amplitude.
This alone may render the time-derivative model a bad choice as a leading order approxi-
mation for numerical studies if high waves are to be considered. Since the fairly common
model equation (1) falls into this category, it seems that modelling efforts for spectral wave
calculations in shallow water could benefit from further consideration of these points.

The results here present an interesting quandary when the problem of reproducing

laboratory data is considered. Each of the theories here contain differences which are
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manifested at O(€?,eu?,u*) due to the order of truncation in the theory. It is present
practice in laboratory studies of shallow-water waves (Goring, 1978; Hammack et al, 1989)
to employ one of the theories (in particular, the KdV equation) as a basis for determining
the Lagrangian time-history of paddle stroke. However, it should be recognized that exactly
the same level of truncation exists when comparing any of these theories to measured wave
fields as exists in comparing the theories to each other. We could thus expect to see as
much disagreement between model prediction and experiment as we see here between each
model, given the same range of physical scaling parameters. We would also expect to see
some degree of higher-harmonic unsteadiness in the wave tank due to this disagreement.
It would thus be advantageous to have conclusive knowledge of which of the models here
comes closest to predicting physical reality in a numerically accurate sense. Unfortunately,
this information is still lacking, as is data with enough resolution to detect fast modulation
of the higher harmonics.
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