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ABSTRACT

This report briefly summarizes the progress made since the computer program IBREAK
and the user’s manual were completed in the previous project sponsored by the Coastal

Engineering Research Center.

Furthermore, the numerical model that was shown to be in fair agreement with six test
runs of available data on the stability of rock units under irregular wave attack is used to
examine the critical incident wave profile associated with the minimum rock stability for
each run. The minimum rock stability computed for the runs with dominant plunging waves
on gentle slopes is caused by the large wave with the maximum crest elevation during its
uprush on the slope. The minimum rock stability computed for the runs with dominant
surging waves on steeper slopes is caused by the downrushing water with high velocities
resulted from a large zero-upcrossing wave with a high crest followed by a deep trough. These
computed results may eventually allow one to quantify incident design wave conditions more

specifically than the simple approach based on the representative wave height and period.

In addition, a simplified model is proposed to predict the eroded area due to the movement
and dislodgement of rock units using the probability of armor movement computed by the
numerical model. This model is shown to be in qualitative agreement with the empirical
formula for the damage level proposed by Van der Meer (1988). The simplified model may
be expanded to predict the change of the slope profile as a function of time since such a

model is required for the design of berm and reef breakwaters.
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NUMERICAL PREDICTION OF ARMOR STABILITY
AND MOVEMENT UNDER IRREGULAR
WAVE ACTION

PART I: INTRODUCTION

Background

Kobayashi and Wurjanto (1989a) synthesized their numerical models and presented a com-
puter program called IBREAK, which may be used for the design of rough or smooth im-
permeable coastal structures of arbitrary geometry against normally incident waves. The

capabilities of IBREAK are being expanded as summarized in the following.

Kobayashi and Wurjanto (1989c) showed that IBREAK could be calibrated and applied
to predict the hydrodynamic forces and sliding motions of dolos units at the Crescent City
breakwater in California. The calibrated numerical model was used to hindcast the response
of the dolos units during a storm which occurred in 1987. The hindcast results were shown to
be consistent with the measured results including the upslope movement of poorly interlocked
dolos units and the importance of the static and wave forces with negligible impact forces.
The numerical model was then used to predict the response of poorly and well interlocked
dolos units under extreme wave conditions. The predicted results have suggested that the
wave forces acting on these dolos units may possibly exceed the static forces, while the poorly

interlocked dolos units may move considerably, resulting in possible impact forces.

Kobayashi, Cox and Wurjanto (1990) conducted three irregular wave test runs to obtain
detailed data on irregular wave reflection and runup on a 1:3 rough impermeable slope.

The test results were also used to evaluate the capabilities and limitations of IBREAK



for predicting the time series and spectral characteristics of the reflected wave and waterline
oscillations on the slope. The numerical model was shown to predict the measured time series
and spectra reasonably well, including the selective nature of wave reflection and dissipation
as well as the appearance of low-frequency wave components in the waterline oscillations on

the 1:3 slope.

On the other hand, Kobayashi and Wurjanto (1990) extended IBREAK to predict the
flow and armor response on a rough permeable slope as well as the flow in a thin permeable
underlayer for a normally incident wave train. In addition to the continuity and momentum
equations used to compute the flow field, an equation of energy has been used to estimate
the rate of energy dissipation due to wave breaking. Computation was made for six test
runs to examine the accuracy and capability of the numerical model for simulating the
fairly detailed hydrodynamics and armor response under the action of regular waves. The
computed critical stability number for initiation of armor movement was compared with the
measured stability number corresponding to the start of the damage under irregular wave
action to quantify the limitations of the regular wave approximation. The computed wave
runup, run-down and reflection coefficients were shown to be in qualitative agreement with
available empirical formulas based on regular wave tests. Kobayashi and Wurjanto (1989b)
applied the developed numerical model to hypothetical permeable slopes corresponding to
available impermeable slope tests. The computed results with and without a permeable
underlayer indicated that the permeability effects would increase the hydraulic stability of
armor units noticeably and decrease wave runup and reflection slightly. The computed
results were qualitatively consistent with available data although they were not extensive

and limited to regular waves only.

Kobayashi, Wurjanto and Cox (1990) applied the extended numerical model to compute

the irregular wave motion on a rough permeable slope. The normally-incident irregular wave



train characterized by its spectral density at the toe of the slope was generated numerically
for six test runs. The computed critical stability number for initiation of armor movement
under the computed irregular wave motion was shown to be in fair agreement with the
measured stability number corresponding to the start of the damage. The comparison of
the computed armor stability for the incident regular and irregular waves indicated that
the armor stability would be reduced appreciably and vary less along the slope under the
irregular wave action. On the other hand, the comparison between the computed reflected
wave spectrum and the specified incident wave spectrum indicated the reflection of Fourier
components with longer periods and the dissipation of Fourier components with shorter pe-
riods, while the average reflection coefficient increased with the increase of the surf similarity
parameter. The computed waterline oscillations were examined using spectral and time se-
ries analyses. The computed spectra of the waterline oscillations showed the noticeable low-
frequency components, which increased with the decrease of the surf similarity parameter.
The statistical analysis of individual wave runup heights indicated that the computed runup
distribution followed the Rayleigh distribution fairly well for some of the six test runs. The
computed maximum wave run-up was in agreement with the empirical formula based on

irregular wave runup tests.

The extended numerical model based on the assumption of a thin permeable underlayer
was found to be inappropriate for additional three test runs conducted for a 1:3 rough
permeable slope with a thick permeable underlayer. These three test runs corresponded
to the three test runs for the 1:3 rough impermeable slope conducted by Kobayashi, Cox
and Wurjanto (1990) except for the presence of the thick permeable underlayer. Kobayashi,
Cox and Wurjanto (1991) compared the measurements of the permeable and impermeable
slope tests. The permeability effects reduced the average reflection coefficient and significant

runup as was observed by a number of researchers. The permeability effects on irregular



wave reflection were found to reduce the reflection coefficient fairly uniformly over the wind
wave frequency range. The permeability effects on irregular wave runup were found to reduce
the low frequency wave components significantly. The measured runup distribution for the
impermeable and permeable slopes were represented by the Rayleigh distribution fairly well

in the range of the exceedance probability greater than approximately 0.02.

Efforts are being made to develop a numerical model which is applicable to a rough
permeable slope with a thick permeable underlayer. This numerical model will be compared

with the permeable slope test results reported by Kobayashi, Cox and Wurjanto (1991).

Scope

In this report, the temporal and spatial variations of the stability of rock units computed by
Kobayashi, Wurjanto and Cox (1990) using the numerical model of Kobayashi and Wurjanto
(1990) are analyzed in detail to examine what wave conditions may cause the minimum
stability of rock units. Gunbak and Bruun (1979) described the various sequences of waves
which may cause severe conditions on breakwaters. Their descriptions were qualitative since
it is very difficult to measure the flow and armor response simultaneously. This is an initial
attempt to quantify incident design wave conditions more rationally than the simple approach
based on the representative wave height and period such as the significant wave height and

mean period (e.g., Van der Meer, 1988).

Furthermore, a simplified model is proposed to predict the eroded area due to the move-
ment and dislodgement of rock units using the probability of armor movement computed by
the numerical model. This model is shown to be in qualitative agreement with the empirical
formula for the damage level proposed by Van der Meer (1988). This model is intended to be

a first model for elucidating the mechanism of armor dislodgement and the resulting profile



change.

For brevity, this report makes the best use of the results presented in the papers of
Kobayashi and Wurjanto (1990) and Kobayashi, Wurjanto and Cox (1990) which are attached
in Appendices A and B, respectively. A concise version of this report will be published in

the conference paper of Kobayashi, Wurjanto and Cox (1991).



PART II: ARMOR STABILITY

Comparison Between Measured and Computed Stability

Numbers

In the following, the comparison made in the paper attached in Appendix B is summa-
rized. The hydraulic stability condition against sliding or rolling of an armor unit on a rough

permeable slope was expressed in the form
Ny = H'(s = 1)"}(ps/W")'/* < Npg(t,2) (1)

where N, = stability number; H’ = incident wave height used for the normalization of
dimensional variables indicated by the prime; s = specific density of the armor unit; p =
fluid density; W’ = median mass of the armor units; and Ng = armor stability function. The
dimensionless function Ng varies with the normalized time, ¢t = #'/7”, and the normalized
horizontal distance from the toe of the slope, z = z'/[T"(gH')'/?], where T" = incident wave
period used for the normalization; and g = gravitational acceleration. The expression of Np
as a function of the normalized fluid velocity and acceleration was given in the paper attached

in Appendix A where the input parameters for the computation of the armor stability were

specified.

Computation was made for six test runs selected from the test results with the dimen-
sionless damage level, S=2, and the number of incident waves, N = 1000, listed in Appendix
IT of the thesis of Van der Meer (1988). These runs corresponded to the start of damage.
The incident irregular waves for the six runs were generated using the Pierson-Moskowitz
spectrum. The significant wave height, H}, and the average period of the zero upcrossings,
T}, of the incident wave train were used by Van der Meer to characterize the incident irreg-

ular waves. As a result, use was made of H' = H] and T' = T}, for the normalization of the



Table 1: Six Test Runs Compared with Numerical Model

Run | cot®' | H’ T ¢ | Measured | Computed | i,
No. (cm) | (sec) N, N

R1 6 10.09 | 2.63 | 1.72 1.72 1.56 164.75
R2a 6 7.75 ] 3.15| 2.36 1.32 1.75 248.06
R2b 6 7.75 | 3.15 | 2.36 1.32 1.63 8.00
R3 4 8.16 | 3.22 | 3.52 1.39 1.15 156.38
R4 3 8.92 | 3.13 | 4.37 1.52 1.36 161.55
R5 2 7.98 | 2.69 | 5.95 1.36 1.01 176.53
R6 2 7.98 [ 3.11 | 6.88 1.36 1.47 140.62

dimensional variables. The normalized incident wave train, 7;(t) = 1!/H’, at the toe of the
1 : cot & slope required as input to the numerical model was generated numerically for the
specified spectral density with assumed random phases. Since different sets of the random
phases yield different temporal variations of 7;(t), the incident irregular wave train specified
for each run was not the same as that generated in a wave flume by Van der Meer (1988).
In order to reduce the computation time, the duration of the computation was limited to

0 <t < 256, corresponding to N = 256 instead of N = 1000.

Table 1 lists the values of cot®, H' = H!,T' = T, £ = T'tan® /(2rH'/g)'/? and N,
for each of the six test runs, where £ =surf similarity parameter based on H! and T,,. The
six runs with £ = 1.72 — 6.88 were selected to represent dominant breaker types of plunging,
collapsing and surging waves on uniform slopes. Runs R2a and R2b corresponded to run R2
and were based on the same spectral density with given valves of H, and 7},. The time series
ni(t) for runs R2a and R2b were generated numerically using different sets of the random

phases.

Table 1 also lists the computed value of the critical stability number N,. and the time

t,c of its occurrence for each run. The value of N, for each run was taken as the minimum
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value of Ng(t¢,2) for the range of z > 0 which occurred at time ¢ = 1, during 8 < t < 256
where the normalized horizontal coordinate = was taken to be positive landward with z = 0
at the toe of the slope and the duration 0 < t < 8 was excluded to account for the initial
transient waves in the computation starting from the initial conditions of no wave action in
the region @ > 0 at ¢ = 0. The computed critical stability number N,. and the measured
stability number N, are in fair agreement as shown in Table 1 where the values of N,./N,
are in the range 0.74-1.33. The small difference between the computed values of N, for runs
R2a and R2b indicates the variability caused by the random phases, although a much larger
number of simulated runs are required to perform a statistical analysis of the variability.
The comparison between N, and N,. shown in Table 1 is not really rigorous because of the

inherent differences between these stability numbers as discussed in Appendix B.

Wave Conditions for Critical Armor Stability

The wave conditions corresponding to the computed minimum stability of rock units for each
run are examined herein to identify the wave conditions which are critical to the stability
of rock units. In the following, runs R1 and R4 may be regarded as representative runs for
dominant plunging and surging waves, respectively, whereas run R3 happens to include an

exceptionally large wave.

The free surface displacement above the still water level (SWL) and the depth-averaged
horizontal fluid velocity are normalized as 7 = 5'/H’ and u = u'/(gH')'/?, respectively,
where u is taken to be positive landward. Figs. 1-3 show the computed variations of 7, u
and Np with respect to z at the time, ¢ = t,., when the minimum value of Ng in the range

z > 0 corresponds to the critical stability number N,.. The values of t,. for runs R1, R3 and
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R4 are 164.75, 156.38 and 161.55, respectively, as listed in Table 1. The shaded area shown
in the figure for 7 corresponds to the permeable underlayer for each test where the numerical
model is presently limited to the case of a thin permeable underlayer. Figs. 1-3 also show
the computed variation of the local stability number Ny, with respect to  where N, was
defined as the minimum value of Ng(t,z) at the specified location during 8 < t < 256. The

minimum value of N, with respect to = equals the critical stability number N,..

The critical stability number for run R1 with £ = 1.72 occurs slightly behind the steep
front of the uprushing water with large upslope velocities and accelerations as shown in Fig.
1. The local stability number in the range 1.5 < z < 1.9 is computed to occur when this
steep front moves upslope. On the other hand, the critical stability number for run R4
with £ = 4.37 is caused by the downrushing water with large downslope velocities as shown
in Fig. 3. For the exceptional case of run R3 shown in Fig. 2, the downrushing water
flows extremely deep below SWL and encounters the uprushing water. The corresponding
incident wave profile for run R3 will be shown to exhibit a very high crest followed by a very
deep trough. This is one of the dangerous wave conditions identified by Gunbak and Bruun

(1979).

The incident wave profile associated with the critical stability number N,. for each run
is examined to identify the incident wave profiles which may cause the critical uprushing
or downrushing flow on uniform slopes. Fig. 4 shows the incident wave profile n;(t) at
the toe of the slope normalized by the zero-upcrossing significant wave height H! slightly
before the time ¢t = ¢,. when Npg(t,2) = N, at the certain location on the slope. The
crest elevation 7. above SWL associated with the critical incident wave profile is obtained.
The trough elevations 7,4 and 7, adjacent to the crest elevation 7. are then found using
the zero-downcrossing and zero-upcrossing methods, respectively. The corresponding wave

heights Hy and H, are given by Hy = (. — ma) and Hy = (9 — Neu).
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Figure 1: Variations of , v and Ng with Respect to z at Time of Minimum Stability for
Run 1
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Run R3 (t=156.38)
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Run 3
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Figure 3: Variations of 7, u and Ng with Respect to  at Time of Minimum Stability for

Run 4
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Figure 4: Definition Sketch of Critical Incident Wave Profile 7;(t) Slightly before Time
t = t,c when Ng(t,z) = Ny where 1. = Crest Elevation; 7,4 = Zero-Downcrossing Trough
Elevation, 7, = Zero-Upcrossing Trough Elevation; Hy = Zero-Downcrossing Wave Height;
and H, = Zero-Upcrossing Wave Height
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The values of 7., 7tq and 7y, for each run are listed in Table 2. These values are compared
with the maximum crest elevation 7)., and the minimum trough elevation 7, for 7;(t) during
0 <t < 256. Table 2 shows that 7. = 9, for runs R1, R2a, R2b and R3 while n;, = 1 for
runs R3 and R4. For runs R5 and R6, 7. is somewhat smaller than 7., and 7, is somewhat

larger than 7.

Table 3 lists the values of Hy, Ty, H, and T, for each run where T; and T, are the
zero-downcrossing and zero-upcrossing periods, respectively, of the individual wave whose
crest elevation is 7.. The wave periods are normalized by the average zero-upcrossing period
T} . Table 3 also lists the ranks of Hy and H, among the 256 zero-downcrossing and zero-
upcrossing individual wave heights, respectively, which are ranked in the descending order.
Table 3 suggests that the critical incident wave profile is more related to the zero-upcrossing
wave than the zero- downcrossing wave for runs R4, R5 and R6. The zero-upcrossing wave
with 9. = 1.052, g, = —1.126 and H, = 2.178 for run R3 appears to be exceptional,
although the computed critical stability number N,. for run R3 listed in Table 1 is not

exceptionally small.

Figs. 5-11 show the temporal variations of #;(t) and Z,(?) in the vicinity of t = t,.
for each of the runs listed in Tables 1-3 where Z, = Z./H' is the normalized waterline
elevation on the slope above SWL corresponding to the instantaneous water depth 6. = lem
as explained in Appendices A and B. Figs. 5-11 also show the zero-upcrossing and zero-
downcrossing wave height distributions of the specified incident wave train 7;(t) for each
run as compared with the Rayleigh distribution given by P = exp[—2(H,/H,)?) where P
is the exceedance probability associated with the normalized wave height H, and H, is the

normalized significant wave height.
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Table 2: Crest and Trough Elevations of Critical Wave Profile

Run Crest Trough

No. TNe Mem Ntd Mtu Nim
RI | 0.905 | 0.905 | -0.527 | -0.669 | -0.934

R2a | 0.822 | 0.822 | -0.602 | -0.459 | -0.833

R2b | 0.969 | 0.969 | -0.877 | -0.648 | -0.933
R3 | 1.052 | 1.052 | -0.673 | -1.126 | -1.126
R4 | 0.605 | 0.873 | -0.034 | -0.783 | -0.783
R5 | 0.720 | 0.787 | -0.550 | -0.686 | -0.793
R6 | 0.772 | 0.940 | -0.447 | -0.712 | -0.974

Table 3: Wave Heights and Periods of Critical Wave Profile

Run | Zero-Downcrossing Zero-Upcrossing
No. Hy; | Rank | Ty H, | Rank | T,
R1 | 1.433 4 1.263 | 1.575 1 1.256
R2a | 1.424 3 1.195 | 1.280 ¥ 1.518
R2b | 1.846 i 1.189 | 1.617 3 1.116
R3 | 1.726 2 1.134 | 2.178 1 1.014
R4 |0.639 | 118 | 0.649 | 1.388 5 1.213
R5 | 1.270 5 0.951 | 1.407 2 0.904
R6 |1.219| 17 | 1.066 | 1.484 4 1.235

18



The value of P for give H,, is estimated by P = n/(N, + 1) where n = rank of H, and
N, = number of individual waves, which is 256 for these runs. Since the zero-upcrossing
significant wave height H! is used for the normalization, H, = 1 for the zero-upcrossing wave
height distribution. The values of H, for the zero-downcrossing wave height distribution are
found to be essentially unity for all runs. Figs. 5-11 also point out the exceedance probability
P for H, and H, for each of the runs to indicate the values of H, and Hy; as compared with

the rest of the individual wave heights.

Figs. 5-11 together with Figs. 1-4 and Tables 1-3 elucidate the critical wave conditions
corresponding to the minimum stability of rock units for each run. For run R1 with cot8’ = 6
and £ = 1.72, the critical stability number occurs at the time t;. when the large wave with
the maximum crest elevation 7, = 7., uprushes on the slope and encounters the trough of
the waterline oscillation on the slope as shown in Fig. 5. The computed results shown in
Figs. 6 and 7 for runs R2a and R2b with cot @ = 6 and £ = 2.36 are very similar to those for
run R1. Additional runs are required to determine whether these critical wave conditions are
limited to relatively gentle slopes such as cot# = 6 or can occur for steeper slopes as long
as the surf similarity parameter is roughly two. For run R3 with cot#’ = 4 and ¢ = 3.52,
the critical stability number occurs at the time t,. when the extremely large wave with the
maximum crest elevation 7. = 7., and the minimum trough elevation 7, = 7, causes the
downrushing water with large velocities following large runup as shown in Fig. 8. For run
R4 with cot @’ = 3 and £ = 4.37, the critical stability number occurs at the time ¢,, when
the relatively large zero-upcrossing wave with the high crest followed by the deep trough
causes the downrushing water with large velocities with the waterline on the slope being
near SWL as shown in Fig. 9. The computed results shown in Figs. 10 and 11 for run R5
with cot# = 2 and £ = 5.95 and run R6 with cot# = 2 and £ = 6.88 are similar to those

for run R4.
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PART III: ARMOR MOVEMENT AND DISLODGEMENT

Probability of Armor Movement

The critical incident wave profile and resulting critical stability number N, is useful for the
design of armor units in which N, < N, so that armor units will not move under the action
of design waves. If the mass of armor units is reduced such that N; > N,., the degree of

armor movement and resulting profile change will need to be predicted.

The computed armor stability function Ng(t,2) depends on the normalized incident wave
train 7;(¢) and the slope and armor characteristics specified as input to the numerical model.
In the numerical model, the constant friction factor f’ is used to account for the roughness
effects of the primary cover layer on the flow over the rough permeable slope, while the effects
of the permeable underlayer are taken into account by the volume and momentum fluxes into
or out of the permeable underlayer. Since the computed flow field is not very sensitive to
the assumed value of f’, the computed temporal and spatial variations of Ng(t,z) for each
run in Table 1 may be assumed to remain essentially the same even if the stability number
N, defined in Eq. 1 is increased somewhat by decreasing only the median mass W’ of the

armor units.

In the following, the probability of armor movement based on the movement duration,
Py, and the probability of armor movement per unit normalized time, P,,, are predicted as
a function of the stability number N, > N, and the location z of the armor unit along
the uniform slope. For given N, and z, armor movement will occur during the time when
N, > Npg. The duration of each event of armor movement is denoted by ¢; with j = 1,2,...,J
where J = number of armor movement events during the specified duration t,min <t < tinaz.

In this paper tmin = 8 and tmax = 256. From the computed armor movement statistics, the
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probabilities P; and P,, may be defined as
J

a (tmﬂz = tmiﬂ)

J
P =(tmaz_tmin)_lztj 3 Py

j=1

(2)

For example, Fig. 12 shows the computed probabilities P, and P, for Ny/N,. = 1.1, 1.3
and 1.5 for run R1 where the normalized elevation, z = 2//H’, of the armor unit on the
slope relative to SWL located at z = 0 is used instead of 2. The computed probabilities of
the armor movement occurring mostly below SWL increase with the increase of N,. For run
R1, the computed value of N, is 1.56 and the measured value of N, corresponding to the
start of the damage was 1.72 as listed in Table 1. This implies that the numerical model
predicts the movement of the armor units with Ny = 1.72, that is, N,/N,. = 1.10. However,

the predicted probabilities for Ns/Ny. = 1.1 are very small as shown in Fig. 12.

Prediction of Damage Level

The probability of armor dislodgement per unit normalized time, Py, is expected to be less
than Pp,. As a first attempt, it is simply assumed that P; = CyP,, where Cq = empirical

parameter. The rate of vertical erosion of the primary cover layer may be given by

o, _ Cs(d)®1—n, Py _ Cad'Py "
01 = T—na Co(d)2 T~ Col’ (

where 7, = vertical erosion depth of the primary cover layer taken positive downward; ¢ =
time associated with the profile change; d' = characteristic length of the armor unit; C3 =
armor volume coefficient; Cy = armor area coefficient; n, = porosity of the primary cover
layer; and (P4/T') = probability of dislodgement of a single unit per unit time. In Eq.
3, C3(d’)®/(1 — na) is the volume occupied by a single unit, while (1 — n4)/Ca(d’)? is the
number of armor units per unit area along the slope. Eq. 3 predicts the erosion only since
the dislodged armor units are assumed to be deposited in the region where Py is essentially

Zero.
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In the following, the profile change is assumed to be so small that P; may be assumed

to be independent of ¢. Then, Eq. 3 yields 5, = (C3d'P4t)/C2 where 5, = 0 at t' = 0

and ¢t = t'/T' is the normalized time which is equal to the number of individual waves.

Integration of 7, along the slope in the region 7. > 0 yields the eroded area A,. Van der

Meer (1988) defined the damage level § by S = A.L/(W'/ps)?/®. The present analysis can
be shown to yield

5=

CaC33(s — )Nt /P "
Cosin @’

(4)
where the stability number N, is defined in Eq. 1 and the integration of P,, with respect to
z can be performed for given N, > N, using the computed variation of P, such as those
shown in Fig. 6. For the runs listed in Table 1, use was made of C3 = 0.66, C = 0.90 and

8 = 2.63 in Appendix A. In the following computation, the number of individual waves is

taken to be ¢ = 1000 and the value of N, is varied such that N,/N,. = 1.1, 1.2,..., 2.0.

Figs. 13-19 show the computed damage level S as a function of N, for each of the runs
listed in Table 1. The empirical parameter Cy is taken as Cy = 0.005, 0.01 and 0.02 so
that the computed values of S are of the order of the values of § based on the empirical
formula of Van der Meer (1988) which is also plotted for each run. The computed variations
of S with respect to N, for all runs are in qualitative agreement with the empirical formula.
Eq. 4 will overestimate the value of § if S becomes so large that the profile change will
result in the decrease in Py, and P;. The major difference between Eq. 4 and the empirical
formula is that the probability of armor movement P,, in Eq. 4 is computed for the specified
incident wave train 7;(t) for each run. It is hence possible to examine the sensitivity of Py, to
various incident wave trains and explain some of the scatter of data points associated with

the empirical formula of Van der Meer (1988) as discussed in Appendix B.
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Figure 12: Computed Probabilities P; and P, of Rock Movement as a Function of Normalized
Elevation z for Ny/N,. = 1.1,1.3 and 1.5 for run R1
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PART IV: CONCLUSIONS AND FUTURE WORK

The computed results presented herein is not extensive and need to be verified. The
numerical model is used to examine the detailed armor response to the specified incident
wave trains since the detailed quantitative understanding is essential for improving the design
of rock slopes for specified design waves as well as determining the design wave conditions
more specifically than those based on the representative wave height and period. Generally,
the scatter of data points about an empirical curve used for the design of a coastal structure
against irregular waves is fairly large. Some of the scatter appears to be caused by the use

of the representative wave height and period.

The computer program called RBREAK and detailed user’s manual are being written by
synthesizing the results obtained so far. RBREAK can be used for the design of essentially
impermeable coastal structures against normally incident random waves as well as for the
prediction of swash oscillations caused by normally incident random waves on essentially

impermeable beaches.

Furthermore, a more general numerical model is being developed to eliminate the limi-
tations of a thin permeable underlayer and examine the effects of a thick underlayer on the
flow and armor response on the rough permeable slope. Such a numerical model is required
to predict the behavior of a berm breakwater with a thick layer of graded stone (Baird and

Hall, 1984).

38



REFERENCES

Baird, W.R. and Hall, K.R. (1984), “The design of breakwaters using quarried stones,”

Proc. 19th Coast. Engrg. Conf., ASCE, 1024-1031.

Gunbak, A. R. and Bruun, P. M. (1979), “Wave mechanics principles on the design of
rubble-mound breakwaters.” Proc. P.0.A.C., Norwegian Inst. of Tech., Trondheim,

Norway, 1301-1318.

Kobayashi, N. and Wurjanto, A. (1989a), “Numerical model for design of impermeable
coastal structures.” Res. Rept. No. CE-89-75, Department of Civil Engineering,

University of Delaware, Newark, DE 19716.

Kobayashi, N. and Wurjanto, A. (1989b), “Armor stability on rough permeable slopes of

marine structures.” Proc. 23rd I.A.H.R. Congress, Ottawa, Canada, C, 407-414.

Kobayashi, N. and Wurjanto, A. (1989c), “Numerical prediction of hydrodynamic forces
and sliding motion of dolos units.” Proc. Stresses in Concrete Armor Units, ASCE,

355-378.

Kobayashi, N. and Wurjanto, A. (1990), “Numerical model for waves on rough permeable
slopes.” J. Coast, Res., Special Issue No. 7 on Rational Design of Mound Structures,

149-166.

Kobayashi, N., Wurjanto, A. and Cox, D.T. (1990), “Irregular waves on rough permeable
slopes.” J. Coast. Res., Special Issue No. 7 on Rational Design of Mound Structures,

167-184.

Kobayashi, N., Cox, D.T. and Wurjanto, A. (1990), “Irregular wave reflection and runup on

rough impermeable slopes.” J. Wirway. Port Coast. and Oc. Engrg., ASCE, 116(6)

39



(in press).

Kobayashi, N., Cox, D.T. and Wurjanto, A. (1991), “Permeability effects on irregular wave

runup and reflection.” J. Coast. Res., 7(1), (in press).

Kobayashi, N., Wurjanto, A. and Cox, D.T. (1991), “Rock slopes under irregular wave
attack.” Proc. 22nd Coast. Engrg. Conf, ASCE, (in press).

Van der Meer, J. W. (1988), “Rock slopes and gravel beaches under wave attack.” Delft

Univ. of Tech., Delft, The Netherlands, Doctoral Thesis.

40



APPENDIX A

NUMERICAL MODEL FOR WAVES ON

ROUGH PERMEABLE SLOPES

Nobuhisa Kobayashi and Andojo Wurjanto

Journal of Coastal Research
Special Issue No. 7, pp. 149-166

Spring, 1990



Journal of Coastal Research I 51 I 7 J 149-166 | Fort Lauderdale, Florida | Spring 1990 I

Numerical Model for Waves on Rough Permeable Slopes
Nobuhisa Kobayashi and Andojo Wurjanto

Department of Civil Engineering
University of Delaware
Newark, DE 19716, U.S.A.

ABSTRACT S o T e i 1

KOBAYASHI, N. and WURJANTO, A., 1990. Numerical model for waves on rough slopes. Jour-
nal of Coastal Research, SI#7, 149-166. Fort Lauderdale (Florida). ISSN 0748-0208.

5{!!!!!.”!.';
(JCR;

M..
.

A numerical model is presented for predicting the flow and armor response on a rough permeable
slope as well as the flow in a permeable underlayer for a normally incident wave train. In addi-
tion to the continuity and momentum equations used to compute the flow field, an equation of
energy is used to estimate the rate of energy dissipation due to wave breaking. Computation is
made for six test runs to examine the accuracy and capability of the numerical model for sim-
ulating the fairly detailed hydrodynamics and armor response under the action of regular
waves. The computed critical stability number for initiation of armor movement is compared
with the measured stability number corresponding to the start of the damage under irregular
wave action to quantify the limitations of the regular wave approximation. The computed wave
run-up, run-down and reflection coefficients are shown to be in qualitative agreement with

available empirical formulas based on regular wave tests.

ADDITIONAL INDEX WORDS: Waves, reflection, run-up, armor units, breakwaters.

INTRODUCTION

Design of coastal structures protected with
armor units is presently based on empirical for-
mulas and hydraulic model tests. The detailed
hydrodynamics and armor response are not
measured in most model tests because of the dif-
ficulties of instrumentation. Numerical models
may hence be used to improve our understand-
ing of the detailed mechanics as well as to inter-
pret the model test results. Furthermore, a
hybrid approach based on empirical formulas,
numerical models and hydraulic model tests
will improve the efficiency and reliability of the
design procedure.

The numerical model developed by KOBA
YASHI et al. (1987) for predicting the regular
wave motion on the rough primary cover layer
of a rubble structure is expanded herein to
include a permeable underlayer below the pri-
mary cover layer. The boundary below the
permeable underlayer is assumed to be
impermeable. The continuity and momentum
equations for the flow on the rough permeable
slope and the flow in the permeable underlayer
are solved numerically in the time domain. A
conservation equation of energy is derived and
used to estimate the spatial variation of the

90035 received June 1989, accepted in revision September 1989,

rate of energy dissipation due to wave breaking
from the computed spatial variations of the
wave energy flux on the slope, the energy dis-
sipation rate due to bottom friction and the
energy flux into the permeable underlayer.
Moreover, the hydraulic stability of armor
units in the primary cover layer is computed
using the armor stability model of KOBAYA
SHI and OTTA (1987) in which the drag, lift
and inertia forces acting on an armor unit are
estimated using the computed fluid velocity and
acceleration on the rough permeable slope.
Computation is made for six test runs
selected from the extensive random wave test
data on the stability and damage of rock slopes
tabulated by VAN DER MEER (1988b). The
selected six runs corresponded to the start of
the damage and covered a wide range of the surf
similarity parameter. The incident irregular
wave train characterized by its significant wave
height and average wave period is approxi-
mated by the regular wave train with the same
height and period in this paper. This is because
randomness makes it difficult to examine the
accuracy and capability of the expanded numer-
ical model for simulating the flow and armor
response on the rough permeable slope as well
as the flow in the permeable underlayer. The
computation using the incident irregular wave
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train generated numerically is performed and
presented in the accompanying paper by
KOBAYASHI et al. (1990). The comparison of
the computed critical stability number for ini-
tiation of armor movement and the measured
stability number corresponding to the start of
the damage under the irregular wave action
indicates that the regular wave approximation
will result in the appreciable overestimation of
the armor stability. The computed wave run-up,
run-down and reflection coefficients are also
compared with available empirical formulas
based on regular wave tests.

FLOW ON ROUGH PERMEABLE SLOPE

The wave motion on a rough permeable slope
is computed for the normally incident wave
train specified at the toe of the slope as shown
in Figure 1 where the prime indicates the
dimensional variables. The symbols shown in
Figure 1 are as follows: x' = horizontal coor-
dinate taken to be positive landward with x' =0
at the toe of the slope; z' = vertical coordinate
taken to be positive upward with z' =0 at the
still water level (SWL);d’, = water depth below
SWL at the toe of the slope; 8’ = local angle of
the slope which may vary along the slope; n' =
free surface elevation above SWL: h’' = water
depth above the rough permeable slope; u’ =
depth-averaged horizontal velocity above the
rough permeable slope; h’', = thickness of the
permeable underlayer below the primary cover
layer which may vary along the slope; u', =
vertically-averaged horizontal discharge veloc-
ity in the permeable underlayer; and q', = vol-
ume influx per unit horizontal area into the
permeable underlayer. The numerical flow
model developed by KOBAYASHI et al. (1987)
assumed a rough impermeable slope, corre-
sponding to h’,=0 and q', =0.

For the flow over the rough permeable slope,
the vertically-integrated equations for mass
and x'-momentum may be expressed as
(KOBAYASKI, 1986)

sh' @ ,

— + —h'u) = -
at’ ax'lu) %

TR PO,
at_(hu)+ax,(l'1u)— gh peer

1 ' r
= Ef‘!u'U’ - u’ q

where t' = time; g = gravitational accelera-
tion; f' = constant friction factor related to the
shear stress on the rough primary cover layer;
and u', = horizontal fluid velocity between the
primary cover layer and the permeable under-
layer. In this simplified analysis, the friction
factor f' accounts for the roughness effects of
the primary cover layer on the flow over the
rough permeable slope, while the effects of the
permeable underlayer are taken into account
by the volume influx, q’,, and the momentum
influx, u',q’,, per unit horizontal area into the
permeable underlayer. Admittedly, the
assumed separation between the roughness and
permeability effects is somewhat artificial.
Moreover, the theoretical bed level for the flow
over the rough permeable slope is difficult to
pinpoint as is the case with oscillatory rough
turbulent boundary layers (JONSSON, 1980).

For the flow in the permeable underlayer in
the region seaward of the instantaneous water-
line on the rough permeable slope where the
water depth h' is essentially zero, the verti-
cally-integrated equations of mass and x'-
momentum may be expressed as (KOBAYASHI,
1986)

d
0 B'w) = @ &)

d 1 4
- (hy'n,) + ——-(h,'"un,"") — u'qy’
at PP npax PP b b

’

— g”x—, - b, @ + By, (4)

where n, = porosity of the permeable under-
layer; o' = coefficient expressing the laminar
flow resistance; and B’ = coefficient expressing
the turbulent flow resistance. Eqs. 3 and 4 are
based on the assumption of the impermeable
boundary below the permeable homogeneous
underlayer. The coefficients «' and B’ may
empirically be expressed as (MADSEN and
WHITE, 1975)
ol = n)% Byl - n)

(n,d,)? ’ B = nid,’ W
where d', = representative diameter of the
stone in the permeable underlayer; v = kine-
matic viscosity of the fluid; a, = dimensionless
constant in the range 780 = «, < 1500; and B,
= dimensionless constant in the range 1.8 < g,
< 3.6.

In order to compute the variations of h', u’,
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Figure 1. Flow over rough slope and in permeable underlayer.

q'y, and u’, with respect to t’ and x' using Eqgs.
1-5, u’, in Egs. 2 and 4 may be given by u', =
u'forq',=0andu’, = u',/n, forq’, <0in which
u’',/n, is the actual horizontal fluid velocity in
the permeable underlayer. This assumption
may cause a sudden change of u’, but is neces-
sary since the vertical variation of the fluid
velocity is not analyzed herein.

The following dimensionless variables and
parameters are introduced to normalize Egs. 1
and 2:

t =t'/T;x = x'/[T"(gH"N*; (6)
u = u'/(gH)"*; u, = u,'/(gH)"?;

z=z/H :h=h/H; (7)
m=n'/H;d =d'/H;

qb == th’;{pHJfrr]; o= T.(gmqu;
6 = otand’ ; f = of /2 (8)

where T' = representative wave period; H' =
representative wave height; p = dimensionless
parameter expressing the degree of the perme-
ability effects on the flow over the rough perme-
able slope; ¢ = dimensionless parameter
related to wave steepness; 8 = dimensionless
gradient of the slope; and f = normalized fric-
tion factor. The representative wave period and
height used for the normalization can be taken
as the period and height used to characterize
the incident wave at the toe of the slope. Sub-
stitution of Egs. 6-8 into Egs. 1 and 2 yields.

d
H+—x(hu)= - PO: 9)

d d " l .
% (hu) + o (hu® + 2}1)
= — 6h - fluju - puq, (10

where 0, f and p express the effects of the slope,
friction and permeability, respectively. For a
uniform slope, 6 in Eq. 10 can be replaced by the
surf similarity parameter, £ = 0/(2m)”. The
expression of p is obtained in relation to the
normalization of Eqs. 3 and 4 performed below,

The following dimensionless variables and
parameters are introduced to normalize Eqs. 3
and 4:

h, = h,'/h. ;u, = u'l[p, n,(gH)"?] (11)

dp' vz
Pu np " am]
[Boﬂ - n))T'(gH")
_ punh
= "
. ol - nE)zv
Bnpudp'(gH“iz

where h', = characteristic thickness of the
permeable underlayer used to normalize h’,
such that h, is on the order of unity; p, =
dimensionless parameter expressing the order
of magnitude of the terms on the left hand side
of Eq. 4 as compared to the terms on the right
hand side; and p = dimensionless parameter
expressing the order of magnitude of the lami-
nar flow resistance as compared to the turbu-
lent flow resistance in Eq. 4. Substitution of
Egs. 11 and 12 together with Eqs. 5-7 into Eqs.
3 and 4 yields
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d
— (hyu,) = (13)

]
= (hyup) — u.,qb]

an
= hy(p + [u)u, (14)
Furthermore, u, in Egs. 10 and 14 is given by

(15a)
(15b)

u, =u forg,=0
u, = p,u, for g, <0

For most applications, the parameter p,
defined in Eq. 12 is expected to be much less
than unity since the diameter d', of the under-
layer material is normally much less than the
horizontal length scale T'(gH")". For the case of
p,<<1, Eq. 14 may be simplified by neglecting
the terms on its left hand side. This simplified
equation can be solved to obtain u, for given dan/

~ g

forp, << 1 (16)

where i, = —1 and u,<0 for dn/dx > 0, whereas
i, = 1 and u,>0 for én/dx < 0. Eq. 16 implies
that the horizontal variation of the hydrostatic
pressure in the permeable underlayer deter-
mined by the instantaneous free surface ele-
vation m drives the flow against the resistance
in the permeable underlayer. The parameter p
defined in Eq. 12 accounts for the viscous effect
and may be used to evaluate the increased vis-
cous effect in small-scale hydraulic model tests.
For the case of p, << 1, the parameter p defined
in Eq. 12 may be assumed to be much less than
unity as long as the value of n,h’/H' is on the
order of unity or less. Since Eqs. 3 and 4 are
based on the assumption of the impermeable
boundary below the permeable underlayer,
practical applications of the present numerical
model will be limited to the case where the void
thickness n,h', of the permeable underlayer is
on the order of the representative incident wave
height H' or less.

NUMERICAL METHOD

A numerical method is developed to solve
Egs. 9, 10. 13, 15 and 16 for the case of p, <<
1 and p << 1. The variations of h, u, qu, U, and
u, with respect to t and x are computed using a

finite difference grid of constant space size Ax
in the computation domain x = 0 and constant
time step At starting from the initial time t=0.

The initial time t=0 for the computation
marching forward in time is taken to be the
time when the specified incident wave train
arrives at the seaward boundary located at x =0
as shown in Figure 1. The initial conditions for
the computation are thus given by n=0, u=0,
q,=0,u,=0andu,=0att=0in the region x=0.
It is noted that h and n are uniquely related for
given slope geometry.

The seaward boundary is located at x=0
where the normalized water depth below SWL
is d,. In order to derive an appropriate seaward
boundary condition, Eqs. 9 and 10 are expressed
in the following characteristic forms

_flulu 3 pay(u—c—uy)

h h ;o amn

§+(u+c)§—:=—9
d—"K=u+c

dt

B ot
6t+(u C)ax 0+
o

dt
withe=h'* a=u+2¢;p=-u+2¢ (19)

flulu pgy(u+ec—uy)

h h (18)

Assuming that u < c in the vicinity of the sea-
ward boundary, « and B represent the charac-
teristics advancing landward and seaward,
respectively, in the vicinity of the seaward
boundary. Following the procedure developed
by KOBAYASHI et al. (1987), the total water
depth at the seaward boundary is expressed in
the form

h=d, + 9t +nt)atx =0 (20)

where m, and 7, are the free surface variations
normalized by H' at x=0 due to the incident
and reflected waves, respectively. The incident
wave train is specified by prescribing the vari-
ation of , with respect to t = 0. The normalized
reflected wave train 7, is approximately
expressed in terms of the seaward advancing
characteristic B at x=0

n,(t) -——%d“" Blt) — d, atx = 0 (21)

where B is given by Eq. 18.

The landward boundary on the slope is
located at the moving waterline where the
water depth is essentially zero. In reality, it is
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difficult to pinpoint the exact location of the
moving waterline on the rough permeable
slope. For the computation, the waterline is
defined as the location where the normalized
water depth h equals a small value §. Use is
made of & = 10"* in the following computation.
The procedure of the waterline computation is
explained in detail in relation to the numerical
method used to solve Egs. 9 and 10. It should be
mentioned that Eqs. 13 and 16 are applicable
only to the region seaward of the moving water-
line. The approximation of Eq. 14 by Eq. 16 for
the case of p, << 1 allows us to limit the com-
putation domain seaward of the moving water-
line. However, this implicitly assumes that the
waterline movement is not affected by the flow
in the permeable underlayer landward of the
waterline. This implicit assumption may be
appropriate if the thickness of the permeable
underlayer is small enough to satisfy the con-
dition of p<<1.

For the known values of h, u, g, u, and u, at
the time level, t=(n-1)At, with n being a pos-
itive integer, the values of these variables at
the next time level, t =nAt, are computed in the
following manner.

First, Eqs. 9 and 10 are used to compute the
values of h and u at t=nAt excluding those at
the seaward and landward boundaries. The
finite difference method used to solve Egs. 9 and
10 is an extension of the explicit dissipative
Lax-Wendroff method used by KOBAYASHI et
al. (1987) for the case of p=0 as explained in
Appendix A. The values of h and u at the sea-
ward boundary are computed using Eqgs, 18-21.
The value of n,(t) at t =nAt is calculated using
Eq. 21 where the value of B(t) at x=0 is com-
puted using Eq. 18 with f=0 and p=0 which is
discretized using a simple first-order finite dif-
ference. It is noted that the friction and perme-
ability effects are normally negligible at the
seaward boundary. Eq. 20 yields the value of h
at t =nAt while the value of u at t = nAt is given
by u = (2h*~-B) at x=0. On the other hand, the
values of h and u at t = nAt in the vicinity of the
moving waterline are computed using the pre-
dictor-corrector-smoothing procedure which is
explained in detail in Appendix B since numer-
ical difficulties tend to occur at the moving
waterline (e.g., SYNOLAKIS, 1989).

Second, the values of u,, q, and u, at t=nAt
are computed using the computed values of h
and u at t=nAt. The value of u, at t=nAt is

computed using Eq. 16 in which dn/0x is discre-
tized using a central finite difference. The value
of q, at t=nAt is then computed using Eq. 13
which is approximated by a spatial central
finite difference. The value of u, at t=nAt is
obtained from Eq. 15.

WAVE ENERGY BALANCE

The wave energy balance is examined for the
flow on the rough permeable slope computed
using the continuity and momentum equations
given by Egs. 9 and 10. The normalized equa-
tion of energy corresponding to Eqs. 9 and 10
may be expressed as

JE d

Z tm®E)=-D-D,-D; (22

with

R PR
E—z(hu + %) for h > 7 (23)

E=%[hu’+n” ~ (h — )l forh <7

o il Gtﬁ + n) .D, = flul®  (24)

1
Dp = PQs (§u§+ Tl)

where E = normalized specific energy defined
as the sum of kinetic and potential energy per
unit horizontal area; E; = normalized energy
flux per unit width; D, = normalized rate of
energy dissipation per unit horizontal are due
to bottom friction; D, = normalized energy flux
per unit horizontal area into the permeable
underlayer; and Dy = normalized rate of
energy dissipation per unit horizontal area due
to wave breaking. It should be noted that the
normalized potential energy included in the
specific energy E given by Eq. 23 is taken to be
relative to the normalized potential energy at
t=0 when the incident wave train arrives at
x=0 as shown in Figure 1. Eq. 22 may be used
to estimate Dy invoking the analogy between
the present analysis and that used for a
hydraulic jump. The dimensional rate D'y of
energy dissipation due to wave breaking is
given by D'y = (pgH'*/T')Dy where p = fluid
density, which is assumed to be constant.
Since the wave energy balance is normally
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analyzed in terms of the time-averaged quan-
tities, the time-averaged dissipation rate, Dy,
due to wave breaking is computed using the fol-
lowing time-averaged energy equation
obtained from Eq. 22:
b,--3@&) -Db-D, @5
B——&(p}— ¢ — D, (25)
where the overbar indicates the time averag-
ing. The present numerical model needs to pre-
dict that Dy is positive or zero depending on
whether wave breaking occurs or not. The
energy flux E;p should decrease with the
increase of x, while D, > 0 since D; defined in
Eq. 24 is positive or zero. The time-averaged
energy flux, D, into the permeable underlayer
should be positive and correspond to the energy
dissipation inside the permeable underlayer.
The specific energy E and the energy flux Eg
at the seaward boundary wheren = (n; + n,) at
x=0 from Eq. 20 may approximately be given
by (KOBAYASHI and WURJANTO, 1989a)

-7 + atx =0 (26)
1/2

E_F=(d‘1'(?$—'$) atx =0 (27

where 1 and m? are the normalized wave
energy per unit horizontal area associated with
the incident and reflected waves, respectively,
and (d,)" is the normalized group velocity based
on linear long wave theory at x=0. The wave
reflection coefficient r based on the incident and
reflected wave energy may be defined as

-1q12
r= [(n, - ) (n?) ] (28)

where 1, is the difference between the still
water level and the mean water level at x=0.
The incident wave train m,(t) in the subsequent
computations is specified such that m, = 0. The
wave reflection coefficient may also be com-
puted using Eq. 28 without the term 7, or the
difference between the maximum and minimum
values of the periodic reflected wave train m.(t)
(KOBAYASHI and WURJANTO, 1989a). Eq.
28 appears to be more general than the other
methods since it may be applied to random
waves in shallow water where m, may not be
negligible. The method used to compute the
reflection coefficient should be consistent with

the method used to determine the reflection
coefficient in experiments.

HYDRAULIC STABILITY OF ARMOR
UNITS

The hydraulic stability of armor units is ana-
lyzed using the computed flow field over the
rough permeable slope. The mass and momen-
tum exchanges between the flow over the rough
slope and the flow in the permeable underlayer
affect the computed variations of u and h with
respect to t and x over the rough permeable
slope. In the following, the direct effects of
these mass and momentum exchanges on the
hydraulic stability of armor units are assumed
to be negligible for the case where the perme-
ability parameter p introduced in Eqs. 9 and 10
is much less than unity. It should be mentioned
that the complicated flow inside the primary
cover layer is not analyzed herein except that
the friction factor f' is used in Eq. 2 to account
for its effects on the flow over the rough perme-
able slope.

For the case of p << 1, the drag, lift and iner-
tia forces acting on individual armor units in
the primary cover layer may be expressed in
terms of the fluid velocity and acceleration on
the rough permeable slope. Use may then be
made of the results of the stability analysis of
KOBAYASHI and OTTA (1987) for rough
impermeable slopes except that the normalized
fluid velocity u and the normalized fluid accel-
eration du/dt in the present analysis include
the permeability effects of the underlayer. The
normalized fluid acceleration obtained from
Egs. 9 and 10 is given by
du du du
— = — 4+ u—
dt ot ax
ah - flulu i qu(uh u,) 29)

ax h

KOBAYASHI and OTTA (1987) expressed the
stability condition against the sliding or rolling
of an armor unit for the case of Cp, > C, tand in
the following form:

N, < Niltx) = Au™? [ cosh’ tand

_uf_Cu du ]
7 [fs — e sinf ] (30

Journal of Coastal Research, Special Issue No. 7, 1990




Numerical Model for Waves on Slopes

Table 1. Six test runs compared with numerical model.

Run H' i
cot@ (em) Py

10.09 0.027
7.76 0.027
8.16 0.026
8.92 0.026
7.98 i 0.029
7.98 0.027

-1/3
N,=H(@G-1D" [E] (31)

ps
A = 2C2° [Cy(Cp + Cp tand)]™*  (32)

where N, = stability number; N = dimension-
less function expressing the degree of the armor
unit stability as a function of t and x; and 6’ =
local slope angle as shown in Figure 1. The
characteristics of the armor unit are expressed
by the following parameters: W' = median
mass; s = specific density; C, = area coefficient;
C, = volume coefficient; and ¢ = frictional
angle. The hydrodynamic forces acting on the
armor unit are separated into the drag, lift and
inertia forces whose coefficients are denoted by
Cp, C, and Cy, respectively. KOBAYASHI and
OTTA (1987) imposed the upper and lower
bounds of the fluid acceleration so that the iner-
tia force alone would not cause the initiation of
armor movement

Ay, 0 < duwdt = a0 (33)

s — 1sin(é - 0)

Bin = —
= Cis cosd
< = 1 sin(d + 8)

= 34
Bruax Gy cosd (4

In the following, the temporal and spatial var-
iations of the stability of armor units on the
rough permeable slope are computed using Eq.
30 together with Eqs. 32-34 and compared with
available data on the stability number N,.

COMPARISON WITH AVAILABLE DATA

VAN DER MEER (1987, 1988a, 1988b) con-
ducted extensive hydraulic model tests for the
hydraulic stability of uniform slopes protected
with rock. The numerical model is compared
with the test results for the structure with an

impermeable core in water depth d', = 80 c¢m
with no wave overtopping since the model is
based on the assumption of the impermeable
boundary below the permeable underlayer as
illustrated in Figure 1. Furthermore, the fol-
lowing comparison is limited to the test results
with S=2 and N=1000 where S = dimension-
less damage level based on the measured ero-
sion area and N = number of individual waves
attacking the tested structure. This is because
the test results with S=2 and N= 1000 approx-
imately correspond to the initiation of armor
movement predicted by the present numerical
model. The numerical model will need to be
improved to predict the slope profile change
with time if it is to be compared with the test
results with larger values of S and N.

Six runs are selected from the test results
with S=2 and N =1000 listed in Appendix II of
the thesis of VAN DER MEER (1988b). Table 1
summarizes the selected six test runs compared
with the numerical model. Run 1, 2, 3, 4, 5 and
6 in this paper correspond to No. 181, 187, 146,
94, 41 and 45 in Appendix II, respectively. The
six runs include the uniform slopes with
cotb’'=2, 3, 4 and 6. The incident irregular
waves for the six runs were generated using the
Pierson-Moskowitz spectrum. The significant
wave height, H',, and the average period of the
zero upcrossings, T',,, of the incident wave train
were used by VAN DER MEER (1987, 1988a,
1988b) to characterize the incident irregular
waves. As a result, the representative wave
height and period used for the normalization of
Egs. 1 and 2 are taken as H' = H', and T' =
T'.. herein. The surf similarity parameter, £ =
T' tan®'(2nH'/g) %, for the six runs listed in
Table 1 is in the range ¢ = 1.72-6.88, corre-
sponding to plunging, collapsing and surging
waves on uniform slopes.

The primary cover layer for the six runs listed
in Table 1 consisted of the riprap with the nom-
inal diameter based on the median mass, (W'/
ps}”’ = 3.6 cm, and the specificdensity, s = 2.63,
and the grading, Dy/D,; = 2.25, based on the
85 and 15 percent diameters of the sieve analy-
sis of the riprap. The thickness of the primary
cover layer normal to the slope was 8 em. The
following input parameters required for the
numerical model are taken to be the same as
those used by KOBAYASHI and OTTA (1987)
for the comparison with the large-scale riprap
tests by AHRENS and MCCARTNEY (1975)
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since VAN DER MEER (1989b) found his small-
scale tests to be consistent with his large-scale
tests: f'=0.3, ¢=50°, C,=0.90, C,=0.66,
C,=05,C.=04,Cy=1.5,a,,,=1.0and a,,,=
—0.8 except for a,,;,= —0.6 for runs 5 and 6 to
satisfy the condition for a,, given in Eq. 34, It
should be mentioned that KOBAYASHI and
OTTA (1987) varied the lift coefficient in the
range C,=0.18-0.4 and used C,=0.18 for
cotb'=2.5 and C,,=0.4 for cot®’ =3.5 and 5. The
uncertainty of C, will be discussed when the
computed and measured stability numbers of
the riprap are compared.

The permeable underlayer consisted of the
gravel with its nominal diameter of 0.8 cm
which is taken to be the representative diame-
terd’, of the underlayer stone used in Eq. 5. The
thickness of the permeable underlayer normal
to the slope was 2 em. Consequently, the char-
acteristic thickness h'. used in Eq. 11 to nor-
malize the vertical thickness of the permeable
underlayer, h',, as defined in Figure 1 is taken
as h'.=2sechb’ ¢cm. The variation of h’', with
respect to x' is given by h',=x'tan6’ for
O0=x'=h'cot8’ and h',=h', for x'=h’' cotb’. The
additional input parameters required to
express the flow resistance coefficients defined
in Eq. 5 are taken as follows: n,=0.4, o, = 1140,
B,=2.7 and v=10"* cm?/s. Table 1 lists the
dimensionless parameters p, p, and p defined in
Eq. 12. The selected six runs satisfy the condi-
tions of p<<1 and p,<<1 assumed in the pres-
ent numerical model, The parameter p is on the
order of unity for these small-scale test runs for
which the viscous effects in the permeable
underlayer are not negligible. This will cause
only minor scale effects if the effects of the
permeable underlayer on the flow over the pri-
mary cover layer are not significant.

The incident wave train, n,(t), normalized by
the significant wave height H' and the average
period T' needs to be specified for each of the six
runs. As a first approximation, the irregular
wave train generated in the tests of VAN DER
MEER (1989b) is assumed to be represented by
the regular wave train whose height and period
are H' and T', respectively. The computed
results based n this assumption are used to
quantify the limitations of the regular wave
approximation as well as to evaluate the accu-
racy and capability of the numerical model
including the permeability effects. For the six
runs, d,=7.9-10.3, L=8.5-10.7 and U,=7.6-

12.0 at the seaward boundary located at x=0
where d,=d'/H' withd',=80 em; L=L'/d’, with
L' being the wavelength based on linear wave
theory; and U, = Ursell parameter defined as
U,=L%d,. It should be noted that the selected
six runs correspond to relatively large values of
L since d’, = 80 cm used by VAN DER MEER
(1989b) appears to be too deep for breakwaters,
which are generally located in relatively shal-
low water during storms. The normalized inci-
dent wave profile n,(t) with unit wave height
and period for t=0 may be specified using
Stokes second-order wave theory (KOBAY-
ASHI and WURJANTO, 1989b). For the six
runs, a, = 0.5 and a, = 0.050-0.072 where a, and
a, are the normalized amplitudes of the first
and second-order harmonics. The nonlinear
effects are relatively small at x=0 for these
runs with d,=7.9-10.3.

In the following, the computed results based
on the monochromatic wave approximation are
denoted by run M1 to M6 for the six runs listed
in Table 1. The computed results based on the
random wave train generated numerically will
be denoted by run R1 to R6 in the accompanying
paper (KOBAYASHI et al., 1990). The compu-
tation for run M1 to M6 is made for the duration
0=t=256 used for run R1 to R6, although the
computed flow field and armor response for run
M1 to M6 become periodic before t=4. This is
because the accuracy of the numerical model
including the permeability effects is not com-
pletely certain for the long computation time,
while the errors of the computed results for
incident random waves are harder to detect.

First, the computed results for run M3 are
presented in detail as a typical run. Figure 2
shows the computed reflected wave train n,(t) at
x =0 during 0=<t=256. The computed temporal
variation of m, becomes periodic very quickly
and remains periodic without spurious long-
period oscillations, which would have occurred
if the seaward boundary of the numerical model
had become partially reflecting. The computed
periodic oscillations of n,(t) and n,(t) are used to
compute the wave reflection coefficient r defined
by Eq. 28. The computed reflection coefficient is
r=0.35. Eq. 28 with n, =0 yields essentially the
same value of r since the time-average value,
., is computed to be essentially zero for the six
runs with large values of d,. Furthermore, the
wave reflection coefficient defined as the nor-
malized height of the periodic reflected wave
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Figure 2. Computed reflected wave train at x=0 during 0 =
t = 256 for run M3.

Run M3 (4,=1cm)
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Figure 3. Computed oscillation of 1-em water depth on rough
permeable slope during 0 = t = 256 for run M3.

train is found to be essentially the same as that
based on Eq. 28 for the six runs. This is related
to the approximately sinusoidal variation of the
computed reflected wave train as shown in Fig-
ure 2.

Figure 3 shows the computed temporal oscil-
lation of the waterline elevation above SWL
normalized by the wave height H' for run M3.
The normalized waterline elevation Z, is
defined as the location where the instantaneous
water depth h =3, with 8,=5',/H’. The temporal
oscillation of Z, shown in Figure 3 corresponds
to 8',=1 cm. The oscillations of Z, with 8, = 0.1,
0.5 and 1.0 cm are computed to examine the
sensitivity of Z, to the dimensional water depth
&'.. It should be stated that it is extremely dif-
ficult to pinpoint the waterline location on the
rough permeable slope in experiments while
the present numerical model accounts for the
presence of the primary cover layer through the
friction factor f* only. Consequently, the meas-
ured and computed waterline elevations are dif-
ficult to compare if they are sensitive to the
water depth 8',. Figure 3 shows that the com-

puted waterline oscillation becomes periodic
very quickly and remains periodic without spu-
rious long-period oscillations. This requirement
has been used to check appropriateness of the
numerical procedure of the waterline compu-
tation given in Appendix B. The maximum and
minimum values of the periodic oscillation of Z,
are taken as the normalized run-up R and run-
down R,, respectively. For run M3, R=1.56,
1.51 and 1.50 for §',=0.1, 0.5 and 1.0 cm, indi-
cating that R is not sensitive to 8'.. On the con-
trary, Ry is very sensitive to &', since R;=0.50,
—0.39 and —0.84 for ',=0.1, 0.5 and 1.0 cm.
This is because a thin layer of water remains on
the slope during wave downrush as shown in
Figure 4.

Figure 4 shows the computed spatial varia-
tions of the normalized free surface elevation
and the normalized horizontal velocity u over
the rough slope at t=255, 255.25, 255.5, 255.75
and 256 for run M3 with £=3.52. The computed
spatial variations at t=255 and 256 are the
same because of the periodicity. The shaded
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Run M3
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Figure 4. Computed spatial variations of v and u at t = 255,
255.25, 255.5, 255.75 and 256 for run M3.

area shown in the figure for 1 corresponds to the
permeable underlayer.

Figure 5 shows the computed spatial varia-
tions of the normalized horizontal discharge
velocity u, in the permeable underlayer and the
normalized volume influx q, per unit horizontal
area into the permeable underlayer at t =255,
255.25, 255.5, 255.75 and 256 for run M3. The
spatial variation of u, at given time computed
using Eq. 16 with p. = 0.814 for run M3 is deter-
mined by the slope of the free surface, an/ox, at
the same time. The positive or negative slope of
the free surface causes the negative or positive
flow in the permeable underlayer, respectively,
where the x-coordinate and the flow direction
are positive landward. The spatial variations of
u, at t =255 and 255.25 shown in Figure 5 indi-
cate the convergence of the landward and sea-
ward flows in the permeable underlayer at the
wave front shown in Figure 4 where n decreases
rapidly and then increases in the landward
direction. It should be noted that the numerical
high-frequency oscillations on the seaward side

of the wave front which may not be discernible
in Figure 4 become more apparent in Figure 5
on the seaward side of the converging flow in
the permeable underlayer.

The spatial variations of q, shown in Figure
5 are computed using q, =d(h,u,)/ox from Eq. 13
where h,=34.9x for 0 = x < 0.0286 and h,=1
for x = 0.0286 for run M3. Since q, = au,/dx for
x = 0.0286 in Figure 5, the large negative value
of q;, occurs where u, decreases rapidly in the
positive x-direction. Since q, is taken to be pos-
itive into the permeable underlayer, the notice-
able outflux from the permeable underlayer
occurs where the landward and seaward flows
in the permeable underlayer converge under
the wave front of the free surface variation. It
should be noted that the permeability effects in
Egs. 9 and 10 for the flow on the rough perme-
able slope appear in the terms pq, and pu,q,
where the value of u, computed using Eq. 15 is
on the order of unity or less. As a result, the
absolute value of g, may become large under
the wave front but the absolute value of pq, is
less than unity where p=0.0026, 6 =8.82 and
f=5.30 in Egs. 9 and 10 for run M3. The sim-
plified stability analysis of armor units in this
paper does not account for the direct effect of
outflux from the permeable underlayer which
may increase the lift force acting on an armor
unit under the wave front. However, the sim-
plified analysis may be sufficient in view of the
uncertainty of the lift coefficient C, where
KOBAYASHI and OTTA (1987) varied C, in
the range C;,=0.18-0.4. Considering the possi-
bility of the increase of the lift force due to the
outflux from the permeable underlayer, use is
made of the upper-bound value of C,=0.4 in
this simplified computation of the stability of
armor units.

Figure 6 shows the computed spatial varia-
tions of the normalized time-averaged quan-
tities E, E¢, D, D, and Dy for runs M3 and M1
where E is the wave energy per unit horizontal
area and E; is the energy flux per unit width,
while D, D, and D, are the rates of energy dis-
sipation per unit horizontal area due to bottom
friction, permeability and wave breaking,
respectively. E, Ey, D, and D, are computed
using Eqgs. 23 and 24, whereas Dy is computed
from the time-averaged energy equation given
by Eq. 25. The wave energy flux E; decreases
slowly and then rapidly near the still water
level on the slope where Figure 4 shows the
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Figure 5. Computed spatial variations ofuy,and gy att = 255,
25b.25, 255.5, 2565.75 and 256 for run M3.

location of the slope for run M3. Correspond-
ingly, large energy dissipation occurs near the
still water level on the slope. The energy dis-
sipation due to bottom friction is dominant for
run M3 with £=23.52, corresponding to collaps-
ing or surging waves (AHRENS and MCCART-
NEY, 1975). The energy dissipation due to wave
breaking becomes as large as that due to bottom
friction for run M1 with ¢=1.72, corresponding
to plunging waves. The computed large energy
dissipation due to bottom friction is consistent
with the analytical and experimental results
obtained by MADSEN and WHITE (1976) for
surging waves on rough impermeable slopes.
The computed energy dissipation due to wave
breaking decreases with the increase of £ for the
six runs and is negligible for runs M4, M5 and
M6 with ¢ = 4.37. The computed wave energy
transmitted and dissipated in the permeable
underlayer is small for the six runs with
p=0.0022-0.0032 as shown in Table 1. This
implies that the thin permeable underlayer is
not effective in dissipating wave energy.

Figure 6. Computed spatial variations of specific energy E,

energy flux Ep, dissipation rate, Dy, Dy, and Dg due to bottom
friction, permeability and wave breaking, respectively, for
runs M3 and M1.

Figure 7 shows the computed temporal vari-
ations of the armor stability function Ng
defined in Eq. 30 during the one wave period
25b st =256atz = —2.06, —1.28 and —0.10
for run M3. The normalized vertical coordinate,
z=2'/H’, is used to indicate the location of an
armor unit on the slope relative to SWL located
at z=0. The stability function Ny becomes
small during the wave uprush and downrush as
may be seen by comparing the armor stability
function shown in Figure 7 with the correspond-
ing flow field shown in Figure 4. The trough of
the temporal variation of Ny during the wave
downrush is wider and lower than that during
the wave uprush. KOBAYASHI and OTTA
(1987) defined the critical stability number N..
for initiation of armor movement as the mini-
mum value of N, with respect to z and t after
the periodicity of Ny with respect to t is estab-
lished. The critical stability number N,. occurs
atz = -1.28and att = 255.69 during 255 < t
= 256 for run M3.
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266.6
t

Figure 7. Computed temporal variations of armor stability
function Ny during 256 = t = 256 at z = —2.06, — 1.28 and
- 0.10 for run M3.

Figure 8 shows the computed variations of 7,
u, du/dt, u,, q, and N with respect to the nor-
malized elevation z on the slope at t = 255.69
for run M3 with £=3.52. The minimum value of
Ny occurring at z = —1.28 in Figure 8 corre-
sponds to the critical stability number N,.. The
variations of the fluid velocity u, the fluid accel-
eration du/dt and the armor stability function
Ng for run M3 are similar to those plotted by
KOBAYASHI and OTTA (1987) for the case of
£=4.0. The variations of the free surface ele-
vation m shown in Figure 8 and in Figure 4 indi-
cate that the minimum armor stability for run
M3 occurs during the wave downrush in the
vicinity of the trough of the free surface where
the downward velocity is the maximum but the
fluid acceleration is relatively small. At the
time of the minimum armor stability for run
M3, the normalized discharge velocity in the
permeable underlayer, u,, defined in Eq. 11 is
mainly downward and the normalized volume
flux per unit horizontal area, q,, defined in Eq.
7 is out of the permeable underlayer. Since

Run M:

Figure 8. Computag

. = 3m.0na of v, u, du/dt, uy, qy and N
with respect to ele 4 e g 3

"1 2 alope at t = 255.69 for run M3.

P, =0.026 and 4 .

%1926 f M3, the mag-
nitudes of the 4, e '

3 #enaional quantities u’, and
q v are much lewy 1,50 the magnitude of the
dimensional vef, Ay u'.

The computed /.y, presented in Figures 2—
8 fndlcate thel tie numerical model yields
fairly detailed hydrodynamics and armor
response. At prewsy ng data on the detailed
hydrodynamlcu #04 regulting armor response is
available to exsy,,,,, the accuracy of the com-
p}:t.ed results. I o/der 15 examine the permea-
bility effects Spurntely, it would be required to
make computatiy, for run M1 to M6 with p=0
and compare thu ¢ympyted results with and
without the ), permeable underlayer.
KOBAYASHI uyj W yRJANTO (1989b) per-
formed such u cu1, 4 rigon for a hypothetical
permeable under iy, whose thickness h’, was
roughly tf_“? SIG an the wave height H' and the
permeability Pirwmpter p was in the range
P=0-012"0‘02" The comparison indicated that
the peI‘l:.l.‘.lEﬂbl“l ¥ ll”luctg would increase the
hydraulic stabifiyy ¢ armor units noticeably
and decreass w,,, run-up and reflection
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slightly. For the six runs listed in Table 1, h'./
H'=0.20-0.26 and p=0.0022-0.0032. As a
result, the permeability effects for these runs
should be smaller than those for the hypothet-
ical cases examined by KOBAYASHI and
WURJANTO (1989b). The computed results for
run M1 to M6 together with the above consid-
erations suggest that the thin permeable
underlayer included in the present computation
may have little influence on the overall flow
characteristics on the rough permeable slope
but may affect the details of the flow character-
istics and resulting armor response at the wave
front where the outflux from the permeable
underlayer may be noticeable.

In the following, the computed wave run-up,
run-down and reflection for the six runs are
compared with available empirical formulas for
regular waves since the data of VAN DER
MEER (1988b) is limited to the armor stability.
The following comparison is not rigorous and
only qualitative since the empirical formulas
were developed from different riprap tests.

Figure 9 shows the comparison of the com-
puted normalized wave run-up R for the six
runs with the empirical formula, R = 1,13 &/
(1+0.506&), proposed by AHRENS and
MCCARTNEY (1975) on the basis of their
large-scale riprap tests. The computed values of
R corresponding to the water depth &', = 0.1
and 1 cm are presented in Figure 9 for each run
where the value of the surf similarity parame-
ter £ for each run is listed in Table 1. The com-

puted values of R are not sensitive to 8', in the
range 0.1 <3§', < 1 cm as also discussed in rela-
tion to Figure 3. The computed points shown in
Figure 9 are within the scatter of data points
about the empirical curve presented by
AHRENS and MCCARTNEY (1975). The agree-
ment between the computed run-up for the
small-scale riprap tests of VAN DER MEER
(1988b) and the empirical formula based on the
large-scale riprap tests suggests that scale
effects on wave runup are small. This is con-
sistent with the findings of VAN DER MEER
(1988b) based on the comparison between his
large-scale and small-scale tests. This does not
imply that viscous effects are negligible in the
permeable underlayer. The parameter p
expressing the order of magnitude of the lami-
nar flow resistance as compared to the turbu-
lent flow resistance in Eq. 4 is in the range p =
0.698-0.816 for the six runs listed in Table 1,
whereas the value of . could be on the order of
0.01 for the large-scale riprap tests (KOBAY-
ASHI and WURJANTO, 1989b). As a result, the
permeable underlayer should have little influ-
ence on wave run-up on the rough permeable
slope as long as the permeable underlayer is
thin and located on an impermeable boundary
or core.

Figure 10 shows the comparison of the com-
puted normalized wave run-down R, for the six
runs with the empirical formula, R, =
—6.22[1 -exp(—-0.0398¢)], proposed by
LOSADA and GIMENEZ-CURTO (1981) for the

“

Computed

2,04 ©4!=0.1cm
® d =1cm

Empirical
_ . 118¢
~ 1+0.506¢

4 5 6 7

¢

Figure 9. Comparison of computed normalized wave run-up R for six runs with empirical formula.
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riprap test data of GUNBAK (1976). The com-
puted values of R, are sensitive to the water
depth &', used to define the location of wave run-
down since a thin layer of water remains on the
slope during wave downrush as shown in Figure
4. Consequently, visually-observed wave run-
down is fairly subjective. Figure 10 is hence
intended to show that the numerical model pre-
dicts the trend of the decrease of R, with £,
although the computed values of R, with §', =
1 cm are in reasonable agreement with the
empirical formula,

Figure 11 shows the comparison of the com-
puted wave reflection coefficient r for the six
runs with the empirical formula, r =
1.35[1 —exp(—0.071¢&)], proposed by LOSADA
and GIMENEZ-CURTO (1981) for the riprap
test data of GUNBAK (1976). The agreement
shown in Figure 11 may be reasonable consid-
ering the difficulties and errors associated with
the determination of r from measured free sur-
face oscillations (MADSEN and WHITE, 1976).

Finally, Figure 12 shows the comparison of
the computed critical stability number N,, and
the actual stability number N, for each of the
six runs. The computed value of N, for each run
is the minimum value of the armor stability
function Ny along the slope during one wave
period under the periodic action of N = 256
waves of the regular wave train with given
wave height H' and period T'. On the other
hand, the stability number N, given by Eq. 31
for each run corresponds to the damage level S

= 2 of the specified primary cover layer under
the action of N = 1000 waves of the irregular
wave train with given significant wave height
H' and average wave period T'. VAN DER
MEER (1988b) indicated that the damage level
S = 2 or 3 should correspond to the start of the
damage. The value of N, is not very sensitive to
S = 2or3aswellas N = 256 or 1000 since N,
x S°*N "' based on the empirical formula of
VAN DER MEER (1987, 1988a, 1988b). As a
result, the critical stability number N,, for the
initiation of armor movement should approxi-
mately correspond to the stability number N,
with 8 = 2 and N = 1000. The difference
between the values of N,. and N, plotted in Fig-
ure 12 for each run is mostly caused by the reg-
ular wave approximation used for the present
computation. Since N, < N,,, the stability con-
dition given by Eq. 30 against the sliding or
rolling of any armor unit along the slope is well
satisfied at any time under the assumed regular
wave action.

In order to confirm the above conclusion in a
qualitative manner, Figure 12 also shows the
empirical curves for cotd’ = 2.5, 3.5 and 5.0 pro-
posed by LOSADA and GIMENEZ-CURTO
(1979) for the large-scale riprap tests using reg-
ular waves performed by AHRENS and
MCCARTNEY (1975). The values of N, based
on the regular wave tests are greater than those
based on the random wave tests, although the
riprap slopes used in these tests are different.
The comparison of the computed values of N,

Computed

0 d,=0.1cm
® § =1cm

———— Emplrical
Rq=-6.22[1-exp(-0.0398¢)]

2

4 5
3

Figure 10. Comparison of computed normalized wave run-down Ry for six runs with empirical formula.
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Figure 11. Comparison of computed wave reflection coefficient r for six runs with empirical formula.

#

O Computed
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Figure 12. Comparison of computed critical stability number for six runs based on regular wave approximation with random
wave data of VAN DER MEER (1988b) and empirical formula based on regular wave data.

and the empirical curves suggests that the
armor stability is also sensitive to the specific
riprap slope characteristics since the armor sta-
bility depends on the detailed hydrodynamics
on the slope as discussed in relation to Figures
7 and 8. It is noted that KOBAYASHI and
OTTA (1987) obtained good agreement between
the numerical model for the rough impermeable
slope and the large-scale riprap tests of
AHRENS and MCCARTNEY (1975) using C,. =
0.4 for cotd’ = 3.5 and 5.0 and C, = 0.18 for
coth’ = 2.5, where C, changes only the param-

eter A defined by Eq. 32. Use of C, = 0.18 for
runs M5 and M6 with coté’ = 2.0 would result
in N,. = 2.38 and 2.96 for £ = 5.95 and 6.88 in
Figure 12, respectively. Consequently, the
change of C, alone would not explain the dif-
ference between the computed values of N, and
the empirical curves in Figure 12. It may hence
be concluded that the numerical model needs to
simulate the specific riprap slope characteris-
tics as well as the incident random waves for
predicting the armor stability in a realistic
manner.
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CONCLUSIONS

The numerical model developed for the rough
permeable slope is shown to yield the fairly
detailed flow field and resulting armor response
which would be very difficult to measure in
experiments. The comparison of the developed
numerical model with the random wave data on
riprap stability tabulated by VAN DER MEER
(1988b) indicates that the conventional regular
wave approximation will result in the apprecia-
ble overestimation of the riprap stability. The
computed regular wave run-up, run-down and
reflection coefficients are also shown to be in
qualitative agreement with available empirical
formulas based on regular wave tests.

In order to make a more realistic comparison
of the numerical model with the random wave
data, the computation using the incident irreg-
ular wave train generated numerically is per-
formed and presented in the accompanying
paper of KOBAYASHI et al. (1990). Additional
improvements of the numerical model will
require the modelling of the flow in a permeable
core (e.g., SULISZ, 1985) as well as the predic-
tion of the slope profile change with time which
are normally measured in experiments. In addi-
tion, it is desirable to extend the numerical
model to account for the variations of the inci-
dent waves and structure geometry along the
alignment of a breakwater, although computa-
tional efforts will increase considerably.
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APPENDIX A. FINITE DIFFERENCE
METHOD

Eqs. 9 and 10 are combined and expressed in
the following vector form:
aU oF

—+—+G=0
ot ax

(A.1)

o-[8]r-|

G = gh + flulu + puyq,
PAu

mu + 0,5h’]

m (A.2)

where m = uh is the normalized volume flux per
unit width. The vectors F and G depend on the
vector U. The vector G includes the permeabil-
ity effects through q, and u,.

Eq. (A.1) is discretized using a finite differ-
ence grid of constant space size Ax and constant
time step At based on an explicit dissipative
Lax-Wendroff method (e.g., RICHTMEYER and
MORTON, 1967). In the following, the known
quantities at the node located at x=(j—1)Ax
(j=1,2,...,8) and at the time t=(n—-1)At are
indicated by the subscript j without a super-
script where the integer s indicates the wet
node next to the moving waterline at
t=(n-1)At. The unknown quantities at the
node j and at the time t =nAt are denoted by the
subscript j with the superscript * where the
asterisk indicates the gquantities at the next
time level. The values of U,;* and U* for j =
(s—1) are computed using the seaward and
landward boundary conditions, respectively.
The values of Uj* for j=2,3,...,(s - 2) are com-
puted using the known values of U;_,, U; and
U,., at the time t= (n—1)At

1
U;':U,—?\[E(F)-1‘FJ—I)+AXGJ] (A.3)

N P
+ E(g,ugj_l—AijHDJ—E(M) P,
where A = At/Ax. The lengthy expressions of g,
S, and D, are the same as those given in the
paper of KOBAYASHI et al. (1987) where the
subscript indicating the time level is omitted in
this paper for brevity. The vector g, contains the
permeability effects through the vector G,,
whereas the vectors S, and D, are independent
of the permeability effects. The damping coef-
ficients in the expression D, are taken to be
unity for the present computation.

The last term in Eq. (A.3) vanishes for the
impermeable slope with p=0. The vector P is
defined as

p- 2fh 'lul(u - uy) q, — 6g, + olu,qy)/at
aq/at
(A.4)

P, in Eq. (A.3) is the value of P at the node j and
at the time t=(n— 1)At. The computation of P,
requires the values of d(u,q,)/dt and dq,/dt at the
node j and at the time t=(n—1)At. In order to
avoid iterations, these values are computed
using backward-difference schemes based on
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the values of u, and g, at the time t=(n—2)At
and t=(n-1)At.

The numerical stability criterion for Eq. (A.3)
for the case of p=0 given by KOBAYASHI et al.
(1987) is used as a first guideline to estimate
the upper limit of At/Ax for numerically stable
computation. This criterion requires that the
wet node next to the waterline at t =nAt should
be located at j=(s— 1), sor (s +1). The waterline
computation explained in Appendix B is often
found to require a smaller value of At/Ax for the
numerically stable computation of the water-
line movement. For the computed results pre-
gented in this paper, the value of Ax is taken to
be of the order of 0.01 on the basis of the desir-
able spatial resolution of 100 grid spacings
between the toe and initial waterline on the
slope. The value of At required for the numeri-
cal stability is found to be of the order of 0.0003.

APPENDIX B. PROCEDURE FOR
WATERLINE COMPUTATION

The numerical procedure dealing with the
moving waterline on the rough permeable slope
is given in detail since the moving waterline
tends to cause numerical instability. The pro-
cedure is somewhat intuitive and could be
improved in the future, In the following, the
computational waterline is located at h=35. The
subscript j indicates the nodal location, while
the superscript * denotes the unknown quan-
tities at the next time level, t=nAt.

(1) Compute h,,,=(2h,—h,_,),
(2u,~u,_,),and m,,,=h,,,u,,, where the
integer s indicates the wet node next to
the moving waterline at t=(n— 1)At.
Compute h} and m} at t=nAt for j=(s—1)
and s, using Eq. (A.3) without the damping
term D, since the water depth h can be very
small at these nodes.

If h*_, < &, the computation is stopped
since the waterline should not move more
than Ax because of the numerical stability
of the adopted explicit method.

Ifh* > h*_,, use h* = (2h%_, — h*_,), u?
= (2u?_, — u¥_,), and m} = h’u} so that
the water depth near the waterline
decreases landward.

(6) If h* < 8, set s* = (s—1) and return where
the interger s* indicates the wet node next
to the waterline at t =nAt.

(6) If h* > &, compute h¥,, = (2h* — h¥_)),

Ugsy =

uy,, = (2u}f - ut_)), and m}., = h},,
uk. ..

(7) If h*_,, < &, set s* = s and return.

(8) If h*,, > 8, compute U** at the time
t=(n+1)At using Eq. (A.3) without the
damping term where Ufand U, in Eq. (A.3)
are replaced by U and U, respectively.
Improve the linearly extrapolated values
in step 6 using the following finite differ-
ence equations based on Eqs. 9 and 10
with f=0:

Ax
m’:+l = m:—l - E (h:k*

—h,) — 2pAx(q,)%

., | Ax
u¥ =t = e [Ki (u**,

—u) + h*,, — h*_, + 2AxB_]

+ 2pAx(gy)*, (m*) " [u*, — (u,)*]
(B.3)

h¥,, = m¥, /u¥,

where (q,)* and (u,)* are computed using
Eqgs. 13, 15 and 16. The upper limit of the
absolute values of (u¥) ' and (m¥ ' in Eq.
(B.2) is taken as & ' to avoid the divisions
by the very small values.

(9) If ju*,,| = 5, set s* = s and return.

(10) If h*,, = h* and h*_, = &, set s* = s and
return.

(11) If h*,., =h* and h*, , > §,sets* = (s+1)
and return.

(12) Ifh*,, > h* the linearly extrapolated val-
ues in step 6 are adopted instead of those
computed in step 8. Furthermore, set s* =
sifh*,, > h*and s* = (s+1)if h*,, < h¥
where h* ., is the adopted value given by
h:-*l = (2h} — hi_,).
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:. The numerical model presented in the accompanying paper of Kobayashi and Wurjanto (1990)
is used to compute the irregular wave motion on a rough permeable slope. The normally-inci-
dent irregular wave train characterized by its spectral density at the toe of the slope is gen-

e erated numerically for the six test runs for which the computed results based on the regular
w wave approximation have been presented in the accompanying paper. The computed critical
stability number for initiation of armor movement under the computed irregular wave motion

is shown to be in good agreement with the measured stability number corresponding to the start
of the damage. The comparison of the computed armor stability for the incident regular and
irregular waves indicates that the armor stability is reduced appreciably and varies less along
the slopes under the irregular wave action. On the other hand, the comparison between the
computed reflected wave spectrum and the specified incident wave spectrum indicates the reflec-
tion of Fourier components with longer periods and the dissipation of Fourier components with
shorter periods, while the average reflection coefficient increases with the increase of the surf
similarity parameter, The computed waterline oscillations are examined using spectral and
time series analyses. The computed spectra of the waterline oscillation show the noticeable low-
frequency components similar to low-frequency waves on beaches, which increase with the
decrease of the surf similarity parameter. The statistical analysis of individual wave run-up

heights indicates that the computed run-up distribution follows the Rayleigh distribution fairly
agreement with the empirical formula based on irregular wave run-up tests,

ADDITIONAL INDEX WORDS: [rregular waves, reflection, run-up, armor units, breakwaters.

INTRODUCTION difficulties associated with the precise control
of the wave paddle and the measurements of the
detailed hydrodynamics and armor response.
Use is made of the numerical model presented
in the accompanying paper of KOBAYASHI and
WURJANTO (1990). This numerical model pre-

dicts the flow and armor stability on a rough

Design of coastal structures protected with
armor units against wind waves needs to
account for the randomness of incident waves,
although realistic sea states are not defined
precisely at present (MANSARD, 1988). It is

already standard to perform hydraulic model
tests using random waves generated by wave
paddles (GODA, 1985). However, the reproduc-
tion of the specified sea state in a wave flume
requires sophisticated techniques and is not
free of difficulties especially in shallow water
(MANSARD, 1988). On the other hand, numer-
ical simulation of random waves provides an
indispensable tool for studies of random waves
and their action on structures (GODA, 1985).
The first attempt is made in this paper to com-
pute the irregular wave motion and resulting
armor response on a rough permeable slope
using the incident irregular wave train gener-
ated numerically. This approach bypasses the

90036 received June 1989; accepled in revision September 1989,

I l
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l well for some of the six test runs. The computed maximum wave run-up is also shown to be in

permeable slope as well as the flow in a perme-
able underlayer for a normally incident wave
train. The present numerical model is limited
to the rough permeable slope with an imperme-
able core and with no slope profile change with
time. In the accompanying paper, six test runs
have been selected from the extensive data of
VAN DER MEER (1988). These runs corre-
sponded to the start of the damage to rock
slopes under irregular wave action. Computa-
tion has been made for the six test runs by
approximating the incident irregular wave
train characterized by its significant wave
height and average period by the regular wave
train with the same height and period. The com-
puted results based on the regular wave approx-
imation have been presented and explained in
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the accompanying paper where the effects of the
permeable underlayer have been examined in
detail.

In this paper, the normally-incident irregular
wave train characterized by its spectral density
at the toe of the rough permeable slope is gen-
erated numerically for the same six test runs.
In the following, emphasis is placed on the
reflected irregular wave train, the irregular
waterline oscillation on the slope and the armor
stability under the irregular wave action. The
flow field on the rough slope and in the perme-
able underlayer computed for the incident
irregular wave train is qualitatively similar to
the computed flow field for the incident regular
wave train presented in the accompanying
paper. The effects of incident random waves on
the wave reflection, run-up and armor stability
are examined in detail by comparing the com-
puted results for the regular and irregular
waves with the measurements on these quan-
tities. The computed critical stability number
for initiation of armor movement under the
computed irregular wave motion is shown to be
in good agreement with the measured stability
number corresponding to the start of the dam-
age. This is a significant improvement as com-
pared to the computed critical stability number
based on the regular wave approximation which
is appreciably greater than the measured sta-
bility number. The details of the wave reflec-
tion and run-up on the rough permeable slope
are also found to be quite different for the inci-
dent regular and irregular waves, although the
overall trend is similar.

INCIDENT IRREGULAR WAVE TRAINS

The computation performed in this paper is
the same as that presented in the accompanying
paper of KOBAYASHI and WURJANTO (1990)
except for the normalized incident wave train,
m, = m//H', specified as a function of the nor-
malized time, t = t'/T", at the toe of the rough
permeable slope where the prime indicates the
dimensional variables. The representative
wave height and period denoted by H' and T',
respectively, are used for the normalization of
the dimensional variables, For the comparison
of the numerical model with the data of VAN
DER MEER (1988), use has been made of H' =
H, and T' = T,' since the significant wave
height, H/, and the average period of zero

upcrossings, T/, were given for each test run.
For the regular wave approximation used in the
accompanying paper, the normalized incident
wave train m,(t) with unit wave height and
period for 0 = t < 256 has been specified using
Stokes second-order wave theory.

The incident random waves for the six test
runs selected from the tabulated data of VAN
DER MEER (1988) were generated in a wave
flume using the Pierson-Moskowitz spectrum
(e.g., BOUWS et al., 1985). The normalized
Pierson-Moskowitz spectrum used herein is
expressed as

S(f) = 5m, T, " f-° exp [ = % (Tpf.)"] (1)

with

L= BT 3T, = T (2)

P

m, =L S,(f.)df.

where S, = spectral density of the incident ran-
dom waves normalized by T'H'?; f. = normal-
ized frequency; T, = normalized spectral peak
period; and m, = zeroth moment of S,(f.). The
normalized frequency in this paper is denoted
by f. since the normalized friction factor is
denoted by f in the accompanying paper.

The normalized incident irregular wave train
n:(t) for given S,(f.) may be simulated using the
following random phase scheme (e.g., ELGAR et
al., 1985)

N
ni(t) = X C, cos(2mnAf.t

n=1

+ &) forO=st=t,, 3

Af. = (t,.0) " 3 C, = [2Af S(naAfI]"™ (4

where t,,,, = normalized duration of the simu-
lation of m,(t); Af. = frequency band width; C,
= Fourier amplitudes; ¢, = random phase
angles distributed uniformly in [0, 2w]; and N
= number of spectral components. Eq. 3 rep-
resents a Gaussian sea only in the limit N — =,
ELGAR et al. (1985) compared this random
phase scheme with a random coefficient scheme
and found no significant differences in wave
group statistics for a sufficiently larger number
of spectral components. Use is made of N =
4096 and t,,,, = 256 in the following computa-
tion where t,,, = 256 corresponding to 256
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individual waves may be sufficient to keep the
sampling variability of the wave statistics
below an acceptable level (GODA, 1985).

For the spectrum specified by Eq. 1 with given
m, and T,, the Fourier amplitudes C, are com-
puted using Eq. 4 and the random phases &, are
produced by a numerical random number gen-
erator. An inverse Fast Fourier transform
based on Eq. 3 yields the time series n,(t) with
the sampling rate At = (t,,,,/2N) = Yaafor0 < t
< t,.. = 256. The computed irregular wave
train m,(t) is then analyzed using a zero upcross-
ing method (e.g., GODA, 1985) to find the nor-
malized significant wave height, H, = H!/H',
and the normalized average period of the zero
upcrossings, T,, = T/T'. It is required that H,
= 1and T,, = 1 since the height H' and the
period T' used for the normalization of the
dimensional variables are taken as H' = H! and
T' = T!. An iteration procedure starting from
H,, = 4vVm, = 1 and T, = 1.25 is used to sat-
isfy the requirements of H, = 1 and T,, = 1
where VAN DER MEER (1988) indicated that
H,, = H, and T, = 1.0-1.5. First, a set of the
random phases ¢, in Eq. 3 is selected by speci-
fying the seed number for the numerical ran-
dom number generator. Then, T, and H,, =
4Vm, are varied until T,, = 1and H, = 1 within
the error of 0.001. It should be noted that dif-
ferent sets of the random phases yield different
values of H,,, and T, satisfying the require-
ments of H, = 1 and T,, = 1. In theory, there
are an infinite number of time series v,(t) with
H, = 1and T,, = 1 for a specified spectral form.
As a result, the incident irregular wave train
specified in the subsequent computation for
each test run is not exactly the same as that
generated in a wave flume by VAN DER MEER
(1988).

Table 1 lists the values of H' = H! and T' =
T, together with the cotangent of the slope
angle 8’ and the surf similarity parameter, £ =
T'tan6’(2wH'/g) " for the six test runs selected
from the tabulated data of VAN DER MEER
(1988). The computed results based on the inci-
dent random wave train computed using Eqs.
1-4 are denoted by run R1 to R6, whereas the
corresponding results based on the monochro-
matic approximation have been denoted by run
M1 to M6 in the accompanying paper. The val-
ues of H,, = 4Vm, and T, for each run listed
in Table 1 specify the PIERSON-MOSKOWITZ
spectrum expressed by Eq. 1. Runs R2a and R2b

Table 1. Six test runs compared with numerical model.

Run H' b
No. cotd’ (em)  (sec) Mins s i &

R1 6 10.08 2,63 1.035
R2a 6 7.7 3.15 1.048
R2b 7756 3.15 1.053
R3 B.16 3.22 1.038
R4 892 3.13 1.060
R5 798 269 1.050
R6 798 3.11 1.055

correspond to run R2 and are intended to exam-
ine the effects of the variability of the time
series m,(t) with the same significant wave
height and average period generated numeri-
cally from the PIERSON-MOSKOWITZ spec-
trum, although a much larger number of the
simulated time series are required to perform a
statistical analysis of the variability caused by
different sets of the random phases &, in Eq. 3.
Table 1 also lists the values of the surf similar-
ity parameter, §, = ngf{Hmn)l’, based on the
spectral parameters H,, and T, where ¢, = 1.4
£ since H,, = 1.05 and T, = 1.4 as listed in
Table 1. The other important dimensionless
parameters associated with the numerical
model described in the accompanying paper of
KOBAYASHI and WURJANTO (1990) remain
the same since use has been made of H' = H]
and T' = T, for the computation based on the
monochromatic wave approximation. It is noted
that d, = 7.9-10.3 for the test runs listed in
Table 1 where d, = d{/H' is the normalized
water depth below the still water level at the
toe of the rough permeable slope. The assump-
tions of linearity and random phase at the toe
of the slope employed in Eqs. 3 and 4 may be
reasonable for these runs with d, = 7.9-10.3,
although the ocean waves in shallower water
depth may show marked departures from the
linear simulations (ELGAR et al., 1984).
Figure 1 shows the incident irregular wave
train n,(t) for 0 = t = 256 specified at the toe of
the rough permeable slope for run R3 where 7,
= 0 with the overbar indicating the time aver-
aging for 0 = t =< 256. In the following, the com-
puted results for run R3 using the incident
irregular wave train n,(t) shown in Figure 1 are
presented in detail as a typical run and may be
compared with those for run M3 presented in
the accompanying paper. The numerical model
of KOBAYASHI and WURJANTO (1990) pre-
dicts the nonlinear irregular wave motion and
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Figure 1. Incident irregular wave train m;(t) for 0 = t = 256
specified as input to numerical model for run R3.

Ny o WMW\ANW
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Figure 2. Computed reflected wave train n,(t) for 0 = t = 256
at toe of rough permeable slope for run R3.

the hydraulic stability of armor units on the
specified rough permeable slope in the time
domain. As a result, the numerical model is
deterministic for the specified incident wave
train m,(t) which can be regular or irregular.
The probabilistic nature of the problem arises
from the variability of the specified incident
wave trains which is considered by runs R2a
and R2b only. Furthermore, the irregularities
and randomness associated with the rough
permeable slope are not considered in this
paper.

REFLECTED IRREGULAR WAVE
TRAINS

Figure 2 shows the computed reflected wave
train m,(t) for 0 = t = 256 normalized as n, =
n./H' at the toe of the rough permeable slope for
run R3. The normalized free surface variation
1,(t) due to the waves reflected from the rough
permeable slope is irregular since the corre-
sponding incident wave train ,(t} shown in Fig-
ure 1 is irregular. The reflection coefficient r

based on the time series n,(t) and n,(t) is defined
as (KOBAYASHI and WURJANTO, 1990)

=1412
P = [(nr - ) (n?) ] (5)

where 1, = 0 and 7, is the difference between
the still water level and the mean water level
at the toe of the rough permeable slope. The
time averaging denoted by the overbar is per-
formed for 0 =< t < 256 since the transient dura-
tion starting from the initial conditions of no
wave motion on the rough permeable slope has
been found to last only for several wave periods
for the computed results based on the mono-
chromatic wave approximation presented in the
accompanying paper. The computed values of 1,
are essentially zero for all the runs with large
values of d, listed in Table 1. It may be noted
that the wave set-down with 3, < 0 would
become noticeable if the value of d, were much
smaller (KOBAYASHI et al., 1989). The com-
puted reflection coefficient using Eq.5isr =
0.424 for run R3 with £ = 3.52.
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Figure 3. Unsmoothed spectral densities of incident and
reflected waves, S,if-) and 8,(f.), respectively, for run R3 with
€ = 3.52 and run R6 with § = 6.88,

Figure 3 shows the unsmoothed spectral
densities of the incident and reflected waves
denoted by S,(f.) and S,(f.) with f. = normalized
frequency, respectively, for runs R3 and R6.
The incident wave spectrum S,(f.) for run R3 is
computed using a Fast Fourier transform from
the incident wave train 7,(t) shown in Figure 1
and is exactly the same as S;(f.) given by Eq. 1
with H,, = 1.038 and T, = 1.398 for run R3 as
listed in Table 1. The reflected wave spectrum
S,(f.) for run R3 with& = 3.52 is computed from
the reflected wave train n,(t) shown in Figure 2,
It is noted that the computed spectra in this
paper are not smoothed since the numerical
model is deterministic. The spectra S;(f.) and
S,(f.) for run R6 with £ = 6.88 computed in the
same manner are presented to show the effect
of the surf similarity parameter £ on the reflec-
tion coefficient function defined by [S,(f.)/S,(f.)]"
as a function of the frequency f.. Figure 3 indi-
cates the reflection of Fourier components with
longer periods and the dissipation of Fourier
components with shorter periods. Figure 3
together with the similar figures plotted for the

other runs shows that the reflection coefficient
function for given f. increases with the increase
of the surf similarity parameter £. The com-
puted variations of the reflection coefficient
function with respect to the frequency for dif-
ferent values of £ are consistent with the
observed selective wave reflection and dissipa-
tion on natural beaches (e.g., TATAVARTI et
al., 1988). It is noted that incoming low-fre-
quency waves are present on natural beaches
but are not included in the incident wave spec-
trum specified by Eq. 1. The computed reflected
wave spectra contain low-frequency wave com-
ponents which become discernible for run R1
with € = 1.72. The computed low-frequency
waves must be generated on the rough perme-
able slope and reflected from the slope. On the
other hand, the average reflection coefficient
may be defined as [(m,),/m,)"” where m, = zeroth
moment of S(f.) as defined in Eq. 2; and (m,), =
zeroth moment of S,(f.). The computed average
reflection coefficient is found to be virtually the
same as the reflection coefficient r defined by
Eq. 5 using the time series m,(t) and m,(t) for
each of the test runs listed in Table 1,

Figure 4 shows the computed irregular wave
reflection coefficient r as a function of the surf
similarity parameter & for run R1 to R6 where
the value of ¢ for each run is given in Table 1.
The computed values of r for runs R2a and R2b
with ¢ = 2.36 turn out to be the same and r =
0.227 for both runs. The computed temporal
variations of m,(t) and n,(t) for these two runs
appear to be fairly different but the computed
reflected wave spectra S,(f.) are very similar.
Figure 4 also shows the computed reflection
coefficient r based on the regular wave approx-
imation together with the empirical formula, r
= 1.35[1-exp(—0.071&)], presented in the
accompanying paper. Figure 4 suggests that the
approximation of the incident irregular wave
train by the regular wave train with the height
H, and the period T/ may underestimate the
reflection coefficient r especially if the surf sim-
ilarity parameter £ is small. Use of the spectral
peak period instead of the average wave period
was suggested by SEELIG (1983) to compare
the values of r measured for the regular and
irregular waves, However, any regular wave
approximation can not account for the selective
nature of wave reflection and dissipation dis-
cussed in relation to Figure 3.
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Figure 4. Computed reflection coefficients r for regular and irregular waves for each run with given surf similarity parameter

£

IRREGULAR WATERLINE
OSCILLATIONS

The computed waterline oscillation on the
rough permeable slope is expressed in terms of
the normalized waterline elevation, Z, = Z//H’',
above the still water level (SWL) where the nor-
malized instantaneous water depth equals &,
with 8, = 8//H'. The variations of Z, with
respect to the normalized time t for 8, = 0.1,0.5
and 1.0 cm are computed to examine the sen-
sitivity of Z, to the dimensional water depth &/
on the rough permeable slope.

Figures 5 and 6 show the computed waterline
elevation Z,(t) for 0 < t < 256 corresponding to
8. = 0.1 and 1.0 cm, respectively, for run R3. In
Figures 5 and 6, Z, = 0 corresponds to SWL.
During wave uprush, the water depth near the
tip of uprushing water varies rapidly along the
slope. During wave downrush, a thin layer of
water remains on the slope and the water depth
varies slowly along the slope (KOBAYASHI et
al., 1989). Consequently, the portions of Z,(t)
increasing with t for 8/ = 0.1 and 1.0 cm tend
to coincide, whereas the portion of Z,(t) decreas-
ing with t for 8/ = 1.0 cm decreases faster and
lower than the corresponding portion of Z,(t) for
5. = 0.1 cm. The crest elevation of Z(t) is not
very sensitive to 8 in the range 8, = 0.1-1.0 cm
but the trough elevation of Z,(t) is very sensi-
tive to 8. (KOBAYASHI and WURJANTO,
1990).

Run R3 (6,=0.1cm)

Figure 5. Computed waterline elevation Z,(t) above SWL of
0.1 cm water depth on rough permeable slope for run R3.

The time averaged value of the normalized
waterline elevation Z,(t) for 0 = t = 256 is
denoted by Z, which is the normalized wave
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Run R3 (4;=1cm)

Figure 6. Computed waterline elevation Z,(t) above SWL of
1.0 em water depth on rough permeable slope for run R3.

setup on the rough permeable slope. The com-
puted values of Z, for 3, = 0.1, 0.5 and 1.0 cm
together with the corresponding value of £ are
tabulated for each run in Table 2. The values of
Z, for runs R2a and R2b are almost the same,
although the temporal variations of Z,(t) appear
to be fairly different. The normalized wave
setup Z, for given £ decreases with the increase
of 8. since the trough elevation of Z.(t) becomes
lower with the increase of 5. The computed val-
ues of Z, for given 8, remain approximately the

Table 2. Computed wave semp?, on rough permeable slope
for b, = 0.1, 0.5 and 1.0 cm.

Run i
No. E 8, = 0.lem &, = 0.5em 6, = 1.0em

R1 0.61 0.45 0.36
R2a 0.64 0.43 0.33
R2b 0.66 0.44 0.34
R3 0.62 0.35 0.26
R4 0.56 0.28 0.19
RS 0.40 0.16 0.11
R6 0.33 0.12 0.08

T T T S S e
Run R3

0.0 -
0.0 0.6 . 1.6

fo

Figure 7. Unsmoothed spectral density S,(f:) of waterline
oscillation with 8, = 0.1 and 1.0 em for run R3 with £ = 3.52.

same for 1.72 < ¢ < 3.52 and decrease with the
increase of £ for £ = 3.52. This trend is similar
to the computed regular wave setup on a smooth
slope presented by KOBAYASHI et al. (1989).
The relatively large wave setup on the rough
permeable slope may cause the increase of the
mean water level inside a porous breakwater,
although the present numerical model is based
on the assumption of an impermeable core.
Figure 7 shows the unsmoothed spectral den-
sity, S,(f.), computed from the time series [Z.(t)
~ Zfor0 =t =256 corresponding to &, = 0.1
and 1.0 cm for run R3 with ¢ = 3.52. Figure 7
indicates the presence of low-frequency wave
components in the waterline oscillation. The
low-frequency wave components are larger for
5 = 0.1 cm than for 3, = 1.0 cm. This is also
apparent in Figures 5 and 6 where the degree
of grouping of the waterline oscillation appears
to be greater for 3, = 0.1 cm than for 3, = 1.0
em. In order to show the effect of the surf sim-
ilarity parameter £ on the spectral density S,(f.)
for 3. = 0.1 and 1.0 cm, Figure 8 shows the cor-
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Figure 8. Unsmoothed spectral density 8,(f.) of waterline
oscillation with 8, = 0.1 and 1.0 cm for run R6 with £ = 6.88.

Run R1

0.0

Figure 9. Unsmoothed spectral density S;(f-) of waterline
oscillation with 8, = 0.1 and 1.0 cm for run R1 with £ = 1.72.

responding results for run R6 with ¢ = 6.88.
The incident wave spectral density S,(f.) for
runs R3 and R6 shown in Figure 3 indicates the
frequency band over which the incident wave
energy is distributed. Figures 7 and 8 together
with the similar figures plotted for the other
runs indicate that the low-frequency wave com-
ponents of the spectral density S,(f.) for given
%' increase with the decrease of & The low-fre-
quency wave components of the spectral density
S,(f.) for run R1 with £ = 1.72 are dominant for
5 = 0.1 cm and as large as the components
associated with the incident wave frequency
band for 8’ = 1.0 cm as shown in Figure 9. The
computed spectral densities S,(f.) for runs R2a
and R2b with £ = 2.36 are similar. This sug-
gests that the variability caused by the differ-
ent sets of the random phases ¢, in Eq. 3 may
be smaller than the variability due to the dif-
ferent values of £. The computed low-frequency
wave oscillations on the rough permeable slope
appear to be related to the low-frequency swash
oscillations on beaches (e.g., HOLMAN and

SALLENGER, 1985; KOBAYASHI et al., 1988).
In order to elucidate the generation and reflec-
tion processes of the low-frequency wave com-
ponents, the variations of the incident-fre-
quency and low-frequency wave motions along
the slope will need to be examined in detail. For
example, the low-frequency wave components
of the reflected wave spectra S,(f.) shown in Fig-
ure 3 are much smaller than those associated
with 8,(f.) shown in Figures 7 and 8. _

The computed time series [Z,(t) — Z,] for 0 =
t = 256 are also analyzed using the zero
upcrossing method which is normally used for
the time series analysis of the free surface oscil-
lation (e.g., GODA, 1985). Since wave run-down
is sensitive to 8/ and hard to define quantita-
tively, the following analysis is limited to wave
run-up. The maximum value of Z,(t) between
the two adjacent zero upcrossings in the time
series [Z.(t) — Z,] for 0 = t < 256 is denoted by
R, withj = 1,2, ..., N, where (N, + 1) is the
number of the zero upcrossings. The average
period t, of the two adjacent zero upcrossings is
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Table 3. Computed l average period E of zero upcrossings in
time series [Z,(t) — Z.) with 8, =01,05and 1.0 cm.

t,
Run :
No. b; = O.lem &, = 0.5cm 8, = 1.0cm

R1 2.23 1.51 1.33
R2a 1.66 1.23 1.15
R2b 1.73 1.29 1.23
R3 1.38 1.15 1.12
R4 1.19 1.06 1.04
R5 1.02 0.95 0.96
R6 0.95 0.93 0.94

given by t, = 256/N,. The individual run-up
heights R; above SWL are ranked in the
descending order. The maximum run-up R,,,, is
defined as the run-up height corresponding to
the first rank. The significant run-up R, is
defined as the average of the highest one-third
run-up heights. The exceedance probability P
corresponding to the run-up height R, of the n-
th rank is estimated by P = n/(N, + 1). If the
probability distribution of run-up heights fol-
lows the Rayleigh distribution (BATTJES,
1971; LOSADA and GIMENEZ-CURTO, 1981),
the exceedance probability P associated with R,
is given by

P =exp[-2 (R/R,)] (6)

which yields P = 1 for R, = 0. On the other
hand, R, > Z, because of the definition of the
run-up height R, adopted in this paper. For the
analysis of extreme value statistics for wave
run-up on a natural beach, HOLMAN (1986)
defined the run-up as a local maximum of the
measured instantaneous shoreline elevation.
This definition could include secondary crests
between the zero upcrossings as wave run-up,
although his definition diagram did not indi-
cate them. For the present definition of R,, the
Rayleigh distribution expressed by Eq. 6 will
not fit the computed run-up distribution in the
vicinity of P = 1ifthe wave set-up Z, is not neg-
ligible. _

Table 3 shows the computed average period t,
of the two adjacent zero upcrossings in the time
series [Z (t) — Z,] with 8, =0.1,0.5and 1.0 cm
for each run. It is noted that the normalized
unit time corresponds to the average period of
the time series M.(t). The average period t,
increases with the decrease of £ and 8. This
trend appears to be correlated to the increase of

Run R3

—— Rayleigh
- Computed

0.5

—— Rayleigh
» Computed

T
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0.5 1.0
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Figure 10. Computed exceedance probability P for run R3 of
wave run-up Ry normalized by significant run-up R, for b, -
0.1 and 1.0 em as compared with Rayleigh distribution.

the low-frequency wave components of S,(f.)
with the decrease of ¢ and 8.

Figure 10 shows the computed exceedance
probability P as a function of R,/R, together
with the Rayleigh distrihu_t_iun given by Eq. #
for the time series [Z,(t) ~ Z,]with 8! = 0.1 and
1.0 em for run R3. The computed run-up distr
bution follows the Rayleigh distribution fairly
well for run R3. The agreement is also good for
run R6. The agreement appears to be the worst
for run R2a as shown in Figure 11. The differ-
ence between the computed exceedance proba-
bilities for runs R2a and R2b becomes notice-
able for the computed points corresponding to
the rank n = 1,2, and 3. Extreme wave run-up
is expected to be affected by different sets of the
randoem phases ¢, as well as the simulation
duration t,,, in Eq. 3. Comment may be made
on the hypothesis of equivalency which waa
used by BATTJES (1971) to derive the Rayleigh
run-up distribution for waves breaking on
slopes. This hypothesis assumes that the irreg-
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Figure 11. Computed exceedance probability P for run R2a of
normalized wave run-up Ry/R, for 6, = 0.1 and 1.0 cm as com-
pared with Rayleigh distribution.

ular wave run-up distribution can be found by
assigning to each individual wave the run-up
value of a regular wave train of corresponding
height and period. This hypothesis does not
account for the low-frequency wave components
as shown in Figures 7-9 and is more applicable
to surging waves on slopes with large values of
£. The comparisons made for the runs with 1.72
= ¢ < 6.88 computed herein suggest that the
Rayleigh distribution might be used for a pre-
liminary prediction of the run-up distribution
on a rough permeable uniform slope because of
its simplicity rather than its accuracy.

In order to apply the Rayleigh distribution
given by Eq. 6, the significant run-up R, defined
as the average of the highest one-third run-up
heights needs to be predicted. Figure 12 shows
the computed significant run-up R, with &/ =
1.0 cm as a function of the surf similarity
parameter ¢ for the runs listed in Table 1. Fig-
ure 12 also shows the computed run-up based on
the regular wave approximation for each run

presented in the accompanying paper as well as
the empirical formula, R, = 1.13 &/(1 + 0.506¢),
which was originally proposed by AHRENS and
MCCARTNEY (1975) for regular wave run-up
on riprap slopes. In Figure 12, R, = 1.17 and
1.22 for runs R2a and R2b, respectively,
whereas the corresponding regular wave run-
up is 1.16. The significant run-up and regular
wave run-up are also essentially the same for
the computed points with £ = 3.52. Figure 12
indicates that the significant run-up R, nor-
malized by the significant wave height H) may
be expressed empirically as a function of the
surf similarity parameter ¢ based on the signif-
icant wave height and the average period T of
the incident irregular wave train. Further-
more, the run-up computed for the regular wave
train with the height H, and the period T is in
reasonable agreement with the corresponding
significant run-up. However, a different empir-
ical formula may also be used to predict R,. Fig-
ure 13 shows the computed significant run-up
R, with 8/ = 0.1 and 1.0 cm as compared with
the empirical formula, R, = 1.13 §,/(1 +
0.506¢,,), where £, is the surf similarity param-
eter based on the spectral parameters H,,, and
T, listed in Table 1. Figure 13 shows that R, is
not sensitive to 8, in the range 8 = 0.1-1.0 cm.

Figure 14 shows the computed maximum run-
up R,... defined as the maximum elevation of
the waterline elevation Z,(t) with 8] = 0.1 and
1.0 em for the computation duration 0 = t < 256
as compared with the empirical formula based
on the spectral parameters, R_,,/H,, = 1.022
EJ/(1 + 0.247 £,), which was proposed by
AHRENS and HEIMBAUGH (1988) on the
basis of small-scale tests on irregular wave run-
up on riprap revetments. The maximum run-up
in these tests was based on a 256 sec test obser-
vation, where an experienced observer meas-
ured the extreme excursion of green water. The
spectral peak periods for these tests were in the
range T) = 1.02-4.74 sec. The test durations
are hence not too different from the computa-
tion duration. The riprap revetments used in
these tests appear to be similar to the test struc-
tures with the impermeable core used by VAN
DER MEER (1988) for which the present com-
putation is made. The computed results pre-
sented in the accompanying paper have indi-
cated that wave run-up on a rough permeable
slope with an impermeable core is not very sen-
sitive to the detailed slope characteristics. As a
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Figure 12. Computed significant run-up R, with &,
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each run as compared with an empirical formula based

result, the comparison of the computed maxi-
mum run-up R,,. with this empirical formula
is justified except that the incident random
wave spectra used in the tests were not speci-
fied. The computed maximum run-up is not sen-
sitive to the physical water depth 8! used to
define the run-up, indicating that the maximum
run-up observed visually should be sufficiently
accurate. The computed points shown in Figure
14 appear to be within the scattered data points

presented by AHRENS and HEIMBAUGH
(1988). The difference between the computed
points for run R2a with £, = 3.16 and run R2b
with § = 3.19 implies the variability of R,
caused by the different sets of the random
phases ¢, in Eq. 3, although a much larger
number of the computed values will be required
for a statistical analysis of the variability.
Alternatively, it may be suggested that the
accurate deterministic prediction of the maxi-
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Figure 14. Computed maximum run-up Rupax with 8, = 0.1 and 1.0 ¢m for each run as compared with the empirical formula of

Ahrens and Heimbaugh (1988).

mum wave run-up will require the information
on the phase angles ¢, which are deterministic
for each run.

ARMOR STABILITY UNDER
IRREGULAR WAVE ACTION

In the accompanying paper of KOBAYASHI
and WURJANTO (1990), the hydraulic stabil-
ity condition against sliding or rolling of an
armor unit has been expressed as

i

va
N, = H' (-1 (%) = Ngltz) (7

where N, = stability number, H' = incident
significant wave height; s = specific density of
the armor unit; p = fluid density; W' = median
mass of the armor units; and Ny = armor sta-
bility function varying with the normalized
time t and the normalized elevation, z = z'/H',
indicating the location of the armor unit along
the uniform slope. The dimensional vertical
coordinate z' has been taken to be positive
upward with z' = 0 at SWL. The normalized
vertical coordinate z instead of the normalized
horizontal coordinate x is used in the following
to indicate the location of the armor unit on the
slope relative to SWL. The expression of Ny as
a function of the normalized fluid velocity and
acceleration has been given in the accompany-

ing paper where the input parameters for the
computation of the armor stability have been
specified.

For each of the runs listed in Table 1, the
armor stability function Ny is computed as a
function of t for 8 < t < 256 and as a function
of z from the toe of the slope to the point above
the maximum run-up. The duration0 <t < 8 is
excluded partly because the transient wave
motion during 0 <t < 8 might cause the min-
imum stability of armor units and partly
because the computed temporal variation of N
at given z is analyzed in the time domain only,
eliminating the requirement that the number
of data points should be a power of 2 for an effi-
cient Fast Fourier transform (e.g., GODA,
1985).

Figures 15, 16 and 17 show the computed
temporal variation of the armor stability func-
tion Ng(t,z) for8 <t < 256atz = —3.24, —1.67
and —0.10, respectively, for run R3. The sta-
bility number for run R3 is N, = 1.39. The
movement of the armor unit located at given z
will occur when Ng(t,z) becomes smaller than
N,. Comparing the temporal variations of Ny
with the incident irregular wave train m;(t)
for run R3 shown in Figure 1, it is possible to
quantify the response of armor units under
various incident wave sequences. The var-
ious sequences of waves which may cause
severe conditions on a breakwater were
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Figure 15. Computed temporal variation of armor stability
function Ng(t,z) for 8 =t = 266 atz = -3.24 for run R3.
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Figure 16. Computed temporal variation of armor stability
function Ngit,z) for 8 = t = 256 at z = —1.67 for run R3.

described qualitatively by GUNBAK and
BRUUN (1979). The armor stability function
Npatz = —3.24, —1.67 and —0.10 below SWL
becomes the minimum at t = 156.38, 156.35
and 155.69, respectively, as may be read from
Figures 15-17. This indicates that the mini-
mum stability of armor units at these locations
ig caused by the downrushing water on the slope
resulted from the same sequence of waves. Cor-
respondingly, the incident irregular wave train
m,(t) shown in Figure 1 exhibits the high crest
followed by the deep trough in the vicinity of t
— 156 where the wave travel time from the toe
of the slope is relatively small for run R3 as
may be inferred by comparing the temporal var-
iations of m,(t) and Z,(t) shown in Figures 1, 5
and 6. A careful examination of Figures 15-17
in light of Figure 1 suggests that it is not
always easy to identify the incident wave group
or sequence corresponding to the small values
of Ny.. The figures similar to Figures 15-17 are
plotted for the other runs and compared with
the corresponding incident irregular wave
trains. The comparisons made for the other

runs indicate that the incident wave group or
sequence causing the minimum value of Ny at
given z is variable. This variability may partly
be resulted from the presence of the low-fre-
quency wave components on the rough perme-
able slope since the low-frequency waves may
respond to a larger group of incident waves.
Figure 18 shows the spatial variation of the
local stability number N,.(z) for run R3 where
N,.(z) is defined as the minimum value of
Ng(t,z) at given z during 8 < t =< 256. Figure 18
also shows the corresponding spatial variation
of N,.(z) based on the regular wave approxi-
mation. The spatial variation of N,,(z) com-
puted for the irregular and regular waves for
the other runs are similar to those shown in
Figure 18. As a result, the approximation of the
incident irregular wave train by the regular
wave train whose height and period are taken
as the significant wave height and average
period results in the overestimation of the
armor stability especially in the regionsz = —2
and z = 0. The weak variation of N, along the
slope for the incident irregular wave train may
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Figure 17. Computed temporal variation of armor stability
function Ng(t,z) for 8 =t = 256 atz = —0.10 for run R3.

not be surprising since the location of the small
armor stability moves along the slope under the
irregular wave action.

S R S i e i S
15

Run R3
Regular
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Figure 18. Computed spatial variations of local stability
number N..(z) under irregular and regular wave action for run

R3.

The local stability number N,, may be used to
estimate whether the armor unit at given loca-
tion will move or not under the specified irreg-
ular wave action. After the initiation of armor
movement occurs, the local stability number
N,, alone will not indicate the intensity, fre-
quency and duration of the armor movement.
For example, the minimum value of N,, in Fig-
ure 18 is N,, = 1.15 occurring at z = —3.24,
whereas N,, = 1.43 and 2.18 atz = —1.67 and
—0.10, respectively. On the other hand, N, =
1.39 for run R3. In Figure 18, N,, < N, for
—8.97 < z < —1.80. Comparison of Figures 15,
16 and 17 indicates that the armor unit at z =
—~1.67 is exposed to the severe wave action
more frequently than those located at z =
—3.24 and —0.10. This suggests that the move-
ment of armor units for run R3 will occur in the
region —3.97 <z < —1.80 and will be more fre-
quent in the region —3.24 <z < —1.80 than at
the location z = —3.24 of the minimum stabil-
ity. The simplified model for the sliding motion
of individual armor units along the slope pro-
posed by KOBAYASHI and OTTA (1987) could
be used to predict the displacement of armor
units. However, this model does not predict the
slope profile change with time which was meas-
ured by VAN DER MEER (1988).

Finally, the computed critical stability num-
ber N, defined as the minimum value of the
local stability number N,,(z) varying along the
slope is compared with the stability number N,
for the six runs selected from the extensive data
of VAN DER MEER (1988). These runs corre-
sponded to the start of the damage to the spec-
ified primary cover layer under the action of
1000 waves of the incident irregular wave train
as discussed in the accompanying paper. Since
N,.(z) does not vary much over the wide region
along the slope as shown in Figure 18, the crit-
ical stability number N, may be used as a cri-
terion for the initiation of armor movement.
Furthermore, the computed value of N,. may be
assumed to correspond to the stability number
N, for the start of the damage since the present
stability analysis does not account for armor
units placed in unstable positions at the com-
pletion of the tested riprap slope. The difference
between the value of N,. computed for 8 =t =
256 and that for 8 < t = 1008 is expected to be
small on the basis of the empirical formula of
VAN DER MEER (1988) as well as the sam-
pling duration recommended by GODA (1985)
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to reduce the sampling variability of the wave
statistics.

Figure 19 shows the measured stability num-
ber N, as a function of the surf similarity
parameter ¢ for the six runs listed in Table 1.
Figure 19 also shows the computed critical sta-
bility number N, for the incident irregular
wave train with given H, and Tn generated
numerically using Eqs. 1-4 as well as for the
incident regular wave train with the height H;
and the period T.. The regular wave approxi-
mation results in the appreciable overestima-
tion of the armor stability especially for the
runs with smaller values of & The computed
critical stability number N, for the incident
irregular wave train is in good agreement with
the measured stability number N, whose vari-
ation with respect to £ is smaller than that asso-
ciated with the regular wave data of AHRENS
and MCCARTNEY (1975). This is probably
because the irregular wave motion on the slope
varies with time and along the slope much more
than the corresponding regular wave motion.
The differences between the measured value of
N, and the computed value of N, for the irreg-
ular wave are caused partly by the inherent dif-
ferences of these two stability numbers as dis-
cussed above and partly by the fact that the
incident irregular wave train used for the com-
putation is not exactly the same as that gen-
erated in a wave flume for each test. The latter
difference is related to the variability resulting

from different sets of the random phases ¢, in
Eq. 3. In Figure 19, N,. = 1.75 and 1.63 for runs
R2a and R2b with £ = 2.36. This small differ-
ence in the computed values of N,. indicates
that the simulation duration 8 < t < 256 may
be sufficient to keep the variability of the com-
puted critical stability number below an accept-
able level. However, the examination of the
detailed response of the armor stability func-
tion N to the incident irregular wave train for
runs R2a and R2b reveals that the sequences of
the incident waves causing the critical stability
number N, for runs R2a and R2b are fairly dif-
ferent. Consequently, the detailed response of
the armor units will be different for different
incident random waves with the same signifi-
cant wave height and average period.

The agreement between the computed critical
stability number N,, and the measured stability
number N, shown in Figure 19 is very encour-
aging in light of considerable efforts made by
VAN DER MEER (1988) to develop his empir-
ical formula, Figure 20 shows the comparison of
his empirical formula with the data used to
develop the formula. The data points shown in
Figure 20 are plotted from those listed in
Appendix I of his thesis, excluding the tests
with a 1:30 foreshore slope. Comparison of Fig-
ures 19 and 20 suggest that the numerical
model predicts the hydraulic stability of armor
units well, although no calibration of the
empirical parameters included in the numeri-
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Figure 19. Comparison of measured stability number with eritical stability number computed for incident irregular and regular
wave trains.
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Figure 20. Comparison between measured and empirical sta-
bility number N, for empirical formula of van der Meer (1988).

cal model is made in the present computation.
However, it should be cautioned that it appears
to be much easier to predict the stability num-
ber N, than the amount of the slope profile
change. Figure 21 shows the comparison of the
measured and empirical values of the dimen-
sionless damage level S based on the eroded
area of the slope. The empirical values of S are
calculated from the empirical formula of VAN
DER MEER (1988) using the measured values
of N,. The large scatter shown in Figure 21 sug-
gests that it will be difficult to predict the

40

s

Empirical S

Measured S

Figure 21. Comparison between measured and empirical
damage level 8 for empirical formula of van der Meer (1988).

eroded area for given wave, slope and armor
characteristics.

CONCLUSIONS

The numerical model for predicting the wave
motion and resulting armor stability on a rough
permeable slope proposed by KOBAYASHI and
WURJANTO (1990) is coupled with the stan-
dard numerical method for simulating incident
irregular wave trains for given spectral density
(GODA, 1985; MANSARD, 1988). The Pierson-
Moskowitz spectrum for fully developed wind
waves in deep water is used herein since this
spectrum was used for most of the extensive
tests performed by VAN DER MEER (1988) who
also examined the effects of the spectral shape
and the wave shoaling on the beach in front of
the test structure. For the application of the
present numerical model, it is more general to
use the TMA spectrum in finite water depth
proposed by BOUWS et al. (1985), although
additional input parameters are required to
describe the TMA spectrum. Furthermore, the
standard numerical method for simulating inci-
dent random wave trains for given spectral den-
sity may not reproduce wave group statistics in
very shallow water (ELGAR et al., 1984). In
that case, the incident irregular wave train
measured at the site or simulated using a non-
linear model needs to be specified as input to
the numerical model of KOBAYASHI and
WURJANTO (1990).

The coupled numerical model for the irregu-
lar wave motion and resulting armor stability
on a rough permeable slope is compared with
the six test runs corresponding to the start of
the damage to the riprap slope with an
impermeable core tested by VAN DER MEER
(1988). The computed critical stability number
for the initiation of armor movement is shown
to yield good agreement with the measured sta-
bility number for these runs. The difference
caused by the variability of incident irregular
wave trains with the same significant wave
height and average period is found to be small
for the limited computation made herein. The
numerical model is also shown to predict the
fairly detailed response of armor units which
varies along the slope as the incident irregular
wave train propagates on the slope. The accu-
racy of the predicted armor response can not be
assessed since measurements on the detailed
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armor response and corresponding flow field are
not available at present. The numerical model
needs to be expanded to predict the slope profile
change with time which was measured by VAN
DER MEER (1988). The accurate prediction of
the slope profile change appears to be much
more difficult in view of the results shown in
Figure 21.

The reflected wave trains and waterline oscil-
lations computed for the six test runs are exam-
ined using spectral and time series analysis
methods. The computed reflected wave spectra
indicate the selective wave reflection and dis-
sipation processes similar to those observed on
natural beaches except that the reflection of the
low frequency waves generated on the rough
permeable slope appears to be small. The aver-
age irregular wave reflection coefficient in-
creases with the increase of the surf similarity
parameter in the manner similar to the regular
wave reflection coefficient. On the other hand,
the computed spectral densities of the waterline
oscillations indicate the appreciable low-fre-
quency wave components for the runs with
small values of the surf similarity parameter.
The generation and reflection processes of the
low-frequency waves on the slope need to be
examined in detail to evaluate their influence
on irregular wave run-up. The time series
analysis of the waterline oscillations is shown
to yield the run-up distribution, significant
run-up and maximum run-up which are basi-
cally consistent with the limited available data
on irregular wave run-up. Detailed and accu-
rate measurements on the irregular wave
reflection and run-up on a rough permeable
slope are required in order to evaluate the accu-
racy of the predicted irregular wave reflection
and waterline oscillation.

In conclusion, a hybrid approach based on
empirical formulas, numerical models and
hydraulic model tests will improve our quanti-
tative understanding of the complicated inter-
action between incident irregular waves and
coastal structures protected with armor units.
The improved understanding will then lead to
more efficient and reliable design procedures.
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