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Abstract

The runup and reflection of a solitary wave are examined using a higher order Bound-
ary Element Method for the velocity potential, using the full nonlinear free surface bound-
ary conditions. The time integration is explicit and of second order in At. The solitary
waves are either numerically ezact solutions of the nonlinear potential problem, directly
introduced in the model, or approximate first-order waves generated by a numerical
piston wavemaker like in laboratory experiments. The transformation of the approxi-
mate waves are studied as they propagate down a numerical wave tank. Reflection on a
vertical wall of the waves generated both ways is studied and differences in runup and
pressure force analyzed. Values of runup, rundown, reflected wave, celerity, phase shift,
energy partition and pressure force of the ezact solitary waves are compared with other
numerical or analytical solutions. Results show, effects of order higher than 3rd in wave
height are becoming important for the highest waves. Comparisons are made for runup
and reflection from steep slopes (45°, 70°) with detailed measurements of solitary waves
generated by a piston wavemaker. Free surface elevations are found to agree quite well
with the measurements and even small scale disturbances in the experiments from the
nonlinear processes are reproduced surprisingly accurately. Finally, a detailed analysis
is given of the velocity and pressure variation during the runup and reflection process on
a 45° slope, and the applicability of the nonlinear shallow water equations is discussed
on the basis of the computational results.

1 Introduction

Over the last decade numerical solution of the exact nonlinear equations for the inviscid
water waves using a Boundary Integral Equation (BIE) description has become an extremely
successful method for analyzing free surface motion and, in particular, the overturning of
breaking waves. Practically all previous contributions, however, utilize space periodicity of

the waves and most of them also are based on a conformal mapping of physical space onto



a plane in which the equivalent of the free surface is the only part left of the boundary. The
Boundary Integral Equation is then solved in the transformed plane. A few contributions

use other complex variable-dependent techniques.

There are many advantages of this method which has been explored extensively by many authors.
Particularly noteworthy for significant steps to the development are contributions by Longuet-
Higgins & Cokelet (1976), Vinje & Brevig (1981) and Dold & Peregrine (1986). The procedure,
however, also has some important limitations which are associated with the use of complex variables
and with the assumption of waves that are periodic in space. A more complete review of the
literature on the subject can be found in Grilli, et al. (1989).

In the present paper, we develop an equally efficient and accurate method without those two
limiting assumptions and we apply it to a problem for which the above-mentioned version is not well
suited, namely the generation of a solitary wave, its subsequent propagation and development as it
runs up and is reflected from a vertical wall or from a steep smooth slope. Hence, we consider the
wave motion in the physical space and computations are made for the velocity potential, using the
fully nonlinear free surface boundary conditions. An important difference from the existing space
periodic solutions lies in specifying the boundary conditions in the physical space where there is
a moving surface piercing boundary. For completeness, other contributions to the development of
various forms of such computations in physical space have been given by Isaacson (1982), Kim,
Liu & Liggett (1983), Nakayama (1983), Greenhow & Lin (1985), Dommermuth & Yue (1987),
Sugimoto, et al. (1987) and Romate (1989).

The motion is described using a Green’s function, to transform the Laplace equation into an
integral equation (BIE) that involves only values of the velocity potential and its normal derivative
along the physical boundary. The numerical procedure used for solving the BIE is a higher-
order Boundary Element Method (BEM). The time integration corresponds to the explicit scheme
developed by Dold & Peregrine (1986). Grilli, et al. (1988) modified this method to using the
shape functions of the BEM and applied it to the physical space. A version correct to second order
in At has been developed for the computations presented here.

Since the computations are made in physical space, but only covering a limited region of a
long wave tank, the waves to be studied have to be generated at one end of or inside the fluid
domain. Solitary waves will differ, depending on the way they are generated in the numerical
model. Numerically exact solitary wave solutions of the fully nonlinear potential flow equations
will be generated by Tanaka’s (1986) method and introduced in the model directly on the free

surface; in the following, these waves will be termed, for short : ezact solitary waves. Waves will



also be generated as in laboratory experiments, by numerically simulating a piston wavemaker,
moving according to Goring’s (1978) first-order solution; in the following, these waves will be
termed, for short : first-order solitary waves.

Runup and reflection from slopes of non-breaking solitary waves have been studied quite ex-
tensively in the literature. This was the topic of the boundary integral computations by Kim, et
al. (1983) who, however, only used a few computation points and gave very few details about the
results. In fact, the solitary wave runup problem using Euler equations was studied numerically
already by Camfield & Street (1969) by means of a marker and cell method.

More commonly, however, the runup of solitary waves has been analyzed using long wave or
Boussinesq theory. The special case of reflection from a vertical wall is equivalent to the problem
of collision between two opposing solitary waves of the same height and several studies have been
published utilizing that analogy. A first-order solution can be obtained by the Inverse Scattering
Technique developed by Gardner, et al. (1967), a 3rd-order analysis was developed by Su & Gardner
(1969) and Su & Mirie (1980) and solved numerically by Mirie & Su (1982), and a 5th-order analysis
was developed by Byatt-Smith (1988). Fenton & Rienecker (1982) used a Fourier Method to obtain
very high order results for the same problem (somewhat limited, however, in the representation of
high frequency oscillations by the periodicity condition they had to impose in their method).

The runup on a slope was analyzed numerically on the basis of the Boussinesq equations by
Pedersen & Gjevik (1983), and analytically by Synolakis (1987) who generalized the approach of
Carrier (1966), based on the Nonlinear Shallow Water equation (NSW), to apply to the situation
also considered in this paper with a constant depth region in front of the slope.

We will show that our method is quite capable of accurately describing fully nonlinear free surface
flows in great detail and over periods of time at least long enough to allow us to study wave runup
problems without having to introduce any smoothing or modification of the solution. The method
will be used for analyzing the higher-order effects in terms of the ratio wave height over depth,
which occur during reflection of high solitary waves from a vertical wall and from steep slopes. In
particular, values of runup and rundown, reflected wave, celerity, phase shift, energy partition and
pressure force on the slope will be compared with other numerical or analytical solutions (vertical
wall), and with recent experimental results (steep slopes).

The theoretical background is briefly outlined in Section 2 and 3. The generation and horizontal
propagation of both ezact and first-order solitary waves is described in Section 4. Results obtained
with both generation methods are compared in Section 5 with those of Su & Mirie (1980), Fenton
& Rienecker (1982) and Byatt-Smith (1988), for the case of a vertical wall. Finally, the generation



by a piston wavemaker motion is used in Section 6, for making a comparison with the experimental
results by Losada, et al. (1986) for the runup and reflection from steep slopes (Section 6.2).
Computational results are also given for detailed evolution of the internal velocity field (Section
6.3) and for the pressure along the slope (Section 6.4). Both are shown to deviate substantially
from the basic assumption underlying the NSW solution of, e.g., Synolakis (1987) (Section 6.5).
Some of these results, using an earlier, less accurate version of the method, were reported by Grilli

& Svendsen (1989) and Svendsen & Grilli (1990).

2 Mathematical formulation
2.1 Governing equations and boundary conditions

We consider an inviscid irrotational 2-D flow described by a velocity potential ¢(x,?), and the
velocity field is given by u = V¢ = (u,w). Thus, the continuity equation in the fluid domain (1)
with the boundary I'(t) becomes a Laplace equation for ¢ (Figure 1),

Vip =0 in Q(t) (1)

Using the free space Green'’s function, G(x,x;) = —z=log|x —x; |, (1) becomes the boundary

integral equation,
a()d(xi) = [ [52()G0xx) - $(x) 2 g dr 2)

where x = (z,z) and x; = (2,2 are position vectors for points on the boundary, and a(x) is a
geometric coefficient.
On the free surface I'y(t), ¢ satisfies the kinematic boundary condition,

Dr

Di (at-{—u-V)r:u on I'y(t) (3)
with r, the position vector of a free surface fluid particle. Thus

Dr
5 = Vo on I'g(t) (4)

and the dynamic free surface boundary condition,

D¢ 1 2 Pa—Po
sish o R = R Ly(t 5
By = 02451 Vo P -P2R onry() (5)
where g is the acceleration due to gravity, z is the vertical coordinate (positive upwards and z = 0
at the undisturbed free surface), p, the pressure at the surface, p, a reference pressure (e.g. at

infinity) and p the fluid density.



The solitary waves are generated in two ways. In the first, the potential ¢(z,1,) and the elevation
n(z,t,) of an ezact solitary wave are prescribed on the free surface I's(Z,) at an initial time #,. In

this case, the normal velocity is zero over the leftward boundary I';y, so that we have (see Figure

1)?

¢ = ¢(m$t0) y £ = 7}'(3$t0) on Pf(to)
Vé-nzg%:(] on I';q (6)

where n is the unit outward normal vector. In the second method, first-order solitary waves are
generated by simulating a piston-type wavemaker motion on the boundary I';1(2). In this second

case, the normal velocity is specified over the surface of the paddle by,

Vé-n= % =ag(ws(2),1) na on I';y(2) (7)

where (2, u,) are prescribed wavemaker position and velocity respectively.

Along the stationary bottom I'y and the slope I';2 we have in both cases,

il
V¢-n5£=0 on I'y and Iy (8)

2.2  The time stepping method

The time stepping consists of integrating the two nonlinear free surface conditions (4) and (5)
to establish the new position of the free surface and the relevant boundary conditions of Laplace’s
problem at the next time step. Following the approach used by Dold & Peregrine (1986), the
updating of I's(t) is based on a truncated Taylor expansion in a Lagrangian formulation which

corresponds to following a fluid particle,

m k Dky
r(t+ At)=r(t)+ ) %Dm?) + O[(At)™1] (9)
k=1 )

and the analogous for ¢.
All the partial derivatives of ¢ with respect to time satisfy equation (1) so the coefficients of

At in equation (9) can be found from a sequence {¢, %? 5 gz-—t? s} of solutions of a succession

of Laplace’s equations. The expansion coefficients are then expressed as function of {¢, g% 5 %?
] ..} and of their derivatives along the free surface (s-derivatives). The order of the latter

) 3ton
derivatives increases as the order m of the Taylor series (9). Since the s-derivatives have to be

computed by numerical differentiation — an operation which loses accuracy in the corners of a

physical domain — we have so far limited the series and thus the s-derivatives to second order
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(m = 2). The procedure described can, however, in principle be extended to higher order and,
in particular, for space periodic problems where the periodicity conditions can be used to avoid
extrapolating the s-derivatives in the corners, higher order time series have been used by others
(see Dold & Peregrine (1986) (m=3), Nam Seo (1988) (m=4)).

While the boundary conditions for all Laplace problems are readily obtained along the solid
boundaries, the boundary values for at the free surface, are obtained from the Bernoulli equation.
For m > 2, the {wfi,} would be obtamed from the successive time derivatives of Bernoulli’s
equation.

In the computations, the terms in (9) are expressed in a local curvilinear coordinate system
defined by (s,n), the tangential and normal unit vectors at a point of the free surface. For m = 2,

the first two Lagrangian time derivatives are needed for evaluating the series. Defining,

cosf8 = 5% ,8ing = %; s =[cosf, sinfB], n=[-sinf, cospf]
we obtain by (4),
Dr _9¢  0¢
Dt~ 05 on" (10)
The continuity and irrotationality conditions yield,
ou__u | 0__ 0% 0608
9z 0z O 9n? 0s ' Onos
ow _ov . B4 0% (11)
9z = 9z O Onds  0son
where %g is the boundary curvature. After some calculations we get,
.‘Qz_r (azé’ @@4.3‘;5 82¢) s+
Di? Bt(‘i‘s ds 0s*  On Onds
¢ 99 qui ¢ 9% 3[:1 2
(3%3n ~ 5n s> T Badnbs T Bs VP10 (12)
In the same way, 5? is obtained from (5) and we then get,
Do _ oy 9 000%  06 0%
Dtz 33 0tds ' 9s 8s® ' On Onds
¢, 0% 04 32¢> 9¢ ¢ 6‘,@ 2
(3t8n an 8s2 " Bs 8n63 ds Vel -
1 Dpa
9(—COSﬁ+— ﬁ)—— (13)

where I—)Dﬂf is the total rate of change of the surface pressure in time.
After solving the Laplace problem for ( ¢, g—%) at time t, we can determine the boundary

conditions for the ( %?, %) problem. Along the free surface, the Bernoulli equation yields,
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B ==gr=g| V| - on T's(t) (14)
and along the fixed boundaries, we get,

e = on I'y and I'yq, (T'y1) (15)

dton e
Finally, when T';;(¢) represents a plane piston-wavemaker (%g = 5%% = 0) with velocity u,, we
have,

9%¢ dup(z,(1),1) 9?

oton ( d1 + “p(xp(t)vt)gs'g) Nz on I'r(2) (16)

3 Numerical implementation
3.1 General scheme

Provided we know the initial conditions at a given time, i.e., the position of the boundary I's(t)
and ¢ and %ﬂé along I'f(1), we can update the free surface position and the free surface potential
to the next time step. When required, the value of % along the wave generator and its position
can also be specified at the next time step (Section 4.2), and the value of % along the solid
boundaries is invariably zero. Hence, boundary values for ¢ or %% can be determined at ¢ + At
and a “first” Laplace problem solved which determines ¢ or %ﬂi (whichever is unknown) along the
entire boundary.

Then, with ¢ and %f known along the free surface, %‘tﬁ can be determined from the Bernoulli
equation. Similarly, along the rest of the boundary we can specify %’% and hence determine the

necessary boundary values for solving Laplace’s equation with respect to %? (and so forth for %-?
,-.., when m >2). Since the succession of Laplace problems is expressed for the same geometry of

the boundary I'(t), the extra computational effort required to solve them is very small.

3.2 Solution of Laplace equation

For the solution of the Laplace equation in the form (2), we use the Boundary Element method
(BEM) (Brebbia, 1978). Collocation nodes are distributed along the entire boundary to describe
the variation of boundary geometry as well as boundary conditions and the unknown functions of
the problem. Between the collocation nodes, the variation of all quantities is described by means of
shape functions, and for this purpose, the boundary is divided into elements each of which contains

two or more nodes.

Spatial discretization : In all computations, quasi-spline elements (2-node) are used on the free sur-

face, linear isoparametric elements (2-nodes) on the lateral boundaries and quadratic isoparametric
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elements (3-node) on the bottom. For quasi-spline elements, the geometry is described by regular
cubic splines and the field functions ¢, gi;, etc..., by linear shape functions. As in finite element
methods, mapping of the boundary elements onto reference elements is used and the Jacobian of
the mapping function is determined analytically.

To obtain sufficient resolution to describe also the higher frequency oscillations created both
by the wave generation and after the wave reflection, the interval Az between nodes on the free
surface is selected considerably smaller than was actually found sufficient by Grilli & Svendsen
(1990), for the accurate propagation of a solitary wave over constant depth (in the applications,
Axl = %ﬁ = 0.25 to 0.45). Even so, at special instances of rapid development, we came close to
the limit of accurate reproduction.

To improve the resolution close to the surface corner, the discretization on boundary I’y (slope
or vertical wall) is modified at each time step, as suggested by Klopman (1988), according to an
exponential law which forces the upper element length (closest to the free surface) to be the same
as the one of the last element on the free surface. The other elements on the slope are, accordingly,

becoming wider towards the bottom.

Corners : A double node technique (Svendsen 1971, Brebbia 1978) is used in combination with
continuity and compatibility relationships, to utilize all information given in the corners by the
boundary conditions. The continuity conditions impose uniqueness of the potential at the double-
nodes and the compatibility conditions express uniqueness of the velocity vector at the corner,
based on the values of %‘f and g‘s on both intersecting boundaries (see Grilli & Svendsen (1990) for
details about the corner treatments and also for a discussion about surface piercing bodies such as

wavemakers).

Numerical integrations : The regular integrals in (2) are computed by Gaussian quadrature, using
up to ten integration points per element, and a kernel transformation is applied to the singular
integrals which are then computed by a Gauss-like quadrature dealing with the logarithmic sin-
gularity. More details about these aspects of the method are given in Grilli, Skourup & Svendsen
(1989).

An adaptive numerical integration method is used for improving the accuracy of the regular
integrations for the elements close to the corners of the fluid domain. It is based on a binary
subdivision of the element to integrate, while keeping the number of integration points constant
within each subdivision. Subdivision is performed until the intercept angle of each subdivision with

respect to the source point falls under a pre-set value. The same technique is also used when the



distance between two boundaries of the fluid domain tends to vanish (e.g. during wave rundown on
a slope). Almost arbitrary accuracy can thus be achieved in the numerical integrations (see Grilli

& Svendsen (1990) for details).

Solution of the algebraic system : After being assembled according to the type of boundary condi-
tions (Dirichlet or Neuman), the algebraic system matrix equivalent to (2), is solved for the first
Laplace problem by direct elimination (Khaletsky method, see Demidovitch & Marion (1979)). The
geometry is identical for both the Laplace problems we need to solve when m = 2, so only the right

hand side vector needs to be recomputed to solve the second system.

3.3 Time slepping

Tangential derivatives : The s-derivatives along the free surface, used in the Taylor expansions,
are calculated in a sliding 4th-order isoparametric element independant of the BEM discretization.
This provides local continuity on the boundary I'; of at least the 2nd s-derivatives (see Grilli, et
al. 1989).

Temporal discretization : Computations were made in a series of space-time discretizations, for
the propagation of ezact solitary waves over constant depth d (Grilli & Svendsen, 1990). For
a spatial discretization with given Az’, numerical errors were found to be proportional to At?
(Al = At\/g), when the mesh Courant number ﬁ!f; > 0.5. This is consistent with the second
order accuracy of the time integration. When %—’; < 0.5, however, errors were not further reduced
by decreasing At/, but varied with Az’ only, suggesting that, in this case, errors due to the spatial
discretization become dominant over time stepping errors.

Thus, time steps should not exceed At’ ~ 0.5Az’. Due to the Lagrangian updating of the free
surface nodes, however, the distance between nodes on the free surface can vary considerably, for
example during runup-rundown on the slope. Hence, time steps have initially been selected so that
Al w 0.2, and these have been further reduced during wave reflection on the slope (see Appendix

Azt —
A for further details).

4 Wave generation and propagation over constant depth

Dimensionless variables 2/, z’,#" and ¢’ will be used in the following. They are defined by,

zZ g ' c
—— — — e — 1
b’ Ll - )

where ¢ denotes the wave celerity and d the water depth.

!

i '
x:E,z



L [ [m e L& | e |
0.20 || 1.09434 | 1.09765 | 0.077477 | 0.072295 | 0.149772
0.30 || 1.13752 | 1.37074 | 0.148068 | 0.134314 | 0.282382
0.40 || 1.17808 | 1.60052 | 0.233938 | 0.206929 | 0.440867
0.50 || 1.21578 | 1.79148 | 0.330198 | 0.285514 | 0.615712
0.55 || 1.23339 | 1.87126 | 0.380025 | 0.325134 | 0.705158
0.60 || 1.24999 | 1.93883 | 0.429220 | 0.363516 | 0.792735

Table 1: Ezact solitary wave data computed with Tanaka’s (1986) method : % is the wave height,
¢’ the wave celerity, m the wave mass (area in 2D), ex the wave kinetic energy, e,, the wave potential
energy, €; = € + €, the wave total energy. The unit for the energy results is pgd® and for the mass
results pd?, both per unit of width.

4.1 FEzact solitary wave

One main purpose of the computations has been to analyze the runup and reflection of a solitary
wave on a vertical wall, and to compare the method with other numerical and analytical methods
(Section 5). For this purpose the free surface elevation 7(z,1,) and potential ¢(z,1,) (as in (6)) of
solitary waves, which are constant shape solutions of the fully nonlinear constant depth potential
flow equations, have been generated using the method of Tanaka (1986). These solitary waves have
been termed ezact solitary waves for short (but are in fact only numerically exact, within the (high)
accuracy of Tanaka’s method).

Tanaka’s method is based on using Cauchy’s integral theorem in a frame of reference moving at
the celerity ¢’ of the wave, and the crest velocity g. in that frame defines the wave. Cooker (1989)
has modified the method so that the wave height % can be prescribed instead of ¢., within the
limits %=0.833197 (or g.=0) for the highest wave and %:{] (or g.=1) for a flat free surface. The
modified Tanaka’s method determines iteratively the free surface elevation and velocity distribution
for a prescribed wave height. Ezact wave data obtained with Tanaka’s method are listed in Table
&

Before their introduction in the BEM model, the waves are truncated left and right at points
where the free surface elevation n = ¢, H, with €, <€ 1 chosen in advance. The wave truncation
and the change from the discretization of Tanaka’s method to the BEM discretization induce small
adjustments (a few hundredths of a percent) of wave shape 7(z’,t,), potential ¢(z’,t,) and normal
velocity gg(m’,t:,), at the first time step of the BEM computations. Results for later times show,

the numerical model can propagate ezact solitary waves over long distances of constant depth while
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conserving their shape, mass and total energy constant within a very small margin (< 0.01%). In
the brief interval of the rapid surface movements during reflection from a wall or slope, however,
errors in mass and total energy temporarily increase (up to 0.1% for the highest wave £=0.6).

Details of numerical data and checks of accuracy for the ezact waves are given in Appendix A.

4.2  First order solitary wave

A second main purpose of the computations reported in this paper has been to compare the
numerical results to the measurements of Losada, et al. (1986) (LVN) (Section 6). They gener-
ated waves, in their laboratory wave tank, by moving a piston wavemaker according to Goring
(1978) first-order solitary wave solution. We have reproduced that process as closely as possible in
the numerical experiments made for comparing with their measurements, and the solitary waves
generated that way have been termed first-order waves, for short.

In a wave of permanent form, we have at any instant (Svendsen & Justesen, 1984),

n
fdu e = E Gt Tl (18)

where ¢, is the propagation speed of the wave in a fixed frame of reference, n(z,t) is the wave
elevation above the still water level, Q, is the mass flux averaged over a wave period, and U, the
speed of the current defined as the averaged particle velocity below wave trough level (Phillips,
1977).

In a solitary wave, the period is infinite, so ()5 becomes zero. Hence, with no current, ¢, = ¢
and the right hand side of (18) simply reduces to en where ¢ is the relative or “intrinsic” celerity
of the wave. Thus, (18) equals the simpler expression used by Goring (1978) for determining the
motion required by a piston wavemaker to generate a specified water surface elevation immediately
in front of the wavemaker. Since the piston motion creates a depth uniform horizontal velocity

up(,(1),t) (18) reduces to,
up(d+1m) = en (19)

which means that a required 7 can be generated by a piston velocity,

_ _en(@pt)
Up = d-i-'f}'(-’cp,f-) (20)

This corresponds to a piston motion z,(t) given by,

t en(zp,T)
] 21
o d+n(zy,7) g (21)

To generate a first-order solitary wave profile with,

zp(t) =

11



n(z,t) = Hsechz[g(:c — et)] (22)

c=+/g(d+ H) (23)

3H
K= \/; (24)

(22)-(24) have to be substituted into (21) with z = z,(t) required throughout the integration in
order to account for the finite amplitude of the piston ! (see Grilli & Svendsen (1990) for detail).

4.3 Propagation of the first-order waves

Both energy and mass are well conserved also during propagation of the first-order waves (errors
of the order of those of the ezact waves are typically obtained in computations with identical
discretizations). However, theoretical first-order profiles as given by (22), are never obtained in the
fully nonlinear computations. For waves of appreciable height, the free surface elevation produced
by the wavemaker is not quite an exact solution of the nonlinear problem solved in the model
(i.e., an ezact solitary wave). Computations show, the water elevation starts adjusting its shape
long before the piston motion is completed and the wave disintegrates into a leading wave and an
oscillatory tail. This is also observed in LVN’s laboratory experiments. In fact, within the frame of
Boussinesq’s approximation, the inverse scattering theory would have predicted similar results for
a wave that does not corresponds to a solitary wave for the Boussinesq equations. A distributed
elevation of the free surface will disintegrate into one or more solitons and a tail of disturbances
(Hammack & Segur, 1974).

In the nonlinear model, the deviations between the wave motion generated and an ezact solitary
wave are essentially associated with two aspects : the piston generates the flow of a KdV solitary
wave, i.e., a horizontal velocity constant over depth, which is not quite the case in a steep ezact
solitary wave, and the amplitudes of the wave considered are too large for the KdV type approxi-
mation of the flow (like (22)) to give an accurate prediction of the surface profile. In fact Goring
(1978) found, in his experiments, that the limit for an accurate solitary wave reproduction by his
method was % ~ 0.2. For larger amplitudes, the profile (22) deviates more and more from an ezact

solitary wave of the same height.

1Most wavemaker theories describe the solution to the problem : What is the wave motion generated by a specified
paddle motion. It may be interesting to notice that the procedure described above is the only one (known to the
authors) for solving the "inverse” wave generation problem : How do we move the wave maker to generate a wave ofa
specified (arbitrary) form. Recently Synolakis (1990) has generalized Goring’s wavemaker method to the generation
of arbitrary finite-amplitude long waves, by solving an inverse evolution problem of the KdV equation.
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Figure 2 shows computed profiles of waves with four different amplitudes H; (Figure 1) at the
(different) time when the crest of each of them passes a point I, 20d in front of the wave generator.
In accordance with the comments above, it is found that the higher the waves, the more pronounced
is the amplitude A (Figure 1) of the tail of disturbances they are shedding. A closer inspection also
shows that, although the highest parts of the crests are closely symmetric, there are non-negligeable
differences between front and rear for the lowest 25-35 % of each leading wave profile. All these
features have been qualitatively observed in LVN’s experiments, although detailed comparison has
not been made.

As the waves propagate further away from the wave generator, the asymmetry of the leading
wave decreases and the part of the tail closest to the wave turns into a long, shallow trough.
Figure 3a shows this in a comparison between two waves of the same height (H' =0.25), one having
propagated only 20d since generated, the other after 86.7d. Figure 3b shows a comparison between
the leading wave after propagation over 86.7d (as in Figure 3a) and an ezact solitary wave of the
same height. One sees the differences between both profiles are significantly reduced. The slow
transformation of the wave profile as it propagates and adjusts itself to a stable form also results
in a moderate decrease in wave height. Figure 4 shows the amplitude variation for the 2 waves of
Figure 3a, which were generated at 2’ = 0 and 66.7 in such a way that their their amplitude is the
same at &’ = 86.7. Although the computations clearly have not been carried far enough, it seems
likely that the wave generated at ' = 0 will eventually stabilize at a height only marginally smaller
than that found at 2’ = 86.7 where we stopped this computation. Figure 4 also shows that the
wave in Figure 3a, generated at 2’ = 66.7 by the piston wavemaker was initially generated slightly
smaller. Finally it is mentioned that, as one would expect, we also find that the transformation
occurs much faster for the highest waves than for the smaller waves.

The wave motion in a wave flume should be expected to behave precisely the same way as in
the numerical solution of the fully nonlinear equations (except for the bottom and sidewall friction,
which will be negligible for the situations considered, see Section 4.5). As will be shown in the
comparison with LVN’s experiments (Section 6), this is in fact the case when we closely duplicate

the way the laboratory waves are generated.

4.4 Celerity of the first-order waves

A relative difference in celerity ¢’ is found between the first-order waves (Table 3) and the ezact
waves (Table 1). It is positive and quite small (< +0.06%), up to amplitudes of #=0.2 where
the differences in profile are small (Section 4.3). The difference remains small up to {%:0.456
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(< 40.40%) and grows near +1.00% for the highest waves considered. Hence in all cases it is found
that the first-order waves travel faster than ezact waves of the same height, likely so because they

are bulkier and show less frequency dispersion.

4.5 Remark on the friction

It may also be worthwhile briefly to comment on the fact that the method does not include
frictional effects in its present form. Friction will occur along the solid boundary at the bottom
and the slope where a boundary layer will develop. This will clearly dissipate some of the wave
energy, and if longer distances of propagation are considered, the cumulative effect may be quite
important for which wave height actually reaches the slope 2. As usual, however, locally friction
has only a negligible effect on the wave motion. In particular, on a smooth slope as considered
here, the influence of friction on the highly inertia dominated runup and reflection process must be
expected to be of virtually no consequence. Only at the uppermost tip of the runup, would some

frictional effect be expected. The problem was studied by Packwood & Peregrine (1981).

5 Reflection from a vertical wall

Before considering the reflection from a slope, we analyze the more simple reflection from a
vertical wall and compare it with the results, Fenton & Rienecker (1982) (F&R) obtained for that
situation using a Fourier Method, with the 3rd-order analytic solution of Su & Mirie (1980) (S&M)
and with the 5th-order analytic solution of Byatt-Smith (1988) (B-S). Reflection of both ezact and
first-order solitary waves of amplitude ranging from %:0.2 to 0.6 is computed. The ezact waves
will allow for a direct comparison with S&M, F&R and B-S results, whereas the first-order waves,
which represent the waves generated in the laboratory experiments, will be used to show how close
to the ezact wave runup these waves can be expected to be.

Notice, since the amplitude of a first-order wave slightly decreases during propagation (Figure 4,
Section 4.2), the initial amplitude imposed at the wavemaker is adjusted so that the desired value
of the incident wave amplitude %i is obtained at a given position &’ (the slightly higher initial wave
to be imposed to the wavemaker is determined by trial and error). A location 13.3d in front of the
vertical wall is selected for the incident wave as in LVN’s experiments (z'=20, Figure 1). At that

location, the effect of the wall is not yet too sensitive on the incident wave.

2The way the comparisons with the experiments will be set up here (Sections 5, 6), the effect is virtually nil, since
the initial wave height %‘L used as reference for the computations with the firsi-order waves is measured at quite a
short distance from the slope (13.3d), which eliminates the effect friction has during most of the propagation in the
much longer physical wave tank used by LVN (L ~ 160d).

14



[(F 1% 1% [F&e |Mpe~ ]

0.20 [ 0.42920 | 0.00058 | 1.8775 | 2.6486
0.30 || 0.66873 | 0.00179 | 2.3058 | 3.7220
0.40 || 0.93673 | 0.01758 | 2.6809 | 4.8077
0.50 || 1.25308 | 0.05250 | 3.0693 | 5.9454
0.55 || 1.47937 | - 3.2808 | 6.6075
0.60 || 1.67100 | — 3.5034 | 7.3471

Table 2: Ezact solitary waves BEM results (dimensionless variables) : %’* is the maximum runup
value, %‘ the rundown, F™*® the maximum horizontal pressure force and My"** the maximum
moment with respect to the toe of the wall on the bottom. The units for the forces and moments
are %,,(;rg,;ml2 and %pgda per unit width, respectively.

B 1% 1% [r=|mMp=]d |
0.200 || 0.425 | 0.003 | 1.864 | 2.623 | 1.095
0.255 || 0.547 | 0.007 | 2.093 | 3.172 | 1.121
0.300 || 0.654 | 0.015 | 2.257 | 3.625 | 1.136
0.400 || 0.910 | 0.038 | 2.638 | 4.685 | 1.183
0.456 || 1.074 | 0.055 | 2.844 | 5.280 | 1.204
0.500 || 1.215 | 0.068 | 3.031 | 5.806 | 1.228
0.600 || 1.583 | - 3.402 | 6.999 | 1.260

Table 3: First order solitary waves BEM results (dimensionless variables) : %i is the incident wave
at 2’ = 20 (13.3d in front of the wall), and the other results are defined as in Table 2.

Numerical data and checks of accuracy of the computations with the ezact waves are given in

Appendix A.

5.1 Runup

One might expect that, for a first-order wave, the oscillatory tail would not influence too much
the runup but would have a more significant effect later on in the reflection process when the tail
meets with the reflected wave. Figure 5 shows the envelope of the maximum surface elevation of
a first-order wave as it approaches the wall and after it has been reflected. The wall is placed at
z' = 100 and results are shown for the same two waves as in Figure 3a and 4 (%i=0.25), to indicate
the effect which the small differences between those two waves have on the maximum elevations
and after reflection. The two waves have almost equal runup values and both come out of the

reflection process with a somewhat smaller amplitude. Notice that only the variation of maximum

15



elevation is shown, not the envelope of the free surface positions. The maximum elevation is at the
wall throughout the time it takes the surface to move from A to B ( maximum runup) and back to
A’. That results in the spike from the highest position A near the wall to the runup position B at
the wall. Immediately after reflection, the amplitude decrease is almost 10%, but at some distance
from the wall it settles at 3-5 %. This is comparable to the approximately 3 % decrease found
by F&R, though the results for the reflected wave show some variation (as expected) due to the
interaction with the incoming tail. This transient decrease of the wave amplitude after reflection
will be studied in detail, for an ezact wave of %=0.5, in Section 5.2.

In Figure 6, the maximum elevation (”runup”, R,) at the wall, computed for different amplitudes
of the ezact and first-order waves is compared to the 3rd-order results by S&M and to the F&R'’s
computations (the BEM results are also in Table 2 and 3).

Up till amplitudes about %:0.4, the BEM results for the ezact waves are almost identical with
those of S&M and F&R. Above that value, the 3rd-order theory predicts slightly smaller runup
implying that for high waves (% > 0.4) the runup, contributions of order higher than third in %
are important. This ties well in with B-S’s results that show that other effects occuring during
wave reflection are at least of Sth-order in %(Section 5.2). The Fourier method by F&R coincides
very closely with the present results even for the highest wave of amplitude 0.5161 computed by
that method (in spite of F&R’s own comment about the reduced accuracy of their method for
ampitudes above 0.4554).

The runup of the first-order waves is slightly smaller than for the exzact waves, for amplitudes
%20.3. This is likely due to the effect of the oscillatory tail the first-order waves shed behind them
which, for sufficiently high waves, removes enough energy from the leading wave to reduce its runup
significantly.

BEM results for the reflection of first-order waves from a steep slope will be compared in Section
6 with detailed experiments made by LVN. Some of these experiments correspond to a vertical wall
and their results are listed in Table 4 (LVN). The corresponding computations are listed in the same
Table (BEM). It appears that computed and measured runup values %‘L agree quite well (within
4.8% and 3.0% for waves of £=0.255 and 0.456 respectively).

5.2 Rundown and reflected wave

Rundown : Figure 7 shows the maximum depression of the water surface as a function of the wave
amplitude ("rundown” or "rush-down”, Rg) for both ezact and first-order waves (these results are

also in Tables 2 and 3). It appears, the rundown value is significantly higher for the first-order
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[Type [ [ & [k, [% [% |
LVN | 0.255 || 0.224 | 0.882 | 0.521 | 0.003
LVN | 0.456 || 0.419 | 0.918 | 1.107 | 0.059

BEM | 0.255 || 0.247 | 0.964 | 0.547 | 0.007
BEM | 0.456 || 0.417 | 0.915 | 1.074 | 0.055

Table 4: First-order solitary wave reflection from a vertical wall : Experimental results from Losada
et al. (1986) (LVN) and computations (BEM), with & the height of the incident wave at = = 20d

and ‘%‘ the height of the reflected wave measured at the same z location, %‘L and %“ the runup
and rundown of the wave, and K, = Bﬁf the reflection coefficient.

waves (in particular for %<0.3) probably due to superposition with the shallow trough following
those waves in their (incoming) oscillatory tail (Figures 3a and 5). The highest ezact waves also
develop negative surface elevation after reflection, as a start of the (actual) oscillatory tail which
is created for those waves by the reflection process.

Rundowns have been measured on a vertical wall for first-order waves, in the experiments by
LVN. They are listed in Table 4 (LVN), along with the numerical results for the same waves
(BEM). Although the very small rundown of the smaller wave is not quite well predicted, the

rundown measured for a wave of £=0.456 agrees to within 5% with the computed value.

Reflected wave : Figure 8 shows computed profiles of ezact waves of height 0.2 to 0.5, reflected from
the wall at z' = L (Table 7). The various 2’ locations of the maximum crests have been selected,
to get a good picture of the development of the reflected waves. One clearly sees oscillatory tails
develop behind the reflected waves, and increasingly so for increasing {{- (for %:0.5, the maximum
depression in the tail is close to 10% of the wave height, a value similar to the corresponding Ry
in Table 2). Both S&M and B-S theoretically predicted that, to the 3rd-order in A " an oscillatory
tail should appear after reflection. F&R, however, could not produce oscillatory tails in their
computational results, presumably due to their Fourier method which essentially assumes that
their waves are periodic (see comments by B-S).

Figure 9a shows a comparison between an ezact wave of %:0.5, at its initial location z'=14 (or
14d from the vertical wall positioned at z' = '51 = 28), and the corresponding reflected wave which
propagates back through the same location. A decrease in wave height after reflection is observed
(A%=0.0313 or 6.2% of %), and a well developed oscillatory tail follows the leading wave. Before
analyzing this further, notice that the reflected wave height H—df- measured in LVN’s experiments at

13.3d from the vertical wall, for a first-order wave of %‘:0.456, gives a decrease in height of 8.1%
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with respect to the incident wave (Table 4 (LVN)). Our computation for the same wave (BEM)
agrees to within 0.5% with this result. Although that wave is not quite an ezact solitary wave and
is slightly smaller in height, this experimental result at least qualitatively, also confirms the present

computational observations.

Mazimum amplitude reduction : A more detailed picture of the variation in wave height following
the wave after reflection is shown in Figure 9b (solid line), for the same wave of initial amplitude
-‘}=0.5. We see, there is an initial reduction of the maximum amplitude, of about A%m” = 0.0556,
around the time of the maximum rundown (#/(R4), Table 5), after which the maximum amplitude
of the reflected wave is continuously increasing. F&R, although they did not get an oscillatory
tail, obtained a 3rd-order reduction in the wave amplitude after reflection, by curve fitting to their
numerical results : A%m“ o~ 0.4({{»)3 which, for %’-:0.5, yields A%—mm = 0.05, in good agreement
with our result. Seabra-Santos (1985) confirmed F&R’s approximate relationship in his experi-
ments, as well as the slow increase in amplitude, when the reflected wave propagates backwards
in the wave tank. B-S derived an analytic expression for the transient change in amplitude of
the wave after reflection and showed that the oscillatory tail is responsible for this reduction (a
simple energy balance demonstrated that the leading reflected wave gives energy to the oscillatory
tail at the time of the reflection and that, accordingly, its amplitude decreases of A%mu). B-S’s
results confirmed that the change in amplitude is proportional to (%)3. In particular, the maxi-
mum amplitude reduction measured from his Figure 1 and scaled for our case by 0.125 (g—=0.5),
yields A%m“ ~ 0.0612, which is also in good agreement with our result. Notice, finally, S&M did
not find any reduction in wave amplitude to the 3rd-order in %, and Mirie & Su (1982) found a

reduction in amplitude of less than 3rd-order in %.

Transient loss in amplitude : The reflection considered by B-S is obtained by analyzing the situation
when two opposing waves of the same height meet. He developed analytic expressions to 5th-order
for the tail of oscillations, but had to introduce the additional approximation that the phase &z of
the “reflected” wave is infinitely large, even at limited time 7, after the meeting of the crests. A
complete comparison with the expression derived by B-S for the transient loss in amplitude has
been made by relating his time scale 7, to our dimensionless time scale ¢'. Measuring on the curve
from B-S’s Figure 1 after scaling both axis, we obtain the dashed curve in Figure 9b, where ty is
the time when, in our computations, the reflected wave leaves the wall (defined when {}L =0.5 or
A —0). The agreement between the curves in this Figure is quite good for large (t' —t5) but the

discrepancies are larger when (' — t3) (or 73) is small. We believe this is partly due to the effect of
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the limited order of B-S’s analysis (5th-order in e=-§f— whereas we solve the equations exactly, and
partly due to the asymptotic hypothesis B-S makes for deriving his analytical expressions ({2 — oo
at a fixed time 73), which corresponds to the “reflected” wave being far from the “wall”.
Although the amplitude of the reflected wave recovers somewhat as the wave moves away from
the wall, it will not return to its initial value, however, because a certain amount of energy is

permanently lost to the tail.

Oscillatory tail : This is further illustrated in Figure 9c (solid line) which shows the difference
between the incoming wave and the reflected wave of Figure 9a (at z/,=14 for ¢'=23.525). It is seen
that the difference wave consists of a depression under the crest of the main wave, accounting for the
transient reduction in amplitude A%, and the tail of the reflected wave. In Figure 9c is also shown
B-S’s 5th-order expressions for the oscillatory tail (dashed line). B-S’s 7, has been calculated and
the situation has been chosen at a time step of our computations with 7, = 3.04, which corresponds
closely to the 3 values of 3 of B-S Figures 2d *. This also corresponds to a situation where the
reflected wave is 14d (i.e. 28 — z/) from the wall, which means that B-S assumption of large phase
is reasonably well satisfied. The similarity between the results of the two methods is apparent
although there also are some significant differences. In particular the agreement between both the
curves in the Figure is quite good around the maximum of the main wave (wave of depression at
z! — 2’ = 0). B-S theory predicts, however, a much less pronounced decay rate for the tail than
does the numerical computations, perhaps because that part of the tail is closer to the reflection
point and hence is likely to invalidate the large phase assumption (when z’ increases the tail gets

closer to the wall).

5.3 Celerity and phase shift

A phase diagram equivalent to F&R’s Figure 10 has been developed for the ezact wave of %:0.5
considered in Figure 9. The solid line in Figure 10a represents the relationship between ¢’ and z’
for the point of maximum wave amplitude % determined as in Figure 9b, and the wave celerity is
given by the reciprocal of its slope (its lower part corresponds to the wave before reflection, and its
upper part to the wave after reflection).

The lower and upper dashed lines in the Figure are the best fits to the results for 2’ < 20, and

give a measure of the average incident and reflected wave celerity respectively : a = 1.2168 and

*By comparing B-S Figures 1 and 2 and considering his equation (6.11), there seems to be a factor two error in
B-S’s Figure 2. We believe, Figure 2 is actually a plot of 2, (&, 72) and should thus be scaled by a factor € = (%)3
(like in B-S’s Figure 1) rather than by 2¢° as indicated by B-S.
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¢/ = 1.2226. The celerity c_’; is slightly larger (0.085%) than the theoretical value in Table 1, and
corresponds to an average incident wave height (over z'=14 to 20) H&‘ = 0.5008. This slight increase
in height is likely to be due to the small adjustments of the ezact wave to the BEM discretization,
already mentioned in Section 4.1.

Alhough it is of smaller amplitude (Section 5.2), the average reflected wave is found to be

-’::—,"130.47% faster than the incident wave. A higher celerity after reflection has been observed in

Séabra—Sa.ntos’ (1985) experiments, as well as in F&R’s numerical result, who interpreted it as
being an effect of the unsteadiness of the wave after reflection (F&R, however, computed a much
larger increase in celerity than ours : they found Ac¢' o~ 0.64(%)3, or %:6‘56% for the case
discussed here). Figures 9b and 10a indeed show, wave height and celerity substantially change
after reflection and over an horizontal distance of several depths. Figure 10b is a closer view of
the right part of Figure 10a (2’ > 24). Notice, the large increase in celerity near the wall, before
and after reflection, is mainly a geometric effect which could be reproduced quite well, just by
linearly superposing two first-order profiles (22). B-S further points out that, since wave celerity
is a monotonic increasing function of %(when the waves are not close to the maximum), a solitary
wave having reached its permanent form cannot be smaller and faster. According to his asymptotic
results, the reflected wave should recover its initial height when time tends to infinity, hence its
speed.

Our results show that, right after reflection, highly transient phenomena take place which can
cause the wave to be temporarily smaller and faster. As time passes, the leading reflected wave
partially recovers its height and approaches permanent form. Part of its energy, however, has
been irreversibly transmitted to the oscillatory tail, and since energy is also a monotonic increasing
function of % the leading wave cannot recover its initial height. Hence, after a very long time, a
permanent reduction in amplitude should be observed along with a wave celerity smaller than c_’;
(unlike BS’s theory predictions). Computations, however, have not been pursued long enough for
this last stage to be observed.

Figure 10b also shows the phase shift of the wave, during reflection, which leads to a time
phase lag At'=0.627, measured between B and C on the wall (identified by the intersection with
the lines representing Ef and ¢’) and to an instantaneous spatial phase lag Az’=0.763, measured
between C on the wall and E on the line B-F representing a perfect reflection of the incident wave.
With slightly different celerities before and after reflection, B-F and C-G will, in theory, eventually
intersect as time increases, thus At’ and Az’ will gradually vanish. However, since the celerity

of the reflected wave should eventually decrease as the wave stabilizes its shape, permanent but
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H |, 100AT ¢, | (%) | ARt | (%) | ¢(Ry) | ¥(Ra)
0.20 |[ 0.077480 | 0.36 0.0259 | 0.045 | 0.068 | 17.82 | 29.34
0.30 || 0.147953 | 7.74 0.1167 | 0.070 | 0.159 | 15.02 | 25.90
0.40 || 0.233696 | 10.4 0.3520 | 0.120 | 0.301 | 12.54 | 17.10
0.50 || 0.320923 | 8.33 0.7859 | 0.200 | 0.543 | 12.05 | 16.18

Table 5: Ezact solitary wave variation in kinetic energy in the computations (dimensionless vari-
ables) : ek, is the wave kinetic energy at the first time step and ATey its difference from exact

(Tanaka’s) result, EEE is the relative minimum of the kinetic energy during runup and AR+’ the
(negative) time difference from the time of maximum runup #(R,) at which this minimum occurs,
A—:‘L is the drop in kinetic energy corresponding to the first relative minimum after the time of
rundown t'(Ry) (point A in Figure 11b).

reduced time and space phase lags should be observed in the long term.

The phase shift observations tie qualitatively well in with the results by Maxworthy (1976),
Oikawa & Yajima (1973), S&M, and F&R. S&M estimated immediate and long term time and
space phase lags, to the 3rd-order in £. From their analysis we get for & £=0.5, values of At'={1.505
,0.485} and Az'={1.607,0.587} for the immediate and long term phase lags, respectively. Thus,
their immediate values are more than twice our results. F&R did not compute lags for a wave of
H_0.5 (they did not trust their results for £>0.45) but they got results increasing with B and
obtained At'=1.12 for =0.4554. Hence, they also got much larger results than ours.

5.4  Energy partition

Figure 11a shows the variation in time of both the kinetic energy e; and the potential energy
ep, computed for an ezact wave of %=0.5; ek, represents the kinetic energy of the wave at the first
time step after the start of the BEM computations and ATe; is the slight shift this represents from
the initial Tanaka’s value at time ¢/,=0 (Table 1) caused by the shift to the BEM numerical scheme
(ex, and ATey, are given in Table 5 as function of {%). We see on the Figure that the kinetic energy
reaches its minimum e[*" a fraction of a time unit (AR#’) before the time of maximum runup
(#(R,)) and that it never becomes quite zero. Also it is seen (Table 5) that both these variables
increase with %. In fact, computational results show that the flow is at no time at rest at all points
of the wave,

If we look closer at the energy partition we see in Figure 11b that, before the time of rundown,

there is a small portion of the curve where ex > €., and this corresponds, in Figure 9b, to a region
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where the reflected wave amplitude is close to minimum. This transient increase in kinetic energy
also happens at the same time as the wave shows a higher celerity (Section 5.3).

After rundown at '(Ry), we see on Figure 11b, there is a decrease in kinetic energy, Aey, on a
more or less permanent basis (there actually is a slight increase on a longer term basis). Table 5
shows this decrease in kinetic energy is an increasing function of %. We believe, the decrease, likely,
is an effect of the energy transmission to the oscillatory tail, during reflection. F&R also observed
a slight decrease in the kinetic energy. For a wave height of 0.2134 they found ‘:—:::0.135% against

~ 0.092% in our computations (by interpolation).

5.5 Horizontal forces and moments

F&R computed total maximum horizontal forces and moments (with respect to the bottom)
of waves acting on the wall, and S&M calculated them to the 3rd-order in %. Figure 12a and b
show a comparison of our BEM solution for both ezact and first-order waves with these results (our
results are also listed in Table 2 and 3). F represents the horizontal pressure force on the wall,
calculated by the Bernoulli equation (14) integrated over the wall, made dimensionless by dividing
it by the hydrostatic pressure force at still water level : % pgd? and, similarly, M, represents the
moment with respect to the bottom of the wall divided by 2pgd®. In view of the close agreement
observed for the runup values (Section 5.1), it is not surprising that our BEM computations for the
ezact waves give results that coincide very well with the earlier results by S&M and F&R up to a
wave of %:0.5. For higher waves, slightly higher values are (again) obtained with the ezact waves.

A somewhat surprising result is a double maximum found in the time variation of the total
force (and moment) for high waves as shown in Figure 13a for the ezact waves (similar results were
also obtained for the first-order waves). A wave of %: 0.4 already shows signs of an extended
maximum, and for %= 0.5 there are distinctively two extremes on the force curve. For higher
waves (4=0.55 and 0.6), the computations broke down at the time of the second maximum in a
situation with essentially zero pressure and a free falling water volume near the crest. No attempt
was made to investigate this further.

Figure 13b shows details for the wave of %:0.5 and gives a picture of the force Fy, moment
M, and the surface elevation at the wall 7/ as a function of time ¢’. One sees Fy first reaches its
absolute maximum F™%® then M, reaches its absolute maximum M;"**. Both F, and M, reach
local minima, slightly after the maximum runup R,=1.253 at t'(R,)=12.05, and, finally, second
maxima slightly smaller than the first.

It is interesting that Nagai (1969) experimentally observed similar double maxima in the hori-
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(Type [0 5 1% (& [% [%* |
VN | 70° | 0.259 || 0.232 | 0.893 | 0.568 | 0.004
VN | 70° | 0.437 | 0.402 | 0.920 | 1.071 | 0.103
VN | 45° | 0.269 || 0.214 | 0.796 | 0.672 | 0.129
LVN | 45° | 0.457 || 0.347 | 0.759 | 1.294 | 0.267

BEM | 70° | 0.259 || 0.243 | 0.937 | 0.580 | 0.013
BEM | 70° | 0.437 || 0.376 | 0.861 | 1.066 | 0.099
BEM | 45° | 0.269 || 0.224 | 0.833 | 0.673 | 0.134
BEM | 45° | 0.457 || — — 1.262 | 0.186

Table 6: First-order solitary wave reflection from a slope #. Definitions are as in Table 4.

zontal force exerted on vertical walls by steep standing periodic waves in shallow water.

6 Reflection from a steep slope
6.1 Description of Ezperiments by Losada, et al.

Losada et al. (1986) (LVN) have reported detailed measurements of the runup and reflection of
solitary waves from steep plane slopes, in a tank 48.0m to 49.6m long, with a water depth over the
horizontal part of d=0.3m. Their experimental facility was equivalent to the arrangement shown
in Figure 1 except that the length of the flume was L = 160 to 165d. The wave generation was
ensured by a piston wavemaker controlled by a computer, providing displacements according to
Goring’s (1978) solution (21)-(24), with truncation £, = 0.002. Error sources in the experiments
were some losses of water observed during the piston motion, through gaps between the sides of the
piston wavemaker and the tank walls. These were negligible, however, for waves with %> 0.15. The
results of LVN consist of time series of surface elevation recorded by capacity wave gauges with a
sampling frequency of 33 to 75 Hz, at 16 to 21 positions, primarily in the neighborhood of the slope.
Also, the runup itself was recorded. Three wave gauges were used at a time, at different positions,
in identical repetitions of each experiment. A high degree of repeatability of the experiments was
observed in the results. Points from different experiments could not be dissociated, within the
accuracy of the recording device.

The experiments included (first-order) solitary waves with % ~ 0.065, 0.267 and 0.457, on four
different smooth slopes § = 17.9°, 45°, 70° and 90°. In our comparisons we will concentrate on
the results for the two steepest waves. We shall also omit the 90° case (which was discussed

in Section 5), and the results for 17.9° where all but the smallest waves break. Our computer
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program is capable of handling breaking (see Grilli, et al. (1989), Grilli & Svendsen (1989, 1990)),
but computations have to be interrupted at least when the jet plunges into the surface below. No

such experimental measurements, however, were available in LVN’s experiments.

6.2 Comparison with experimental results by Losada, et al.

The computational region for our comparison with Losada’s experiments has the dimensions
shown in Figure 1. To reduce the amount of computations, our results are obtained for a flume
with a length I = 33.33d, i.e. the distance from our wavemaker to the still water level intersection
with the slope is 33.33 times the depth (or 10m with LVN’s dimensions). This is only about one
fifth the length of Losada’s wave basin. The minor inaccuracies this leads to are almost entirely
concentrated in the tail following the wave as was discussed in Section 4. Hence, the major effect
of the reduced computational region is a limitation in the time over which we can meaningfully
compare our results with those of Losada’s : In our computations the tail meets the reflected wave
somewhat before it does in the experiments. As will be seen in the following, however, this does not
constitute a major problem since most of the evolution takes place before that time. It is also found
that a new trailing system of high frequency oscillations, quite stronger than in the reflection from
a vertical wall, is generated by the runup and reflection process from a slope. In spite of the above
mentioned effects of the shortening of the computational wave flume we find that computations
compare very favorably with the measurements even for those high frequency parts of the wave
motion.

The comparison has been made for the cases of slope angle 45° and 70° for which even relatively
steep waves do not break. As detailed in Section 4.2, in our computations we generate the first-order
waves at ' = 0 (i.e., 33.3 water depths from the slope) by simulating a piston-type wavemaker
motion, according to Goring’s procedure. The amplitude of the wavemaker is adjusted so that
when the wave passes 2’ = 20 (i.e., 13.3d from the slope) it has a height 2:={0.269,0.259} or
{0.457,0.437}, for §={45°, 70°}, as found in the experiments at that point.

In all cases, the computed and measured results have been synchronized at the time of maximum
runup which, in the experiments reported, is the only well-defined time available. The form of the
wave, however, at that time entirely results from the generation and propagation which preceed the
runup (as described in Section 4.3). Though comparisons can be made before the time of maximum
runup, experimental results are only available from the time of runup onward, except for #=70°
(Figure 15), where an extra experimental profile was available at a time somewhat before maximum

runup and was used in the comparison.
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Table 6 shows experimental (LVN) and computed (BEM) results for both the wave heights and
the slopes considered here. One sees the maximum runup values -B&“ are in good agreement (within
2.5% for 6 = 45° and 2.0% for 6 = 70°). The agreement for the rundown figures %‘ is somewhat
less good but it should be noted that LVN found this quantity quite difficult to measure.

Runup and rundown figures are, in fact, only values of the wave elevation at one point of the free
surface. It is far stronger a test to compare complete computed free surface elevations with those
measured in the experiments. This is first done in Figures 14a and 14b which show how the two
considered waves reflect from a 45° slope. The computations are compared with the surface profiles
measured by LVN at three different times, of which the first available is the instant of maximum
runup (curves a) used for synchronization. In general, the agreement is considered good.

In Figure 14a, however, results do not quite coincide at the time of rundown (curve c). The
agreement is somewhat better with a profile computed at a time slightly before the instant of
rundown (curve b) (i.e., 0.48 time units or 0.084s in the experiments). As pointed out by LVN,
both rundown and instant of rundown are quite difficult to measure since the surface motion along
the slope is important over a very short time (the whole rundown process only lasts a small fraction
of a second in the experiments). In Figure 14b, an irregularity occured on the computed surface
after the time of rundown (curve b). According to visual observation during the experiments, a
backward breaking actually occured at this instant as the main crest moved away from the slope
(i.e., breaking onto the slope, in the direction opposite to reflected wave propagation). In the
computations, the small irregularity propagates away from the wall and, shortly after (b), this
wave rapidly breaks backward while still propagating away from the slope, thus terminating the
computations. This is the reason why we do not show any computational results corresponding to
(c) in Figure 14b. It is in fact fairly evident that at this point we are close to the resolution possible
with the number of nodes and the time step used. The rapid development of such small patterns
stresses the computations to their limit.

Figure 15a and 15b show the results for a 70° slope. Here an extra profile (curves a) is available
in the experiments before the wave reaches the slope. As in the first case, the agreement between
physical and numerical experiments is surprisingly good. Notice that even the oscillatory tail left
after the main crest has cleared the slope is quite well represented. In the case of the smaller wave
(Figure 15a), we have shown curves corresponding to both the measured and the computed times
of rundown (curves ¢ and d). In the case of the higher wave, though the various times coincide
quite well, the reflected wave is somewhat higher in the experiments (curves ¢ and d). This could

be due to the differences in the incident wave, which looks somewhat bulkier in the experiments

25



(curves a) than the computed wave.

6.3 The internal velocity field

The examples in Section 6.2 show that it has been possible to reproduce the surface variations
recorded in the experiments down to very small details and over quite extended periods of time
relative to the time scale of the important events. This can only be possible if the computational
solution actually represents the whole flow pattern to a high degree of accuracy. Thus it will be
possible to use the computational solution to analyze other properties of the flow (like the internal
velocity field) than those actually measured in the experiments and to have a reasonable confidence
in the correctness of such predictions.

We have computed the internal velocity field at 80-90 points (the exact number depending on
the water level elevation) in the neighborhood of a 45° slope during runup of a first-order wave of
%:0.457. To measure velocities in that detail in the physical experiments would be a tremendous
task, whereas it only requires a limited extra effort computationally. Hence this example illustrates

the usefulness of combining experiments and numerical computations.

Computation of internal field : The numerical procedure that computes the development of the
wave motion in space and time (Sections 2 and 3), leaves us with both ¢ and g%known at all time
steps. At an internal point x, = (2,,2,), differenciation of (2) with respect to z, and 2, yields
the velocity components in integral form (see Grilli & Svendsen (1989) for detail). Therefore, the
computation of the internal velocity is a theoretically straight-forward evaluation of an integral,
as long as the observation point x,, stays inside the domain. If x, is too close to the boundary,
however, the integrand varies so rapidly over the one or two elements closest to x, that the accuracy
is insufficient, even when using ten Gauss-points per element. Therefore the computation points
for the internal velocity field have been kept at a distance of about half an element length from the
boundary (distance found sufficient for ensuring a good accuracy). This constraint can, of course,

be removed by using an adaptive integration for the internal points %

Runup : Figure 16a-f shows the velocity field at six different stages of the runup and reflection.
Throughout the Figure, the same scale has been used for the velocities, as indicated by the arrow

of length /gd shown on part a. When the first part of the wave reaches the slope, the motion

“In the computations described here, the number of nodes has been increased up to 232 (of which 137 are on the
surface and 19 are on the slope), in order to obtain a better resolution of the internal velocity field close to the slope
(see Appendix A for detail). This measure also gives a slight improvement of the integration over the elements closest
to the wedge at the tip of the runup.
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gradually builds up (Fig. 16a). The combination of the rising water level in the solitary wave and
the upward twist of the flow along the slope makes the flow field look almost like the flow in a
corner bounding a semi-infinite space. Over the 1.68 time units between part a and b in Figure 16,
the picture changes as the wave crest approaches the slope. The upward movement becomes more
and more concentrated to the region closest to the shoreline and almost looks like a jet rushing up
along the slope. This is even more pronounced in part ¢ where the crest has almost reached the
shoreline. Yet, immediately under the crest, which is still a clearly visible maximum of elevation,
the velocities are horizontal and large as in a progressive wave. Similarly, behind the crest, the
velocities are facing downward and decreasing in size. Part d of Figure 16 shows the instant where
the crest of the wave has reached the instantaneous intersection between surface and slope. There
is still a jet-like up-rush of the tip of the wave here 0.83 time units later, though more isolated
and with smaller velocities than in part c. A stagnation point has developed near the toe of the
slope as an indication of the reflection taking effect. In the next 0.90 time units from d to e, this
stagnation point moves up along the slope so that more and more of the flow turns direction to
downwards along the slope. However, even part e of Figure 16 does not yet represents the instant
of maximum runup. That does not occur until at ¢'(R,) = 35.38 (part f). Clearly, at this and any
stage, the flow kinetic energy does not quite reach zero (like observed on a vertical wall in Section
5.4). From this time on, however, the flow is outward going at all points until the lowest point in
the down rush is reached. Hence, the tip of the wave is the very last point at which the velocity

changes direction.

Rundown : Figure 17a-d similarly shows the velocity field at 4 stages of the flow between the
instant of maximum runup and that of the lowest computed position of the surface. A remarkably
interesting feature is the combination of high velocities and large accelerations at the time of the
lowest position (Fig. 17-d). The steep shoreward slope of the free surface in this non-distorted
figure suggests horizontal accelerations close to one g. The rapid retraction of the free surface
has another implication, however. Had the slope been porous like a rubble mound structure, it is
unlikely the water table inside the structure would have been able to follow the fast drop of the
outside water surface. Consequently, onwards from the time of part ¢ in Figure 17, there would
be a strong outward directed pressure gradient on the armor units in the structure, caused by the
difference in water level inside and outside the slope. This would result in a high risk of units being
pulled out of the slope. The damage to rubble mound structures observed during experiments

actually often occurs at this stage of the process.
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Horizontal velocities : It is rather evident from the outset that, on a steep slope, large horizontal
velocities are closely associated with vertical velocities of the same order of magnitude. Therefore,
vertical accelerations cannot be neglected, which implies nonhydrostatic pressure which will feed
back and create horizontal velocities that are not uniform over depth. The horizontal velocity
profiles along verticals can be inferred from Figures 16 and 17. At places and times with high
velocities, the relative difference between surface and bottom velocity may be seen to be about

25-30%.

6.4 Pressure on the slope

The pressure variation along the slope is shown in Figure 18a and 18b, for the stages of the
runup and rundown of Figures 16 and 17. The abscissa is the vertical dimensionless coordinate

along the slope. The ordinate % is given by,

pr _ —p(+31 V8|’ +92)
PH P9¢

where pp is the total pressure computed from the Bernoulli equation and ( is the vertical distance

(25)

between the free surface and the point on the slope. Hence, the ordinate +1 corresponds to
the actual pressure being equal to the weight of the water column above the point (“hydrostatic
pressure” pp).

While the pressure in the runup phase (Fig. 18a) differs somewhat from the hydrostatic, it
generally stays within 1.1 and 0.7 times that value, the lowest values occuring near the surface at
the time of runup (part f). Figure 18b shows the pressure during rundown. Initially, the pattern at
the time of runup essentially propagates down the slope. This might be expected because at that
point, the tip of the runup is rather isolated from the rest of the water body and just moving under
the action of gravity so that the pressure reflects the gravity component -3; ~ (.7¢g normal to the
surface (curve a and next in Figure 18b). When the surface slope changes sign (Figure 17b-c), the
flow in the down-rush starts decelerating, which creates pressures above hydrostatic, as seen from
curves b and c. This is even more pronounced in curve d where the pressure is above hydrostatic

all along the slope.

6.5 Comparison with the shallow water wave equations

One of the questions that can be asked when looking at these results for highly nonlinear wave
runup is: How well will the nonlinear shallow water (NSW) equations be able to describe this flow.

Synolakis (1987) (SY) extended the Carrier & Greenspan (1958) solution for the Nonlinear
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Shallow Water (NSW) equations on an infinite slope, to the case of a slope facing a region of finite
constant depth d, and a (first-order) solitary incident wave. He gave two different expressions
for the runup height %‘* on the slope : one an explicit approximate formula only valid for gentle
slopes, the other an integral equation. A comparison of his runup values with the BEM results has
been reported by Svendsen & Grilli (1990) (S&G) who found acceptable agreement with the BEM
computations, particularly for the integral equation, even for slopes as steep as 70°.

However, the relevance of using the NSW equations on so steep slopes is questionable. S&G
find that the basic assumptions behind the NSW equations, of negligible vertical accelerations
and, consequently, uniform horizontal velocities and hydrostatic pressures, are severely invalidated
already on a slope of 30°. This is further confirmed by the results obtained above for a 45° slope
(Sections 6.3 and 6.4).

7 Conclusions

The computations described here have been made in the physical space with a Boundary Integral
Equation Method which allows for waves that are non periodic in space. It turns out that sawtooth
instability does not occur, and that both energy and volume inside the computational region are
controled sufficiently well to not making it necessary to carry out artificial adjustments during the
computations.

Solitary waves have been generated by two independent methods. FEzact solitary waves by
Tanaka’s (1986) method and first-order waves by a piston wavemaker using Goring’s (1978) ap-
proach. Both wave types are used for examining the runup and reflection from a vertical wall and
the first-order waves reproduce as closely as possible the conditions in the experiments by Losada,
et al. (1986) (LVN).

The BEM computations have been compared with a 3rd-order analytic solution by Su & Mirie
(1980) (S&M) and a Fourier solution by Fenton & Rienecker (1982) (F&R) for the reflection from
a vertical wall. The results show that up to %’-:DA, all three methods give similar predictions
for the runup and for the pressure force on the wall (with slightly lower results for the first-order
waves, because of the energy transmitted to their oscillatory tail). For higher waves, higher order
contributions are becoming important and our results predict somewhat larger runup and force
than did the previous investigations. For large values of %it is also found that the variation of the
pressure force on the wall with respect to time exhibits double maxima. First-order wave runup
and rundown values agree well with LVN’s experiments (within 5%).

Results for the rundown, reflected wave, celerity, phase shift and energy partition of an ezact
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solitary wave of incident height %:0.5 have been compared with a 5th-order analytic solution
by Byatt-Smith (1988) (B-S). Most of the findings of the latter study are quite well reproduced
quantitatively. An oscillatory tail is created by the reflection process and, due to the energy
transmitted to the tail, the wave amplitude decreases slightly after reflection (9.3%). Rundown
values (negative elevations) of the same order are observed at the wall. The celerity of the (transient)
reflected wave is found to be slightly more (0.5%) than for the incident wave, as also computed by
F&R (who , however, got a much larger increase of 6.6%, and also did not obtain an oscillatory
tail after reflection) and observed experimentally by Seabra-Santos (1985). Instantaneous time and
space phase lags during the reflection process are also found somewhat smaller than predicted by
S&M and F&R. Although the amplitude of the reflected wave recovers partly, it will not return to
its initial value because of the energy transfered to the tail (against B-S statement) and, accordingly,
the celerity of the reflected wave will eventually become slightly smaller, as it approaches permanent
form. The kinetic energy is found to be minimum (but not quite zero) slightly before the time of
the runup. Kinetic energy also drops after reflection (0.54%), with respect to its initial value, and
only part of this decrease is recovered on a longer term basis.

Reflection from steep slopes (45° and 70°) has also been examined for solitary waves generated
by a piston wavemaker, as in LVN’s experiments. Comparison with the measurements shows
that generation, propagation and runup on a steep slope of large amplitude waves are accurately
predicted by this method. Even small scale oscillations in the experiments (like the oscillatory tail
after reflection) are well reproduced. Motivated by the accuracy of the computations the method
has been used to analyze flow properties such as velocity and pressure fields that have not been
measured during the experiments. Computation of the water particle velocities above a 45° slope
during runup-rundown shows that horizontal velocities are significantly non-uniform over the depth
(variation of 25-30%) and that, accordingly, important non-hydrostatic pressures (variations of -
38% to 75%) are generated. This invalidates the assumptions underlying the Nonlinear Shallow
Water equations and makes their use questionable in these situations. Similar conclusions were
already reached by Svendsen & Grilli (1990), for a 30° slope. The maximum runup, however,
is found to compare reasonably well with the results obtained by Synolakis (1987) using those

approximate equations.
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(4 lag [ |Af [107ATm | 10°ATe, | 10°A°m | 10°A°%; |

0.20 || 0.45 | 37.80 | 0.09-0.450 | 1.29 0.49 7.9 6.3
0.30 || 0.40 | 33.60 | 0.07-0.035 | 2.03 0.54 9.0 4.2
0.40 (| 0.33 | 28.67 | 0.06-0.030 | 3.03 1.75 13.8 10.1
0.50 || 0.25 | 28.00 | 0.05-0.025 | 3.62 2.21 4.8 10.9
0.55 || 0.25 | 28.00 | 0.04-0.010 | 2.97 4.75 8.0 8.6
0.60 || 0.25 | 28.00 | 0.04-0.010 | 3.58 6.88 6.9 10.2

Table 7: Reflection on a vertical wall of ezact solitary waves : wave height % , discretization step
Az', tank length L' = £, and time step At’ (over constant depth — during reflection at the wall),
differences between computed and exact (Tanaka (1986)) values of mass and total energy at the
first time step ATm and ATe; and absolute maximum mass and energy errors over the BEM
computations (relative to first time step values) A°m and A°;.

A Appendix. Numerical data and checks of accuracy for the
exact waves

Reflection of ezact solitary waves from a vertical wall has been computed. Waves are generated
with £, = 5.107¢ to 1075, at the mid-point of a tank of length L=28d to 37.8d, whose free surface
is discretized by 85 to 113 equally spaced nodes (step Az’ as in Table 7). The discretization step
is twice larger on the bottom than on the free surface. Hence, the total number of nodes of the
BEM discretizations varies between 184 and 242, and the total number of elements, between 140
and 184. Time steps At’ vary between 0.04 and 0.09 for the propagation over constant depth

%:0.16 to 0.20), and between 0.01 and 0.045 (AA—:,=0.04 to 0.10) during reflection on the wall
(Table 7). Computation times vary between 1.44s to 2.34s CPU per time step (IBM-3090/300), of

which 2 to 9% are used for data postprocessing.

Discretization effects create small initial adjustments of mass and energy (AT’s in Table 7) with
respect to Tanaka’s (1986) results (Table 1). The overall accuracy of the computations is checked
by calculating maximum absolute errors in energy A°; and mass A°m, relative to values at the
first time step. Results in Table 7 show that maximum errors are always less than 0.1%.

A more detailed analysis of the results, however, shows that the errors are generally much less
during propagation of the wave (~ 0.01%), and that the higher variations are observed during
the reflection at the slope. After reflection, both total energy and mass get back to their initial
values, within a few hundredths of a percent. Comparing the instantaneous errors for e; and m,

it is apparent that the change in total energy during the runup-rundown of the wave is quite well
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matched by a similar change in volume. This suggests that, although a reduction of the time step
is made in the computations (Table 7), the fixed At' may be too large to account for the rapid
changes in surface position during the short interval of the process where the surface is moving

really fast up and down along the slope.
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List of Figure captions

Fig. 1: Sketch of the region used in the numerical computations in Section 5 and 6. Definition of
geometrical parameters.

Fig. 2: Surface profile n(z) for first-order solitary waves of height Edi = 0.2 through 0.5. Each wave
is shown at the moment the crest passes @’ = 20 (20 water depth d from the wave generator). The
propagation times ¢’ are : }—ﬁi = 0.2: 27.27, 0.3 : 24.64, 0.4 : 22.92, 0.5 : 21.65.

Fig. 3a: Comparison between two first-order solitary wave surface profiles generated at 2’ = 66.7 (-
- -) and 2’ = 0 (—-) respectively (i.e. after propagating 20d and 86.7d). To be of the same height
%‘ = 0.25 at 2’ = 86.7, the two waves were generated with slightly different amplitude.

Fig. 3b: Comparison between the second wave of Fig. 3a (——) and an ezact solitary wave of same
height (- - -), at the same position 2’ = 86.7.

Fig. 4: Development of crest elevation for the two first-order waves compared in Fig. 3a.

Fig. 5: Variation of maximum amplitude %during reflection from a vertical wall of the two first-
order waves shown in Fig. 3a and 4 (solid and dotted lines defined as in Fig. 3a). The wall is at
2’ = 100 and the vertical line A-B shows the height of the runup. The lowest of the two sets of
curves represents the crest elevations after runup (starting at A’ on the wall).

Fig. 6: Maximum runup %‘ for reflection from a vertical wall versus the value of the incident wave
height %(the incident first-order wave amplitude is defined at 2’ = 20 (13.3d) in front of the wall
as in Fig. 2). (—-) Su & Mirie (1980) 3rd-order analytical results, (O) Fenton & Rienecker (1982)
Fourier Method results, (o) present BEM results for the first-order waves, (¢) present BEM results

for the ezact waves, (- - -) cubic spline fitting to these last results and (- - —) linear relationship
R H

=% = 24

d d

Fig. 7: Lowest point of water surface %‘ (rundown) for reflection from a vertical wall versus the
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incident wave height %I-deﬁned as in Fig. 6. (o) Present BEM results for the first-order waves and
(—) cubic spline fitting to the results; (¢) present BEM results for the ezact waves and (- - -) cubic
spline fitting to the results. Notice that all elevations are negative, and the scale is very different
from that in Fig. 6.

Fig. 8: Reflected wave profiles of ezact solitary waves from a vertical wall. Incident wave height
%: (a): 0.2, (b) : 0.3, (c) : 0.4, (d) : 0.5. Notice the increasingly more developed oscillatory tail
from (a) to (d). Corresponding times are ¢’ = (a) : 32.31, (b) : 27.58, (¢) : 26.40, (d) : 29.98.
Fig. 9a: (—) Reflected wave (at ¢’ = 23.53 or 7 ~ 3) for an incident ezact solitary wave of £=0.5,
compared with the incident wave (- - -) at the same location z/=14.

Fig. 9b: (—) Maximum amplitude %of the reflected wave of Fig. 9a, as a function of time '
(shown from time #,=13.58 where it leaves the wall), compared with the 5th-order analytic solution
by Byatt-Smith (1988) (- - -). The time of rundown t'(R;)=16.18 is also marked on the Figure.
Locations z’ of the maximum amplitude corresponding to times ¢, are plotted in Fig. 10.

Fig. 9c: (—) Deviation of the reflected wave 7 of Fig. 9a from the incident wave 7, = 7/(2',t)
(oscillatory tail), compared with the 5th-order analytic solution of Byatt-Smith (1988) (- - -).
Fig. 10a: (—-) Phase diagram for the same wave as in Fig. 9, i.e., (2/,¢') plot for the point of
maximum amplitude on the free surface. Notice the reflection occurs at =’ = 28 (vertical wall
location) and the maximum runup is at ¢'(R,) = 12.05. (- - -) are straight lines fitted (LSM)
to the data for :i < 20 whose slope % gives the average incident and reflected wave celerities :
c; = 1.2168 and ¢} = 1.2226.

Fig. 10b: Closer view on Fig. 10a, with temporal phase lag At’ = 0.627 (B-C) and spatial phase
lag Az’ = 0.763 (E-C). Notice B-F is a line symmetric to c!.

Fig. 1la: Change in kinetic energy e; and in potential energy e, during reflection from a verti-
cal wall, for the same wave as in Fig. 8-10. Notice the kinetic energy never quite reaches zero
(epi"=0.00259, or 0.786% e,), and the minimum occurs slightly before the instant of maximum
runup (AR“t’=O.200). The initial kinetic energy is e;,=0.329923 and the initial potential energy is
epo=0.285567.

Fig. 11b: Closer view on Fig. 1la. The decrease in kinetic energy after rundown Aey at t'(Ry)
is calculated at A, equal to 0.00179 (0.543% ej,). This eventually reduces down to 0.384% ey, at
t'=29.98.

Fig. 12: (a) Maximum dimensionless pressure force FJ"** and (b) moment with respect to the
bottom M;"*®, for the same results as in Fig. 5.

Fig. 13a: Development in time of total dimensionless pressure force F; on a vertical wall during
reflection of an ezact solitary wave. & = (a): 0.2, (b) : 0.3, (c) : 0.4, (d) : 0.5, (e) : 0.55, (f) :
0.6. Notice the double maximum for -‘g‘grea,ter than 0.4.

Fig. 13b: Surface elevation at the wall ', pressure force F; and moment Mj as a function of time
for the same wave as in Fig. 9-11.

Fig. 14a: Comparison between computations (——) and measurements (- - -) by Losada, et al.
(1986) for reflection from a 45° slope, %‘: 0.269. The symbols mark data points that have been
developed from the original experimental records, and the dotted curve is a spline fit to these
points.

(a) Instant of maximum runup (¢’ = 38.44 in computations)

(b) t' = 41.76
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(c) Instant of lowest position of water surface (' = 42.20, computations and experiments)

(d) t' = 51.92 (computations and experiments)

Fig. 14b: Same definitions as Fig. 14a : 45° slope, %‘: 0.457.

(a) Instant of maximum runup (¢’ = 35.38 in computations)

(b) Instant of last computed position of the water surface (¢’ = 37.93)(backward breaking occured
after that time)

(c) Instant of lowest position of water surface in experiments (¢ = 38.90) (backward breaking was
observed around that time)

(d) ¢ = 52.50

Fig. 15a: Same definitions as Fig. 14a : 70° slope, -f-j-i: 0.259.

(a) Wave profile somewhat before maximum runup (' = 31.60, computations and experiments)
(b) Instant of maximum runup (¢’ = 38.20 in computations)

(c) Instant of lowest position of water surface in computations (¢ = 42.56)

(d) Instant of lowest position of water surface in the experiments (¢’ = 42.83)

(e) Reflected wave %‘- = 0.244 at 2’ = 20 (¢ = 50.00 in the computations, t' = 49.85 in the
experiments).

Fig. 15b: Same definitions as Fig. 14a : 70° slope, %‘: 0.437.

(a) Wave profile somewhat before maximum runup (¢’ = 27.90, computations and experiments)
(b) Instant of maximum runup (¢’ = 34.58 in computations)

(c) Instant of lowest position of water surface (' = 38.10, computations and experiments)

(d) Reflected wave H—d"- = 0.376 at 2’ = 20 (¢ = 45.50 in the computations, ¢ = 45.24 in the
experiments).

Fig. 16a-f: The internal velocity field during runup of a first-order solitary wave with %‘= 0.457
on a 45° slope, at time t' = (a) : 30.38, (b) : 32.05, (c) : 33.15, (d) : 33.98, (e) : 34.88, (f) : 35.38.
The bar in Fig 16a indicates length of arrow representing a velocity of 1/gd. Details of the figures
are discussed in the text.

Fig. 17a-f: Same as Fig. 16 but for the rundown phase, at time ¢’ = (a) : 36.13, (b) : 37.25, (c) :
37.79, (d) : 37.93.

Fig. 18a: Pressure distribution along the slope during runup of the same wave and for the same
times (curves (a) to (f)) as in Fig. 16. The total pressure pr is made dimensionless by division
by the hydrostatic pressure py of the instantaneous water surface vertically above the considered
point.

Fig. 18b: Same as Fig. 18a but for the rundown phase (as in Fig. 17 plus one extra curve between
(a) and (b) at ¢’ = 36.73).
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