COMPUTER PROGRAMS FOR SPECTRAL AND TIME SERIES ANALYSES FOR RANDOM WAVES

by

DANIEL T. COX, NOBUHISA KOBAYASHI and ANDOJO WURJANTO

Sponsored by U.S. Army Coastal Engineering Research Center

RESEARCH REPORT NO. CACR-91-06 JULY, 1991

CENTER FOR APPLIED COASTAL RESEARCH DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF DELAWARE NEWARK, DELAWARE 19716

Abstract

Fourteen subroutines are presented herein for standard spectral and time series analyses since such subroutines may not be easily accessible to a user of the numerical model RBREAK reported previously. These subroutines have been used to specify numerically generated incident random waves as input to the numerical model RBREAK as well as to analyze and interpret the computed time series associated with random waves on impermeable coastal structures and beaches. These subroutines have also been used to conduct irregular wave tests in a wave flume for the evaluation and calibration of the numerical model RBREAK.

The mathematical background, computer program and example for each of the fourteen subroutines are presented in a user-friendly manner. The function of each subroutine is explained concisely to allow the selection of an appropriate subroutine for a specific spectral or time series analysis. The combined effective use of the numerical model RBREAK and appropriate subroutines from those included in this report is essential for predicting and interpreting random wave motions on coastal structures and beaches.

Acknowledgement

This is the third report resulting from research sponsored by the Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station under contract No. DACW 39-90-K-0006-P001. The authors would like to thank D.L. Ward, J.P. Ahrens and D.D. Davidson for their enthusiastic support of our continued efforts to improve the capabilities of numerical models for the design of coastal structures.

Contents

A	bstract	1	L
A	cknowledgements	2	2
P	art I: Introduction	9)
	Background)
	Summary of Subroutines)
P	art II: Subroutine TMASPC	11	60
	Mathematical Background		
	Computer Program		
	Example		
P	art III: Subroutine SPCPAR	15	
	Mathematical Background		
	Computer Program		
	Example		
Pa	art IV: Subroutine TIMEPH and TIMEDC	19	
	Mathematical Background		
	Computer Program		
	Example		
Pa	art V: Subroutine TIMPAR	23	
	Mathematical Background	100 Table 1	
	Computer Program		
	Example		
Рε	art VI: Subroutine SPCTRA	29	
	Mathematical Background		
	Computer Program		
	Example		
Pa	rt VII: Subroutine IRSORT	33	
	Mathematical Background		
	Computer Program		
	Example		

Part VIII: Subroutine COHPHS	39
Mathematical Background	. 39
Computer Program	. 39
Example	. 40
Part IX: Subroutine DISTNR	45
Mathematical Background	
Computer Program	
Example	
	10
Part X: Subroutine USRSPC	51
Mathematical Background	
Computer Program	
Example	52
Part XI: Subroutine PRORBR	57
Mathematical Background	57
Computer Program	58
Example	59
Part XII: Subroutine FFTIMSL	1000
Co. Co. Francisco Association (Control of Control of Co	63
Mathematical Background	63
Computer Program	63
Example	64
Part XIII: Subroutine RDMGEN	67
Mathematical Background	67
Computer Program	67
Example	67
Part XIV: Subroutine WAVNUM	
	71
Mathematical Background	71
Computer Program	71
Example	72
Part XV: Conclusions	75
References	77

Appendix A: Subro																																		79
TMASPC Subroutine																											•							79
SPCPAR Subroutine																																		82
TIMEPH Subroutine										٠		٠			ě							•												84
TIMEDC Subroutine																٠													٠					86
TIMPAR Subroutine																																		87
SPCTRA Subroutine			*															•	٠	٠				•	٠									91
IRSORT Subroutine																		٠																93
COHPHS Subroutine							•	٠						•	٠	٠		٠			•						•		٠	 900		٠		96
DISTNR Subroutine						٠																												98
USRSPC Subroutine							•		•	•			•	•	٠																			101
PRORBR Subroutine																					•							•	•				•	102
FFTIMSL Subroutine	9	•0				٠												٠		٠														105
RDMGEN Subroutine														•				•																107
WAVNUM Subroutine						•	٠			٠													٠											108
Appendix B: Conte	nt	S	oi	f z	40	cc	0	m	pa	ar	ıy	in	ıg	Ι	Di	sl	<																	109

List of Figures

1	TMA Spectrum for Laboratory Experiment Returned by TMASPC	14
2	Time Series of TMA Spectrum for Laboratory Experiment Returned by TIMEPH	22
3	Unsmoothed Power Spectrum for Time Series CMO6G1 Returned by SPCTRA	32
4	Smoothed Power Spectrum with 32 Degrees of Freedom for Time Series CMO6G1 Returned by SPCTRA	32
5	Smoothed Incident and Reflected Spectra at $x = 0m$ with 16 Degrees of Freedom Returned by IRSORT	38
6	Reflection Coefficient as a Function of Frequency with 16 Degrees of Freedom	38
7	Coherence Squared for Two Time Series CMO6G1 and CMO6G3 Returned by COHPHS.	42
8	Phase for Two Time Series CMO6G1 and CMO6G3 Returned by COHPHS	43
9	Probability Distribution Function of Free Surface Elevation for Time Series CMO6G1 Compared with Normal Distribution Returned by DISTNR	48
10	Wave Height Exceedance Probability for Time Series CMO6G1 Compared with Rayleigh Distribution Returned by DISTNR	
11	User-Specified Spectrum	49
12	User-Specified Spectrum	51
	Spectrum for Field Data Returned by USRSPC.	55
13	Normalized Time Series of Spectrum for Field Data Returned by TIMEPH	56
14		61
15	Probability Distribution Function of Pandem Name	69

List of Tables

1	Spectral Parameters Returned by SPCPAR
2	Time Series Parameters Returned by TIMPAR
3	Wave Height Rankings with Corresponding Wave Periods Returned by TIMPAR 27
4	Run Lengths Returned by TIMPAR
5	Raw Points Specifying the User-Specified Spectrum in Kobayashi and Wurjanto (1991)
6	Fourier Coefficients Returned by FFTIMSL
7	Saw-Tooth Time Series Reconstructed with an Inverse FFT by FFTIMSL 66
8	Wave Number for Laboratory Wave Conditions Returned by WAVNUM 73
9	Files on Accompanying Disk

Part I: Introduction

Background

Wurjanto and Kobayashi (1991) presented a numerical model called RBREAK for random waves on impermeable coastal structures and beaches. Their report summarized the previous work related to RBREAK and described the detailed computational aspects of RBREAK. This report presents the subroutines used for the spectral and time series analyses for random waves used in the previous work by Kobayashi, Cox and Wurjanto (1990, 1991), Kobayashi, Wurjanto and Cox (1990a, 1990b), and Kobayashi and Wurjanto (1991).

The subroutines presented in this report are normally required to conduct irregular wave tests in a wave flume and analyze the measured time series as well as to specify numerically-generated incident random waves as input to RBREAK and analyze the computed time series. The methods of the spectral and time series analyzes used in these subroutines are standard and are explained in books for spectral methods (e.g. Bendat and Piersol, 1986) and for random waves (e.g. Goda, 1985). Consequently, similar subroutines may already be available to users of RBREAK. Nevertheless, well-documented, user-friendly subroutines for the spectral and time series analyses may not be accessible easily.

Fourteen subroutines are presented in this report. These subroutines are listed in Appendix A. The magnetic disk accompanying this report and containing the subroutines is explained in Appendix B. Parts II through XIV of this report describing the routines are each divided into three sections. The first section is the mathematical background for each subroutine and is explained to the degree that a user will be able to comprehend the content of each subroutine. The algebraic manipulations required to derive most of the equations used in this report are omitted herein. The derivation of these equations may not be straight forward but is presented in available books for spectral methods (e.g. Bendat and Piersol, 1986) and for random waves (e.g. Goda, 1985). In the second section, the computer program for each subroutine is included to show the usage of the subroutine by a main program or another subroutine. The input and output associated with each subroutine are explained thoroughly so that a user may be able to apply the subroutine without knowing every detail of the subroutine. In the third section, an example is presented for each subroutine so that a user can become familiar with the subroutine. The physical interpretations of the analyzed results were given in the previous works related to RBREAK.

Summary of Subroutines

The name and function of each of the fourteen subroutines is summarized concisely as follows:

- TMASPC: computes the TMA spectrum for wind waves in finite water depth as a function of frequency
- SPCPAR: computes standard spectral parameters for a specified spectrum
- TIMEPH: generates a time series for a specified spectrum using a random phase scheme where the generated time series depends on the seed value used to initialize the random number generator

- TIMEDC: generates the time series determined uniquely for specified Fourier components
- TIMPAR: computes standard parameters and ranked wave statistics based on a zero-upcrossing method for a specified time series
- SPCTRA: computes the unsmoothed and smoothed power density spectrum for a specified time series
- IRSORT: computes the incident and reflected wave time series from measured free surface oscillations at three locations in front of a reflective structure or beach
- COHPHS: computes the smoothed coherence squared and phase between two specified time series
- DISTNR: computes the probability distribution of the free surface elevation in comparison to the normal distribution as well as the exceedance probability of individual wave heights in comparison to the Rayleigh distribution
- USRSPC: accommodates the generation of time series from a power density spectrum whose shape is known but can not be expressed by a formula
- PRORBR: produces an input wave train for the numerical model RBREAK from the time series generated by either the TIMEPH or TIMEDC subroutine
- FFTIMSL: computes the complex Fourier coefficients for a specified time series using the IMSL subroutine FFT2D for a fast Fourier transform (FFT) as well as the time series for specified complex Fourier coefficients using the IMSL subroutine FFT2B for an inverse FFT
- RDMGEN: generates an array of pseudo-random numbers distributed uniformly between zero and one using the IMSL subroutines RNSET and RNUN
- WAVNUM: computes the wave number based on the linear wave dispersion relation for specified frequency and water depth where use is made of the gravitational acceleration $g=9.81ms^{-2}$. It is noted that subroutines should have dimensions based on the SI units because of the use of the WAVNUM subroutine. Alternatively, a user may wish to modify this subroutine to use other units

The above subroutines are written for the spectral and time series analyses for the free surface oscillation. However, some of these subroutines can also be applied to other time-varying quantities such as the shoreline oscillation and velocities associated with random waves. The IMSL subroutines FFT2D, FFT2B, RNSET, and RNUN are used in this report since they are computationally efficient and widely used in the U.S.A. These subroutines can be replaced by other equivalent subroutines such as those included in the book of Press et al. (1986).

Part II: Subroutine TMASPC

Mathematical Background

A self-similar spectral shape given by Bouws et al. (1985) is used to define the sea state. The TMA spectral form (for TEXEL, MARSEN, and ARSLOE data sets) is an extension of the JONSWAP shape to finite water depth. The JONSWAP spectrum for wind waves in deep water is given by

$$S_J = S_P(f)\Phi_{PM}(f/f_p)\Phi_J(f, f_p, \gamma, \sigma)$$
(1)

where

$$S_P(f) = \alpha g^2 (2\pi)^{-4} f^{-5} \tag{2}$$

$$\Phi_{PM}(f/f_p) = \exp\left[(-5/4)(f/f_p)^{-4}\right] \tag{3}$$

$$\Phi_J(f, f_p, \gamma, \sigma) = \exp\left\{\ln\left(\gamma\right) \exp\left[-(f - f_p)^2 / 2\sigma^2 f_p^2\right)\right]\right\} \tag{4}$$

$$\sigma = \begin{cases} \sigma_a & f_p \ge f \\ \sigma_b & f_p < f \end{cases} \tag{5}$$

where S_P is the Phillips formula for equilibrium range, α is a variable coefficient, g is the gravitational acceleration, f is the frequency, Φ_{PM} is the Pierson-Moskowitz shape function, f_p is the spectral peak frequency, Φ_J is the JONSWAP shape function, and σ and γ are variable coefficients.

In finite water depth, Bouws et al. (1985) assumed the validity of the Jonswap spectrum expressed in terms of the wave number, k, and included the transformation factor, $\Phi_K(\omega_H)$, given explicitly by

$$\Phi_K(\omega_H) = \tanh^2(kh) \left[1 + \frac{2kh}{\sinh 2kh} \right]^{-1} \tag{6}$$

where h is the water depth, and kh can be found for given ω_H specified by

$$\omega_H = 2\pi f \left(\frac{h}{g}\right)^{1/2} \tag{7}$$

using the linear dispersion relation

$$(2\pi f)^2 = gk \tanh kh \tag{8}$$

Adopting the transformation factor initially introduced for shallow water by Kitaigorodskii et al. (1975), the TMA spectral shape is given by

$$S_{TMA} = S_J \Phi_K(\omega_H) \tag{9}$$

Computer Program

The TMASPC subroutine was written to yield S_{TMA} as a function of f for given spectral parameters for specifying the incident wave spectrum in finite water depth as well as for the generation of irregular waves in a flume. The subroutine is called by a main program or another subroutine

where the arguments are defined as

- IN:
 - NP = even number of data points in the time series, N
 - DT = time step or sampling interval, Δt (s)
 - FP = peak frequency of target spectrum, f_p (s^{-1})
 - DH = water depth, h(m)
 - IP = option to specify either root-mean-square wave height or spectral constant
- IN/OUT:
 - HR = root-mean-square wave height, H_{rms} (m)
 - AP = spectral constant, α
- · OUT:
 - SP(NP/2+1) = TMA spectral array, $S_{TMA} \ (m^2 s)$
- EXTERNAL ROUTINES:
 - WAVNUM to return the wave number based on the linear dispersion relation

where the SI units of length, L, is in meters (m), and time, t, is in seconds (s).

Since the subroutines in this report were written for the case of analyzing discrete time series from the numerical model and from measurements in a flume, two arguments are contained in nearly all the subroutines. They are NP (N), the number of data point in the time series, and DT (Δt) , the sampling interval of the time series. The sampling interval determines the largest frequency, that is, the Nyquist frequency, $f_{\rm Nyq}$, where

$$f_{\text{Nyq}} = \frac{1}{2\Delta t} \tag{10}$$

The Nyquist frequency is related in this and other subroutines to the length NH of the arrays in the frequency domain, where NH=NP/2+1. The frequency resolution DF (Δf) is related in these subroutines by DF=1/TM or

$$\Delta f = \frac{1}{t_{\text{max}}} \tag{11}$$

where TM (t_{max}) is the duration of the time series and is given by TM=NP*DT or

$$t_{\max} = N\Delta t \tag{12}$$

The N-th element in the spectral array, SP(N), corresponds to the (N-1)*DF-th frequency where $N=1,2,\ldots,NH$.

Specific to the TMASPC subroutine are the arguments FP, DH, IP, HR and AP. The user must specify the peak frequency FP of the TMA spectrum. The variable coefficients SIGA (σ_a) , SIGB (σ_b) and GAMMA (γ) of the JONSWAP shape function are written in the subroutine with the standard values of SIGA=0.07, SIGB=0.09, and GAMMA=3.3.

The water depth DH (h) must be specified in meters since the WAVNUM subroutine was written with the gravitational constant g in SI units. The user may specify either the root-mean-square wave height HR $(H_{\rm rms})$ in which case IP=1, or the spectral constant AP (α) in which case IP=2. If $H_{\rm rms}$ is specified, then α is computed from the zeroth moment of the TMA spectrum with $\alpha=1$

$$\alpha = \frac{H_{\rm rms}^2}{8m_0} \tag{13}$$

In general, the zeroth moment for the TMA spectrum is given by

$$m_0 = \int_0^\infty S_{TMA}(f)df \tag{14}$$

If α is specified, then $H_{\rm rms}$ is returned and computed by

$$H_{\rm rms} = \sqrt{8m_0} \tag{15}$$

The subroutine will return the TMA spectral array of length NP/2+1.

Example

The TMASPC subroutine can be used to generate irregular waves in a flume (e.g. Cox, 1989). In this example, TMASPC is called by a main program

PARAMETER (NP=8192,IP=1)
PARAMETER (DT=0.04,FP=0.6,DH=0.4,HR=0.06)
DIMENSION SP(4097)
C Call TMASPC subroutine
CALL TMASPC(NP,DT,FP,DH,IP,HR,AP,SP)
C Make a graph

and returns the array SP and coefficient AP. The TMA spectral form is shown in Figure 1 with AP=0.0078. Although the Nyquist frequency is $12.5s^{-1}$ for this example, only the range $0.0 < f < 3.5s^{-1}$ is shown.

Figure 1: TMA Spectrum for Laboratory Experiment Returned by TMASPC.

Part III: Subroutine SPCPAR

Mathematical Background

The characteristics of the wave spectrum, S(f), are typically described by various spectral parameters. Cartwright and Longuet-Higgins (1956) first defined the spectral width parameter, ϵ , as

$$\epsilon = \left[1 - \frac{m_2^2}{m_0 m_4}\right]^{1/2} \quad \text{for } 0 < \epsilon < 1$$
(16)

with the n-th spectral moment defined as

$$m_n = \int_0^\infty f^n S(f) df \tag{17}$$

For narrow spectra, ϵ is near zero; and for broad spectra, ϵ is near unity. However, accurate computation of the fourth spectral moment for the high frequency part of the spectrum is difficult since $S(f) \propto f^{-5}$ in deep water. Instead, Longuet-Higgins (1957) defined a second spectral width parameter, ν , as

$$\nu = \left[\frac{m_0 m_2}{m_1^2} - 1\right]^{1/2} \tag{18}$$

On the other hand in 1970, Goda introduced the peakedness parameter, Q_p , as

$$Q_p = \frac{2}{m_0^2} \int_0^\infty f \left[S(f) \right]^2 df \tag{19}$$

where the value of Q_p is near 2 for wind waves (Goda, 1985).

The standard deviation of the free surface oscillation, η_{rms} , is related to the zeroth moment as

$$\eta_{\rm rms} = \sqrt{m_0} = \left(\overline{\eta^2}\right)^{1/2} \tag{20}$$

where $\overline{\eta^2}$ is the mean of the square of the free surface oscillation with zero mean. Assuming the Rayleigh distribution of wave heights, the spectral estimate of the root-mean-square wave height, $H_{\rm rms}$, and the spectral estimate the significant wave height, $H_{\rm mo}$, are given by

$$H_{\rm rms} = \sqrt{8m_0} \tag{21}$$

and

$$H_{\rm mo} = 4.004 \sqrt{m_0} \tag{22}$$

In addition to the wave height parameters, the wave period parameters can be computed. A spectral estimate of the mean period of the zero-upcrossing waves, T_{02} , is given by

$$T_{02} = \sqrt{\frac{m_0}{m_2}} \tag{23}$$

A second spectral estimate of the mean period, T_{01} , is given by

$$T_{01} = \frac{m_0}{m_1} \tag{24}$$

It is noted that T_{02} and T_{01} may not be the same as the mean wave period calculated using a zero-crossing method with the time series of the free surface oscillation.

Computer Program

The SPCPAR subroutine, written to calculate the parameters for a given spectrum, is called by a main program or another subroutine

```
CALL SPCPAR (SP, NP, DT, EP, VU, QP, ER, HR, HM, T1, T2)
```

where the arguments are defined as

- · IN:
 - SP(NP/2+1) = spectral array, S(f) (L^2s)
 - NP = even number of data points in the time series, N
 - DT = time step or sampling interval, Δt (s)
- · OUT:
 - EP = spectral width parameter, ϵ
 - VU = spectral width parameter, ν
 - QP = spectral peakedness parameter, Q_p
 - ER = standard deviation of the free surface oscillation, $\eta_{\rm rms}$ (L)
 - HR = spectral estimate of the root-mean-square wave height, $H_{\rm rms}$ (L)
 - HM = spectral estimate of the significant wave height, H_{mo} (L)
 - T1 = spectral estimate of the mean period, $T_{01}\left(s\right)$
 - T2 = spectral estimate of the mean period, $T_{02}\left(s\right)$
- EXTERNAL ROUTINES:
 - none

where L refers to the unit of length. In the subroutine the spectral moments are computed by trapezoidal approximation.

Example

The same TMA spectral form shown in Figure 1 is used in this example, where SPCPAR is called by a main program

```
PARAMETER (NP=8192, IP=1)
PARAMETER (DT=0.04, FP=0.6, DH=0.4, HR=0.06)
DIMENSION SP(4097)

C Call TMASPC subroutine
CALL TMASPC(NP, DT, FP, DH, IP, HR, AP, SP)

C Call SPCPAR subroutine
CALL SPCPAR(SP, NP, DT, EP, VU, QP, ER, HRMS, HM, T1, T2)

C Make a table
```

and the values of the spectral parameters are returned and are given in Table 1. It is noted that in the example program the $H_{\rm rms}$ argument is written HRMS to differentiate it from the parameter HR used as input to the TMASPC subroutine. As expected, the $H_{\rm rms}$ value returned by the SPCPAR subroutine agrees with the value specified to the TMASPC subroutine.

Table 1: Spectral Parameters Returned by SPCPAR.

Argument	Value	Units
ϵ	0.861	
ν	0.456	
Q_p	2.233	
$\eta_{ m rms}$	2.121	cm
$H_{ m rms}$	6.000	cm
H_{mo}	8.492	cm
T_{01}	1.188	s
T_{02}	1.080	s

Part IV: Subroutine TIMEPH and TIMEDC

Mathematical Background

Two common methods for generating a time series for a given spectrum are discussed by Elgar et al. (1985), one of which is summarized here. This method is called the random phase scheme where the free surface oscillation is composed of the superposition of sinusoidal waves with random phase angles and with amplitudes based on the spectrum, $S(f_n)$. The free surface, $\eta(t)$, as a function of time is expressed by

$$\eta(t) = \sum_{n=1}^{N/2} C_n \cos(2\pi f_n t + \phi_n) \quad \text{for} \quad 0 \le t < t_{\text{max}}$$
 (25)

with

$$C_n = [2S(f_n)\Delta f]^{1/2}$$
 (26)

and

$$\Delta f = \frac{1}{t_{\text{max}}} = \frac{1}{N\Delta t} \tag{27}$$

where N is the even number of data points in the time series, Δt is the sampling interval, t_{max} is the duration of the time series, C_n are the real Fourier amplitudes, Δf is the frequency bandwidth, $f_n = n\Delta f$ is the frequency, and ϕ_n are the random phase angles uniformly distributed in $[0, 2\pi]$.

This method represents a Gaussian sea only as the number of harmonics, N/2, approaches infinity (Tucker et al., 1984). For finite N and $\Delta f = \text{constant}$, the free surface profile repeats after $t = t_{\text{max}}$. However, the duration of $0 \le t < t_{\text{max}}$ is of interest, and the use of $\Delta f = \text{constant}$ is normally sufficient for small Δf .

A second routine is presented in this section to return the time series for determined Fourier coefficients and is based on the following equation

$$\eta(t) = \sum_{n=1}^{N/2} \left[a_n \cos(2\pi f_n t) + b_n \sin(2\pi f_n t) \right] \quad 0 \le t < t_{\text{max}}$$
 (28)

where a_n and b_n are the Fourier coefficients. Comparing Equations 25 and 28, a_n and b_n can be expressed

$$a_n = C_n \cos \phi_n \tag{29}$$

and

$$b_n = -C_n \sin \phi_n \tag{30}$$

This subroutine is essentially an inverse FFT routine but was written as a separate routine for clarity. This subroutine is used by the IRSORT subroutine to return incident and reflected wave trains.

Computer Program

The TIMEPH subroutine, written for calculating a time series for a given spectrum, is called by a main program or another subroutine

CALL TIMEPH (SP, NP, DT, IS, TS)

where the arguments are defined as

- · IN:
 - SP(NP/2+1) = power density spectrum, $S(f_n)$ (L^2s)
 - NP = even number of data points in the time series, N
 - DT = time step or sampling interval, Δt (s)
 - IS = seed value to initialize the random number generator
- · OUT:
 - TS(NP) = time series, $\eta(t)$ (L)
- EXTERNAL ROUTINES:
 - FFTIMSL to inverse Fourier transform the coefficients and return the time series
 - RDMGEN to return an array of random numbers uniformly distributed between zero and one

Only these two subroutines, FFTIMSL and RDMGEN, contain calls to the IMSL library of subroutines and can be easily substituted by standard FFT routines and random number generators for computers without this library (Press et. al., 1986). However, the IMSL version of the FFT is computationally efficient and is used in these routines.

The second routine, TIMEDC, which is essentially an inverse Fourier transform of known Fourier coefficients to return the time series, is called by a main program

where the arguments are defined as

- IN:
 - A(NP/2+1) = real part of the complex Fourier coefficients, a_n (L)
 - B(NP/2+1) = imaginary part of the complex Fourier coefficients, b_n (L)
 - NP = even number of data points in the time series
- · OUT:
 - TS(NP) = time series, $\eta(t)$ (L)
- EXTERNAL ROUTINES:
 - FFTIMSL to inverse Fourier transform the coefficients and return the time series

The relation between the complex Fourier coefficients, c_n , used in the FFTIMSL subroutine and the real Fourier coefficients, a_n and b_n , is given by

$$c_n = 0 for n = 0 (31)$$

$$c_n = \frac{a_n - ib_n}{2}$$
 for $n = 1, 2, ..., N/2 - 1$ (32)

$$c_n = a_n \qquad \text{for } n = N/2 \tag{33}$$

$$c_n = 0$$
 for $n = 0$ (31)
 $c_n = \frac{a_n - ib_n}{2}$ for $n = 1, 2, ..., N/2 - 1$ (32)
 $c_n = a_n$ for $n = N/2$ (33)
 $c_n = \frac{a_{N-n} + ib_{N-n}}{2}$ for $n = N/2 + 1, ..., N - 1$ (34)

where $i^2=-1$ and N=(n+1) is used in the computer program listed in Appendix A.

Example

The example in this section illustrates the use of the TIMEPH subroutine by way of the TMA spectrum generated in the previous two examples. The TIMEPH subroutine is called by a main program

PARAMETER (NP=8192, IP=1, IS=123457)

PARAMETER (DT=0.04, FP=0.6, DH=0.4, HR=0.06)

DIMENSION SP(4097), TS(8192)

C To provide IMSL workspace

COMMON /WORKSP/ RWKSP

REAL RWKSP(65592)

CALL IWKIN(65592)

C Call TMASPC subroutine

CALL TMASPC(NP, DT, FP, DH, IP, HR, AP, SP)

C Call TIMEPH subroutine

CALL TIMEPH(SP, NP, DT, IS, TS)

C Make a graph

and the time series is returned. It is noted that in order to run the FFT routines provided in the IMSL library, it is necessary to provide adequate workspace in the main (calling) program.

Figure 2 shows the time series of the TMA spectrum. Although the maximum duration is $t_{\rm max} = 327.68s$, only the range 0.0 < t < 160.0s is shown in this figure. An example of the TIMEDC subroutine is not provided here but is discussed in conjunction with the IRSORT subroutine in Part VII.

Figure 2: Time Series of TMA Spectrum for Laboratory Experiment Returned by TIMEPH.

Part V: Subroutine TIMPAR

Mathematical Background

There are two general categories for random wave analyses: one is the spectral method, and the other is the zero-crossing method. These two methods are completely different in approach although gross statistics such as the root-mean-square wave height tend to agree for time series of long duration. Individual waves can be identified using either successive zero-upcrossing points or successive zero-downcrossing points where a "zero-crossing" is the location where the time series crosses the zero of the abscissa. The zero-upcrossing method is adopted in this report.

Beginning the zero-upcrossing analysis, the mean water level due to wave setup or setdown, $\overline{\eta}$, is computed by using the arithmetic mean of the time series, η_i , measured from still water level,

$$\overline{\eta(t)} = \frac{1}{N} \sum_{i=1}^{N} \eta_i \tag{35}$$

where N is the number of data points. Next, the adjusted free surface oscillation is computed by subtracting the setup; and the adjusted free surface, $(\eta_i - \overline{\eta})$, is denoted hereafter as η_i for brevity. The root-mean-square of the free surface oscillation, η_{rms} , is found by

$$\eta_{\rm rms}^2 = \frac{1}{N} \sum_{i=1}^N \eta_i^2 \tag{36}$$

Additional parameters are calculated using the zero-upcrossing method in which the point of zero-upcrossing is located using the linear interpolation between two points satisfying the conditions

$$\eta_i \cdot \eta_{i+1} < 0 \text{ and } \eta_{i+1} > 0$$
(37)

where η_i is the i-th data point of the free surface elevation. An individual wave is defined using two adjacent zero-upcrossing points. The wave period of an individual wave, T_i , is the duration between the two adjacent zero-upcrossing points. The largest value of the data points in an individual wave can be found by comparing the values of η_i included in each wave. A parabolic curve is fitted to the three discrete data points about the largest value, η_i , to improve the estimate of the maximum elevation, η_{max} , which is given by

$$\eta_{\text{max}} = C - \frac{B^2}{4A} \tag{38}$$

where

$$A = \frac{1}{2}(\eta_{i-1} - 2\eta_i + \eta_{i+1}) \tag{39}$$

$$B = \frac{1}{2}(\eta_{i+1} - \eta_{i-1})$$

$$C = \eta_i$$
(40)

$$C = \eta_i \tag{41}$$

The minimum elevation of the individual wave, η_{\min} , can be found in a similar manner. The corresponding wave height of an individual wave, H_i , is given by

$$H_i = \eta_{\text{max}} - \eta_{\text{min}} \tag{42}$$

The average wave height, \overline{H} , and the average wave period, \overline{T} , can be found by arithmetic mean

$$\overline{H} = \frac{1}{N_0} \sum_{i=1}^{N_0} H_i \tag{43}$$

and

$$\overline{T} = \frac{1}{N_0} \sum_{i=1}^{N_0} T_i \tag{44}$$

where N_0 is the number of individual waves with wave period and wave height denoted by T_i and H_i , respectively. The root-mean-square wave height, H_{rms} , is defined as

$$H_{\rm rms} = \left[\frac{1}{N_0} \sum_{i=1}^{N_0} H_i^2\right]^{1/2} \tag{45}$$

To determine the significant wave height, H_s , and the significant wave period, T_s , the individual waves are ranked in descending order of H_i . The significant wave height, H_s , is defined as the arithmetic mean of the one-third highest waves

$$H_s = \frac{3}{N_0} \sum_{r=1}^{N_0/3} H_r \tag{46}$$

where H_r is the wave height of r-th rank. Similarly, the significant wave period, T_s , is given by

$$T_s = \frac{3}{N_0} \sum_{r=1}^{N_0/3} T_r \tag{47}$$

where T_r is the period corresponding to the r-th ranked wave. Additionally, the average height and period of the one-tenth highest waves, H_{10} and T_{10} , respectively, are given by

$$H_{10} = \frac{10}{N_0} \sum_{r=1}^{N_0/10} H_r \tag{48}$$

and

$$T_{10} = \frac{10}{N_0} \sum_{r=1}^{N_0/10} T_r \tag{49}$$

Lastly, the run length of wave groups are computed. The run length is equal to the number of waves in a sequence for which the wave heights are larger than a specified wave height (Goda, 1985) which is taken to be the significant wave height, H_s , in this routine.

Computer Program

The TIMPAR subroutine, written to compute the statistical parameters of given time series, is called by a main program or another subroutine

CALL TIMPAR (TS, NP, DT, SD, ER, NZ, HB, TB, HV, HS, T3, HT, TT, HRK, TRK, LRN, NK)

where the arguments are defined as

• IN:

- TS(NP) = time series, $\eta(t)$ (L)
- NP = even number of data points in the time series, N
- DT = time step or sampling interval, Δt (s)

• OUT:

- SD = mean of time series (setup or setdown), $\overline{\eta(t)}$ (L)
- ER = root-mean-square of the free surface elevation, $\eta_{\rm rms}$ (L)
- NZ = number of zero-upcrossing waves, N_0
- HB = mean wave height, $\overline{H}(L)$
- TB = mean wave period, $\overline{T}(s)$
- HV = root-mean-square wave height, H_{rms} (L)
- HS = significant wave height, i.e., the average of the one-third highest waves, H_s (L)
- T3 = significant wave period, i.e., the average period of the one-third highest waves, T_s (s)
- HT = average height of the one-tenth highest waves, H_{10} (L)
- TT = average period of the one-tenth highest waves, T_{10} (s)
- HRK(NZ) = array of wave heights ranked with HRK(1) being the highest, $H_r(L)$
- TRK(NZ) = array of wave periods corresponding to the ranked wave heights with TRK(1) being the period corresponding to the highest wave, $T_r(s)$
- LRN(NK) = run length of wave heights exceeding HS
- NK = number of runs

EXTERNAL ROUTINES:

- none

In the TIMPAR subroutine, the time series array is copied, ATS(I)=TS(I), and an additional point is added, ATS(NP+1)=TS(1), to make the time series periodic. The mean is removed from the copied time series, ATS(I), to leave the original unchanged.

It is noted that the number of zero-upcrossing waves is NZ (N_0) and that the last wave period T(NZ) $(T_{i=N_0})$ is computed by T(NZ)=(TM-TMZERO(NZ))+TMZERO(1) where TM (t_{\max}) is the duration of the time series, TMZERO(NZ) is the last zero-upcrossing point near the end of the time series and TMZERO(1) is the first zero-upcrossing point near the beginning of the time series.

Since the wave heights are generally of greater importance than the wave periods to the design engineer, the waves are ranked by height and not by period in this subroutine although this condition is easy to change in the subroutine. The wave period array returned contains elements corresponding to the wave periods of the ranked waves, and the highest waves do not generally have the longest periods (Goda, 1985).

Example

The example in this section uses the total time series generated by the TIMEPH subroutine, part of which is shown in Figure 2. The TIMEPH subroutine is called by a main program

```
PARAMETER (NP=8192, IP=1, IS=123457)

PARAMETER (DT=0.04, FP=0.6, DH=0.4, HR=0.06)

DIMENSION SP(4097), TS(8192), HRK(1000), TRK(1000)

C To provide IMSL workspace

COMMON /WORKSP/ RWKSP

REAL RWKSP(65592)

CALL IWKIN(65592)

C Call TMASPC subroutine

CALL TMASPC(NP, DT, FP, DH, IP, HR, AP, SP)

C Call TIMEPH subroutine

CALL TIMEPH(SP, NP, DT, IS, TS)

C Call TIMPAR subroutine

CALL TIMPAR(TS, NP, DT, DS, ER, NZ, HB, TB, HV, HS, T3, HT, TT, & HRK, TRK, LRN, NK)

C Make a table
```

and the subroutine returns the values of the time series parameters given in Table 2. For this example, $H_{\rm rms}=5.666cm$ which is roughly equivalent to $H_{\rm rms}=6.0cm$ specified to the TMASPC subroutine to generate the TMA spectrum. The value of $H_{\rm rms}$ returned by TIMPAR should approach the specified $H_{\rm rms}$ of the target spectrum as the length of the time series increases. The mean wave period, $\overline{T}=1.050s$, is roughly equivalent to the mean period based on the spectral moments of the SPCPAR subroutine, $T_{02}=1.080s$, as shown in Table 1. A partial ranking of the waves is given in Table 3, and the run lengths are given in Table 4.

Table 2: Time Series Parameters Returned by TIMPAR.

Argument	Value	Units
$\overline{\eta(t)}$	-2.57 ×10 ⁻⁴	cm
$\eta(v)$ $\eta_{\rm rms}$	2.121	cm
N_0	312	3511.9
\overline{H}	4.946	cm
\overline{T}	1.050	s
$H_{ m rms}$	5.666	cm
H_s	8.116	cm
T_s	1.367	s
H_{10}	10.345	cm
T_{10}	1.394	8

Table 3: Wave Height Rankings with Corresponding Wave Periods Returned by TIMPAR.

Rank, r	$H_r(cm)$	$T_r(s)$
1	14.165	1.370
2	13.359	1.195
3	12.841	1.163
4	12.671	1.647
5	12.285	1.472
306	0.450	0.369
307	0.364	0.199
308	0.263	0.201
309	0.236	0.142
310	0.104	0.203
311	0.049	0.060

Table 4: Run Lengths Returned by TIMPAR.

I	LRN(I)	I	LRN(I)
1	1	14	1
2	3	15	1
3	1	16	2
4	2	17	4
4 5	1	18	1
	1	19	1
6 7 8 9	1	20	4
8	1	21	1
9	3	22	1
10	2	23	1
11	1	24	2
12	1	25	1
13	2	26	1

Part VI: Subroutine SPCTRA

Mathematical Background

The power density spectrum, $S(f_n)$, is found by Fourier transform of the time series, $\eta(t)$, expressed in the form of Equation 28 and is given by

$$S(f_n) = 0 for n = 0 (50)$$

$$S(f_n) = \frac{1}{2\Delta f}(a_n^2 + b_n^2) \quad \text{for } n = 1, \dots, \frac{N}{2} - 1$$
 (50)

$$S(f_n) = \frac{1}{2\Delta f} a_n^2 \qquad \text{for } n = N/2$$
 (52)

where a_n and b_n are the Fourier coefficients at each frequency, $f_n = n\Delta f$. It was noted in Part II that the frequency resolution, Δf , is related to the duration of the time series, t_{max} , by

$$\Delta f = \frac{1}{t_{\text{max}}} = \frac{1}{N\Delta t} \tag{53}$$

The largest frequency, that is, the Nyquist frequency, $f_{\rm Nyq}$, depends only on the sampling interval, Δt , and is given by

 $f_{\text{Nyq}} = \frac{1}{2\Delta t} = \frac{N\Delta f}{2} \tag{54}$

In practice, the spectrum obtained from the Fourier transform may have a high statistical resolution but may have a low statistical reliability, particularly for time series with much noise. Hence, it may be advantageous to use a smoothing procedure to increase the reliability at the expense of the spectral resolution. The simplest method is a rectangular filter with the smoothed spectrum, $\hat{S}(f_k)$, given by

$$\hat{S}(f_k) = \frac{1}{m} \sum_{j=(k-1)m+1}^{km} S(f_j)$$
(55)

with

$$f_k = \left[\frac{1}{2} + (k - \frac{1}{2})m\right] \Delta f \tag{56}$$

where m indicates the number of unsmoothed spectral values used for the averaging. The corresponding degree of freedom is 2m (e.g. Goda, 1985).

It is noted that the spectrum is computed without regard to aliasing or spectral leakage. These two points should be considered when the sampling interval, Δt , and the number of samples, N, are determined for an experiment. The choice of the sampling interval alone determines the Nyquist frequency. Energy contained in the record beyond the Nyquist frequency is folded back in to the frequency band below the Nyquist; therefore, the sampling interval should be chosen so that there is negligible energy above the Nyquist frequency. The frequency resolution, Δf , determined by the duration of the record should be chosen so that there is negligible energy below Δf .

Computer Program

The SPCTRA subroutine, written to compute the power density spectrum for a given time series, is called by a main program

CALL SPCTRA (TS, NP, DT, NB, SP, FS, SM)

where the arguments are defined as

• IN:

- TS(NP) = time series to be transformed, $\eta(t)$ (L)
- NP = even number of data points in the time series, N
- DT = time step or sampling interval, Δt (s)
- NB = number of band-averaged data points for smoothing, m

· OUT:

- SP(NP/2+1) = unsmoothed power density spectrum, $S(f_n)$ (L^2s)
- FS(NP/2/NB) = frequency array of smoothed spectrum, f_k (s^{-1})
- SM(NP/2/NB) = smoothed spectrum, $\hat{S}(f_k)$ (L^2s)

• EXTERNAL ROUTINES:

- FFTIMSL to return the complex Fourier coefficients

Example

The example for this section starts with the time series data file CM06G1. The time series for CM06G1 is the measured free surface oscillation in a flume at the toe of a 1:20 smooth, impermeable slope with a water depth of h=0.47m, and with a peak frequency of the target spectrum of $f_p=0.6s^{-1}$. The length of this file is N=8192 points and the sampling interval is $\Delta t=0.04s$. The free surface displacement, $\eta(t)$, is in units of centimeters. The SPCTRA subroutine is called by a main program

```
PARAMETER (NB=16)
       DIMENSION SP(4097), TS(16384), FS(256), SM(256)
C To provide IMSL workspace
       COMMON /WORKSP/ RWKSP
       REAL RWKSP(65592)
       CALL IWKIN(65592)
C Read in time series data file CMO6G1
       OPEN(UNIT=11,FILE='CMO6G1')
       READ(11,1) NP, DT
1
       FORMAT(I10,F10.4)
       READ(11,*) (TS(I), I=1,NP)
       CLOSE(11)
C Remove mean from time series
       CALL TAKEMN (TS, NP, SD)
C Call SPCTRA subroutine
```

CALL SPCTRA(TS,NP,DT,NB,SP,FS,SM)

```
C Make a graph

. . .

C Subroutine to remove the mean from the time series

SUBROUTINE TAKEMN(TS,NP,SD)

REAL TS(NP)

SUM=0.0

DO 1 I = 1, NP

SUM = SUM + TS(I)

1 CONTINUE

SD = SUM/FLOAT(NP)

DO 2 I = 1, NP

TS(I) = TS(I) - SD

2 CONTINUE

RETURN
END
```

and the subroutine returns for the given time series the unsmoothed power spectral density as well as the smoothed power spectral density and corresponding frequency array. The unsmoothed spectrum has a frequency resolution of $\Delta f = 0.00305s^{-1}$ and Nyquist frequency of $f_{\rm Nyq} = 12.5s^{-1}$. Figure 3 shows the unsmoothed spectrum in the range $0.0 < f < 3.5s^{-1}$ for the time series CMO6G1. For the smoothed spectrum, the frequency resolution is $\Delta f = 0.0488s^{-1}$ and the Nyquist frequency is essentially unchanged. Figure 4 shows the smoothed power spectrum for the data file CMO6G1 with 32 degrees of freedom (m=16).

UNSMOOTHED POWER SPECTRUM

Figure 3: Unsmoothed Power Spectrum for Time Series CM06G1 Returned by SPCTRA.

Figure 4: Smoothed Power Spectrum with 32 Degrees of Freedom for Time Series CM06G1 Returned by SPCTRA.

Part VII: Subroutine IRSORT

Mathematical Background

Since laboratory experiments are often affected by multireflection from the slope and wavemaker, it is important to know the reflective properties of the slope for any hydraulic test in a flume. In the case of irregular waves, it is desirable to estimate the reflection as a function of frequency and to be able to separate incident and reflected waves. A method to separate incident and reflected waves with an array of wave gages is presented here following Thornton and Calhoun (1972), Goda and Suzuki (1976), and Seelig (1980).

The mean water level is first removed from the time series, and the free surface displacement, η^i , is given by

 $\eta^{i}(t) = \eta^{i}(t)' - \overline{\eta^{i}(t)'} \quad \text{for } 0 \le t \le t_{\text{max}}$ $\tag{57}$

where i is the gage number, $\eta^i(t)'$ is the time series before removal, and $\overline{\eta^i(t)'}$ is the mean water level. Assuming a horizontal seabed seaward of the slope in the region $x \leq 0$ where the horizontal coordinate x is taken to be positive landward, the incident and reflected time series are assumed to be expressed as

$$\eta_i(x,t) = \sum_{n=1}^{N/2} \left[(a_i)_n \cos(k_n x - \omega_n t) + (b_i)_n \sin(k_n x - \omega_n t) \right] \quad \text{for } x \le 0$$
 (58)

and

$$\eta_r(x,t) = \sum_{n=1}^{N/2} \left[(a_r)_n \cos(k_n x + \omega_n t) + (b_r)_n \sin(k_n x + \omega_n t) \right] \quad \text{for } x \le 0$$
 (59)

in which $(a_i)_n$, $(b_i)_n$, $(a_r)_n$, and $(b_r)_n$ with n = 1, 2, ..., N/2 are the unknown coefficients for the wave trains of length N, where $\eta_i(x,t)$ and $\eta_r(x,t)$ are the incident and reflected wave trains, respectively. The total free surface variation seaward of the toe of the slope is given by

$$\eta(x,t) = \eta_i(x,t) + \eta_r(x,t) \quad \text{for } x \le 0$$
(60)

which can be written in expanded form as

$$\eta(x,t) = \sum_{n=1}^{N/2} \left\{ \left[(a_i)_n + (a_r)_n \right] \cos(k_n x) + \left[(b_i)_n + (b_r)_n \right] \sin(k_n x) \right\} \cos \omega_n t \\
+ \left\{ \left[(b_r)_n - (b_i)_n \right] \cos(k_n x) + \left[(a_i)_n - (a_r)_n \right] \sin(k_n x) \right\} \sin \omega_n t \tag{61}$$

On the other hand, the free surface oscillations are known at each gage $x = x_i$, where i is the gage number, and is expressed as

$$\eta(x_i, t) = \sum_{n=1}^{N/2} \left[a_n^i \cos(\omega_n t) + b_n^i \sin(\omega_n t) \right] \quad \text{for } 0 \le t \le t_{\text{max}}$$
 (62)

where a_n^i and b_n^i are the Fourier coefficients computed for the known time series. Comparing Equations 61 and 62, the following equations must be satisfied

$$a_n^i = \left[(a_i)_n + (a_r)_n \right] \cos k_n x_i + \left[(b_i)_n + (b_r)_n \right] \sin k_n x_i \tag{63}$$

and

$$b_n^i = \left[(b_r)_n - (b_i)_n \right] \cos k_n x_i + \left[(a_i)_n - (a_r)_n \right] \sin k_n x_i \tag{64}$$

where n = 1, 2, ..., N/2 indicates each harmonic and i indicates the location of the first gage of the pair. The location of the second gage, j, with $x_i > x_j$ and j > i gives

$$a_n^j = \left[(a_i)_n + (a_r)_n \right] \cos k_n x_j + \left[(b_i)_n + (b_r)_n \right] \sin k_n x_j \tag{65}$$

and

$$b_n^j = \left[(b_r)_n - (b_i)_n \right] \cos k_n x_j + \left[(a_i)_n - (a_r)_n \right] \sin k_n x_j \tag{66}$$

Using these four equations, the unknown coefficients, $(a_i)_n$, $(b_i)_n$, $(a_r)_n$, and $(b_r)_n$, are solved in terms of the known Fourier coefficients, a_n^i , b_n^i , a_n^j , and b_n^j , and the gage positions, x_i and x_j .

The unknown coefficients are given by

$$(a_{i})_{n} = \frac{1}{2 \sin k_{n}(x_{i} - x_{j})} \left[-a_{n}^{i} \sin k_{n}x_{j} + a_{n}^{j} \sin k_{n}x_{i} + b_{n}^{i} \cos k_{n}x_{j} - b_{n}^{j} \cos k_{n}x_{i} \right]$$

$$(b_{i})_{n} = \frac{1}{2 \sin k_{n}(x_{i} - x_{j})} \left[+a_{n}^{i} \cos k_{n}x_{j} - a_{n}^{j} \cos k_{n}x_{i} + b_{n}^{i} \sin k_{n}x_{j} - b_{n}^{j} \sin k_{n}x_{i} \right]$$

$$(a_{r})_{n} = \frac{1}{2 \sin k_{n}(x_{i} - x_{j})} \left[-a_{n}^{i} \sin k_{n}x_{j} + a_{n}^{j} \sin k_{n}x_{i} - b_{n}^{i} \cos k_{n}x_{j} + b_{n}^{j} \cos k_{n}x_{i} \right]$$

$$(b_{r})_{n} = \frac{1}{2 \sin k_{n}(x_{i} - x_{j})} \left[+a_{n}^{i} \cos k_{n}x_{j} - a_{n}^{j} \cos k_{n}x_{i} - b_{n}^{i} \sin k_{n}x_{j} + b_{n}^{j} \sin k_{n}x_{i} \right]$$

$$(69)$$

where k_n is the wave number calculated at each frequency using the linear dispersion relation

$$(2\pi f_n)^2 = gk_n \tanh k_n h \tag{71}$$

where h is the water depth. An inverse transform of the Fourier coefficients gives the incident time series, $\eta_i(x,t)$, and reflected time series, $\eta_r(x,t)$, at x=0, the position of the first gage seaward of the toe of the slope.

A limitation of this method is the singularity of $1/\sin k_n(x_i-x_j)$. Goda (1985) and Goda and Suzuki (1976) recommend that the effective frequency range of resolution should be limited to

$$\frac{\pi}{10} \le k_n(x_i - x_j) \le \frac{9\pi}{10} \tag{72}$$

For an array of three gages, there are three gage pairs and, therefore, three estimates. These estimates are averaged in the case that two or three estimates are within the cutoff criteria. Estimates outside the cutoff range are not used. With proper choice of gage spacing, a wide

frequency band can be resolved; however, the lowest resolvable frequency is limited by the largest gage spacing. Frequencies below this limit are not resolvable. Additionally, in the higher frequencies, there will be frequency bands where all three estimates are outside the cutoff criteria, and no estimate is possible. Appropriate gage spacing for given water depth and peak wave period should be chosen such that most of the energy is contained in the effective frequency range of resolution.

Computer Program

The IRSORT subroutine, written to separate incident and reflected waves for a three gage array, is called by a main program or another subroutine

where the arguments are defined as

• IN:

- TS(ND, NW) = free surface oscillations at NW wave gages, $\eta^i(t)$ (L)
- ND = dimension of TS in calling program equal to NP or greater
- NW = width of TS in calling program (equal to number of gages)
- NP = even number of data points in the time series, N
- DT = time step or sampling interval, Δt (s)
- XG(NW) = location of each gage with the x-axis positive shoreward and gage number decreasing shoreward, x(m)
- DH = water depth, h(m)

• OUT:

- FMN = minimum resolvable frequency based on largest gage spacing, f_{\min} (s^{-1})
- FMX = maximum resolvable frequency based on smallest gage spacing, $f_{\text{max}}(s^{-1})$
- TI(NP) = incident time series at x = 0, $\eta_i(t)$ (L)
- TR(NP) = reflected time series at x = 0, $\eta_r(t)$ (L)

• EXTERNAL ROUTINES:

- FFTIMSL to return the Fourier coefficients for the time series at each gage location
- WAVNUM to return the wave number based on the linear dispersion relation at each frequency
- TIMEDC to return the time series for known Fourier coefficients

The minimum and maximum resolvable frequencies are limited by the maximum and minimum gage spacings, respectively, following the restriction suggested by Goda (1985) given by

$$\frac{\pi}{10} \le k\Delta x \le \frac{9\pi}{10} \tag{73}$$

where Δx is the gage spacing. The minimum resolvable frequency, f_{\min} , is given by the linear dispersion relation

$$(2\pi f_{\min})^2 = gk_{\min} \tanh(k_{\min}h) \tag{74}$$

where h is the water depth and k_{\min} is the minimum wave number given by

$$k_{\min} = \frac{\pi}{10\Delta x_{\max}} \tag{75}$$

where Δx_{\max} is the maximum gage spacing. Similarly, the maximum resolvable frequency, f_{\max} , is limited by the minimum gage spacing, Δx_{\min} , and is found by

$$(2\pi f_{\max})^2 = gk_{\max} \tanh(k_{\max}h) \tag{76}$$

where

$$k_{\max} = \frac{9\pi}{10\Delta x_{\min}} \tag{77}$$

Additionally, it is noted that this program can be used for a two gage array provided that the arrays in the main program are dimensioned correctly. Also, although it is necessary that the gage positions and the water depth be specified in meters, the free surface elevation can be specified with arbitrary units of length.

Example

The example for this section starts with three time series data files: CMO6G1, CMO6G2, and CMO6G3. These time series data files are the measured total free surface oscillations for a three gage array where CMO6G1 is the first gage at x=0m (see example, Part VI), CMO6G2 is the second gage at x=-1.4m, and CMO6G3 is the third gage at x=-2.0m. After reading in the data files, the main program calls the IRSORT subroutine. Within the IRSORT subroutine, three other subroutines are called. The FFTIMSL subroutine returns the Fourier coefficients for the time series at each gage location. The WAVNUM subroutine returns the wave number based on the linear dispersion relation at each frequency. It should be noted that this subroutine is written in SI units and that the water depth, DH, and gage locations, XG, should be specified in meters (m). The TIMEDC subroutine returns the incident and reflected wave time series for the computed Fourier coefficients. After IRSORT returns the incident and reflected wave time series, the main routine in this example calls the SPCTRA subroutine twice to return the incident and reflected wave spectra. The main program is as follows

PARAMETER (NB=8,NW=3,ND=16384)

PARAMETER (DH=0.47)

DIMENSION SMI(256), SMR(256), REFL(256)

DIMENSION SPI(4097), SPR(4097), FSI(256), FSR(256)

DIMENSION TS(16384,3), TI(16384), TR(16384), XG(3)

CHARACTER*6 FLNM(3)

C To provide IMSL workspace

COMMON /WORKSP/ RWKSP

REAL RWKSP(65592)

```
CALL IWKIN(65592)
C Wave gage spacing (in meters) and data file names
        DATA XG / 0.0, -1.4, -2.0/
        DATA FLNM / 'CMO6G1', 'CMO6G2', 'CMO6G3'/
C Read in three files
        DO 10 J = 1, NW
           OPEN(UNIT=11,FILE=FLNM(J))
           READ(11,1) NP, DT
1
           FORMAT(I10,F10.4)
           READ(11,*) (TS(I,J), I=1,NP)
           CLOSE(11)
C Remove mean from each time series
           CALL TAKEMN(TS(1, J), NP, SD)
10
       CONTINUE
C Call IRSORT subroutine
       CALL IRSORT(TS,ND,NW,NP,DT,XG,DH,FMN,FMX,TI,TR)
C To compare incident and reflected spectra
       CALL TAKEMN (TI, NP, SD)
       CALL TAKEMN (TR, NP, SD)
       CALL SPCTRA(TI,NP,DT,NB,SPI,FSI,SMI)
       CALL SPCTRA(TR, NP, DT, NB, SPR, FSR, SMR)
C Estimate reflection as a function of frequency
       DO 20 I = 1, NP/2/NB
          IF (FSI(I).GE.FMN.AND.FSI(I).LE.FMX) THEN
             REFL(I) = SQRT(SMR(I)/SMI(I))
          ELSE
             REFL(I) = 0.0
          ENDIF
       CONTINUE
20
C Make graphs
```

and the output is given in Figure 5 and Figure 6. The minimum resolvable frequency returned from the subroutine is $f_{\min} = 0.0549 s^{-1}$, and the maximum resolvable frequency is $f_{\max} = 1.068 s^{-1}$. Figure 5 shows the smoothed incident spectrum (solid line) and reflected spectrum (dashed line) in the range $0.0 < f < 1.2 s^{-1}$ for the incident and reflected wave time series at x = 0m. The spectra are smoothed with m = 8, and, correspondingly, there are 16 degrees of freedom. Figure 6 shows the reflection coefficient calculated as a function of frequency, where the reflection coefficient at the n-th harmonic, r_n , is estimated as

$$r_n = \sqrt{\frac{(S_r)_n}{(S_i)_n}} \tag{78}$$

where $(S_r)_n$ and $(S_i)_n$ are the smoothed reflected and incident spectral estimates at the *n*-th harmonic, respectively. This example is intended to show the case of the resolvable frequency range which was not ideal for the specified incident wave spectrum.

SMOOTHED POWER SPECTRA O.1 O.001 O.0001 O.0001 O.0001 FREQUENCY (HZ)

Figure 5: Smoothed Incident and Reflected Spectra at x=0m with 16 Degrees of Freedom Returned by IRSORT.

Figure 6: Reflection Coefficient as a Function of Frequency with 16 Degrees of Freedom.

Part VIII: Subroutine COHPHS

Mathematical Background

The two-sided cross-spectrum $S_{12}(f)$ in the frequency range $-\infty < f < \infty$ is related to the cross correlation function $C_{12}(\tau)$ expressed in terms of the time lag τ between two time series $\eta_1(t)$ and $\eta_2(t)$ and is given by

$$S_{12}(f) = \int_{-\infty}^{\infty} C_{12}(\tau) e^{-i2\pi f \tau} d\tau$$
 (79)

This complex function is normally separated into the real and imaginary parts (e.g. Bendat and Piersol, 1986) and can be written

$$S_{12}(f) = K_{12}(f) + iQ_{12}(f)$$
(80)

where $K_{12}(f)$ is the (real) co-spectrum and $Q_{12}(f)$ is the (real) quadrature spectrum.

Alternatively, the two-sided cross-spectrum, $S_{12}(f)$, can be expressed in terms of the coherence squared, $\gamma^2(f)$, and the phase, $\theta(f)$, defined as

$$\gamma^{2}(f) = \frac{|S_{12}(f)|^{2}}{S_{11}(f)S_{22}(f)} \quad \text{for } 0 \le \gamma^{2} \le 1$$
 (81)

and

$$\theta(f) = \tan^{-1} \left[\frac{Q_{12}(f)}{K_{12}(f)} \right] \text{ for } -\pi \le \theta \le \pi$$
 (82)

where $S_{11}(f)$ and $S_{22}(f)$ are the two-sided auto-spectra for η_1 and η_2 , respectively.

The coherence squared and phase are computed using the complex Fourier coefficients c_n^1 and c_n^2 at the frequency f_n computed from the time series $\eta_1(t)$ and $\eta_2(t)$, respectively. The coherence squared, $\gamma^2(f_n)$, and the phase, $\theta(f_n)$, at each frequency, f_n , are computed using the following equations

$$\gamma^{2}(f_{n}) = \frac{\left| (c_{n}^{1})^{*} c_{n}^{2} \right|^{2}}{\left| c_{n}^{1} \right|^{2} \left| c_{n}^{2} \right|^{2}}$$
(83)

and

$$\theta(f_n) = \tan^{-1} \left\{ \frac{Im[(c_n^1)^* c_n^2]}{Re[(c_n^1)^* c_n^2]} \right\}$$
(84)

where $(c_n^1)^*$ is the complex conjugate of c_n^1 and Re and Im indicate the real and imaginary parts of $(c_n^1)^*c_n^2$, respectively. The smoothed coherence squared and phase are computed in a manner similar to the smoothed power density spectrum explained in Part VI where the smoothed values of $|c_n^1|^2$, $|c_n^2|^2$, and $(c_n^1)^*c_n^2$ are used in Equations 83 and 84 and are denoted by $\hat{\gamma}^2(f_k)$ and $\hat{\theta}(f_k)$.

Computer Program

The COHPHS subroutine, written to calculate the coherence squared and phase between two time series, is called by a main program or another subroutine

CALL COHPHS (TS1, TS2, NP, DT, NB, FS, CH, PH)

where the arguments are defined as

• IN:

```
- TS1(NP) = first time series, \eta_1(t) (L)
```

- TS2(NP) = second time series, $\eta_2(t)$ (L)
- NP = even number of data points in the time series, N
- DT = time step or sampling interval, Δt (s)
- NB = number of band-averaged data points for smoothing, m

• OUT:

- FS(NP/2/NB) = smoothed frequency array, f_k (s^{-1})
- CH(NP/2/NB) = smoothed coherence squared between TS1 and TS2, $\hat{\gamma^2}(f_k)$
- PH(NP/2/NB) = smoothed phase between TS1 and TS2, $\hat{\theta}(f_k)$ (degrees)

• EXTERNAL ROUTINES:

- FFTIMSL to compute the complex Fourier coefficients

Example

In this example, the coherence squared, γ^2 , and phase, θ , is estimated between the two time series CM06G1 and CM06G3. These two data files are read into the main program and the mean is removed from both records. The main routine calls the COHPHS subroutine

```
PARAMETER (NB=16)
        DIMENSION FS(1024), CH(1024), PH(1024)
       DIMENSION TS1(16384), TS2(16384)
C To provide IMSL workspace
       COMMON /WORKSP/ RWKSP
       REAL RWKSP(65592)
       CALL IWKIN(65592)
C Read in time series at x=0.0m (toe) and x=-2.0m (seaward of toe)
       OPEN(UNIT=11,FILE='CMO6G1')
       READ(11,1) NP. DT
1
       FORMAT(I10,F10.4)
       READ(11,*) (TS1(I), I=1,NP)
       CLOSE(11)
       OPEN(UNIT=11,FILE='CMO6G3')
       READ(11,1) NP. DT
       READ(11,*) (TS2(I), I=1,NP)
       CLOSE(11)
C Remove mean from time series
       CALL TAKEMN (TS1, NP, SD)
       CALL TAKEMN (TS2, NP, SD)
```

C Call COHPHS subroutine
CALL COHPHS(TS1,TS2,NP,DT,NB,FS,CH,PH)
C Make a graph

and the subroutine returns smoothed coherence squared and phase arrays and an array of the corresponding frequency. The output is shown in Figure 7 and Figure 8 with 32 degrees of freedom (m = 16).

COHERENCE BETWEEN GAGES 1 AND 3 1.5 0.5 0.5 1.5 FREQUENCY (HZ)

Figure 7: Coherence Squared for Two Time Series CM06G1 and CM06G3 Returned by COHPHS.

Figure 8: Phase for Two Time Series CM06G1 and CM06G3 Returned by COHPHS.

Part IX: Subroutine DISTNR

Mathematical Background

As in Part V, for a given time series, $\eta(t)$, the mean is computed by

$$\overline{\eta(t)} = \frac{1}{N} \sum_{i=1}^{N} \eta_i \tag{85}$$

The adjusted free surface is found by subtracting the mean, $(\eta_i - \overline{\eta})$, and denoted as η_i in Equations 86 and 87. The variance, Var, is given by

$$Var = \eta_{\rm rms}^2 = \frac{1}{N} \sum_{i=1}^{N} \eta_i^2$$
 (86)

and the skewness, Skw, is given by

$$Skw = \frac{1}{N\eta_{\rm rms}^3} \sum_{i=1}^N \eta_i^3$$
 (87)

The probability density function, PDF, for $x = \eta_i$ with non-zero mean can be compared with the normal distribution, g(x), given by

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)^2\right]$$
 (88)

where μ is the mean $\overline{\eta(t)}$, and σ is the standard deviation with $\sigma = \sqrt{Var}$. The PDF of the free surface is essentially a histogram of the free surface with the range from η_{\min} to η_{\max} divided into bins of width δx .

On the other hand, using the method of zero-upcrossing, the exceedance probability, P_E , corresponding to the height of the p-th ranked wave, H_p , is estimated by

$$P_E = \frac{p}{N_0 + 1} \tag{89}$$

where N_0 is the number of zero-upcrossing waves. If the probability distribution of the wave heights follows the Rayleigh distribution, then the exceedance probability associated with H_p is given by

$$P_E' = \exp\left[-2\left(\frac{H_p}{H_s}\right)^2\right] \tag{90}$$

where H_s is the significant wave height defined in Part V.

Computer Program

The DISTNR subroutine, written to compute the free surface distribution and exceedance probability, is called by a main program or another subroutine

where the arguments are defined as

· IN:

- TS(NP) = time series, $\eta(t)$ (L)
- NP = even number of data points in the time series, N
- DT = time step or sampling interval, Δt (s)
- XMN = minimum value for free surface displacement, η_{\min} (L)
- XMX = maximum value for free surface displacement, η_{max} (L)
- DX = increment for estimating the probability density function for $x=\eta_i,\,\delta x$ (L)

• OUT:

- SD = mean of free surface, $\overline{\eta(t)}$ (L)
- VAR = variance, $Var(L^2)$
- SKW = skewness, Skw
- F(NDX) = free surface array (i.e. bins), x(L)
- XP(NDX) = probability density function of free surface, PDF
- XN(NDX) = normal distribution, g(x)
- NDX = length of array for PDF and normal distribution
- HS = significant wave height from one-third highest waves (L), H_s
- G(NZ) = values of HP/HS
- PE(NZ) = exceedance probability, P_E
- PR(NZ) = exceedance probability following Rayleigh distribution, P_E'
- NZ = number of zero-upcrossing waves, N_0

• EXTERNAL ROUTINES:

- TIMPAR to return the wave height rankings

Example

This example illustrates how the DISTNR subroutine can be used to compare the free surface distribution to the normal distribution and to compare the wave height distribution to the Rayleigh distribution. The time series for this example is CMO6G1. The DISTNR subroutine is called by a main program

```
PARAMETER (XMN=-6.0, XMX=6.0, DX=0.1)
DIMENSION TS(16384), G(1000), PE(1000), PR(1000)
DIMENSION F(1000), XP(1000), XN(1000)
C Read in time series at x=0.0m (toe)
OPEN(UNIT=11, FILE='CMO6G1')
READ(11,1) NP, DT
```

```
1     FORMAT(I10,F10.4)
     READ(11,*) (TS(I), I=1,NP)
     CLOSE(11)
```

C Call DISTNR subroutine
CALL DISTNR(TS,NP,DT,XMN,XMX,DX,SD,VAR,SKW,F,XP,XN,
NDX,HS,G,PE,PR,NZ)

C Make graphs

and the output of the subroutine is shown in Figure 9 and Figure 10.

FREE SURFACE DISTRIBUTION

Figure 9: Probability Distribution Function of Free Surface Elevation for Time Series CM06G1 Compared with Normal Distribution Returned by DISTNR.

EXCEEDANCE PROBABILITY 0.1 0.01 HS = 5.4141 CM 0.001 0.001 1.5 2

Figure 10: Wave Height Exceedance Probability for Time Series CM06G1 Compared with Rayleigh Distribution Returned by DISTNR.

HP/HS

Part X: Subroutine USRSPC

Mathematical Background

Time series of surface elevation can be generated from any power density spectrum of known shape. Subroutine USRSPC is created to accommodate the generation of time series from a power density spectrum whose shape is known but can not be expressed by a formula.

In using the USRSPC subroutine, a user needs to divide the given spectrum into a number of linear segments of known geometry as depicted in Figure 11 where the end points of the linear segments are referred to as the raw points. The largest frequency of the raw points is indicated by $f_{\rm M}$. The coordinates of the raw points are specified as input to the USRSPC subroutine.

Figure 11: User-Specified Spectrum.

Based on the given coordinates of the raw points, the USRSPC subroutine calculates the fine points, i.e., the values of spectral density at equally spaced discrete frequencies. The frequency resolution of the fine points is Δf given by

$$\Delta f = \frac{1}{N\Delta t} \tag{91}$$

where N and Δt are the even number of points and the sampling interval, respectively, of the

requested time series. The fine points cover the range of $0 \le f \le f_{\text{Nyq}}$ where the Nyquist frequency f_{Nyq} is determined by the sampling interval Δt and is given by

$$f_{\text{Nyq}} = \frac{1}{2\Delta t} \tag{92}$$

For $f \leq f_M$, the ordinates of the fine points, S_U , are obtained from a linear interpolation of the raw points. For $f > f_M$, S_U is simply taken as zero. In addition, it is imposed that $S_U(f=0)=0$.

The fine points calculated by the USRSPC subroutine can be exported to the TIMEPH subroutine to yield a corresponding time series.

Computer Program

The USRSPC subroutine produces an array of the values of S_U at equally spaced discrete frequencies where the conditions $S_U(f=0)=0$ and $S_U(f>f_{\rm M})=0$ are imposed. The frequency resolution of the output spectrum is Δf given by Equation 91. The subroutine USRSPC is called by a main program or another subroutine

where the arguments are defined as

• IN:

- NP = even number of data points in the time series, N
- DT = sampling interval, Δt (s)
- NS = number of linear segments specifying the given spectrum
- FR = array of length (NS+1) containing the abscissas $f(s^{-1})$ of the raw points where FR(1)=0 and FR(NS+1)= $f_{\rm M}$
- SR = array of length (NS+1) containing the ordinates S_U (L^2s) of the raw points where SR(1) does *not* have to be zero

• OUT:

- SP = array of length (NP/2+1) containing the ordinates $S_U(L^2s)$ of the fine points where SP(1)=0 corresponding to f=0 is imposed
- EXTERNAL ROUTINES:
 - none

Example

Kobayashi and Wurjanto (1991) simulated the Santa Barbara, California, "Feb 4, 1980" field data reported by Elgar and Guza (1985a, 1985b). They specified an incident wave spectrum

based on the reported wave spectrum at the water depth 1.7m, and generated a wave train based on the former spectrum.

The input of their data to the USRSPC subroutine consisted of 34 raw points corresponding to NS=33 as presented in Table 5. Other important parameters included the largest frequency of the raw points, $f_{\rm M}=0.4s^{-1}$; the sampling interval, DT = $\Delta t=0.5s$; the Nyquist frequency, $f_{\rm Nyq}=1.0s^{-1}$; the peak period of the given spectrum, $t_p=13.5s$; the length of the requested time series, $590t_p$; and the number of data points in the time series, NP = $590t_p/\Delta t=15930$.

The USRSPC subroutine is called by a main program and the spectrum is returned.

```
PARAMETER (NMAX=20000, NS=33)
      REAL TS(NMAX)
      REAL FN(NMAX/2+1), SP(NMAX/2+1)
      REAL FR(NS+1), SR(NS+1)
C Coordinates of the raw points
      DATA FR /.000000, .014052, .025293, .035597, .044965,
     2
                .054801, .064169, .074941, .082904, .088525,
                .106792, .110539, .121780, .131148, .142389,
     3
     4
                .152693, .171429, .189227, .200468, .220141,
                .232319, .249180, .259953, .270726, .290398,
     5
                .318501, .327400, .338173, .348478, .358782,
     6
                .367213, .378454, .387354, .400000/
      DATA SR /.127742, .175202, .066442, .085046, .051275,
               .113203, .895258,1.091278, .483540, .355365,
     2
     3
               .123616, .086938, .062502, .108330, .157460,
               .150682, .072908, .049068, .043001, .059812,
               .055992, .041150, .038522, .034509, .033758,
               .038522, .033024, .031602, .028311, .031602,
               .030242, .034509, .033024, .034509/
C IMSL requirements
      COMMON /WORKSP/ RWKSP
      REAL RWKSP(127496)
      CALL IWKIN(127496)
C Parameters NP=number of data points, DT=sampling interval
      NP = 15930
      DT = 0.5
C Call USRSPC to obtain the fine points
      CALL USRSPC(NP,DT,NS,FR,SR,SP)
C Call TIMEPH to generate a corresponding time series
C with a seed value IS = 517644
      IS = 517644
      CALL TIMEPH(SP,NP,DT,IS,TS)
C Make a graph
```

Figure 12 shows the spectrum for the range of $0 \le f \le f_{\rm M} = 0.4 s^{-1}$. It is imposed that

 $S_U(f=0)=0$ and $S_U(f>f_{\rm M})=0$. Figure 13 shows the first $160t_p$ of the time series, which was generated by the TIMEPH subroutine with a seed value IS=517644, in a normalized form where the abscissa t denotes the time normalized by the peak period $t_p=13.5s$, and the ordinate η_i denotes the surface elevation normalized by a reference wave height of 0.9m.

Table 5: Raw Points Specifying the User-Specified Spectrum in Kobayashi and Wurjanto (1991).

I	FR(I)	SR(I)	I	FR(I)	SR(I)
	s^{-1}	m^2s		s ⁻¹	m^2s
1	0.000000	0.127742	18	0.189227	0.049068
2	0.014052	0.175202	19	0.200468	0.043001
3	0.025293	0.066442	20	0.220141	0.059812
4	0.035597	0.085046	21	0.232319	0.055992
5	0.044965	0.051275	22	0.249180	0.041150
6	0.054801	0.113203	23	0.259953	0.038522
7	0.064169	0.895258	24	0.270726	0.034509
8	0.074941	1.091278	25	0.290398	0.033758
9	0.082904	0.483540	26	0.318501	0.038522
10	0.088525	0.355365	27	0.327400	0.033024
11	0.106792	0.123616	28	0.338173	0.031602
12	0.110539	0.086938	29	0.348478	0.028311
13	0.121780	0.062502	30	0.358782	0.031602
14	0.131148	0.108330	31	0.367213	0.030242
15	0.142389	0.157460	32	0.378454	0.034509
16	0.152693	0.150682	33	0.387354	0.033024
17	0.171429	0.072908	34	0.400000	0.034509

I is the array element number

FR(I) is the abscissa of the raw point, s^{-1}

SR(I) is the ordinate of the raw point, m^2s

Figure 12: Spectrum for Field Data Returned by USRSPC.

Figure 13: Normalized Time Series of Spectrum for Field Data Returned by TIMEPH.

Part XI: Subroutine PRORBR

Mathematical Background

For the case of irregular waves, the numerical model RBREAK (Wurjanto and Kobayashi, 1991) requires that a normalized time series of the free surface elevation at the seaward boundary, referred to as the input wave train, be specified in certain FORTRAN format. In addition, the input wave train needs to begin with a small value to provide a smooth transition from the initial condition of no wave action to a condition of full wave action as was done in the previous work by

- Kobayashi, Cox and Wurjanto (1990) where the input wave trains were obtained from a laboratory experiment, and
- Kobayashi, Wurjanto and Cox (1990a, 1990b) and Kobayashi and Wurjanto (1991) where the input wave trains were simulated using the TIMEPH subroutine.

It is noted that in the latter work, the input wave trains began with a sufficiently small negative value immediately following a zero-downcrossing point. Based on their experience, it is recommended that a simulated input wave train for the numerical model RBREAK begin in this way.

The TIMEPH and TIMEDC subroutines presented in Part IV generate dimensional time series, referred to as the original time series, which can not be used directly as input to the numerical model RBREAK. The subroutine PRORBR prepares an input wave train that satisfies the above requirements, based on the time series generated by either the TIMEPH or TIMEDC subroutine. First, the PRORBR subroutine shifts the original time series, which is periodic, such that the shifted time series has the required characteristics. The normalization of the shifted time series will then yield the desired input wave train for the numerical model RBREAK.

The relation between the original time series η'_j with $j=1,2,\ldots,N$ and the input wave train η_i with $i=1,2,\ldots,(N+1)$ with N being the even number of points in the original time series, is given by

$$\eta_{i} = \begin{cases}
 \left[\eta'_{i+j_{0}-1} \right] / H' & \text{for } i \leq (N-j_{0}+1) \\
 \left[\eta'_{i-(N-j_{0}+1)} \right] / H' & \text{for } i > (N-j_{0}+1)
 \end{cases}$$
(93)

where H' is the reference wave height used for the normalization of the free surface elevation, which can be

- 1. the significant wave height of the original time series, H_s (Part V),
- 2. the spectral estimate of the significant wave height, H_{mo} (Part III), or
- 3. a user-specified value,

and j_0 marks the data point next to the first zero-downcrossing point in the original time series that satisfies the following conditions:

$$\eta'_{j_0-1} > 0$$
 and $\eta'_{j_0} < 0$ and $\frac{\left|\eta'_{j_0}\right|}{H'} < \varepsilon$ (94)

with ε being a small positive value. The values of ε =0.001 and 0.005 have been used in the previous work mentioned above. Use of ε =0.001 is made in the PRORBR subroutine listed in Appendix A.

Computer Program

The PRORBR subroutine produces an input wave train for the numerical model RBREAK from the time series generated by either the TIMEPH or TIMEDC subroutine. The input wave train is stored in an output file formatted according to the RBREAK's convention. The subroutine PRORBR is called by a main program or another subroutine

where the arguments are defined as

· IN:

- TS(NP) = original time series, $\eta'(L)$
- NP = even number of data points in the original time series, N
- DT = sampling interval, Δt (s)
- FNAME = name of the output file containing the input wave train for the numerical model RBREAK (FNAME is a CHARACTER*10 variable)
- IP = option to specify the reference wave height used for the normalization of the dimensional time series η' as follows:
 - * H_s = significant wave height based on the time series (L) (IP=1 and HW is returned as H_s)
 - * H_{mo} = spectral estimate of the significant wave height (L) (IP=2 and HW is returned as H_{mo})
 - * A user-specified reference wave height (L) (IP=3 and HW needs to be specified as input to the PRORBR subroutine)

• IN/OUT:

- HW = reference wave height used for the normalization of the dimensional time series $\eta'(L)$

· OUT:

- $J0 = index j_0$ satisfying the conditions given by Equation 94
- TJ0 = dimensional time corresponding to the index $j_0 = (j_0 1)\Delta t$ (s)

• EXTERNAL ROUTINES:

- TIMPAR to compute the significant wave height based on the time series for IP=1
- SPCTRA to transform the original time series to the corresponding power density spectrum for IP=2
- SPCPAR to compute the spectral estimate of the significant wave height for IP=2

Example

Part X of this report presents an example on how to generate a time series from a user-specified power density spectrum using the USRSPC subroutine. The example ends by calling the TIMEPH subroutine that generates a dimensional time series from the specified power density spectrum.

The following example is a continuation of the example of Part X. Added in this example is a call to the PRORBR subroutine that produces the corresponding input wave train for the numerical model RBREAK.

```
PARAMETER (NMAX=20000, NS=33)
       REAL TS(NMAX)
       REAL FN(NMAX/2+1), SP(NMAX/2+1)
       REAL FR(NS+1), SR(NS+1)
C Character variable to provide name for the output file created
     by the PRORBR subroutine
       CHARACTER*10 FNAME
C Coordinates of the raw points
       DATA FR /.000000, .014052, .025293, .035597, .044965,
     2
                .054801, .064169, .074941, .082904, .088525,
     3
                .106792, .110539, .121780, .131148, .142389,
                .152693, .171429, .189227, .200468, .220141,
     5
                .232319, .249180, .259953, .270726, .290398,
                .318501, .327400, .338173, .348478, .358782,
                .367213, .378454, .387354, .400000/
      DATA SR /.127742, .175202, .066442, .085046, .051275,
     2
                .113203, .895258,1.091278, .483540, .355365,
     3
                .123616, .086938, .062502, .108330, .157460,
     4
                .150682, .072908, .049068, .043001, .059812,
     5
                .055992, .041150, .038522, .034509, .033758,
     6
                .038522, .033024, .031602, .028311, .031602,
     7
                .030242, .034509, .033024, .034509/
C IMSL requirements
      COMMON /WORKSP/ RWKSP
      REAL RWKSP(127496)
      CALL IWKIN(127496)
C Parameters NP=number of data points, DT=sampling interval
      NP = 15930
      DT = 0.5
C Call USRSPC to obtain the fine points
      CALL USRSPC(NP, DT, NS, FR, SR, SP)
C Call TIMEPH to generate a corresponding time series
C with a seed value IS = 517644
      IS = 517644
      CALL TIMEPH(SP,NP,DT,IS,TS)
C
```

```
C The above procedure is identical to the example of Part X,
    except for the declaration of the character variable FNAME,
    which is added in this example.
C The TIMEPH subroutine returns a dimensional time series, TS,
    from which the PRORBR subroutine will produce the
C
    corresponding input wave train for RBREAK
C The input wave train is not returned to the calling program,
    but is stored in an output file, the name of which is
C
    specified by the character variable FNAME
C
      FNAME = 'TKWSB2
      IP = 3
      HW = 0.9
      CALL PRORBR(TS, NP, DT, FNAME, IP, HW, JO, TJO)
      WRITE (*,*) ' Index JO =', JO
      WRITE (*,*) ' Time corresponding to the index JO, TJO =',TJO
C Make a graph
```

It is noted that the option IP=3 with the corresponding reference wave height HW=0.9m is used in this example. This reference wave height was actually meant to be the spectral estimate of the significant wave height: the two wave heights indeed agreed to the third decimal place. This example could have used the option IP=2, which would have resulted in an almost identical input wave train. The reason why the option IP=3 was used in this example was to get the exact value of 0.9m for the reference wave height.

The index j_0 was found to be 970, corresponding to the dimensional time t'=484.5s in the original time series, which has been presented in the normalized form in Figure 13 of Part X where the normalized time t=35.889 corresponds to t'=484.5s.

Figure 14 shows the first $160t_p$ of the input wave train where the abscissa t denotes the time normalized by the peak period $t_p=13.5s$, and the ordinate η_i denotes the surface elevation normalized by the reference wave height, HW=0.9m.

Figure 14: Input Wave Train for RBREAK Created by PRORBR.

Part XII: Subroutine FFTIMSL

Mathematical Background

The subroutine FFT2D in the IMSL library is used to compute the complex Fourier coefficients, c_n , given by Equations 31 to 34 where the real Fourier coefficients a_n and b_n for the time series $\eta(t)$ with zero mean are defined in Equation 28. The discrete time series η_j can be expressed

$$\eta_j = \eta(t_j) \text{ for } j = 1, 2, \dots, N$$
(95)

with

$$t_j = (j-1)\Delta t \tag{96}$$

where Δt is the sampling interval and N is the even number of data points. Using this definition, Equation 28 can be shown to yield

$$Nc_n = \sum_{j=1}^{N} \eta_j \exp\left[-\frac{2\pi i(j-1)(n-1)}{N}\right]$$
 (97)

where $i^2 = -1$. Equation 97 is in the form which allows the direct use of the subroutine FFT2D to compute c_n with n = 1, 2, ..., N. It is noted that c_n in Equations 31 to 34 corresponds to c_{n-1} obtained from Equation 97.

The subroutine FFT2B is the IMSL subroutine to compute the inverse Fourier transform of given coefficients c_n to find η_j with $j=1,2,\ldots,N$. To apply the subroutine FFT2B, Equation 28 is rewritten as

$$\eta_j = \sum_{n=1}^N c_n \exp\left[\frac{2\pi i (j-1)(n-1)}{N}\right] \text{ for } j = 1, 2, \dots, N$$
(98)

where η_j is real and c_n in this equation corresponds to c_n in Equation 97.

Computer Program

The FFTIMSL subroutine is called by a main program or another subroutine

where the arguments are defined as

- IN/OUT:
 - TS(NP) = time series, $\eta(t)$ (L)
 - CN(NP) = complex Fourier coefficients, $c_n(L)$
- IN:
 - NP = even number of data points in the time series, N
 - IO = option for an FFT (IO=+1) to return complex coefficients of known time series or for an inverse FFT (IO=-1) to return time series for known complex coefficients
- EXTERNAL ROUTINES:
 - FFT2D, an IMSL routine for FFT
 - FFT2B, an IMSL routine for inverse FFT

Example

The FFTIMSL subroutine is illustrated in this example by considering a periodic saw-tooth wave form given by

$$f(t) = -\frac{t}{\pi} \quad \text{for} \quad -\pi \le t \le \pi \tag{99}$$

with period, $T=2\pi$. The function, f(t), with zero mean can be written as a finite sum

$$f(t) = \sum_{n=1}^{N/2} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right] - \pi \le t \le \pi$$
 (100)

where the angular frequency $\omega = 2\pi/T = 1$ and the Fourier coefficients are given by (e.g. Bendat and Piersol, 1986)

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\tau) \cos(n\omega\tau) d\tau \tag{101}$$

and

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\tau) \sin(n\omega\tau) d\tau$$
 (102)

It is noted that f(t) obtained from Equation 100 approaches f(t) given by Equation 99 as N approaches infinity.

For this example, by inspection the values of a_n are zero since f(t) is an odd function and $\cos(n\omega t)$ is an even funtion. Solving for b_n gives

$$b_n = \frac{2}{n\pi} (-1)^n \tag{103}$$

To check the FFT routine, the discrete function, f_i , $i=1,2,\ldots,N$ where N=16 for this case, is constructed corresponding to f(t) above. Since the FFT is defined for $t\geq 0$, the range of $0\leq t\leq 2\pi$ is considered and the discrete time domain is given by

$$t_{i} = \frac{\Delta t}{2} + (i - 1)\Delta t \quad ; \quad \Delta t = \frac{2\pi}{N}$$
 (104)

It is noted that since N is small for this example, the time domain is shifted slightly by $\Delta t/2$ to reduce the effect of spectral leakage. This effect is negligible for large N and the discrete time domain of Equation 96 is generally adopted. In the main program, the Fourier coefficients b_n are computed and compared with the real and imaginary parts of the complex Fourier coefficients returned from the FFT routine. The main program is written as

PARAMETER (NP=16,NL=4096) REAL B(4096), TS(256), TSR(256), TSB(256), T(256) COMPLEX CN(256)

C Constants

PI = 4.*ATAN(1.)

C Fourier coefficients for analytic solution
DO 3 I = 1, NL, 2
B(I) = -2./(PI*FLOAT(I))

```
B(I+1) = 2./(PI*FLOAT(I+1))
3
       CONTINUE
C Time step
       DT = 2.*PI/FLOAT(NP)
       DO 7 I = 1, NP
C Make time array and time series array from zero to two pi
          T(I) = DT/2. + FLOAT(I-1)*DT
          TS(I) = -T(I)/PI
          IF(T(I).GT.PI) TS(I) = TS(I)+2.
C Reconstruct time series using coefficients of analytic solution
          SUM = 0.0
          DO 5 K = 1, NL
               SUM = SUM + B(K)*SIN(FLOAT(K)*T(I))
5
          CONTINUE
          TSB(I) = SUM
       CONTINUE
C Call FFTIMSL to return complex Fourier coefficients
       CALL FFTIMSL(TS, CN, NP, +1)
C Call FFTIMSL to return time series for comparison
       CALL FFTIMSL(TSR, CN, NP, -1)
C Make a table
```

and the output is given in Table 6. Table 6 shows the values of a_n and b_n based on the complex coefficient array, CN, returned by the FFTIMSL subroutine. The last column shows the Fourier coefficients calculated by Equation 103. The values of a_n and b_n will approach the analytical values as N increases from 16.

Table 7 shows the original time series, $f(t_i)$, the reconstructed time series using the inverse FFT, $f(t_i)'$, and the reconstructed time series using a large number of terms and the Fourier coefficients computed by Equation 103, $f(t_i)''$, where

$$f(t_i)'' = \sum_{n=1}^{4096} b_n \sin(n\omega t_i)$$
 (105)

and N/2 = 4096 was chosen as a large number approaching infinity.

Table 6: Fourier Coefficients Returned by FFTIMSL.

n	$(a_n)_{\mathrm{FFT}}$	$(b_n)_{\mathrm{FFT}}$	b_n
0	0.0000	0.0000	0
1	-0.1250	-0.6284	-0.6366
2	0.1250	0.3018	0.3183
3	-0.1250	-0.1871	-0.2122
4	0.1250	0.1250	0.1592
5	-0.1250	-0.0835	-0.1273
6	0.1250	0.0518	0.1061
7	-0.1250	-0.0249	-0.0909
8	0.1250	0.0000	0.0796

n is the harmonic

 $(a_n)_{\text{FFT}}$ is the real part, $a_n = 2Re(c_n)$ for $1 \leq n \leq 8$

 $(b_n)_{\text{FFT}}$ is the imaginary part, $b_n = -2Im(c_n)$ for $1 \le n \le 8$

 b_n is the Fourier coefficient from the analytic part

Table 7: Saw-Tooth Time Series Reconstructed with an Inverse FFT by FFTIMSL.

i	time, t_i	$f(t_i)$	$f(t_i)'$	$f(t_i)''$
1	0.1964	-0.0625	-0.0625	-0.0624
2	0.5890	-0.1875	-0.1875	-0.1874
3	0.9817	-0.3125	-0.3125	-0.3123
4	1.3744	-0.4375	-0.4375	-0.4373
5	1.7671	-0.5625	-0.5625	-0.5623
6	2.1598	-0.6875	-0.6875	-0.6872
7	2.5525	-0.8125	-0.8125	-0.8121
8	2.9452	-0.9375	-0.9375	-0.9365
9	3.3397	0.9375	0.9375	0.9366
10	3.7306	0.8125	0.8125	0.8121
11	4.1233	0.6875	0.6875	0.6872
12	4.5160	0.5625	0.5625	0.5623
13	4.9087	0.4375	0.4375	0.4373
14	5.3014	0.3125	0.3125	0.3123
15	5.6941	0.1875	0.1875	0.1874
16	6.0868	0.0625	0.0625	0.0625

 t_i is the time level

 $f(t_i)$ is the original time series

 $f(t_i)'$ is the reconstructed time series using the inverse FFT

 $f(t_i)''$ is the reconstructed time series using the analytic Fourier coefficients

Part XIII: Subroutine RDMGEN

Mathematical Background

Random number generators typically require a seed value to begin their algorithm and return an array of random numbers uniformly distributed between zero and one. By specifying the same seed, the routine will generally return the same array of numbers. Therefore, these random number simulators actually generate pseudo-random numbers.

Computer Program

The RDMGEN subroutine is called by the TIMEPH subroutine

CALL RDMGEN (NR, IS, AR)

where the arguments are defined as

- · IN:
 - NR = number of random numbers
 - IS = seed value to initialize random number generator
- · OUT:
 - AR(NR) = random numbers distributed uniformly between 0 and 1
- EXTERNAL ROUTINES:
 - RNSET, an IMSL routine for setting the random number generator
 - RNUN, an IMSL routine for generating the random numbers

The purpose of the RNSET subroutine is to initialize a random seed for use in the IMSL random number generators. If the seed value is set to zero, then the random number generator is started by a seed value from the system clock. The purpose of the RNUN subroutine is to generate pseudo-random numbers from a uniform distribution from zero to one, excluding zero and one. All values returned by RNUN are positive and less than one.

Example

This example is to show the probability distribution function for an array of numbers returned from the RDMGEN subroutine. The main program is written as

PARAMETER (NP=8192,IS=123457)
PARAMETER (DX=0.01)
DIMENSION TS(8192), X(1000), XP(1000)
C Get array of random numbers
CALL RDMGEN(NP,IS,TS)

```
C Probability density function (a histogram)
      NDX = 1./DX
      DO 10 J = 1,NDX
          KOUNT=O
          X(J) = FLOAT(J-1)*DX+DX/2.0
          D0 5 I = 1,NP
               IF (TS(I).GT.FLOAT(J-1)*DX .AND.
                   TS(I).LE.FLOAT(J)*DX) THEN
                   KOUNT=KOUNT+1
               ENDIF
 5
          CONTINUE
          IF(KOUNT.EQ.O)THEN
               XP(J) = 0.0
          ELSE
               XP(J) = FLOAT(KOUNT)/FLOAT(NP)/DX
          ENDIF
10
      CONTINUE
C Make a graph of probability distribution
```

and the output is given in Figure 15. In theory, the probability density function should be unity in the range 0 < x < 1. The agreement is expected to improve as the value of NP is increased.

PROBABILITY DISTRIBUTION

Figure 15: Probability Distribution Function of Random Numbers Returned by RDMGEN.

Part XIV: Subroutine WAVNUM

Mathematical Background

Following linear wave theory (e.g. Shore Protection Manual, 1984), the profile of a wave, $\eta(t)$, propagating in the positive x-direction in time, t, can be written

$$\eta(t) = \frac{H}{2}\cos(kx - \omega t) \tag{106}$$

where H is the wave height, T is the wave period related to the angular frequency, ω , and the frequency, f, by

$$\omega = \frac{2\pi}{T} = 2\pi f \tag{107}$$

and k is the wave number related to the wave length, L, by

$$k = \frac{2\pi}{L} \tag{108}$$

For given f, the wave number can be determined from the linear dispersion relation

$$(2\pi f)^2 = gk \tanh(kh) \tag{109}$$

where h is the water depth. For shallow water where h/L < 1/25, the wave number can be found from

$$k = \frac{2\pi f}{\sqrt{gh}} \tag{110}$$

and for deep water where h/L > 1/2,

$$k = \frac{(2\pi f)^2}{g} \tag{111}$$

Computer Program

The subroutine WAVNUM, written to return the wave number based on linear wave theory, is called by a main program or another subroutine

where the arguments are defined as

- IN:
 - FQ = frequency, $f(s^{-1})$
 - DH = water depth, h(m)
- OUT:
 - WN = wave number, $k (m^{-1})$
- EXTERNAL ROUTINES:
 - none

It is noted that the SI units with $g = 9.81ms^{-2}$ are used in this routine.

Example

The example for the WAVNUM subroutine computes the wave number, k, for the wave conditions used in earlier examples related to laboratory experiments. The main program calls the WAVNUM subroutine by

```
PARAMETER (NP=16384)
       PARAMETER (DH=0.47,DT=0.04)
C Constants
       PI = 4.*ATAN(1.)
       C1 = 9.81/(2.*PI)
       DF = 1./(FLOAT(NP)*DT)
C Do loop for the frequency range of interest
       DO 10 I = 2, NP/2+1
C Frequency and deep water wave length
          FQ = DF*FLOAT(I-1)
          DLO = DH/(C1*(1./FQ)**2)
C Call WAVNUM subroutine
          CALL WAVNUM(FQ,DH,WN)
C Compute water depth to wave length ratio, DL
          DL = DH/(2.*PI/WN)
       CONTINUE
10
C Make a table
```

and the subroutine returns the wave number at given frequency. It is noted that N was increased from 8192 of previous examples to 16384 in this example to increase the frequency resolution for ease of comparison of the values returned by WAVNUM with those of Table C-1 of the Shore Protection Manual (1984). Table 8 compares selected values of h/L computed with the wave number returned by the WAVNUM subroutine with the values from Table C-1, $(h/L)_{SPM}$, as a function of h/L_0 . It is noted that the values in Table C-1 have four significant digits and that five significant digits have been included for the values computed by the WAVNUM subroutine in Table 8.

Table 8: Wave Number for Laboratory Wave Conditions Returned by WAVNUM.

I	h/L_0	h/L	$(h/L_0)_{SPM}$	$(h/L)_{SPM}$
276	0.053005	0.097268	0.05300	0.09726
435	0.132016	0.16826	0.1320	0.1682
603	0.254005	0.27136	0.2540	0.2714
683	0.32600	0.33573	0.3260	0.3357
787	0.43301	0.43661	0.4330	0.4366
864	0.52200	0.52345	0.5220	0.5235

I is the counter of the DO loop

 h/L_0 is the ratio of water depth to deep water wave length with h=0.47m h/L is the ratio of water depth to wave length from the WAVNUM subroutine

 $(h/L_0)_{SPM}$ is the ratio of water depth to deep water wave length to four significant digits from Table C-1

 $(h/L)_{SPM}$ is the ratio water depth to wave length to four significant digits from Table C-1

Part XV: Conclusions

Fourteen subroutines have been presented herein for standard spectral and time series analyses. These subroutines have been used to specify numerically-generated incident random waves as input to the numerical model RBREAK as well as to analyze and interpret the computed time series by Kobayashi, Wurjanto and Cox (1990a, 1990b) and Kobayashi and Wurjanto (1991). These subroutines have also been used to conduct irregular wave tests in a wave flume to calibrate and evaluate the capabilities and limitations of RBREAK by Kobayashi, Cox and Wurjanto (1990, 1991). Users of this report are recommended to read these papers for the actual applications of the subroutines to the problems associated with random waves on coastal structures and beaches.

The subroutines included in this report are relatively short and may be modified easily by users where necessary. In any case, these subroutines are essential for the analyses of random waves and the interpretations of the measured and computed time series. The standard spectral and time series analysis methods employed in these subroutines may not yield clear interpretations for highly nonlinear random waves on coastal structures and beaches. Consequently, new analysis methods will need to be developed for highly nonlinear random waves.

References

- Bendat, J.S. and Piersol, A.G. (1986), Random Data Analysis and Measurement Procedures, John Wiley & Sons, Inc., New York.
- Bouws, E., Günther, H., Rosenthal, W., and Vincent, C. L. (1985), "Similarity of the Wind Wave Spectrum in Finite Depth Water, 1. Spectral Form," *Journal of Geophysical Research*, 90(C1), 975-986.
- Cartwright, D. E. and Longuet-Higgins, M. S. (1956), "The Statistical Distribution of the Maxima of Random Functions," *Proc. Royal Society of London*, A(237) 212-232.
- Cox, D.T. (1989), "Irregular Wave Reflection and Runup on Rough, Permeable Slopes," thesis presented to the University of Delaware, at Newark, Delaware, in partial fulfillment of the requirements for the degree of Master of Civil Engineering.
- Elgar, S. and Guza, R.T. (1985a), "Shoaling Gravity Waves: Comparisons Between Field Observations, Linear Theory, and a Nonlinear Model," *J. Fluid Mechanics*, 158, 47-70.
- Elgar, S. and Guza, R.T. (1985b), "Observation of Bispectra of Shoaling Surface Gravity Waves," J. Fluid Mechanics, 161, 425-448.
- Elgar, S., Guza, R. T., and Seymour, R. J. (1985), "Wave Group Statistics from Numerical Simulation of a Random Sea," Applied Ocean Research, 7(2), 93-96.
- Goda, Y. (1985), Random Seas and Design of Maritime Structures, University of Tokyo Press, Tokyo.
- Goda, Y. and Suzuki, Y. (1976), "Estimation of Incident and Reflected Waves in Random Wave Experiments," Proc. of 15th International Coastal Engineering Conference, Hawaii, 828-845.
- Kitaigorodskii, S. A., Krasitskii, V. P., and Zaslavskii, M. M. (1975), "On Phillips' Theory of Equilibrium Range in the Spectra of Wind-Generated Water Waves," *Journal of Physical Oceanography*, 5, 410-420.
- Kobayashi, N., Cox, D.T. and Wurjanto, A. (1991), "Permeability Effects on Irregular Wave Run-up and Reflection," J. Coastal Research, 7(1), 127-136.
- Kobayashi, N., Cox, D.T. and Wurjanto, A. (1990), "Irregular Wave Reflection and Run-up on Rough Impermeable Slopes," J. Waterway, Port, Coastal, and Ocean Engineering, ASCE, 116(6), 708-726.
- Kobayashi, N., and Wurjanto, A. (1991), "Irregular Wave Setup and Run-up on Beaches," Submitted to J. Waterway, Port, Coastal, and Ocean Engineering, ASCE.
- Kobayashi, N., Wurjanto, A. and Cox, D.T. (1990a), "Irregular Waves on Rough Permeable Slopes," J. Coastal Research, 7(SI), 167-184.
- Kobayashi, N., Wurjanto, A. and Cox, D.T. (1990b), "Rock Slopes under Irregular Wave Attack," Proc. 22nd Coastal Engineering Conference, ASCE, 1306-1319.
- Longuet-Higgins, M. S. (1957), "The Statistical Analysis of a Random, Moving Surface," Trans. Royal Society of London, 249, 321-387.

- Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986), Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, United Kingdom.
- Seelig, W.N. (1980), "Two-Dimensional Tests of Wave Transmission and Reflection Characteristics of Laboratory Breakwaters," *Technical Report No. 80-1*, U.S. Army Coastal Engineering Research Center, Fort Belvoir, VA.
- Shore Protection Manual (1984), Department of the Army, Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS.
- Tucker, M. J., Challenor, P. G., and Carter, D. J. T. (1984), "Numerical Simulation of a Random Sea: A Common Error and its Effect upon Wave Group Statistics," *Applied Ocean Research*, 6(2), 118-122.
- Thornton, E.B. and Calhoun, R.J. (1972), "Spectral Resolution of Breakwater Reflected Waves," J. Waterway, Harbor, Coastal Engineering Division, ASCE, 98(4), 443-460.
- Wurjanto, A. and Kobayashi, N. (1991), "Numerical Model for Random Waves on Impermeable Coastal Structures and Beaches," *Research Report No. CACR-91-05*, Center for Applied Coastal Research, University of Delaware, Newark, Delaware.

Appendix A: Subroutine Listings

TMASPC Subroutine

```
C
                                                                 TMA00020
 C
                                                                 TMA00030
 C
      COMPUTES THA POWER DENSITY SPECTRUM FOR WIND WAVES IN
                                                                 TMA00040
 C
      FINITE WATER DEPTH
                                                                 TMA00050
 C
                                                                 TMA00060
         IN:
                                                                 TMA00070
      NP.....EVEN NUMBER OF DATA POINTS IN TIME SERIES
 C
                                                                 TMA00080
 C
      DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                 TMA00090
      FP.....PEAK FREQUENCY OF TMA SPECTRUM (HZ)
 C
                                                                 TMA00100
 C
      DH..... WATER DEPTH (M)
      IP......OPTION TO SPECIFY EITHER HRMS (IP=1) OR ALPHA (IP=2) TMA00120
 C
                                                                 TMA00140
      HR.....ROOT MEAN SQUARE WAVE HEIGHT (M)
                                                                 TMA00150
      AP..... SPECTRAL CONSTANT, ALPHA
 C
                                                                 TMA00160
C
                                                                 TMA00170
C
                                                                 TMA00180
C
      SP(NP/2+1)...SPECTRAL ARRAY (M*M*S)
                                                                 TMA00190
C
                 WHERE SP(1)=0 CORRESPONDS TO FREQUENCY = 0
                                                                 TMA00200
                                                                 TMA00210
        EXTERNAL ROUTINE:
                                                                 TMA00220
      WAVNUM.....RETURN WAVE NUMBER
                                                                 TMA00230
SUBROUTINE TMASPC (NP, DT, FP, DH, IP, HR, AP, SP)
                                                                 TMA00250
C
                                                                TMA00260
     REAL
              SP(NP/2+1)
                                                                TMA00270
C
                                                                TMA00280
     NH = NP/2+1
                                                                TMA00290
     TM = NP*DT
                                                                TMA00300
     DF = 1.0/TM
                                                                TMA00310
                              COMPUTE SPECTRUM; AP=1. IF IP=1
                                                                TMA00320
     IF (IP .EQ. 1) THEN
                                                                TMA00330
        AP = 1.0
                                                                TMA00340
     ENDIF
                                                                TMA00350
     SP(1) = 0.0
                                                                TMA00360
     DO 100 I = 2,NH
                                                                TMA00370
        FQ = (I-1) * DF
                                                                TMA00380
        CALL WAVNUM(FQ, DH, WN)
                                                                TMA00390
        AKH=WN*DH
                                                                TMA00400
       AKH2=WN*DH*2.
                                                                TMA00410
C
                              LIMIT FOR SINH(ARG), ARG > 175.366
                                                                TMA00420
        IF (AKH2.GT.150) THEN
                                                                TMA00430
            PHIK = 1.0
                                                                TMA00440
        ELSE
                                                                TMA00450
            PHIK = (TANH(AKH))**2 / (1.+AKH2/SINH(AKH2))
                                                                TMA00460
                                                                TMA00470
       SP(I) = AP * EJ(FQ,FP) * PHIK
                                                                TMA00480
100
     CONTINUE
                                                                TMA00490
```

```
IF HR SPECIFIED, CALCULATE AP
C
                                                                         TMA00500
      CALL INTGRL(SP,NH,DF,ZM)
                                                                         TMA00510
                                                                         TMA00520
      IF (IP .EQ. 1) THEN
         AP = HR**2 / (8.0 * ZM)
                                                                         TMA00530
         DO 200 I = 1,NH
                                                                         TMA00540
              SP(I) = AP * SP(I)
                                                                         TMA00550
200
         CONTINUE
                                                                         TMA00560
      ELSE
                                                                         TMA00570
         HR = SQRT(8.0 * ZM)
                                                                         TMA00580
      ENDIF
                                                                         TMA00590
C
                                                                         TMA00600
      RETURN
                                                                         TMA00610
      END
                                                                         TMA00620
C
                                                                         TMA00630
C FUNCTION SUBROUTINE TO GET JONSWAP FUNCTION (WITH GAMMA = 3.3)
                                                                         TMA00640
      REAL FUNCTION EJ (FQ, FP)
                                                                         TMA00650
C
                                                                         TMA00660
      TWOPI = 8.0 * ATAN(1.0)
                                                                         TMA00670
      GRAV = 9.810
                                                                         TMA00680
      SIGA = 0.07
                                                                         TMA00690
      SIGB = 0.09
                                                                         TMA00700
      GAMMA = 3.3
                                                                         TMA00710
C
                                  CALCULATE EP
                                                                         TMA00720
      C1 = GRAV**2 * TWOPI**(-4)
                                                                         TMA00730
      EP = C1 * FQ**(-5)
                                                                         TMA00740
C
                                  CALCULATE PHIPM
                                                                         TMA00750
      C = 1.25 * (FQ/FP)**(-4)
                                                                         TMA00760
      IF (C .GT. 150) THEN
                                                                         TMA00770
         C = 150
                                                                         TMA00780
      ENDIF
                                                                         TMA00790
      PHIPM = EXP(-C)
                                                                         TMA00800
                                  JONSWAP SHAPE FUNCTION
                                                                         TMA00810
      IF (FQ .LE. FP) THEM
                                                                         TMA00820
         SIG = SIGA
                                                                         TMA00830
      ELSE
                                                                         TMA00840
         SIG = SIGB
                                                                         TMA00850
      ENDIF
                                                                         TMA00860
      C2 = (1.0/(2.0*SIG**2)) * (FQ/FP - 1.0)**2
                                                                         TMA00870
      IF (C2 .GT. 150) THEN
                                                                         TMA00880
        C2 = 150
                                                                         TMA00890
      ENDIF
                                                                         TMA00900
      PHIJ = GAMMA ** (EXP(-C2))
                                                                         TMA00910
C
                                  JONSWAP SPECTRUM
                                                                         TMA00920
      EJ = EP * PHIPM * PHIJ
                                                                         TMA00930
C
                                                                         TMA00940
      RETURN
                                                                         TMA00950
      END
                                                                         TMA00960
C
                                                                         TMA00970
C
      INTGRL - INTEGRATION ROUTINE BASED ON SIMPSON'S RULE
                                                                         TMA00980
      SUBROUTINE INTGRL (F, N, DF, AREA)
                                                                         TMA00990
C
                                                                         TMA01000
      REAL
               F(N)
                                                                         TMA01010
C
                                                                         TMA01020
```

	SE = F(2)	TMA01030
	SO = F(3)	TMA01040
	DO 100 I = 1, $N/2-2$	TMA01050
	SE = SE + F(2 + I*2)	TMA01060
	SO = SO + F(3 + I*2)	TMA01070
100	CONTINUE -	TMA01080
	AREA = (DF/3.0) * (F(1) + 4.0*SE + 2.0*SO + F(N))	TMA01090
C		TMA01100
	RETURN	TMA01110
	END	TMA01120

SPCPAR Subroutine

```
SPC00020
C
                                                                 SPC00030
C
     COMPUTES SPECTRAL PARAMETERS
                                                                 SPC00040
C
                                                                 SPC00050
C
                                                                 SPC00060
C
     SP(NP/2+1)..INPUT SPECTRUM (L*L*S)
                                                                 SPC00070
C
     NP.....EVEN NUMBER OF DATA POINTS IN TIME SERIES
                                                                 SPC00080
C
     DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                 SPC00090
                                                                 SPC00100
C
                                                                 SPC00110
C
     EP......SPECTRAL WIDTH PARAMETER (EQ. 16)
                                                                 SPC00120
C
     VU.....SPECTRAL WIDTH PARAMETER (EQ. 18)
                                                                 SPC00130
C
     QP.....PEAKEDNESS PARAMETER (EQ. 19)
                                                                 SPC00140
     ER.....STANDARD DEVIATION OF FREE SURFACE OSCILLATION (L)
C
                                                                 SPC00150
C
     HR.....ROOT-MEAN-SQUARE WAVE HEIGHT (L)
                                                                 SPC00160
     HS..... SIGNIFICANT WAVE HEIGHT (L)
                                                                 SPC00170
     T1.....MEAN PERIOD BASED ON FIRST MOMENT (EQ. 24) (S)
                                                                 SPC00180
     T2.....MEAN PERIOD BASED ON SECOND MOMENT (EQ. 23) (S)
                                                                 SPC00190
SUBROUTINE SPCPAR (SP, NP, DT, EP, VU, QP, ER, HR, HS, T1, T2)
                                                                 SPC00210
C
                                                                 SPC00220
     PARAMETER (NDS=16384)
                                                                 SPC00230
     REAL
              SP(NP/2+1), SM(5), FQ(NDS/2+1)
                                                                 SPC00240
C
                                                                 SPC00250
     NH = NP/2+1
                                                                 SPC00260
     TM = NP * DT
                                                                SPC00270
     DF = 1.0/TM
                                                                SPC00280
C
                              SPECTRAL MOMENTS BY TRAPAZOIDS
                                                                SPC00290
     DO 25 I = 1, NH
                                                                SPC00300
        FQ(I) = (I-1) * DF
                                                                SPC00310
25
     CONTINUE
                                                                SPC00320
     SUM = 0.5 * SP(1)
                                                                SPC00330
     DO 50 I = 2, NH-1
                                                                SPC00340
          SUM = SUM + SP(I)
                                                                SPC00350
50
     CONTINUE
                                                                SPC00360
     SM(1) = (SUM + 0.5*SP(NH)) * DF
                                                                SPC00370
     DO 200 J = 1.4
                                                                SPC00380
        SUM = 0.0
                                                                SPC00390
        IF (J .NE. 3) THEN
                                                                SPC00400
            SUM = 0.0
                                                                SPC00410
            DO 100 I = 2, NH-1
                                                                SPC00420
                 SUM = SUM + SP(I) * (FQ(I))**J
                                                                SPC00430
100
            CONTINUE
                                                                SPC00440
                                                                SPC00450
        SM(J+1) = (SUM + 0.5*SP(NH)*(FQ(NH))**J) * DF
                                                                SPC00460
200
     CONTINUE
                                                                SPC00470
     SUM = 0.0
                                                                SPC00480
     DO 300 I = 2, MH-1
                                                                SPC00490
       SUM = SUM + (SP(I)**2)*(I-1)
                                                                SPC00500
300
     CONTINUE
                                                                SPC00510
```

	RESULT = $(SUM + 0.5*(SP(NH)**2)*(NH-1)) * DF**2$	SPC00520
C	SPECTRAL STATISTICS	SPC00530
	EP = SQRT(1 - SM(3)**2 / (SM(1) * SM(5)))	SPC00540
	VU = SQRT((SM(1) * SM(3) / SM(2)**2) - 1)	SPC00550
	QP = (2.0/SM(1)**2) * RESULT	SPC00560
	ER = SQRT(SM(1))	SPC00570
	HR = SQRT(8.0 * SM(1))	SPC00580
	HS = 4.004 * SQRT(SM(1))	SPC00590
	T1 = SM(1)/SM(2)	SPC00600
	T2 = SQRT(SM(1)/SM(3))	SPC00610
C		SPC00620
	RETURN	SPC00630
	END	SPC00640

1.746.

TIMEPH Subroutine

```
TIM00020
C
                                                                   TIM00030
C
     COMPUTES TIME SERIES FOR GIVEN POWER DENSITY SPECTRUM USING
                                                                   TIM00040
C
     A RANDOM PHASE SCHEME
                                                                   TTM00050
C
                                                                   TIM00060
C
        IN:
                                                                   TIM00070
C
     SP(NP/2+1).. POWER DENSITY SPECTRUM (L*L*S)
                                                                   TIM00080
C
     NP.....EVEN NUMBER OF DATA POINTS IN TIME SERIES
                                                                   TIM00090
C
     DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                   TIM00100
C
     IS.....SEED VALUE TO INITIALIZE RANDOM NUMBER GENERATOR
                                                                   TIM00110
C
                                                                   TIM00120
C
                                                                   TIM00130
C
     TS(NP).....TIME SERIES SOLUTION (L)
                                                                   TIM00140
C
                                                                   TIM00150
C
        EXTERNAL ROUTINES:
                                                                   TIM00160
C
     RDMGEN.....RANDOM NUMBER GENERATOR
                                                                   TIM00170
     FFTIMSL....INVERSE FOURIER TRANSFORM (IMSL) FOR IO= -1
                                                                   TIM00180
SUBROUTINE TIMEPH (SP, NP, DT, IS, TS)
                                                                   TIM00200
C
                                                                   TIM00210
     PARAMETER (NDS=16384)
                                                                  TIM00220
     REAL
               SP(NP/2+1), TS(NP), PHI(NDS)
                                                                   TIM00230
     COMPLEX
             CN(NDS)
                                                                   TIM00240
C
                                                                   TIM00250
     TWOPI = 8.0 * ATAN(1.0)
                                                                   TIM00260
     NH=NP/2+1
                                                                   TIM00270
     TM=NP*DT
                                                                   TIM00280
     DF = 1.0/TM
                                                                   TIM00290
C
                               GENERATE RANDOM NUMBERS FROM O TO 1
                                                                  TIM00300
     CALL RDMGEN(NH-1, IS, PHI)
                                                                  TIM00310
C
                               FILL UP COMPLEX COEFFICIENTS
                                                                  TIM00320
C
                               AVERAGE VALUE
                                                                  TIM00330
     CN(1) = CMPLX (0.0, 0.0)
                                                                  TIM00340
                               FIRST HALF OF ARRAY
                                                                  TIM00350
     DO 500 I = 2, NH-1
                                                                  TIM00360
        PHX = TWOPI * PHI(I-1)
                                                                  TIM00370
        CX = SQRT(2.0*SP(I) * DF)
                                                                  TIM00380
        CN(I) = 0.5 * CX * CMPLX(COS(PHX),SIN(PHX))
                                                                  TIM00390
500
     CONTINUE
                                                                  TIM00400
                               AT NYQUIST FREQUENCY
                                                                  TIM00410
     PHX = TWOPI * PHI(NH-1)
                                                                  TIM00420
     CX = SQRT(2.0*SP(NH)*DF)
                                                                  TIM00430
     CN(NH) = CX * CMPLX(COS(PHX), 0.0)
                                                                  TIM00440
C
                               SECOND HALF OF ARRAY
                                                                  TIM00450
     DO 600 I = NH+1, NP
                                                                  TIM00460
        NN = NP - I + 2
                                                                  TIM00470
        PHX = TWOPI * PHI(NN-1)
                                                                  TIM00480
        CX = SQRT(2.0*SP(NN)*DF)
                                                                  TIM00490
        CN(I) = 0.5 * CX * CMPLX(COS(PHX), -SIN(PHX))
                                                                  TIM00500
600
     CONTINUE
                                                                  TIM00510
```

C		INVERSE	FOURIER	TRANSFORM	TIM00520
	CALL FFTIMSL(TS, CN, NP,-1)				TIM00530
C					TIM00540
	RETURN				TIM00550
	END				TIM00560

TIMEDC Subroutine

C===		========CTIMOOC	10
C	TIMEDC	TIMOOO	
C		TIMOOO	
C	DETERMINISTIC COEFFICIENT SCHEME TO COMPUTE TIME SE		
C	GIVEN FOURIER COEFFICIENTS	TIMOOO	
C		TIMOOO	NAME OF THE OWNER O
C	IN:	TIMOOO	
C	A(NP/2+1)FOURIER COEFFICIENTS FOR COSINE (L)	TIMOOO	80
C	B(NP/2+1)FOURIER COEFFICIENTS FOR SINE (L)	TIMOOO	90
C	NPEVEN NUMBER OF DATA POINTS IN TIME SER	IES TIMOO1	00
C		TIMO01	10
C	OUT:	TIMOO1	20
C	TS(NP)TIME SERIES SOLUTION (L)	TIMO01	30
C		TIMO01	40
C	EXTERNAL ROUTINE:	TIMO01	50
С	FFTIMSLINVERSE FOURIER TRANSFORM (IMSL) FOR I	O= -1 TIMOO1	60
C====		========CTIM001	70
	SUBROUTINE TIMEDC (A, B, NP, TS)	TIMOO1	80
C		TIMOO1	90
	PARAMETER (NDS=16384)	TIM002	00
	REAL TS(NP), A(NP/2+1), B(NP/2+1)	TIM002	10
	COMPLEX CN(NDS)	TIM002	20
С	WH - WD (OLA	TIM002:	30
С	NH = NP/2+1	TIM0024	40
C	AVERAGE VALUE SHOULD BE		
C	CN(1) = CMPLX(0.0, 0.0)	TIM0026	
C	DO 500 I = 2, NH-1		
	CN(I) = 0.5 * CMPLX(A(I), -B(I))	TIM0028	
500	CONTINUE	TIM0029	
C		TIMOO30	
	AT NYQUIST FREQUENCY, B(CN(NH) = CMPLX(A(NH), 0.0)		
C	FILL SECOND PART OF COMP	TIMO032	
	DO 600 I = NH+1, NP		
	CN(I) = 0.5 * CMPLX(A(NP-I+2),B(NP-I+2))	TIM0034	40.50
600	CONTINUE	TIMOO38	
C	INVERSE TRANSFORM TO RET	TIMOO36	
	CALL FFTIMSL(TS,CN,NP,-1)		
C		TIM0038	1,870
	RETURN	TIM0039	11000
	END	TIM0040	
	1.000	TIM0041	·U

TIMPAR Subroutine

```
C
 C
                                                                  TIM00030
      COMPUTES PARAMETERS FOR GIVEN TIME SERIES BY ZERO-UPCROSS METHOD
 C
                                                                  TIM00040
 C
                                                                  TIM00050
 C
                                                                  TIM00060
 C
      TS(NP).....TIME SERIES (L)
                                                                  TIM00070
 C
      NP..... EVEN NUMBER OF DATA POINTS
                                                                  TIM00080
 C
      DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                  TIM00090
 C
                                                                  TIM00100
 C
         OUT:
                                                                  TIM00110
 C
      SD.....AVERAGE OF TS (SETUP OR SETDOWN) (L)
                                                                  TIM00120
 C
      ER.....ROOT MEAN SQUARE OF FREE SURFACE (L)
                                                                  TIM00130
 C
      NZ.....NUMBER OF ZERO-UPCROSSINGS
                                                                  TIM00140
C
      HB.....MEAN WAVE HEIGHT (L)
                                                                  TIM00150
C
      TB..... MEAN WAVE PERIOD (S)
                                                                  TIM00160
C
      HV.....ROOT-MEAN-SQUARE WAVE HEIGHT (L)
                                                                  TIM00170
C
      HS.....SIGNIFICANT WAVE HEIGHT (L) OF 1/3 HIGHEST WAVES
                                                                  TIM00180
C
      T3.....SIGNIFICANT WAVE PERIOD (S) OF 1/3 HIGHEST WAVES
                                                                 TIM00190
C
      HT..... MEAN HEIGHT OF ONE-TENTH HIGHEST WAVES (L)
                                                                 TIM00200
      TT..... MEAN PERIOD OF ONE-TENTH HIGHEST WAVES (S)
C
                                                                 TIM00210
C
      HRK(NZ).....RANKED WAVE HEIGHTS (L) WITH HRK(1) THE HIGHEST
                                                                 TIM00220
      TRK(NZ).....WAVE PERIODS (S) FOR RANKED WAVE HEIGHTS
C
                                                                 TIM00230
C
     LRN(NK).....RUN LENGTH OF WAVE HEIGHTS EXCEEDING HS
                                                                 TIM00240
     NK.....NUMBER OF RUNS
                                                                 TIM00250
SUBROUTINE TIMPAR (TS, NP, DT, SD, ER, NZ, HB, TB, HV, HS, T3,
                                                                 TIM00270
     & HT, TT, HRK, TRK, LRN, NK)
                                                                 TIM00280
C
                                                                 TIM00290
     PARAMETER (NDS1=16385, NDZ=1000)
                                                                 TIM00300
     REAL
               ATS(NDS1)
                                                                 TIM00310
     REAL.
               TS(NP), H(NDZ), HRK(NDZ), TRK(NDZ)
                                                                 TIM00320
     REAL
              TMZERO(NDZ), T(NDZ), TSMAX(NDZ), TSMIN(NDZ)
                                                                 TIM00330
     INTEGER
              IZERO(NDZ), JMAX(NDZ), JMIN(NDZ), IRK(NDZ), LRN(NDZ)
                                                                 TIM00340
     LOGICAL
              SORTED
                                                                 TIM00350
                                                                 TIM00360
     TM=NP*DT
                                                                 TIM00370
                               ADJUST TIME SERIES TO MAKE
                                                                 TIM00380
C
                              PERIODIC OVER TIME
                                                                 TIM00390
     DO 10 I = 1,NP
                                                                 TIM00400
        ATS(I)=TS(I)
                                                                 TIM00410
10
     CONTINUE
                                                                 TIM00420
     ATS(NP+1)=TS(1)
                                                                 TIM00430
C
                              CORRECT FOR MEAN WATER LEVEL
                                                                 TIM00440
     SUM = 0.0
                                                                 TIM00450
     DO 20 I = 1, NP
                                                                 TIM00460
        SUM = SUM + ATS(I)
                                                                 TIM00470
20
     CONTINUE
                                                                 TIM00480
     SD = SUM / FLOAT(NP)
                                                                TIM00490
     DO 30 I = 1,NP+1
                                                                 TIM00500
        ATS(I) = ATS(I) - SD
                                                                TIM00510
```

```
30
       CONTINUE
                                                                          TIM00520
 C
                                  COMPUTE ROOT-MEAN-SQUARE OF ETA(T)
                                                                         TIM00530
       SUM= 0.0
                                                                          TIM00540
       DO 40 I = 1,NP
                                                                          TIM00550
         SUM= SUM+ (ATS(I)*ATS(I))
                                                                         TIM00560
 40
       CONTINUE
                                                                         TIM00570
       ER = SQRT(SUM / FLOAT(NP))
                                                                         TIM00580
 C
                                   ZERO-UPCROSSING POINTS
                                                                         TIM00590
       NZ = 0
                                                                         TIM00600
       DO 200 J = 1.NP
                                                                         TIM00610
          IF (ATS(J) .EQ. 0.0) THEN
                                                                         TIM00620
               NZ = NZ + 1
                                                                         TIM00630
               IZERO(NZ) = J + 1
                                                                         TIM00640
               TMZERO(NZ) = (J-1) * DT
                                                                         TIM00650
          ELSEIF (ATS(J) .LT. 0.0 .AND. ATS(J+1) .GT. 0.0) THEN
                                                                         TIM00660
               NZ = NZ + 1
                                                                         TIM00670
               IZERO(NZ) = J + 1
                                                                         TIM00680
               TMZERO(NZ) = (J-1)*DT + (-ATS(J)/(ATS(J+1))
                                                                         TIM00690
                   - ATS(J)))*DT
                                                                         TIM00700
          ENDIF
                                                                         TIM00710
 200
       CONTINUE
                                                                         TIM00720
 C
                              CALCULATE WAVE PERIOD, T, OF EACH WAVETIMO0730
      DO 250 I = 1, NZ-1
                                                                         TIM00740
         T(I) = TMZERO(I+1) - TMZERO(I)
                                                                         TIM00750
250
      CONTINUE
                                                                        TIM00760
      T(NZ) = (TM - TMZERO(NZ)) + TMZERO(1)
                                                                        TIM00770
C
                                 NEED TO FIND TSMAX, TSMIN
                                                                        TIM00780
      DO 350 I = 1, NZ
                                                                        TIM00790
         TSMAX(I) = 0.0
                                                                        TIM00800
         TSMIN(I) = 0.0
                                                                        TIM00810
         J1 = IZERO(I)
                                                                        TIM00820
         IF (I .EQ. NZ) THEN
                                                                        TIM00830
              J2 = NP + IZERO(1) -1
                                                                        TIM00840
         ELSE
                                                                        TIM00850
              J2 = IZERO(I+1) - 1
                                                                        TIM00860
         ENDIF
                                                                        TIM00870
         DO 325 J = J1, J2
                                                                        TIM00880
             IF (J .GT. NP) THEN
                                                                        TIM00890
                   JT = J - NP
                                                                        TIM00900
              ELSE
                                                                        TIM00910
                   JT = J
                                                                        TIM00920
              ENDIF
                                                                        TIM00930
              IF (ATS(JT) .GT. TSMAX(I)) THEN
                                                                        TIM00940
                   TSMAX(I) = ATS(JT)
                                                                        TIM00950
                   JMAX(I) = JT
                                                                        TIM00960
          ENDIF
                                                                        TIM00970
             IF (ATS(JT) .LT. TSMIN(I)) THEN
                                                                        TIM00980
                   TSMIN(I) = ATS(JT)
                                                                       TIM00990
                   JMIN(I) = JT
                                                                        TIM01000
             ENDIF
                                                                       TIM01010
325
        CONTINUE
                                                                       TIM01020
350
     CONTINUE
                                                                       TIM01030
C
                                IMPROVE ESTIMATES W/ PARABOLIC CURVE TIMO1040
```

```
DO 400 I = 1, NZ
                                                                         TIM01050
          J = JMAX(I)
                                                                         TIM01060
          J1 = J - 1
                                                                         TIM01070
          IF (J1 .LT. 1) THEN
                                                                         TIM01080
               J1 = NP
                                                                         TIM01090
          ENDIF-
                                                                         TIM01100
          TS1 = ATS(J1)
                                                                        TIM01110
          TS2 = ATS(J)
          TS3 = ATS(J+1)
                                                                        TIM01130
          TSMAX(I) = TS2 - (TS3 - TS1)**2 / (8.0 * (TS1 - 2*TS2)
                                                                        TIM01140
                                                                        TIM01150
          J = JMIN(I)
                                                                        TIM01160
          J1 = J - 1
                                                                        TIM01170
          IF (J1 .LT. 1) THEN
                                                                        TIM01180
              J1 = NP
                                                                        TIM01190
          ENDIF
                                                                        TIM01200
          TS1 = ATS(J1)
                                                                        TIM01210
         TS2 = ATS(J)
                                                                        TIM01220
         TS3 = ATS(J+1)
          TSMIN(I) = TS2 - (TS3 - TS1)**2 / (8.0 * (TS1 - 2*TS2)
                                                                        TIM01240
            + TS3))
                                                                        TIM01250
C
                                  WAVE HEIGHT, H, OF EACH WAVE
                                                                        TIM01260
        H(I) = TSMAX(I) - TSMIN(I)
                                                                        TIM01270
400
      CONTINUE
                                                                        TIM01280
C
                                STATISTICS OF INDIVIDUAL WAVE HEIGHTS TIM01290
      SUM = 0.0
                                                                        TIM01300
      SUMHB = 0.0
                                                                        TIM01310
    SUMHV = 0.0
                                                                        TIM01320
      DO 450 I = 1, NZ
                                                                       TIM01330
        SUM = SUM + T(I)
         SUMHB = SUMHB + H(I)
     SUMHV = SUMHV + H(I)*H(I)
                                                                       TIM01360
450
     CONTINUE
                                                                       TIM01370
      TB = SUM / FLOAT(NZ)
      HB = SUMHB / FLOAT(NZ)
                                                                       TIM01390
      HV = SQRT(SUMHV / FLOAT(NZ))
                                                                       TIM01400
C SORTING ROUTINE FOR WAVE HEIGHT RANKING.
                                 SET UP HRANK, TRANK, IRANK ARRAYS TIMO1420
      DO 500 I = 1, NZ
                                                                       TIM01430
        IRK(I) = I
                                                                       TIM01440
         HRK(I) = H(I)
                                                                       TIM01450
        TRK(I) = T(I)
                                                                       TIM01460
500
      CONTINUE
                                                                       TIM01470
      SORTED = .FALSE.
      IPASS = 0
                                                                       TIM01490
550
     IF (.NOT. SORTED) THEN
        IPASS = IPASS + 1
                                                                       TIM01510
        SORTED = .TRUE.
                                                                       TIM01520
     DO 600 I = 1, NZ - IPASS
                                                                      TIM01530
      IF (H(IRK(I)) .LT. H(IRK(I+1))) THEN
                                                                      TIM01540
                  ITEMP = IRK(I)
                                                                      TIM01550
                  IRK(I) = IRK(I+1)
                                                                      TIM01560
                  IRK(I+1) = ITEMP
                                                                      TIM01570
```

```
HTEMP = HRK(I)
                                                                       TIM01580
                   HRK(I) = HRK(I+1)
                                                                       TIM01590
                   HRK(I+1) = HTEMP
                                                                       TIM01600
                   TTEMP = TRK(I)
                                                                       TIM01610
                   TRK(I) = TRK(I+1)
                                                                       TIM01620
                  TRK(I+1) = TTEMP
                                                                       TIM01630
                   SORTED = .FALSE.
                                                                       TIM01640
              ENDIF
                                                                       TIM01650
600
         CONTINUE
                                                                       TIM01660
         GOTO 550
                                                                       TIM01670
      ENDIF
                                                                       TIM01680
C
                                REPRESENTATIVE WAVE HEIGHT AND PERIOD TIMO1690
      ITHIRD = NZ/3
                                                                       TIM01700
      ITENTH = NZ /10
                                                                       TIM01710
      HS = 0.0
                                                                      TIM01720
     T3 = 0.0
                                                                      TIM01730
      DO 650 I = 1, ITHIRD
                                                                      TIM01740
       HS = HS + HRK(I)
                                                                      TIM01750
      T3 = T3 + TRK(I)
                                                                      TIM01760
650 CONTINUE
                                                                      TIM01770
      HS = HS/FLOAT(ITHIRD)
                                                                      TIM01780
   T3 = T3/FLOAT(ITHIRD)
                                                                      TIM01790
    HT = 0.0
                                                                      TIM01800
    TT = 0.0
                                                                      TIM01810
   DO 700 I = 1, ITENTH
                                                                      TIM01820
    HT = HT + HRK(I)
                                                                      TIM01830
   TT = TT + TRK(I)
                                                                      TIM01840
700 CONTINUE
                                                                      TIM01850
     HT = HT/FLOAT(ITENTH)
                                                                      TIM01860
      TT = TT/FLOAT(ITENTH)
                                                                      TIM01870
C
                            RUN LENGTH OF WAVE HEIGHTS EXCEEDING HS
                                                                      TIM01880
     NK = O
                                                                      TIM01890
     NCOUNT = 0
                                                                      TIM01900
     I = 1
                                                                      TIM01910
750 IF (I .LE. NZ) THEN
                                                                      TIM01920
    IF (H(I) .GT. HS) THEN
                                                                      TIM01930
           NK = NK + 1
                                                                      TIM01940
            NCOUNT = NCOUNT + 1
                                                                      TIM01950
725
             IF (H(I+NCOUNT) .GT. HS) THEN
                                                                      TIM01960
                  NCOUNT = NCOUNT + 1
                                                                      TIM01970
                  GOTO 725
                                                                      TIM01980
             ENDIF
                                                                      TIM01990
             LRN(NK) = NCOUNT
                                                                      TIM02000
             I = I + MCOUNT
                                                                      TIM02010
      MCOUNT = O
                                                                      TIM02020
    ENDIF
                                                                      TIM02030
      I = I + i
                                                                      TIM02040
      GOTO 750
                                                                      TIM02050
     ENDIF
                                                                      TIM02060
C
                                                                      TIM02070
     RETURN
                                                                      TIM02080
     END
                                                                     TIM02090
```

SPCTRA Subroutine

```
C
      SPCTRA
                                                                   SPC00020
 C
                                                                   SPC00030
      COMPUTES SMOOTHED AND UNSMOOTHED SPECTRA FOR GIVEN TIME SERIES
 C
                                                                   SPC00040
 C
                                                                   SPC00050
 C
                                                                   SPC00060
 C
      TS(NP).....TIME SERIES TO BE TRANSFORMED (L)
                                                                   SPC00070
 C
      NP.....EVEN NUMBER OF DATA POINTS IN TIME SERIES
                                                                  SPC00080
C
      DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                  SPC00090
      NB......NUMBER OF DATA POINTS IN EACH BAND FOR SMOOTHING
C
                                                                  SPC00100
C
                 FOR NB=1, NO SMOOTHING
                                                                   SPC00110
C
                                                                  SPC00120
C
         OUT:
                                                                  SPC00130
C
      SP(NP/2+1)...UNSMOOTHED SPECTRUM (L*L*S)
                                                                  SPC00140
C
      FS(NP/2/NB)..FREQUENCY OF SMOOTHED SPECTRUM (HZ)
                                                                  SPC00150
      SM(NP/2/NB)..SMOOTHED SPECTRUM (L*L*S)
C
                                                                  SPC00160
C
                                                                  SPC00170
C
        EXTERNAL ROUTINE:
                                                                  SPC00180
     FFTIMSL.....RETURNS COMPLEX FOURIER COEFFICIENTS FOR IO=1
                                                                  SPC00190
SUBROUTINE SPCTRA (TS, NP, DT, NB, SP, FS, SM)
                                                                  SPC00210
                                                                  SPC00220
      PARAMETER (NDS=16384)
                                                                  SPC00230
               TS(NP), SP(NP/2+1), SM(NP/2/NB), FS(NP/2/NB)
                                                                  SPC00240
     COMPLEX
                                                                  SPC00250
                                                                  SPC00260
     NH = NP/2+1
                                                                  SPC00270
     TM=NP*DT
                                                                  SPC00280
     DF = 1.0/TM
                                                                  SPC00290
C
                               FAST FOURIER TRANSFORM
                                                                  SPC00300
     CALL FFTIMSL(TS, CN, NP, +1)
                                                                  SPC00310
C
                               POWER SPECTRAL DENSITY
                                                                  SPC00320
     SP(1) = 0.0
                                                                  SPC00330
     DO 400 I = 2, NH-1
                                                                  SPC00340
        A = 2.*REAL(CN(I))
                                                                  SPC00350
        B = -2.*AIMAG(CN(I))
                                                                 SPC00360
        SP(I) = 1.0/(2.0*DF) * (A**2 + B**2)
                                                                  SPC00370
400
     CONTINUE
                                                                 SPC00380
        A = REAL(CN(NH))
                                                                 SPC00390
        SP(NH) = 1.0/(2.0*DF) * (A**2)
                                                                 SPC00400
C
                              BAND AVERAGE SMOOTHING
                                                                 SPC00410
     IF (NB.GT.1)THEN
                                                                 SPC00420
        FBS=FLOAT(NB)*DF
                                                                 SPC00430
        NS=(NH-1)/NB
                                                                 SPC00440
        FS(1)=DF/2. + FBS/2.
                                                                 SPC00450
        DO 10 K = 1,NS
                                                                 SPC00460
            IF(K.GT.1) FS(K)=FS(1) + (K-1)*FBS
                                                                 SPC00470
            JB=(K-1)*NB + 2
                                                                 SPC00480
            JE=K*NB + 1
                                                                 SPC00490
            SUM = 0.0
                                                                 SPC00500
            DO 5 J = JB.JE
                                                                 SPC00510
```

	SUM=SUM+SP(J)	SPC00520
5	CONTINUE	SPC00530
	SM(K) = SUM/FLOAT(NB)	SPC00540
10	CONTINUE	SPC00550
	ENDIF	SPC00560
C		SPC00570
	RETURN	SPC00580
	END	SPC00590

IRSORT Subroutine

```
IRSORT
                                                                    IRS00020
 C
                                                                    IRS00030
 C
       SEPARATES INCIDENT AND REFLECTED WAVE TRAINS USING THREE WAVE
                                                                   IRS00040
      GAGES AND METHOD OF GODA+SUZUKI
                                                                    TRS00050
 C
                                                                    IRS00060
 C
         IN:
                                                                   IRS00070
 C
      TS(ND, NW)....FREE SURFACE OSCILLATIONS (AT NW GAGES) (L)
                                                                   IRS00080
      ND......DIMENSION OF TS IN CALLING PROGRAM
                                                                   IRS00090
 C
      NW......WIDTH OF TIME SERIES ARRAY (EQUAL TO NO. OF GAGES)
                                                                   IRS00100
 C
      NP.....EVEN NUMBER OF DATA POINTS IN TIME SERIES
                                                                   IRS00110
 C
      DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                   IRS00120
      XG(NW).....LOCATION OF EACH GAGE WITH X-AXIS POSITIVE SHOREWARD IRSO0130
 C
                  AND GAGE NUMBER DECREASING SHOREWARD (M)
 C
      DH..... WATER DEPTH (M)
                                                                   IRS00150
 C
                                                                   IRS00160
 C
                                                                   IRS00170
 C
      FMN......MINUMUM RESOLVABLE FREQUENCY (HZ) BASED ON LARGEST
                                                                   IRS00180
 C
                  GAGE SPACING
                                                                   IRS00190
 C
      FMX...... MAXIMUM RESOLVABLE FREQUENCY (HZ) BASED ON SMALLEST IRSO0200
                  GAGE SPACING
                                                                   IRS00210
C
      TI(NP).....INCIDENT TIME SERIES (L)
                                                                   IRS00220
      TR(NP).....REFLECTED TIME SERIES (L)
                                                                   IRS00230
C
                                                                   IRS00240
C
         EXTERNAL ROUTINES:
                                                                   IRS00250
C
      FFTIMSL.....FAST FOURIER TRANSFORM
                                                                   IRS00260
C
      WAVNUM.....WAVE NUMBER
                                                                   IRS00270
      TIMEDC..... RETURN TIME SERIES FOR KNOWN FOURIER COEFFICIENTS
                                                                   IRS00280
SUBROUTINE IRSORT (TS, ND, NW, NP, DT, XG, DH, FMN, FMX, TI, TR) IRSO0300
                                                                   IRS00310
      PARAMETER (NDS=16384, NWS=3)
                                                                   IRS00320
      REAL
               TS(ND, NW), XG(NW), TI(NP), TR(NP)
                                                                   IRS00330
      REAL
               AI(NDS/2+1), AR(NDS/2+1), BI(NDS/2+1), BR(NDS/2+1)
                                                                   IRS00340
      REAL
               A(NDS/2+1,NWS),B(NDS/2+1,NWS), XI(NWS,NWS), XJ(NWS,NWS) IRSO0350
      COMPLEX
               CN(16384)
                                                                   IRS00360
     LOGICAL
               DONE
                                                                   IRS00370
C
                                                                   IRS00380
     TM=NP*DT
                                                                   IRS00390
     DF=1.0/TM
                                                                   IRS00400
     NH=NP/2+1
                                                                  IRS00410
     GRAV=9.81
                                                                  IRS00420
     PI=4.0*ATAN(1.0)
                                                                  IRS00430
     CMIN=0.1*PI
                                                                  IRS00440
     CMAX=0.9*PI
                                                                  IRS00450
                               SET THE CORRECT GAGE LOCATION SO THAT IRSO0460
C XI(I,J) IS THE LOCATION OF GAGE I SHOREWARD OF GAGE J AND XJ(I,J) IS IRSO0470
C THE LOCATION OF GAGE J SEAWARD OF GAGE I AND XI(I,J)-XJ(I,J) > O
                                                                  IRS00480
     DO 10 I=1.NW
                                                                  IRS00490
        DO 5 J=1.NW
                                                                  IRS00500
            XI(I,J) = 0.0
                                                                  IRS00510
```

```
XJ(I,J) = 0.0
                                                                          IRS00520
5
         CONTINUE
                                                                          IRS00530
10
      CONTINUE
                                                                          IRS00540
      XI(1,2) = XG(1)
                                                                          IRS00550
      XJ(1,2) = XG(2)
                                                                          IRS00560
      IF (NW.GT.2) THEN
                                                                          IRS00570
      XI(1,3) = XG(1)
                                                                          IRS00580
      XJ(1,3) = XG(3)
                                                                          IRS00590
      XI(2,3) = XG(2)
                                                                          IRS00600
      XJ(2,3) = XG(3)
                                                                          IRS00610
      ENDIF
                                                                          IRS00620
C
                                   GET FOURIER COEFFICIENTS
                                                                          IRS00630
      DO 550 I = 1, NW
                                                                          IRS00640
         CALL FFTIMSL(TS(1,I),CN,NP,+1)
                                                                          IRS00650
         A(1,I) = 0.0
                                                                          IRS00660
         B(1,I) = 0.0
                                                                          IRS00670
         DO 525 K = 2.NH-1
                                                                          IRS00680
              A(K,I) = 2.*REAL(CN(K))
                                                                          IRS00690
              B(K,I) = -2.*AIMAG(CN(K))
                                                                          IRS00700
525
         CONTINUE
                                                                          IRS00710
         A(NH,I) = REAL(CN(NH))
                                                                          IRS00720
         B(NH,I) = 0.0
                                                                          IRS00730
550
      CONTINUE
                                                                          IRS00740
C
                                  LOOP TO SORT INC. AND REFL. A'S, B'S
                                                                          IRS00750
      DO 910 L = 2, NH
                                                                          IRS00760
         FQ = (L-1) * DF
                                                                          IRS00770
         CALL WAVNUM (FQ, DH, WVNM)
                                                                          IRS00780
         KOUNT = 0
                                                                          IRS00790
         AI(L) = 0.0
                                                                          IRS00800
         AR(L) = 0.0
                                                                          IRS00810
         BI(L) = 0.0
                                                                          IRS00820
         BR(L) = 0.0
                                                                          IRS00830
         DO 880 I = 1, NW
                                                                         IRS00840
              DO 870 J = 1, NW
                                                                          IRS00850
                   IF (I .LT. J) THEN
                                                                         IRS00860
C
                                  CRITERION FOR .1PI < KX < .9PI
                                                                         IRS00870
                        ARGIS = WVNM * (XI(I,J) - XJ(I,J))
                                                                         IRS00880
                        IF (ARGIS.GE.CMIN.AND.ARGIS.LE.CMAX) THEN
                                                                         IRS00890
                             KOUNT = KOUNT + 1
                                                                         IRS00900
                             SI = SIN(WVNM * XI(I,J))
                                                                         IRS00910
                             SJ = SIN(WVNM * XJ(I,J))
                                                                         IRS00920
                             CI = COS(WVNM * XI(I,J))
                                                                         IRS00930
                             CJ = COS(WVNM * XJ(I,J))
                                                                         IRS00940
                             D1 = 0.5 / SIN(ARGIS)
                                                                         IRS00950
                             D2 = A(L,I) * SJ
                                                                         IRS00960
                             D3 = A(L,J) * SI
                                                                         IRS00970
                             D4 = A(L,I) * CJ
                                                                         IRS00980
                             D5 = A(L,J) * CI
                                                                         IRS00990
                             D6 = B(L,I) * SJ
                                                                         IRS01000
                             D7 = B(L,J) * SI
                                                                         IRS01010
                             D8 = B(L,I) * CJ
                                                                         IRS01020
                             D9 = B(L,J) * CI
                                                                         IRS01030
                             AI(L) = AI(L) + D1*(-D2+D3+D8-D9)
                                                                         IRS01040
```

```
BI(L) = BI(L) + D1*(+D4-D5+D6-D7)
                                                                       IRS01050
                             AR(L) = AR(L) + D1*(-D2+D3-D8+D9)
                                                                      IRS01060
                             BR(L) = BR(L) + D1*(+D4-D5-D6+D7)
                                                                       IRS01070
                        ENDIF
                                                                       IRS01080
                  ENDIF
                                                                       IRS01090
             CONTINUE
                                                                      IRS01100
880
         CONTINUE
                                                                      IRS01110
         IF (KOUNT .NE. O) THEN
                                                                      IRS01120
              AI(L) = AI(L) / FLOAT(KOUNT)
                                                                      IRS01130
              BI(L) = -1 * BI(L) / FLOAT(KOUNT)
                                                                      IRS01140
              AR(L) = AR(L) / FLOAT(KOUNT)
                                                                      IRS01150
              BR(L) = BR(L) / FLOAT(KOUNT)
                                                                      IRS01160
         ENDIF
                                                                      IRS01170
910
      CONTINUE
                                                                      IRS01180
                               SET ZERO-TH HARMONIC TO ZERO
                                                                      IRS01190
      AI(1) = 0.0
                                                                      IRS01200
      BI(1) = 0.0
                                                                 IRS01210
      AR(1) = 0.0
                                                                      IRS01220
      BR(1) = 0.0
                                                                   IRS01230
C
                                 RESOLVABLE FREQUENCY RANGE
                                                                      IRS01240
                                 FIND MAX AND MIN GAGE PAIR
                                                                    IRS01250
      XMIN=XG(1)-XG(2)
                                                                      IRS01260
      XMAX=XMIN
                                                                      IRS01270
      IF(NW.GT.2)THEN
                                                                      IRS01280
        XMAX=XG(1)-XG(3)
                                                                      IRS01290
        IF(XG(2)-XG(3) .LT. XMIN) XMIN=XG(2)-XG(3)
                                                                      IRS01300
                                                                      IRS01310
C
                               FMN IS FROM LARGEST GAGE PAIR
                                                                      IRS01320
      WNMIN = CMIN/XMAX
                                                                     IRS01330
     FMN = SQRT(WNMIN*GRAV*TANH(WNMIN*DH)) / (2.*PI)
                                                                      IRS01340
C
                                FMX IS FROM SMALLEST GAGE PAIR
                                                                      IRS01350
     WNMAX = CMAX/XMIN
                                                                      IRS01360
     FMX = SQRT(WNMAX*GRAV*TANH(WNMAX*DH)) / (2.*PI)
                                                                      IRS01370
C
                                TO GET TIME SERIES AT X=0.0
                                                                      IRS01380
     CALL TIMEDC(AI, BI, NP, TI)
                                                                      IRS01390
     CALL TIMEDC(AR, BR, NP, TR)
                                                                     IRS01400
C
                                                                     IRS01410
     RETURN
                                                                     IRS01420
     END
                                                                     IRS01430
```

COHPHS Subroutine

```
C
                                                                    COH00020
C
                                                                    COH00030
C
      COMPUTES COHERENCE SQUARED AND PHASE OF CROSS SPECTRUM
                                                                    COH00040
C
      BETWEEN TWO GIVEN TIME SERIES
                                                                    COH00050
C
                                                                    COH00060
C
        TN:
                                                                    COH00070
C
      TS1(NP).....FIRST TIME SERIES (L)
                                                                    COH00080
C
      TS2(NP).....SECOND TIME SERIES (L)
                                                                    COH00090
      NP..... EVEN NUMBER OF DATA POINTS IN TIME SERIES
                                                                    COH00100
C
      DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                    COH00110
      NB......NUMBER OF DATA POINTS IN BAND WIDTH FOR SMOOTHING
                                                                    COH00120
C
                                                                    COH00130
C
        OUT:
                                                                    COH00140
C
      FS(NP/2/NB)..SMOOTHED FREQUENCY ARRAY (HZ)
                                                                    COH00150
C
      CH(NP/2/NB)..SMOOTHED COHERENCE SQUARED (1,2)
                                                                    COH00160
C
      PH(NP/2/NB)..SMOOTHED PHASE OF CROSS SPECTRUM (1,2) (DEGREES)
                                                                    COH00170
C
                                                                    COH00180
C
        EXTERNAL ROUTINE:
                                                                    COH00190
     FFTIMSL.....FOURIER TRANSFORM (IMSL)
                                                                    COH00200
SUBROUTINE COHPHS (TS1, TS2, NP, DT, NB, FS, CH, PH)
                                                                    COH00220
C
                                                                    COH00230
     PARAMETER (NDS=16384)
                                                                    COH00240
               TS1(NP), TS2(NP), FS(NP/2/NB), CH(NP/2/NB), PH(NP/2/NB) COHOO250
     REAL
     REAL
               AS1(NDS/2+1), AS2(NDS/2+1), BU(NDS/2+1)
     COMPLEX XS(NDS/2+1), CN1(NDS), CN2(NDS)
                                                                    COH00270
C
                                                                    COH00280
     NH = NP/2+1
                                                                    COH00290
     PI = 4.0*ATAN(1.0)
                                                                    COH00300
C
                                COMPLEX FOURIER COEFFICIENTS
                                                                    COH00310
     CALL FFTIMSL(TS1, CN1, NP, +1)
                                                                    COH00320
     CALL FFTIMSL(TS2, CN2, NP,+1)
                                                                    COH00330
C
                                AUTO SPECTRA AND CROSS SPECTRUM
                                                                    COH00340
     DO 10 I = 1.NH
                                                                    COH00350
        AS1(I) = CN1(I)*CONJG(CN1(I))
                                                                    COH00360
        AS2(I) = CN2(I)*CONJG(CN2(I))
                                                                    COH00370
        XS(I) = CONJG(CN1(I))*CN2(I)
                                                                    COH00380
10
     CONTINUE
                                                                    COH00390
C
                               SMOOTH THE SPECTRA
                                                                    COH00400
     CALL SMOOTH(AS1, NP, DT, NB, FS, AS1)
                                                                   COH00410
     CALL SMOOTH(AS2, NP, DT, NB, FS, AS2)
                                                                   COH00420
     CALL SMTHCX(XS, NP, NB, XS)
                                                                   COH00430
C
                               COMPUTE COHERENCE AND PHASE
                                                                   COH00440
     DO 110 I = 1.NP/2/NB
                                                                   COH00450
        RDUM = CABS(XS(I)*CONJG(XS(I)))
                                                                   COH00460
        CH(I) = RDUM/(AS1(I)*AS2(I))
                                                                   COH00470
        XSR = REAL(XS(I))
                                                                   COH00480
        XSI = AIMAG(XS(I))
                                                                   COH00490
        XPH = ATAN2(XSI, XSR)
                                                                   COH00500
        PH(I) = 180.*XPH/PI
                                                                   COH00510
```

```
110
       CONTINUE
                                                                         COH00520
 C
                                                                          COH00530
       RETURN
                                                                         COH00540
       END
                                                                         COH00550
 C
                                   SMOOTHING SPECTRUM
                                                                         COH00560
       SUBROUTINE SMOOTH (SP, NP, DT, NB, FS, SM)
                                                                         COH00570
 C
                                                                         COH00580
       REAL
               SP(NP/2+1), FS(NP/2/NB), SM(NP/2/NB)
                                                                         COH00590
 C
                                                                         COH00600
       NH = NP/2+1
                                                                         COH00610
      TM=NP*DT
                                                                         COH00620
      DF=1./TM
                                                                         COH00630
      FBS=FLOAT(NB)*DF
                                                                         COH00640
      NS=(NH-1)/NB
                                                                         COH00650
      FS(1)=DF/2. + FBS/2.
                                                                         COH00660
      DO 10 K = 1,NS
                                                                         COH00670
         IF(K.GT.1) FS(K)=FS(1) + (K-1)*FBS
                                                                         COH00680
         JB = (K-1) * NB + 2
                                                                         COH00690
         JE=K*NB + 1
                                                                         COH00700
         SUM = 0.0
                                                                         COH00710
         DO 5 J = JB, JE
                                                                         COH00720
             SUM=SUM+SP(J)
                                                                         COH00730
         CONTINUE
                                                                         COH00740
         SM(K) = SUM/FLOAT(NB)
                                                                         COH00750
10
      CONTINUE
                                                                        COH00760
      RETURN
                                                                        COH00770
      END
                                                                        COH00780
C
                                 SMOOTHING COMPLEX SPECTRUM
                                                                        COH00790
      SUBROUTINE SMTHCX (XU, NP, NB, XS)
                                                                        COH00800
C
                                                                        COH00810
      COMPLEX XU(NP/2+1), XS(NP/2/NB), COSUM
                                                                        COH00820
C
                                                                        COH00830
      NH = NP/2+1
                                                                        COH00840
      NS=(NH-1)/NB
                                                                        COH00850
      DO 10 K = 1,NS
                                                                        COH00860
         JB = (K-1) * NB + 2
                                                                        COH00870
         JE=K*NB + 1
                                                                        COH00880
         COSUM = (0.0, 0.0)
                                                                        COH00890
         DO 5 J = JB.JE
                                                                        COH00900
              COSUM=COSUM+XU(J)
                                                                        COH00910
5
         CONTINUE
                                                                        COH00920
         XS(K) = COSUM/FLOAT(NB)
                                                                        COH00930
10
      CONTINUE
                                                                        COH00940
C
                                                                        COH00950
      RETURN
                                                                        COH00960
      END
                                                                        COH00970
```

DISTNR Subroutine

```
DIS00020
 C
                                                                  DIS00030
 C
      TO CHECK WHETHER TIME SERIES FOLLOWS NORMAL DISTRIBUTION AND
                                                                  DIS00040
      WHETHER EXCEEDANCE PROBABILITY OF WAVE HEIGHTS FOLLOWS RAYLEIGH
                                                                  DTS00050
C
      DISTRIBUTION
                                                                  DIS00060
C
                                                                  DTS00070
C
        IN:
                                                                  DIS00080
C
     TS(NP).....TIME SERIES (L)
                                                                  DIS00090
C
      NP......NUMBER OF DATA POINTS
                                                                  DIS00100
      DT.....TIME STEP (SAMPLING INTERVAL) (S)
C
                                                                  DIS00110
      XMW.....MINIMUM VALUE FOR FREE SURFACE DISPLACEMENT (L)
C
                                                                  DIS00120
C
      XMX..... MAXIMUM VALUE FOR FREE SURFACE DISPLACEMENT (L)
                                                                  DIS00130
      DX......INCREMENT FOR DISCRETE PROBABILITY DENSITY FUNCTION DISCO140
C
C
                 (L) FOR RESOLUTION NDX=(XMX-XMN)/DX
                                                                  DIS00150
C
                                                                  DIS00160
C
        OUT:
                                                                  DIS00170
     SD..... MEAN (L) CORRESPONDS TO SET DOWN OR SET UP
C
                                                                  DIS00180
C
     VAR.....VARIANCE (L*L)
                                                                  DIS00190
C
     SKW.....SKEWNESS
                                                                  DIS00200
C
     F(NDX).....FREE SURFACE ARRAY ("BINS")
                                                                  DIS00210
     XP(NDX).....PROBABILITY DENSITY FUNCTION OF TIME SERIES
C
                                                                  DIS00220
C
     XN(NDX).....NORMAL DISTRIBUTION
                                                                  DIS00230
     NDX.....LENGTH OF ARRAYS FOR NORMAL DISTIBUTION
C
                                                                  DIS00240
C
     HS......SIGNIFICANT WAVE HEIGHT (L) FOR 1/3 HIGHEST WAVES
                                                                  DIS00250
C
     G(NZ).....HP/HS VALUES
                                                                  DIS00260
C
     PE(NZ).....EXCEEDANCE PROBABILITY PE(N)=N/(NZ+1)
                                                                  DIS00270
C
     PR(NZ).....EXCEEDANCE BASED ON RAYLEIGH DISTRIBUTION
                                                                  DIS00280
C
     NZ.....LENGTH OF ARRAYS FOR RAYLEIGH DISTRIBUTION
                                                                  DIS00290
C
                                                                  DIS00300
        ADDITIONAL ROUTINES:
C
                                                                  DIS00310
     TIMPAR.....TO RETURN WAVE HEIGHT RANKINGS
                                                                  DIS00320
SUBROUTINE DISTNR (TS,NP,DT,XMN,XMX,DX,SD,VAR,SKW,F,XP,XN,NDX,
                                                                  DIS00340
    & HS,G,PE,PR,NZ)
                                                                  DIS00350
C
                                                                  DIS00360
     PARAMETER (NDS1=16385, NDS=1000)
                                                                  DIS00370
     DIMENSION ATS(NDS1), TS(NP), XP(NDS), XN(NDS), F(NDS)
                                                                  DIS00380
     DIMENSION PE(NDS), PR(NDS), G(NDS)
                                                                  DIS00390
     DIMENSION HRK(NDS), TRK(NDS)
                                                                 DIS00400
     DIMENSION LRN(NDS)
                                                                 DIS00410
C
                                                                 DIS00420
     TWOPI=8.0+ATAN(1.0)
                                                                 DIS00430
C
                               COPY TS AND REMOVE MEAN FROM ATS
                                                                 DIS00440
     SUM = 0.0
                                                                 DIS00450
     DO 10 I = 1.NP
                                                                 DIS00460
        ATS(I) = TS(I)
                                                                 DIS00470
10
     CONTINUE
                                                                 DIS00480
                              CORRECT FOR MEAN WATER LEVEL
                                                                 DIS00490
     SUM = 0.0
                                                                 DIS00500
     DO 20 I = 1.NP
                                                                 DIS00510
```

```
SUM = SUM + ATS(I)
                                                                            DIS00520
 20
       CONTINUE
                                                                            DIS00530
       SD = SUM / FLOAT(NP)
                                                                            DIS00540
       DO 30 I = 1.NP
                                                                            DIS00550
          ATS(I) = ATS(I) - SD
                                                                            DIS00560
 30
       CONTINUE
                                                                            DIS00570
 C
                                    COMPUTE VARIANCE
                                                                            DIS00580
       SUM= 0.0
                                                                            DTS00590
       DO 40 I = 1,NP
                                                                            DIS00600
          SUM = SUM + (ATS(I) *ATS(I))
                                                                            DIS00610
 40
       CONTINUE
                                                                            DIS00620
       VAR = SUM / FLOAT(NP)
                                                                            DIS00630
 C
                                    COMPUTE SKEWNESS
                                                                            DIS00640
       SUM= 0.0
                                                                            DIS00650
       DO 45 I = 1.NP
                                                                            DIS00660
          SUM = SUM + (ATS(I))**3
                                                                            DIS00670
45
       CONTINUE
                                                                            DIS00680
       ERMS=SQRT(VAR)
                                                                            DIS00690
       SKW= SUM/ FLOAT(NP) /ERMS**3
                                                                            DIS00700
C
                                    PROBABILITY DENSITY FUNCTION
                                                                            DIS00710
       NDX = (XMX - XMN)/DX
                                                                            DIS00720
       DO 60 J = 1.NDX
                                                                            DIS00730
          KOUNT=0
                                                                            DIS00740
          F(J) = XMN+(J-1)+DX+DX/2.0
                                                                            DIS00750
          DO 50 I = 1.NP
                                                                            DIS00760
               IF (TS(I).GT.XMN+(J-1)*DX .AND. TS(I).LE.XMN+J*DX) THEN
                                                                            DIS00770
               KOUNT=KOUNT+1
                                                                            DIS00780
               ENDIF
                                                                            DIS00790
50
          CONTINUE
                                                                           DIS00800
          IF (KOUNT. EQ. 0) THEN
                                                                           DIS00810
               XP(J) = 0.0
                                                                           DIS00820
         ELSE
                                                                           DIS00830
               XP(J) = FLOAT(KOUNT)/FLOAT(NP)/DX
                                                                           DIS00840
         ENDIF
                                                                           DIS00850
60
      CONTINUE
                                                                           DIS00860
                                   NORMAL DISTRIBUTION
                                                                           DIS00870
      C1=1.0/SQRT(TWOPI*VAR)
                                                                           DIS00880
      DO 70 I=1, NDX
                                                                           DIS00890
         XN(I)=C1*EXP((-(F(I)-SD)**2)/(2.*VAR))
                                                                           DIS00900
70
      CONTINUE
                                                                           DIS00910
C
                                   CALL TIMPAR TO GET WAVE HEIGHT DIST
                                                                           DIS00920
C
                                   DO NOT WANT NEW "SD" SO USE "XX"
                                                                           DIS00930
      CALL TIMPAR(ATS, NP, DT, XX, ER, NZ, HB, TB, HV, HS, T3, HT, TT, HRK, TRK, LRN,
                                                                           DIS00940
     & NK)
                                                                           DIS00950
C
                                   COMPUTE EXCEEDANCE PROBABILITY
                                                                           DIS00960
      DO 80 I = 1, NZ
                                                                           DIS00970
         PE(I)=FLOAT(I)/(FLOAT(NZ+1))
                                                                           DIS00980
80
      CONTINUE
                                                                           DIS00990
                                   COMPUTE RAYLEIGH DISTRIBUTION
                                                                           DIS01000
      DO 90 I = 1, NZ
                                                                           DIS01010
         HRAT=HRK(I)/HS
                                                                           DIS01020
         G(I) = HRAT
                                                                           DIS01030
         PR(I)=EXP(-2.*HRAT*HRAT)
                                                                           DIS01040
```

90	CONTINUE	DIS01050
C		DIS01060
	RETURN	DIS01070
	END	DIS01080

USRSPC Subroutine

```
C
                                                                USR00030
C
     COMPUTES SPECTRAL DENSITY AT EQUALLY-SPACED DISCRETE FREQUENCIES USRO0040
C
    FROM USER-SPECIFIED RAW POINTS
                                                                USR00050
C
                                                                USR00060
C
      IN:
                                                                USR00070
     NP.....EVEN NUMBER OF DATA POINTS IN TIME SERIES
                                                                USR00080
C
     DT.....TIME STEP (SAMPLING INTERVAL) (S)
                                                                USR00090
     NS......NUMBER OF LINEAR SEGMENTS SPECIFYING THE SPECTRUM
                                                                USR00100
C
     FR..... ARRAY OF LENGTH (NS+1) CONTAINING THE ABSCISSAS OF
                                                                USR00110
                 THE RAW POINTS (HZ)
                                                                USR00120
C
     SR..... ARRAY OF LENGTH (NS+1) CONTAINING THE ORDINATES OF
                                                                USR00130
C
                THE RAW POINTS (L*L*S)
                                                                USR00140
C
                                                                USR00150
C
      OUT:
                                                                USR00160
C
     SP(NP/2+1)...SPECTRAL ARRAY (L*L*S)
                                                                USR00170
               WHERE SP(1)=0 CORRESONDS TO FREQUENCY=0
                                                                USR00180
SUBROUTINE USRSPC (NP, DT, NS, FR, SR, SP)
                                                                USR00200
C
                                                                USR00210
     REAL SP(NP/2+1)
                                                                USR00220
     REAL FR(NS+1), SR(NS+1)
                                                               USR00230
C
                                                               USR00240
     NH = NP/2+1
                                                               USR00250
     TM = REAL(NP)*DT
                                                               USR00260
     DF = 1.0/TM
                                                               USR00270
     NI = INT(FR(NS+1)/DF)
                                                               USR00280
C
                              COMPUTE FINE POINTS
                                                               USR00290
                                                               USR00300
     SLOPE = (SR(K+1)-SR(K))/(FR(K+1)-FR(K))
                                                               USR00310
     FRIGHT = FR(K+1)
                                                               USR00320
C
                             ENFORCED: SP(1)=0.0
                                                               USR00330
     SP(1) = 0.0
                                                               USR00340
C
                             INTERPOLATION OF RAW POINTS
                                                               USR00350
     DO 120 I = 2.NI+1
                                                               USR00360
     FREQ = REAL(I-1)*DF
                                                               USR00370
      IF (FREQ.GT.FRIGHT) THEN
                                                               USR00380
        K = K+1
                                                               USR00390
        FRIGHT = FR(K+1)
                                                               USR00400
        SLOPE = (SR(K+1)-SR(K))/(FR(K+1)-FR(K))
                                                               USR00410
                                                               USR00420
      SP(I) = SR(K) + (FREQ-FR(K))*SLOPE
                                                               USR00430
 120 CONTINUE
                                                               USR00440
                             ASSIGN ZERO TO SP(NI+1) TO SP(NH)
                                                               USR00450
    DO 130 I = NI+2, NH
                                                               USR00460
     SP(I) = 0.0
                                                               USR00470
 130 CONTINUE
                                                               USR00480
                                                               USR00490
    RETURN
                                                               USR00500
    END
                                                               USR00510
```

PRORBR Subroutine

C==		CPR000010
C	PRORBR	PR000020
C		PR000030
C	CREATES AN OUTPUT FILE CONTAINING AN INPUT WAVE TRAIN FOR RBREAK	PR000040
C	BASED ON A GIVEN DIMENSIONAL, PERIODICAL TIME SERIES	PR000050
C		PR000060
C	IN:	PR000070
C	TS(NP)TIME SERIES (L)	PR000080
C	NPEVEN NUMBER OF DATA POINTS IN TIME SERIES	PR000090
C	DTTIME STEP (SAMPLING INTERVAL) (S)	PR000100
C	FNAME NAME OF THE OUTPUT FILE CONTAINING THE INPUT WAVE	PRO00110
C	TRAIN FOR RBREAK	PR000120
C	IPOPTION TO SPECIFY THE REFERENCE WAVE HEIGHT USED	PR000130
C	FOR THE NORMALIZATION OF THE DIMENSIONAL TIME	PR000140
C	SERIES TS AS FOLLOWS:	PRO00150
C	. SIGNIFICANT WAVE HEIGHT BASED ON THE TIME SERIES	PR000160
C	(IP=1 and HW is returned as the significant wave	PR000170
C	height)	PR000180
C	. SPECTRAL ESTIMATE OF THE SIGNIFICANT WAVE HEIGHT	PR000190
C	(IP=2 and HW is returned as the spectral estimate	PR000200
C	of the significant wave height)	PR000210
C	. A USER-SPECIFIED REFERENCE WAVE HEIGHT	PR000220
C	(IP=3 and HW needs to be specified as input to	PR000230
C	the PRORBR subroutine)	PR000240
C		PR000250
C	IN/OUT:	PR000260
C	HWREFERENCE WAVE HEIGHT USED FOR THE NORMALIZATION OF	PR000270
C	THE DIMENSIONAL TIME SERIES TS (L)	PR000280
C		PR000290
C	OUT:	PR000300
C	JO MARKS THE LOCATION IN THE ORIGINAL TIME SERIES OF	PRO00310
C	THE DATA POINT THAT WILL BE ASSIGNED TO THE FIRST	PR000320
C	DATA POINT IN THE INPUT WAVE TRAIN FOR RBREAK	PR000330
C	TJOTIME (S) IN THE ORIGINAL TIME SERIES CORRESPONDING	PR000340
C	TO THE INDEX JO	PR000350
C		PR000360
C	EXTERNAL ROUTINES:	PR000370
C	TIMPARCOMPUTES THE SIGNIFICANT WAVE HEIGHT BASED ON THE	PR000380
C	TIME SERIES FOR IP=1	PR000390
C	SPCTRATRANSFORMS THE ORIGINAL TIME SERIES TO THE	PR000400
C	CORRESPONDING POWER DENSITY SPECTRUM FOR IP=2	PRO00410
C	CDCDAR COMPTIONS THE STATE OF T	PR000420
C	WAVE HEIGHT FOR IP=2	PR000430
C===		PR000440
	SURBOUTTNE DROPED (TO NO DT CVANE TO WILL TO	PR000450
C		PR000460
	PARAMETER (NMAX=20001,NDZ=1000,TINY=1.E-06,SMALL=1.E-03)	PR000470
	CHARACTER*10 FNAME	PR000480
	REAL TS(NP), TI(NMAX)	PR000490
	REAL SP(NMAX/2+1),FS(NMAX/2),SM(NMAX/2)	PR000500
	REAL HRK(NDZ), TRK(NDZ)	PRO00510

```
INTEGER LRW(NDZ)
                                                                             PR000520
 C
                                     CHECK THE OPTION IP AND
                                                                             PR000530
 C
                                     DETERMINE REFERENCE WAVE HEIGHT
                                                                             PR000540
        IF (IP.LT.1.OR.IP.GT.3) THEN
                                                                             PR000550
         WRITE (*, 2010)
                                                                             PR000560
         STOP
                                                                             PR000570
       ELSE
                                                                             PR000580
         IF (IP.EQ.1) THEN
                                                                             PR000590
            CALL TIMPAR(TS, NP, DT, SD, ER, NZ, HB, TB, HV, HS, T3,
                                                                             PR000600
                        HT, TT, HRK, TRK, LRN, NK)
                                                                             PR000610
            HW = HS
                                                                             PR000620
         ELSEIF (IP.EQ.2) THEN
                                                                             PR000630
                                                                             PR000640
           CALL SPCTRA(TS, NP, DT, NB, SP, FS, SM)
                                                                             PR000650
           CALL SPCPAR(SP, NP, DT, EP, VU, QP, ER, HR, HS, T1, T2)
                                                                             PR000660
                                                                             PR000670
         ELSE
                                                                             PR000680
           IF (HW.LT.TINY) THEN
                                                                             PR000690
             WRITE (*,2020)
                                                                             PR000700
             STOP
                                                                             PR000710
           ENDIF
                                                                            PR000720
       ENDIF
                                                                            PR000730
       ENDIF
                                                                            PR000740
C
                                   FIND THE LOCATION JO
                                                                            PR000750
       J0 = -1
                                                                            PR000760
       J = 1
                                                                            PR000770
  900 IF (JO.EQ.-1) THEN
                                                                            PR000780
         J = J+1
                                                                            PR000790
         IF (TS(J).LT.O.D+00.AND.TS(J-1).GT.O.D+00) THEN
                                                                            PR000800
           VALUE = TS(J)/HW
                                                                            PR000810
           IF (ABS(VALUE).LT.SMALL) JO=J
                                                                            PR000820
        ENDIF
                                                                            PR000830
      GOTO 900
                                                                            PR000840
      ENDIF
                                                                            PR000850
      TJO = REAL(JO-1)*DT
                                                                            PR000860
                                    CONSTRUCT AND STORE THE
                                                                            PR000870
C
                                    INPUT WAVE TRAIN FOR RBREAK
                                                                            PR000880
      NP1 = NP+1
                                                                            PR000890
      IO = NP-JO+1
                                                                            PR000900
      DO 100 I = 1,NP1
                                                                            PR000910
        IF (I.LE.IO) THEN
                                                                            PR000920
          TI(I) = TS(I+J0-1)/HW
                                                                            PR000930
                                                                            PR000940
          TI(I) = TS(I-I0)/HW
                                                                            PR000950
        ENDIF
                                                                            PR000960
  100 CONTINUE
                                                                            PR000970
C
                                                                            PR000980
      OPEN (UNIT=90, FILE=FNAME, STATUS='NEW', ACCESS='SEQUENTIAL')
                                                                            PR000990
      WRITE (90,9000) NP1
                                                                           PR001000
      WRITE (90,8000) (TI(I), I=1, NP1)
                                                                           PRO01010
                                   FORMATS
                                                                           PR001020
2010 FORMAT (' Error message from PRORBR: Option out of range.'/
                                                                           PR001030
              ' Program aborted by PRORBR.')
                                                                           PR001040
```

2020	FORMAT	(' Error message from PRORBR: Must specify HW for IP=3.'/	PR001050
	+	' Program aborted by PRORBR.')	PR001060
8000	FORMAT	(5D15.6)	PR001070
9000	FORMAT	(18)	PR001080
C			PR001090
	RETURN		PRO01100
	END		PRO01110

FFTIMSL Subroutine

```
C
      FFTIMSL
                                                                  FFT00020
 C
                                                                  FFT00030
 C
      FAST FOURIER TRANSFORR USING IMSL ROUTINES
                                                                  FFT00040
 C
                                                                  FFT00050
 C
         IN/OUT:
                                                                  FFT00060
 C
      TS(NP).....TIME SERIES (L)
                                                                  FFT00070
 C
      CN(NP).....COMPLEX FOURIER COEFFICIENTS (L)
                                                                  FFT00080
 C
                                                                  FFT00090
 C
                                                                  FFT00100
      NP......NUMBER OF DATA POINTS
 C
                                                                  FFT00110
      IO.....+1 THEN FOURIER TRANS OF TS AND CN RETURNED
 C
                                                                  FFT00120
C
                  -1 THEN INVERSE TRANS OF CN AND TS RETURNED
                                                                  FFT00130
C
                                                                  FFT00140
        EXTERNAL ROUTINE:
                                                                  FFT00150
C
      FFT2D.....FAST FOURIER TRANSFORM (IMSL)
                                                                  FFT00160
      FFT2B.....INVERSE FAST FOURIER TRANSFORM (IMSL)
                                                                  FFT00170
SUBROUTINE FFTIMSL (TS, CN, NP, IO)
                                                                  FFT00190
C
                                                                  FFT00200
      PARAMETER (NDS=16384)
                                                                 FFT00210
      REAL
              TS(NP)
                                                                 FFT00220
      COMPLEX CN(NP)
                                                                 FFT00230
      COMPLEX CTS(NDS,1), COEF(NDS,1), AFFT(NDS,1)
                                                                 FFT00240
C
                               IF IO IS +1 THEN FFT OF TIME SERIES
                                                                 FFT00250
     IF (IO .EQ. 1) THEN
                                                                 FFT00260
C
                               CHANGE TO 2-D ARRAY FOR IMSL
                                                                 FFT00270
     DO 100 I = 1,NP
                                                                 FFT00280
        CTS(I,1) = CMPLX(TS(I), 0.0)
                                                                 FFT00290
100
     CONTINUE
                                                                 FFT00300
     NRA = NP
                                                                 FFT00310
     NCA = 1
                                                                 FFT00320
     LDA = NDS
                                                                 FFT00330
     LDCOEF = NDS
                                                                 FFT00340
     CALL FFT2D (NRA, NCA, CTS, LDA, COEF, LDCOEF)
                                                                 FFT00350
                                                                 FFT00360
     DO 200 I = 1.NP
                                                                 FFT00370
        CN(I) = 1.0/FLOAT(NP) * COEF(I,1)
                                                                 FFT00380
200
     CONTINUE
                                                                 FFT00390
C
                              IF IO IS -1 THEN INVERSE FFT OF CN'S FFT00400
     ELSEIF (IO .EQ. -1) THEN
                                                                 FFT00410
C
                              CHANGE TO 2-D ARRAY FOR IMSL
                                                                 FFT00420
     DO 300 I = 1, WP
                                                                 FFT00430
        COEF(I,1) = CN(I)
                                                                 FFT00440
300
     CONTINUE
                                                                 FFT00450
     NRCOEF = NP
                                                                 FFT00460
     NCCOEF = 1
                                                                 FFT00470
     LDCOEF = NDS
                                                                 FFT00480
     LDA = NDS
                                                                 FFT00490
     CALL FFT2B(NRCOEF, NCCOEF, COEF, LDCOEF, AFFT, LDA)
                                                                FFT00500
                              TAKE REAL PART FOR TIME SERIES
                                                                FFT00510
```

	DO 400 I = 1, NP	FFT00520
	TS(I) = REAL(AFFT(I,1))	FFT00530
400	CONTINUE	FFT00540
	ENDIF	FFT00550
C		FFT00560
	RETURN	FFT00570
	END	FFT00580

RDMGEN Subroutine

C==		=CRDM00010
C	RDMGEN	RDM00020
C		RDM00030
C	RANDOM NUMBER GENERATOR	RDM00040
C		RDM00050
C	IN:	RDM00060
C	NRNUMBER OF RANDOM NUMBERS GENERATED	RDM00070
C	ISSEED VALUE TO INITIALIZE RANDOM NUMBER GENERATOR	RDM00080
C		RDM00090
C	OUT:	RDM00100
C	AR(NR)RANDOM NUMBERS DISTRIBUTED UNIFORMLY 0 TO 1.0	RDM00110
C		RDM00120
C	EXTERNAL ROUTINES:	RDM00130
C	RNSETSET RANDOM NUMBER GENERATOR (IMSL)	RDM00140
C	RNUNRETURN RANDOM NUMBER ARRAY (IMSL)	RDM00150
C===		CRDM00160
	SUBROUTINE RDMGEN (NR, IS, AR)	RDM00170
C		RDM00180
	REAL AR(NR)	RDM00190
C	RANDOM NUMBERS FROM IMSL SUBROUTINES	RDM00200
	CALL RNSET (IS)	RDM00210
822	CALL RNUN (NR, AR)	RDM00220
C	ADDRESS TO A STORY OF THE STORY	RDM00230
	RETURN	RDM00240
	END	RDM00250

WAVNUM Subroutine

```
C
                                                                 WAV00020
C
                                                                 WAV00030
C
     COMPUTES WAVE NUMBER, K=2PI/L, FOLLOWING LINEAR WAVE THEORY
                                                                 WAV00040
     NOTE THAT DIMENSION IS 1/METER
                                                                 WAV00050
C
                                                                 WAV00060
     IN:
C
                                                                 WAV00070
   FQ.....FREQUENCY (HZ)
                                                                 WAV00080
     DH......WATER DAPTH (M)
                                                                 WAV00090
C
                                                                 WAV00100
C
                                                                 WAV00110
C
     WN.....WAVE NUMBER (1/M)
                                                                 WAV00120
SUBROUTINE WAVNUM (FQ,DH, WN)
                                                                 WAV00140
                                                                 WAV00150
     PARAMETER (GRAV=9.81, TOL=1.0E-5)
                                                                 WAV00160
     LOGICAL ERROR
                                                                 WAV00170
C
                                                                 WAV00180
     TWOPI = 8.0 * ATAN(1.0)
                                                                 WAV00190
     CORR = 2 * TOL
                                                                 WAV00200
     ERROR = .FALSE.
                                                                 WAV00210
C SOLVE FOR KH (X1) USING ITERATIVE METHOD
                                                                 WAV00220
                              INITIAL GUESS, X1, BASED ON WHSQ
                                                                 WAV00230
     WHSQ = (DH/GRAV) * (TWOPI * FQ)**2
                                                                 WAV00240
     IF (WHSQ .GT. 1.0) THEN
                                                                 WAV00250
        X1 = WHSQ
                                                                 WAV00260
C
                              DEEP WATER LIMITS
                                                                 WAV00270
        IF (TANH(X1) .GT. 1.-TOL) GO TO 200
                                                                 WAV00280
     ELSE
                                                                 WAV00290
        X1 = SQRT(WHSQ)
                                                                 WAV00300
C
                              SHALLOW WATER LIMITS
                                                                 WAV00310
        IF (ABS(X1-TANH(X1)) .LT. TOL) GO TO 200
                                                                 WAV00320
     ENDIF
                                                                 WAV00330
500
        IF (ABS(CORR) .GT. TOL .AND. .NOT. ERROR) THEN
                                                                 WAV00340
        FUNC = X1 * TANH(X1) - WHSQ
                                                                 WAV00350
        DFUNC = TANH(X1) + X1/(COSH(X1))**2
                                                                 WAV00360
                              CHECK SLOPE TO AVOID DIVISION BY ZERO WAVOO370
        IF (ABS(DFUNC) .LT. TOL) THEN
                                                                WAV00380
            ERROR = .TRUE.
                                                                WAV00390
            WRITE(6,*) 'ERROR IN SLOPE CHECK IN WAVNUM SUBROUTINE'
                                                                WAV00400
            GOTO 100
                                                                WAV00410
        ELSE
                                                                WAV00420
            CORR = FUNC/DFUNC
                                                                WAV00430
            X1 = X1 - CORR
                                                                WAV00440
        ENDIF
                                                                WAV00450
        GOTO 500
                                                                WAV00460
     ENDIF
                                                                WAV00470
     WN = X1 / DH
200
                                                                WAV00480
C
                                                                WAV00490
100
     RETURN
                                                                WAV00500
     END
                                                                WAV00510
```

Appendix B: Contents of Accompanying Disk

The accompanying 3.5 inch, double density floppy disk contains the subroutine files and data files referred throughout this report. The extension "*.doc" indicates a document file which may be read to further explain the contents of the disk. The extension "*.for" indicates a FORTRAN file. The extension "*.dat" indicates a data file. These time series data files are of measured laboratory waves. Table 9 summarizes the files.

Table 9: Files on Accompanying Disk.

FILE NAME	DESCRIPTION	REFERENCE
readme.doc	document file for further explanation of accompanying disk	Appendix B
TMASPC.for	computes the TMA spectrum for wind waves computes spectral parameters	Part II
TIMEPH.for	generates time series following random phase scheme	Part III
TIMEDC.for	generates time series for known Fourier coefficients	Part IV
TIMPAR.for	computes time series parameters	Part IV
SPCTRA.for	computes power density spectrum	Part V
IRSORT.for	computes incident and reflected waves for 3-gage array	Part VI
COHPHS.for	computes coherence squared and phase between two time series	Part VII
DISTNR.for	computes PDF and exceedance probability	Part VIII
USRSPC.for	accommodates generation of time series from known spectrum	Part IX
PRORBR.for	produces input wave train for RBREAK	Part X
FFTIMSL.for	computes the complex Fourier coefficients (FFT)	Part XI
RDMGEN.for	generates an array of pseudo-random numbers	Part XII
WAVNUM.for	computes the wave number based on linear wave theory	Part XIII
5,000 to 10,000 to 10	based on linear wave theory	Part XIV
CMO6G1.dat	time series data file at $x = 0.0m$	Part VI, VII,
CMO6G2.dat	time series data file at $x = -1.4m$	VIII, IX
CMO6G3.dat	time series data file at $x = -1.4m$ time series data file at $x = -2.0m$	Part VII
	while series data life at $x = -2.0m$	Part VII, VIII

. . .