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Abstract

Fourteen subroutines are presented herein for standard spectral and time series analyses since
such subroutines may not be easily accessible to a user of the numerical model RBREAK reported
previously. These subroutines have been used to specify numerically generated incident random
waves as input to the numerical model RBREAK as well as to analyze and interpret the computed
time series associated with random waves on impermeable coastal structures and beaches. These
subroutines have also been used to conduct irregular wave tests in a wave flume for the evaluation

and calibration of the numerical model RBREAK.

The mathematical background, computer program and example for each of the fourteen
subroutines are presented in a user-friendly manner. The function of each subroutine is explained
concisely to allow the selection of an appropriate subroutine for a specific spectral or time
series analysis. The combined effective use of the numerical model RBREAK and appropriate
subroutines from those included in this report is essential for predicting and interpreting random
wave motions on coastal structures and beaches.
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Part I: Introduction

Background

Wurjanto and Kobayashi (1991) presented a numerical model called RBREAK for random waves
on impermeable coastal structures and beaches. Their report summarized the previous work
related to RBREAK and described the detailed computational aspects of RBREAK. This report
presents the subroutines used for the spectral and time series analyses for random waves used
in the previous work by Kobayashi, Cox and Wurjanto (1990, 1991), Kobayashi, Wurjanto and
Cox (1990a, 1990b), and Kobayashi and Wurjanto (1991).

The subroutines presented in this report are normally required to conduct irregular wave
tests in a wave flume and analyze the measured time series as well as to specify numerically-
generated incident random waves as input to RBREAK and analyze the computed time series.
The methods of the spectral and time series analyzes used in these subroutines are standard and
are explained in books for spectral methods (e.g. Bendat and Piersol, 1986) and for random
waves (e.g. Goda, 1985). Consequently, similar subroutines may already be available to users
of RBREAK. Nevertheless, well-documented, user-friendly subroutines for the spectral and time
series analyses may not be accessible easily.

Fourteen subroutines are presented in this report. These subroutines are listed in Appendix
A. The magnetic disk accompanying this report and containing the subroutines is explained in
Appendix B. Parts II through XIV of this report describing the routines are each divided into
three sections. The first section is the mathematical background for each subroutine and is
explained to the degree that a user will be able to comprehend the content of each subroutine.
The algebraic manipulations required to derive most of the equations used in this report are
omitted herein. The derivation of these equations may not be straight forward but is presented
in available books for spectral methods (e.g. Bendat and Piersol, 1986) and for random waves
(e.g. Goda, 1985). In the second section, the computer program for each subroutine is included
to show the usage of the subroutine by a main program or another subroutine. The input and
output associated with each subroutine are explained thoroughly so that a user may be able to
apply the subroutine without knowing every detail of the subroutine. In the third section, an
example is presented for each subroutine so that a user can become familiar with the subroutine.
The physical interpretations of the analyzed results were given in the previous works related to
RBREAK,

Summary of Subroutines

The name and function of each of the fourteen subroutines is summarized concisely as follows:

e TMASPC: computes the TMA spectrum for wind waves in finite water depth as a function of
frequency

o SPCPAR: computes standard spectral parameters for a specified spectrum

* TIMEPH: generates a time series for a specified spectrum using a random phase scheme
where the generated time series depends on the seed value used to initialize the random
number generator



o TIMEDC: generates the time series determined uniquely for specified Fourier components

e TIMPAR: computes standard parameters and ranked wave statistics based on a
zero-upcrossing method for a specified time series

® SPCTRA: computes the unsmoothed and smoothed power density spectrum for a specified
time series

® IRSORT: computes the incident and reflected wave time series from measured free surface
oscillations at three locations in front of a reflective structure or beach

o COHPHS: computes the smoothed coherence squared and phase between two specified time
series

® DISTNR: computes the probability distribution of the free surface elevation in comparison
to the normal distribution as well as the exceedance probability of individual wave heights
in comparison to the Rayleigh distribution

e USRSPC: accommodates the generation of time series from a power density spectrum whose
shape is known but can not be expressed by a formula

® PRORBR: produces an input wave train for the numerical model RBREAK from the time
series generated by either the TIMEPH or TIMEDC subroutine

o FFTIMSL: computes the complex Fourier coefficients for a specified time series using the
IMSL subroutine FFT2D for a fast Fourier transform (FFT) as well as the time series for
specified complex Fourier coefficients using the 1MsL subroutine FFT2B for an inverse FFT

® RDMGEN: generates an array of pseudo-random numbers distributed uniformly between zero
and one using the IMSL subroutines RNSET and RNUN

® WAVNUM: computes the wave number based on the linear wave dispersion relation for
specified frequency and water depth where use is made of the gravitational acceleration
g = 9.81ms~2, It is noted that subroutines should have dimensions based on the ST units
because of the use of the WAVNUM subroutine. Alternatively, a user may wish to modify
this subroutine to use other units

The above subroutines are written for the spectral and time series analyses for the free
surface oscillation. However, some of these subroutines can also be applied to other time-
varying quantities such as the shoreline oscillation and velocities associated with random waves.
The MsL subroutines FFT2D, FFT2B, RNSET, and RNUN are used in this report since they are
computationally efficient and widely used in the U.S.A. These subroutines can be replaced by
other equivalent subroutines such as those included in the book of Press et al. (1986).
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Part II: Subroutine TMASPC

Mathematical Background

A self-similar spectral shape given by Bouws et al. (1985) is used to define the sea state. The
TMA spectral form (for TEXEL, MARSEN, and ARSLOE data sets) is an extension of the JONSWAP
shape to finite water depth. The JONSWAP spectrum for wind waves in deep water is given by

S1= Se(£)8pr(f] 1) 8 f, fy1,0) (1)
where
Sp(f) = agi(2n) s~ 2)
Bpa(f/f) = exp [(=5/4)(f/ fp) ™ (3)
®5(f, v 1,0) = exp { In (v) exp [~ (f - AT (4)
| ) ®

where Sp is the Phillips formula for equilibrium range, a is a variable coefficient, ¢ is the
gravitational acceleration, f is the frequency, ®pys is the Pierson-Moskowitz shape function, f,
is the spectral peak frequency, ®; is the JONSWAP shape function, and ¢ and ¥ are variable
coefficients.

In finite water depth, Bouws et al. (1985) assumed the validity of the JONSWAP spectrum
expressed in terms of the wave number, k, and included the transformation factor, ®x(wpy),
given explicitly by

®x(wy) = tanh?(kh) [l + s }_1 (6)
R = sinh 2kh
where A is the water depth, and kk can be found for given wy specified by
h 1/2
WH = 211')‘(——) (7)
g
using the linear dispersion relation
(27 f)? = gk tanh kh (8)

Adopting the transformation factor initially introduced for shallow water by Kitaigorodskii et
al. (1975), the TMA spectral shape is given by

Stma = Sy®k(wy) (9)

11



Computer Program

The TMASPC subroutine was written to yield STMm 4 as a function of f for given spectral parameters
for specifying the incident wave spectrum in finite water depth as well as for the generation of
irregular waves in a flume. The subroutine is called by a main program or another subroutine

CALL TMASPC (NP, DT, FP, DH, IP, HR, AP, SP)

where the arguments are defined as

o IN:

— NP = even number of data points in the time series, N
- DT
— FP = peak frequency of target spectrum, f, (s1)

— DH = water depth, h (m)

— IP = option to specify either root-mean-square wave height or spectral constant

time step or sampling interval, At (s)

e IN/OUT:

— HR = root-mean-square wave height, Hyms (m)

— AP = spectral constant, o
e OUT:

— SP(NP/2+1) = TMa spectral array, Stara (m?s)
e EXTERNAL ROUTINES:

— WAVNUM to return the wave number based on the linear dispersion relation

where the ST units of length, L, is in meters (m), and time, ¢, is in seconds (8).

Since the subroutines in this report were written for the case of analyzing discrete time
series from the numerical model and from measurements in a flume, two arguments are contained
in nearly all the subroutines. They are NP (), the number of data point in the time series, and
DT (At), the sampling interval of the time series. The sampling interval determines the largest
frequency, that is, the Nyquist frequency, [Nyq» wWhere

1
24t
The Nyquist frequency is related in this and other subroutines to the length NH of the arrays in

the frequency domain, where NH=NP/2+1. The frequency resolution DF (A f) is related in these
subroutines by DF=1/TM or

fNyq = (10)

1
Af = (11)
rmax
where TM (¢max) is the duration of the time series and is given by TM=NP*DT or

12



The N-th element in the spectral array, SP(N), corresponds to the (N-1)*DF-th frequency where
N=1,2,...,NH.

Specific to the TMASPC subroutine are the arguments FP, DH, IP, HR and AP. The user
must specify the peak frequency FP of the TMA spectrum. The variable coefficients SIGA (0a),
SIGB (o) and GAMMA () of the J0NsSwAP shape function are written in the subroutine with the
standard values of SIGA=0.07, SIGB=0.09, and GAMMA=3.3.

The water depth DH (h) must be specified in meters since the WAVNUM subroutine was
written with the gravitational constant g in ST units. The user may specify either the root-
mean-square wave height HR ( Hrmg) in which case IP=1, or the spectral constant AP (e) in which
case IP=2. If Hymps is specified, then a is computed from the zeroth moment of the TMA spectrum
with a =1 2

rms
= m (13)

In general, the zeroth moment for the TMA spectrum is given by
ma= [ Sraa(f)df (14)
If a is specified, then Hypg is returned and computed by
Hims = V8mg (15)

The subroutine will return the TMA spectral array of length NP/2+1.

Example

The TMASPC subroutine can be used to generate irregular waves in a flume (e.g. Cox, 1989). In
this example, TMASPC is called by a main program

PARAMETER (NP=8192,IP=1)
PARAMETER (DT=0.04,FP=0.6,DH=0.4,HR=0.06)
DIMENSION SP(4097)
C Call TMASPC subroutine
CALL TMASPC(NP,DT,FP,DH,IP,HR,AP,SP)
C Make a graph

and returns the array SP and coefficient AP. The TMA spectral form is shown in Figure 1
with AP=0.0078. Although the Nyquist frequency is 12.55~1 for this example, only the range
0.0 < f < 3.557! is shown.

13
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Figure 1: TMA Spectrum for Laboratory Experiment Returned
by TMASPC.
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Part III: Subroutine SPCPAR

Mathematical Background

The characteristics of the wave spectrum, S(f), are typically described by various spectral
parameters. Cartwright and Longuet-Higgins (1956) first defined the spectral width parameter,

€, as
2

m
e=|(1-— L
Moy

1/2
J for 0<e<1 (16)
with the n-th spectral moment defined as
ma= [ S(h)ar (17)

For narrow spectra, ¢ is near zero; and for broad spectra, € is near unity. However, accurate
computation of the fourth spectral moment for the high frequency part of the spectrum is
difficult since S(f) & f~5 in deep water. Instead, Longuet-Higgins (1957) defined a second
spectral width parameter, v, as

1/2
g i [._mﬂ“’;"2 - 1] (18)
il
On the other hand in 1970, Goda introduced the peakedness parameter, (p, as
2 [ 2
= — S } d 19
%=z [T 1[50 @ (19)

where the value of @, is near 2 for wind waves (Goda, 1985).

The standard deviation of the free surface oscillation, Nyms, is related to the zeroth moment
as

P =(?)m (20)

where 7% is the mean of the square of the free surface oscillation with zero mean. Assuming
the Rayleigh distribution of wave heights, the spectral estimate of the root-mean-square wave
height, Hyms, and the spectral estimate the significant wave height, Hy,, are given by

Hrms - Smg (21)

and
Huo = 4.004/mq (22)
In addition to the wave height parameters, the wave period parameters can be computed.
A spectral estimate of the mean period of the zero-upcrossing waves, Tog, is given by
m
Toz = /— (23)
ma

A second spectral estimate of the mean period, Ty, is given by

T = — (24)
my

It is noted that To; and Ty, may not be the same as the mean wave period calculated using a
zero-crossing method with the time series of the free surface oscillation.

15



Computer Program

The SPCPAR subroutine, written to calculate the parameters for a given spectrum, is called by a
main program or another subroutine

CALL SPCPAR (SP, NP, DT, EP, VU, QP, ER, HR, HM, T1, T2)

where the arguments are defined as

e IN:
— SP(NP/2+1) = spectral array, S(f) (L%s)
— NP = even number of data points in the time series, N
— DT = time step or sampling interval, At (s)

e OUT:

— EP = spectral width parameter, ¢

— VU = spectral width parameter, v

— QP = spectral peakedness parameter, Q,

— ER = standard deviation of the free surface oscillation, nyms (L)
— HR
— HM = spectral estimate of the significant wave height, Hyq (L)

spectral estimate of the root-mean-square wave height, Hyms (L)

= T1 = spectral estimate of the mean period, Tp; (s)
— T2 = spectral estimate of the mean period, Tp, (8)

o EXTERNAL ROUTINES:

= none

where L refers to the unit of length. In the subroutine the spectral moments are computed by
trapezoidal approximation.

Example

The same TMA spectral form shown in Figure 1 is used in this example, where SPCPAR is called
by a main program

PARAMETER (NP=8192,IP=1)
PARAMETER (DT=0.04,FP=0.6,DH=0.4,HR=0.06)
DIMENSION SP(4097)
C Call TMASPC subroutine
CALL TMASPC(NP,DT,FP,DH, IP,HR,AP,SP)
C Call SPCPAR subroutine
CALL SPCPAR(SP,NP,DT,EP,VU.QP,ER,HRHS.HH,TI,TQ)
C Make a table

16



and the values of the spectral parameters are returned and are given in Table 1. It is noted
that in the example program the Hyns argument is written HRMS to differentiate it from the
parameter HR used as input to the TMASPC subroutine. As expected, the Hypg value returned by
the SPCPAR subroutine agrees with the value specified to the TMASPC subroutine.

Table 1: Spectral Parameters Returned by SPCPAR.

ﬁguig[ Value [ Units |
€

0.861
v 0.456
Qp 2.233
Mrms 2121 | em
; F— 6.000 | em
s 8.492 | em
Tor 1.188 | s
To2 1.080

17
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Part IV: Subroutine TIMEPH and TIMEDC

Mathematical Background

Two common methods for generating a time series for a given spectrum are discussed by Elgar
et al. (1985), one of which is summarized here. This method is called the random phase scheme
where the free surface oscillation is composed of the superposition of sinusoidal waves with
random phase angles and with amplitudes based on the spectrum, S(f,). The free surface, n(t),
as a function of time is expressed by

N/2
n(t) = > Cncos(2r fut + ¢n) for 0 <1< tmax (25)
n=1
with
Cn = [28( f)Af]/2 (26)
and
1 1 -
Af - tmax = JV".lt (2‘)

where N is the even number of data points in the time series, At is the sampling interval, tmax
is the duration of the time series, C, are the real Fourier amplitudes, A f is the frequency band-
width, f, = nAf is the frequency, and ¢, are the random phase angles uniformly distributed
in [0, 27].

This method represents a Gaussian sea only as the number of harmonics, N/2, approaches
infinity (Tucker et al., 1984). For finite N and Af = constant, the free surface profile repeats
aftert = tmax. However, the duration of 0 < ¢ < tmayx is of interest, and the use of A f = constant
is normally sufficient for small A f.

A second routine is presented in this section to return the time series for determined
Fourier coefficients and is based on the following equation

N/2
n(t) = z [a,. cos(2x fut) + by sin{21rfnt)] 0<?<tmax (28)

n=1

where a,, and b,, are the Fourier coefficients. Comparing Equations 25 and 28, a,, and b,, can be
expressed
ay = C, cos d, (29)

and
b, = =C} sin ¢, (30)

This subroutine is essentially an inverse FFT routine but was written as a separate routine for
clarity. This subroutine is used by the IRSORT subroutine to return incident and reflected wave
trains.

Computer Program

The TIMEPH subroutine, written for calculating a time series for a given spectrum, is called by
a main program or another subroutine

19



CALL TIMEPH (SP, NP, DT, IS, TS)
where the arguments are defined as

e IN:
— SP(NP/2+1) = power density spectrum, S(f,) (L?s)

— NP = even number of data points in the time series, N
— DT = time step or sampling interval, At (s)

— IS = seed value to initialize the random number generator
e OUT:

— TS(NP) = time series, 7(t) (L)
o EXTERNAL ROUTINES:

— FFTIMSL to inverse Fourier transform the coefficients and return the time series

— RDMGEN to return an array of random numbers uniformly distributed between zero
and one

Only these two subroutines, FFTIMSL and RDMGEN, contain calls to the IMSL library of subroutines
and can be easily substituted by standard FFT routines and random number generators for
computers without this library (Press et. al., 1986). However, the IMSL version of the FFT is
computationally efficient and is used in these routines.

The second routine, TIMEDC, which is essentially an inverse Fourier transform of known
Fourier coefficients to return the time series, is called by a main program

CALL TIMEDC (A, B, NP, TS)

where the arguments are defined as

e IN:

— A(NP/2+1) = real part of the complex Fourier coefficients, a, (L)
— B(NP/2+1) = imaginary part of the complex Fourier coefficients, b, (L)

— NP = even number of data points in the time series
e OUT:

— TS(NP) = time series, 7(t) (L)
e EXTERNAL ROUTINES:

— FFTIMSL to inverse Fourier transform the coefficients and return the time series

20



The relation between the complex Fourier coefficients, ¢,, used in the FFTIMSL subroutine and
the real Fourier coefficients, a, and b,, is given by

chn = 0 for n=0 (31)
an — ib,

L for %=1,2,. N2 =1 (32)

& = 8a for n=N/2 (33)

i = ai'—“;z—bmi for n=N/2+1,...,N =1 (34)

where i2=-1 and N=(n+1) is used in the computer program listed in Appendix A.

Example

The example in this section illustrates the use of the TIMEPH subroutine by way of the T™Ma
spectrum generated in the previous two examples. The TIMEPH subroutine is called by a main
program

PARAMETER (NP=8192,IP=1,1S=123457)
PARAMETER (DT=0.04,FP=0.6,DH=0.4,HR=0.06)
DIMENSION SP(4097),TS(8192)
C To provide IMSL workspace
COMMON /WORKSP/ RWKSP
REAL RWKSP(65592)
CALL IWKIN(65592)
C Call TMASPC subroutine
CALL TMASPC(NP,DT,FP,DH,IP,HR,AP,SP)
C Call TIMEPH subroutine
CALL TIMEPH(SP,NP,DT,IS,TS)
C Make a graph

and the time series is returned. It is noted that in order to run the FFT routines provided in the
IMSL library, it is necessary to provide adequate workspace in the main (calling) program.

Figure 2 shows the time series of the TMA spectrum. Although the maximum duration
I8 tmax = 327.68s, only the range 0.0 < ¢ < 160.0s is shown in this figure. An example of
the TIMEDC subroutine is not provided here but is discussed in conjunction with the IRSORT
subroutine in Part VIIL
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TIME SERIES OF TMA SPECTRUM
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Part V: Subroutine TIMPAR

Mathematical Background

There are two general categories for random wave analyses: one is the spectral method, and
the other is the zero-crossing method. These two methods are completely different in approach
although gross statistics such as the root-mean-square wave height tend to agree for time series of
long duration. Individual waves can be identified using either successive zero-upcrossing points
or successive zero-downcrossing points where a “zero-crossing” is the location where the time
series crosses the zero of the abscissa. The zero-upcrossing method is adopted in this report.

Beginning the zero-upcrossing analysis, the mean water level due to wave setup or setdown,
7, is computed by using the arithmetic mean of the time series, 7;, measured from still water
level,

n(t) = i (35)

g

3
N 1

where N is the number of data points. Next, the adjusted free surface oscillation is computed
by subtracting the setup; and the adjusted free surface, (7; — 7), is denoted hereafter as 7; for
brevity. The root-mean-square of the free surface oscillation, Nrms, is found by

n? (36)

)=

1
nl?ms=i_;v“'
=1

Il

Additional parameters are calculated using the zero-upcrossing method in which the point
of zero-upcrossing is located using the linear interpolation between two points satisfying the
conditions

M Nig1 <0 and migy >0 (37)

where 7; is the i-th data point of the free surface elevation. An individual wave is defined
using two adjacent zero-upcrossing points. The wave period of an individual wave, T}, is the
duration between the two adjacent zero-upcrossing points. The largest value of the data points
in an individual wave can be found by comparing the values of 7; included in each wave. A
parabolic curve is fitted to the three discrete data points about the largest value, 7;, to improve
the estimate of the maximum elevation, fmax, which is given by

BZ
Mmax = C — T (38)
where
1
A = (-1 - 2n +nip1) (39)
1
B = 5(1’}:‘1»1 - Ni-1) (40)
¢ = n (41)

The minimum elevation of the individual wave, min, can be found in a similar manner. The
corresponding wave height of an individual wave, H;, is given by

H; = Nmax — hmin (42)
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The average wave height, 7, and the average wave period, T, can be found by arithmetic
mean

1 &e
F: Sb— H;' (43}
&>
and B | N
T==>"T (44)
0

where Nj is the number of individual waves with wave period and wave height denoted by T;
and H;, respectively. The root-mean-square wave height, Hyps, is defined as

No 1/2
: ] (45)

Hrms =,:Er; ZH{Z

i=1

To determine the significant wave height, H,, and the significant wave period, Ty, the individual
waves are ranked in descending order of H;. The significant wave height, H,, is defined as the
arithmetic mean of the one-third highest waves

3 No/3
H, = A > H, (46)

r=1
where H, is the wave height of r-th rank. Similarly, the significant wave period, T, is given by

3 No/3
T":E ZTr (4')

r=}

where T’ is the period corresponding to the r-th ranked wave. Additionally, the average height
and period of the one-tenth highest waves, Hyy and T}, respectively, are given by

No /10

10
H = - Hr 48
10 = 3 ; (48)
and
10 No /10
To= 23T -

Lastly, the run length of wave groups are computed. The run length is equal to the number of
waves in a sequence for which the wave heights are larger than a specified wave height (Goda,
1985) which is taken to be the significant wave height, H,, in this routine.

Computer Program

The TIMPAR subroutine, written to compute the statistical parameters of given time series, is
called by a main program or another subroutine

CALL TIMPAR (TS, NP, DT, SD, ER, NZ, HB, TB, HV, HS, T3,
HT, TT, HRK, TRK, LRN, NK)
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where the arguments are defined as

e IN:

— TS(NP) = time series, 7(t) (L)
— NP = even number of data points in the time series, N

— DT = time step or sampling interval, At (s)
e OUT:

— SD = mean of time series (setup or setdown), ;?Fj (L)
— ER = root-mean-square of the free surface elevation, nrms (L)
— NZ = number of zero-upcrossing waves, Ny
— HB = mean wave height, # (L)
— TB = mean wave period, T (s)
— HV = root-mean-square wave height, Hyyns (L)
— HS = significant wave height, i.e., the average of the one-third highest waves, H, (L)
— T3 = significant wave period, i.e., the average period of the one-third
highest waves, T (s)
— HT = average height of the one-tenth highest waves, Hyo (L)
— TT = average period of the one-tenth highest waves, Ty (s)
— HRK(NZ) = array of wave heights ranked with HRK(1) being the highest, H, (L)

— TRK(NZ) = array of wave periods corresponding to the ranked wave heights
with TRK(1) being the period corresponding to the highest wave, T, (s)

— LRN(NK) = run length of wave heights exceeding HS

— NK = number of runs
e EXTERNAL ROUTINES:

= none

In the TIMPAR subroutine, the time series array is copied, ATS(I)=TS(I), and an additional
point is added, ATS(NP+1)=TS(1), to make the time series periodic. The mean is removed from
the copied time series, ATS(I), to leave the original unchanged.

It is noted that the number of zero-upcrossing waves is NZ (No) and that the last wave
period T(NZ) (Ti=n,) is computed by T(NZ)=(TM-TMZERO(NZ))+TMZERO(1) where TM (tmax) is
the duration of the time series, TMZERO(NZ) is the last zero-upcrossing point near the end of
the time series and TMZERO(1) is the first zero-upcrossing point near the beginning of the time
series.

Since the wave heights are generally of greater importance than the wave periods to the
design engineer, the waves are ranked by height and not by period in this subroutine although
this condition is easy to change in the subroutine. The wave period array returned contains
elements corresponding to the wave periods of the ranked waves, and the highest waves do not
generally have the longest periods (Goda, 1985).
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Example

The example in this section uses the total time series generated by the TIMEPH subroutine, part
of which is shown in Figure 2. The TIMEPH subroutine is called by a main program

PARAMETER (NP=8192,IP=1,IS5=123457)
PARAMETER (DT=0.04,FP=0.6,DH=0.4,HR=0.06)
DIMENSION SP(4097), TS(8192), HRK(1000), TRK(1000)
C To provide IMSL workspace
COMMON /WORKSP/ RWKSP
REAL RWKSP(65592)
CALL IWKIN(65592)
C Call TMASPC subroutine
CALL TMASPC(NP,DT,FP,DH,IP,HR,AP,SP)
C Call TIMEPH subroutine
CALL TIMEPH(SP,NP,DT,IS,TS)
C Call TIMPAR subroutine
CALL TIMPAR(TS,NP.DT,DS,ER,NZ,HB,TB,HV,HS,T3,HT,TT,
&  HRK,TRK,LRN,NK)
C Make a table

and the subroutine returns the values of the time series parameters given in Table 2. For
this example, Hyms = 5.666ecm which is roughly equivalent to Hyps = 6.0cm specified to the
TMASPC subroutine to generate the TMA spectrum. The value of Hyms returned by TIMPAR should
approach the specified Hypms of the target spectrum as the length of the time series increases. The
mean wave period, T = 1.050s, is roughly equivalent to the mean period based on the spectral
moments of the SPCPAR subroutine, 7y, = 1.080s, as shown in Table 1. A partial ranking of the
waves is given in Table 3, and the run lengths are given in Table 4.
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Table 2: Time Series Parameters Returned by TIMPAR.

[Argument [ _l_afu_e | Units |

n(t) -2.57 x10~* | em
Trms 2121 | em
No 312

H 4.946 | em
T 1.050 | s
Hyims 5.666 | em
H 8.116 | em
T 1.367 | s
Hm 10.345 | em
Tm 1.394 | s

Table 3: Wave Height Rankings with Corresponding Wave Periods Returned by TIMPAR.

I_Ra,nl:.;_l H, (em) [ T; (s) |
e |

1 14.165 | 1.370
2 13.359 | 1.195
3 12.841 | 1.163
4 12.671 | 1.647
5 12.285 | 1.472
306 0.450 | 0.369
307 0.364 | 0.199
308 0.263 [ 0.201
309 0.236 | 0.142
310 0.104 | 0.203
311 0.049 | 0.060
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Table 4: Run Lengths Returned by TIMPAR.

[T LRN(D ﬂ'x [LRNCD) |

I R T 1
2| 3 15 1
3| 1 16| 2
4 2 17| 4
50 1 18 1
6] 1 19| 1
1 20| 4
8| 1 21| 1
9| 3 2| 1
10| 2 23| 1
i 1 24| 2
2] 1 Bl 1
13| 2 ®] i
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Part VI: Subroutine SPCTRA

Mathematical Background

The power density spectrum, S5(f»), is found by Fourier transform of the time series, n(t),
expressed in the form of Equation 28 and is given by

S(h) = 0 for n=0 (50)
o gk o 78 - &z

S(fa) = 2Af(a,,‘+t'3ﬂ) for n_l,...,2 1 (51)

S(f) = ﬁl-?af, fr ne= N2 (52)

where a, and b, are the Fourier coefficients at each frequency, f, = nAf. It was noted in Part

II that the frequency resolution, Af, is related to the duration of the time series, tmax, by
. 1

tmax - ¢VA3

The largest frequency, that is, the Nyquist frequency, fNyq, depends only on the sampling

interval, At, and is given by

Af =

(53)

1 _ NAf

INyq = 5AL 2 (54)

In practice, the spectrum obtained from the Fourier transform may have a high statistical
resolution but may have a low statistical reliability, particularly for time series with much noise.
Hence, it may be advantageous to use a smoothing procedure to increase the reliability at the
expense of the spectral resolution. The simplest method is a rectangular filter with the smoothed
spectrum, S(f), given by

km

S== > S (55)
J=(k=1)m+1
with y y
fe=5+ k- m|ars (56)

where m indicates the number of unsmoothed spectral values used for the averaging. The
corresponding degree of freedom is 2m (e.g. Goda, 1985).

It is noted that the spectrum is computed without regard to aliasing or spectral leakage.
These two points should be considered when the sampling interval, At¢, and the number of sam-
ples, N, are determined for an experiment. The choice of the sampling interval alone determines
the Nyquist frequency. Energy contained in the record beyond the Nyquist frequency is folded
back in to the frequency band below the Nyquist; therefore, the sampling interval should be
chosen so that there is negligible energy above the Nyquist frequency. The frequency resolution,
Af, determined by the duration of the record should be chosen so that there is negligible energy
below A f.

Computer Program

The SPCTRA subroutine, written to compute the power density spectrum for a given time series,
is called by a main program
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CALL SPCTRA (TS, NP, DT, NB, SP, FS, SM)

where the arguments are defined as

o IN:

— TS(NP) = time series to be transformed, 7(t) (L)

— NP = even number of data points in the time series, N

— DT = time step or sampling interval, At (s)

— NB = number of band-averaged data points for smoothing, m
o OUT:

— SP(NP/2+1) = unsmoothed power density spectrum, S(fn) (L2%s)
— FS(NP/2/NB) = frequency array of smoothed spectrum, f; (s~!)
— SM(NP/2/NB) = smoothed spectrum, 5( f;) (L?s)

¢ EXTERNAL ROUTINES:

— FFTIMSL to return the complex Fourier coefficients

Example

The example for this section starts with the time series data file CMO6G1. The time series
for CMO6G1 is the measured free surface oscillation in a flume at the toe of a 1:20 smooth,
impermeable slope with a water depth of h = 0.47m, and with a peak frequency of the target
spectrum of f, = 0.6s~!. The length of this file is N = 8192 points and the sampling interval
is At = 0.04s. The free surface displacement, n(t), is in units of centimeters. The SPCTRA
subroutine is called by a main program

PARAMETER (NB=16)
DIMENSION SP(4097), TS(16384), FS(256), SM(256)
C To provide IMSL workspace
COMMON /WORKSP/ RWKSP
REAL RWKSP(65592)
CALL IWKIN(65592)
C Read in time series data file CMO6G1
UPEN(UHIT=11,FILE=’CMOSGI')
READ(11,1) NP, DT
1 FORMAT(I10,F10.4)
READ(11,%) (TS(I), I=1,NP)
CLOSE(11)
C Remove mean from time series
CALL TAKEMN(TS,NP,SD)
C Call SPCTRA subroutine '
CALL SPCTRA(TS,NP,DT,NB,SP,FS,SM)
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C Make a graph

C Subroutine to remove the mean from the time series
SUBROUTINE TAKEMN(TS,NP,SD)
- REAL TS(NP)
SUM=0.0
DO 1 I =1, NP
SUM = SUM + TS(I)
1 CONTINUE
SD = SUM/FLOAT(NP)
DO 2I =1, NP
TS(I) = TS(I) - SD
2 CONTINUE
RETURN
END

and the subroutine returns for the given time series the unsmoothed power spectral density
as well as the smoothed power spectral density and corresponding frequency array. The un-
smoothed spectrum has a frequency resolution of Af = 0.00305s~! and Nyquist frequency of
fNyq = 12.5s71. Figure 3 shows the unsmoothed spectrum in the range 0.0 < f < 3.5s~! for the
time series CM06G1. For the smoothed spectrum, the frequency resolution is A f = 0.0488s~! and
the Nyquist frequency is essentially unchanged. Figure 4 shows the smoothed power spectrum
for the data file CMO6G1 with 32 degrees of freedom (m = 16).
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UNSMOOTHED POWER SPECTRUM
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Figure 3: Unsmoothed Power Spectrum for Time Series CM06G1
Returned by SPCTRA.
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Figure 4: Smoothed Power Spectrum with 32 Degrees of Freedom
for Time Series CM06G] Returned by SPCTRA.
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Part VII: Subroutine IRSORT

Mathematical Background

Since laboratory experiments are often affected by multireflection from the slope and wavemaker,
it is important to know the reflective properties of the slope for any hydraulic test in a flume.
In the case of irregular waves, it is desirable to estimate the reflection as a function of frequency
and to be able to separate incident and reflected waves. A method to separate incident and
reflected waves with an array of wave gages is presented here following Thornton and Calhoun
(1972), Goda and Suzuki (1976), and Seelig (1980).

The mean water level is first removed from the time series, and the free surface displace-
ment, 7', is given by _ .

n'(t) = n'(t) = ni(t) for 0 <t < tmax (57)
where i is the gage number, 7'(t)’ is the time series before removal, and 7i(ty is the mean
water level. Assuming a horizontal seabed seaward of the slope in the region ¢ < 0 where the
horizontal coordinate z is taken to be positive landward, the incident and reflected time series
are assumed to be expressed as

N/2

ni(z,t) = Z [(Gi)n cos(knz — wnt) + (b;)n sin(kpz — wnt)} forz <0 (58)
n=1
and
N/2
H.le.1) = Z [(c;,.)ﬂ cos(knz + wnt) + (b, ), sin(k, z +unt)] forz <0 (59)
n=l

in which (@;)n, (0)n, (ar)n, and (b,), with n = 1,2,. ..,N/2 are the unknown coefficients for
the wave trains of length N, where 7;(z,t) and 7,(z,t) are the incident and reflected wave trains,
respectively. The total free surface variation seaward of the toe of the slope is given by

n(z,t) = ni(z,t) + n(z,t) forz <0 (60)

which can be written in expanded form as

Nf2

) = Z { [(a,-),, + (a,)n} cos(kpz)+ [(b;)n + (b,)n] sin(kna:)} COs wnt

+ {[((b,)ﬂ - (b;)ﬂ] cos(knz)+ [(a;}n - (af)n] sin(kn:c)} sin wnt (61)

On the other hand, the free surface oscillations are known at each gage r = z;, where i is the
gage number, and is expressed as

N/2
Mzi, 1) = Z [a; cos(wnt) + b}, sin(u,,t)] for 0 €t < tmax (62)

n=1

where a, and bi are the Fourier coefficients computed for the known time series. Comparing
Equations 61 and 62, the following equations must be satisfied

&, = [(ﬂl')n + (ar)n] cos knzi+ [(bi)n - (br)n] sin knz; " (63)
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and
b:’l = {(br)n - (bl )nJ cos knxi+ [(af )ﬂ - (a" )“] sin k"‘r'. (64)

where n = 1,2,..., N/2 indicates each harmonic and i indicates the location of the first gage of
the pair. The location of the second gage, j, with z; > z; and j > ¢ gives

al =[(a.‘)n + (a,)n] cos knz;+ [(i’:;,—)n + (b,—)nJ sin kna; (65)
and
bl =[(b,,)n i (b,-)n} cos knz;+ [(a{),. - (a,)ﬂJ sin knz; (66)

Using these four equations, the unknown coefficients, (a;)n, (bi)n, (ar)n, and (b,),, are solved
in terms of the known Fourier coefficients, ay, by, aj, and b, and the gage positions, z; and x5

The unknown coefficients are given by

1 - w
(@i)a = Sk x_)[—a,ﬂ_sinknz‘,- + al sin k,z;
nidy T &Ly
+!:lf1 cos knzj — b-,’;cos knz;] (67)
1 ; '
(5= 2o e =) ['H‘:; cos knz; — al cos kyz;
nidLy = &y
+b! sin knz; — b;" sin kﬂz‘] (68)
1 s i s
(Br)n = SR (BB [—a; sinkpz; + al sin k,2;
n\Ly 3

~b, cosknz; + b cos kﬂz,-] (69)

1
S 2sin kn(zi — z;)

[-i—a; cos knzj — al, cos knz;
—b} sinknz; + bl sin k,.z,] (70)

where k, is the wave number calculated at each frequency using the linear dispersion relation
(27 fn)? = gk, tanh k,h (71)

where h is the water depth. An inverse transform of the Fourier coefficients gives the incident
time series, 7;(z,t), and reflected time series, 7.(z,t), at ¢ = 0, the position of the first gage
seaward of the toe of the slope.

A limitation of this method is the singularity of 1/sin kn(z; — 2;). Goda (1985) and Goda
and Suzuki (1976) recommend that the effective frequency range of resolution should be limited
to

T Or
— i . i L
0 = kn(z, 33) < 10 (‘2)

For an array of three gages, there are three gage pairs and, therefore, three estimates. These
estimates are averaged in the case that two or three estimates are within the cutoff criteria.
Estimates outside the cutoff range are not used. With proper choice of gage spacing, a wide
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frequency band can be resolved; however, the lowest resolvable frequency is limited by the
largest gage spacing. Frequencies below this limit are not resolvable. Additionally, in the
higher frequencies, there will be frequency bands where all three estimates are outside the cutoff
criteria, and no estimate is possible. Appropriate gage spacing for given water depth and peak
wave period should be chosen such that most of the energy is contained in the effective frequency
range of resolution.

Computer Program

The IRSORT subroutine, written to separate incident and reflected waves for a three gage array,
is called by a main program or another subroutine

CALL IRSORT (TS, ND, NW, NP, DT, XG, DH, FMN, FMX, TI, TR)
where the arguments are defined as

e IN:

TS(ND,NW) = free surface oscillations at NW wave gages, n'(t) (L)

— ND = dimension of TS in calling program equal to NP or greater
— NW

— NP = even number of data points in the time series, N

width of TS in calling program (equal to number of gages)

— DT = time step or sampling interval, At (s)

XG(NW) = location of each gage with the z-axis positive shoreward and gage number
decreasing shoreward, z (m)

— DH = water depth, h (m)
e OUT:

— FMN = minimum resolvable frequency based on largest gage spacing, fmin (s71)
— FMX = maximum resolvable frequency based on smallest gage spacing, fmax (s7!)
— TI(NP) = incident time series at z = 0, 7;(¢) (L)

= TR(NP) = reflected time series at z = 0, 5,(¢) (L)

e EXTERNAL ROUTINES:

— FFTIMSL to return the Fourier coefficients for the time series at each gage location

— WAVNUM to return the wave number based on the linear dispersion relation at each
frequency

— TIMEDC to return the time series for known Fourier coefficients

The minimum and maximum resolvable frequencies are limited by the maximum and minimum
gage spacings, respectively, following the restriction suggested by Goda (1985) given by

T 97
— <kAz < —= 7
o SkAz< g )
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where Az is the gage spacing. The minimum resolvable frequency, fmin, is given by the linear

dispersion relation
(27rfmin)2 = gKmin tanh(kpyinh) (74)

where A is the water depth and kp;, is the minimum wave number given by

™

Kmin = . (75)
where Azpax is the maximum gage spacing. Similarly, the maximum resolvable frequency, fmax,
is limited by the minimum gage spacing, Az, and is found by

(2"‘"}(‘max)2 = gKkmax taﬂh(.kma.xh) (76)

where gi

k = —_—- 77
max loAzmin ( ! )

Additionally, it is noted that this program can be used for a two gage array provided that
the arrays in the main program are dimensioned correctly. Also, although it is necessary that
the gage positions and the water depth be specified in meters, the free surface elevation can be
specified with arbitrary units of length.

Example

The example for this section starts with three time series data files: CMO6G1, CM06G2, and
CMO6G3. These time series data files are the measured total free surface oscillations for a three
gage array where CMO6G1 is the first gage at z = Om (see example, Part VI), CM0O6G2 is the
second gage at z = —1.4m, and CMO6G3 is the third gage at z = —2.0m. After reading in
the data files, the main program calls the TRSORT subroutine. Within the IRSORT subroutine,
three other subroutines are called. The FFTIMSL subroutine returns the Fourier coefficients for
the time series at each gage location. The WAVNUM subroutine returns the wave number based
on the linear dispersion relation at each frequency. It should be noted that this subroutine is
written in S7 units and that the water depth, DH, and gage locations, XG, should be specified in
meters (m). The TIMEDC subroutine returns the incident and reflected wave time series for the
computed Fourier coefficients. After IRSORT returns the incident and reflected wave time series,
the main routine in this example calls the SPCTRA subroutine twice to return the incident and
reflected wave spectra. The main program is as follows

PARAMETER (NB=8,NW=3,ND=16384)
PARAMETER (DH=0.47)
DIMENSION SMI(256), SMR(256), REFL(256)
DIMENSION SPI(4097), SPR(4097), FSI(256), FSR(256)
DIMENSION TS(16384,3), TI(16384), TR(16384), XG(3)
CHARACTER*6 FLNM(3)
C To provide IMSL workspace
COMMON /WORKSP/ RWKSP
REAL RWKSP(65592)
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CALL IWKIN(65592)
C Wave gage spacing (in meters) and data file names
DATA XG / 0.0, -1.4, -2.0/
DATA FLNM / ’'CMO6G1’, ’'CM06G2’, ’CM06G3’/
C Read in three files
DO 10 J = 1, NW
OPEN(UNIT=11,FILE=FLNM(J))
READ(11,1) NP, DT
1 FORMAT(I10,F10.4)
READ(11,*) (TS(I,J), I=1,NP)
CLOSE(11)
C Remove mean from each time series
CALL TAKEMN(TS(1,J),NP,SD)
10 CONTINUE
C Call IRSORT subroutine
CALL IRSORT(TS,ND,NW,NP,DT,XG,DH,FMN,FMX,TI,TR)
C To compare incident and reflected spectra
CALL TAKEMN(TI,NP,SD)
CALL TAKEMN(TR,NP,SD)
CALL SPCTRA(TI,NP,DT,NB,SPI,FSI,SMI)
CALL SPCTRA(TR,NP,DT,NB,SPR,FSR,SMR)
C Estimate reflection as a function of frequency
DO 20 I = 1, NP/2/NB
IF (FSI(I).GE.FMN.AND.FSI(I).LE.FMX) THEN
REFL(I) = SQRT(SMR(I)/SMI(I))
ELSE
REFL(I) = 0.0
ENDIF
20 CONTINUE
C Make graphs

and the output is given in Figure 5 and Figure 6. The minimum resolvable frequency returned
from the subroutine is fp,;, = 0.0549s~!, and the maximum resolvable frequency is frmax =
1.068s~!. Figure 5 shows the smoothed incident spectrum (solid line) and reflected spectrum
(dashed line) in the range 0.0 < f < 1.2s~! for the incident and reflected wave time series at
z = Om. The spectra are smoothed with m = 8, and, correspondingly, there are 16 degrees of
freedom. Figure 6 shows the reflection coefficient calculated as a function of frequency, where
the reflection coefficient at the n-th harmonic, r,, is estimated as

rn=.1,‘((—?:‘-j)f (78)

where (S57)n and (Si), are the smoothed reflected and incident spectral estimates at the n-th
harmonic, respectively. This example is intended to show the case of the resolvable frequency
range which was not ideal for the specified incident wave spectrum.
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SMOQOTHED POWER SPECTRA
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Figure 5: Smoothed Incident and Reflected Spectra at x=0m
with 16 Degrees of Freedom Returned by IRSORT.
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Figure 6: Reflection Coefficient as a Function of Frequency
with 16 Degrees of Freedom.
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Part VIII: Subroutine COHPHS

Mathematical Background

The two-sided -eross-spectrum Sy2(f) in the frequency range —oo < f < oo is related to the
cross correlation function Cy3(7) expressed in terms of the time lag 7 between two time series
m(t) and n;(t) and is given by

Silf) = f Z Cra(r)e=?"17gr (79)

This complex function is normally separated into the real and imaginary parts (e.g. Bendat and
Piersol, 1986) and can be written

S12(f) = K12(f) + iQ12(f) (80)

where K3(f) is the (real) co-spectrum and Qy,(f) is the (real) quadrature spectrum.

Alternatively, the two-sided cross-spectrum, S12(f), can be expressed in terms of the
coherence squared, ¥?( f), and the phase, 0(f), defined as

2y = SN 2
Y= Shemtp 0SS! (81)

and
8(f) =t ‘1[M] for —r<f0<nr 82)
(f) = tan™} || for —r < (
where 511(f) and S32(f) are the two-sided auto-spectra for 7, and 7, respectively.

The coherence squared and phase are computed using the complex Fourier coefficients e}
and ¢} at the frequency f, computed from the time series m(t) and n,(t), respectively. The
coherence squared, ¥%( f,), and the phase, 8(f,), at each frequency, f,, are computed using the
following equations
_ ey 2

P(fo) = e (83)
and : ;
Im[(e:)*
0(fn) = t““_}{?a?[[((cf))-_—gg’:‘]]} (84)

where (c;,)* is the complex conjugate of ¢, and Re and I'm indicate the real and imaginary parts
of (¢l)* ¢2, respectively. The smoothed coherence squared and phase are computed in a manner
similar to the smoothed power density spectrum explained in Part VI where the smoothed values
of |c}l[2, 2 |?, and (¢h)" ¢ are used in Equations 83 and 84 and are denoted by ¥2(fi) and 8( fy).

Computer Program

The COHPHS subroutine, written to calculate the coherence squared and phase between two time
series, is called by a main program or another subroutine

CALL COHPHS (TS1, TS2, NP, DT, NB, FS, CH, PH)
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where the arguments are defined as

e IN:

TS1(NP) = first time series, m(t) (L)
TS2(NP) = second time series, no(t) (L)
— NP = even number of data points in the time series, N

— DT = time step or sampling interval, At (s)

= NB = number of band-averaged data points for smoothing, m

e OUT:

— FS(NP/2/NB) = smoothed frequency array, fi (s™!)
— CH(NP/2/NB) = smoothed coherence squared between TS1 and TS2, ‘yA?(fk)
— PH(NP/2/NB) = smoothed phase between TS1 and TS2, 0(fx) (degrees)

o EXTERNAL ROUTINES:

— FFTIMSL to compute the complex Fourier coefficients

Example

In this example, the coherence squared, 72, and phase, 0, is estimated between the two time
series CHO6G1 and CMO6G3. These two data files are read into the main program and the mean
is removed from both records. The main routine calls the COHPHS subroutine

PARAMETER (NB=16)
DIMENSION FS(1024), CH(1024), PH(1024)
DIMENSION TS1(16384), TS2(16384)
C To provide IMSL workspace
COMMON /WORKSP/ RWKSP
REAL RWKSP(65592)
CALL IWKIN(65592)
C Read in time series at x=0.0m (toe) and x=-2.0m (seaward of toe)
OPEN(UNIT=11,FILE=’CM06G1’)
READ(11,1) NP, DT
1 FORMAT(I10,F10.4)
READ(11,*) (TS1(I), I=1,NP)
CLOSE(11)
OPEN(UNIT=11,FILE=’CM06G3’)
READ(11,1) NP, DT
READ(11,%) (TS2(I), I=1,NP)
CLOSE(11)
C Remove mean from time series
CALL TAKEMN(TS1,NP,SD)
CALL TAKEMN(TS2,NP,SD)
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C Call COHPHS subroutine
CALL COHPHS(TS1,TS2,NP,DT,NB,FS,CH,PH)
C Make a graph

and the subroutine returns smoothed coherence squared and phase arrays and an array of the

corresponding frequency. The output is shown in Figure 7 and Figure 8 with 32 degrees of
freedom (m = 16).
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Figure 7: Coherence Squared for Two Time Series CM06G1 and
CM06G3 Returned by COHPHS.
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Part IX: Subroutine DISTNR

Mathematical Background

As in Part V, for a given time series, 7(t), the mean is computed by
W NS .
n(t) == > n (85)
N i=1

The adjusted free surface is found by subtracting the mean, (7 = 7), and denoted as 7; in
Equations 86 and 87. The variance, Var, is given by

N
1 ¢ :
Vor = s, = ¥ dom (86)
i
and the skewness, Skw, is given by
1 N
Skw = m (87)
Nr’?ms i=1

The probability density function, PDF, for # = 7; with non-zero mean can be compared with the
normal distribution, g(z), given by

o(z) = 0—1v,§_;exp [—(";/‘5:)2} (88)

where 4 is the mean 7(t), and o is the standard deviation with o = v'Var. The PDF of the free
surface is essentially a histogram of the free surface with the range from 7,i; to Pmax divided
into bins of width éz.

On the other hand, using the method of zero-upcrossing, the exceedance probability, Pg,
corresponding to the height of the p-th ranked wave, Hp, is estimated by

- P
No+1

where Ny is the number of zero-upcrossing waves. If the probability distribution of the wave
heights follows the Rayleigh distribution, then the exceedance probability associated with H, is

given by
H.\?
Pg = exp [—2(53) ] (90)

where H, is the significant wave height defined in Part V.

Pg (89)

Computer Program

The DISTNR subroutine, written to compute the free surface distribution and exceedance prob-
ability, is called by a main program or another subroutine

CALL DISTNR (TS, NP, DT, XMN, XMX, DX, SD, VAR, SKW, F, XP,
XN, NDX, HS, G, PE, PR, NZ)
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where the arguments are defined as

e IN:

TS(NP) = time series, 7(t) (L)

NP = even number of data points in the time series, NV

DT = time step or sampling interval, At (s)

XMN = minimum value for free surface displacement, fpi, (L)
XMX = maximum value for free surface displacement, nmax (L)

DX = increment for estimating the probability density function for z = n;, 6z (L)

e OUT:

SD = mean of free surface, ?;m (L)

VAR = variance, Var (L?)

SKW = skewness, Skw

F(NDX) = free surface array (i.e. bins), z (L)

XP(NDX) = probability density function of free surface, PDF
XN(NDX) = normal distribution, g(z)

NDX = length of array for PDF and normal distribution

HS = significant wave height from one-third highest waves (L), H,
G(NZ) = values of HP/HS

PE(NZ) = exceedance probability, Pg

PR(NZ) = exccedance probability following Rayleigh distribution, Pg

NZ = number of zero-upcrossing waves, N,

o EXTERNAL ROUTINES:

Example

TIMPAR to return the wave height rankings

This example illustrates how the DISTNR subroutine can be used to compare the free surface
distribution to the normal distribution and to compare the wave height distribution to the
Rayleigh distribution. The time series for this example is CM0O6G1. The DISTNR subroutine is
called by a main program

C

PARAMETER (XMN=-6.0,XMX=6.0,DX=0.1)
DIMENSION TS(16384), G(1000), PE(1000), PR(1000)
DIMENSION F(1000), XP(1000), XN(1000)

Read in time series at x=0.0m (toe)
0PEN(UNIT=11,FILE"CHOGGl’)
READ(11,1) NP, DT
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1 FORMAT(I10,F10.4)
READ(11,%*) (TS(I), I=1,NP)
CLOSE(11)
C Call DISTNR subroutine
_CALL DISTNR(TS,NP,DT.XMN.XHX,DX,SD,VAR,SKH,F,XP.XN,
& NDX,HS,G,PE,PR,NZ)
C Make graphs

and the output of the subroutine is shown in Figure 9 and Figure 10.
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Figure 9: Probability Distribution Function of Free Surface
Elevation for Time Series CM06G1 Compared with

Normal Distribution Returned by DISTNR.
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Part X: Subroutine USRSPC

Mathematical Background

Time series of surface elevation can be generated from any power density spectrum of known
shape. Subroutine USRSPC is created to accommodate the generation of time series from a power
density spectrum whose shape is known but can not be expressed by a formula.

In using the USRSPC subroutine, a user needs to divide the given spectrum into a number
of linear segments of known geometry as depicted in Figure 11 where the end points of the linear
segments are referred to as the raw points. The largest frequency of the raw points is indicated
by fm. The coordinates of the raw points are specified as input to the USRSPC subroutine.

Raw Point 3

Raw Point 1
Raw Point NS 8-~S¢8men;
: Raw Point (NS+1)
f M f
(Hz)

Figure 11: User-Specified Spectrum.

Based on the given coordinates of the raw points, the USRSPC subroutine calculates the fine
points, i.e., the values of spectral density at equally spaced discrete frequencies. The frequency
resolution of the fine points is A f given by

1
Afﬁtf———j\,m (91)

where N and At are the even number of points and the sampling interval, respectively, of the
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requested time series. The fine points cover the range of 0 < f < fNyq where the Nyquist
frequency fyyq is determined by the sampling interval At and is given by

1

For f < fu, the ordinates of the fine points, Sy, are obtained from a linear interpolation
of the raw points. For f > fy, Sy is simply taken as zero. In addition, it is imposed that
Su(f=0)=0.

The fine points calculated by the USRSPC subroutine can be exported to the TIMEPH sub-
routine to yield a corresponding time series.

Computer Program

The USRSPC subroutine produces an array of the values of Sy at equally spaced discrete fre-
quencies where the conditions Sy(f = 0) = 0 and Sy(f > fy) = 0 are imposed. The frequency
resolution of the output spectrum is A f given by Equation 91. The subroutine USRSPC is called
by a main program or another subroutine

CALL USRSPC (NP, DT, NS, FR, SR, SP)

where the arguments are defined as

e IN:
— NP = even number of data points in the time series, N
— DT = sampling interval, At (s)
— NS = number of linear segments specifying the given spectrum
— FR = array of length (NS+1) containing the abscissas f (s71) of the raw points where
FR(1)=0 and FR(NS+1) = fiy
= SR = array of length (NS+1) containing the ordinates Sy (L?s) of the raw points
where SR(1) does not have to be zero
e OUT:

= SP = array of length (NP/2+1) containing the ordinates Su (L*s) of the fine points
where SP(1) =0 corresponding to f = 0 is imposed

e EXTERNAL ROUTINES:

— none

Example

Kobayashi and Wurjanto (1991) simulated the Santa Barbara, California, “Feb 4, 1980” field
data reported by Elgar and Guza (1985a, 1985b). They specified an incident wave spectrum
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based on the reported wave spectrum at the water depth 1.7m, and generated a wave train based
on the former spectrum.

The input of their data to the USRSPC subroutine consisted of 34 raw points corresponding
to NS=33 as presented in Table 5. Other important parameters included the largest frequency
of the raw points, fyy = 0.4s~'; the sampling interval, DT = At = 0.5s; the Nyquist frequency,
fNyq = 1.0s™1; the peak period of the given spectrum, tp = 13.5s; the length of the requested
time series, 590¢,; and the number of data points in the time series, NP = 590t,/At = 15930.

The USRSPC subroutine is called by a main program and the spectrum is returned.

PARAMETER (NMAX=20000,NS=33)
REAL TS(NMAX)
REAL FN(NMAX/2+1), SP(NMAX/2+1)
REAL FR(NS+1), SR(NS+1)
C Coordinates of the raw points
DATA FR /.000000, .014052, .025293, .035597, .044965,
.054801, .064169, .074941, .082904, .088525,
-106792, .110539, .121780, .131148, .142389,
.162693, .171429, .189227, .200468, .220141,
232319, .249180, .259953, .270726, .290398,
.318601, .327400, .338173, .348478, .358782,
.367213, .378454, .387354, .400000/
DATA SR /.127742, .175202, .066442, .085046, .051275,

~N OO WwN

2 .113203, .895258,1.091278, .483540, .355365,
3 .123616, .086938, .062502, .108330, .157460,
4 .150682, .072908, .049068, .043001, .059812,
5 .055992, .041150, .038522, .034509, .033758,
6 .038522, .033024, .031602, .028311, .031602,
T .030242, .034509, .033024, .034509/

C IMSL requirements
COMMON /WORKSP/ RWKSP
REAL RWKSP(127496)
CALL IWKIN(127496)
C Parameters NP=number of data points, DT=sampling interval
NP = 15930
DT = 0.5
C Call USRSPC to obtain the fine points
CALL USRSPC(NP,DT,NS,FR,SR,SP)
C Call TIMEPH to generate a corresponding time series
C with a seed value IS = 517644
IS = 517644
CALL TIMEPH(SP,NP,DT,IS,TS)
C Make a graph

Figure 12 shows the spectrum for the range of 0 < f < /M = 0.4871, It is imposed that

53



Su(f =0) = 0 and Sy(f > fu) = 0. Figure 13 shows the first 160¢, of the time series, which
was generated by the TIMEPH subroutine with a seed value IS=517644, in a normalized form
where the abscissa t denotes the time normalized by the peak period t,=13.58, and the ordinate
ni denotes the surface elevation normalized by a reference wave hmght of 0.9m.

Table 5: Raw Points Specifying the User-Specified Spectrum in Kobayashi and Wurjanto (1991).

} FR(I) sacn I | FR(I) SR(I)
_/_ s~1 m?s
0000000 0127742 18 [ 0.189227 | 0.049068 |
0014052 0175202 19 | 0.200468 | 0.043001
0.025293 | 0.066442 || 20 | 0.220141 | 0.059812
0.035597 | 0.085046 || 21 | 0.232319 | 0.055992
0.044965 | 0.051275 || 22 | 0.249180 | 0.041150
0.054801 | 0.113203 || 23 | 0.259953 | 0.038522
0.064169 | 0.895258 || 24 | 0.270726 | 0.034509
0.074941 | 1.091278 || 25 | 0.290398 | 0.033758
0.082904 | 0.483540 || 26 | 0.318501 | 0.038522
10 | 0.088525 | 0.355365 || 27 | 0.327400 | 0.033024
11 | 0.106792 | 0.123616 || 28 | 0.338173 | 0.031602
12 | 0.110539 | 0.086938 || 29 | 0.348478 | 0.028311
13 | 0.121780 | 0.062502 | 30 | 0.358782 | 0.031602
14 | 0.131148 | 0.108330 || 31 | 0.367213 | 0.030242
15 [ 0.142389 | 0.157460 || 32 | 0.378454 | 0.034509
16 | 0.152693 | 0.150682 | 33 | 0.387354 | 0.033024
17 | 0.171429 | 0.072908 || 34 | 0.400000 | 0.034509

CD@-QO‘:CH.F-U[\D

I is the array element number
FR(I) is the abscissa of the raw point, s~!
SR(I) is the ordinate of the raw point, m?s
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Figure 12: Spectrum for Field Data Returned by USRSPC.
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Part XI: Subroutine PRORBR

Mathematical Background

For the case of irregular waves, the numerical model RBREAK (Wurjanto and Kobayashi, 1991)
requires that a normalized time series of the free surface elevation at the seaward boundary,
referred to as the input wave train, be specified in certain FORTRAN format. In addition, the
input wave train needs to begin with a small value to provide a smooth transition from the
initial condition of no wave action to a condition of full wave action as was done in the previous
work by

e Kobayashi, Cox and Wurjanto (1990) where the input wave trains were obtained from a

laboratory experiment, and

¢ Kobayashi, Wurjanto and Cox (1990a, 1990b) and Kobayashi and Wurjanto (1991) where
the input wave trains were simulated using the TIMEPH subroutine.

It is noted that in the latter work, the input wave trains began with a sufficiently small negative

value immediately following a zero-downcrossing point. Based on their experience, it is recom-

mended that a simulated input wave train for the numerical model RBREAK begin in this way.

The TIMEPH and TIMEDC subroutines presented in Part IV generate dimensional time series.
referred to as the original time series, which can not be used directly as input to the numerical
model RBREAK. The subroutine PRORBR prepares an input wave train that satisfies the above
requirements, based on the time series generated by either the TIMEPH or TIMEDC subroutine.
First, the PRORBR subroutine shifts the original time series, which is periodic, such that the
shifted time series has the required characteristics. The normalization of the shifted time series
will then yield the desired input wave train for the numerical model RBREAK.

The relation between the original time series n; with j=1,2,...,N and the input wave train
ni with i=1,2,...,(N+1) with N being the even number of points in the original time series, is
given by

[hio=a] 1H for i< (N=jo+1) |
ni = (93)
[n:—(N-_iu+1)] JH' for i> (N —jo+1)

where H' is the reference wave height used for the normalization of the free surface elevation,
which can be

L. the significant wave height of the original time series, H, (Part V),
2. the spectral estimate of the significant wave height, Hmo (Part III), or

3. a user-specified value,

and jo marks the data point next to the first zero-downcrossing point in the original time series
that satisfies the following conditions:

[
Mo-1 >0 and 7, <0 and ;, <e (94)

with ¢ being a small positive value. The values of £=0.001 and 0.005 have been used in the
previous work mentioned above. Use of ¢=0.001 is made in the PRORBR subroutine listed in
Appendix A.
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Computer Program

The PRORBR subroutine produces an input wave train for the numerical model RBREAK from the
time series generated by either the TIMEPH or TIMEDC subroutine. The input wave train is stored
in an output file formatted according to the RBREAK’s convention. The subroutine PRORBR is
called by a main program or another subroutine

CALL PRORBR (TS, NP, DT, FNAME, IP, HW, JO, TJO)
where the arguments are defined as

e IN:

— TS(NP) = original time series, ' (L)
— NP = even number of data points in the original time series, N
— DT = sampling interval, At (s)

— FNAME = name of the output file containing the input wave train for the numerical
model RBREAK (FNAME is a CHARACTER*10 variable)

— IP = option to specify the reference wave height used for the normalization of -the
dimensional time series 1’ as follows:

* H, = significant wave height based on the time series (L)
(IP=1 and HW is returned as H,)

* Hmo = spectral estimate of the significant wave height (L)
(IP=2 and HW is returned as Hy,)

* A user-specified reference wave height (L)
(IP=3 and HW needs to be specified as input to the PRORBR subroutine)

e IN/OUT:

— HW = reference wave height used for the normalization of the dimensional time series

n (L)
e OUT:
— JO = index jp satisfying the conditions given by Equation 94
— TJO = dimensional time corresponding to the index jo = (jo — 1)At (s)
¢ EXTERNAL ROUTINES:

— TIMPAR to compute the significant wave height based on the time series for IP=1

— SPCTRA to transform the original time series to the corresponding power density
spectrum for IP=2

— SPCPAR to compute the spectral estimate of the significant wave height for IP=2
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Example

Part X of this report presents an example on how to generate a time series from a user-specified
power density spectrum using the USRSPC subroutine. The example ends by calling the TIMEPH
subroutine that generates a dimensional time series from the specified power density spectrum.

The following example is a continuation of the example of Part X. Added in this example
is a call to the PRORBR subroutine that produces the corresponding input wave train for the
numerical model RBREAK.

PARAMETER (NMAX=20000,NS=33)
REAL TS(NMAX)
REAL FN(NMAX/2+1), SP(NMAX/2+1)
REAL FR(NS+1), SR(NS+1)
C Character variable to provide name for the output file created
C by the PRORBR subroutine
CHARACTER*10 FNAME
C Coordinates of the raw points
DATA FR /.000000, .014052, .025293, .035597, .044965,
054801, .064169, .074941, .082904, .088525,
106792, .110539, .121780, .131148, .142389,
.152693, .171429, .189227, .200468, .220141,
.232319, .249180, .259953, .270726, .290398,
.318501, .327400, .338173, .348478, .358782,
.367213, .378454, .387354, .400000/
DATA SR /.127742, .175202, .066442, .085046, .061275,

N O WwN

2 .113203, .895258,1.091278, .483540, .355365,
3 123616, .086938, .062502, .108330, .157460,
4 150682, .072908, .049068, .043001, .069812,
5 -055992, .041150, .038522, .034509, .033758,
6 .038522, .033024, .031602, .028311, .031602,
1 030242, .034509, .033024, .034509/

C IMSL requirements
COMMON /WORKSP/ RWKSP
REAL RWKSP(127496)
CALL IWKIN(127496)
C Parameters NP=number of data points, DT=sampling interval
NP = 15930
DT = 0.5
C Call USRSPC to obtain the fine points
CALL USRSPC(NP,DT,NS,FR,SR,SP)
C Call TIMEPH to generate a corresponding time series
C with a seed value IS = 517644
IS = 517644
CALL TIMEPH(SP,NP,DT,IS,TS)
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C The above procedure is identical to the example of Part X,
C except for the declaration of the character variable FNAME,
C which is added in this example.
C The TIMEPH subroutine returns a dimensional time series, TS,
C from which the PRORBR subroutine will produce the
C  corresponding input wave train for RBREAK
C The input wave train is not returned to the calling program,
C but is stored in an output file, the name of which is
C specified by the character variable FNAME
c
FNAME = ’TKWSB2 p
IP = 3
HW = 0.9

CALL PRORBR(TS,NP,DT,FNAME,IP,HW,JO,TJO)

WRITE (*,*) ’ Index JO =’,J0

WRITE (*,*) ’ Time corresponding to the index JO, TJO =’,TJO
C Make a graph

It is noted that the option IP=3 with the corresponding reference wave height HW=0.9m is
used in this example. This reference wave height was actually meant to be the spectral estimate
of the significant wave height: the two wave heights indeed agreed to the third decimal place.
This example could have used the option IP=2, which would have resulted in an almost identical
input wave train. The reason why the option IP=3 was used in this example was to get the
exact value of 0.9m for the reference wave height.

The index jo was found to be 970, corresponding to the dimensional time t'=484.5s in the
original time series, which has been presented in the normalized form in Figure 13 of Part X
where the normalized time t=35.889 corresponds to t'=484.5s.

Figure 14 shows the first 160t, of the input wave train where the abscissa ¢ denotes the
time normalized by the peak period t,=13.5s, and the ordinate n; denotes the surface elevation
normalized by the reference wave height, HW=0.9m.
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Figure 14: Input Wave Train for RBREAK Created by PRORBR.
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Part XII: Subroutine FFTIMSL

Mathematical Background

The subroutine FFT2D in the IMSL library is used to compute the complex Fourier coefficients,
¢n, given by Equations 31 to 34 where the real Fourier coefficients a, and b, for the time series
n(t) with zero mean are defined in Equation 28. The discrete time series n; can be expressed

ni =n(t;) for j=1,2,...,N (95)

with

tj = (j - 1)At (96)
where At is the sampling interval and N is the even number of data points. Using this definition,
Equation 28 can be shown to yield

[_ 21i(j — 1)(n — 1) (o7)

N
Nen = Zr;j exp N

J=1
where i = —1. Equation 97 is in the form which allows the direct use of the subroutine FFT2D
to compute ¢, with n = 1,2,...,N. It is noted that ¢, in Equations 31 to 34 corresponds to
¢n—1 obtained from Equation 97.

The subroutine FFT2B is the IMSL subroutine to compute the inverse Fourier transform of
given coefficients ¢, to find n; with j = 1,2,...,N. To apply the subroutine FFT2B, Equation 28
is rewritten as

N s
2 -1 -1
nj = chexP[ ?”(J N)(n ) for j= | Oy T (98)

where 7); is real and ¢, in this equation corresponds to ¢, in Equation 97.

n=1

Computer Program

The FFTIMSL subroutine is called by a main program or another subroutine
CALL FFTIMSL (TS, CN, NP, I0)
where the arguments are defined as

o IN/OUT:

— TS(NP) = time series, n(t) (L)
— CN(NP) = complex Fourier coefficients, ¢, (L)

e IN:

— NP = even number of data points in the time series, N

— I0 = option for an FFT (I0=+1) to return complex coefficients of known time series
or for an inverse FFT (I0=-1) to return time series for known complex coefficients

e EXTERNAL ROUTINES:

— FFT2D, an IMSL routine for FFT
— FFT2B, an IMSL routine for inverse FFT

63



Example

The FFTIMSL subroutine is illustrated in this example by considering a periodic saw-tooth wave
form given by ;
f(t):«-; for —r<t<n (99)

with period, T' = 2r. The function, f(t), with zero mean can be written as a finite sum

N/2
)= Z {an cos(nwt) + b, sin(nut)] —r<t<r (100)

n=1

where the angular frequency w = 27 /T = 1 and the Fourier coefficients are given by (e.g. Bendat
and Piersol, 1986)

2 rT/2
an = = f(7)cos(nwr)dr (101)
T J-1/2
= 2 [ d 102)
bn = = i
T Lz f(r)sin(nwT)dr (

It is noted that f(¢) obtained from Equation 100 approaches f(¢) given by Equation 99 as N
approaches infinity.

For this example, by inspection the values of a, are zero since f(t) is an odd function and
cos(nwt) is an even funtion. Solving for b, gives
2

b, = —(-1)" (103)
nm

To check the FFT routine, the discrete function, f;, i = 1,2,..., N where N = 16 for this case,

is constructed corresponding to f(t) above. Since the FFT is defined for t > 0, the range of

0 <t <27 is considered and the discrete time domain is given by

ti=%—t—+(£-1)!.\t ; At:%r (104)
[t is noted that since N is small for this example, the time domain is shifted slightly by At/2 to
reduce the effect of spectral leakage. This effect is negligible for large N and the discrete time
domain of Equation 96 is generally adopted. In the main program, the Fourier coefficients b,, are
computed and compared with the real and imaginary parts of the complex Fourier coefficients
returned from the FFT routine. The main program is written as

PARAMETER (NP=16,NL=4096)
REAL B(4096), TS(256), TSR(256), TSB(256), T(256)
COMPLEX CN(256)
C Constants
PI = 4, %ATAN(1.)
C Fourier coefficients for analytic solution
DO 3I=1, NL, 2
B(I) = -2./(PI*FLOAT(I))
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B(I+1) = 2./(PI*FLOAT(I+1))
CONTINUE
Time step
DT = 2.%PI/FLOAT(NP)
DO 71I=1, NP
C Make time array and time series array from zero to two pi
T(I) = DT/2. + FLOAT(I-1)*DT
TS(I) = -T(I)/PI
IF(T(I).GT.PI) TS(I) = TS(I)+2.
C Reconstruct time series using coefficients of analytic solution
SUM = 0.0
DO 5 K =1, NL
SUM = SUM + B(K)*SIN(FLOAT(K)*T(I))

aQ w

5 CONTINUE
TSB(I) = SUM
7 CONTINUE
C Call FFTIMSL to return complex Fourier coefficients

CALL FFTIMSL(TS,CN,NP,+1)

Call FFTIMSL to return time series for comparison
CALL FFTIMSL(TSR,CN,NP,-1)

C Make a table

(9]

and the output is given in Table 6. Table 6 shows the values of an and b, based on the complex
coefficient array, CN, returned by the FFTIMSL subroutine. The last column shows the Fourier
coefficients calculated by Equation 103. The values of an and b, will approach the analytical
values as N increases from 16.

Table 7 shows the original time series, f(¢;), the reconstructed time series using the inverse
FFT, f(t;)’, and the reconstructed time series using a large number of terms and the Fourier
coefficients computed by Equation 103, f(t;)", where

4096
f(t)" = Y bysin(nwt;) (105)

n=1

and N/2 = 4096 was chosen as a large number approaching infinity.



Table 6: Fourier Coefficients Returned by FFTIMSL.

(an)FFT | (bn)FFT B
0.0000 0.0000 0
-0.1250 | -0.6284 | -0.6366
0.1250 0.3018 0.3183
-0.1250 | -0.1871 || -0.2122
0.1250 0.1250 0.1592
-0.1250 | -0.0835 || -0.1273
0.1250 0.0518 0.1061
-0.1250 | -0.0249 | -0.0909
0.1250 0.0000 0.0796

0~ W~ o3

n is the harmonic

(an)FFT is the real part, a, = 2Re(c,) for 1 < n < 8
(bn)FFT is the imaginary part, b, = —2Im(c,) for 1 < n < 8
b, is the Fourier coefficient from the analytic part

Table 7: Saw-Tooth Time Series Reconstructed with an Inverse FFT by FFTIMSL.

| i [ time, ¢; | ‘[;f(:) [] ft)"]
1] 0.1964 [ -0. 0625 T-0.0625 ][ -0.0624
2| 0.5890 | -0.1875 | -0.1875 || -0.1874
3| 0.9817 | -0.3125 | -0.3125 || -0.3123
4| 1.3744 | -0.4375 | -0.4375 || -0.4373
5| 1.7671 | -0.5625 | -0.5625 || -0.5623
6
7
8

2.1598 | -0.6875 | -0.6875 || -0.6872
2.5525 | -0.8125 | -0.8125 || -0.8121
2.9452 | -0.9375 | -0.9375 || -0.9365
9| 3.3397 | 0.9375 | 0.9375 || 0.9366
10 | 3.7306 | 0.8125| 0.8125 || 0.8121
11 | 4.1233 | 0.6875 | 0.6875 || 0.6872
12 | 4.5160 | 0.5625 | 0.5625 || 0.5623
13 | 4.9087 | 0.4375 | 0.4375 || 0.4373
14 | 5.3014 | 0.3125 | 0.3125 || 0.3123
15 | 5.6941 | 0.1875 | 0.1875 || 0.1874
16 | 6.0868 | 0.0625 | 0.0625 || 0.0625

t; is the time level

f(t;) is the original time series

f(t:)" is the reconstructed time series using the inverse FFT

f(:)" is the reconstructed time series using the analytic Fourier coefficients
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Part XIII: Subroutine RDMGEN

Mathematical Background

Random number generators typically require a seed value to begin their algorithm and return an
array of random numbers uniformly distributed between zero and one. By specifying the same
seed, the routine will generally return the same array of numbers. Therefore, these random
number simulators actually generate pseudo-random numbers.

Computer Program
The RDMGEN subroutine is called by the TIMEPH subroutine
CALL RDMGEN (NR, IS, AR)

where the arguments are defined as

e IN:

— NR = number of random numbers

— IS = seed value to initialize random number generator
e OUT:

— AR(NR) = random numbers distributed uniformly between 0 and 1
e EXTERNAL ROUTINES:

= RNSET, an IMSL routine for setting the random number generator

— RNUN, an IMSL routine for generating the random numbers

The purpose of the RNSET subroutine is to initialize a random seed for use in the iMSL random
number generators. If the seed value is set to zero, then the random number generator is started
by a seed value from the system clock. The purpose of the RNUN subroutine is to generate
pseudo-random numbers from a uniform distribution from zero to one, excluding zero and one.
All values returned by RNUN are positive and less than one.

Example

This example is to show the probability distribution function for an array of numbers returned
from the RDMGEN subroutine. The main program is written as

PARAMETER (NP=8192,1S=123457)

PARAMETER (DX=0.01)

DIMENSION TS(8192), X(1000), XP(1000)
C Get array of random numbers

CALL RDMGEN(NP,IS,TS)
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C Probability density function (a histogram)
NDX = 1./DX
DO 10 J = 1,NDX
KOUNT=0
X(J) = FLOAT(J-1)*DX+DX/2.0
DO 5 I =1,NP
IF (TS(I).GT.FLOAT(J-1)*DX .AND.
& TS(I).LE.FLOAT(J)*DX) THEN
KOUNT=KOUNT+1
ENDIF
5 CONTINUE
IF(KOUNT.EQ.O) THEN
XP(J) = 0.0
ELSE
XP(J) = FLOAT(KOUNT)/FLOAT(NP)/DX
ENDIF
10 CONTINUE
C Make a graph of probability distribution

and the output is given in Figure 15. In theory, the probability density function should be unity
in the range 0 < z < 1. The agreement is expected to improve as the value of NP is increased.
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Figure 15: Probability Distribution Function of Random
Numbers Returned by RDMGEN.
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Part XIV: Subroutine WAVNUM

Mathematical Background

Following linear wave theory (e.g. Shore Protection Manual, 1984), the profile of a wave, (),
propagating in the positive z-direction in time, ¢, can be written
H
n(t) = —é-cos(k:.-: - wt) (106)
where H is the wave height, T' is the wave period related to the angular frequency, w, and the
frequency, f, by

2
w = ?’r =2rf (107)
and k is the wave number related to the wave length, L, by
2r
-
i7 (108)
For given f, the wave number can be determined from the linear dispersion relation
(27 f)? = gk tanh(kh) (109)

where h is the water depth. For shallow water where h/L < 1/25, the wave number can be
found from

2r f
b o= ke
Vgh (110)

and for deep water where h/L > 1/2,

2n f)?
g

-

(111)

Computer Program

The subroutine WAVNUM, written to return the wave number based on linear wave theory, is called
by a main program or another subroutine

CALL WAVNUM (FQ, DH, WN)
where the arguments are defined as

e IN:

— FQ = frequency, f (s7!)
— DH = water depth, h (m)

e OUT:
— WN = wave number, k (m™!)
e EXTERNAL ROUTINES:

= none

It is noted that the ST units with g = 9.81ms~2 are used in this routine.
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Example

The example for the WAVNUM subroutine computes the wave number, k, for the wave conditions
used in earlier examples related to laboratory experiments. The main program calls the WAVNUM

subroutine by

PARAMETER (NP=16384)
PARAMETER (DH=0.47,DT=0.04)
C Constants
PI = 4.%ATAN(1.)
C1 = 9.81/(2.*PI)
DF = 1./(FLOAT(NP)*DT)
C Do loop for the frequency range of interest
DO 10 I = 2, NP/2+1
C Frequency and deep water wave length
FQ = DF*FLOAT(I-1)
DLO = DH/(C1*(1./FQ)**2)
C Call WAVNUM subroutine
CALL WAVNUM(FQ,DH,WN)
C Compute water depth to wave length ratio, DL
DL = DH/(2.*PI/WN)
10 CONTINUE
C Make a table

and the subroutine returns the wave number at given frequency. It is noted that N was increased
from 8192 of previous examples to 16384 in this example to increase the frequency resolution
for ease of comparison of the values returned by WAVNUM with those of Table C-1 of the Shore
Protection Manual (1984). Table 8 compares selected values of h/L computed with the wave
number returned by the WAVNUM subroutine with the values from Table C-1, (h/L)spar, as a
function of h/Lo. It is noted that the values in Table C-1 have four significant digits and that
five significant digits have been included for the values computed by the WAVNUM subroutine in
Table 8.
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Table 8: Wave Number for Laboratory Wave Conditions Returned by WAVNUM.

[ I A/Lo[  A/L [ (h/Lo)spm | (h/L)sem
276 | 0.053005 [ 0.097268 || 0.05300 |  0.09726 |
435 | 0.132016 | 0.16826 0.1320 0.1682
603 | 0.254005 | 0.27136 0.2540 0.2714
683 | 0.32600 | 0.33573 0.3260 0.3357
787 | 0.43301 | 0.43661 0.4330 0.4366
864 | 0.52200 | 0.52345 0.5220 0.5235

I is the counter of the DO loop
h/Lg is the ratio of water depth to deep water wave length with A = 0.47m
h/L is the ratio of water depth to wave length from the WAVNUM subroutine
(h/Lo)spm is the ratio of water depth to deep water wave length

to four significant digits from Table C-1
(h/L)spu is the ratio water depth to wave length to four significant

digits from Table C-1
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Part XV: Conclusions

Fourteen subroutines have been presented herein for standard spectral and time series analyses.
These subroutines have been used to specify numerically-generated incident random waves as
input to the numerical model RBREAK as well as to analyze and interpret the computed time
series by Kobayashi, Wurjanto and Cox (1990a, 1990b) and Kobayashi and Wurjanto (1991).
These subroutines have also been used to conduct irregular wave tests in a wave flume to calibrate
and evaluate the capabilities and limitations of RBREAK by Kobayashi, Cox and Wurjanto (1990,
1991). Users of this report are recommended to read these papers for the actual applications
of the subroutines to the problems associated with random waves on coastal structures and
beaches.

The subroutines included in this report are relatively short and may be modified easily by
users where necessary. In any case, these subroutines are essential for the analyses of random
waves and the interpretations of the measured and computed time series. The standard spectral
and time series analysis methods employed in these subroutines may not yield clear interpreta-
tions for highly nonlinear random waves on coastal structures and beaches. Consequently, new
analysis methods will need to be developed for highly nonlinear random waves.
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Appendix A: Subroutine Listings

TMASPC Subroutine

C=-..____====_-__..===_.._-_..== SE=====ss=s=ss=SIsSsssZsszzossszszssss========CTMA00010
c TMASPC TMA00020
c TMA00030
C COMPUTES TMA POWER DENSITY SPECTRUM FOR WIND WAVES IN TMA00040
o FINITE WATER DEPTH TMA00050
c TMA00060
c IN: TMA00070
c AP aimmnas s EVEN NUMBER OF DATA POINTS IN TIME SERIES TMAQ0080
c B e . TIME STEP (SAMPLING INTERVAL) (S) TMA00090
C FPuow ousisuss PEAK FREQUENCY OF TMA SPECTRUM (HZ) TMA00100
c DHasness san WATER DEPTH (M) THMAOCO110
c IV i v OPTION TO SPECIFY EITHER HRMS (IP=1) OR ALPHA (IP=2) TMA00120
C TMA00130
C IN/OUT: TMA00140
c BRons svwms ROOT MEAN SQUARE WAVE HEIGHT (M) THMA00150
c /| O —— SPECTRAL CONSTANT, ALPHA TMA00160
C TMAO00170
c OUT: TMA00180
c SP(NP/2+1)...SPECTRAL ARRAY (M#*Mx*S) TMA00190
c WHERE SP(1)=0 CORRESPONDS TO FREQUENCY = 0 TMA00200
c TMA00210
c EXTERNAL ROUTINE: TMA00220
c WAVNUM....... RETURN WAVE NUMBER TMA00230
C=======z========zs=s=======c===z=z========== ======== =====z=zz==z=======CTHA00240
SUBROUTINE TMASPC (NP, DT, FP, DH, IP, HR, AP, SP) TMA00250

c TMA00260
REAL SP(NP/2+1) TMAO0270

c TMA00280
NH = NP/2+1 TMA00290

TM = NP*DT TMA00300

DF = 1.0/TH TMA00310

C COMPUTE SPECTRUM; AP=1, IF IP=1 TMA00320
IF (IP .EQ. 1) THEN THMA00330

AP = 1.0 ' TMA00340

ENDIF TMA00350

SP(1) = 0.0 TMA00380

DO 100 I = 2,NH TMA00370

FQ = (I-1) *» DF TMA00380

CALL WAVNUM(FQ,DH,WN) TMA00390
AKH=WN*DH TMA00400
AKH2=WN#*DH#*2, TMAOO410

C LIMIT FOR SINH(ARG), ARG > 175.366 TMA00420
IF (AKH2.GT.150) THEN TMA00430

PHIK = 1.0 TMA00440

ELSE TMAO0450

PHIK = (TANH(AKH))#**2 / (1.+AKH2/SINH(AKH2)) THMA004860

ENDIF TMA00470

SP(I) = AP * EJ(FQ,FP) * PHIK THA00480

100 CONTINUE TMA00490
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200

[

IF HR SPECIFIED, CALCULATE AP

CALL INTGRL(SP,NH,DF,ZM)
IF (IP .EQ. 1) THEN
AP = HR#x2 / (8.0 * ZM)
DO 200 I = 1,NH
SP(I) = AP * SP(I)
CONTINUE
ELSE
HR = SQRT( 8.0 * 2ZM)
ENDIF

RETURN
END

FUNCTION SUBROUTINE TO GET JONSWAP FUNCTION (WITH GAMMA = 3.3)

REAL FUNCTION EJ (FQ, FP)

TWOPI = 8.0 * ATAN(1.0)

GRAV = 9.810
SIGA = 0.07
SIGB = 0.09
GAMMA = 3.3
CALCULATE EP
Ci = GRAV#**2 * TWOPI**(-4)

EP = C1 * FQ#*(-5)
CALCULATE PHIPM
C=1.26 % (FQ/FP)**(-4)
IF (C .GT. 160) THEN
¢ = 180
ENDIF
PHIPM = EXP(-C)
JONSWAP SHAPE FUNCTION

IF (FQ .LE. FP) THEN

SIG = SIGA
ELSE

SIG = SIGB
ENDIF

C2 = (1.0/(2.0%SIG*#2)) * (FQ/FP - 1.0)#%2
IF (C2 .GT. 150) THEN
C2 = 150
ENDIF
PHIJ = GAMMA ** (EXP(-C2))
JONSWAP SPECTRUM
EJ = EP * PHIPM * PHIJ

RETURN
END

INTGRL - INTEGRATION ROUTINE BASED ON SIMPSON’S RULE

SUBROUTINE INTGRL (F, N, DF, AREA)

REAL F(N)
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THMAO0500
TMA00510
TMA00520
THA00530
TMAOO540
TMA00550
TMAOO560
TMAOOS70
TMA00580
TMAO0E90
TMA00600
THMA00610
TMA00620
THMA00630
TMA00640
TMA00850
TMA00660
TMAO0B70
TMAQ0680
TMA00690
TMAOO700
THAO0710
THA00720
THAO0730
THAOOT40
THAOO750
THMAOO760
THAQO770
THMAO0780
TMAOO790
TMA00800
TMA00810
THMA00820
THA00830
THMA00840
TMAQ0B50
THA00860
THMAOO870
TMA00880
TMA00890
TMA00900
THA00910
TMA00920
TMA00930
THA00940
THA00950
THA00960
TMA00970
TMA00980
THMA00990
TMA01000
TMA01010
THMA01020



100

SE = F(2)
S0 = F(3)
DO 100 I = 1, N/2-2
SE = SE + F(2 + I*2)
SO = S0 + F(3 + Ix2)
CONTINUE"

AREA = (DF/3.0) * (F(1) + 4.0%SE + 2.0%S0 + F(N))

RETURN
END
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TMAO1070
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SPCPAR Subroutine

o000 0000a0a0a0000aaaan0

25

50

100

200

300

======

SPCPAR

COMPUTES SPECTRAL PARAMETERS

IN:
SP(NP/2+1)..INPUT SPECTRUM (L*L=S)
| R EVEN NUMBER OF DATA POINTS IN TIME SERIES
1 [ TIME STEP (SAMPLING INTERVAL) (S)
QUT:
EBs e SPECTRAL WIDTH PARAMETER (EQ. 16)
VU..ovviennnn SPECTRAL WIDTH PARAMETER (EQ. 18)
] AP PEAKEDNESS PARAMETER (EQ. 19)
ER..ovinnnn STANDARD DEVIATION OF FREE SURFACE OSCILLATION (L)
HR..oovvennnn ROOT-MEAN-SQUARE WAVE HEIGHT (L)
BS....ovvvnnn SIGNIFICANT WAVE HEIGHT (L)
Ti{...........MEAN PERIOD BASED ON FIRST MOMENT (EQ. 24) (S)
o R, MEAN PERIOD BASED ON SECOND MOMENT (EQ. 23) (S)

SUBROUTINE SPCPAR (SP, NP, DT, EP, VU, QP, ER, HR, HS, T1, T2)

PARAMETER (NDS=16384)

REAL SP(NP/2+1), SM(5), FQ(NDS/2+1)
NH = NP/2+1

TM = NP * DT

DF = 1.0/TM

SPECTRAL MOMENTS BY TRAPAZOIDS
DO 256 I = 1, NH
FQ(I) = (I-1) * DF
CONTINUE
SUM = 0.5 * SP(1)
DO 50 I = 2, NH-1
SUM = SUM + SP(I)
CONTINUE
SM(1) = (SUM + 0.5%SP(NH)) * DF
DO 200 J = 1,4
SUM = 0.0
IF (J .NE. 3) THEN
SUM = 0.0
DO 100 I = 2, NH-1
SUM = SUM + SP(I) * (FQCI))#*J
CONTINUE
ENDIF
SM(J+1) = (SUM + 0.5%SP(NH)*(FQ(NH))#*%*J) * DF
CONTINUE

SUM = 0.0
DO 300 I = 2, NH-1

SUM = SUH + (SP(I)#*2)#(I-1)
CONTINUE
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CSPC00010
SPC00020
SPC00030
SPC00040
SPC0O0050
SPC00060
SPC00070
SPC00080
SPC00090
SPC00100
SPC00110
SPC00120
SPC00130
SPC00140
SPC00150
SPC00160
SPC00170
SPC00180
SPC00180

CSPC00200
SPC00210
SPC00220
SPC00230
SPC00240
SPC00250
SPC00260
SPC00270
SPC00280
SPC00290
SPC00300
SPC00310
SPC00320
SPC00330
SPC00340
SPC00350
SPC00380
SPC00370
SPC00380
SPC00390
SPC00400
SPC00410
SPC00420
SPC00430
SPC00440
SPC00450
SPC00460
SPC00470
SPC00480
SPC00480
SPC00500
SPC00510



RESULT = (SUM + 0.5%(SP(NH)**2)*(NH-1)) * DF*%2
SPECTRAL STATISTICS

EP = SQRT(1 - SM(3)**2 / (SM(1) * SM(5)))
VU = SQRT((SM(1) * SM(3) / SM(2)*%2) - 1)
QP = (2.0/SM(1)*%2) % RESULT

ER = SQRT(SM(1))

HR = SQRT(8.0 * SM(1))

HS = 4,004 * SQRT(SM(1))

T1 = SM(1)/SM(2)

T2 = SQRT(SM(1)/SM(3))

RETURN

END
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SPC00520
SPC005630
SPC00540
SPC00550
SPC00560
SPCO0570
SPC00580
SPC005690
SPC00800
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TIMEPH Subroutine

oo ao0o0oo0aoao0a0ao0ao0aaan

Q

2]

Q

500

600

EEE S S S S S S S S oSS S CS S S S oSS S S SS S S CS S S CS S SSCSSSSES=SSSS=s=S=S=S==S==DoooD==S========

TIMEPH

COMPUTES TIME SERIES FOR GIVEN POWER DENSITY SPECTRUM USING
A RANDOM PHASE SCHEME

IN:

SP(NP/2+1)..POWER DENSITY SPECTRUM (L*Lx*S)

;| T EVEN NUMBER OF DATA POINTS IN TIME SERIES

DT siwsvsiis TIME STEP (SAMPLING INTERVAL) (S)

Y8 o iiaii SEED VALUE TO INITIALIZE RANDOM NUMBER GENERATOR
OUT:

TS(NP)...... TIME SERIES SOLUTION (L)

EXTERNAL ROUTINES:
RDMGEN...... RANDOM NUMBER GENERATOR
FFTIMSL..... INVERSE FOURIER TRANSFORM (IMSL) FOR IO= -1

SUBROUTINE TIMEPH (SP, NP, DT, IS, TS)

PARAMETER (NDS=16384)
REAL SP(NP/2+1), TS(NP), PHI(NDS)
COMPLEX  CN(NDS)

TWOPI = 8.0 * ATAN(1.0)
NH=NP/2+1

TM=NP*DT

DF = 1.0/TH

GENERATE RANDOM NUMBERS FROM 0 TO 1

CALL RDMGEN(NH-1,IS,PHI)
FILL UP COMPLEX COEFFICIENTS
AVERAGE VALUE
CN(1) = CMPLX (0.0, 0.0)
FIRST HALF OF ARRAY
DO 500 I = 2, NH-1
PHX = TWOPI #* PHI(I-1)
CX = SQRT(2.0#SP(I) * DF)
CN(I) = 0.5 * CX * CMPLX(COS(PHX),SIN(PHX))
CONTINUE
AT NYQUIST FREQUENCY
PHX = TWOPI * PHI(NH-1)
CX = SQRT(2.0#SP(NH)* DF)
CN(NH) = CX * CMPLX(COS(PHX),0.0)
SECOND HALF OF ARRAY
DO 600 I = NH+1, NP
NN = NP -1+ 2
PHX = TWOPI * PHI(NN-1)
CX = SQRT(2.0*SP(NN)* DF)
CN(I) = 0.5 » CX * CMPLX(COS(PHX),-SIN(PHX))
CONTINUE
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CTIMO0010
TIM00020
TIMO0030
TIMO0040
TIMO00E0
TIMO0060
TIM00070
TIM00080
TIM0O0090
TIM00100
TIM00110
TIM00120
TIMO0130
TIM00140
TIMO0150
TIMO0160
TIMO0170
TIM00180

CTIM0O0190
TIM00200
TIMO0210
TIM00220
TIM00230
TIM00240
TIM00250
TIM00260
TIMO00270
TIMOO280
TIM00290
TIMO0300
TIM00310
TIN00320
TIM00330
TIN00340
TIMO0350
TIMO0380
TIMO0370
TIMO0380
TIMO0390
TIMO0400
TIMO0410
TIMOO420
TIM00430
TIMOO440
TIM00450
TIMO0460
TIMO0470
TIMOO480
TIM00490
TIMO0BEOO
TIMOO510



CALL FFTIMSL(TS,CN,NP,-1)

RETURN
END

INVERSE FOURIER TRANSFORM
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TIMEDC Subroutine

C= ======== S============sSs=ssszssssssszzssss========CTIM00010
(o] TIMEDC TIM00020
c TIM0O0030
c DETERMINISTIC COEFFICIENT SCHEME TO COMPUTE TIME SERIES FOR TIM00040
C GIVEN FOURIER COEFFICIENTS TIMOOO50
c TIMO0060
c IN: TIMO0070
Cc A(NP/2+1)....FOURIER COEFFICIENTS FOR COSINE (L) TIMO0O080
c B(NP/2+1)....FOURIER COEFFICIENTS FOR SINE (L) TIMO0090
C Ao winisaia s EVEN NUMBER OF DATA POINTS IN TIME SERIES TIM00100
C TIMO0110
C OUT: TIMO0120
c TSHPY o0 s0mis TIME SERIES SOLUTION (L) TIM00130
c TIMO0140
c EXTERNAL ROUTINE: TIMO0O150
c FETIMSL. «v 000 INVERSE FOURIER TRANSFORM (IMSL) FOR IO= -1{ TIMO0160
C=======z===s=====sS========z====z=s==s==========ssz=zz=-========S===s======= =CTIMOO170
SUBROUTINE TIMEDC (A, B, NP, TS) TIM0O0180

C TIM0O0190
PARAMETER (NDS=16384) TIM00200

REAL TS(NP), A(NP/2+1), B(NP/2+1) TIM00210
COMPLEX CN(NDS) TIM0O0220

C TIM00230
NH = NP/2+1 TIM00240

c AVERAGE VALUE SHOULD BE ZERO TIMO0250
CH(1) = CMPLX(0.0, 0.0) TIM00260

c FILL FIRST PART OF COMPLEX ARRAY TIM00270
DO 500 I = 2, NH-1 TIM00280

CN(I) = 0.5 * CMPLX(A(I),-B(I)) TIM00290

500 CONTINUE ' TIMO0300
c AT NYQUIST FREQUENCY, B(NYQ) IS ZERO TIM00310
CN(NH) = CMPLX(A(NH), 0.0) TIM00320

c FILL SECOND PART OF COMPLEX ARRAY TIM00330
DO 600 I = NH+1, NP TIM00340

CN(I) = 0.5 =* CMPLX(A(NP-I+2),B(NP-I+2)) TIMOO3E0

600 CONTINUE TIM003680
c INVERSE TRANSFORM TO RETURN TIME SERIETIMO0370
CALL FFTIMSL(TS,CN,NP,-1) TIM00380

C TIM00390
RETURN TIM00400

END TIMOO410
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TIMPAR Subroutine

C=========s==sSs====s==sSss=s=====S============ss===sSSo==s-==szssss===== ==CTIM0OQO10
¢ TIMPAR TIM00020
¢ TIM00030
c COMPUTES" PARAMETERS FOR GIVEN TIME SERIES BY ZERO-UPCROSS METHOD TIM0O0040
¢ TIMO0050
C IN: TIM000680
c TSCHP) s v vvvun TIME SERIES (L) TIMO0070
c L EVEN NUMBER OF DATA POINTS TIH00080
C 1 . TIME STEP (SAMPLING INTERVAL) (S) TIM00090
C TIMO0100
c OUT: TIM00110
C ) PR RS P AVERAGE OF TS (SETUP OR SETDOWN) (L) TIM00120
c ER:Gsivniwmus ROOT MEAN SQUARE OF FREE SURFACE (L) TIMO0130
c Wi i vamsimns ¢ NUMBER OF ZERO-UPCROSSINGS TIM00140
c BBss 5.0 onTe R MEAN WAVE HEIGHT (L) TIMO0150
c TB v s wmswisrs MEAN WAVE PERIOD (S) TIM0O0180
c J; 3 R —— ROOT-MEAN-SQUARE WAVE HEIGHT (L) TIMO0170
c .1 . SIGNIFICANT WAVE HEIGHT (L) OF 1/3 HIGHEST WAVES TIMOO180O
C TRvwsvivanioe v SIGNIFICANT WAVE PERIOD (S) OF 1/3 HIGHEST WAVES TIM00190
c BYvviiwns ias MEAN HEIGHT OF ONE-TENTH HIGHEST WAVES (L) TIM00200
c e MEAN PERIOD OF ONE-TENTH HIGHEST WAVES (S) TIMOO210
c HRK(NZ)...... RANKED WAVE HEIGHTS (L) WITH HRK(1) THE HIGHEST TIM00220
c TRK(NZ)...... WAVE PERIODS (S) FOR RANKED WAVE HEIGHTS TIM00230
c LRN(NK)...... RUN LENGTH OF WAVE HEIGHTS EXCEEDING HS TIM00240
C NK........... NUMBER OF RUNS TIM00250
C==============sscczzzz=s=sss========z==z================ s==s=============CTIM00260
SUBROUTINE TIMPAR (TS, NP, DT, SD, ER, NZ, HB, TB, HV, HS, T3, TIMO0270

& HT, TT, HRK, TRK, LRN, NK) TIM00280

C TIM00290
PARAMETER (NDS1=16385,NDZ=1000) TIMO0300

REAL ATS(NDS1) TIMO0310

REAL TS(NP), H(NDZ),HRK(NDZ),TRK(NDZ) TIM00320

REAL TMZERO(NDZ), T(NDZ), TSMAX(NDZ), TSMIN(NDZ) TIMO0330
INTEGER  IZERO(NDZ), JMAX(NDZ), JMIN(NDZ), IRK(NDZ), LRN(NDZ) TIM00340
LOGICAL SORTED TIM0O0350

c TIMO00360
TM=NP*DT TIMO0370

c ADJUST TIME SERIES TO MAKE TIM00380
C PERIODIC OVER TIME TIM00390
DO 10 I = 1,NP TIM0O0400
ATS(I)=TS(I) TIMO0410

10 CONTINUE TIM00420
ATS(NP+1)=TS(1) TIMO0430

c CORRECT FOR MEAN WATER LEVEL TIM00440
SUM = 0.0 TIMO00450

DO 20 I =1, NP TIM00480

SUM = SUM + ATS(I) TIMO00470

20 CONTINUE TIM00480
SD = SUM / FLOAT(NP) TIMO0490

DO 30 I = 1,NP+1 TIMO0E00
ATS(I) = ATS(I) - SD TIM0O0510
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30 CONTINUE TIMO0520

c COMPUTE ROOT-MEAN-SQUARE OF ETA(T) TIMO0530
SUM= 0.0 TIMOO540

DO 40 I = 1,NP TIM0O0550

SUM= SUM+ (ATS(I)*ATS(I)) TIMOO560

40 CONTINUE TIMOOE70
ER = SQRT(SUM / FLOAT(NP)) TIMO0O580

o ZERO-UPCROSSING POINTS TIM00590
NZ =0 TIMOO600

DO 200 J = 1,NP TIM00810

IF (ATS(J) .EQ. 0.0) THEN TIMO0620

NZ = NZ + 1 TINO0830

IZERO(NZ) = J + 1 TIM00640

TMZERO(NZ) = (J-1) =* DT TIMO0850

ELSEIF (ATS(J) .LT. 0.0 .AND. ATS(J+1) .GT. 0.0) THEN TIM00860

NZ = NZ + 1 TIMOOB70

IZERO(NZ) = J + 1 TIMO0680

TMZERO(NZ) = (J-1)#DT + (-ATS(J)/(ATS(J+1) TIMO0690

& = ATS(J)))*DT TIMOO700
ENDIF TIMOO710

200 CONTINUE TIMOO720
c CALCULATE WAVE PERIOD, T, OF EACH WAVETIMOO730
DO 250 I = 1, NZ-1 TIMOOT40

T(I) = TMZERO(I+1) - TMZERO(I) TIMOO750

250 CONTINUE TIMOO760
T(NZ) = (TM - TMZERO(NZ)) + TMZERO(1) TIMOO770

o NEED TO FIND TSMAX, TSMIN TIMOO780
DO 350 I = 1, NZ TIM00790
TSMAX(I) = 0.0 TIMO0800

TSMIN(I) = 0.0 TIM0O0810

J1 = IZERO(I) TIM0O0820

IF (I .EQ. NZ) THEN TIM00830

J2 = NP + IZERO(1) -1 TIM00840

ELSE TIMO0850

J2 = IZERO(I+1) - 1 TIMO0860

ENDIF TIMOO8TO

DO 325 J = J1, J2 TIM00880

IF (J .GT. NP) THEN TIMO0890

JT = J - NP TIM00900

ELSE TIM00910

T =3 TIM00920

ENDIF TIMO0930

IF (ATS(JT) .GT. TSMAX(I)) THEN TIM00940

TSMAX(I) = ATS(JT) TIMO0950

JMAX(I) = JT TIM00960

ENDIF TIMO0970

IF (ATS(JT) .LT. TSMIN(I)) THEN TIM00980

TSMIN(I) = ATS(JT) TIM00990

JMIN(I) = JT TIM01000

ENDIF TIMO1010

325 CONTINUE TIMO1020
350 CONTINUE TIM01030
c IMPROVE ESTIMATES W/ PARABOLIC CURVE TIMO1040
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DO 400 I = 1, NZ TIM01050

J = JMAX(I) _ TIM0O1060
J1=3-1 TIMO1070

IF (J1 .LT. 1) THEN TIMO1080

J1 = NP TIM01090

ENDIF- TIM01100

TS1 = ATS(J1) TIM01110

TS2 = ATS(J) TIM01120

TS3 = ATS(J+1) TIM01130

TSMAX(I) = TS2 = (TS3 -TS1)*%2 / (8.0 * (TS1 - 2+TS2 TIMO1140

& + TS3)) TIMO1150

J = JMIN(I) TIMO1180

Jiw oy = g TIMO1170

IF (J1 .LT. 1) THEN TIMO1180

J1 = NP TIM01190

ENDIF TIM01200

TS1 = ATS(J1) TINO1210

TS2 = ATS(J) TIM01220

TS3 = ATS(J+1) TIM01230

TSMIN(I) = TS2 - (TS3 -TS1)**2 / (8.0 * (TS1 - 2%TS2 TINO1240

& + TS3)) TIM01250

c WAVE HEIGHT, H, OF EACH WAVE TIM01260
H(I) = TSMAX(I) - TSMIN(I) TIM01270

400  CONTINUE TIM01280
c STATISTICS OF INDIVIDUAL WAVE HEIGHTS TIMO1290
SUM = 0.0 TIMO1300

SUMHB = 0.0 TIMO1310

SUMHV = 0.0 TIM01320

DO 450 I = 1, NZ TIMO1330

SUM = SUM + T(I) TIMO1340

SUMHB = SUMHB + H(I) TIMO1350

SUMHV = SUMHV + H(I)*H(I) TIM01360

450 CONTINUE TIM01370
TB = SUM / FLOAT(NZ) TIM01380

HB = SUMHB / FLOAT(NZ) TIM01390

HV = SQRT(SUMHV / FLOAT(NZ)) TIM01400

C SORTING ROUTINE FOR WAVE HEIGHT RANKING. TIM01410
o SET UP HRANK, TRANK, IRANK ARRAYS TIM01420
DO 600 I = 1, NZ TIM01430
IRK(I) = 1 TIM01440

HRK(I) = H(I) TIMO1450

TRK(I) = T(I) TIM01460

500  CONTINUE TIM01470
SORTED = ,FALSE. TIM01480

IPASS = 0 TIM01490

650 IF (.NOT. SORTED) THEN TIM01500
IPASS = IPASS + 1 TIM01510

SORTED = ,TRUE. TIM01520

DO 600 I = 1, NZ - IPASS TIM01530

IF (H(IRK(I)) .LT. H(IRK(I+1))) THEN TIM01540

ITEMP = IRK(I) TIMO1550

IRK(I) = IRK(I+1) TIMO1560

IRK(I+1) = ITEMP TIMO1570
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600

650

700

750

725

HTEMP = HRK(I)
HRK(I) = HRK(I+1)

= HTEMP

TTEMP = TRK(I)

HRK(I+1)
TRK(I) =
TRK(I+1)
SORTED =
ENDIF
CONTINUE
GOTO 550
ENDIF
ITHIRD = NZ/3
ITENTH = NZ /10
HS = 0.0
T3 = 0.0
DO 650 I = 1, ITHIRD

HS = HS + HRK(I)
T3 = T3 + TRK(I)

CONTINUE

HS
T3
HT
TT
Do

HS/FLOAT(ITHIRD)
T3/FLOAT(ITHIRD)
= 0.0

= 0.0

700 I = 1,ITENTH
HT = HT + HRK(I)
TT = TT + TRK(I)

CONTINUE

HT
TT

NK

= HT/FLOAT(ITENTH)
= TT/FLOAT(ITENTH)

=0

NCOUNT = 0

I
IF

=1

(I .LE. NZ) THEN

TRK(I+1)

TTEMP

.FALSE.

REPRESENTATIVE WAVE HEIGHT AND PERIOD

RUN LENGTH OF WAVE HEIGHTS EXCEEDING HS

IF (H(I) .GT. HS) THEN

NK = NK + 1

NCOUNT = NCOUNT + 1
IF (H(I+NCOUNT) .GT. HS) THEN
NCOUNT = NCOUNT + 1

GOTO 725
ENDIF

LRN(NK) = NCOUNT

I =1+ NCOUNT

NCOUNT = 0
ENDIF
e i T
GOTO 750

ENDIF

RETURN
END
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TIM01580
TIMO1580
TIMO1600
TIMO1610
TIMO1620
TIM01630
TIMO1640
TIMO1650
TIMO1660
TIMO16870
TIM01680
TIM01690
TIMO1700
TIMO1710
TIMO1720
TIM01730
TIMO1740
TIMO17B0
TIMO1760
TIMO1770
TIMO1780
TIMO1790
TIM01800
TIMO1B10
TIMO01820
TIMO01830
TIMO1840
TIMO1860
TIMO1860
TIMO1870
TIMO1880
TIMO1890
TIMO1900
TIMO1910
TIM01920
TIMO1930
TIM01940
TIMO1850
TIMO1960
TIMO1970
TIM01980
TIM01980
TIM02000
TIM02010
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TIM02040
TIM02050
TIMO2060
TIM02070
TIM02080
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SPCTRA Subroutine

400

COMPUTES " SMOOTHED AND UNSMOOTHED SPECTRA FOR GIVEN TIME SERIES

IN:
TSHP) v v v vns TIME SERIES TO BE TRANSFORMED (L)
AP wcom s v EVEN NUMBER OF DATA POINTS IN TIME SERIES
DT s vana TIME STEP (SAMPLING INTERVAL) (S)
), § . BT NUMBER OF DATA POINTS IN EACH BAND FOR SMOOTHING
FOR NB=1, NO SMOOTHING
OUT:

SP(NP/2+1)...UNSMOOTHED SPECTRUM (L*L*S)
FS(NP/2/NB)..FREQUENCY OF SMOOTHED SPECTRUM (HZ)
SM(NP/2/NB) ..SMOOTHED SPECTRUM (L*L#*S)

EXTERNAL ROUTINE:
FFTIMSL...... RETURNS COMPLEX FOURIER COEFFICIENTS FOR IO=1

SUBROUTINE SPCTRA (TS, NP, DT, NB, SP, FS, SM)

PARAMETER (NDS=16384)
REAL TS(NP), SP(NP/2+1), SM(NP/2/NB), FS(NP/2/NB)
COMPLEX  CN(NDS)

NH = NP/2+1
TM=NP*DT
DF = 1.0/TM

FAST FOURIER TRANSFORM
CALL FFTIMSL(TS,CN,NP,+1)
POWER SPECTRAL DENSITY
SP(1) = 0.0
DO 400 I = 2,NH-1
A = 2 ,*REAL(CN(I))
B = -2.#AIMAG(CN(I))
SP(I) = 1.0/(2.0#DF) * (A#%2 + B##2)
CONTINUE
A = REAL(CN(NH))
SP(NH) = 1.0/(2.0%DF) * (A%%2)
BAND AVERAGE SMOOTHING
IF (NB.GT.1)THEN
FBS=FLOAT(NB) *DF
NS=(NH-1)/NB
FS(1)=DF/2. + FBS/2.
DO 10 K = 1,NS
IF(K.GT.1) FS(K)=FS(1) + (K-1)*FBS
JB=(K-1)*NB + 2
JE=K+NB + 1
SUM = 0.0
DO 5§ J = JB,JE
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CSPC00010
SPC00020
SPC00030
SPC00040
SPC00050
SPC000680
SPC00070
SPC00080
SPC00090
SPC00100
SPC00110
SPC00120
SPC00130
SPC00140
SPC00150
SPC00160
SPC00170
SPC00180
SPC00190

CSPC00200
SPC00210
SPC00220
SPC00230
SPC00240
SPC00250
SPC00260
SPC00270
SPC00280
SPC00290
SPC00300
SPC00310
SPC00320
SPC00330
SPC00340
SPC00350
SPC00360
SPC00370
SPC00380
SPC00390
SPC00400
SPC00410
SPC00420
SPC00430
SPC00440
SPC00450
SPC00460
SPC00470
SPC00480
SPC00400
SPC00500
SPC00610



SUM=SUM+SP (J)
5 CONTINUE
SM(K) = SUM/FLOAT(NB)

10 CONTINUE

ENDIF
e

RETURN

END
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IRSORT Subroutine

==== £ 3 T S EEsssss S sss s RS s s s s E=EEssss======s================CIRS00010

c IRSORT IRS00020
¢ IRS00030
e SEPARATES INCIDENT AND REFLECTED WAVE TRAINS USING THREE WAVE IRS00040
C GAGES AND METHOD OF GODA+SUZUKI IRS00050
¢ IRS00060
c IN: IRS00070
¢ TS(ND,NW)....FREE SURFACE OSCILLATIONS (AT NW GAGES) (L) IRS00080
c WD s ats DIMENSION OF TS IN CALLING PROGRAM IRS00080
ol W s camsimagns WIDTH OF TIME SERIES ARRAY (EQUAL TO NO. OF GAGES) TRS00100
c NP i vcviinsd & EVEN NUMBER OF DATA POINTS IN TIME SERIES IRS00110
C DT o i et d b TIME STEP (SAMPLING INTERVAL) (S) IRS00120
c XG(NW)....... LOCATION OF EACH GAGE WITH X-AXIS POSITIVE SHOREWARD IRS00130
c AND GAGE NUMBER DECREASING SHOREWARD (M) IRS00140
C DH........... WATER DEPTH (M) IRS00150
c IRS00160
c OUT: IRS00170
o 511 (A—— MINUMUM RESOLVABLE FREQUENCY (HZ) BASED ON LARGEST IRS00180
Fos GAGE SPACING IRS00190
c FMY s s MAXIMUM RESOLVABLE FREQUENCY (HZ) BASED ON SMALLEST IRS00200
c GAGE SPACING IRS00210
[o TI(NP)....... INCIDENT TIME SERIES (L) IRS00220
o TR(NP)....... REFLECTED TIME SERIES (L) IRS00230
c IRS00240
c EXTERNAL ROUTINES: IRS00250
¢ FFTIMSL...... FAST FOURIER TRANSFORM IRS00260
¢ WAVNUM....... WAVE NUMBER IRS00270
o} TIMEDC....... RETURN TIME SERIES FOR KNOWN FOURIER COEFFICIENTS IRS00280
Cs=========z============ SEEE=sSsSSsSCSCo=CSSSs====SS=S============ CIRS00290
SUBROUTINE IRSORT (TS, ND, NW, NP, DT, XG, DH, FMN, FMX, TI, TR) IRS00300

c IRS00310
PARAMETER (NDS=16384,NWS=3) IRS00320

REAL TS(ND,NW), XG(NW), TI(NP),TR(NP) IRS00330

REAL AI(NDS/2+1) ,AR(NDS/2+1) ,BI(NDS/2+1) ,BR(NDS/2+1) IRS00340

REAL A(NDS/2+1,NWS) ,B(NDS/2+1,NWS), XI(NWS,NWS), XJ(NWS,NWS) IRS00350
COMPLEX CN(16384) IRS00360
LOGICAL DONE IRS00370

c IRS00380
TM=NP*DT IRS00390
DF=1.0/TH IRS00400
NH=NP/2+1 IRS00410
GRAV=9.81 IRS00420

PI=4 . 0#+ATAN(1.0) IRS00430
CMIN=0.1%PI IRS00440
CMAX=0.9%PI IRS00450

c SET THE CORRECT GAGE LOCATION SO THAT IRS00480
C XI(I,J) IS THE LOCATION OF GAGE I SHOREWARD OF GAGE J AND XJ(I,J) IS IRS00470
C THE LOCATION OF GAGE J SEAWARD OF GAGE I AND XI1(I,J3)-XJ(I,1) > 0 IRS00480
DO 10 I=1,NW IRS00490

DO 5 J=1,NW IRS00500

XI(1,J) = 0.0 IRS00510
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10

525

650
C

XJ(1,J) = 0.0
CONTINUE

CONTINUE

XI(1,2) = X6(1)
XJ(1,2) = XG(2)
IF(NV.GT.2)THEN
XG(1)
XG(3)
XG(2)
XG(3)

XI(1,3)
XJ(1,3)
X1(2,3)
XJ(2,3)
ENDIF

GET FOURIER COEFFICIENTS

DO 660 I = 1, NW
CALL FFTIMSL(TS(1,I),CN,NP,+1)
A(1,D) = 0.0
B(1,I) = 0.0
DO 526 K = 2,NH-1

A(K,I)
B(K,I)

CONTINUE
A(NH,I)
B(NH,I)

CONTINUE

2. *REAL(CN(K))
-2.*ATMAG(CN(K))

REAL(CN(NH))
0.0

LOOP TO SORT INC. AND REFL. A’S,B’S

DO 910 L = 2, NH
FQ = (L-1) * DF
CALL WAVNUM(FQ,DH,WVNM)

KOUNT = 0
AI(L) =
AR(L) =
BI(L) =
BR(L) =

o o 0O

o O o O

.

DO 880 I =1, NW
DO 870 J = 1, NW

IF (I .LT. J) THEN
CRITERION FOR .1PI < KX < .9PI
ARGIS = WVNM * (XI(I,J) - XJ(I,D))
IF (ARGIS.GE.CMIN.AND.ARGIS.LE.CMAX) THEN
KOUNT = KOUNT + 1
SI = SIN(WVNM * XI(I,J))
SJ = SIN(WUNM * XJ(I,J))
CI = COS(WVNM * XI(I,J))
CJ = COS(WVNM = XJ(I,J))
D1 = 0.5 / SIN(ARGIS)

D2 = A(L,I) * SJ
D3 = A(L,J) * SI
D4 = A(L,I) * CJ
D6 = A(L,J) * CI
D8 = B(L,I) * SJ
D7 = B(L,J) * SI
D8 = B(L,I) * CJ
D9 = B(L,J) * CI

AI(L) = AI(L) + D1%(-D2+D3+D8-D9)
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870
880

910

Q

BI(L) = BI(L) + Di*(+D4-D5+D6-D7)
AR(L) = AR(L) + Di*(-D2+D3-D8+D9)
BR(L) = BR(L) + D1%(+D4-D5-D6+DT7)
ENDIF
ENDIF
" CONTINUE
CONTINUE
IF (KOUNT .NE. 0) THEN
AICL) = AI(L) / FLOAT(KOUNT)
BI(L) = -1 * BI(L) / FLOAT(KOUNT)
AR(L) = AR(L) / FLOAT(KOUNT)
BR(L) = BR(L) / FLOAT(KOUNT)
ENDIF
CONTINUE
SET ZERO-TH HARMONIC TO ZERO
AI(1) = 0.0
BI(1) = 0.0
AR(1) = 0.0
BR(1) = 0.0

RESOLVABLE FREQUENCY RANGE
FIND MAX AND MIN GAGE PAIR
XMIN=XG(1)-XG(2)
XMAX=XMIN
IF(NW.GT.2) THEN
XMAX=XG(1)-XG(3)
IF(XG(2)-XG(3) .LT. XMIN) XMIN=XG(2)-XG(3)
ENDIF
FMN IS FROM LARGEST GAGE PAIR
WNMIN = CMIN/XMAX
FMN = SQRT(WNMIN*GRAV+TANH(WNMIN*DH)) / (2.*PI)
FMX IS FROM SMALLEST GAGE PAIR
WNMAX = CMAX/XMIN
FMX = SQRT(WNMAX*GRAV+TANH(WNMAX*DH)) / (2.*PI)
TO GET TIME SERIES AT X=0.0
CALL TIMEDC(AI,BI,NP,TI)
CALL TIMEDC(AR,BR,NP,TR)

RETURN
END
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COHPHS Subroutine

(2]

Q

10
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===sE=Ts=s = S===s=sss==ssszsssssssssss=ss===========CCO0H00010
COHPHS COH00020
COH00030

COMPUTES  COHERENCE SQUARED AND PHASE OF CROSS SPECTRUM COH00040
BETWEEN TWO GIVEN TIME SERIES COHO0050
COHO00060

IN: COHO0070
TS1(NP)...... FIRST TIME SERIES (L) COH00080
TS2(WP) s s SECOND TIME SERIES (L) COHO00090
KR sesisanan EVEN NUMBER OF DATA POINTS IN TIME SERIES COH00100
BTl iceeisiinnd TIME STEP (SAMPLING INTERVAL) (S) COHO00110
NB....ovovvunn NUMBER OF DATA POINTS IN BAND WIDTH FOR SMOOTHING COH00120
COH00130

QUT: COHO0140
FS(NP/2/NB)..SMOOTHED FREQUENCY ARRAY (HZ) COHO00150
CH(NP/2/NB) ..SMOOTHED COHERENCE SQUARED (1,2) COHO00180
PH(NP/2/NB)..SMOOTHED PHASE OF CROSS SPECTRUM (1,2) (DEGREES) COHO00170
COHO00180

EXTERNAL ROUTINE: COHO00190
FFTIMSL...... FOURIER TRANSFORM (IMSL) COH00200
================ zzmz== - ===============z=z====z=======CC0H00210
SUBROUTINE COHPHS (TSi, TS2, NP, DT, NB, FS, CH, PH) COH00220
COH00230

PARAMETER (NDS=16384) COH00240
REAL TS1(NP), TS2(NP), FS(NP/2/NB), CH(NP/2/NB), PH(NP/2/MB) COH00250
REAL AS1(NDS/2+1), AS2(NDS/2+1), BU(NDS/2+1) COHO00260
COMPLEX  XS(NDS/2+1), CN1(NDS), CN2(NDS) COH00270
COH00280

NH = NP/2+1 COH00290
PI = 4.0%ATAN(1.0) COHO00300
COMPLEX FOURIER COEFFICIENTS COH00310

CALL FFTIMSL(TS1,CN1,NP,+1) COH00320
CALL FFTIMSL(TS2,CN2,NP,+1) COHO00330
AUTD SPECTRA AND CROSS SPECTRUM COHO00340

DO 10 I = 1,NH COHO0350
AS1(I) = CN1(I)*CONJG(CN1(I)) COH00360
AS2(I) = CN2(I)*CONJG(CN2(I)) COHO0370
XS(I) = CONJG(CN1(I))*CN2(I) COHO00380
CONTINUE COH00390
SMOOTH THE SPECTRA COHO00400

CALL SMOOTH(AS1,NP,DT,NB,FS,AS1) COHO0410
CALL SMOOTH(AS2,NP,DT,NB,FS,AS2) COHO00420
CALL SMTHCX(XS,NP,NB,XS) COHO00430
COMPUTE COHERENCE AND PHASE COHO00440

DO 110 I = 1,NP/2/NB COH00450
RDUM = CABS(XS(I)*CONJG(XS(I))) COHO00480
CH(I) = RDUM/(AS1(I)*AS2(I)) COH00470
XSR = REAL(XS(I)) COH00480
XSI = AIMAG(XS(I)) COHO00490
XPH = ATAN2(XSI,XSR) COHO0BE00
PH(I) = 1BO,*XPH/PI COHO00610



110

10

CONTINUE

RETURN
END
SMOOTHING SPECTRUM

SUBROUTINE SMOOTH (SP, NP, DT, NB, FS, SM)
REAL SP(NP/2+1) ,FS(NP/2/NB),SM(NP/2/NB)

NH = NP/2+1
TM=NP*DT
DF=1./TM
FBS=FLOAT (NB) *DF
NS=(NH-1)/NB
FS(1)=DF/2. + FBS/2.
DO 10 K = 1,KS

IF(K.GT.1) FS(K)=FS(1) + (K-1)*FBS

JB=(K-1)*NB + 2

JE=K*NB + 1

SUM = 0.0

DO 6 J = JB,JE

SUM=SUM+SP(J)

CONTINUE

SM(K) = SUM/FLOAT(NB)
CONTINUE '
RETURN
END

SMOOTHING COMPLEX SPECTRUM

SUBROUTINE SMTHCX (XU, NP, NB, XS)

COMPLEX  XU(NP/2+1), XS(NP/2/NB), COSUM

NH = NP/2+1
NS=(NH-1)/NB
DO 10 K = 1,NS
JB=(K-1)*NB + 2
JE=K+NB + 1
COSUM = (0.0,0.0)
DO 6 J = JB,JE
COSUM=COSUM+XU(J)
CONTINUE
XS(K) = COSUM/FLOAT(NB)
CONTINUE

RETURN
END
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DISTNR Subroutine

C===================sssssssssssossssSsssSSsssssssssssssssssss==========CDIS00010
c DISTNR DIS00020
G DIS00030
o TO CHECK WHETHER TIME SERIES FOLLOWS NORMAL DISTRIBUTION AND DIS00040
¢ WHETHER EXCEEDANCE PROBABILITY OF WAVE HEIGHTS FOLLOWS RAYLEIGH DIS00050
(¢ DISTRIBUTION DIS00080
C DIS00070
c IN: DIS00080
c TSOIPNL.5 Lowhd TIME SERIES (L) DIS00090
o NP..oovvnnn. NUMBER OF DATA POINTS DIS00100
c 3 TIME STEP (SAMPLING INTERVAL) (S) DIS00110
o b .1 SR MINIMUM VALUE FOR FREE SURFACE DISPLACEMENT (L) DIS00120
s IMX i MAXIMUM VALUE FOR FREE SURFACE DISPLACEMENT (L) DIS00130
c DX crwssiasi INCREMENT FOR DISCRETE PROBABILITY DENSITY FUNCTION DIS00140
¢ (L) FOR RESOLUTION NDX=(XMX-XMN)/DX DIS00150
c DIS00180
g OUT: DIS00170
¢ ] MEAN (L) CORRESPONDS TO SET DOWN OR SET UP DIS00180
c VAR50 iiaiin b VARIANCE (L+*L) DIS00180
c SKW.......... SKEWNESS DIS00200
c F(NDX)....... FREE SURFACE ARRAY ("BINS") DIS00210
(o] b 314 10} & NSRS PROBABILITY DENSITY FUNCTION OF TIME SERIES DIS00220
c XN(NDX)...... NORMAL DISTRIBUTION DIS00230
C WX siosiis LENGTH OF ARRAYS FOR NORMAL DISTIBUTION DIS00240
G S — SIGNIFICANT WAVE HEIGHT (L) FOR 1/3 HIGHEST WAVES DIS00250
c G(NZ)........HP/HS VALUES DIS00260
c PE(NZ).......EXCEEDANCE PROBABILITY PE(N)=N/(NZ+1) DIS00270
¢ PRUNZ) s o EXCEEDANCE BASED ON RAYLEIGH DISTRIBUTION DIS00280
c W2 s s LENGTH OF ARRAYS FOR RAYLEIGH DISTRIBUTION DIS00290
c DIS00300
o ADDITIONAL ROUTINES: DIS00310
c TIMPAR....... TO RETURN WAVE HEIGHT RANKINGS DIS00320
C=======z==cczc==s==ss=ss================== =============== =========CDIS00330
SUBROUTINE DISTNR (TS,NP,DT,XMN,XMX,DX,SD,VAR,SKW,F,XP,XN,NDX, DIS00340

& HS,G,PE,PR,NZ) DIS00350

C DIS00360
PARAMETER (NDS1=16385,NDS=1000) DIS00370
DIMENSION ATS(NDS1),TS(NP), XP(NDS),XN(NDS),F(NDS) DIS00380
DIMENSION PE(NDS),PR(NDS),G(NDS) DIS00390
DIMENSION HRK(NDS),TRK(NDS) DIS00400
DIMENSION LRN(NDS) DIS00410

¢ DIS00420
TWOPI=8.0%ATAN(1.0) DIS00430

c COPY TS AND REMOVE MEAN FROM ATS DIS00440
SUM = 0.0 DIS00460

DO 10 I = 1,NP DIS00480
ATS(I) = TS(I) DIS00470

10 CONTINUE DIS00480
CORRECT FOR MEAN WATER LEVEL DIS00490

SUM = 0.0 DIS00500

DO 20 I = 1,NP DIS00510
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SUM = SUM + ATS(I)
CONTINUE
SD = SUM / FLOAT(NP)
DO 30 I = 1,NP
ATS(I) = ATS(I) - SD
CONTINUE
COMPUTE VARIANCE
SUM= 0.0
DO 40 I = 1,KP
SUM= SUM+ (ATS(I)*ATS(I))
CONTINUE
VAR = SUM / FLOAT(NP)
COMPUTE SKEWNESS
SUM= 0.0
DO 46 I = 1,NP
SUM= SUM + (ATS(I))*#3
CONTINUE
ERMS=SQRT(VAR)
SKW= SUM/ FLOAT(NP) /ERMS**3
PROBABILITY DENSITY FUNCTION
NDX = (XMX-XMN)/DX
DO 60 J = 1,NDX
KOUNT=0
F(J) = XMN+(J-1)*DX+DX/2.0
DO 50 I = 1,NP
IF (TS(I).GT.XMN+(J-1)*DX .AND. TS(I).LE.XMN+J#DX) THEN
KOUNT=KOUNT+1

ENDIF
CONTINUE
IF(KOUNT.EQ.O)THEN
XP(J) = 0.0
ELSE
XP(J) = FLOAT(KOUNT)/FLOAT(NP)/DX
ENDIF
CONTINUE

NORMAL DISTRIBUTION
C1=1.0/SQRT(TWOPI*VAR)
DO 70 I=1,NDX
XN(I)=C1*EXP((-(F(I)-SD)**2)/(2.#VAR))
CONTINUE
CALL TIMPAR TO GET WAVE HEIGHT DIST
DO HOT WANT NEW "SD" SO USE "XX"
CALL TIHP!R(&TS,IP,DT.XX.ER.IZ,HB,TB.HV,HS,T3,HT,TT,HRK,TRK.LRI,

& NK)

COMPUTE EXCEEDANCE PROBABILITY
DO 80 I =1, NZ
PE(I)=FLOAT(I)/(FLOAT(NZ+1))
CONTINUE
COMPUTE RAYLEIGH DISTRIBUTION
DO 90 I = 1, NZ
HRAT=HRK(I)/HS
G(I) = HRAT
PR(I)=EXP(-2.*HRAT*HRAT)
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80

CONTINUE

RETURN
END
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USRSPC Subroutine

S===s==sssssssssssSsSssssssssssssssssssssssssssssszsssszszssssss=======CUSR00010
c USRSPC USR00020
c USR00030
C COMPUTES SPECTRAL DENSITY AT EQUALLY-SPACED DISCRETE FREQUENCIES USR0O0040
c FROM USER-SPECIFIED RAW POINTS USR00050
C USR00060
(e IN: USR00070
C Ty EVEN NUMBER OF DATA POINTS IN TIME SERIES USR00080
o B a4 TIME STEP (SAMPLING INTERVAL) (S) USR00090
C NS....oovvnn, NUMBER OF LINEAR SEGMENTS SPECIFYING THE SPECTRUM USR00100
c BB o aammoais siinks ARRAY OF LENGTH (NS+1) CONTAINING THE ABSCISSAS OF USR00110
c THE RAW POINTS (HZ) USR00120
c SR s ARRAY OF LENGTH (NS+1) CONTAINING THE ORDINATES OF USR00130
G THE RAW POINTS (L#*L*S) USR00140
c USR00150
c OUT: USR00160
¢} SP(NP/2+1)...SPECTRAL ARRAY (L*L*S) USR00170
c WHERE SP(1)=0 CORRESONDS TO FREQUENCY=0 USR00180
Ce===s=zssczzz=ss=sss=sss===cs==ss=s=s==== SEET=====an =s===s==s=========CUSR00190

SUBROUTINE USRSPC (NP, DT, NS, FR, SR, SP) USR00200

c USR00210
REAL SP(NP/2+1) USR00220

REAL FR(NS+1),SR(NS+1) USR00230

c USR00240
NH = NP/2+1 USR00250

TM = REAL(NP)*DT USR00260

DF = 1.0/TM USR00270

NI = INT(FR(NS+1)/DF) USR00280

c COMPUTE FINE POINTS USR00290
K = 1 USR00300

SLOPE = (SR(K+1)=SR(K))/(FR(K+1)-FR(K)) USR00310
FRIGHT = FR(K+1) USR00320

o ENFORCED: SP(1)=0.0 USR00330
SP(1) = 0.0 USR00340

C INTERPOLATION OF RAW POINTS USR00350
DO 120 I = 2,NI+1 USR00360

FREQ = REAL(I-1)#*DF USR00370

IF (FREQ.GT.FRIGHT) THEN USR00380

K = K+1 USR00390

FRIGHT = FR(K+1) USR00400

SLOPE = (SR(K+1)-SR(K))/(FR(K+1)=FR(K)) USR00410

ENDIF USR00420

SP(I) = SR(K) + (FREQ-FR(K))+*SLOPE USR00430

120 CONTINUE USR00440

c ASSIGN ZERO TO SP(NI+1) TO SP(NH) USR00450
DO 130 I = NI+2,NH USR00460

SP(I) = 0.0 USR00470

130 CONTINUE USR00480

c USR00490
RETURN USR00500

END USR00510
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PRORBR Subroutine

S ESESEsSSSSE S SS S SSSsssEssEsssssssssssssssssss=ss======================CPR000010
PRORBR PRO00020
PRO00030

CREATES AN OUTPUT FILE CONTAINING AN INPUT WAVE TRAIN FOR RBREAK PR0O00040
BASED ON A GIVEN DIMENSIONAL, PERIODICAL TIME SERIES PRO00050
PRDO0060O

IN: PRDO0O0070
TSAR) 55w s TIME SERIES (L) PRO00080
) | ST PR EVEN NUMBER OF DATA POINTS IN TIME SERIES PRO00080
DT v vasmmens TIME STEP (SAMPLING INTERVAL) (S) PRO00100
FRAME. ... ocviv00 NAME OF THE OUTPUT FILE CONTAINING THE INPUT WAVE PRO00110
TRAIN FOR RBREAK PRO00120

LR svivaontisnwinia iy OPTION TO SPECIFY THE REFERENCE WAVE HEIGHT USED PRDO00130
FOR THE NORMALIZATION OF THE DIMENSIONAL TIME PRO00140

SERIES TS AS FOLLOWS: PRO00150

. SIGNIFICANT WAVE HEIGHT BASED ON THE TIME SERIES PR0O00160
(IP=1 and HW is returned as the significant wave PR000170
height) PRO00180

. SPECTRAL ESTIMATE OF THE SIGNIFICANT WAVE HEIGHT PR0O00190
(IP=2 and HW is returned as the spectral estimate PR000200

ononnoonnnnnnnonnnnonnnnnnnnnoonnnnooqnnnonn

of the significant wave height) PRO00210

. A USER-SPECIFIED REFERENCE WAVE HEIGHT PRD00220

(IP=3 and HW needs to be specified as input to PRO00230

the PRORBR subroutine) PR0O00240

PROO02B0

IN/QUT: PRD0O0O260

) | e R REFERENCE WAVE HEIGHT USED FOR THE NORMALIZATION OF PR0O00270
THE DIMENSIONAL TIME SERIES TS (L) PRO00280

PRO00290

OUT: PRO00300

5 |8 RS MARKS THE LOCATION IN THE ORIGINAL TIME SERIES OF PRO00310
THE DATA POINT THAT WILL BE ASSIGNED TO THE FIRST PRO00320

DATA POINT IN THE INPUT WAVE TRAIN FOR RBREAK PRO00330

i i1 [+ [T ) TIME (S) IN THE ORIGINAL TIME SERIES CORRESPONDING PRO00340
TO THE INDEX JO PRO00350

PRO0O0380

EXTERNAL ROUTINES: PRO00370
TIMPAR oiiiivan COMPUTES THE SIGNIFICANT WAVE HEIGHT BASED ON THE PRO00380
TIME SERIES FOR IP=1 PRO00390
SPCTRA.......TRANSFORMS THE ORIGINAL TIME SERIES TO THE PRO00400
CORRESPONDING POWER DENSITY SPECTRUM FOR IP=2 PRO00410
SPCPAR....... COMPUTES THE SPECTRAL ESTIMATE OF THE SIGNIFICANT PRO0O0420
WAVE HEIGHT FOR IP=2 PRO0O0430

S======== SSs=ss=s====s=szzssssssss=3==z==zcsz=zz=======CPR0O00440
SUBROUTINE PRORBR (TS, NP, DT, FNAME, IP, HW, JO, TJO) PRO00450
C PRO00460
PARAMETER (HHAx=20001,NDZ=1000.TIHY=1.E-OS,SHALL=1.E-03) PRO00470
CHARACTER*10 FNAME PRO00480
REAL TS(NP),TI(NMAX) PRDO0490
REAL SP(NMAX/2+1) ,FS(NMAX/2),SM(NMAX/2) PRD00500
REAL HRK(NDZ) ,TRK(NDZ) PRO00510
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c

900

100

INTEGER LRN(NDZ)
CHECK THE OPTION IP AND
DETERMINE REFERENCE WAVE HEIGHT
IF (IP.LT.1.0R.IP.GT.3) THEN
WRITE (*,2010)
STOP
ELSE
IF (IP.EQ.1) THEN
CALL TIMPAR(TS,NP,DT,SD,ER,NZ,HB,TB,HV,HS,T3,

* HT,TT,HRK, TRK,LRN, NK)
HW = HS
ELSEIF (IP.EQ.2) THEN
NB = 1

CALL SPCTRA(TS,NP,DT,NB,SP,FS,SM)
CALL SPCPAR(SP,NP,DT,EP,VU,QP,ER,HR,HS,T1,T2)
HW = HS
ELSE
IF (HW.LT.TINY) THEN
WRITE (*,2020)
STOP
ENDIF
ENDIF
ENDIF
FIND THE LOCATION JO
JO = =1
J =
IF (JO.EQ.-1) THEN
J = J+i
IF (TS(J).LT.0.D+00.AND.TS(J-1).GT.0.D+00) THEN
VALUE = TS(J)/HW
IF (ABS(VALUE).LT.SMALL) JO=J
ENDIF
GOTO 900
ENDIF
TJO = REAL(JO-1)#DT
CONSTRUCT AND STORE THE
INPUT WAVE TRAIN FOR RBREAK
NP1 = NP+1
I0 = NP-JO+1
DO 100 I = 1,NP1
IF (I.LE.IO) THEN
TI(I) = TS(I+JO-1)/HW
ELSE
TI(I) = TS(I-IO0)/HW
ENDIF
CONTINUE

OPEN (UHIT=90.FILE=FIAHE,STATUS=’NEH'.ACCESS=’SEQUEITIAL')
WRITE (90,9000) NP1
WRITE (90,8000) (TI(I),I=1,NP1)

FORMATS

2010 FORMAT (’ Error message from PRORBR: Option out of range.’/

+ ’ Program aborted by PRORBR.’)
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C

2020 FORMAT (’ Error message from PRORBR: Must specify HW for IP=3.’/ PR0O01050
+ ' Program aborted by PRORBR.’)

8000 FORMAT (5D15.6)
9000 FORMAT (I8)

RETURN
END
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FFTIMSL Subroutine

C================================================:=========2====
g FFTIMSL
o
c FAST FOURIER TRANSFOMR USING IMSL ROUTINES
c
c IN/QUT:
c TS(NP)....... TIME SERIES (L)
o CN(NP)....... COMPLEX FOURIER COEFFICIENTS (L)
c
o IN:
C WP invaiianovian NUMBER OF DATA POINTS
(e 1 5o TR +1 THEN FOURIER TRANS OF TS AND CN RETURNED
c -1 THEN INVERSE TRANS OF CN AND TS RETURNED
c
o EXTERNAL ROUTINE:
c FET2D v vnnieis FAST FOURIER TRANSFORM (IMSL)
c 22 - INVERSE FAST FOURIER TRANSFORM (IMSL)
c===============================================================
SUBROUTINE FFTIMSL (TS, CN, NP, I0)
c
PARAMETER (NDS=16384)
REAL TS(NP)
COMPLEX  CN(NP)
COMPLEX  CTS(NDS,1), COEF(NDS,1), AFFT(NDS,1)
(o IF I0 IS +1 THEN FFT OF TIME SERIES
IF (I0 .EQ. 1) THEN
c CHANGE TO 2-D ARRAY FOR IMSL

DO 100 I = 1,NP
CTS(I,1) = CMPLX(TS(I), 0.0)
100  CONTINUE

NRA = NP

NCA = 1

LDA = NDS

LDCOEF = NDS

CALL FFT2D (NRA, NCA, CTS, LDA, COEF, LDCOEF)
c

DO 200 I = 1,NP

CN(I) = 1.0/FLOAT(NP) * COEF(I,1)

200  CONTINUE

c IF I0 IS -1 THEN INVERSE FFT OF CN'S

ELSEIF (IO .EQ. -1) THEN

c CHANGE TO 2-D ARRAY FOR IMSL

DO 300 I = 1,NP
COEF(I,1) = CH(I)
300 CONTINUE

NRCOEF = NP
NCCOEF = 1
LDCOEF = NDS
LDA = NDS

CALL FFT2B(NRCOEF, NCCOEF, COEF, LDCOEF, AFFT, LDA)

c TAKE REAL PART FOR TIME SERIES
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400

DO 400 I
TS(I)

CONTINUE

ENDIF

RETURN
END

L}

1, NP
REAL(AFFT(I,1))
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RDMGEN Subroutine

C:::::===’-‘==33:===========:'_'========:::=====-'.'.'-‘.2:=======================
¢ RDMGEN
o
g RANDOM NUMBER GENERATOR
c
c IN:
¢ MR somnvaovias NUMBER OF RANDOM NUMBERS GENERATED
c 3 £ SEED VALUE TO INITIALIZE RANDOM NUMBER GENERATOR
[+
c OUT:
& AR(NR)...... RANDOM NUMBERS DISTRIBUTED UNIFORMLY O TO 1.0
c
c EXTERNAL ROUTINES:
5 RNSET....... SET RANDOM NUMBER GENERATOR (IMSL)
c .5 1; R RETURN RANDOM NUMBER ARRAY (IMSL)
C========_ _==--""=__-_============================================
SUBROUTINE RDMGEN (NR, IS, AR)
c
REAL AR(NR)
o RANDOM NUMBERS FROM IMSL SUBROUTINES
CALL RNSET (IS)
CALL RNUN (NR,AR)
c
RETURN
END
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CRDMO00010
RDM00020
RDM00030
RDMO0040
RDM00050
RDM00060
RDM00070
RDMO0080
RDM00090
RDM00100
RDMO0110
RDMO0120
RDM00130
RDM00140
RDM00150

CRDM00160
RDH00170
RDM00180
RDM00180
RDM00200
RDM00210
RDM00220
RDM00230
RDM00240
RDM00250



WAVNUM Subroutine

Cuze s=sas= S==ssssssssssssssssssssss=sssssssssss=ssss=s=============CWYAV00010
c WAVNUM WAV00020
c WAV00030
c COMPUTES WAVE NUMBER, K=2PI/L, FOLLOWING LINEAR WAVE THEORY WAV00040
C NOTE THAT DIMENSION IS 1/METER WAVO00050
c WAV00080
a IN: WAV00070
c Bsasosanan FREQUENCY (HZ) WAV00080
c DH s wimsisng e WATER DAPTH (M) WAV00090
C WAV00100
c OuUT: WAV00110
C WHiss ovsmne ne WAVE NUMBER (1/M) WAV00120
C==scssssss===== ====sI==sISSSsSsssZ==sS=I==ssss=s=sssssssssss=s=======CJYAV00130
SUBROUTINE WAVNUM (FQ,DH, WN) WAV00140

C WAV00150
PARAMETER (GRAV=9.81, TOL=1.0E-5) WAV00160
LOGICAL ERROR WAV00170

C WAV00180
TWOPI = 8.0 * ATAN(1.0) WAV00190

CORR = 2 *= TOL WAV00200

ERROR = ,FALSE. WAV00210

C SOLVE FOR KH (X1) USING ITERATIVE METHOD WAV00220
c INITIAL GUESS, X1, BASED ON WHSQ WAV00230
WHSQ = (DH/GRAV) * (TWOPI * FQ)*#2 WAV00240

IF (WHSQ .GT. 1.0) THEN WAV00250

X1 = WHSQ WAV00280

c DEEP WATER LIMITS WAV00270
IF (TANH(X1) .GT. 1.-TOL) GO TO 200 WAV00280

ELSE WAV00290

X1 = SQRT(WHSQ) WAV00300

c SHALLOW WATER LIMITS WAV00310
IF (ABS(X1-TANH(X1)) .LT. TOL) GO TO 200 WAV00320

ENDIF WAV00330

500 IF (ABS(CORR) .GT. TOL .AND. .NOT. ERROR) THEN WAV00340
FUNC = X1 * TANH(X1) -~ WHSQ WAV00350

DFUNC = TANH(X1) + X1/(COSH(X1))#*+%2 WAV00360

c CHECK SLOPE TO AVOID DIVISION BY ZERO WAV00370
IF (ABS(DFUNC) .LT. TOL) THEN WAV00380

ERROR = .TRUE. WAV00390

WRITE(6,*) ’ERROR IN SLOPE CHECK IN WAVNUM SUBROUTINE’ WAV00400

GOTO 100 WAV00410

ELSE WAV00420

CORR = FUNC/DFUNC WAV00430

X1 = X1 - CORR WAV00440

ENDIF WAV00450

GOTO 500 WAV00460

ENDIF WAV00470

200 WN = X1 / DH WAV00480
(s WAV00490
100 RETURN WAV00500
END WAV00510
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Appendix B: Contents of Accompanying Disk

The accompanying 3.5 inch, double density floppy disk contains the subroutine files and data
files referred throughout this report. The extension “*.doc” indicates a document file which
may be read to further explain the contents of the disk. The extension “*.for” indicates a
FORTRAN file. The extension “*.dat” indicates a data file. These time series data files are of
measured laboratory waves. Table 9 summarizes the files.

Table 9: Files on Accompanying Disk.

— — ——— — — — —— — ;— —

FILE NAME DESCRIPTION REFERENCE
readme.doc | document file for further explanation of accompanying disk Appendix B
TMASPC.for | computes the TMA spectrum for wind waves Part II
SPCPAR.for | computes spectral parameters Part II1
TIMEPH.for | generates time series following random phase scheme Part IV
TIMEDC.for | generates time series for known Fourier coefficients Part IV
TIMPAR.for | computes time series parameters Part V
SPCTRA.for computes power density spectrum Part VI
IRSORT.for | computes incident and reflected waves for 3-gage array Part VII
COHPHS.for [ computes coherence squared and phase between two time series | Part VIII
DISTNR.for | computes PDF and exceedance probability Part IX
USRSPC.for | accommodates generation of time series from known spectrum | Part X
PRORBR.for | produces input wave train for RBREAK Part XI
FFTIMSL.for | computes the complex Fourier coefficients (FFT) Part XII
RDMGEN.for | generates an array of pseudo-random numbers Part XIII
WAVNUM.for | computes the wave number based on linear wave theory Part XIV
CMOBG1.dat time series data file at z = 0.0m Part VI, VII,

VIII, IX
CM06G2.dat | time series data file at z = —1.4m Part VII
CMO6G3.dat | time series data file at z = —2.0m Part VII, VIII
—_— —_—
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