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ABSTRACT

The vertically two-dimensional problem of small-amplitude waves propagating over sub-
merged vegetation is formulated using the continuity and linearized momentum equations
for the regions with and without the vegetation. The effects of the vegetation on the flow
field are assumed to be expressible in terms of the drag force acting on the vegetation. An
analytical solution is obtained for the monochromatic wave whose height decays exponen-
tially. The expressions for the wave number and the exponential decay coefficient derived
for arbitrary damping are shown to reduce to those based on linear wave theory and the
conservation equation of energy if the damping is small. The analytical solution is compared
with sixty test runs conducted using deeply submerged artificial seaweed. The calibrated
drag coefficients for these runs are found to vary in a wide range and appear to be affected
by the seaweed motion and viscous effects neglected in the analysis. The analytical solution
is also shown to be applicable to subaerial vegetation, which is predicted to be much more

effective in dissipating wave energy.

ACKNOWLEDGEMENT

This study was partly supported by the Monbusho International Scientific Research Program
(Joint Research), No. 02044149, of the Japanese Ministry of Education, Science and Culture.



INTRODUCTION

Wave attenuation by vegetation has been investigated in relation to prediction of wind waves
propagating across flooded, vegetated lands (e.g., Camfield 1977; Shore Protection Manual
1984) as well as possible use of artificial seaweed in promoting the build-up of beaches (e.g.,
Price et al. 1968; Asano et al. 1988). Dalrymple et al. (1984) examined wave diffraction due
to localized areas of energy dissipation, which might be dense stands of seaweed, pile clusters,
or submerged trees. The detailed mechanisms of wave attenuation by vegetation is not well
understood partly because of difficulties in analyzing the flow field in the vegetation field
and partly because of lack of comprehensive data. The need of improved understanding of
the mechanisms may increase since accelerated sea level rise may result in more flooding in
vegetated areas (ASCE Task Committee on sea level rise and its effects on bays and estuaries

1992).

A standard approach for predicting wave attenuation by vegetation is based on the time-
averaged conservation equation of wave energy in which the local flow field is estimated using
linear wave theory. The effects of the vegetation are included only in the dissipation term in
the energy equation used to obtain the local wave height. This simple approach is intuitive
and may not be justified if the vegetation modifies the local flow field significantly. This paper
presents a different approach based on the continuity and momentum equations. First, the
problem of small-amplitude waves propagating over submerged vegetation without lateral
boundaries is formulated assuming that the problem is two-dimensional vertically. Second,
an analytical solution is obtained for the small-amplitude monochromatic wave whose height
decays exponentially in the direction of wave propagation. Third, the time-averaged energy
equation derived from the adopted momentum equations is shown to reduce to the standard
energy equation based on linear wave theory if the damping is small. Fourth, the analytical
solution is compared with the artificial seaweed experiment conducted by Asano et al. (1988).
Finally, the analytical solution obtained for submerged vegetation is shown to be applicable

to subaerial vegetation as well.



FORMULATION OF PROBLEM

The two-dimensional problem examined herein is depicted in Fig. 1 where & = horizontal
coordinate taken to be positive in the direction of wave propagation; z = vertical coordinate
taken to be positive upward with z = 0 at the still water level (SWL); d = constant height
of submerged vegetation in the absence of waves; h = still water depth above the vegetation;
m = free surface elevation above SWL; 7y = vertical displacement of the interface between
the two regions with and without the vegetation. The bottom located at z = —(d + h)
is assumed to be horizontal. In Fig. 1, u = horizontal fluid velocity; w = vertical fluid
velocity; and p = dynamic pressure where the subscripts 1 and 2 indicate the regions above
and below the interface located at z = (92 — h). The total pressure is the sum of the
dynamic pressure and the hydrostatic pressure (—pgz) below SWL where p = fluid density
which is assumed constant; and g = gravitational acceleration. In the follox#ing, small-
amplitude monochromatic waves are assumed to propagate in the positive z-direction and

be attenuated by the vegetation.
In the region (1 — h) < z < 1y without the vegetation, the continuity equation is given
by
=l (1)
As a first approximation, the fluid convective accelerations and stresses are assumed to be

negligible in this region. The linearized horizontal and vertical momentum equations may

be expressed as

Bul _ 6‘p1
Pt T "oz (2)
61‘.01 _ 3}01
o T Tas ®)

in which ¢ = time. Eqs. 2 and 3 correspond to the linearized Euler equations (e.g., Dean

and Dalrymple 1984). The linearized kinematic and dynamic boundary conditions at the

free surface are written as

om
E = un at z=40 (4)
P1 = pgm at 2=10 (5)
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where the effects of wind are not considered herein.

In the region —(h + d) < z < (12 — h) with the vegetation, the continuity equation is
given by
Buz a‘l{}g

ot o =0 (®)

The horizontal and vertical momentum equations including the effects of the vegetation may
be expressed as

dug _ Ops

B - s ™
Qwy _ _9p2 _
o T "o I (8)

in which F and F, are the horizontal and vertical forces acting on the vegetation per unit

volume. The kinematic boundary condition on the horizontal bottom is given by
wy =0 at z=—(h+d) (9)
where the bottom is assumed to be impermeable.

To estimate the forces F; and F, the vegetation may simply be regarded as rigid vertical
cylinders with small diameters for which the drag force is dominant (Dalrymple et al. 1984).
Accordingly, F,; and F, may be approximated by

1
F, =~ 3P Cp b N |uy| uy (10)
F, ~ 0 (11)

in which Cp = drag coefficient; b = area per unit height of each vegetation stand normal to
up; and N = number of vegetation stands per unit horizontal area. In reality, the horizontal
velocity, ug, in Eq. 10 should be the horizontal fluid velocity relative to the horizontal
velocity of the vegetation stand, but the motion of the vegetation is not analyzed herein.
Consequentl};, the drag coefficient Cp in Eq. 10 includes the effect of the vegetation motion

as will be discussed when Cp is calibrated using the experiment of Asano et al. (1988).

On the other hand, the linearized kinematic boundary condition at the interface between

the two regions is written as

Om

-] = =-h
T, wq at 2 (12)



The linearized matching conditions at the interface are expressed as

w] = Wy at z=—h (13)

PL=p2 at z = —h (14)

The horizontal velocities u; and ug do not match at the interface since the horizontal momen-
tum equation changes abruptly from Eq. 2 to Eq. 7 where F; given by Eq. 10 is non-zero.
To match uq and u; at the interface, the shear stress would need to be accounted for in Eqs.

2 and 7.

ANALYTICAL SOLUTION,

Egs. 1, 2, 3, 6, 7 and 8 with Eqs. 10 and 11 and the conditions given by Egs. 4, 5, 9, 12,
13 and 14 may be solved to obtain 7y, uy, wy, p1, 72, uz, wy and py. In order to derive an -

analytical solution, Eq. 10 is linearized as follows:
Fp~ P D U9 (15)

where the unknown coefficient D will later be determined using the time-averaged equation
of wave energy. Furthermore, the free surface displacement 7 is assumed to be expressible
in the form

i,

h= exp(—kiz) cos(ky,z — wt) (16)

in which H, = wave height at = 0; k; = exponential decay coefficient; k, = wave number;
and w = angular frequency. In this problem, k; and k, are unknown, whereas H, and w
are given. Eq. 16 assumes that the small-amplitude monochromatic wave propagates in the
positive z-direction with the phase velocity, ¢ = w/k,, and the local wave height, H, decays

exponentially
H = H,exp(—k;z) (17)

To solve the linearized problem, it is convenient to introduce the complex wave number

k, defined as

)

k =k, + tk; (18)



in which ¢ = v/—1. Moreover, Eq. 16 is rewritten as

m = R { 52 exp (ke — )]} (19)

where R, indicates the real part of the complex function in the brackets and will be omitted
hereafter. In this simplified analysis, uy, wy, p1, 72, u2, wp and p, are also proportional to

exp[i(kz — wt)] which specifies the horizontal and temporal variations.

For the region without the vegetation, Eqs. 2 and 3 are used to express u; and w; in
terms of p;
k

= — 20
U P ”m ( )

i Om
S o ot 21
w o= - (21)
Substituting Eqs. 20 and 21 into Eq. 1 and solving the resulting equation with the free
surface boundary conditions given by Eqs. 4 and 5, p; is given by

H, w?
P= P9 [cosh(kz) + ko sinh(kz)} exp [i(kz — wt)] (22)

Substitution of Eq. 22 into Eqgs. 20 and 21 yields the explicit expressions of u; and w; which

are omitted herein. Furthermore, Eq. 12 yields the vertical displacement of the interface
N = % [cosh(kh) - z—!’;sinh(kh)] exp [i(kz — wt)] (23)

If w? = kgtanh(kh), 5, = 0, k = k, with k; = 0, and Eqs. 20, 21 and 22 reduce to
the standard expressions for constant water depth h based on linear wave theory with no

damping (e.g., Dean and Dalrymple 1984).

For the region with the vegetation, Eqs. 7 and 8 with Egs. 11 and 15 yield

k
Uy = mm (24)
= .t 0m
wp = o Oz (25)

Substituting Eqs. 24 and 25 into Eq. 6 and solving the resulting equation with the conditions
given by Eqs. 9 and 13, p, is given by

H, w? | cosh[a(z + h + d)]
= pg— kh) — — sinh
P2 = P9 cosh(kh) I sinh(kh) cosk{ad)

exp [i(kz — wt)] (26)
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Lastly, the matching condition given by Eq. 14 yields the equation for the unknown complex

wave number k defined by Eq. 18

2 ktanh(kh) + a tanh(ad)
w’ = kg
k 4+ atanh(ad) tanh(kh)

(28)
which may be solved to find &k for given w, h, d, D and g.

The coefficient D introduced in Eq. 15 indicates the degree of damping of wave energy
caused by the drag force F acting on the vegetation. For the case of D = 0, the solution
derived herein can be shown to reduce to the solution for constant water depth (h+ d) based
on linear wave theory with no damping. To simplify Eq. 28 for the case of weak damping,

it is convenient to introduce the dimensionless damping coefficient ¢ defined as

D

E=£

(20)

For the case of € < 1, the terms of the order of €? and smaller may be neglected and Eq. 27
is approximated by

a~ k(1 - ie) (30)

Substituting Eq. 30 with Eq. 18 into Eq. 28 and performing lengthy algebraic manipulations,
the real wave number k, and the exponential decay coefficient k; = 8k, for the case of € < 1

are approximately expressed as

w? ~ k,gtanh [k.(h + d)] (31)
_ ki N 2k,d + sinh(2k,d)
e Ik 2k, (h + d) + sinh[2k,(h + d)] 32)

Eq. 31 is the dispersion relationship based on linear wave theory and weak damping with
€ < 1 does not affect the real wave number k, and the phase velocity ¢ = w/ky. Eq. 32 shows
that § = (k;/k,) is proportional to € < 1. For the case of weak damping, the horizontal
length scale, k;l, associated with wave attenuation is hence large relative to the wavelength
2 /ky. It will be shown in the next section that Eq. 32 can also be derived from the standard

conservation equation of wave energy.



For the computation of k. and k; using Eqs. 28, 31 and 32, the dimensional parameters
are normalized by the water depth (d + h) as follows:

2rg " d

- ¥ ’: x e i I8 I —
K.=k.(d+h) ; K =k(d+h); L Fi+n ' I

(33)

where the prime indicates the dimensionless parameters and L, is the normalized wavelength
in deep water. The approximate value of k; for € < 1 is computed for given L/ using Eq.
31. The approximate value of k} for € < 1 is calculated for given L/, d’ and ¢ using Eq.
32. The values of k} and k! for arbitrary ¢ are computed for given L/, d’ and ¢ using Eq.
28 with Eq. 27 where use is made of a Newton-Raphson iteration method (e.g., Press et al.
1986) starting from the approximate values of k. and k! for € < 1. The iteration method
has been found to converge for the computed results presented later in this report, although
the convergence has not been proven mathematically. The computer program is attached in

Appendix A.

TIME-AVERAGED ENERGY EQUATION

The time-averaged equation of wave energy is derived herein to obtain the expression of
the damping coefficient D introduced in Eq. 15. It will also be shown that the approximate
expression of k; for € < 1 given by Eq. 32 can also be derived from the standard conservation

equation of wave energy based on the flow field estimated using linear wave theory (Dalrymple

et al. 1984).

To derive the time-averaged energy equation for the region with no vegetation, Eqs. 2
and 3 are multiplied by u; and wy, respectively. The multiplied equations are added and
integrated from z = —h to z = 0. The integrated equation is time-averaged and simplified

using Eqs. 4 and 5. The resulting time-averaged energy equation is expressed as

dFy
=P (34)
with
0
F] - f}; Ui dz (35)



P = —wipr at z=-h (36)

where the overbar indicates the time averaging. Fj is the time-averaged energy flux per unit
width in the region without the vegetation, while P is the time-averaged rate of work by the
dynamic pressure p; on the unit area of the interface between the two regions. It is noted
that ui, wy and py given by Egs. 20, 21 and 22 should satisfy Eq. 34 with Eqs. 35 and 36
derived from Eqs. 2 and 3.

Likewise, Eqs. 7 and 8 with F, = 0 from Eq. 11 are multiplied by u3 and w2, respectively.
The multiplied equations are added and integrated from z = —(h+d) to z = —h using Eqgs. 9,
13 and 14. The integrated equation is time-averaged to obtain the following energy equation

for the region with the vegetation.

dFy
e P-Dy (37)
with
~h
B / s (38)
—(h+d)
~h
Dd = f ung dz (39)
—(h+4d)

where F, = time-averaged energy flux per unit width in the vegetated region; and Dy =
time-averaged rate of energy dissipation per unit horizontal area due to the drag force F.
It is noted that u;, wy and p; given by Eqgs. 24, 25 and 26 should satisfy Eq. 37 with Eqgs.
38 and 39 derived from Eqs. 7 and 8 with Eqs. 11 and 15.

The time-averaged energy equation for the entire water depth (d + h) is obtained by
adding Eqs. 34 and 37

d
25 f1+ F2) = -Dy (40)

in which (Fj + F3) is the time-averaged energy flux per unit width in both regions. The dissi-
pation rate Dy defined by Eq. 39 depends on the equation used to express F. Substitution
of the nonlinear expression of F, given by Eq. 10 into Eq. 39 yields

-h

1 R
D ~ Z 2
4= 5pCobN [ NN (41)

10



On the other hand, substitution of the linear expression of F; given by Eq. 15 into Eq. 39
yields

—h -
Dy~ pD/ a3 dz (42)
~(h+d)

The horizontal velocity u; in Eqs. 41 and 42 is the real part of Eq. 24 with p; being given by
Eq. 26. The unknown damping coefficient D introduced in Eq. 15 to obtain the analytical
solution may be chosen such that Dy given by Eq. 41 becomes approximately the same as
Dy given by Eq. 42. The explicit expression of D for the case of weak damping will later be

obtained in this way.

For the case of weak damping where the dimensionless damping coefficient ¢ defined by
Eq. 29 is much less than unity, Eq. 28 for k = (k, + ik;) has been shown to be simplified
as Eqgs. 31 and 32 where é§ = (k;/k,) is of the order e. In the following, the expressions for
Fy, P, F; and Dy for the case of € < 1 are obtained to elucidate the effects of the vegetation

on the flow field and the time-averaged energy quantities.

For the case of € < 1, Eq. 22 with k = k.(1 4 i6) can be shown to be approximated as

. H {cosh k(b + d+ 2)]
P cosh [k, (h + d)]

+ ideq } exp [i(k,z — wt)] (43)

with
_ kyzsinh[k.(h + d + 2)]
U= T cosh [k (h + d)]
where the local wave height H is defined by Eq. 17. If ¢; = 0, Eq. 43 would express

— sinh(k,2) tanh [k.(h + d)] (44)

the dynamic pressure in the water depth (A + d) based on linear wave theory (e.g., Dean
and Dalrymple 1984). Substitution of Eq. 43 into Eqs. 20 and 21 yields the approximate
expressions of u; and w; to the order e. Substitution of the real parts of these approximate

expressions into Egs. 35 and 36 yields

N ¢g  2kd+ sinh(2k,d)}
B w o8 { ¢~ 2sinh[k(h + d)] (45)
P ~ 2k R (46)
with
1 2
E = gng (47)



c [ Ly 2ke(h+d) ]
2 sinh[2k,(h + d)]

g (48)

where E and ¢, are the local wave energy per unit horizontal area and the wave group
velocity in the water depth (h + d) based on linear wave theory. Eqs. 45 and 46 can be
shown to satisfy Eq. 34. F; given by Eq. 45 turns out to be the same as Fy obtained using

the expressions of p; and u; based on linear wave theory.

Likewise, for the case of € < 1, Eq. 26 with k = k,(1+ 1§) and @ ~ k,[1 4 i(6 — €)] from

Eq. 30 can be shown to be approximated as

H coshlk,(h + d + 2)]

< . s (ko2 —
P2 =~ pg 2 “coshlkr(h + d)] [1 4 26ca + (6 — €)es) exp [i(krz wt)] (49)
with
sinh(kyh) sinh[k,(h + d)] :
2 cosh(b.d) k.h tanh(k,d) (50)
¢cs = ky(h+d+ 2)tanh[k.(h+d + 2)] - kyd tanh(k,d) (51)

If ¢ = 0 and ¢3 = 0, Eq. 49 would express the dynamic pressure based on linear wave
theory. Substitution of Eq. 49 into Eqs. 24 and 25, where k/(w + iD) =~ k,[1 + i(6 — 2¢)] /w
to the order € = D/(2w), yields the approximate expressions of u; and w, to the order e.

Substitution of the real parts of these approximate expressions into Eqs. 38, 41 and 42 yields

2k,d + sinh(2k,d)

F; E

1 2sinh[2k,(h + d)] 5%

2 k-gH\? sinh®(k,d) + 3sinh(k,d)

Dy ~ — pCpbN ( ) s -

4 3 P °P 2w 3k, cosh®[k,(h + d)] (58]

2k,d + sinh(2k,d

Dy ~ Eotuliak 1) (54)

2sinh[2k,(h + d)]

where Eqs. 53 and 54 correspond to the nonlinear and linear expressions of F, given by Egs.
10 and 15, respectively. Eqs. 52, 53 and 54 turn out to be the same as those obtained using

the expressions of p, and u; based on linear wave theory.

12



Substituting Eqs. 45 and 52 into Eq. 40, the time-averaged energy equation for the

entire water depth for the case of weak damping is approximated as
. 2 (E ¢g) ~ —Dqg (55)
dz %

which is the standard conservation equation of wave energy based on linear wave theory
(Dalrymple et al. 1984). Substitution of Eqs. 47, 48 and 54 based on linear wave theory
into Eq. 55 yields the exponential decay of the local wave height H given by Eq. 17 with k;
being expressed by Eq. 32 for the case of € « 1 which has been obtained using the linear
expression of F; given by Eq. 15. Consequently, use of Eq. 55 to find the decay of the local
wave height H is justified for the case of weak damping. However, Eqs. 43 and 49 show that

the flow field is affected by the presence of the vegetation even for the case of weak damping.

Finally, an approximate expression of the unknown constant D is obtained using Eqs. 53
and 54. D, is proportional to H® and H? in Eqs. 53 and 54, respectively, where E is defined
by Eq. 47. Consequently, the horizontal variations of Dy given by Eqs. 53 and 54 can not be
matched exactly. Since Eqgs. 53 and 54 are applicable for the case of € = D/(2w) < 1, H? in
Eq. 53 may be approximated as H>H, where H = H, at z = 0 from Eq. 17. Equating Eqgs.

53 and 54 under this approximation, the following approximate expression of € is obtained

D 1 sinh(3k.d) + 9sinh(k,d)
il e L [2krd + sinh(2k,d)]sinh[k,(h + d))]

2w 97 (56)

where k. is given by Eq. 31 for € « 1. Strictly speaking, Eq. 56 is valid only for € < 1
but may tentatively be used as long as ¢ is not too large. This is because ¢ in Eq. 56 is
proportional to the drag coefficient Cp which is a very uncertain parameter as will be shown

in the next section.

COMPARISON WITH EXPERIMENT

The analytical solution obtained herein is compared with the artificial seaweed experiment
conducted by Asano et al. (1988). The experiment was performed in a wave tank which was

27 m long, 0.5 m wide and 0.7 m high. The artificial seaweed was made of polypropylene

13



strips whose specific gravity was 0.9. The length, width and thickness of each strip was d
= 25 ¢cm, b = 5.2 cm and 0.03 mm, respectively. Each strip was bound to a heavy wire
netting such that the strip was normal to the side walls of the tank and could bend with
little torsion under the action of monochromatic waves generated in the tank. The strips
were placed across the bottom over the distance of 8 m in the middle section of the tank as
shown in Fig. 2. The number of strips placed uniformly over the area of 4 m? was 4400 and
5960. Correspondingly, the number of strips per unit horizontal area was N = 0;110 and
0.149 cm~2, The water depth above the vertical strips was h = 20 and 27 cm. The total
water depth in the tank was (h + d) = 45 and 52 cm. Out of the four possible combinations

of N and h, the case of N = 0.149 cm~? and h = 27 cm was not tested in this experiment.

For each of the three combinations of N and h, the wave frequency, f = w/(2x), of the
monochromatic waves generated in the tank was selected as f = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.2 and 1.4 Hz. The typical number of different wave heights generated in the tank was six
for f = 0.8 Hz and two for the rest of the wave frequencies. In total, sixty test runs were

performed as summarized in Table 1.

For each of the sixty test runs, capacitance wave gages were used to measure the free
surface oscillations at four locations above the artificial seaweed as shown in Fig. 2. The
distance between the two adjacent gages was 2 m. The first gage was located 1 m from the
seaward edge of the seaweed field. This location of the first gage is taken herein to be the
location z = 0 for the analytical solution since the present analysis does not account for the
presence of the lateral boundaries. The four gages are hence located at z = 0, 2, 4 and 6 m in
the following data analysis. The data for each run includes the wave height H measured at
these four locations as shown in Table 2 and the phase velocity ¢ which was calculated using
the measured travel time of the wave crests between the wave gages. The measured phase
velocities were not very accurate partly because of difficulty in pinpointing the arrival time
of the wave crests. Discarding unreliable measurements, the measured value of the phase
velocity ¢ was available for 52 runs as listed in Table 1. The measured values of ¢ were in the
range 1.08-1.69 m/s. The corresponding values of k, = (2w f)/c were in the range 2.07-8.14

m™L,

14
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Table 1: Summary of Sixty Test Runs where N = Number of Strips per Unit
Horizontal Area; h = Water Depth Above Strips; f = Wave Frequency; and
C = Measured Phase Velocity.

Run# | N (md) | hm | f M) C (cms)
1 0.149 20 0.500 no value
2 0.149 20 0.600 155
3 0.149 20 0.600 148
4 0.149 20 0.700 163
5 0.149 20 0.700 167
6 0.149 20 0.800 167
7 0.149 20 0.800 no value
8 0.149 20 0.800 167
9 0.149 20 0.800 155
10 0,149 20 0.800 no value
11 0.149 20 0.800 no value
12 0.149 20 0.800 no value
13 0.149 20 0.800 no value
14 0.149 .20 0.800 no value
15 0.149 20 0.800 no value
16 0.149 20 0.900 154
17 0.149 20 0.900 151
18 0.149 20 1.000 138
19 0.149 20 1.000 139
20 0.149 20 1,200 131
21 0.149 20 1.200 132
22 0.149 20 1.400 114
23 0.149 27 0.500 144
24 0.149 27 0.500 152
25 0.149 27 0.600 161
26 0.149 27 0.600 162
27 0.149 27 0.700 165
28 0.149 27 0.700 166
29 0.149 27 0.800 169
30 0.149 27 0.800 167
A 0.149 27 0.800 165
32 0.149 27 0.800 184
33 0.149 27 0.800 167
34 0.149 27 0.800 166
3s 0.149 27 0.900 158
36 0.149 27 0.900 157
37 0.149 27 1.000 151
38 0.149 27 1.000 147
39 0.149 27 1.200 127
40 0.149 27 1.200 124
4 0.149 27 1.400 108
42 0.110 20 0.500 145
43 0.110 20 0.500 147
44 0.110 20 0.600 154
45 0.110 20 0.600 154
48 0.110 20 0.700 162
47 0.110 20 0.700 162
48 0.110 20 0.800 164
49 0.110 20 0.800 160
50 0.110 20 0.800 162
51 0.110 20 0.800 162
52 0.110 20 0.800 160
53 0.110 20 0.800 158
54 0.110 20 0.900 152
S5 0.110 20 0.900 148
56 0.110 20 1.000 145
57 0.110 20 1.000 143
58 0.110 20 1.200 124
59 0.110 20 1.200 124
60 0.110 20 1.400 11

Ju—
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Table 2: Wave Heights H1, Hz, H3 and H4 Measured at z = 0, 2,4 and 6 m,
Respectively.

Run# | Hj (cm) H 2 (em) Ha (cm) H, (cm)
1 3.8 3.1 2.9 29
2 10.8 95 7.4 8.5
3 7.2 6.4 5.0 4.4
4 13.8 10,7 9.7 7.7
5 B.4 71 6.6 52
6 14.7 11.6 99 8.5
7 89 7.2 6.7 57
8 19.3 15.3 12.8 1.1
9 18.4 13.7 1.3 10.0
10 14.0 11.4 98 8Ss
11 122 10.0 8BS 8.2
12 10.6 8.9 75 6.7
13 8.9 7.2 8.2 56
14 7.4 6.0 54 4.7
15 5.0 4.1 39 as
16 14.0 11.5 10.0 9.0
17 8.2 7.2 6.4 58
18 13.8 12.7 1.7 10.4
19 9.0 8.0 75 71
20 9.8 B.4 8.5 B.0
21 6.6 8.0 55 53
22 8.2 7.0 6.9 65
23 8.6 8.1 7.0 6.3
24 55 5.2 4.7 43
25 115 9.8 85 8.8
26 6.9 6.4 52 5.7
27 14.4 13.2 11.3 10.7
28 9.3 8.3 7.4 7.0
29 19.0 17.6 154 13.3
30 16.6 15.4 13.6 121
3 13.9 13.3 121 10.6
32 11.9 11.8 103 9.2
33 96 9.1 83 7.8
34 6.8 6.8 6.0 5.6
35 171 15.7 146 13.1
36 11.7 10.5 9.6 9.0
a7 16.9 16.1 14.9 13.8
38 9.2 9.4 8.9 7.7
a9 1.9 11.9 10.7 10.0 .
40 7.4 7.6 7.0 6.8
41 7.8 8.1 7.8 7.0
42 6.5 55 55 5.1

- 43 4.1 35 3.4 as
44 10.0 B.8 71 6.5
45 6.0 55 4.7 4.4
46 123 10.2 9.7 8.4
47 7.3 6.0 8.3 55
48 16.5 14.0 13.1 11.8
49 14.5 12.5 114 10.6
50 12.8 11.1 10.5 9.8
51 1.3 9.8 9.0 8.1
52 9.0 7.8 T3 6.9
53 7.0 6.3 59 56
54 145 131 12.2 11.0
55 9.2 8.3 76 7.2
56 153 14.0 135 13.0
57 8.7 8.3 8.0 7.6
58 11.7 10.5 10.1 10.0
59 8.1 5.8 59 55
60 6.9 6.4 8.3 8.0
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A regression analysis based on the method of least squares (e.g., Press et al. 1986)
is performed using Eq. 17 in which the exponential decay of the local wave height H is
characterized by the wave height H, at = 0 and the exponential decay coefficient k;. For
each run, the ﬁtte_d values of H, and k; are obtained from the measured wave heights at =
=0, 2,4 and 6 m as shown in Appendix B. The fitted values of H, and k; for the sixty runs
are in the ranges H, = 3.6-19.4 cm and k; = 0.015- 0.101 m~!. The correlation coefficients
for the sixty runs vary from 0.780 to 0.998 and the average value is 0.959.

Fig. 3 shows the measured values of H at = = 0, 2, 4 and 6 m for the sixty runs
normalized as H/H, as a function of k;z where the fitted values of H, and k; are used for
each run. The data points in Fig. 3 fall within + 10% of the theoretical line based on
H/H, = exp(—k;z). This suggests that the wave attenuation in the region 0 < z < 6 m may
not have been affected much by the lateral boundaries located at z = —1 and 7 m as shown
in Fig. 2. It should also be stated that the measured wave attenuation included the effect -
of the bottom and side-wall friction neglected in the present analysis. Wave attenuation in
the absence of the artificial seaweed was not measured in this experiment, but the values of
k; due to the bottom and side-wall friction for these test runs were estimated to be of the
order 0.003 m~! using the laminar boundary layer model of Iwagaki and Tsuchiya (1966).
These estimates did not account for the wire netting placed at the bottom. At the location
z = 6 m, exp(—k;z) = 0.98 for k; = 0.003 m~! as compared to exp(—k;z) = 0.55-0.91 for k;
= 0.015-0.101 m~!. Consequently, the measured wave attenuation shown in Fig. 3 should

have been caused mostly by the artificial seaweed.

For each of the sixty runs, d = 25 cm, b = 5.2 cm, N = 0.110 or 0.149 cm~?, h =
20 or 27 cm, and the values of f = w/(27) and H, are known. The coefficients ¢ and D
may be ca.lct_lja.ted using Eq. 56 where the empirical drag coefficient Cp still needs to be
specified. The values of k, and k; for each run can then be computed by solving Eq. 28
for k = (k, + tk;). The approximate values of k, and k; for the case of ¢ € 1 can also be
computed using Eqgs. 31 and 32. Comparison of the measured and computed values of k,
and k; would indicate the accuracy of the analytical solution presented herein. However, the

drag coefficient Cp is uncertain and needs to be calibrated. As a result, the sensitivity of
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the computed values of k, and k; is examined first.

The normalized wave number k} = k,(d + h) and the normalized decay coefficient & =
ki(d+h) depend on the dimensionless parameters L/, d’ and ¢ as explained in relation to Eq.
33. For the sixty test runs, I = 1.5-13.9, d' = 0.48-0.56 and ¢/Cp = 0.053-0.973 where ¢
given by Eq. 56 is proportional to Cp. Table 3 summarizes the values of the dimensionless
parameters for each run. The drag coefficient Cp is expected to be of the order unity or less
since Cp is of the order unity for rigid vertical cylinders (e.g., Shore Protection Manual) and
the seaweed motion should reduce the drag force as explained in relation to Eq. 10. As a

result, use is made of 0 < € < 1 in the following computation.

Figs. 4 and 5 show the variations of k, and k} with respect to € for ¢’ = 0.5 and I/
= 2, 5, 8 and 13, respectively, where k. and k; are the exact values based on Eq. 28 for
arbitrary e. Fig. 4 also shows the ratio of the approximate value of k. based on Eq. 31 to
the corresponding exact value, while Fig. 5 shows the ratio of the approximate value of k; '
based on Eq. 32 to the corresponding exact value. Fig. 4 indicates that k. is not sensitive to
€ and hence C'p. k. increases with the decrease of L!, which is the normalized wave length in
deep water as defined in Eq. 33. The difference between the approximate and exact values
of k; is small even for large ¢. Since Eq. 31 is the dispersion relationship based on linear
wave theory, the presence of the seaweed slightly increases the wave number and decreases
the phase velocity ¢ = w/k,. On the other hand, Fig. 5 indicates that k! is sensitive to €
and hence Cp for small ¢. The approximate value of k! becomes too large relative to the
corresponding exact value for large €. The overestimation of ki by Eq. 32, which predicts
that k; is proportional to ¢, increases as L/, is increased from 2 to 13. Eq. 32 is applicable
only if € is less than approximately 0.1 for d’ = 0.5 and L/ = 2-13. It is also noted that the
variation of k} with respect to L/ is not monotonic for &’ = 0.5 and 0 < € < 1. This variation
occurs even for € < 0.1 and may be explained partially using Eqs. 31 and 32. Egs. 31 and
32 may be simplified for &, < 1 and k; > 1, although the range L! = 2-13 corresponds to
finite water depth. In shallow water with k. < 1, Eq. 31 reduces to k! = (2m/L%)'/? and
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Table 3: Summary of Dimensionless Parameters for Sixty Test Runs where
B =bN Ho/2 d'=df(d+h); L,=g/[2n(d+ h)f2}; K, =ke(d+h); k=
ki(d + h); and Cp = Calibrated Drag Coefficient. Note that k] and k! are the
measured normalized wave number and decay coefficient, respectively.

] (1]

Run#| B d Lo’ kr ki So,
1 1.39 0.556 13.87 no value 0.0197 0.145
2 4.24 0.556 9.63 1.09 0.0399 0.108
3 2.83 0.558 9.63 1.15 0.0388 0.157
4 5.19 0.556 7.08 1.21 0.0406 0.103
5 3.27 0.556 7.08 1.19 0.0340 0.136
8 5.58 0.558 5.42 1.35 0.0405 0.115
7 3.37 0.556 5.42 no value 0.0316 0.147
8 7.30 0.558 5.42 1.35 0.0414 0.089
9 6.82 0.556 5.42 1.46 0.0455 0.105
10 533 0.556 5.42 no value 0.0371 0.109
1 456 0.558 5.42 no value 0.0305 0.104
12 4.05 0.556 5.42 no value 0.0348 0.134
13 3.35 0.556 5.42 no value 0.0348 0.162
14 2.80 0.556 5.42 no value 0.0330 0.185
15 1.87 0.556 5.42 no value 0.0252 0.210
16 5.30 0.556 4.28 1.85 0.0330 0.124
17 3.15 0.556 428 1.69 0.0260 0.164
18 538 0.556 3.47 2.05 0.0209 0.106
19 3.42 0.556 3.47 2.03 0.0175 0.139
20 3.66 0.556 241 2.59 0.0134 0.239
21 253 0.556 2.41 2.57 0.0168 0.433
22 3.07 0.558 1.77 3.47 0.0160 1.038
23 3.39 0.481 12.01 1.13 0.0281 0.105
24 2.15 0.481 12.01 1.07 0.0218 0.128
25 4.28 0.481 8.34 1.22 0.0246 0.083
26 2.62 0.481 8.4 1.21 0.0203 0.112
27 558 0.481 6.13 1.39 0.0272 0.086
28 3156 0.481 6.13 1.38 0.0251 0.124
29 7.51 0.481 4.69 1.55 0.0313 0.095
30 6.52 0.481 4,69 1.57 0.0279 0.008
AN 551 0,481 4,69 1.58 0.0236 0.098
32 477 0.481 4,69 1.59 0.0238 0.113
33 178 0.481 4.69 1.57 0.0208 0.125
34 2.70 0.481 4.89 1.57 0.0184 0.154
35 6.65 0,481 an 1.88 0.0227 0.111
38 © 448 0.481 3.7 1.87 0.0228 0.166
37 6.60 0.481 3.00 2.16 0.0178 0.141
38 an 0.481 3.00 2.2 0.0153 0.214
39 4.72 0.481 2.08 3.09 0.0163 0.841
40 293 0.481 2.08 a.16 0.0087 0.548
41 313 0.481 153 4.24 0.0101 2.929
42 1.80 0.556 13.87 0.97 0.0164 0.093
43 1.12 0.558 13.87 0.96 0.0113 0.104
A4 2.86 0.556 9.63 1.10 0.0339 0.135
45 1.72 0.558 9.83 i.10 0.0245 0.181
46 344 0.556 7.08 1.2 0.0269 0.102
47 2.10 0.556 7.08 1.2 0.0180 0.116
48 462 0.556 . 542 1.38 0.0241 0.081
49- 4.06 0.556 5.42 1.41 0.0232 0.089
50 358 0.556 5.42 1.40 0.0193 0.084
51 3.19 0.556 5.42 1.40 0.0244 0.119
52 251 0.556 5.42 1.41 0.0194 0.120
53 1.97 0.558 542 1.43 0.0165 0.130
54 4.14 0.556 4.28 1.67 0.0202 0.097
55 2.60 0.556 4.28 1.72 0.0185 0.141
56 431 0.556 347 1.95 0.0118 0.075
57 2.49 0.556 3.47 1.98 0.0100 0.109
58 3.26 0.556 2.41 2.74 0.0115 0.229
59 1.74 0.556 2.41 2.74 0.0066 0.247
60 1.95 0.556 1.77 .57 0.0098 0.992
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Eq. 32 may be approximated by

2«)”’2 (57)

k: o Gdr (L_’;

Eq. 57 implies that long waves are attenuated less by the seaweed. On the other hand, in
deep water with k] > 1, Eq. 31 reduces to k. ~ 2r/L’ and Eq. 32 may be approximated as
y 2w dr 7

k; ~ GL_{, exp [—170 (1- d)] | (58)
where d' = d/(h + d) is assumed to be of the order unity. In deep water, k! increases and
then decreases as Lj is increased. The maximum value of k! occurs at L! = 4x(1 — d'),
which yields L; = 2 for d’ = 0.5. The variation of k} with respect to L/ shown in Fig. 5 is
qualitatively similar to that based on Eq. 58, although Eq. 58 is appropriate only for € € 1

and in deep water.

In view of the computed results shown in Figs. 4 and 5, the calibrated value of Cp
for each run is obtained such that the exact value of k! computed from Eq. 28 equals the
measured value of k] for each run. The bisection method (e.g., Press et al. 1986) is used to
compute the calibrated value of Cp for each run. The calibrated values of C'p for the sixty
runs are listed in Table 3 and vary in the wide range 0.075-2.93. The corresponding values of
€ are in the smaller range 0.021-0.156. The differences between the exact and approximate
values of k; and kj are less than 2.0% and 0.4%, respectively. As a result, the approximate

expressions given by Eqs. 31 and 32 turn out to be very accurate for the sixty runs as shown

in Table 4.

In order to find possible explanations for the large variation of Cp, the calibrated values
of Cp are plotted as a function of the Reynolds number, Re, defined as Re = b u./v in which
b = width of the seaweed; » = kinematic viscosity of the water; and u, = characteristic fluid
velocity acting on the seaweed defined as

o k. g H, cosh(k, d)
°7 2w coshlk.(h + d)]

(59)

where k, is computed using Eq. 31. wu, given by Eq. 59 is the maximum value of the
horizontal velocity u; at 2 = 0 and z = —A obtained from Eqgs. 20 and 43 with ¢; = 0,

corresponding to linear wave theory. Fig. 6 shows the calibrated values of Cp as a function
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Table 4: Approximate and Exact Values of k. and k! Together with Difference
e;(%) Defined as e, = 100 (Approximate Value-Exact Value)/(Exact Value)
for Calibrated Cp.

' K’ er ki’ er
Run# € approx | exact (%) approx exact (%)
1 0.055 0.729 0.730 -0.137 0.0198 0.0197 0.508
2 0.098 0.908 0.911 -0.329 0.0406 0.0399 1.740
3 0.095 0.908 0.911 -0.329 0.0394 0.0388 1.546
4 0.090 1.108 1.110 -0.180 0.0414 0.0406 1.970
5 0.075 1.108 1.109 0.000 0.0344 0.0340 1.176
6 0.085 1.333 1.337 -0.299 0.0413 0.0405 1.975
7 0.066 1.333 1.335 -0.150 0.0320 0.0317 0.095
8 0.087 1,333 1.337 -0.299 0.0420 0.0414 1.449
9 0.095 1.333 1.338 -0.374 0.0462 0.0455 1.538
10 0.077 1,333 1.336 -0.225 0.0375 0.0371 1.078
1" 0.063 1.333 1.335 -0.150 0.0306 0.0305 0.328
12 0.072 1.333 1.336 -0.225 0.0350 0.0348 0.575
13 0.072 1.333 1.336 -0.225 0.0350 0.0346 1.156
14 0.069 1.333 1.336 -0.225 0.0334 0.0330 1.212
15 0.052 1.333 1.334 -0.075 0.0254 0.0252 0.794
16 0.069 1.593 1597 -0.250 0.0332 0.0330 0.606
17 0.054 1.593 1.596 -0.188 0.0261 0.0260 0.385
18 0.047 1.895 1.896 -0.053 0.0210 0.0209 0.478
19 0.039 1.895 1.895 0.000 0.0175 0.0175 0.000
20 0.043 2,636 2635 0.000 0.0135 0.0134 0.746
21 0.054 2636 2835 0.000 0.0170 0.0168 1.190
22 0.094 3,557 3557 0.000 0.0163 0.0160 1.875
23 0.088 0.794 0.796 -0.251 0.0285 0.0281 1.423
24 0.068 0.794 0.794 0.000 0.0220 0.0218 0.917
25 0.067 0.996 0.995 0.001 0.0248 0.0246 0.813
26 0.055 0.996 0.995 0.001 0.0205 0.0203 0.985
27 0.070 1.223 1223 0.000 0.027% 0.0272 1.471
28 0.064 1.223 1223 0.000 0.0254 0.0251 1.195
29 0.079 1.484 1.488 -0.269 0.0316 0.0313 0.958
30 0.071 1.484 1.487 -0.202 0.0283 0.0279 1.434
31 0.060 1.484 1.487 -0.202 0.0239 0.0236 1.271
32 0.080 1.484 1.487 -0.202 0.0238 0.0236 1.271
a3 0.052 1.484 1.488 -0.135 0.0208 0.0206 0.971
34 0.046 1.484 1.486 -0.135 0.0184 0.0184 0.000
35 0.062 1.792 1.792 0.000 0.0229 0.0227 0.881
36 0.062 1.792 1.792 0.000 0.0230 0.0228 0.877
a7 0.058 2.151 2153 -0.093 0.0180 0.0178 1.111
38 0.049 2.151 2.153 -0.093 0.0153 0.0153 0.000
a9 0.099 3.029 3.035 -0.198 0.0164 0.0163 0.613
40 0.052 3.029 3.035 0.198 0.0087 0.0087 0.000
41 0.158 4.105 4,108 0.000 0.0103 0.0101 1.980
42 0.048 0.729 0.729 0.000 0.0164 0.0164 0.000
43 0.032 0.729 0.729 0.000 0.0114 0.0113 0.885
44 0.082 0.908 0910 -0.220 0.0343 0.0339 1.180
45 0.059 0.908 0.908 0.000 0.0246 0.0245 0.408
46 0.059 1.108 1.108 0.000 0.0272 0.0269 1.115
47 0.039 1.108 1.107 0.090 0.018% 0.0180 0.556
48 0.050 1.333 1.334 0.075 0.0242 0.0241 0.415
49 0.048 1.333 1.334 0.075 0.0233 0.0232 0.431
50 0.040 1.333 1.334 -0.075 0.0194 0.0193 0.518
51 0.051 1.333 1.334 -0.075 0.0245 0.0244 0.410
52 0.040 1.333 1.334 -0.075 0.0194 0.0194 0.000
53 0.034 1.333 1.333 0.000 0.0165 0.0165 0.000
54 0.042 1.593 1.595 0.125 0.0203 0.0202 0.495
55 0.038 1,593 1595 -0.125 0.0185 0.0185 0.000
56 0.026 1.895 1.895 0.000 0.0119 0.0118 0.847
57 0.022 1.895 1.895 0.000 0.0101 0.0100 1.000
58 0.037 2.636 2.635 0.000 0.0115 0.0115 0.000
59 0.021 2.636 2.634 0.001 0.0066 0.0066 0.000
60 0.057 3557 3556 0.000 0.0098 0.0098 1.020
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of Re for the sixty runs for which b = 5.2 cm, v ~ 0.01 cm?/s and u. = 4.3-34.6 cm/s. Fig.
6 indicates that C'p tends to decrease with the increase of Re and is of the order 0.1 for large
Re. The data points in Fig. 6 may be represented by the following empirical relationship
between C'p and Re for 2200 < Re < 18000.

2200

2.4
T ) +0.08 (60)

Co =

The decrease of Cp with the increase of Re may be explained partly by the skin friction on
the surface of the seaweed which may be affected by the viscous effects. Eq. 60 also implies
that C'p decreases with the increase of u. since b = 5.2 cm and v ~ 0.01 cm2/s for these test
runs. The decrease of Cp with the increase of u. may be explained partly by the increase of
the bending motion of the seaweed with the increase of u.. The use of the horizontal fluid
velocity relative to the horizontal seaweed velocity is expected to reduce the variation of Cp
with u.. Table 5 lists the calibrated value of Cp as compared to the empirical value of Cp .

based on Eq. 60 for each of the sixty runs.

Finally, the normalized wave number k. and the normalized decay coefficient k! for each
of the sixty runs are computed using Eqs. 27, 28 and 56 with Cp being estimated by Eq. 60
as listed in Table 6. The computed values using the approximate expressions given by Egs.
31 and 32 are essentially the same as shown in Table 7. Figs. 7 and 8 show the comparison
between the measured and computed values of k. and k!, respectively. Fig. 7 implies that
the dispersion relationship based on linear wave theory is applicable for these test runs. The
slight underestimation of k. by the analytical solution for small ki may be related to the
difficulty in measuring the small travel time of the wave crests accurately when the phase
velocity ¢ = w/k, is large. On the other hand, Fig. 8 indicates that the agreement between
the measured and computed values of &/ is not very good although Eq. 60 is developed using
the same da.tt.a. set. Improvement of the empirical relationship for C'p will result in better
agreement in Fig. 8. However, the empirical relationship for Cp developed using the present

data set may possibly be limited to the specific artificial seaweed used in this experiment.
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Table 5: Calibrated and Empirical Values of Drag Coefficient Cp Together
with Characteristic Fluid Velocity u. and Reynolds Number Re for Each of
Sixty Test Runs.

Run# | Uc (cms) Re Cp (calibrated)| C , (empirical)
1 17 4012 0.145 0.316
2 225 11702 0.108 0.098
3 15.0 7821 0.157 0.128
4 26.2 13603 0.103 0.093
5 16.5 8576 0.138 0.118
6 26.3 13673 0.115 0.092
7 15.9 8284 0.147 0.122
8 3468 17976 0.089 0.086
9 323 16775 0.105 0.088
10 25.2 13109 0.109 0.094
11 216 11218 0.104 0.100
12 19.2 9978 0.134 0.107
13 15.9 8249 0.162 0.122
14 13.2 6884 0.185 0.145
15 89 4613 0.210 0.249
16 23.2 12078 0.124 0.097
17 13.8 7192 0.164 0.138
18 21.6 11219 0.106 0.100
19 13.7 7138 0.139 0.139
20 a fy g 6086 0.239 0.167
21 8.1 4193 0.433 0.293
22 7.3 3808 1.038 0.348
23 16.8 8746 0.105 0.116
24 10.7 5556 0.128 0.188
25 20.0 10382 0.083 0.104
26 12.2 6358 0.112 0.158
27 24.1 12532 0.086 0.095
28 15.4 7998 0.124 0.125
29 29.4 15310 0.095 0.090
30 2586 13290 0.098 0.093
31 216 11234 0.097 0.100
a2 18.7 9723 0.113 0.108
33 14.7 7667 0.125 0.130
34 10.6 5516 0.154 0.190
as 23.2 12055 0.111 0.097
36 15.8 8134 0.166 0.123
a7 20.0 10407 0.141 0.104
38 1.3 5852 0.214 0.176
39 10.1 5241 0.841 0.205
40 6.3 3252 0.548 0.471
41 43 2233 2929 1.045
42 13.5 6997 0.093 0.142
43 8.4 4346 0.104 0.275
44 20.6 10710 0.135 0.102
45 124 6439 0.181 0.156
46 2305 12224 0.102 0.096
47 13.8 7153 0.116 0.139
48 296 15393 0.081 0.089
49 26.0 13540 0.089 0.093
50 229 11922 0.084 0.097
51 20.4 10633 0.119 0.103
52 16.1 8369 0.120 0.121
53 126 6577 0.130 0.152
54 246 12799 0.097 0.095
55 155 8039 0.141 0.125
56 234 12165 0.075 0.097
57 13.5 7024 0.109 0.142
58 141 7330 0.229 0.136
59 75 3914 0.247 0.331
60 6.3 3276 0.992 0.465




Table 6: Computed Exact Values of k| and k! Using Empirical Value of Cp
as Compared with Measured Values of k. and &’ for Each Run.

r "
Run#| Co | € :
| (empirical) computed | measured | computed | measured
1 0.316 0.121 0.734 no value 0.0422 0.0197
2 0.098 0.089 0.910 1.094 0.0364 0.0399
3 0.128 0.077 0.910 1.148 0.0317 0.0388
4 0.093 0.081 1.110 1.214 0.0367 0.0406
5 0.118 0.065 1.108 1.185 0.0297 0.0340
6 0.092 0.068 1.336 1.354 0.0329 0.0405
7 0.122 0.054 1.335 no value 0.0262 0.0317
8. 0.086 0.084 1.337 1.354 0.0402 0.0414
9 0.088 0.080 1.337 1.459 0.0381 0.0455
10 0.094 0.067 1.335 no value 0.0320 0.0371
1 0.100 0.061 1.335 no value 0.0292 0.0305
12 0.107 0.058 1.338 no value 0.0277 0.0348
13 0.122 0.054 1.335 no value 0.0262 0.0348
14 0.145 0.054 1.335 no value 0.0260 0.0330
15 0.249 0.062 1.335 no value 0.0299 0.0252
18 0.097 0.054 1.585 1.652 0.0258 0.0330
17 0.138 0.048 1.595 1.685 0.0219 0.0260
18 0.100 0.044 1.896 2.049 0.0197 0.0209
19 0.139 0.039 1.896 2.034 0.0175 0.0175
20 0.167 0.030 2.636 2.590 0.0094 0.0134
21 0.293 0.036 2.636 2570 0.0114 0.0168
22 0.348 0.032 3.557 3.472 0.0054 0.0160
23 0.116 0.098 0.797 1.134 0.0310 0.0281
24 0.188 0.100 0.797 1.075 0.0318 0.0218
25 0.104 0.084 0.997 1.218 0.0308 0.0248
26 0.158 0.078 0.996 1.210 0.0285 0.0203
27 0.095 0.077 1.224 1.396 0.0303 0.0272
28 0.125 0.065 1.223 1.378 0.0254 0.0251
29 0.090 0.075 1.488 1.547 0.0294 0.0313
30 0.093 0.068 1.487 1.565 0.0267 0.0279
3 0.100 0.081 1.487 1.584 0.0242 0.0236
32 0.108 0.058 1.486 1.504 0.0227 0.0236
33 0.130 0.054 1.486 1.565 0.0215 0.0206
a4 0.190 0.057 1.486 1.575 0.0226 0.0184
a5 0.097 0.054 1.794 1.861 0.0198 0.0227
36 0.123 0.046 1.783 1.873 0.0170 0.0228
a7 0.104 0.043 2.152 2.164 0.0132 0.0178
38 0.176 0.040 2.152 2.223 0.0126 0.0153
39 0.205 0.032 3.029 3.087 0.0053 0.0183
40 0.471 0.045 3.029 3.182 0.0075 0.0087
41 1.045 0.056 4,108 4.235 0.0037 0.0101
42 0.142 0.070 0.730 0.975 0.0248 0.0164
43 0.275 0.084 0.731 0.962 0.0297 0.0113
44 0.102 0.063 0.909 1.102 0.0258 0.0339
45 0.156 0.057 0.908 1.102 0.0237 0.0245
48 0.096 0.056 1.108 1.222 0.0255 0.0269
47 0.139 0.047 1.107 1.222 0.0216 0.0180
48 0.089 0.055 1.335 1.379 0.0265 0.0241
49 0.093 0.050 1.334 1.414 0.0242 0.0232
50 0.097 0.046 1,334 1.396 0.0224 0.0193
51 0.103 0.044 1.334 1.396 0.0211 0.0244
52 0.121 0.040 1.334 1.414 0.0195 0.0194
53 0.152 0.040 1.334 1.432 0.0193 0.0165
54 0.095 0.041 1.595 1.674 0.0197 0.0202
55 0.125 0.034 1.594 1.719 0.0163 0.0188
56 0.097 0.034 1.896 1.950 0.0152 0.0118
57 0.142 0.029 1.896 1.977 0.0129 0.0100
58 0.136 0.022 2.636 2.736 0.0068 0.0115
59 0.331 0.028 2.636 2.738 0.0089 0.0068
60 0.465 0.027 3.557 3.566 0.0048 0.0098
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Table 7: Approximate and Exact Values of k] and k! Together with Difference
e-(%) Defined as e, = 100 (Approximate Value-Exact Value)/(Exact Value)
for Empirical Cp.

Run # kr' e r ki’ e r

“approx | exact (%) approx exact (%)
1 0.729 0.734 0.681 0.0433 0.0422 2.607
2 0.908 0.910 0.220 0.0369 0.0364 1.374
3 0.908 0.910 ©0.220 0.0321 0.0317 1.262
4 1.108 1.110 -0.180 0.0372 0.0367 1.362
5 1.108 1.108 0.000 0.0299 0.0297 0.673
6 1.333 1.336 0.225 0.0331 0.0329 0.608
7 1.333 1.335 0.150 0.0264 0.0262 0.763
8 1.333 1.337 0.299 0.0407 0.0402 1.244
9 1.333 1.337 0.299 0.0385 0.0381 1.050
10 1.333 1.335 0.150 0.0322 0.0320 0.625
1 1.333 1.335 0.150 0.0294 0.0292 0.685
12 1.333 1.335 0.150 0.0279 0.0277 0.722
13 1.333 1,335 0.150 0.0264 0.0262 0.763
14 1.333 1.335 -0.150 0.0281 0.0260 0.385
15 1.233 1.335 0,150 0.0301 0.0299 0.669
16 1.593 1.595 0,125 0.0259 0.0258 0.388
17 1.593 1.505 0.125 0.0220 0.0219 0.457
18 1.895 1.896 0.053 0.0198 0.0197 0.508
19 1.895 1.896 -0.053 0.0175 0.0175 0.000
20 2.636 2,636 0.000 0.0094 0.0094 0.000
21 2.636 2.636 0.000 0.0114 0.0114 0.000
22 3.557 3.557 0.000 0.0054 0.0054 0.000
23 0.794 0.797 -0.378 0.0316 0.0310 1.935
24 0.794 0.797 0376 0.0324 0.0318 1.887
25 0.996 0.997 0.100 0.0310 0.0306 1.307
26 0.998 0.996 0.000 0.0289 0.0285 1.404
27 1.223 1.224 -0.082 0.0308 0.0303 0.990
28 1.223 1.223 0.000 0.0256 0.0254 0.787
29 1.484 1.488 -0.269 0.0297 0.0294 1.020
30 1.484 1.487 0.202 0.0269 0.0267 0.749
31 1.484 1.487 0.202 0.0244 0.0242 0.826
32 1.484 1.488 -0.135 0.0228 0.0227 0.441
33 1.484 1.488 0.135 0.0218 0.0215 0.485
34 1.484 1.486 0.135 0.0228 0.0226 0.885
35 1.792 1.794 .11 0.0199 0.0198 0.505
38 1.792 1.793 0.056 0.0171 0.0170 0.588
a7 2.151 2.152 0.046 0.0133 0.0132 0.758
38 2.151 2,152 0.048 0.0126 0.0126 0.000
39 3.029 3.029 0.000 0.0053 0.0053 0.000
40 3.029 3.029 0.000 0.0075 0.0075 0.000
41 4,105 4.108 0.024 0.0037 0.0037 0.000
42 0.729 0.730 0.137 0.0250 0.0248 0.806
0 0.729 0.731 -0.274 0.0301 0.0297 1.2347
44 0.908 0.909 0.110 0.0260 0.0258 0.775
45 0.908 0.908 0.000 0.0238 0.0237 0.422
48 1.108 1.108 0.000 0.0256 0.0255 0.392
47 1.108 1.107 0.090 0.0217 0.0216 0.463
48 1.333 1.335 0.150 0.0266 0.0265 0.377
49 1.333 1.334 0.075 0.0243 0.0242 0.413
50 1.333 1.334 0.075 0.0224 0.0224 0.000
51 1.333 1.334 0.075 0.0211 0.0211 0.000
52 1.333 1.334 0.075 0.0195 0.0195 0.000
53 1.333 1.334 0.075 0.0194 0.0193 0.518
54 1,593 1.595 0.125 0.0198 0.0197 0.508
55 1.593 1.504 0.063 0.0164 0.0163 0.814
56 1.895 1.898 0.053 0.0153 0.0152 0.658
57 1.895 1.896 -0.053 0.0129 0.0129 0.000
58 2.638 2.638 0.000 0.0068 0.0068 0.000
59 2.838 2.638 0.000 0.0089 0.0089 0.000
80 3.557 3,557 0.000 0.0046 0.0046 0.000
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WAVE ATTENUATION BY SUBAERIAL VEGETATION

The analytical solution presented herein is also applicable to subaerial vegetation for which
h = 0 and d is the water depth. For h = 0, the conditions at the interface z = —h given by
Eqgs. 12, 13 and 14 ensure that the free surface boundary conditions given by Eqs. 4 and 5
are satisfied by the solution for the vegetated region. Comparison of Eq. 23 with A = 0 with
Eq. 19 shows that n2 = m for h = 0. Eq. 26 with h = 0 satisfies the dynamic boundary
condition, p; = pgn, at z = 0. Eqgs. 25 and 26 with A = 0 can be shown to satisfy the
kinematic boundary condition, wy = 9n;/0t at z = 0, where 7y is given by Eq. 23 with
h =0 and Eq. 28 with h = 0 reduces to

w? = agtanh(ad) (61)

in which a is defined by Eq. 27. Furthermore, Eqs. 31 and 32 for the case of ¢ < 1 can be

simplified as
w? ~ k.gtanh(k,d) (62)
ki =~ ek, (63)
For the case of subaerial vegetation, the normalized wave number, k. = k.d, and the

normalized decay coefficient, k! = k;d, depend on the normalized deep water wavelength,
L, = 2rg/(dw?), and the dimensionless damping coefficient ¢ which may be estimated using
Eq. 56 with h = 0. In short, the analytical solution obtained for arbitrary A > 0 can be
used to examine the wave attenuation for the case of h = 0 and hence d’ = d/(h+d)=1in

Eq. 33.

. Figs. 9 axld 10 show the computed variations of k. and k! with respect to € in the range
0 <e<1for Ly = 2, 10 and 90, respectively, where k. and k! are the exact values based on
Eq. 61 for arbitrary €. Fig. 9 also shows the ratio of the approximate value of k! based on Eq.
62 to the corresponding exact value, while Fig. 10 shows the ratio of the approximate value

of k; based on Eq. 63 to the corresponding exact value. Comparison of Figs. 9 and 10 with

33



d'=10
4-0_ ///
3.0 Ls'=2
k '
r ' L.'=10
2.0
i
1.0
00 +—T— "1
00 01 02 03 04 056 06 07 08 098 10
&
1.00
iV
~_ 0:95-
P
O 0.90
a
<
«~ 0.85-
£
0.80 -
0.75

T T T T T T T T 1
00 01 02 03 04 06 06 07 08 08 10

*

FIG. 9. Normalized Wave Number k. and Ratio between Approx-
imate and Exact Values of k; as a Function of € with L!
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Figs. 4 and 5 indicates the sensitivity of the computed results to the dimensionless parameter
d’. Fig. 9 indicates that k. is not sensitive to € even for d’ = 1. The difference between
the approximate and exact values of k. is not very large even for large €. The increase of d’
from 0.5 results in a slight decrease of the phase velocity ¢. Fig. 10 shows that the difference
between the approximate and exact values of k! is reduced for d’ = 1 as compared to Fig.
5 for d’ = 0.5. Accordingly, the exact value of k increases approximately linearly with the
increase in € where the approximate value of k} based on Eq. 63 is proportional to ¢. Fig.
10 for d’ = 1 indicates the monotonic decrease of k} with the increase of L/ unlike Fig. 5
for d’ = 0.5. This can be shown using Egs. 62 and 63 for small ¢ and using Eqs. 57 and 58
with @' = 1. Moreover, comparison of Figs. 5 and 10 suggests that k! increases significantly
with the increase of d’ from 0.5 to 1.0. Consequently, subaerial vegetation will be much more

effective in dissipating wave energy than deeply submerged vegetation.

SUMMARY AND CONCLUSIONS

The vertically two-dimensional problem of small-amplitude waves propagating over sub-
merged vegetation without lateral boundaries has been formulated using the continuity and
linearized momentum equations for the regions with and without the vegetation. The effects
of the vegetation on the flow field have been assumed to be expressible in terms of the drag
force acting on the vegetation. Introducing an unknown damping coefficient and linearizing
the drag force, an analytical solution has been obtained for the small-amplitude monochro-
matic wave whose height decays exponentially in the direction of wave propagation. The
unknown damping coefficient has been obtained such that the nonlinear and linearized drag
forces yield approximately the same time-averaged rate of energy dissipation in the vege-
tated region.‘ The expressions for the wave number and the exponential decay coefficient
have been derived for arbitrary damping. It has been shown for the case of small damping
that the wave number approaches that based on the dispersion relationship of linear wave
theory without damping, whereas the exponential decay coefficient approaches that based

on the standard conservation equation of energy based on linear wave theory. However, the
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local flow field has been shown to be affected by the vegetation even for the case of small
damping. This may be important for analyses of phenomena affected by the local flow field,

such as sediment transport in vegetated areas.

The analytical solution derived herein has been compared with the artificial seaweed
experiment conducted by Asano et al. (1988). The measured local wave heights for the
sixty test runs have been shown to follow the exponentially decay fairly well. The drag
coefficient used to express the drag force acting on the vegetation has been calibrated using
the exponential decay coefficient fitted for each run. The assumption of small damping has
been found to be appropriate for these runs. The calibrated drag coefficients have turned
out to vary in a wide range and appear to have been affected by the seaweed motion and
viscous effects, which are neglected in the present analysis. Finally, the analytical solution
derived for submerged vegetation has been shown to be applicable to subaerial vegetation
as well. The analytical results have indicated that subaerial vegetation will be much more -

effective in dissipating wave energy than deeply submerged vegetation.

In conclusion, the standard simple approach based on the conservation equation of energy
a..nd linear wave theory appears to be acceptable in predicting the decay of the local wave
height for most practical applications. The analytical solution presented herein can be used
to quantify the error caused by the assumption of small damping. Extensive field data will
be required to better predict the drag coefficient for different types of vegetation. Moreover,

the standard approach and the present analysis will need to be extended to wind waves.
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APPENDIX A
COMPUTER PROGRAM FOR COMPUTING WAVE
NUMBER AND EXPONENTIAL DECAY COEFFICIENT

This computer program computes the approximate value of k. for given L/ using Eq. 31
for € < 1 and the approximate value of k! for given L/, d’ and € using Eq. 32 for € < 1 where
€ is computed ;.ISing Eq. 56 for given d', Cp and 8 = bN H,/2 together with the computed
approximate value of ;. This program also computes the exact values of k. and k! for given
L;, d' and € using Eq. 28 with Eqs. 27 and 29 where use is made of a Newton-Raphson

iteration method starting from the approximate values of k. and K.
The following input parameters need to be specified:

e beta=f3=>bN H,/2 = dimensionless vegetation parameter
o Id = L}, = g/[27(d + h) f?] = dimensionless wave length
¢ dd = d' = d/(d + h) = dimensionless depth

e ¢d = Cp = drag coefficient
The computer program writes the following output parameters:

¢ eps = € = dimensionless damping coefficient given by Eq. 56
® krd = approximate value of k. = k,(d + h)
e kid = approximate value of k! = k;(d + h)

o kexact = exact value of k. = k.(d + h)

kexacti = exact value of k! = k;(d + h)

ratiol = krd/kexact

ratio2 = kid/kexacti
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It should be noted that the computer program can easily be modified to compute the
approximate and exact values of k. and k for given L/, d’ and ¢ instead of L/, d’, § and

Ch.
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0000000000000 0000Q000O0

hkdkhkkhkhkhhhkdhhhkhhhhkdhAhkhhkhAhhkA kR A hkhkhh b hhhkhkhkrhhhhrkhkhkhkhhkhdhkhdkkik

THIS PROGRAM COMPUTES AND OUTPUTS NORMALIZED WAVENUMBERS
FOR WAVES OVER VEGETATION, GIVEN DIMENSIONLESS INPUT

Output File - final.dat

INPUT

dd=dimensionless depth ld=dimensionless wavelength
cd=drag coefficient beta

OUTPUT

krd=approximate real wavenumber

kid=approximate imaginary wavenumber

kexact=exact real wavenumber

kexacti=exact imaginary wavenumber

ratiol=ratio of approximate to exact real wave #
ratio2=ratio of approximate to exact imaginary wave #

AR A AR AR A KRR AR AR RRKRAAR A AKRARKRARAARRRRAARARRAARARKRRA R A A A A kA hkhkhkhhkhk
implicit double precision (a-z)

double precision kexacti, kexact,kid,krd

open (unit=12,file=’final.dat’)
write(6,*)’input beta’

read (5, *)beta

write(6,*)’input dimensionless wavelength’
read (5, *) 1d

write(6,*)’input dimensionless depth (d/(h+d))’
read (5, *)dd

write(6,*)’input drag coefficient’

read (5, *)cd

pi=4d0*datan(1d0)

Output

write (12,%*) 7INPUT ’
write (12,*)

write (12,81)cd,beta,dd,ld
write (12,*)’

write (12,*)’'OQUTPUT’

write (12,*) ¢ ¢

computation of approximate and exact real and
imaginary wavenumbers

cl=(2d0) *pi/1d
call approx(dd,eps,krd,kid,cl,beta,

1 : cd, pi)
call exact (dd,eps,krd,kid,cl,

1 kexact, kexacti, 1d)
ratiol=krd/kexact
ratio2=kid/kexacti
write (12,*) * kx'’ "

write (12,82) eps,krd,kexact,ratiol
write (12,*) ' !

write (12,%) " ki’ n
write (12,82) eps,kid,kexacti,ratio?

20 continue
81 format (1x,’CD=’,f6.3,3x,’BETA=’,£6.3,3x,"D'=",£6.3,3x,"Lo’=",£6.3,/)
82 format (2x,’epsilon=’,f5.3,3x,'approximate=’,f6.3,
| 5 4x,’'exact=',£6.3,3x, 'ratio=',£f6.3)
en
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c i o L o o o S e o
c SUBROUTINE TO COMPUTE REAL AND IMAGINARY PARTS OF
c APPROXIMATE WAVE NUMBER
c o A e A 2 o e e s o O B O O 0 T T T 0 O O 0 SO B S S RSN S
2
subroutine approx(d2d,eps,krd,kid,cl,beta,cd,pi)
implicit double precision(a-z)
o]
c function statements for use in Newton Raphson computation
f(x,y)=x*tanh (x) -y
df (x)=tanh (x) +(x/ (cosh (x) **2))
err (x,y)=dabs (x-y)
error=1*%*(-6)
o
(e}
c calculation of initial guess(krd0) for Newton Raphson calculation
if (cl.1lt.1.0)then
krd0=dsqgrt (cl)
else
krd0=cl
endif
c
o] Newton Raphson calculation for real part(krd) of wave number
10 krd=krdO- (£ (kxd0,cl) /df (kxd0))
.if (err(krd,krd0).lt.error)then
else
krdO=krd
goto 10
endif
c
c Calculation of imaginary part of wave number
c2d=2.*krd*d2d
b=krd*d2d
al=2./(9.*pi)*cd*beta
eps=al* (dsinh(3.*b)+(9.*dsinh(b)))/
1 (((2.*b)+dsinh(2.*b)) *(dsinh(krd)))
kid=eps*krd* ( (c2d+dsinh(c2d))/((2*krd)+dsinh(2*krd)))
c
return
end
c o o o B e s T T T R AT S RS RS
c
(o) SUBROUTINE TO COMPUTE REAL AND IMAGINARY PARTS OF EXACT
< WAVE NUMBER
c
c B e o o b o T o o e O O A % S S S S S R S A B BT OV T R S TR
subroutine exact (d2d,eps,krd, kid,cl, kexact, kexacti, 1d)
implicit double precision (a-z)
complex*16 tl,sl,ctanh,ccosh,z,z0,cf,cdf,ceps,al,t2,s2,
1 a2
¢
o] function definitions for calculation simplification

tl(c2,z0)=ctanh (c2*z0)
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t2(a2,z0)=ctanh(a2*z0)
81(c2,z0)=1d0/ ( (ccosh(c2*z0) ) **2d0)
s2(a2,z0)=1d0/ ((ccosh(a2*z0)) **2d0)

c function definitions for use in Newton-Raphson calculation

cf(z0,al,a2,cl,c2)=z0*(tl(c2,20)+al*t2(a2,z0))-cl*(1d0+al*t2(a2,z0)
1 *tl(c2,z0))

cdf (z0,al,a2,cl,c2)=tl(c2,2z0)+al*t2(a2,z0)+z0*((c2*sl(c2,2z0))
1. +(al*a2*s2(a2,z0)))=cl*al*((a2*tl(c2,20)*s2(a2,z0))
1 +(t2(a2,z0) *c2*sl(c2,z0)))

realerr(z,z0)=dabs (dreal(z)-dreal (z0))

imerr (z,z0)=dabs (dimag(z)-dimag (z0) )

error=1**(-§)

c calculation of constants

c2=1-d2d

epsl=2. *eps
ceps=dcmplx (1d0, epsl)
al=ceps**(-0.5)
a2=al*d2d

c initial guess for Newton-Raphson calculation
z0=dcmplx (kxrd, kid)
c Newton -Raphson calculation

200 z=20-(cf(z0,al,a2,cl,c2)/cdf(z0,al,a2,cl,c2))
if ((realerr(z,z0).lt.error).and. (imerr(z,z0).1lt.error))then
else
z0=2z
goto 200
endif
kexact=dreal (z)
kexacti=dimag(z)
return
end
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DEFINITION OF COMPLEX HYPERBOLIC FUNCTIONS
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function ccosh(z0)
complex*16 z0, ccosh
double precision a,b
a=dreal (z0)
b=dimag (z0)
ccosh=dcmplx (dcosh(a) *dcos (b) ,dsinh (a) *dsin (b))
return

end

function ctanh(z0)
complex*16 z0,ctanh
double precision a,b,denom
a=dreal (z0)
b=dimag(z0)
denom=(dcosh (2*a) +dcos (2*b) )
ctanh=dcmplx ( (dsinh(2*a)) /denom, (dsin (2*b)) /denom)
return
end
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APPENDIX B
REGRESSION ANALYSIS OF MEASURED WAVE
HEIGHTS FOR EACH OF SIXTY TEST RUNS

For each of sixty runs, the following quantities are listed:

e ki = KI = fitted exponential decay coefficient (cm~1)

e H, = HO = fitted wave height at 2 = 0 (cm)

Measured wave heights H (cm) at z = 0, 200, 400 and 600 cm

Fitted wave heights H (cm) at z = 0, 200, 400 and 600 cm using Eq. 17

e Correlation coefficient indicating the degree of the fit.
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AVERAGE CORRELATION COEFFICIENT=0.959
- BEST CORRELATION COEFFICIENT=0.998
WORST CORRELATION COEFFICIENT=0.780

RUN # 1

KI=.000439 (cm-1) HO= 3.60 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 3.800 3.100 2.900 2.900
FITTED H (cm) 3.599 3.296 3.019 2.766
CORRELATION COEFFICIENT=0.894

RUN # 2

KI=.000887 (cm-1) H0=10.94 (cm)

X (cm) 0. 200. 400, 600.
MEASURED H (cm) 10.800 9.500 7.400 6.500
FITTED H (cm) 10.935 9.158 7.670 6.424
CORRELATION COEFFICIENT=0.991

RUN # 3

KI=.000862 (cm-1) HO= 7.31(cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 7.200 6.400 5.000 4.400
FITTED H (cm) 7.308 6.151 5.177 4.357
CORRELATION COEFFICIENT=0.989

RUN # 4

KI=.000902 (cm-1) H0=13.38 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 13.600 10.700 9.700 7.700
FITTED H (cm) 13.385 11.175 9.330 7.789
CORRELATION COEFFICIENT=0.988

RUN # 5

KI=.000756(cm-1) HO= B8.44 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 8.400 7.100 6.600 5.200
FITTED H (cm) 8.438 7.254 6.237 5.362

CORRELATION COEFFICIENT=0,983
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RUN # 6

KI=.000901(cm-1) HO0=14.34 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 14.700 11.600 9.900 8.500
FITTED H (cm) 14.341 11.977 10.002 8.353
CORRELATION COEFFICIENT=0.993

RUN # 7

KI=.000704 (cm-1) HO= 8.69 (cm)

X (cm) 0. 200, 400. 600.
MEASURED H (cm) 8.900 7.200 6.700 5.700
FITTED H (cm) 8.688 7547 6.555 5.694
CORRELATION COEFFICIENT=0.983

RUN # 8

KI=.000919 (cm-1) H0=18.85 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 19.300 15.300 12.800 11.100
FITTED H (cm) 18.855 15.689 13.055 10.863
CORRELATION COEFFICIENT=0.994

RUN # 9

KI=.001011(cm-1) H0=17.59 (cm)

X (cm) 0 200, 400. 600.
MEASURED H (cm) 18.400 13.700 11.300 10.000
FITTED H (cm) 17.594 14.373 11.742 9.593
CORRELATION COEFFICIENT=0.983

RUN # 10

KI=.000824 (cm-1) H0=13.75 (cm)

X (cm) (4 I 200. 400. 600.
MEASURED H (cm) 14.000 11.400 9.800 8.500
FITTED H (cm) 13.750 11.660 9.888 8.386
CORBELATION COEFFICIENT=0.996

RUN # 11

KI=.000677 (cm-1) H0=11.77 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 12.200 10.000 8.500 8.200
FITTED H (cm) 11.766 10.276 8.974 7.837

CORRELATION COEFFICIENT=0.970
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RUN # 12

KI=.000774 (cm-1) HO=10.47 (cm)’

X (cm) 0. 200. 400, 600.
MEASURED H (cm) 10.600 8.900 7.500 6.700
FITTED H (cm) 10.466 8.965 7.680 6.579
CORRELATION COEFFICIENT=0,996

RUN # 13

KI=.000770(cm-1) HO= 8,65 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 8.900 7.200 6.200 5.600
FITTED H (cm) 8.652 7417 6.359 5.452
CORRELATION COEFFICIENT=0.988

RUN # 14

KI=,000734 (cm-1) HO= 7.22 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 7.400 6.000 5.400 4.700
FITTED H (cm) 7.220 6.235 5.384 4.649
CORRELATION COEFFICIENT=0.989

RUN # 15

KI=.000560 (cm-1) HO= 4.84 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 5.000 4.100 3.900 3.500
FITTED H (cm) 4.838 4.326 3.867 3.457
CORRELATION COEFFICIENT=0.967

RUN # 16

KI=.000733(cm-1) H0=13.67 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 14.000 11.500 10.000 9.000
FITTED H (cm) 13.668 11.806 10.196 8.807
CORRELATION COEFFICIENT=0.990

RUN # 17

KI=.000578 (cm-1) HO= 8.14 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 8.200 7.200 6.400 5.800
FITTED H (cm) 8.138 7.249 6.458 5.752

CORRELATION COEFFICIENT=0.998
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RUN # 18

CORRELATION COEFFICIENT=(0.987
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KI=.000465(cm-1) HO=13.89 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 13.800 12.700 11.700 10.400
FITTED H (cm) 13.895 12.660 11.535 10.510
CORRELATION COEFFICIENT=0.996

RUN # 19

KI=.000388 (cm~-1) HO= 8.84(cm)

X (cm) 0. 200. 400, 600.
MEASURED H (cm) 9.000 8.000 7.500 7.100
FITTED H (cm) 8.840 8.180 7.569 7.004
CORRELATION COEFFICIENT=0.982

RUN # 20

KI=.000298 (cm-1) HO= 9.46(cm)

X (cm) 0. 200. 400, 600.
MEASURED H (cm) 9.800 8.400 8.500 8.000
FITTED H (cm) 9.460 8.912 8.395 7.909
CORRELATION COEFFICIENT=0.885

RUN # 21

KI=.000373(cm-1) HO= 6.52 (cm)

X (cm) 0. 200. 400, 600.
MEASURED H (cm) 6.600 6.000 5.500 5.300
FITTED H (cm) 6.518 6.050 5.616 5.212
CORRELATION COEFFICIENT=0.985

RUN # 22

KI=.000356 (cm=1) HO= 7.93(cm)

X (cm) 0. 200. 400. 600 .
MEASURED H (cm) 8.200 7.000 6.900 6.500
FITTED H (cm) 7.925 7.381 6.874 6.402
CORRELATION COEFFICIENT=0.926

RUN # 23

KI=.000540 (cm-1) HO= 8.75(cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 8.600 8.100 7.000 6.300
FITTED H (cm) 8.754 7.858 7.054 6.332



RUN # 24

KI=.000420 (cm-1) HO= 5.56 (cm)

X (cm) (4 I 200. 400. 600,
MEASURED H (cm) 5.500 5.200 4,700 4.300
FITTED H (cm) 5561 5.113 4.702 4,323
CORRELATION COEFFICIENT=0.993

RUN # 25

KI=.000473 (cm-1) H0=11.04 (cm)

X (crh) 0. 200. 400. 600.
MEASURED H (cm) 11.500 9.800 8.500 8.800
FITTED H (cm) 11.041 10.046 9.140 8.316
CORRELATION COEFFICIENT=0,914

RUN # 26

KI=.000390 (cm-1) HO= 6.76(cm)

X (cm) 0. 200. 400. 600,
MEASURED H (cm) 6.900 6.400 5200 e A DX |
FITTED H (cm) 6.762 6.254 5.785 5.350
CORRELATION COEFFICIENT=0.838

RUN # 27

KI=.000523(cm-1) H0=14.41 (cm)

X (cm) 0. 200. 400. 600,
MEASURED H (cm) 14.400 13.200 11.300 10.700
FITTED H (cm) 14.405 12.974 11.685 10.524
CORRELATION COEFFICIENT=0.987

RUN # 28

KI=.000484 (cm-1) HO= 9.19(cm)

X (cm) 0. 200. 400. 600,
MEASURED H (cm) 9.300 8.300 7.400 7.000
FITTED H (cm) 9.193 8.346 7.577 6.878
CORRELATION COEFFICIENT=0.991

RUN # 29

KI=.000602 (cm=-1) H0=19.38 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 19.000 17.600 15.400 13.300
FITTED H (cm) 19.378 17.181 15.233 13.505

CORRELATION COEFFICIENT=0,990
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RUN # 30

KI=.000536 (cm-1) HO0=16.82 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 16.600 15.400 13.600 12.100
FITTED H (cm) 16.822 15.111 13.573 12.193
CORRELATION COEFFICIENT=0.994

RUN # 31

KI=.000454 (cm-1) H0=14.22 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 13.900 13.300 12.100 10.600
FITTED H (cm) 14.219 12.985 11.859 10.830
CORRELATION COEFFICIENT=0.976

RUN # 32

KI=.000454 (cm-1) HO0=12.31 (cm)

X (cm) 2 19 200. 400. 600.
MEASURED H (cm) 11.900 11.800 10.300 9.200
FITTED H (cm) 12.307 11.239 10.264 9.373
CORRELATION COEFFICIENT=0.948

RUN # 33

KI=.000396 (cm-1) HO= 9.70 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 9.600 9.100 8.300 7.600
FITTED H (cm) 9.704 8.964 8.281 7.650
CORRELATION COEFFICIENT=0.993

RUN # 34

KI=.000354 (cm-1) HO= 6.98 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 6.800 6.800 6.000 5.600
FITTED H (cm) 6.981 6.504 6.060 5.646
CORRELATION COEFFICIENT=0.940

RUN # 35

KI=.000436 (cm-1) HO0=17.16 (cm)

X (cm) 4 (8 200. 400. 600,
MEASURED H (cm) 17.100 15.700 14.600 13.100
FITTED H (cm) 17,157 15.724 14.411 13.208

CORRELATION COEFFICIENT=0.997
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RUN # 36

CORRELATION COEFFICIENT=0.796
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KI=.000438 (cm=-1) HO0=11.58 (cm)

X (cm) 0. 200, 400. 600,
MEASURED H (cm) 11..700 10.500 9.600 9.000
'FITTED H (cm) 11.577 10.605 9.715 8.899
CORRELATION COEFFICIENT=0.994

RUN # 37

KI=,000343(cm-1) H0=17.04 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 16.900 16.100 14.900 13.800
FITTED H (cm) 17.045 15.916 14.861 13.877
CORRELATION COEFFICIENT=0.994

RUN # 38

KI=,000294 (cm-1) HO= 9.58 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 9.200 9.400 8.900 7.700
FITTED H (cm) 9.584 9.036 8.520 8.033
CORRELATION COEFFICIENT=0.833

RUN # 39

KI=.000314 (cm-1) HO0=12.19 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 11.900 11.900 10.700 10.000
FITTED H (cm) 12.191 11.449 10.752 10.097
CORRELATION COEFFICIENT=0.942

RUN # 40

KI=.000168 (cm=-1) HO= 7.56 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 7.400 7.600 7.000 6.800
FITTED H (cm) =565 7.315 7.073 6.840
CORRELATION COEFFICIENT=0.844

RUN # 41

KI=.000194 (cm-1) HO= 8.07 (cm)

X (cm) (0 200. 400, 600.
MEASURED H (cm) 7.800 8.100 7.600 7.000
FITTED H (cm) 8.071 7.763 7.468 7.183



RUN # 42

CORRELATION COEFFICIENT=0.874
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KI=.000364 (cm-1) HO= 6.28 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 6.500 5.500 5.500 5.100
-FITTED H (cm) 6.276 5.836 5.426 5.045
CORRELATION COEFFICIENT=0.917

RUN # 43

KI=.000252 (cm-1) HO= 3,90 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 4.100 3.500 3.400 3.500
FITTED H (cm) 3.899 3.707 3.525 3.352
CORRELATION COEFFICIENT=0.780

RUN # 44

KI=.000754 (cm-1) H0=10.01 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 10.000 8.800 7.100 6.500
FITTED H (cm) 10.008 8.608 7.404 6.368
CORRELATION COEFFICIENT=0.990

RUN # 45

KI=.000544 (cm~1) HO= 6.02 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 6.000 5.500 4.700 4.400
FITTED H (cm) 6.017 5.397 4.841 4.342
CORRELATION COEFFICIENT=0.989

RUN # 46

KI=.000597 (cm-1) HO0=12.03 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 12.300 10.200 9.700 8.400
FITTED H (cm) 12.028 10.674 9.472 8.406
CORRELATION COEFFICIENT=0.978

RUN # 47

KI=.000400(cm~1) HO= 7.04 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 7.300 6.000 6.300 5.500
FITTED H (cm) 7.038 6.496 5.997 5.535



RUN # 48

KI=.000536 (cm-1) H0=16.15 (cm)

X (cm) 0. 200, 400. 600.
MEASURED H (cm) 16.500 14.000 13.100 11.800
FITTED H (cm) 16.145 14.504 13.029 11.704

CORRELATION COEFFICIENT=0,983

RUN # 49

KI=.000516 (cm-1) HO0=14.20 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 14.500 12.500 11.400 10.600
FITTED H (cm) 14.202 12.809 11.553 10.421

CORRELATION COEFFICIENT=0.986

RUN # 50

KI=,000428 (cm-1) H0=12.50 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 12.800 11.100 10.500 9.800
FITTED H (cm) 12.504 11.477 10.535 9.670

CORRELATION COEFFICIENT=0.975

RUN # 51

KI=.000542 (cm-1) H0=11.15(cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 11.300 9.800 9.000 8.100
FITTED H (cm) 31.153 10.007 B.979 8.056

CORRELATION COEFFICIENT=0.994

RUN # 52

KI=.000432 (cm~-1) HO= 8.78 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 9.000 7.800 7.300 6.900
FITTED H (cm) 8.777 8.051 7.385 6.775

CORRELATION COEFFICIENT=0.973

RUN # 53

KI=.000368 (cm-1) HO= 6.90 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 7.000 6.300 5.900 5.600
FITTED H (cm) 6.898 6.410 5.855 5533

CORRELATION COEFFICIENT=0.986
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RUN # 54

KI=.000450 (cm-1) HO=14.46 (cm)

X (cm) 0. 200. 400. 600 .
MEASURED H (cm) 14.500 13.100 12.200 11.000
FITTED H (cm) 14.462 13,217 12.080 11.040
CORRELATION COEFFICIENT=0.998

RUN # 55

KI=.000412 (cm-1) HO= 9.10 (cm)

X (em) 0. 200. 400. 600.
MEASURED H (cm) 9.200 8.300 7.600 7.200
FITTED H (cm) 9.097 8.378 7.716 7.106
CORRELATION COEFFICIENT=0.992

RUN # 56

KI=,000263 (cm-1) H0=15.07 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 15.300 14.000 13.500 13.000
FITTED H (cm) 15.065 14.295 13.564 12.870
CORRELATION COEFFICIENT=0.972

RUN # 57

KI=.000221(cm-1) HO= 8.70 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 8.700 8.300 8.000 7.600
FITTED H (cm) 8.698 8.322 7.962 7.617
CORRELATION COEFFICIENT=0.998

RUN # 58

KI=,000255 (cm=-1) HO=11.39(cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 11.700 10.500 10.100 10.000
FITTED H (cm) 11.393  10.827 10.289 9.777
CORRELATION COEFFICIENT=0.919

RUN # 59

KI=.000147 (cm-1) HO= 6.08 (cm)

X (cm) 0. 200. 400. 600.
MEASURED H (cm) 6.100 5.800 5.900 5.500
FITTED H (cm) 6.083 5.907 5.736 5.570

CORRELATION COEFFICIENT=0.876
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RUN # 60

KI=_ 000218 (cm=-1) HO= 6,
X (cm) 0.
MEASURED H (cm) 6.900
FITTED H (cm) 6.823

CORRELATION COEFFICIENT=0.969

82 (cm)

200. 400.
6.400 6.300
6.532 6.254

600.
6.000
5.988
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