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Chapter 1

INTRODUCTION

Waves breaking on a beach set up mean currents in the nearshore region. These
mean currents play a crucial role in the hydrodynamics of the coastal zone. Of particular
concern in recent years has been beach erosion and water quality in the coastal ocean.

An understanding of the nearshore circulation patterns is fundamental to the mod-
elling of the sediment transport in the surf-zone which is required to predict coastal ero-
sion/accretion. Predictions of pollutant dispersal in coastal waters also require a knowl-
edge of nearshore circulations. Clearly, therefore, there exists a need for comprehensive
models that predict the effects of various factors on nearshore circulation patterns.

Because of their complexity, comprehensive models of coastal processes have long
been restricted to physical models. Physical models are both time consuming and expen-
sive and are plagued by scale effects. Also, the isolation of the effects of different terms in
the governing equations on the circulation is not always possible by using physical mod-
els. Numerical models do not have these shortcomings but require that the fundamental
processes be well understood. The present work is an effort to understand the various
mechanisms controlling the mean circulation in the nearshore region.

The circulation in the nearshore region may be studied either using time dependent
models that account for wave propagation or by using a wave averaged model that assumes
that the motion may be split into a “wave” part and a “current” part. The advantage
of the first type of models is that there is no need to differentiate between the wave and
current parts of the motion. This is a significant advantage while dealing with the motion
above the wave trough level. The disadvantage is that such models are extremely time
consuming. The second type of models assume that the wave motion is already known.

For this to be a good assumption the quasi-uniform wave approximation should hold and



the width of the surf-zone should be at least several times the wavelength at breaking
(Battjes 1988).

The mean circulation in the nearshore region is usually studied using the wave
averaged equations of mass, momentum and energy. It turns out that the concept of the
radiation stress introduced by Longuet-Higgins & Stewart (1960) is fundamental when
dealing with the wave averaged equations. This quantity represents the interaction of
the waves and currents and plays a role similar to the role of the Reynolds’ stresses in
ensemble averaged equations.

Since the introduction of the concept of the radiation stress the wave averaged
equations have been used successfully to make significant progress with regard to the un-
derstanding of the mechanisms responsible for various phenomena in the nearshore region.
An extremely lucid account of the radiation stress and its early applications is given by
Longuet-Higgins & Stewart (1964). Pioneering contributions that have used the concept
of radiation stress to explain various phenomena in the nearshore region include the varia-
tions of the mean water surface in the nearshore region (Longuet-Higgins & Stewart 1963,
Bowen et al. 1968), the phenomenon of “surf-beat” (Longuet-Higgins & Stewart 1962,
Symmonds et al. 1982), predictions of longshore currents (Bowen 1969a, Thornton 1970,
Longuet-Higgins 1970), mechanisms for rip-currents (Bowen 1969b, Dalrymple & Lozano
1978), undertow modelling (Dyhr-Nielsen & Sorensen 1970, Dally 1980, Borecki 1982,
Svendsen 1984b), side band instability of wave groups to explain extremely low frequency

motions in the nearshore (Shemer et al. 1991).

1.1 A brief overview of nearshore circulation on a long, straight beach

In this section we give a very brief overview of the presently accepted view of the
mean circulation patterns in the nearshore region. Some of the phenomena mentioned
below are investigated further in the present thesis. In such a situation, a brief review
of the state of the art is presented at the beginning of the appropriate chapter. In the
following the chapter referred to at the end of a paragraph contains the brief review

of the phenomenon discussed in that particular paragraph. For the references to work



not developed in this thesis and a general review of the state of the art of nearshore
hydrodynamics, we refer the reader to the review article by Battjes (1988).

As gravity waves advance from deep water, they begin to feel the bottom and
shoal. As they shoal, in the absence of energy dissipation the cross-shore component
of the radiation stress increases and this causes a set-down of the mean water surface.
Subsequent to wave breaking the wave height decreases and this causes a decrease of the
radiation stress which causes a set-up of the mean water surface. (Chapter 3.)

The different contributions to the radiation stresses are not evenly distributed over
depth. This creates an imbalance at every depth location. This imbalance drives the
undertow which is a return current that balances the volume flux due to the waves in the
direction of propagation. (Chapter 5.)

If the incoming wave train approaches the shore obliquely, the decrease of the
longshore component of the radiation stress in the cross-shore direction sets up a current
parallel to the shore, the so-called longshore current. (Chapter 5.)

On long, straight coasts one often finds rip currents — narrow currents that flow
seaward and are often regularly spaced along the beach. Several mechanisms have been
proposed to explain these currents.

If the incoming wave train has some time variability (due to groupiness, for exam-
ple) then the set-up and set-down become time dependent and a low frequency motion,
the so called surf-beat, becomes associated with the time variation of the mean water
surface.

The shallow water equations admit free wave solutions that are bound to the shore
and are progressive or standing in the alongshore direction. The wave motions represented
by these solutions are called edge waves and are interference patterns that are trapped
near the shoreline by refraction. They have exponentially decaying amplitudes in the
cross-shore direction. Edge waves have frequencies that are much lower than the incident
gravity waves and combined with the surf-beat form the so-called infra-gravity band of
motions in the nearshore region.

Recently extremely low frequency motions (with frequencies significantly lower than



that of edge waves) have been observed in the nearshore region. These motions were
identified and mechanisms to explain these motions were proposed after the publication

of the review article by Battjes and, therefore, do not figure in that article. (Chapter 7.)

1.2 Outline of the present work

The present work concentrates on the mean circulation on a long, straight beach.
We do not account for rip-currents here. Traditional low frequency motions in the surf-
zone, viz., surf-beats and edge waves are not addressed in this thesis. We refer the reader
to the recent work of Schaffer (1990) in addition to Battjes (1988) for a discussion of the
state of the art of infra-gravity motions.

In chapter 2 we derive the equations that govern the mean circulation and water
level variation in the nearshore region. The equations derived here allow for the possibility
of the currents having a vertical structure. These equations are then simplified for the
case of a long straight beach. We also give an extensive discussion of the simplifications
afforded by the assumption of alongshore uniformity.

Chapter 3 analyzes available measurements of set-up and wave height variations in
order to determine the proper variation of the radiation stresses and energy dissipation
rates across the surf-zone. The procedure is then extended to the 2D horizontal situation
to estimate variations of the longshore component of the radiation stress which acts as a
forcing for the longshore currents.

In the alongshore direction the forcing is resisted by the bottom stress. A quadratic
bottom friction formulation is presented in chapter 4. Some interesting implications of
the quadratic law are discussed there.

Chapter 5 discusses the prediction of 2D horizontal currents and the extraction of
the vertical structure from these currents. A perturbation scheme is developed for the
longshore current prediction. The numerical scheme developed is used to study the effects
of various factors on longshore currents.

Chapter 6 examines the effect of the interaction of the longshore current and the

undertow. The mixing caused by this interaction is analyzed in order to determine whether



the interaction could account for the mixing level required to predict cross-shore variations
of the longshore current.

Recent work by Bowen & Holman (1989) suggests that longshore currents may be
unstable to perturbations of the velocity field and the resulting motions (termed “shear
waves” ) may possibly explain the observed low-frequency motions in the surf-zone (Tang &
Dalrymple 1988, Oltman-Shay et al. 1989). Chapter 7 uses a numerical technique to solve
the stability equation and extends the stability analysis carried out by Bowen & Holman to
more general situations. Also, the effect of a longshore bar on the stability characteristics
is examined in some detail. Estimates of the viscous threshold and relevance to laboratory
measurements are also given.

Chapter 8 summarizes the work and concludes the same with suggestions for future
work.

This report has four appendices. Appendix A contains figures that show the vari-
ations of the experimental data analyzed in chapter 3. In appendix B we show, following
James (1974a), that the longshore component of the radiation stress is conserved outside
the surf-zone. Appendix C contains the details of a derivation of an equation in chapter

5. The numerical scheme used in chapter 7 is described in appendix D.

1.3 Important notations and terminology used in this report

In this report, we will find it convenient to use a co-ordinate system that measures
the cross-shore distance from the mean shore line. Therefore, we will have z = 0 repre-
senting the mean shore line and positive z representing the region of interest. The mea-
surements analyzed in chapter 3 were, for the most part, reported using the cross-shore
co-ordinate increasing towards the shoreline. Visser (1982, 1984) reports his measure-
ments using a co-ordinate system that originates at the mean shoreline and is increasing
seawards. To avoid confusion, we have, in chapter 3, plotted Visser’s measurements us-
ing a co-ordinate system that increases towards the mean shoreline. The origin of this
co-ordinate system is fixed at the wave maker location. When plotting the original data
points from the experiments analyzed in chapter 3 we use the upper case X to denote the

cross-shore co-ordinate increasing towards the shoreline.



Other important variables that will be used here include, hg the undisturbed depth
of the water column, b = (£) the set-up, h = ho + b the total depth of the water column,
H the wave height, 7 the instantaneous free surface measured from the mean water level,
¢ = b+ 1 the instantaneous free surface measured from the still water level, ( = z + ho
the distance from the bottom, hy the total water depth at the break point, z = z.

In a number of discussions we will be using the description linear theory estimate
of the radiation stress, or mass flux, etc. What is meant by this is the estimate of the
radiation stresses/mass fluxes derived using the results of linear wave theory. All these

are second order quantities and are correct to that order.



Chapter 2

DERIVATION OF THE EQUATIONS GOVERNING THE WAVE
AVERAGED MEAN CIRCULATION

In this chapter we will derive and discuss equations that govern the mean circulation
in the nearshore region. The depth integrated equations as well as equations governing
the depth variations are derived. The depth integration of the continuity and momentum
equations for the case of currents that are constant over depth are well known, and, when
these integrated equations are wave averaged they lead to the familiar equations governing
the mean quantities (set-up and currents) in the nearshore region (see, e.g., Phillips 1977
p. 62 or Mei 1983 p. 454). The equations derived in the present chapter are valid for the
case where the currents have a vertical variation.

For the continuity equation the extension to currents varying with depth is straight-
forward. The depth integration of the momentum equations, on the other hand, turns out
to add more than just algebraic complexity relative to the case where the currents are
constant over depth.

It also turns out that the equation governing the depth variation of the currents
cannot be integrated directly to give the integrated equations. The reason for this is also
analyzed here.

In this thesis we concentrate on the case of a long, straight beach with straight and
parallel depth contours. The general equations derived are simplified for that topography.

An extensive discussion of the simplifications afforded by this topography is also given.



2.1 Depth integration of the governing equations
2.1.1 Definitions of the velocities and boundary conditions

Let u;(t) be the instantaneous fluid velocity in the z; direction (i = 1,2) and w be
the vertical velocity (throughout this chapter we will use the indices 7, j to represent the
horizontal co-ordinates, velocities, etc.; the vertical co-ordinate and velocity will be covered
separately by z and w). These velocities are split into current and oscillatory parts. Below
trough level the splitting into the two parts is straightforward — we define the mean of the
velocity to be the current. Above trough level, the splitting is not so straightforward. In
this region there is water only part of the time and the usual definition of the currents as
the time average of the instantaneous velocity does not work very well. This is because
there is a net mass flux due to the waves in the direction of wave propagation and some
of the non-zero time averaged velocity is due to the wave motion itself. Assuming that
there is no current above trough level is not satisfactory either. For the time being, we
will assume that there is a current above trough level.

As suggested by the discussion above, the specification/determination of this cur-
rent requires additional discussion. One way to specify the current above trough level
could be to assume that the mathematical expression that is valid below trough level is
valid above that level too. This assumption is implicit in the derivations given in Phillips
(1977) and Mei (1983). These derivations are for currents that do not vary with the verti-
cal coordinate and anything other than the assumption that the current has the same value
both below and above the trough level would be inconsistent. However, there seems to be
reason to believe that this suggestion might not model the physical situation accurately
(see chapter 6).

The oscillatory part of the velocity is further split into a wave part and a turbulent
fluctuation. In the present work we use a definition of the wave velocity (and, therefore,
the current) similar to that used by Phillips (1977). This definition is slightly different
from that used by Mei (1983).

To clearly isolate the mechanisms responsible for the creation of the currents, the

current is split, following Phillips, into a “return” current and an “external” current. The



“return” current is envisaged as being forced by reasons of continuity and the “external”
current is defined as the part that is forced by momentum considerations. The depth
integrated value of the external current should equal the externally imposed mass flux.
The return current compensates for the wave induced mass flux if there is a constraint on
the flow, e.g., a wall that blocks off the flow. If there is no such constraint then the return
current would be zero. The benefit of the splitting adopted here will become apparent
while discussing the depth integration of the momentum equations. Mathematically, these

definitions read
ui(z;, 2, t) = uoi(&"i&z%t) + Uri(z;, z) + Uei(z;,2) (2.1)

where U, stands for the return current and U, the external current. u, represents the

oscillatory component which is further split as below
Ui, 2, 1) = Uwi(2j, 2, 1) + ui(Zj,2,1) (2.2)

The subscript w is used to denote the wave induced velocity and a prime the turbulent
fluctuation. Below trough level (z < &, see figure 2.1 which defines the various vertical

co-ordinates and locations used in this thesis) we have
uwi(2j,2,t) = 0 (2.3)

The overbar represents a time average (over a wave period). Between trough and crest

the wave induced velocity gives

3

~/E “wi(xjazst)dz = Qsi (2.4)
t

where () is the volume flux due to the wave motion. In addition,

u(z;,2,t) =0 (2.5)

throughout the water column. Furthermore, for later convenience we assume that the
return current is zero above trough level.

The kinematic free surface and bottom boundary conditions read (summation over
the repeated index is implied)

Kinematic Free Surface Boundary Condition (KFSBC) (at z = §(z;,1))
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Figure 2.1: Definition sketch for the vertical co-ordinates

o 9 _
9t T %ige; =Y (2.6)

The above condition is applied at the instantaneous free surface z = £(zj,1).

Bottom Boundary Condition (BBC) (at z = —ho(2;), top of the bottom boundary layer)

Oh
= (o +Uj) 5> = (wu + W) (2.7)
%3

Because the BBC is applied at the top of the boundary layer only the wave and current
parts will satisfy the BBC. The turbulent fluctuations will, in general, not satisfy the
BBC at the top of the boundary layer. This is related to the layered approach where the
boundary layer supplies a stress condition for the core/middle layer. This approach is

described in the next section.

2.1.2 Depth integration of the continuity equation

The continuity equation reads
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du;
—_—= 24
9z; +3 52 =0 (2.8)
Integrating the above from z = —hq to z = £ using Leibniz’ rule and using the KFSBC
and BBC leads to

o, 0 g (Oho
3t+6 /_houjdz (uiaxj+w _ku—(} (2.9)

Time averaging the above and introducing the splitting of the horizontal velocity vector

leads to

o [ o &
EELM@%+&”&+8 stz = 0 (2.10)

or introducing (2.4)
f %a+f Upidz+Qui| =0 (2.11)
B:c_, ik

2.1.3 Depth integration of the momentum equations
The horizontal momentum equations neglecting the viscous stresses (outside the
bottom boundary layer) read

du;  Ouju; du;w 19P
9t ' Ou; T 5z Y (o12)

We will first integrate the above equation up to trough level. The reason for doing this

is that, in order to overcome the difficulty of dealing with the fluid motion above trough
level, some authors (Hansen & Svendsen 1984, Stive & Wind 1986) have suggested that a
three layered description of the fluid column be used. In such a model the water column is
divided into three layers — the bottom boundary layer, the middle layer and a surface layer.
The momentum equation is solved in the middle layer with stress conditions applied at the
bottom of the middle layer and at the top of the middle layer. These stresses represent the
interaction of the middle layer with the other two layers. This approach is an extension of
the more common two-layer approach wherein the water column is split into a boundary
layer and a core layer. If the boundary stresses can be specified without reference to the
fluid motion in the boundary and surface layers, the three layer approach is an attractive

one for it reduces the complexity of the problem considerably.
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Integrating (2.12) from z = —hg to the trough level z = & leads to, after using

@),

€ o
&f uidz + B—xj (/—ha ugujdz) (u,u_?)& E + (wiw)e, =

_% {'a?c__,- _1 Pdz— P&g—i men g S, 4 o) 4+ mgl=ha) o - } (2.13)
where
1i(—ho) = —puiw’)_p, (2.14)
and
7ij(—ho) = — ,u_?) " (2.15)

The 7; and 7;; terms might require some explanation. These terms represent the turbulent
stresses at the top of the bottom boundary layer. The level z = —hg represents the top of
the bottom boundary layer. As pointed out before, at this location the bottom boundary
condition as specified by (2.7) applies only to the wave and current parts and does not
apply to the turbulent fluctuation. These terms represent this residue. These terms are
equivalent to the 7;3 and 7;; that Mei finds in his derivation (see Mei 1983, p. 456, equation
2.14).
Time averaging (2.13) leads to

0 £e ioans 1 0 £ _—
3_5‘33' (.[..hu u,’u,dz) (ﬂ:uj)& + (Ugw)& {333 sz P&gz—‘_—

o
0x;

P + Ti(—ho) + T’ij("ho)‘g—?_‘} (2.16)

To use (2.16) to predict the time averaged currents we need to know the effective
shear stress at trough level Pg,8¢,/0z;. To evaluate this quantity we need either a de-
scription of the fluid motion above the trough level or a parametrization of this stress,
perhaps, in terms of a convenient velocity similar to the one normally adopted for the

bottom stress.
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To evaluate the effective shear stress at trough level integrate (2.12) from z = & to

z = £(t). After using the KFSBC we get

¢ € i3
%j uidz + 323/ uiujdz + (ui) e, EJ (uiw)e,
1l @ 9 9
= - {Bx_, 4 Pdz + Pe— Bz, - Py B2; } (2.17)

which after time averaging and assuming that P; = 0 leads to

119 03
_f ujujdz + (Uu;),, 3 - (ww),, = {fh Pdz + P, 35 } (2.18)
Eliminating the quantity Pg,0&:/8z; between (2.17) and (2.18) we get

e [/ (UaiUsj + UsiUsj + UpiUsj + UrilUs;) dz
..'f

£
- (uw.-ch + Ui Upj + %uwjUci + wjUri) dz + ./ho uiu}dz + _/h uwguwjdz}
5: - —np

1] 8 [¢ —  Oh oh
=__{a$‘ » szﬁp_hoa = + 1i(—ho) + T5(~ ho) 5 “} (2.19)

The interpretation of (2.19) is relatively straightforward. The LHS represents the change
in the mean momentum flux of the water column and the RHS the total force acting
on the water column. The first term of the LHS represents the momentum flux due to
the currents, the second due to the interaction of the currents with the wave induced
velocities above trough level and the third and fourth terms represent respectively the
mean momentum fluxes due to the turbulent fluctuations and the wave induced velocities
respectively. The first term on the RHS represents the forcing from the mean pressure
gradient, the second term contains the effect of the sloping bottom and the last two terms
make up the bottom resistance.

Note that (2.19) could have been obtained more directly by integrating (2.12) from
z = —hg to z = £ and time averaging after using the BBC and the KFSBC which is
essentially what is done here, albeit, in a round about fashion. The reason for doing this
is that if there were some means of specifying the effective shear stress at trough level

externally then (2.16) may be used to calculate the currents below trough level. Also note
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that (2.19) may be further simplified by the fact that we have, by definition, no return
current above trough level.

In addition to information about the wave motion and the turbulent fluctuations,
it is clear that to use (2.19) to predict mean currents the pressure variation needs to be
determined. This is done by integrating the vertical momentum equation. The vertical

momentum equation, neglecting viscous stresses, reads

ow  Owu; 3w2_ lﬁ
S+ e+ G = = (P ) (2:20)

Integrating the above from z = z,(z;,t) to z = £ leads to after using the KFSBC
P(z,.)

d
g —2z.)+ = T /zr wdz + — e f wjwdz — w?(2z) + (1:5_1.1”)’,:r d:c (2.21)

The last term on the RHS is required to make the above applicable at any arbitrary
location z, which may, in general, be a function of the horizontal location. We will, in
fact, need to apply this at the bottom which is a function of z;. The mean pressure at

the bottom is given by time averaging the above equation. This leads to

P(~ho)
p

- A -  Oho
_g(5+h0)+8mj[-houjwdz w [w +ua l . (2.22)

after using the BBC.
The last term of (2.21) is only required to make it applicable at particular depth
locations (like z = —hg). This term term does not contribute to an integral over depth.

With this understanding (2.21) may be integrated to result in

X Pla)., 2 a [t
/zr_p—dz_g(fz,— 5 +5/ZN/Z- wdz+a—%-£r/ u;wdz +

j: /zr ujwdz — jz., wldz (2.23)

A time average of the above evaluated at z = —hq leads to

€ P(2)
] P(Z)d = (h°+6)2 3:0 ]hf u_,wdz—/ w%z—% * ujwdz  (2.24)
jJ=ho J=ho i

ho p 2 - hu
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Equation 2.19 requires that the quantity @ (ﬁho sz) /0z; — P_p,0ho/Oz; be specified
in order to calculate the currents. Using (2.24) and (2.22) to evaluate this quantity we
find

1(08 7 — ok _[@ /€ P, (18(ho+E)?
p (39:5 —ho o 33:) - {33‘;& /—hu sz I (2 dz; ki E)
dho 8 aho] aho

g~ P e, 0m

ujwdz + w [w +u

We also define the radiation stress tensor S;; by’

£ — 1 = € (3
Si=|[ (P+Pu)dz—5palho + 80| 85 + [ pUidzt [ pusadz (2:26)
—ho 2 —ho —ho

and excess momentum flux due to turbulent fluctuations (or the integrated Reynolds’

stresses) by

£ - £
Sl = ‘ / Pz - %pgg,zl St / iz (2.27)
=g =-no

Substituting (2.24) into (2.26) to get a more explicit formula for S;; we get

7 ¢ dho
- —_ 2 . .
Sij = [ 333./ / Unyj Wy d 2 -/ho w?dz 63:_, 'uw_,'wwdz+

£ e aho
U,;Wdz — Widz —
633 / ho o : —ho d 3$J —ho

U,dez] 5ij

&t 3
+ -/ pU,-,f U,._,'d.z -+ ] puw;uwjdz (2.28)
—ho —ho

where 7 = (E - E) (see figure 2.1).
For later reference we note here that the radiation stress may be written in the

following form

Sij = Sm,ij + Spbi; (2.29)

1 This definition is similar to the one used by Phillips (1977) who includes terms similar to j:' UriUrjdz
in the radiation stress whereas Mei (1983) does not explicitly account for the same. These terms,
however, are implicitly included in his definition since his definition of the wave induced velocity
is slightly different from what we have used here (which follows from Phillips). Mei does not have
Wi = 0 below trough level, instead he has f - uwidz = 0. Since there is a net shoreward mass flux
above trough due to the wave motion, this 1mp!1es that Mei includes the return current in his wave
motion below trough level. The problem with using this approach is that the velocity one gets by time
averaging velocity records is not the current that one calculates using the time averaged equations.
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where

¢ _
S, = ] Pdz — pg(ho + E)?

p l 33,./ f Uy j WeydZ — i widz — —/ U j Wy d 2+
" -

8h0
i Wz — 2dz — Wd 2.
6$j/_ho[hoajw2 /_how 2 f U, W z} (2.30)

£t 3
Smyij = p/ UrsUrjdz-i-p/ Ui U A2 (2.31)
~ho —ho

In terms of the radiation stresses we find that (2.19) may be represented as follows

114 (.46 Oho 0 [ ¥ (Wi 4 Uslns + Uil
; [dxj (S + 85) + (-r, T )] + oz; U_ . (UeUci + ViU + Uril) det
G dho| Oho  Oho 8 [E
& 1 il e g ke :
j, Ui Ugj + Uwj Umdz] w [w‘ + o] 8.1:3-] 92; + — 7 3:53/ ujwdz

= —g(ho + E) (2 32)

Mei (1983, p. 459) finds a term similar to the last term on the LHS of the above while inte-
grating the momentum equations for currents independent of the depth. This term seems
to represent the horizontal component (caused by the sloping bottom) of the contribution
to the pressure from the vertical shear stresses. Mei shows that the contribution from this
is negligible in comparison to the RHS and therefore may be neglected without any loss
of accuracy. We will assume here that this term is negligible. The term just before this

term is of order (Oho/dz)* times the bottom friction term since

P 3h0 3h0
Yi9z, oz; Ti 31?; (2.33)
and
"2 3h0 aho (2 34)

(w') B < Nigy:
since we expect that w' < u'. Equations 2.33 and 2.34 imply that the third term on the
LHS of (2.32) is significantly smaller than the bottom stress term included in the first
term. This follows from the fact that the third term on the LHS represents the correction
to the bottom stress from the sloping bottom. Therefore, this term may be neglected too.

Making these assumptions and introducing the notation
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ah
i = Ti(—ho) + Tiig_;?: (&)
g

the depth integrated equations governing the mean currents in the nearshore region reduce

to

i d a [ ¢
7 0

/Eu U + iy Usidz =--g(hu+2)‘9Z (2.36)
. wiUcj wjUei azi .

In principle, given a description of the wave motion and a parameterization of the
turbulent stresses (2.36) and (2.11) can be solved for the currents and water level variations
if the depth variation of the currents is known. The next section deals with the derivation
of the equations governing the depth variation.

Note that the time-averaged, depth integrated equations are strictly valid only in
the region where there is water all the time. These equations are therefore not valid

shoreward of the lowest run-down point and cannot predict quantities in the swash-zone.

2.2 Depth integration of the wave averaged equations
The time average of (2.12) may potentially be used to calculate the depth variation

of the currents. Time averaging (2.12) leads to

Ouwu; Oujw -1 oP
e = —_—— 2.
0z; * 0z p Oz; (2.37)
which with the splitting becomes

d ad - \ —10P
oz, (umuwj + wiu; + UiU ) % (uw,rww + uhw + U;W) Y (2.38)
We now introduce the following turbulence closures
— au; ~ 0U;

T el
uju = (3233 + 7a; ) (2.39)
g oU; oW

! = — — 4 —

where, for later convenience, we have differentiated between the horizontal and vertical

eddy viscosities. These closures reduce (2.38) to

9 ; -
— (V &) + — 9 (Vtz aW) 3 (uwzuw_j + U U; )+ 3z (uwiww =+ U':W) + ""'ai =
J

9z \ 0z dz ox; p 0z;
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0 oU; . aU;
5; [ (@*553)] g

Note that the U;W term is included in (2.41). This term is non-zero in the general
situation. The mass flux due to the waves is expected to be a maximum at break point.?
Therefore, the mass flux decreases shoreward of the break point. For that situation,
continuity dictates that there has to be a net transfer of water downwards at trough
level indicating that W # 0. Outside the surf-zone we expect, for similar reasons, that
the vertical current has the opposite sign. Even in the case where there is no change in
volume flux due to the waves, a non-horizontal bottom will cause a vertical current at the
bed thereby inducing vertical currents elsewhere in the water column.

It is emphasized that the depth integration of (2.41) from z = —ho to the mean
water level does not lead to the depth-integrated, time averaged momentum equation
(2.36). This is because the upper limit of the integration is a function of time and,
therefore, in the latter case we have the correlations between fluctuating quantities that
are included by the procedure adopted whereas the first approach does not include the
same. The depth integration from the bottom up to the trough level does yield the same
result as (2.16). This is because the trough level is assumed to be independent of time
and hence the integration and the time averaging are interchangeable. This is true only
for regular, monochromatic waves.

The situation is somewhat similar to the calculation of the time average of a quan-

tity like f{f udz where both u and £ are time dependent. If u is independent of z then the

proper time average is given by f{f udz = Ué + uw/€'. Time averaging before integrating will
only give the first term. Therefore, the depth integration and the time averaging are not
interchangeable.

It is clear that the depth-integrated, time-averaged equations do not throw away
any information that is required for the prediction of the currents and, when solved, should

lead to the correct result. The discussion above indicates that the currents above trough

2 According to linear long wave theory Q, = B,H?\/gh/h where By is a constant. Outside the surf-zone
H?\/gk is a constant (according to Green’s law) and therefore Q. decreases with increasing h. Inside
the surf-zone we expect H2/gh to decrease faster than h thus leading to Q, being a maximum at the
break point.
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level cannot be predicted by a time averaged equation. To calculate the current above
trough level, one would have to solve the time dependent equation (2.12) to calculate the
velocity above trough level and time average this velocity to get the current after properly
accounting for the mean velocity due to the wave motion (which is responsible for the
mass flux due to the waves).

It has been suggested (Svendsen & Lorenz (1989) for the longshore component and
deVriend & Kitou (1990) for the general situation) that (2.41) will lead to the depth-
integrated, time averaged equation if the Uy;w,, term is properly accounted for. As we
argued earlier, this requires adding to (2.41) the terms corresponding to w’€' in the example

above.

2.3 Discussion of simplifications for a long, straight coast
From now on, in this thesis we deal exclusively with the situation on a long straight
coast. Therefore, it is worthwhile to spend some time discussing the nature of the simpli-

fications afforded by this topography.

2.3.1 The depth integrated equations on a long, straight coast

For the case of a long, straight coast with straight and parallel depth contours, we
have (8/8y = 0).> This simplifies the equations considerably.

An additional simplification is afforded by this simple topography. Because there
is no barrier to stop the flow in the y direction, there is no return current in that direction
and, therefore, V, = 0. In addition, for the case where there is no net mass flux in the
cross-shore direction (zero externally imposed mass flux) we will also have U, = 0. This
thesis deals only with this situation.

To simplify the notation, we shall from now on drop the subscripts on U and V
with the understanding that these quantities will refer to the undertow (return current)

and the longshore current (external current) respectively.

3 We remove this restriction in a later chapter where we study the shear instability of longshore currents.
In that case we allow periodicity in y for the motions induced by the instability.
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Under the simplifications above, the wave averaged equations read

Continuity

d £t

= = 2.42
= ( - Udz+Qm) 0 (2.42)
z— momentum

17d ) - O

; [E (Sza: # Sz::) +* Tb:l:] ores ”g(hﬁ + 6)5}' (2'43)
y— momentum

17d ; o £t '3 B

; [a (S:;y + Sxy) + Tby] + 9z l-/:hu UVdz + e u,Vdz| =0 (2'44)

BEquations 2.42 and 2.43 are similar to the corresponding equations found in Phillips and
Mei. Their equations have currents constant over depth and hence in their equations the
integrals involving the currents are readily evaluated. Equation 2.44 on the other hand
contains a term that is not found in their equations. The additional term found here
is the last term on the LHS of (2.44). This term is zero if the longshore current, V, is
independent of the depth.

The interpretation of (2.44) is as follows: The first term represents the radiation
stresses due to the waves and the turbulent fluctuations. The second term represents the
bottom resistance and the last term represents the interaction of the undertow and the
longshore current.

Note also that the only limiting assumptions made so far are 1) the currents are
steady and 2) there is alongshore uniformity, viz., 8/dy = 0. This implies that (2.44) has
all the terms necessary to predict steady longshore currents on long, straight beaches. In
other words: If the assumptions leading to (2.44) are satisfied — and there are a lot of
instances where they are — then incorrect predictions of the longshore currents must be
due to incorrect modelling of one or more terms of (2.44).

Equation 2.44 is different from equations hitherto used to describe longshore cur-
rents in that it contains the UV term as well as the effects of the depth variation of V.
Also note if the interaction between the undertow and longshore currents is neglected (or

if the longshore current is independent of the vertical co-ordinate) then (2.44) reduces to
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d
dz (S’—'y + S::y) + 7hy =0 (2.45)

which is the equation usually solved for longshore currents (see, e.g., Mei 1983, p. 471). In
this equation the $7,, term smoothens the longshore current by redistributing the current.
That term has no net contribution when integrated across the entire extent of the longshore
current. We will be returning to (2.45) a number of times in this thesis.

The 73, term provides the resistance to the longshore currents. These are forced
by gradients of the longshore component of the radiation stress and 73, when integrated
across the extent of the longshore current should equal the value of Sz, at breaking.

In the shore normal direction, 5%, < Sz» (because u, > u’) and therefore may
be neglected in (2.43). We make this simplification here and the z— momentum equation

reduces to

1[dSz
dz

+1] = ~glho + B (246)

The radiation stresses of relevance, viz., Sz, and Sz, are given by

€ _ e 3

Sz = l f (P + Pw) dz — pg(ho + £ )2] +p f U?dz+p f ug,dz (2.47)
—ho —ho —ho
3

Sop = p / Yo tudz (2.48)
—~hg

Introducing the expression for the pressure the cross-shore component of the radi-

ation stress, Szz, is given by

a2 €e £ 3 4 4
Szz _ g(f £) _l_f U2d2+f u2dz + i‘/ f Uy Wy d 2 _,/ wdz
p ho dz J-ho J-ho —ho

3 3
 dho / wuwudz + o / f Wdz — f wedz — 2 [ ywdz  (2.49)
ho —ho ax;

dz —ho

Typical sizes of the third, fourth, fifth and sixth terms on the RHS are uZ hy heUywyh,
w2 h and hgu,wy,h respectively. Under normal surf-zone conditions we will have hs €1
and wy, < . Therefore, these terms are generally much smaller than the third term and
may be neglected. A similar consideration leads to the conclusion that the dominating
term involving the currents is the U? term. We further know that @, < |u,|h, therefore,

it follows that
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€t &
U?dz < / u dz (2.50)
—ho —ho
and, therefore, to a reasonably good approximation we have
—£)2 £ n b+n
PO | (S 9 Y [ uade= e [ (2.51)
2 ki 2 —ho

where 7 is measured from the mean water level (see figure 2.1). The result (2.51) could
have been arrived at, more simply, by assuming that the pressure is hydrostatic below
the instantaneous water surface P = pg(§ — z) and neglecting the undertow contribution.
Therefore, the assumption that the last three terms of the RHS of (2.49) may be neglected
is equivalent to assuming that the pressure is hydrostatic. Under the approximations

introduced above, we have, for a wave incident at an angle a to the z— axis

Sii = Spbi; + Smeis (2.52)

3 pYij J

where
e

Sp = P95 (2.53)
b+n

B = 2 f |uw|?dz (2.54)
—ho
cos? o %sin?a

e; = o ' . (2.55)
=sin2a sin®a

2

In the above |uy| is the magnitude of the wave induced horizontal velocity. (2.52) implies
that if the wave angle o and ? are known then Sz, can be estimated from Sz,. We
will exploit this in the next chapter where we analyze available measurements of set-up
and wave height variations to get realistic variations of S;;. We will then use (2.52) to
estimate the longshore component of the radiation stress. The simplification achieved here
is that we will be able to estimate the driving force for the longshore currents by using
measurements of variations in the cross-shore direction that seemingly have very little to

do with longshore currents.

2.3.2 Nature of simplifications
For the topography under discussion the nearshore circulation problem is typically

solved as follows:
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e The cross-shore momentum equation (2.46) is coupled with an energy equation to

solve for the set-up and wave height variations.

e The continuity equation is used to determine the return current or the undertow (at

least an average value).

e The longshore momentum equation (which is uncoupled from the cross-shore mo-

mentum and energy equations) is used to determine the longshore current.

So, fundamentally different approaches are used to solve for the currents. Also,
there is a fundamental difference between the undertow and the longshore current. The
undertow is a return current that is forced because there is no net mass flux in the cross-
shore direction. The unknown quantity in the cross-shore direction is the set-up and the
known quantity is the total mass flux which by continuity considerations dictates the
undertow. In complete contrast, the known quantity in the longshore direction is the
set-up (8€/8y = 0) and the unknown quantity is the total mass flux in the longshore
direction. This is determined by solving the momentum equation.

The decoupling of the longshore momentum equation from the other three equations
is a great simplification which is, of course, possible only for the simple case of 9/dy = 0.
However, the price paid for this is that the nature of the longshore and cross-shore problems
become fundamentally different and an approach that works for the solution of the cross-
shore problem does not necessarily work in the longshore direction.

The clearest example of this comes while determining the boundary conditions for
the depth variation of the currents. The depth variation of the currents is determined
from (2.41) which is a second order PDE and hence two boundary conditions need to
be specified. One condition is the relationship between the near bottom current and the
bed shear stress. This condition is the same in both directions. The second condition is
quite different in the two directions. For the undertow, as discussed earlier, the integrated
continuity equation naturally provides the second condition. In the longshore direction

the momentum equation provides the second condition.
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Note that the depth variation of the undertow is determined by the momentum
equation whereas the average value is determined from the continuity equation. We will

return to this point below.

2.3.3 Depth variation of the currents
Under the simplifications provided by the long straight coast the undertow and

longshore current depth variations are governed by (see equation 2.41)

Undertow

0 (, 00N _ 08 0 (5 y2), 0 p ( 3_‘7)

e (ng c'?z) = g@x + % (uw +U ) + £ (T + UW) — o Wiy e (2.56)
Longshore current

d oV a d 0 oV

a (Vtzg) = 8_;6 (uwvw + UV) + a—z (vwww =+ VW) — a—z (ng%) (257)

In (2.56) the 8W/dz term has been neglected relative to equation 2.41. Assuming that
the length scales of the currents in the z and z directions are given by I, and [, it is
easy to show that OW/dz ~ (I:/1,)*8U [dz. Typically, for the wave induced currents, the
appropriate scales are I, ~ h and I ~ L (the wavelength). Therefore, (I./I;)? < 1 and the
neglect of the 9W/dz in (2.56) is justified. In the alongshore direction the corresponding
term is OW/0y which is zero for a long, straight coast.

As discussed previously, two conditions are required to solve equations 2.56 and
2.57 for the depth variation of the currents. In both longshore and cross-shore directions
one condition is related to specifying the value of the velocity (depth-averaged value in the
cross-shore direction and the near-bottom value for the longshore direction). The other
condition applied is a stress condition. We could either specify a shear stress at tough
level or one near the bottom. In principle, there is no difference between the two options.

Stive & Wind (1986) argue that the undertow is driven primarily by the shear stress
at trough level and, hence, that is a better condition to adopt. The shear stress at the
bed can then be calculated from the undertow profile. Svendsen & Hansen (1988) argued
that the bottom stress calculated from this model is bound to be extremely unreliable

since it is equivalent to determining the bottom stress as a difference between two large
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quantities. They suggest using a condition that relates the bottom shear stress to the
near-bottom velocity. We adopt the latter approach here since, typically, the bottom
stress is the quantity of most practical interest and therefore, it is important to be able
to estimate this quantity reasonably accurately.

Battjes (1988) suggests that the above conflict may be resolved by specifying both
the shear stress at trough level as well as a bottom condition and treating the forcing
for the undertow as an unknown. This suggestion has the shortcoming that it attempts
to calculate the wave induced forcing below trough level using, among other things, the
value of the shear stress at trough level. The estimation of the value of the shear stress
at trough level requires making assumptions about the water motion above the trough
level. These assumptions are necessarily cruder than the assumptions regarding the wave
induced motions below trough level. Therefore, Battjes’ suggestion would give an estimate
of the wave induced forcing for the undertow that is less reliable than the one calculated
directly from assumptions about the wave motion.

An additional problem arises with the undertow. Typically, (2.46) is solved to
determine the variation of £. This result is then substituted into (2.56) to calculate the
forcing for the undertow. One constraint for the undertow comes from (2.42). The other,
as discussed above, is a stress condition. It turns out that for the undertow there is a
difference between the application of the shear stress at trough level and at the bottom.

The reason for this is that the momentum equation used to calculate the depth
variation of the undertow is incompatible with the depth integrated momentum equation.
This is because the turbulent stress terms that control the depth variation are neglected
in the depth integrated equation. If these terms were retained in the depth integrated
equation, as they are in the longshore direction, there is no principal difference between
applying the boundary condition at trough level or at the bottom. In this case the mo-
mentum and continuity equations would have to be solved simultaneously to determine
the set-up and the undertow.

The simplification offered by the decoupling of the continuity and momentum equa-

tions in the cross-shore direction leads to this inconsistency. If this decoupling is used,
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clearly, one has to make a choice of the appropriate boundary condition that is to be

applied.

2.4 Determination of the vertical current

It is evident from (2.56) and (2.57) that both the vertical current and its inte-
gral would be required to determine the depth variation of the currents. We proceed to
determine these quantities in this section.

Consider the wave averaged continuity equation below trough level

ou  ow
o 0 (2.58)
This implies that
W)=~ / O 15 & Wi-ho) (2.59)
ko 02
The wave averaged BBC gives
dho
W(—ho) = —Ub'-é';- (2.60)

Therefore, we get

a [ 0z,
W(z)= _3_3./;};0 Udz + U"'a_z (2'61)
where the last term is required to make the above applicable at 2 = —hp. In order to

evaluate the current profiles a depth integration of (2.61) is required. This is given by

2z o z z aho 2
Wd :_—f f Udz - 22 [* yd 2.62
—ho ‘ 0z J—ho J-ho ‘ 0 J-ho . ( )

because the last term of (2.61) does not contribute to the integral.

In addition to the vertical current and its integral found above, it is clear from
(2.44), (2.46), (2.56) and (2.57) that to use the wave averaged equations to predict the
mean quantities inside the surf-zone the variation of the radiation stress tensor across the
surf-zone needs to be known. At the present time, there is no theory of wave motion inside
the surf-zone that can give reliable estimates of the radiation stress. In the next chapter
we analyze currently available measurements of the wave height and set-up in order to

determine this variation.



Chapter 3

DETERMINATION OF THE FORCING FOR NEARSHORE
WAVE-INDUCED CURRENTS

In this chapter we deal with the cross-shore variations of the set-up and the wave
height. The emphasis is on the solution of (2.46) coupled with an energy equation. The
major aim here is to determine the variation of Sz, accurately and use this variation to
determine S, from (2.52). It is customary to use b to denote the set-up in models that

predict set-up and wave height variations. We will do the same in this chapter.

3.1 Summary of previous work on set-up and wave height variations

Over the last two decades, numerous models have been proposed for the variations
of the set-up and wave height across the surf-zone. These models invariably work with wave
averaged equations and require that a description of the radiation stresses be available in
terms of the wave height, wave period and the water depth.

Munk (1949) suggested that in the surf-zone the wave height is approximately
proportional to the local water depth. This has become a very common assumption
in surf-zone models. Le Mehaute (1962) first proposed that the wave averaged energy
equation be used to determine the wave height decay across the surf-zone. He suggested
that the energy dissipation rate in breaking waves be modelled by the dissipation rate in
a bore of the same height. Horikawa & Kuo (1966) and Divoky et al. (1970) used this
approach to calculate the wave height decay. The assumption that the energy dissipation
in breaking waves is the same as that in a bore has become a frequently used assumption
in models that solve the energy equation to determine the wave height variations.

Longuet-Higgins & Stewart (1962) applied the concept of the radiation stress and

predicted a depression of the mean water surface (set-down) seaward of the break point

27
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and an elevation of the same inside the surf-zone. In 1963 the same authors confirmed their
predictions (quantitative for the set-down and qualitative for the set-up) by comparing
the predictions with experimental data available at that time.

The first prediction of set-up variation across the surf-zone was due to Bowen et al.
(1968). They also conducted experiments to examine the the accuracy of their predictions.
They calculated the set-down outside the breaker zone using the lowest order estimate of
the radiation stress and assuming energy conservation. Inside the surf-zone, they assumed
that the wave height was a constant fraction of the depth and showed that the slope of
the mean water surface is proportional to the bottom slope.

Their experimental results showed that the calculated set-down severely overpre-
dicted the value near the break point. They also found that the mean water surface
remained approximately horizontal for some distance shoreward of the break point and
shoreward of this point the slope of the mean water surface agreed with their theoretical
result surprisingly well. As they remark it is surprising that their experimental results
agreed so closely with the predictions because there is no reason why the linear long wave
approximation for the radiation stress should be valid.

Hwang & Divoky (1970) were the first to solve the energy and momentum equations
simultaneously to determine the set-up and wave height. They used a bore dissipation
model.

Dally et al. (1985) assumed that at any given depth there exists a “stable energy
flux” and that the rate of energy dissipation was proportional to the energy flux in excess
of this stable value. Using this model they calculated variations of set-up and wave height
across the surf-zone. Their results indicated that the while prediction of the wave height
variation was reasonable, the prediction of the mean water surface variation was poor.

Most of the above models that dealt with set-up variations used linear theory to
calculate the wave averaged quantities like the radiation stresses and energy fluxes. The
use of linear theory by early investigators simplified their analyses significantly and allowed
them to demonstrate the mechanisms responsible for various phenomena in the surf-zone

in an elegant manner. However, as mentioned above, already Bowen et al. (1968) expressed
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concern that linear theory cannot be expected to give quantitatively correct results for
the wave averaged quantities. A number of numerical models are currently available that
use linear theory estimates of the various wave averaged quantities and contain empirical
constants whose values are adjusted by comparison with measurements. Such models run
the risk of compensating for the error in the wave qunatities by incorrectly modelling other
terms. Unfortunately, at the present time, there is no wave theory that describes the wave
motion inside the surf-zone to the extent that the integrated quantities can be calculated
with confidence.

A step away from linear theory was made by James (1974a) who used a wave theory
that is a combination of an approximation to cnoidal theory (“hyperbolic” wave theory)
in the nearshore region and Stokes’ wave theory further seawards to calculate the radia-
tion stresses and predict set-up and set-down variations. His calculations showed better
agreement with the measured values of the set-down outside the surf-zone in comparison
with those of Bowen et al. indicating, not surprisingly, that the inaccuracies outside the
breaker zone are directly related to the nonlinearity of the waves. Inside the surf-zone he
found that the slope of the mean water level was somewhat smaller than that predicted
by Bowen et al.

The first contribution to acknowledge the different nature of waves in the surf-
zone was Svendsen (1984a) who included the “roller” contribution to the radiation stress
and energy flux and found that this contribution greatly enhanced the wave averaged
quantities. Svendsen assumed that the roller which is a mass of water that is carried
shoreward by the wave moves with a speed that equals the celerity of the wave. Using

this he estimated that

5 pgHZ%c
= B, £

-[ro”er e 2 (3 )
and

puz ~ ngzB,- (32)

roller

where
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By (8.3)

-~ H’L
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in which A represents the area of the roller. He used the measurements of the roller area
by Duncan (1981) to come up with estimates for the roller contribution to the radiation
stress and the energy flux. Calculating both set-up and wave height variations he also
utilized a simple version of the bore dissipation model for periodic waves developed by
Svendsen et al. (1978) for modelling the energy dissipation in breaking waves.

The analysis of experimental data in the spirit of the present work was first carried
out by Svendsen et al. (1978) who analyzed their measurements of wave height variations
across the surf-zone and calculated the dissipation rate based on these measurements.
They concluded that the dissipation rate in breaking waves is higher than in a bore of the
same height. Using the general bore model of Svendsen et al. Svendsen & Madsen (1981)
showed that the presence of turbulent fluctuations and the curvature of the streamlines
increases the dissipation rate in a bore and suggested that this may be one reason why
the dissipation in a breaking wave is higher than the traditional bore estimate. Stive
(1984) analyzed the measurements of Stive & Wind (1982) to determine the variations of
radiation stress and dissipation across the surf-zone. He found that near breaking linear
long wave theory severely over predicted the radiation stress. His results for the dissipation
rate also showed that the momentum flux due to the turbulence must be included in the
general bore model to predict the actual dissipation in broken waves.

Stive & Wind (1982), Hansen & Svendsen (1984), Okayasu et al. (1986, 1988)
and Okayasu (1989) measured, among other quantities, the variations of wave height
and set up across the surf-zone. All these experiments were conducted using regular,
monochromatic waves. Hansen (1990, 1991) analyzed these measurements and suggested

empirical variations for a number of quantities of interest inside the surf-zone (like, e.g.,

Bo = (n/H)*).

3.2 Motivation for the present work

The analysis of existing measurements presented below was originally motivated by
the necessity of determining the forcing for longshore currents. The longshore current is
forced by spatial gradients of the longshore component of the radiation stress. It is evident

from the discussions above that there is no satisfactory way of calculating this quantity for
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surf-zone waves at the present time. To properly determine the forcing for the longshore
current it is necessary to be able to predict the radiation stress in the direction of wave

propagation. This is the topic addressed below.

3.2.1 Background

As shown in the previous chapter, Sz and S,y are closely related. On a long,
straight beach the cross-shore component of the radiation stress balances the set-up.
Therefore, if the set-up and the wave height are well predicted by a surf-zone model,
we may have some confidence in the longshore component of the radiation stress being
predicted by that model. Conversely, models that give poor predictions of the set-up and
wave height almost certainly would give extremely unreliable estimates of the longshore
current forcing.

All of the comprehensive surf-zone models (e.g., Svendsen 1984a, Dally et al. 1985)
solve the wave averaged equations momentum and energy equations to predict variations

of set-up and wave height. The equations usually solved are

dSee db

dz _pghdx (84)
dEs _

L= (3.5)

Here E; is the energy flux and D(< 0) is the energy dissipation rate. The bottom fric-
tion term has been neglected in (3.4) [see (2.46)]. Calculating the two terms of (3.4) on
the basis of measurements of the velocity field, Stive & Wind (1982) found that these
terms balanced one another to within experimental accuracy and hence concluded that
the frictional contribution to the momentum balance was smaller than the uncertainty of
their measurements. An analysis by Svendsen & Hansen (1988) shows that the friction
term is of the order 5% of the terms retained. This suggests that (3.4) is a reasonable

approximation, at least for the present purposes.

3.2.2 Predictions of currently available surf-zone models
Figure 3.1 presents the predictions of three different models for two experiments

(Visser, experiment 1 and Stive & Wind experiment 1). Details of these experiments are
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given later on. The predictions in this figure are based on

1. The model of Svendsen (1984a) (marked “Svendsen”).

2. Two versions of the model suggested by Dally et al. (1985) (marked “Dally et al.”
and “Dally et al. 17). In the second version the wave set-up is artificially made to
start at the point where the measurements begin to show a slope of the mean water

surface.

3. A model that uses the By variation suggested by Hansen (1990) and the roller area
suggested by Okayasu (1989) to calculate the radiation stress and energy flux and

uses a bore dissipation model (marked “Present”).

It is clear from this figure that none of the above models accurately predict both the
set-up and wave height variations. For example, the model of Dally et al. predicts the
wave height fairly well but does not predict the set-up very well. This clearly indicates
that the radiation stress used is quite inaccurate. A similar statement can be made when
the set-up is well predicted but the wave height is not (for example, the predictions due
to Svendsen’s model).

The implication of the above is that none of these models would give accurate
estimates of the longshore component of the radiation stress.

In this chapter we analyze currently available experimental measurements of the
variations of set-up and wave height across the surf-zone to determine the variation of
the cross-shore component of the radiation stress across the surf-zone. In addition, we
also estimate the variations of the rate of energy dissipation and longshore component of
the radiation stress based on these measurements. The analysis makes use of some of the
empirical variations suggested by Hansen (1990).

The following dimensionless quantities are used in this chapter

SI.‘L‘
P ;g-ﬁi (3.6)
4hL
E
B = < (3.8)

pgH?c
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Figure 3.1: Predictions of wave height and set-up using existing models



34

0.15
Legend
o Svendsen
- Dally et al
) Dally et al 1
- Present
0.05
0 T 1 I
" 1.5 12 12.5 13
X (m)
0.04
0.02
o
E
0
0
Fd
-0'02 ] 1 1
" 1.5 12 12.5 13

X (m)

Figure 3.1: Continued



35

By = (%_25) (3.9)

where ¢ is the wave celerity, 7 is the instantaneous free surface elevation above the mean
water surface, I is the local wavelength defined by L = ¢T and P, B and D represent
respectively the dimensionless radiation stress, energy flux and dissipation rate.

The results to be presented in this chapter follow directly from the measurements
and do not presuppose the validity of any particular wave theory. The results for P,
in particular, are quite general and have the effect of the roller as well as the effects of
nonuniform pressure and velocity distributions. The roller effect though will formally be
eliminated in equation 3.18 (which will be used to calculate B) is still reflected in B (and
therefore in D) though the additional assumptions required to calculate B introduce some
uncertainty into these results. The effect of these assumptions is also assessed in this
chapter.

We emphasize here that this chapter is only aimed at analyzing the available ex-
perimental data to determine the variations of the dimensionless quantities and show that
these quantities deviate significantly from the values usually used. We make no effort to
provide empirical variations of the quantities for general use because we believe that the
available data are too limited to provide accurate empirical variations. The analysis and
results presented should help in planning future experiments aimed at providing accurate

variations for the dimensionless quantities.

3.3 Determination of the radiation stress and the rate of energy dissipation
3.3.1 Determination of P
To determine the variation of the radiation stress across the surf zone we integrate

(3.4) from a reference location z, to a point z. This leads to

Tr db
See(e) = [ pohiids + Sus(ar) (3.10)

which after substituting (3.6) leads to

H*(z)

Ti(z) (3.11)

db
P= Hgf hoodz + Plan) o
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It is clear from the above that to determine S, a boundary value is needed. In
principle, any reference value could be chosen. This could, for example, be a place far
seaward of breaking where a highly nonlinear wave theory (like that of Cokelet 1977)
could be expected to give a fairly accurate estimate of S;,. However, this choice has the
drawback that if we wish to calculate P then (3.11) shows that any inaccuracy in the
boundary value at a point where H is large will lead to extremely large inaccuracies near
the shoreline where H — 0. For the experiments we will be analyzing here this problem
is avoided by using the shoreline (of the mean water level) as the reference point. For this
case the boundary condition becomes S,.(z,) = 0 and hence the boundary term in (3.11)
drops out. The value of P at the shoreline is then determined as a limit of the values near
the boundary. This is discussed further in the following.

We see from (3.10) and (3.11) that the dimensionless radiation stress may be de-
termined by using just experimentally measured values of b and H with no further ap-
proximations.

In principle, the radiation stress could also be calculated directly from the definition
(2.26) if measurements of the vertical structure of the wave induced velocities and pressures
are available. However, measurement of velocities under breaking waves, particularly
above trough level, is extremely difficult (Stive & Wind 1982). This is significant because
the higher velocities occur in this region and the region is a significant fraction of the total
depth. This leads to a large uncertainty in the calculated result. Therefore, the present
method of estimating the radiation stress, if carefully pursued, is considered the most

accurate method of estimating the radiation stress that is possible at the present time.

3.3.2 Determination of B
The determination of the dimensionless energy flux, B, is required for the deter-
mination of D. Whereas P can essentially be determined using just measured quantities
the determination of B from P requires some assumptions. These are discussed below.
If the vertical velocity is neglected the energy flux is given by

b+n—roller
Ef~ / pudz + puldz (3.12)

—ho roller
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In the above “roller” refers to the region of recirculating water along the turbulent front.
As a generalization of the linear theory for arbitrary wave profiles and nonuniform

velocities we assume that

u= c%fu(z) (3.13)
p= c%fp(z) (3.14)
We assume further that f,(z) = f,(2).* Under this approximation the dimensionless

energy flux is given by

Ah

B = Boow + 5357 (3.15)
where A is the area of the roller, and
b+n 9
u dz
a, = =R (3.16)
c2h

In (3.15) we have used the approximation derived by Svendsen (1984a) for the roller con-
tribution (see equations 3.1 and 3.2). A similar estimation of the dimensionless radiation
stress yields

1 Ah
Pi= (au - 5) Bo + F‘j—f’ (3.17)

(3.15) and (3.17) yield

P a, 1
B=7+80(%-7) (3.18)

For the experiments analyzed here (with the exception of Visser’s) the variation of the
parameter By has been determined on the basis of measurements of the free surface fluc-
tuations by Hansen (1990). In our analysis we use the empirical variation suggested by
Hansen. The reason for doing this that these variations show extremely good agreement
with the actual variations and the differentiations become straightforward. In addition

to this we need the value of @, in order to evaluate B from P. Since By is essentially a

4 Linear wave theory has fp = cosh k(ho+z)/ cosh kh and f. = fpkh/tanh kh. For relatively long waves
these variations show that f, ~ f.. Hence, although the waves are not linear, it indicates that this
approximation may be reasonable.
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measured quantity and since P follows directly from the measurements it is clear that the
major source of inaccuracy for B is in the determination of a,. From (3.18) it is clear
that an error in the estimation of of a, produces a smaller relative error in the value of
B. Therefore, while the value of B calculated using (3.18) will be influenced by errors in

o, the errors introduced in B this way are smaller than the errors in a,.

3.3.3 Calculation of the rate of energy dissipation

A rearrangement of the energy equation (3.5) after the substitution of (3.8) yields

dH? Ly . B

? T z bost 2
D__dx+(c+B)H (3.19)
In the above

D

- 2.
D e (3.20)
If we assume that ¢ = \/gh (3.19) becomes

, dH? he  Bz\ 2
D = vy +F (ﬁ + '*g“) H (3.21)

In the above equation the LHS is a measure of the dissipation, the first term on the RHS
is the total wave height variation and the terms in the parenthesis above contain the
shoaling terms. Our results show that the first term is the dominant term of the RHS. Of
the other two terms on the RHS, the first dominates near the shoreline, and the second,
near breaking.

Equation 3.21 is used to determine the rate of energy dissipation. It is evident
that in order to use (3.21) we need to estimate B and B,. Furthermore, based on the
magnitude of the terms above we expect that inaccuracies in B will have a relatively minor
influence on the value of D’ but D and D are directly influenced by the the value of B.

In a later section we will be comparing the results for the rate of energy dissipa-
tion to that in a bore to examine the validity of the bore model for this quantity. The

nondimensional dissipation rate in a bore is given by

h2
Dborc - m (3—22)

where d; and d, are the depths below the crest and trough respectively.
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3.4 Analysis of experimental data
The data used to determine the variations of P and D come from the following
experiments on plane slopes. Among other quantities, these experiments measured set-up

and wave height variations across the surf-zone.®

1. Stive & Wind (1982) 1/40, two cases.

2. Hansen & Svendsen (1984) 1/35 one case.

3. Okayasu et al. (1986, 1988) 1/30 five cases and four 1/20 cases.
4. Visser (1982) 1/20 two cases and three 1/10 cases.

Visser actually reports seven cases. Of these, experiment 7 is a repetition of experiment 4
with a different bottom roughness. For the higher roughness (experiment 7) Visser did not
measure the mean water level variations. He assumed that they were the same as those in
experiment 4. To ensure a steady wave climate, his experiment 6 had to be conducted using
much smaller wave heights than the other experiments thus resulting in much smaller set-
up. Since Visser reports only the mean depth [accurate only to 0.1 cm (see also table 5.1)]
from which the set-up has to be calculated this experiment has the highest uncertainty as
far as the set-up variation is concerned. In fact, the set-up calculated from the reported
depth for experiment 6 shows no consistent variation. Hence, experiments 6 and 7 are
discarded here.

The relevant parameters for these experiments are shown in table 3.1. The param-
eters shown in the table are the deep water steepness, Ho/ Lo, deep water surf-similarity
parameter & = h,/+/Ho/Lo (Battjes 1974), ratio of wave height to water depth at break-
ing 75 = Hy/hs and the parameter S, = hzLy/h (Svendsen & Hansen 1976).8

The determination of the dimensionless radiation stress and dissipation rates re-

quire the differentiation of b and H. In all these experiments measurements were taken

® The authors gratefully acknowledge the receipt of detailed original data from A. Okayasu and M. J.
F. Stive. Additionally, we had access to the original data of the Hansen & Svendsen. Unfortunately,
such detailed data was not available for Visser’s experiments.

& Cnoidal theory was used to calculate Ly.
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Table 3.1: Relevant parameters for the experiments analyzed

Source Symbol | Slope | T (s) | Ho/Lo | v | S» o Breaker
Type
Stive & Wind S&W1| 1/40 | 1.79 | 0.032 | 0.86 | 0.36 | 0.140 | Spilling
Stive & Wind S&W2| 1/40 | 3.00 | 0.010 | 0.81 | 0.57 | 0.250 | Plunging
Hansen & Svendsen | ISVA 1/35 | 2.00 | 0.020 | 0.85 | 0.47 | 0.204 | Spilling
Okayasu et al. OKS3C1 | 1/30 | 1.61 | 0.023 | 0.88 | 0.54 | 0.249 | Plunging
Okayasu et al. OKS3C2 | 1/30 | 1.97 | 0.010 | 0.96 | 0.82 | 0.327 | Spilling
Okayasu et al. OKS3C3 | 1/30 | 1.96 | 0.014 | 0.90 | 0.68 | 0.282 | Spilling
Okayasu et al. OKS3C4 | 1/30 | 1.12 | 0.046 | 0.86 | 0.39 | 0.156 | Spilling
Okayasu et al. OKS3C5 | 1/30 | 1.23 | 0.028 | 0.78 | 0.49 | 0.200 | Spilling
Okayasu et al. OKS2C1 | 1/20 | 2.00 | 0.014 | 1.07 | 1.04 | 0.424 | Plunging
Okayasu et al. OKS2C2 | 1/20 | 2.00 | 0.009 | 1.00 | 1.23 | 0.521 | Plunging
Okayasu et al. OKS2C3 | 1/20 | 1.17 | 0.050 | 0.87 | 0.55 | 0.223 | Spilling
Okayasu et al. OKS2C4 | 1/20 | 0.91 | 0.054 | 0.77 | 0.49 | 0.215 | Spilling
Visser Exp.4 | 1/20 | 1.02 | 0.052 | 0.83 | 0.93 | 0.220 | Plunging
Visser Exp.5 | 1/20 | 1.85 | 0.014 | 0.93 | 1.04 | 0.420 | Plunging
Visser Exp.1 | 1/10 | 2.01 | 0.016 | 1.00 | 2.43 | 0.810 | Plunging
Visser Exp.2 | 1/10 | 1.00 | 0.065 | 0.91 | 1.04 | 0.390 | Plunging
Visser Exp.3 | 1/10 | 1.00 | 0.062 | 0.85 | 1.01 | 0.410 | Plunging




41

at limited number of locations. Based on these data points a smooth curve was drawn
by hand which was then represented by a spline approximation. The differentiations and
integrations of the spline approximation are straightforward.

Figure 3.2 shows the original measurements along with the variations adopted for
experiment S2C3 of Okayasu et al. Corresponding figures for the other experiments an-
alyzed here are presented in Appendix A. The distance between the data points and the
curves show the approximations introduced.

In all the cases there are very few measured points near the shoreline and hence
the variations used near the shoreline are based on extrapolations of the variations away
from the shoreline. The rationale used in these extrapolations is the following: For the
set-up we assume that the slope of the mean water surface near the shoreline is constant.

On extremely steep slopes the mean water level steepens considerably near the
shoreline. This is related to water level fluctuations in the swash zone. On mild slopes
the swash oscillations are smaller leading to no significant steepening of the mean water
surface. For example, Kobayashi et al. (1989) calculated the set-up for Stive & Wind’s
(1982) Experiment 1 by time averaging the results of a time dependent nonlinear shallow
water model. Their results for the mean water surface show no steepening near the
shoreline. The experiments analyzed here were, for the most part, conducted on relatively
mild slopes (1/20 or milder), therefore, we expect no significant steepening of the mean
water surface near the shoreline. Also, as pointed out before, there is very little data near
the shoreline and using an extrapolation different from the one used here does not seem
to be justified especially considering the limited amount of data available.

For extrapolation of the wave height near the shoreline we used a slightly different
approach. Originally, the extrapolations were based on a natural continuation of the wave
height variation away from the shoreline. The resulting wave height to water depth ratio
was compared with the value of the same ratio determined from the measurements. In
cases where the measured wave height to water depth ratio showed a smooth variation the
wave heights near the shoreline were replaced by values derived from an extrapolation of

the H/h values. The reason for doing this is that we expect this ratio to vary in a relatively
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Figure 3.2: Experimental data and variations used
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smooth manner. (In fact, many surf-zone models assume a constant value for this ratio.)
A comparison of the “measured” H/h value and the variation used for experiment 52C3
of Okayasu et al. is shown in figure 3.3. As before, the corresponding figures for the other
experiments are shown in appendix A. We see that in almost all the experiments the
variation of this ratio is smooth (some of Visser’s experiments are the only ones for which
this is not true). Furthermore, in a number of the experiments this ratio is increasing
towards the shoreline. This trend for the wave height to water depth ratio was first found
by Horikawa & Kuo (1966) and a similar result is implied by the experimental results of
Bowen et al. (1968).

1

u

\\ ¥
§ - -
Legend
M Experiment
Spline

0 | I 1
~35 =2 1 0 1

X(rm)
Figure 3.3: “Measured” variations of H/h and extrapolated values of Okayasu 52C3

We note that since H/h is a quantity that is calculated from independent measure-
ments of set-up and wave height there is the possibility that errors in the two measure-
ments add up while calculating this quantity. However, smooth variations of this quantity

suggest that this is not the case.
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3.4.1 Results for P

Figures 3.4 show the results for the variation of the nondimensional radiation stress
for different values of the bottom slope parameter S;. These figures show that P varies
systematically across the surf-zone with S3. In all cases the value of P at breaking is
significantly smaller than that predicted by linear long wave theory (P = 3/16). The
small value of P at breaking is consistent with results found by Cokelet (1977) for very
steep symmetric waves propagating on a horizontal bottom. This result was also discussed
by Svendsen (1984a). It represents the fact that the very steep waves are very peaky and
have very little “substance” when compared with a linear wave of the same height.

Shoreward of the break point P increases sharply from the small value at breaking
indicating a rather strong change in shape of the wave. This increase indicates a “filling”
up of the wave or making it less “peaky” from the condition at breaking. In this region the
set-up is nearly constant while the wave height is decreasing and thus P has to increase
to keep the radiation stress constant. The variation of P in the inner surf-zone is much
milder than the variations just shoreward of breaking thereby indicating that the changes
in the wave shape are relatively small in this region.

The results from the experimental data by Visser differ somewhat from the rest
of the data analyzed. Visser’s experiments have rather large values of S, (almost all of
them have Sy > 1) and the values of P for Visser’s experiments are significantly higher
than those encountered in other experiments. A comparison of the variations of P for
Visser’s experiments 2 and 3 indicate that these two are not very similar though the
experimental conditions are very similar (same period and slope, comparable deep water
steepnesses, S’s and 9’s). The major difference in the two experimental conditions is the
angle of incidence of the waves (24 and 12 degrees at breaking respectively). If the waves
were equal, however, this difference should only lead to approximately 10% difference in
the results for these two experiments near the break point and the difference would be
expected to decrease significantly shoreward of this location. The actual results indicate

an opposite trend (see figure 3.4e). The reason for this difference is not clear.



45

Legend
04 >S -
b S&W1
o OKS3C4 _
0.3
—
/
0.14 o
|
0 I I 1 =3 |
0 0.2 0.4 0.6 0.8 1
h/h,
0.4 > S, > 0.50
0.4
0.3
Legend
o 0.2 ISVA
OKS3C5 _
0KS2C4
0.4 =
0 : i . .
0 0.2 0.4 0.6 0.8 1
h/h,

Figure 3.4: Variations of P for the experiments
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Figure 3.4: Continued

It is not completely clear if the wave averaged approach which presupposes quasi-
uniform waves is applicable for the large S, values found in Visser’s experiments. Battjes
(1988) suggests that the the quasi-uniform wave approximation requires that the width
of the surf-zone be greater than the wavelength at breaking. However, the high P values
cannot be attributed to this because except for Experiment 1 all other Visser experiments
have S, values that are comparable to the experiments with the higher Sy from other
sources.

It is possible from (2.49) that a very strong undertow could significantly increase the
radiation stress. The extremely steep slope of the mean water surface would certainly set
up a reasonably strong undertow. It is tempting to forward this as a possible explanation
for the large values of the radiation stresses encountered in Visser’s experiments. However,
before this explanation can be accepted, the following question needs to be answered: Why
do Visser’s experiments have such high slopes on the mean water surface (which, in turn,

presumably, induce rather strong undertows) when other experiments with comparable
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breaking conditions (for example, Visser exp. 5 and Okayasu S2C1 have similar condi-
tions) induce a much milder slopes on the mean water surface (and, presumably, weaker
undertows)?

Visser’s experiments differ from the other experiments analyzed here in one im-
portant respect. All the other experiments were conducted in narrow wave flumes and
therefore the set-up and wave height do not have any significant dependence on the along-
shore co-ordinate. Visser’s principal aim was to measure longshore currents and therefore
his experiments were conducted in a wide wave tank (width ~ 20 m). Though he took care
to minimize alongshore nonuniformity, he found that there was about +10% variation in
the wave height from the mean value in the alongshore direction (see section 5.8 for a brief
description of Visser’s experimental layout). The variation of the set-up in the alongshore
direction is not reported by Visser. It is possible that the alongshore nonuniformity plays
an important role in the interpretation of the experimental results.

Note that the relative length of the transition zone seems to be well correlated
with the parameter S3. This is a consequence of the fact that S represents a change in
depth encountered by the wave while it traverses one wavelength. This quantity therefore
represents the way in which the wave “feels” the bottom. Small values of this quantity
indicate that the wave is propagating on an essentially flat bottom and, therefore, the
wave can adjust to the local conditions as it propagates. Recently, a number of differ-
ent empirical formulas have been suggested for the width of the transition zone. While
comparing the different expressions it is important to realize that there is no accepted
quantitative definition of the transition point. Svendsen et al. (1978) and Okayasu (1989)
define this point based on visual observations of the broken waves. Svendsen (1984a) and
Nairn et al. (1990) define the transition point as the point where the set-up begins. Visser
(1984) assumes that the transition takes place at the plunge point. Since, in general, these
definitions do not coincide the width of the transition zone as predicted by the various

empirical formulas will be quite different.
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3.4.2 Results for B

As mentioned earlier, the deduction of B from P requires that additional assump-
tions be made. Specifically, we need to estimate either the momentum correction factor
o, or the area of the roller A. We have chosen here to estimate the momentum correction
factor a,. To estimate this coefficient we need to know the distribution of the wave in-
duced velocity. Hansen (1990) determined this quantity below trough level. Above trough
we assume that the wave induced velocity increases linearly to equal a fraction of the wave
celerity at crest level. (The assumed variation of the wave induced velocity is shown in

figure 3.5.) The assumed velocity profile is described by

Be z+b<m
Bei +  [K = Beg](z—m) z+b>m,

(3.23)

Uy =

Y

Y

Y

Y

A =-h,
uw/=l3 eh
h

Figure 3.5: Assumed variation of the wave induced horizontal velocity
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Extrapolations similar to the above were made by Stive & Wind (1982). Equation
3.23 indicates, after some fairly straightforward algebra, that

= nem{(8) - [(r-o8) 4]

_ (E)a & - p%)* } (3.24)
H 3By

where h; = h + 1 is the depth below trough. The correction coefficient may be calculated
by substituting (3.24) into (3.16). Figure 3.6 shows the variation of o, with K for a number
of H/h values. These curves suggest that a, is typically in the range 0.85 < oy < 1.3.
The variations plotted in this figure use # = 0.7, Bg = 0.1 and 7,/ H = —0.4. These values
were chosen based on the variations suggested by Hansen (1990). Physically, we expect
the velocity at the crest to be close to the wave celerity and the H/h plots presented earlier
indicate that H/h is typically between 0.6 and 0.8 in the inner surf-zone and somewhat
higher in the transition zone. For these values we see from figure 3.6 that a, is slightly
greater than 1. Note that since the roller contribution has already been accounted for
the momentum correction factor will be somewhat smaller than the values estimated from
figure 3.6.

Based on figure 3.6 we find that a, = 1 is a reasonable value to use. Later on in
this chapter we will discuss the sensitivity of the results to this choice by comparing the
results for a,, = 1,1.3.

For future reference (chapter 5) we note here that the extrapolated wave induced

velocity profile gives

o cH?By nt h K n?
st—j;‘uwdz— h l(l+?§)ﬁ+ﬂ? 1+ﬁ (3.25)

where @, is the volume flux induced by the wave motion. Substituting the typical values

for the various parameters we find that

CHng
h

ul
] uuds 13 (3.26)
n

The above forms one part of the volume flux due to the waves. A contribution due to the

roller needs to be added to calculate the total mass flux.
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Figure 3.6: Variation of a, with K

Figures 3.7 show the variations of B determined using the procedure described
above. These plots show features essentially similar to those of P and all the comments

made regarding the nondimensional radiation stress apply to this quantity too.

3.4.3 Results for D

Figures 3.8 show the variations of D/ Dj,re for the experiments analyzed (recall that
D < 0). We see once again that the results are rather strongly grouped by the parameter
Sp. For all the experiments the dissipation is close to zero at breaking indicating that
even though there is a significant decrease of wave height near breaking there is very little
change in the energy flux and therefore there must be a substantial change in the shape
of the wave. This is consistent with the results we found earlier for P.

For smaller values of the parameter S} the dissipation increases from zero to a
value that is about one and a half times the dissipation in a bore. The dissipation rate
then stays relatively constant at this value for a long stretch and then increases quite

rapidly near the shoreline. As one progresses to higher and higher S values we see that
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the stable value of D/Dy,,. is higher and that the wave propagates to smaller values of
h/hy equilibrium conditions are achieved. For the very high values of S, we find that
D/ Dy,e increases constantly from break point and there is no region in which it remains
approximately constant indicating that the changes are so rapid that the wave does adjust
to local conditions and reach an equilibrium situation. These results are also consistent
with the results we found for P.

Similar to what we found with the variations of P the results from Visser’s exper-
iments are significantly different from the results derived from other experiments (figure
3.8d). Again, we see significant difference between the experimental results for experi-
ments 2 and 3, where, based on the experimental parameters, we would not expect to see
much difference. As before, the cause for this remains inexplicable.

All the dissipation curves show two strikingly common features. The first is that all
of them show very little dissipation near the break point. This result was also discussed
by Svendsen (1984a). The second is that all the curves in figures 3.8 show that near the

shoreline the ratio D/ Dy, tends to extremely large values. The reason for this is that
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while Dy, tends to a constant value in this region D increases (numerically) rapidly
making this ratio extremely large. This may be seen from the following argument.
Assume that near the shoreline H = yh and that B is a constant. The energy

equation gives

D = —2.5pgh\/ghy:Bh, (3.27)
Therefore
4hL 3
D = —2.50gh\/ghy?*Bhy ——— x — 3.28
peh/ghy Bhem e * = (3.28)

Therefore, D — —o00 as h — 0. The implication here is that in this region the nondimen-
sionalization adopted (which is based on bore dissipation) is not a very good one and that
the approximation that the actual dissipation is proportional to the dissipation in a bore
is not valid near the shoreline.

If the experimental results of Visser are accurate then the extremely high values
of P would indicate that Visser’s waves are more massive than the broken waves from
other sources. In that case, the By variation by Hansen (1990) used in the analysis would
almost certainly be too small which then implies that the values determined for B and D

are even larger than the already large values shown here.

3.5 Sensitivity of the results
Given some of the uncertainties in particular of the interpretation of the data it is
relevant to examine the sensitivity of the results to the variations used and the various

approximations made along the way.

3.5.1 Sensitivity to the parameter values used

Assumptions were made earlier regarding the values of the momentum correction
factor, ay, and the quantity Bo. It is evident that these affect the results only for B and
D. The sensitivity of the results to inaccuracies in a, may be assessed by the following

9B _ By
da, 2

(3.29)

implying that
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% ~ QB—J;AQE (3.30)
Since we know that By < B we find from the above that a 30% error in the estimation
of the momentum correction factor, a,,, produces less than 15% error in the estimation of
the dimensionless energy flux, B, which in turn produces a similar error in the calculated
dissipation rate. We also know from figure 3.6 that the momentum correction factor
used should be accurate to within 30%. We, therefore, conclude that errors in B and D
from this source will not exceed 15% (in most cases they are about 7-8%). Figure 3.9
demonstrates this. Shown in this figure are comparisons of results for calculations using
o, = 1 and a, = 1.3. This figure shows that, as expected, there is less than 15% difference

in the results for the two values of the momentum correction factor.

Similarly the effect of inaccuracies in B are

Z
= = s (3.31)

B By B
Since we expect By ~ B/2 and a, ~ 1 we expect that a 20% error in By will produce less
than a 5% error in B. So, this is not of significant concern either.

From the above two paragraphs we conclude that the inaccuracies made by using
the B variation suggested by Hansen and an a, = 1 will have a maximum of 10% error

in the results presented here.

3.5.2 Sensitivity to the data interpretation

We first notice that the formulations are such that inaccuracies in wave height have
only local effects for the results for P, B and D whereas the inaccuracies in the set-up have
an integrated effect on the variation of these quantities. For P and B the inaccuracies of
the set-up turns out to be the most important.

Figure 3.10 shows two plausible interpretations of the set-up data for experiment
$2C3 of Okayasu et al. In both cases we use the same variation of wave height as shown
figure 3.2. We notice from figure 3.10 that both assumed variations may be said to be
reasonably accurate and that it is difficult to say which of the two variations is justified
on the basis of the measurements. While the variations in b themselves are relatively close

to each other there are some differences in db/dz.
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Figure 3.10: Two possible variations of the set-up for OKS2C3 data

Figures 3.11a and 3.11b show respectively the variations of P and D for the two
variations. The changes in P suggest that the effect of errors in the set-up on this quantity
is significant. The dissipation rate, on the other hand, seems almost indifferent to errors
in the set-up as one might expect.

The rather large impact on P of minor inaccuracies of the set-up indicates that we
can make rather large errors in this parameter without significantly effecting predictions
of set-up. This seems, at a first glance, to be contradictory to what we started out with
as the motivation for analyzing the experimental data to determine the forcing. However,
note that the inaccuracies expected in P due to uncertainties in the data interpretation
are much smaller than the deviation of P from the constant value of P = 3/16 that one
gets from linear theory. We find that in this region where P is most sensitive to the data
interpretations the wave height is less than half that at breaking. A 20% error in the value
of P which indicates a 20% error in the value of the radiation stress. When compared
with the value of the radiation stress at breaking this difference is relatively small and

would be barely discernible on a plot of the radiation stresses for the two variations (see
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figure 3.12). The conclusion here is that the important feature is the relatively small
value of P at breaking and its subsequent increase through the transition zone. Because
data near the shoreline are not available in these experiments, and, because the variations
(especially, P) are somewhat sensitive to errors in b we conclude that the variations very

near the shoreline of the earlier figures need to be interpreted with caution.
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Figure 3.12: S,, for the two variations

This feature may also be responsible for the rather surprising agreement of some
models that use linear long wave theory to predict the set-up reasonably if the set-up
calculations are started at the transition point. The problem of that approach is that it
does not account for the change in radiation stress predicted by linear theory between
the break point and the transition point. The approach has the implicit assumption
that the radiation stress remains constant between the break point and the transition
point. Because there is a significant change in wave height between the break point and
the transition point, starting the set-up calculation at the transition point instead of the
break point has the assumption that the radiation stress at breaking is significantly smaller

than that predicted by linear theory. For models that use the energy equation to calculate
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the wave height variation this approach is inconsistent in that the decrease in wave height
implies a decrease in the energy flux (according to linear theory) while, at the same time,
as discussed above, there is no change in the radiation stress. This inconsistency is of
course eliminated if the shape factors are allowed to vary. A similar observation may be
made with regard to models that use a constant wave height to water depth ratio and
a permanent form theory to calculate the radiation stress if the set-up calculations are

begun at the transition point.

3.6 Discussion

The results presented in this chapter showed that relatively simple measurements
could be used to determine the variations of the wave averaged quantities in an accurate
manner. One of the uncertainties of the analysis can be removed if the quantity By is
accurately determined. This quantity may be easily calculated from the measurements
as the same gage that measures the wave height provides the information required to
calculate this quantity (see equation 3.9).

In the following we discuss some applications of the above. Particularly, we discuss
possible improvements in predictions based on the variations found above and extensions
to the case we are particularly interested in in this thesis, viz., that of the longshore current

case.

3.6.1 Applications of the method
Figures 3.13 and 3.14 present the results of the calculations for the experiments of
Visser (experiment 1) and Stive & Wind (experiment 1). The different predictions shown

in these figures are based on

1. average value of P and D;
2. average P and correct D and

3. correct P and average D.

where “correct” indicates that the variation of the relevant the dimensionless parameter

is as found in section 2.4. Using “correct” P and D and neglecting the bottom friction
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will give us back exactly the variation we used. “Average” is defined as the average value
computed for the S, group identified in figures 3.4 and 3.8. For example, the predictions
of the variations for Stive & Wind’s Experiment 1 use the average values of P and D
calculated from figures 3.4a and 3.8a. This exercise is also a form of a sensitivity test.
The results show the sensitivity of the predictions to errors in P and D. Not surprisingly,
figures 3.13 and 3.14 show that the predictions using the average values are significantly
better than the predictions of earlier models. A comparison of the various predictions for
Stive & Wind’s Experiment 1 shows the inaccuracies entailed by using incorrect values of
P. Figure 3.4a shows that the average P is quite different from the variation of P for Stive
& Wind’s experiment. The results for the set-up show the inaccuracies introduced by using
incorrect variations of P. Figure 3.8a shows that the average value of the dissipation rate
is extremely close to the actual variation for Stive & Wind’s experiment. The predictions

of the wave height reflect this feature.

3.6.2 Extension to 2D horizontal situation
The results for P and B can also be used to determine the to estimate the forcing for

longshore currents. As shown in the last chapter, we have, to a very good approximation
1
By = (SM - Epgﬂrng) sin a (3.32)

Thus, with Szz, H and Bo known we may estimate the longshore component of the radi-
ation stress with reasonable accuracy. It was also shown in the last chapter that to the

first approximation the longshore current is governed by

d
- (Soy + 55,) + 70y =0 (3.33)

All previous longshore current models used this equation to predict longshore currents.
In these models it was not clear what the sources of the inaccuracies were. The idea of
using the present approach to calculating the forcing is that in this way we eliminate one
of the uncertainties of the problem. Therefore, incorrect predictions of longshore currents
will reflect inaccuracies in the modelling of the other two terms in equation (3.33). The

possibility also exists that the interaction term neglected in (3.33) relative to (2.44) is
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Figure 3.13: Predictions using average parameter values for Stive & Wind Exp. 1
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not negligible in comparison to the terms retained. This alternative will be examined in
chapter 6.

Figures 3.15 show the variations of S, for the five Visser experiments. Since the
By variation is not known for Visser’s experiments, the results are shown for two different
variations of Bo. The curve that shows the larger values of 5y is derived using Hansen’s
variations for Bo. The other curves use a value of By that is one and a half times the
value suggested by Hansen. Also, shown on these figures for purposes of comparison is the
variation of S, as predicted by linear long wave theory. These plots show that similar
to S, that the longshore component of the radiation stress at breaking is significantly
smaller than the predictions of linear theory and that there is not much change in Sz
for a significant fraction of the surf-zone. Near the shoreline the rate of decrease of the
radiation stress is significantly larger than the predictions of linear theory. The forcing for
the longshore current is given by the gradient of the longshore component of the radiation
stress. If the plots under consideration are even approximately correct, they indicate that
if linear long wave theory is used to calculate the forcing, (3.33) cannot give accurate
predictions of the longshore current if the other terms in that equation are modelled
properly.

At this point we have estimated the forcing of the longshore currents. In addition
to the forcing, the other two terms of (3.33) need to be modelled to predict longshore
currents. Visser’s measurements suggest that the longshore currents are rather strong (his
measurements show longshore Froude numbers of order 1). We may therefore expect that
a linearized bottom friction law may not be a very accurate model and we may need to
resort to the more general quadratic law. In the next chapter we discuss a quadratic law

that relates the bottom shear stress to the near bottom velocity.
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Figure 3.15: Estimates of S5, for Visser’s experiments
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Chapter 4

BOTTOM FRICTION FORMULATION

4.1 Background
In steady, unidirectional flow, the most commonly used relationship between the
velocity and the bottom shear stress is a quadratic law typically written in the form (see,

e.g., White 1986, p. 303)
Ty = Cpfcu2 (4-1)

where 73, is the bed shear stress, u is the fluid velocity (typically the mean), f. is a
nondimensional friction factor which depends on the Reynolds’ number of the flow and the
roughness characteristics of the bed, and C' is a dimensionless constant used for historical
reasons. The normally used values for C are 1/8,1/2 and 1.

A commonly used extension of (4.1) to oscillatory flow is (see, e.g., Jonsson 1966)

wlE) = %pfwm(t)luwb(t)l (4.2)

where fy is a ‘wave’ friction factor and w,(t) is the near-bottom velocity of the oscillatory
motion. In the presence of currents a formulation similar to (4.2) is normally used with the
wave friction factor fyr replaced by a ‘wave-current’ friction factor f,, and u,;(t) replaced
by the instantaneous near-bottom velocity uy(t) (e.g., Grant and Madsen 1979; referred to
hereafter as GM79). The friction factor f,, can only be calculated by means of a detailed
boundary layer theory (such as GM79). We use f,, to represent the wave-current friction
factor instead of the more common f,, for reasons of typographical simplicity.

In the following we use a quadratic law of the form (4.2) for the case where both
waves and currents are present. No assumptions are made regarding the strength of the

current relative to the waves. A general formulation is developed that is convenient to use.
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We also find that the quadratic law, as it is normally used, has some rather interesting
implications. For simplicity, we assume here that the friction factor f,, is known a priori.

The problem of determining f,, is briefly discussed at the end of the chapter.

4.2 Mathematical formulation
The formulation used here is a generalization of that used by Liu and Dalrymple
(1978) to arbitrary wave and current situations. We assume that the near-bottom velocity

is given by
upi(t) = Ubi + wubi(t) (4.3)

where ¢ = 1,2 and U, is the near-bottom current velocity. For a wave incident at an angle

a to the z-axis we have (see figure 4.1 for the definitions)
Ty (t) = u, [cos aey + sin aey] F(1) = uoi F(t) (4.4)

where u, is the magnitude of the near-bottom wave induced velocity, u,; is the amplitude
of the wave velocity in the z; direction, e; and e, are the unit vectors in the z and y
directions respectively and F(t) is the periodic variation of the wave induced velocity.
Typically, F(t) = cos(wt) is used where w is the frequency of the wave motion. We use
this variation here though the extension to other periodic variations is straightforward.
The instantaneous bed shear stress is assumed to be given by the following empirical

formulation

i = 5P fuus(OIT(0) (45)

Such a formulation is commonly used to relate the boundary shear stress to the near
bottom velocity (see, e.g., Longuet-Higgins 1970, Jonsson et al. 1974, Liu & Dalrymple
1978, Kirby & Dalrymple 1982, Wu et al. 1985, Larson & Kraus 1991).

The mean bottom stress is given by the time average of (4.5). Substituting (4.3)

and (4.4) into (4.5) and time averaging (after using F(t) = cos(wt)) leads to

Th = %wa [B1Usi + Batoi] (4.6)
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Ay
Ub Wave number vector
k
Current vector L-o
o
= =

Figure 4.1: Definition sketch for waves and currents

where
=t 2 T 1/2

B = { (%) +2 (u—o) cos (wt) cos (4 — &) + cos? (wt)} (4.7)
7\, (T v

By = { (‘lTo) + 2 (;:) cos (wt) cos (p — @) + cos? (wt)} cos (wt) (4.8)

In the above g (= tan™! Up,/Usy) is the angle of the current vector with the z-axis and U
is the magnitude of the current vector (: \/m.

In (4.6) the first term on the RHS represents the usual bottom friction on the bed
due to the current motion. The second term on the RHS represents a contribution to the
mean bottom stress from the oscillatory flow.

Figure 4.2 shows the variations of 8; and B, with U /u,. The variations are shown
for a number of values of (1 — a). It is easily shown that the $; and §; have the following

limiting values

e U/u, — 0 (Weak current)

B — 2 (4.9)

(s
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B2 — %ugcos(p-—a) (4.10)

a

o U/u, — oo (Strong current)

p — (4.11)

B2 — 5cos(p—a) (4.12)

Liu & Dalrymple considered the special cases of weak and strong currents relative to the
wave motion. Special cases of the model presented above have been used in previous
longshore current models (see, e.g., Kirby & Dalrymple 1982, Wu et al. 1985, Larson &
Kraus 1991).

The generalization presented here relative to the earlier works is that the magni-
tude of the currents and the direction of the coast are not assumed @ priori. Previous

investigators assumed, for example, that the coast was aligned with the y axis eic.

4.3 Implications of the mean bottom stress formulation
The quadratic friction law considered above has some interesting implications.
Though it is a digression from the central theme of this thesis, it is worthwhile to ex-

amine some of these before proceeding to the determination of the mean currents.

4.3.1 Turning of the current vector

As pointed out by GM79, the direction of the mean bottom stress as given by (4.6)
is, in the general situation, different from both the direction of the mean current and
the direction of wave propagation. This has an interesting nonlinear effect that leads to
preferential attenuation of one of the components of the current vector.

To demonstrate this effect, we seek conditions under which (4.6) will yield a bottom
stress component on the bed which is in the opposite direction to the component of the
current. In other words, we seek conditions under which 73; < 0 with Uy; > 0. For this to

be satisfied we require (no summation implied)

Uoi

B2 < —)31"@

(4.13)
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or for the z-component

Uy COS ¢
s e 4.14
B2 < =h Uy cosp ( )
and for the y-component
U, Sin &
=By == 4.15
b < —Pr Up sin p @.15)
Under the weak current assumption the above reduce to
cosp > — cosa cos(p — @) (4.16)
and
sinp < — sina cos(p — @) (4.17)

respectively. Figure 4.3 shows the regions in which (4.16) and (4.17) are satisfied.

Let us consider the implication of (4.14) and (4.15). If (4.14) is satisfied then (4.6)
shows that the z-component of the mean stress on the bed is in the opposite direction to
that of the mean current. This implies that the z-component of the mean bottom stress
acting on the fluid is in the direction of the z-component of the current. In other words,
the mean bottom stress acts as a forcing that enhances the z-component of the current
rather than holding it back. This appears at a first glance to be counter-intuitive since
we assume that the bottom stress will always retard the flow. Note, however, that in the
present case the y-component of the current, which is much larger than the z-component,
is heavily retarded. So, the magnitude of the current decreases while the z-component
increases. This leads to a change in direction of the current vector. If 2 and y are taken
to be cross-shore and longshore co-ordinates then, using similar arguments we can find
conditions when the longshore component is enhanced at the expense of the cross-shore

component.

4.3.2 Effect of current direction on the bottom stress
The presence of the current also affects the mean bottom stress in a perpendicular
direction. From the form of (4.6) it is clear that in the present formulation such an effect

will be hidden in £; and ;.
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Figure 4.4 presents the variation of the cross-shore mean bottom stress 75 /720
with Uy/u, for different values of the longshore current. (We have again taken z and y to
represent the cross-shore and longshore directions.) In this figure 75,0 is the bottom shear
stress calculated by ignoring the presence of the longshore current. This figure shows that
for weak cross-shore currents the error made by ignoring the longshore current is not great
whereas for strong currents (Uy/u, > 1) the errors made by neglecting the strong longshore
current in the calculation of the mean cross-shore bottom stress may be significant. This
might become an important consideration for situations in which the bed shear stress is

an important parameter.

o 77
N \‘\\ ,”” /
- //
1.5 \\ f/! 7 A
NN & ), P
i - / -
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= e | e
) Legend
o o
U/u0 = 0.25
0.5- U/u0 = 0.75
U/u0 = 1.25
. U/u0 = 1.75
-2 -1 0 i 2 'J/uo_;_ 2.25
v,/U, U0 = 275

Figure 4.4: Variations of the bottom stress with U /ug

4.4 Discussion

We have shown that a commonly used bottom friction formulation has some rather
interesting implications. The quadratic law causes a change in direction of the mean
current vector and also causes the presence of a strong current to significantly affect the

mean bottom stress in a perpendicular direction.
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The major shortcoming of (4.5) as it is normally used is that f, is constant over the
entire range of U /u,. This assumption, though frequently adopted, is not completely valid.
The proper determination of the friction factor requires the modelling of the boundary
layer due to waves and currents in the spirit of GMT79. It is also not completely clear
what value of the current velocity is to be used in (4.3). For example, the theory of
GM79 suggests that the appropriate velocity to be used is an “apparent” velocity which
is different from the actual velocity.

We note that while the theory of GM79 may give a reasonable estimate of f,, to be
used in (4.6) there is no a priori reason why it should do so in a general situation. The
boundary layer flow in the surf-zone is quite different from the one envisaged by GMT9.
Inside the surf-zone, the main source of the turbulence is energy dissipated during the
wave breaking process and the turbulence generated near the bed is small in comparison.
Though it has never been analyzed or measured, this feature will undoubtedly alter the
boundary layer flow significantly, and, would therefore affect the variation of f,.

Wu (1987) calculated the steady streaming in the boundary layer under breaking
waves. He ignored the mean pressure gradient arising from the set-up and the turbulence
above the boundary layer. He found that the steady streaming was in the opposite direc-
tion to the wave propagation near the bed and in the direction of the wave propagation
near the outer edge of the boundary layer. He attributes this strange behavior to the ne-
glect of the set-up and suggests that a boundary layer model that combines the approaches
of Johns (1983) who developed a model that accounts for a sloping bottom and Svendsen
et al. (1987) who used a two layer model is required to properly model the boundary layer
flow under breaking waves.

At the present time, there are no measurements available for flow in boundary
layers under breaking waves. The measurements that come closest to this situation are
due to Kirkgoz (1989). Kirkgoz measured velocities in the boundary layer in the very high
waves prior to breaking on a slope. However, even in this situation there is hardly any
turbulence outside the bottom boundary layer and hence results from these experiments

do not directly apply to the surf-zone.



80

A comprehensive model would require the use of a turbulence model that models the
actual physical situation in a realistic manner and the development of a detailed boundary
layer theory from which one may predict f,. This is not undertaken here. The approach
commonly used (the present work being an example) assumes that a representation of
the instantaneous bottom friction like (4.5) is possible with a known value of f,,. This
amounts to a ‘black box’ approach wherein one assumes that the near-bottom velocity
drives a bottom boundary layer whose main effect is to link the bottom shear stress to

the near bottom velocity through an appropriate relationship.



Chapter 5

PREDICTION OF 2D HORIZONTAL CURRENTS AND |
DERIVATION OF THE VERTICAL STRUCTURE OF THE
CURRENTS

5.1 Review of previous work on mean circulation on long straight coasts
The mean circulation we deal with in this thesis is composed of a longshore current
and the undertow. The longshore currents are forced by gradients of the longshore com-
ponent of the radiation stress. The undertow is forced by continuity because on a beach
there is no net mass flux in the cross-shore direction. This implies that the mass flux due
to the waves has to be compensated for by a return current. In this section we summarize
the previous work on these phenomena. Longshore currents are dealt with first because

work on this phenomenon seems to have begun earlier than work on the undertow.

5.1.1 Longshore currents

Putnam et al. (1949) conducted the first systematic study of the longshore current
phenomenon. They conducted a series of laboratory and field measurements of the average
(across the surf-zone) longshore current. Galvin (1967) reviewed these as well as subse-
quent measurements of longshore currents and the various empirical formulae available up
to that time.

Bowen (1969a) was the first to apply the concept of the radiation stress to the
prediction of longshore currents. He showed, using linear theory, that provided there is no
dissipation of wave energy outside the surf-zone, the longshore component of the radiation

stress is conserved if Snell’s law is valid.” Inside the surf-zone, he assumed that the wave

7 This result has been generalized by James (1974a) to apply to the nonlinear case (see appendix B).
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height was proportional to the water depth and calculated the corresponding decay in the
longshore component of the radiation stress. Using a linearized bottom friction law and a
constant eddy viscosity he solved for the cross-shore distribution of the longshore current.

Thornton (1970) and Longuet-Higgins (1970) used the same approach as Bowen
with different eddy viscosity formulations. Thornton formulates the problem of longshore
currents on beaches with no alongshore variation giving a very useful discussion of the
assumptions made along the way. Longuet-Higgins also gives a detailed discussion and
summarizes the experimental data available up to that time. Longuet-Higgins’ solution
for the longshore currents is probably the most well known, perhaps, because of its math-
ematical simplicity. For this reason as well as because we will be using features of this
solution for our discussion here and in the next chapter and also in chapter 7 use this
longshore current distribution to study stability characteristics of longshore currents it
may be worthwhile at this stage to review essential features of his solution. The first

approximation to the longshore current is governed by (2.45)
d
'(E (Sxy + S;:y) + Thy = 0 (5'1)

Longuet-Higgins assumes that inside the surf-zone H = yh and linearizes the quadratic

friction law to get

i pfw'u()v (52)

He uses linear long wave theory to calculate the longshore radiation stress and assumes that

up = ¥v/gh/2. He further assumes that the turbulent radiation stress may be modelled

by
8= —pNz\/g_hd—V (5.3)
* dz

where N is a dimensionless constant (between 0 and 0.016). (5.3) will be discussed further
below.

Under these assumptions, for the case of a plane beach, h = h,z, (5.1) reduces to

P% (X“»E—;—) — XU = XY (5.4)
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where X = z/z, and V = V/V,,. V,, is the velocity at the breakpoint for P = 0 and
is given by Vi, = 577hz/ghs sinas/8 fy,. The above equation is then solved by requiring
boundedness of the longshore current at £ = 0,00 and continuity of the velocity and its
derivative at z = z,. The continuity conditions need to be applied because the forcing
(dSzy/dz) changes discontinuously from a non-zero value inside the surf-zone to zero
outside the surf-zone. The parameter P is given by

_ 2hN

i (5.5)

P

He finds that this parameter represents the strength of the turbulent mixing and essentially
controls the shape of the profile. Smaller values of P lead to higher maximum velocities
and larger shears on the seaward face of the longshore current. Measured profiles of
longshore currents suggest that reasonable agreement is obtained for P in the range 0.1
to 1.0 (see, e.g., Mei 1983, p. 478). Figure 5.1 shows the variation of Longuet-Higgins’

solution for a number of P values.

1
Legend
=0
e P=0.01 _
> 0.5 - -~ P=10
;\ ~ N \ .y

Figure 5.1: Longuet-Higgins' (1970) solution for the longshore currents
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James (1974b) calculated longshore currents employing his wave model which was
briefly described in chapter 3. He used an eddy viscosity similar to the one used by
Longuet-Higgins inside the surf-zone. Outside the surf-zone, he assumed that the eddy
viscosity was inversely proportional to the depth. Liu & Dalrymple (1978) studied the
effects on the longshore currents of a large angle of incidence and special cases of the
quadratic bottom friction law discussed in chapter 4. They neglected lateral mixing.
Mizuguchi & Horikawa (1978) measured longshore currents in the laboratory and esti-
mated the vertical structure of the currents. Unfortunately, their experiments did not
have alongshore uniformity and hence cannot be used for purposes of comparison here.
Kraus & Sasaki (1979) extended Longuet-Higgins’ solution for the case of a large angle of
incidence. Visser (1982, 1984) measured longshore currents in a laboratory. He measured
the longshore current using a dye and also estimated the vertical structure of the currents
based on measurements at three depths. McDougal & Hudspeth (1983) extended Longuet-
Higgins’ solution to non-planar beaches. Svendsen & Lorenz (1989) solved for the local
vertical structure of the longshore currents using a perturbation approach. They found
that the vertical structure of the longshore current is rather weak. Dong & Anastasiou
(1991) also solved for the vertical structure of the longshore currents.

Mizuguchi & Horikawa (1978) reported field measurements of longshore currents.
Other field measurements of longshore currents include Thornton & Guza (1981, 1986) and
Whitford (1988). Wu et al. (1985) published a comparison of the results of a monochro-
matic numerical model with the data of Thornton & Guza (1981). Thornton & Guza
(1986) compared the results of various longshore current models with their field data.
Whitford (1988) modified Thornton & Guza’s (1986) spectral model and compared the

predictions of the modified model to his field observations.

5.1.2 Cross-shore circulation

Dyhr-Nielsen & Sorensen (1970) pointed out that the mean stresses acting on the
water column were not evenly distributed over depth and that these imbalances may drive
a mean cross-shore flow. Detailed measurements of undertow profiles were carried out by

Stive & Wind (1982), Nadaoka & Kondoh (1982), Hansen & Svendsen (1984), Okayasu
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et al. (1986, 1988) and Okayasu (1989) in the laboratory. Recent field measurements of
the undertow profiles include Wright et al. (1982), Guza & Thornton (1985), Haines &
Sallenger (1990) and Greenwood & Osborne (1990). Greenwood & Osborne provide an
exhaustive list of references for the cross-shore circulation problem.

Dally (1980) and Borecki (1982) presented models for the undertow using linear
theory to calculate the radiation stresses. Borecki also gives a very detailed and useful
discussion of the various terms that act as forcing for the undertow and their distribu-
tion over depth. Svendsen (1984b) modelled the undertow using his roller model briefly
described in the previous chapter. The aforementioned authors enforced a near bottom
velocity on their undertow solutions. This resulted in predictions of undertow velocities
which near the bottom are in the shoreward direction whereas the measurements indicate
a seaward velocity near the bed.

To overcome this difficulty Stive & Wind (1986) presented a model for the undertow
similar to Svendsen’s but specified boundary conditions at trough level instead of at the
bottom as Svendsen does. deVriend & Stive (1987) presented a model for the quasi 3D
situation which reduces to the model of Stive & Wind for the undertow.

Svendsen et al. (1987) used measured quantities to calculate the forcing for the
undertow and calculated the resulting undertow profiles by patching the undertow solution
with a boundary layer model. In this model they assumed that the turbulence level in the
bottom boundary layer is significantly lower than the water column above. They found
that while their results for the bottom shear stress were quite sensitive to the assumed
thickness of the bottom boundary layer their results for the undertow velocities were quite
insensitive to the assumed thickness of the boundary layer. Since the bottom shear stress
is the quantity of practical interest this state of affairs is not quite satisfactory. To alleviate
this problem, Svendsen & Hansen (1988) used a bottom boundary condition that related
the near bottom undertow velocity to the bottom shear stress as calculated by using a
friction factor. They also showed that the specification of the surface shear stress as a
boundary condition as done by Stive & Wind (1986) is less appropriate than the bottom
shear stress condition used by Svendsen et al. (1987) or Svendsen & Hansen (1988).
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In this work we use an approach similar to that used by Svendsen & Hansen (1988).
The friction factor, f,,, becomes one of the parameters of the problem. As remarked in the
previous chapter, the proper determination of this factor requires an elaborate boundary
layer model which is not pursued here.

Random wave models for the undertow were presented by Stive & Battjes (1984)
and Stive & deVriend (1987). Roelvink & Stive (1989) used a slightly modified version of

the Stive & deVriend model in their undertow calculations.

5.2 Perturbation solution for the longshore current

Visser’s (1984) measurements show very little vertical structure in the longshore
current profiles. Svendsen & Lorenz (1989) studied the local depth variation of the long-
shore current and found no significant vertical structure for the longshore currents. Based
on the above we may tentatively assume that the vertical variation of the longshore cur-
rent is weak and seek a perturbation solution for the longshore current. The perturbation
solution used here is quite different from that used by Svendsen & Lorenz (1989). Svend-
sen & Lorenz did not include the UV and the VW terms in their solution. Of these, the

UV terms turn out to be important. Additionally, Svendsen & Lorenz assume that
b9V
S:‘:y = —p ['hn vt,;a-dz (56)

This is slightly different from the one used here.
To avoid having to refer back to equations in chapter 2 we will reproduce the
important equations here. The depth variation of the longshore current is governed by

(2.57) (below trough level)

0 oV ad ad 0 ov
E (WZE) = 3_3: (uwvw + UV) + '('9? (vwww + VW) - a (ng) = ay(a:,z) (57)

and the depth integrated y-momentum equation (2.44) reads

1T7d g il e 3
; [5 (Sxy & S.ry) ¥ Tby] + 3_1.‘ |:/;h° UVdz + :, uyVdz| =0 (5'8)
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5.2.1 Order of magnitude analysis

We define the following nondimensional variables

z x ¢ h U vV
hy Ty hy he cp | Cp
w U Uig Viz Ty
H —1 e ; — —'"-w X N —— S— ; b— ) — —'y 5.9
” Ug ch ) tx hbcb tz hbcb ] b ch ( )

where ¢, = \/ghy is the wave celerity at break point. Introducing the nondimensional

variables in (5.7) leads to

hy 2£ v a ov hy\ & 9 ay
(2) 3 () + 2 () - (o) 500 ~ g (=2 (5.10)

When (5.9) is introduced into the properly depth-integrated equation (5.8) it leads to

hy, 2.8 avb) (hb) d fnt /n 1 dSzy
2) — ) - (2) = uv Vdz$ = — .
(zb) I5) (Ntxh ax 2 Th X ~hg ck ny s pcf dz (5 11)

where an approximation has been introduced for S.,. To be consistent with (2.39) the

turbulence closure introduced in chapter 2 for modelling the uju; term, the longshore

component of the radiation stress should be given by

S, :/E u"-'m"'dz:—,a/’)E 2 ﬂdz (5.12)
TY L i i xax

If the depth variation of the longshore currents were known then the above is easy to
evaluate. To properly evaluate the integral we would need to know the current variation
above trough level. This is not known. For the present purposes we assume that the
integrated Reynolds’ stress may be approximated by

dVy

= (5.13)

Sgy = —pVizh

We prefer to use the bottom velocity instead of the mean (over depth) value because the
longshore current does not vary significantly over depth and it is a little more convenient
to use the parameterization in terms of the bottom velocity, particularly, in the next
chapter. This is because the bottom stress is typically expressed in terms of the bottom
velocity. If a velocity different from the bottom value (say the mean value) is used in
(5.13) then in order to solve (5.8) for the bottom velocity then the mean velocity would

have to be expressed in terms of the mean value. This is not a significant complication and
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our calculations indicate that the results are not very different if the mean value is used
in (5.13). We will discuss this further in chapter 6 where we will show that the inaccuracy
introduced by (5.13) is quite insignificant.

We define

g B (5.14)
Tp

Measurements of the undertow velocities and previous models of undertow suggest that

U/+/gk < 0.1. Therefore, it seems reasonable to assume that

Un~e (5.15)
Measurements of longshore currents by Visser indicate that V/y/gh ~ 1. Therefore we let
Vel (5.16)

The bottom condition (2.60) implies that

W~ e? (5.17)
Furthermore,
Oty 0 ; H\?

% ~ %—5- = Bpsina (_fz-) he (5.18)

Since By ~ 0.1 and sina < 1 we will have
sin aBo(H/h)*hy < he (5.19)

Therefore, we will have

a, Oy,
9y . ZHele

2
2 = sinaBg (E) hy ~ €? (5.20)

h
or higher. For the rest of this section we will assume that a,/g ~ €2,

Before we proceed any further, we need to estimate the size of the RHS of (5.11).
We have

1 dSey _ ﬁ(ﬁ
pet dz ¢} \h

2
) hzBosin e ~ &* (5.21)
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This could also have been estimated from the fact that RHS of (5.11) should have the same
order as the RHS of (5.10). The Ty, term of (5.11) is the term responsible for resisting the

forcing and, therefore, we should have
Tp ~ &2 (5.22)

Furthermore, we have

ov
Ntzﬁ )z=—1n0 =Tp~E (5.23)

Equation 5.23 indicates that there are three possibilities for Ntz and ov/0z, viz.:
1. Ny is of order €% and 8V/0Z is of order one or,
2. Ny is of order one and dV/dZ is of order €2 or,
3. both Ny, and 9V/dZ are of order €.

Existing measurements of the vertical structure of longshore currents suggest that the
first of these possibilities is not the one that occurs in the nearshore region. The second

possibility requires us to have

Viz
re 24
h+/gh (5.24)

which is in conflict with the value one estimates for v4, based on measured turbulence

levels and predictions of undertow profiles. Therefore, we adopt the third choice above.

0V/dZ ~ € implies that
V = Vo(x) +eVi(x,2) (5.25)
which shows that

ng . nt T

] ovdz+ [ woVdZ = f UVidZ + / wVidZ ~ & (5.26)
—ho ng —ho ng

Substituting the above in (5.11) we find that the interaction term enters the equation at

third order and, therefore, does not contribute to the lowest order solution of the longshore

current which is of second order.



90

So, far we have estimated the size of all the terms of (5.11) except for the first.
This term is of order £2N¢y. If we assume that Ngy is of order ¢ then we find from (5.11)
that the lowest order longshore current has no mixing. This is not what observations of
longshore current show. Therefore, we choose Nyyx ~ 1.

An obvious criticism of the above choice is that observations of turbulent eddies
(Nadaoka et al. 1989) show that these eddies are nearly circular in the surf-zone and hence
there is no reason to expect that the eddy viscosity in the vertical direction is significantly
smaller than the lateral eddy viscosity. However, we will find later that the lateral eddy
viscosity needed to explain measurements of longshore currents is an order of magnitude
higher than what turbulence measurements justify. We will suggest there that the lateral
mixing is being caused by some mechanism other than turbulence. If this is indeed the
case, there is no reason why we can rule out the possibility of the lateral eddy viscosity
being significantly larger than the vertical.

An alternative that was not pursued in the above consists of assuming that a, /g ~
1/ (pc?) (dSzy/dz) ~ €°. This may be justified on the basis that Bosinea is proba-
bly much less than h, and, therefore, it may be reasonable to assume that aylg ~
sinaBg (H/h)*hy ~ €. In this case we could choose Niz ~ e? and 9V/0Z ~ e. The
term that represents the interaction of the longshore currents and the undertow will still
be order £2. If we let Ngx ~ Nyz or higher we find that the lateral mixing represented by
this term will be negligible in the longshore momentum equation. At a first glance, this
alternative seems to contradict the findings of Bowen (1969a) and Longuet-Higgins (1970)
who found that the lateral mixing needs to be included to get realistic variations of the
longshore current. However, note that the present equation has the interaction term that
can potentially cause mixing and probably have an effect similar to that represented by
the turbulent radiation stresses. This is explored in the next chapter.

In summary, the choices made here are Nyz ~ €, Nyx ~ 1 and OV/0Z ~ €. The

following section uses these to devise a perturbation expansion to solve for the currents.
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5.2.2 Perturbation expansion
Reverting back to dimensional variables we find that the arguments of the previous

section imply that we may assume

V(z,() = Vo(z) + eVa(z, () (5.27)
with
el (5.28)

Note that the small parameter ¢ used in this section is not necessarily equal to the pa-
rameter ¢ we used in the previous section. The ¢ used earlier was explicitly related to
the slope. The ¢ used here only represents a small quantity. It need not be related to the
slope.

Substituting (5.27) into (5.8) leads to

0 1 £t €
% [hvad(Vo + EVM)] - lfby + 67‘5;&] AR i {/ ViUdz + G/ Vluwdz}
= &

dz p dz ho
1dS,,
=k (5.29)
Separating the orders we have at order €”
d dVo\ T8 _ dSmy
dz (hv;x d:r) T p dz (a0

This is the equation that has traditionally been used to solve for longshore currents (Bowen
1969a, Thornton 1970, Longuet-Higgins 1970). This is also the equation that Svendsen &
Lorenz (1989) find at the lowest order in their perturbation scheme.

At order €' we have

d dVbl) Ty d [ [ /ﬁ
<A bt L . I8 V4 = \
w5 (hb’:_—r i P ds L 1Ud2 + A V]dez 0 (5 31)

This equation is different from the corresponding equation derived by Svendsen & Lorenz.
This difference arises from the fact that these authors neglected the UV terms in the
governing equation. These are the terms that are responsible for the last term on the LHS
of (5.31).

When (5.27) is substituted into equation 5.7 which governs the vertical structure

of the longshore currents it yields
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%_(m%‘g) o (T + UVo) + - (vwww +vewy -2 (vm %‘f) = a3, 2) (5.32)

The associated boundary conditions are that Vj is determined from (5.31) and using

Vitz %) = i = lfwuﬁ [81Vo + Bauo sin o] (5.33)
0z z=—ho P 2

The condition as stated above assumes that v,(9U/8z)(0ho/dz) which represents 7,,0ho /0

in (2.35) has a negligible contribution to the bottom stress. Hence the solution to (5.32)

becomes
Vi(z,() = J"hf(]:ﬂ Cl(-i-V (z) (5.34)

where ( is the distance from the bed (see figure 2.1). The constant Vj; can be solved for,
in principle, by substituting (5.34) into (5.31) and solving (5.31) subject to V33 = 0 at
z2=0,— o0.

In order to complete the solution for the first order longshore current we need
to evaluate the last term of (5.31), viz., fé Viuywdz. This requires making assumptions
regarding the current above trough level. For the present, we assume that Vj; < Vp and
that the near-bottom velocity is reasonably well approximated by Vp. The validity of this
assumption depends on the magnitude of the last term of (5.31). This term depends on
the depth variation of the currents and on how “current” is defined above trough level. If
this term is small in comparison to dS;,/dz then (5.31) indicates that Vj; is indeed much
smaller than Vj and the approximation made here is reasonable. Chapter 6 is devoted to
an evaluation of the effect of the last term of (5.31). Particularly, section 6.5 discusses
the impact of the assumptions regarding the current above trough level on the solution
for longshore currents.

Under the approxima.tions listed here the longshore current is given by

Vie,() = BELHHL | Cupy ) (5.35)
where Vp is given by the solutlon to (5.30). Substituting for a; we find that
' 18 r—= sinacosa @ oV,
= L R g
V() = C+ o [2 % (uw cos a sin a) 2 o ( ) + Uo—— 52

10 Vs
'—55 (V:_r'a_x)] (5-36)

where the fact that v, = |uw|sina has been used to evaluate the integral of v, w,,.
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5.3 The undertow solution
The undertow variation with z is governed by (z— component of equation 2.41)

0 (,0UN_0 (= .y, 2 80 2 (e OUN
a—z(v;zg)ﬁ—-a—m-(uw-i»U)+az(uwww+UW)+gax—aI (2%,,.83:)—-&1 (5.37)

which may be integrated twice to yield
J§ J§ oadC | D)

e ox - Ub(m) (5.38)

U(z,{) =

where D; and U, are given by applying the conditions

oU w
pvtz—) = The = p‘f Yo {B1Us + Baug cos a} (5.39)
ac (=0 2
and
' Udz = -Q, (5.40)
~ho

We need to evaluate the integrals of U, W, and T, W, in addition to to evaluating
the integrals of UW and VW to determine a; and complete the solution for the current
profiles. For symmetric waves on a a horizontal bottom %y Wy, = VW, = 0. On a sloping
bottom the waves can no longer be symmetric and these terms are, in general, non-zero. In
the following we make a simple estimate of these terms. The estimates derived below are
necessarily crude. Even outside the surf-zone, there are presently no acceptable estimates
of these terms. A proper evaluation these terms requires that the problem of steep waves
propagating on slopes be solved (see Otta 1992 for some discussions of the state of the art
of this problem).

For the purposes of the derivation here we assume that the wave induced hori-
zontal velocity is independent of the depth. We are concerned here with the variations
below trough level and Hansen’s (1990) analysis of experimental data suggests that in this
layer the wave induced velocity is reasonably independent of the depth (this was also the
assumption made in chapter 3, see figure 3.5).

We assume further that the effect of the current terms may be represented by the
mean value of the undertow and the near bottom longshore current. For the case of the

longshore current, this follows from the perturbation scheme devised earlier.
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The wave induced vertical velocity can be determined from the continuity equation
for the wave motion (this may be derived by subtracting the wave averaged continuity

equation from the ensemble averaged continuity equation)

Owy auw

9z 0z (5.41)
This implies that

Quy,
wul(¢) = - [ P gt 1w, (¢ = 0) (5.42)
From the BBC for the wave motion we have
_ dho

Wy(C = 0) = —uy, 52 (5.43)

Using the assumption that the wave induced horizontal velocity is independent of
the depth below trough level we have
8’&2 C —'—3h0

Ty = — 353 u?, B (5.44)
and

¢ = 3‘&2 Cz —8h0
jo Tad( = — 22 — W= (5.45)

Returning to the undertow solution (5.38) we find that the undertow may be ex-

pressed as follows

L[, 2o [ g SR

UQ) =Tt o= D1 -5 (U3 +42)| + o e < et (5.46)
where

a9 ab 0 ovu
& = %2 (u2 + Uz) t95. " 52 (2 Viz 5 ) (5.47)
Using (5.39) the undertow solution may be expressed as

_ ¢ 1, 10(vd+)
U(¢)="U C+— [2 Qg (5.48)

Substituting for ) we find that
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- B
_ ne ¢ [ b 10(08+%3) b4 ( 3%)
U§)=Us+ ch + o [g %3 92 72 \ U250 (5.49)
In terms of the above Uy is given by
"y - 2
- oy Iy Ba fuw sino(ught)
Uy = _9t “:‘* (5.50)
ht [1 4 Erlumahs|
where
a (U3 +u2
Yo B PR 8 1 B (55
oz 2 Oz oz oz

The longshore current solution described in an earlier section is derived by following
a procedure very similar to the one described here for the undertow. In that derivation,

the fact that v,, = |uw|sin @ was used.

5.3.1 Effect of the %,w, term on the undertow profile

In this section we will consider the effect of the u,w, on the depth variation of
the currents. We will consider the undertow case in detail. The considerations for the
longshore current are similar and lead to similar results.

Undertow profiles inside the surf-zone typically show rather strong seaward flows
near the bed and either a shoreward flow or a weak seaward flow at trough level. Outside
the surf-zone, however, the undertow profile shows remarkably different features. Typically
it has a small seaward oriented velocity near the bed and a large seaward oriented velocity
near the trough. The mean velocity changes direction above this level. This feature
is apparent in all the undertow measurements indicated earlier. The measurements of
Nadaoka & Kondoh (1982) indicate that this feature extends to some distance shoreward
of breaking. Their results are reproduced here as figure 5.2. It turns out that the inclusion
of the W, Wy terms may be crucial in modelling this variation. The effect of the W, Wy
term is best demonstrated considering the situation seaward of the break point.

As indicated in chapter 3 we do not expect linear theory to provide quantitatively
accurate information in the nearshore region. However, we anticipate that the qualitative
features are captured by linear theory and since the aim of the following discussion is

primarily qualitative we will use linear long wave theory below.
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Figure 5.2: Undertow profiles measured by Nadaoka & Kondoh (1982)

Consider the wave averaged cross-shore momentum equation outside the surf-zone.

Under the linear long wave approximation it reduces to

db 3 (H\?

where the fact that energy conservation indicates that H?y/gh is constant outside the

surf-zone has been used. We also find, using linear long wave theory, that

o} 2
2P 1 (E)
uf, = ¢33 Sgh ; (5.53)
The above implies, after using the fact that H oc h=1/4, that
d— 3 (H)?
— = — — hz -
dz = 16 \h (5:54)

Neglecting the terms arising from the mean velocity contributions the forcing for

the undertow a; is given by (equation 2.41 suitably simplified)

0 (— 0 ab
a] = 3z (uﬁ,) + a (uwww) + 95; (5.55)

We first consider what happens if the %, W, term is neglected in the above we find, after

using (5.53) and (5.54), that
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3 (H\?
‘%"1___—_3_2 (I) he (5'56)

indicating that the curvature of the undertow profile is negative and therefore the shape of
the undertow profile is similar to the undertow profiles one finds well inside the surf-zone
which is different from what the observations show.

The derivation of the last section indicates that a reasonable estimate of the wave

induced vertical velocity on a horizontal bottom yields

0 18 p=s
E (uwww) = _5% (”i) (5'57)

Substituting this in (5.55) we find that a; = 0. This indicates that the undertow profile
will have no curvature. Using a linearized bottom friction law to relate the bottom stress
to the near bottom velocity we find that the near bottom velocity Uy is given by

g (__—1 e ) (5.59)

s

Because Q, is shoreward oriented the above indicates that Uy is seaward oriented. The
the slope of the profile is given by 7y,/(pviz)[= fwuolUs/(7v12)]. Therefore, we find that
the mean velocity at the trough level is seaward oriented and is significantly larger than
the near bottom velocity. Above the trough level the mean velocity has to be oriented
shorewards. This feature is similar to the observed undertow profiles and is crucially
dependent on the inclusion of the %Wy, term. This shows that the u,w, term plays a
very important role in the predictions of the current profiles.

Considerations similar to the above indicate that in the longshore direction the
inclusion of the Wy reduces the curvature of the profile to a value that is one-fourth the
value that one would have if the term is neglected.

Note that the above considerations do not account for changes in wave shape or
the forcing arising from the current terms which will modify the forcing and introduce
additional complications. The numerical results presented later on in this chapter have

these terms included.
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5.4 Some unresolved problems related to the longshore current distribution

In spite of all our knowledge about longshore currents — including the results in
chapter 3 for the forcing there are still many unresolved questions particularly relating to
the mixing mechanisms. In this section we try, by means of selected numerical experiments
and comparisons with laboratory data to clarify the nature of the physical inconsistencies.
We will restrict ourselves to the lowest order approximation Vp(z) in this section. Some
of the features considered here were also reported in Svendsen & Putrevu (1990).

For the purpose of discussion we use, in the next few sections, we will use an S,
variation that corresponds to the P variation of Okayasu-Series 3, Case 1 and a 10° angle
of incidence at breaking. This experiment was chosen because its results are typical for
a 1/30 slope and we use this value for the slope in most of the examples below. The
variation of 5, used in the following is plotted in figure 5.3. In addition, unless otherwise
specified, in the following calculations we use the quadratic bottom friction formulation
with a constant value of f,,. The near-bottom longshore current is calculated using (5.30).
The depth variation of the longshore current is given by (5.36). The undertow is calculated
(5.49).

As discussed earlier outside the surf-zone dS;,/dz = 0 under the assumptions of

irrotational wave motion, energy conservation and validity of Snell’s law (see appendix B).

5.4.1 Effect of the eddy viscosity formulation

The eddy viscosity is typically assumed to be the product of a length scale and a
velocity scale. In the nearshore region the length scale is typically limited by the local
depth and the velocity scale by the local wave speed. The form of the lateral eddy viscosity

is, therefore, expected to be

Uiz = czh/gh (5.59)
and the vertical eddy viscosity is expected to be given by
Vg, = c;h/gh (5.60)

As a model case, consider longshore currents on a 1/30 slope. Measurements of

turbulence intensity (on slopes of the order 1/30) and analysis of these measurements show
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Figure 5.3: Forcing used for longshore current

(Nadaoka & Kondoh 1982; Stive & Wind 1982; Okayasu et al. 1986, 1988; Svendsen 1987;
see section 6.1 for a brief summary of turbulence measurements and proposed models for

mixing in the nearshore region)

Viz ~ 0.01h\/gh (5.61)

inside the surf-zone, i.e., ¢, ~ 0.01. Outside the surf-zone, the turbulence is much weaker.
Based on the magnitude of the turbulent fluctuations in the horizontal and vertical
directions as a first guess one would assume that vy >~ vy, =~ 0.01h\/gh. However, for v,

Longuet-Higgins (1970) assumes

v = Na/gh (5.62)
which for the constant slope considered here reduces to

Vig = %h\/g_h (5.63)

i.e., ¢z = N/hz. It is well known that using Longuet-Higgins formulation with P ~ 0.5
gives reasonable estimates of the longshore currents. In terms of P, N is given by N =

(7fw/(27h; )] P (see equation 5.5) which when substituted into (5.63) vields
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< We pp ok (5.64)

lljw " 2mh? "
which is about fifty times those values given (5.61) for P = 0.5 and typical values of the
parameters (v = 0.8, f,, = 0.01).

Before we discuss this conflict any further, it is useful to consider the effect of the
variation of the eddy viscosity outside the surf-zone.

Effect of eddy viscosity outside the surf-zone

Outside the surf-zone, one expects the eddy viscosity to decrease rapidly. However, a
sudden drop in the eddy viscosity would lead to a sharp increase in the slope of the
longshore current. Bowen & Inman (1974) and Battjes (1975) discuss this problem but,
to date, no satisfactory solution has been presented to this problem. Therefore, it is of
some interest to study the effect of the assumed variation of the eddy viscosity outside
the surf-zone on the longshore current prediction. To study the effect we examine the
following four variations of eddy viscosity outside the surf-zone (v is the eddy viscosity

at breaking)
1. vz = /10 = constant

2. vy = vy = constant

v (hy/h)?

|

3. Vir

Vib (hb/h)4

4, Vir

In the results presented here the eddy viscosity inside the surf-zone is assumed to
be given by v¢z = 0.1hy/gh. This high value of the lateral eddy viscosity will be found to
be necessary below. Also in these calculations the quadratic bottom friction law was used
and current refraction was neglected. We will show later on that the effect of the current
refraction on the longshore current predictions is rather weak.

Figure 5.4 shows the longshore current distribution for these cases. The curve for
case 1 above shows a sharp drop in the longshore current at break point and the longshore
currents outside the surf-zone are much smaller than the other three cases. Longshore

currents in cases 2-4 above are not very different from one another in an overall sense
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even though the eddy viscosities used are quite different from one another. This indicates
that while it is necessary to have a rather large value of eddy viscosity at break point
the variation of eddy viscosity away from the break point has relatively little influence on
the overall longshore current. The conclusion here is that while it is necessary to have
a continuous variation of the eddy viscosity across the breaker line the eddy viscosity

can be allowed to decay without significantly altering the overall predictions of longshore

currents.
0.25
Legend
0.2 Nitm = Ntb/10
Nim = Ntb
0.15- Ntm = Ntb (hb/h)~2
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o
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Figure 5.4: Effect of eddy viscosity outside the surf-zone

Effect of eddy viscosity inside the surf-zone

Figure 5.5 shows the variations of the longshore current for eddy-viscosities of 0.1h+/gh
and 0.01h+/gh inside the surf-zone. These two values are chosen because the second of
these gives the variation of the eddy viscosity that is expected based on turbulence char-

acteristics and the first gives eddy viscosities of the order used by previous investigators

(e.g., Longuet-Higgins 1970).
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QOutside the surf-zone, the eddy viscosity is maintained at a constant level (equal
to the value at breaking). This value, though high, does not inﬂueﬁce the overall re-
sults substantially as discussed above. This plot shows essentially the same feature that
Longuet-Higgins found with his parameter P. Decreasing the eddy viscosity increases
the maximum velocity and makes the offshore gradient much steeper. Measurements of
longshore currents show features similar to the higher value of the eddy viscosity (see,
e.g., Visser 1982, 1984) whereas measured turbulence levels suggest the lower value. This
figure clearly demonstrates that the lateral eddy viscosity is significantly higher than that
indicated by measurements of turbulence intensities indicating that the lateral mixing is

probably being caused by a mechanism that is different from turbulence.
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Figure 5.5: Effect of eddy viscosity inside the surf-zone

5.4.2 Effect of slope on the longshore current
At the present time, there is very little experimental evidence of the dependence
of the longshore current on the slope. Therefore, it is of some interest to examine the

dependence of the longshore current on the slope. Note that the results presented below
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are of a speculative nature and require experimental verification before the conclusions
can -be accepted.

Figure 5.6 shows the variation of the longshore current with /hy, for different slopes
using v¢z = 0.1h+/gh inside the surf-zone and 0.1h\/gh; outside the surf-zone. For all the
curves shown in figure 5.6 the wave height and water depth at breaking are the same (100
mm and 120 mm respectively). Since the slope varies the width of the surf-zone varies.

This plot shows that that the milder the slope, the more it tends towards the triangular

profile.
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Figure 5.6: Effect of slope on the longshore current distribution

For simplicity, in the above ¢, was maintained constant. The eddy viscosity is given

by (assuming that the turbulence is the one that is causing the mixing)

v~ L/ (5.65)

where [ is the length scale of the turbulent eddies and ¢? is the turbulent kinetic energy.
If the conditions at breaking are maintained the same then the energy available for dissi-

pation over the surf-zone is the same for all slopes. Since this dissipation is the source of
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the turbulent energy, we expect that on steeper slopes the turbulence levels will be higher
since the energy is dissipated over a shorter distance. This will lead to higher values of
v; indicating that ¢, should be proportional to the slope. Figure 5.6 indicates that even
using a constant value of ¢, leads to profiles which show smaller mixing on milder slopes.
This result may be further understood by the following argument.

Assume that h = hyz and H = yh. The governing equation for the longshore

current reduces to (for a linearized bottom friction formulation)

P’(—g (:c?-f‘%) — 2%V = Fx (5.66)
where
P = % (5.67)

which is the same equation which Longuet-Higgins (1970) solves and, therefore, will lead
will lead to Longuet-Higgins’ solution with P (defined by equation 5.5) of his solution
replaced by P’. (5.67) indicates that P’ decreases quite rapidly as h, decreases if Cy
is constant. The nature of Longuet-Higgins’ solution indicates that P’ is a measure of
the mixing intensity and it decreases as P’ decreases. Therefore, we conclude that if the
lateral eddy viscosity is related to turbulence then on milder slopes the longshore current
profile would lead to longshore current profiles that exhibit weaker mixing. This result is

the opposite of what Longuet-Higgins’ formulation for the eddy viscosity leads to.

5.5 Effect of current refraction

Kirby & Chen (1989) discussed the dispersion relationship for linear waves riding
on a vertically sheared current. The problem of refraction of waves due to shear currents
has not been addressed. For our purposes this is not a significant concern since it turns
out that the effect of the current refraction is rather weak.

In order to demonstrate this we assume here that the effect of current refraction
can be assessed by using a typical value of the current and not accounting for the vertical

shear. For waves on currents without a vertical shear, Snell’s law reads (see Jonsson 1990)
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sin J
c+Vsina+ Ucosa GCo . B0

where Cy is the Snell’s constant.
In the following we study the effect of the refraction due to longshore currents and
undertow. Let us first consider refraction due to the longshore current. Smell’s law now

reads

sin aR sin asg
= 5.70
cr+ Vasinagr  c¢3 + Vosinag ( )

where the subscript R refers to a reference location and the subscript 2 to the location of
interest (typically shoreward of the reference location, therefore, typically hr > hs). The

above implies that

[h — Vy)si -
sin ap = .};"lsin aR {1 + (VR \/g%)_sm GR} (5.71)
R R

The implication of the above is that the depth refraction factor \/h /hr sin ap is multiplied

by a modification factor. The maximum possible effect of current refraction is estimated

by using Vg = 0. In this case, a 20% modification requires

Vo sin ag
——— ~ 0.2 5.72
o (5.72)
Vs 0.2

~ 1 (5.73)

== Vahr ~ sinag
The above implies that the local longshore Froude number F; = Va/+/gh2 has to be
significantly greater than one. Even for this rather strong longshore current the effect is
quite modest. For most longshore current calculations the effect will be even smaller since
typically Vg has the same sign as V2 thus reducing the effect.

Next, let us consider the effect of the refraction due to the undertow. In this case

Snell’s law reads

sinapg sin @y 1;
= = — 5.7
cr+ Upcosar c2+ Uzcosay  Cp (&)

After a little algebra the above yields
Vghs {1 T \/17_ (1 + (U2/Co)?] [1 — U3/ ghs] } (5.75)

51N Qvp = CO 1 i3 (U2/CO)2
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The modification factor in the present case is the term in the parenthesis. It is relatively
straightforward to show that the term under the square root sign in the modification factor
is always positive and thus the above will always yield real solutions for a,. The fact that

the square root term is positive indicates that

[1+ (U2/Co)?] [1 - UR/gha] < 1 (5.76)
= 1< 1+ (U2/Co)® < 1_—5,12;‘—@ (5.77)

We know that for a typical undertow Usz//ghs < 0.2 which then implies that UZ/ghs, < 1
which, in turn, implies that 14 (Us/Cp)? ~ 1 and 1 — U?/ghy = 1. Taken together, these
indicate that the square root term is very small and therefore (5.75) may be approximated

by

sinag =

Vghy 1 m\/gT2 Uz 2
Co 1+ (0a/Cs) .Co {1—( )} (5.78)

Co
Consider U, /Co. This quantity is given by

Up  Fysiney

= 9.
Co 14 Fy2 cosas (5:79)
where, F,; = Uy/+/ghs is the local Froude number of the cross-shore current. It is rela-

tively straightforward to show that the extremum of Us/C) is given by

U2 FuZ
— e 5.80
(CO)e.rt L Fu2 ( )

Even with the rather high value of F,; = 0.2 we find that (U;/Co)? has a maximum
possible value of 0.05. This implies that the maximum possible effect the undertow has
on the refraction is about 5% on the wave angle.

Figure 5.7 demonstrates that the above considerations are valid. It compares the
results for longshore currents with and without current refraction. A linearized friction
formulation is used here in order to enhance the contribution from the longshore current
to the refraction. The cases shown here include the case with full current refraction, only
the refraction due to the longshore current accounted for and only the refraction due to
the undertow accounted for.® The corresponding variations of the angle of incidence are

shown in figure 5.8.
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Figure 5.8: Effect of current refraction on the angle of incidence
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These figures show that the the effect of the refraction due to the longshore current
.i$ modest in comparison with the depth refraction and that -the refraction due to the
undertow is almost imperceivable. This indicates that the current refraction is extremely
small in comparison to the depth refraction. Thornton & Guza (1986) arrived at a similar
conclusion while considering the effect of the refraction due to a longshore current.

Based on the above, we may conclude that under typical surf-zone conditions,
refraction due to wave generated currents may be neglected without any significant loss

of accuracy.

5.6 Comparison of linear and nonlinear friction formulations
Figure 5.9 compares the results for the linear and nonlinear bottom friction for-
mulations. The nonlinear formulation is as described in the previous chapter. The linear

formulation is derived by using #; = 2/7 and 82 = 0 in the nonlinear version.

0.4
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Linear friction
0.3+ N. L. Friction
g
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F-]
L 0.2
&
>
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Figure 5.9: Comparison of linear and nonlinear friction
5 The value of the current used for undertow refraction is calculated using U = —Q,/h where Q, =

(1.3Bo + B,) H?c/h. This estimate is based on (3.26) and the roller contribution.
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Figure 5.9 shows that, if one uses the same f,, for the two formulations, then using
the quadratic law reduces the velocities significantly. Liu & Dalrymple (1978) found a

similar result for the case without an eddy viscosity.

5.7 Vertical structure of the currents

As discussed earlier, the undertow and cross-shore current have parabolic depth
variations. The current vector at any depth is given by the superposition of the longshore
current and undertow at that depth.

Figure 5.10 shows the variation of the dimensionless current vector (nondimension-
alized by the local wave speed) with the nondimensional depth across the surf-zone. This
figure shows that the current vector varies significantly with the vertical co-ordinate. The
direction of the near-bottom current vector is quite different from the direction of the cur-
rent vector at trough level. Near the break point and the shoreline the longshore current
and the undertow have comparable magnitudes. At other locations the longshore current
dominates over the undertow. This feature depends crucially on the angle of incidence of
the waves. The undertow is relatively insensitive to the angle of incidence. Decreasing the
angle of incidence will lead to smaller longshore currents and, therefore, the current vector
will show significantly more variation. Increasing the angle of incidence will increase the
longshore current and we will have the longshore current dominate over the undertow and

the current vectors will show smaller variations.

5.8 Application to Visser’s experiments

In this section we compare the results of our numerical computations with the
experimental results of Visser (1982, 1984). The forcing in the longshore direction in
these experiments was discussed in Chapter 3. As noted there, there is considerable
uncertainty with the roller contribution for these experiments. This will of course lead
to considerable uncertainty for the undertow calculations. Unfortunately, Visser did not

measure the undertow which could have been used to eliminate some of that uncertainty.
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5.8.1 Description of Visser’s experiments

As discussed briefly in chapter 3, Visser conducted measurements of longshore
currents in a laboratory wave basin. His experimental layout is presented in figure 5.11.

To maintain uniformity of the longshore current, he pumped water into the basin
at one end and sucked it out at the other using a recirculation system. He found that
the pumped water induced a “recirculation flow” (a current in the opposite direction of
the longshore current seaward of the break point) in a region far seaward of the break
point. He found that there was least alongshore nonuniformity for the case when this
“recirculation” flow was minimized.

Visser indicates that the wave climate was not completely uniform in the alongshore
direction. The wave heights were found to vary +10% from the mean values. This feature
would undoubtedly have contributed to the nonuniformity in the alongshore direction of
the longshore current.

The set-up and wave height reported were the average values for two sections (sec-
tions 1 and 2). The set-up has to be calculated from the reported value of the mean depth.
Visser does not indicate how uniform the set-up was in the alongshore direction.

Table 5.1 lists relevant measurements of Visser. (z = 0 corresponds to the mean
shoreline.) Note that these experiments have quite a few measurements of local longshore
Froude number V/1/gh close to or larger than one indicating extremely strong longshore
currents. Also, note the extremely strong longshore currents shoreward of the mean shore-
line in experiments 2 and 3 (V = 21.7e¢m/s and 19.4cm/s at z = —0.03m and —0.02m
respectively) and the strong longshore current in experiments 1 and 5 just seaward of the
mean shoreline. While the strong longshore currents at other locations may be attributed
to the rather large angles of incidence, the measurements near the mean shoreline are
probably related to the nonlinear effects of the run-up on steep slopes. These effects are
not captured in the present wave averaged model as the present model is not capable of

predicting quantities in the swash zone.



1 3400 m —
Li6m (B8] 209m (6, « 31.0°)
Uaem (@ 1540 Im (B = 154°) b Rehbock
-+ L weir
shake— type wove generator T
e T g
| : ﬁ’
waove wove
{ guidt\ Tn‘ guide LS 0,
E L0m . 3
g &' !
€ - & ' 8 i | %
2 ——
= I's = & 3 & | -
s = 0, E i Qe H i o, e )
- 4 1 I i I ' ¥ix) 3
700 €.l 3 3 2T NI w
S - e Y L PP T v 0-q = q,
pump
distribution
o B.im jot2m jo 2 o bo2m bl m I ;,"“""
Plan view of wave basin (slope 1:10),
L L00m 1
| i -
7
—. S Bl - Mehbock
- —p— weir x
snoke— typs wove generator
) Y3518 £ "
.
wave AR4T 1 LD 30 wow [ [ 2
S | I S T
2 I \
® " 1 I 1 '
' 3 1 i
& : ; " E :
- 1 | 1
g 2, ! ' ' ! ' £ i
] _— xg| o= ! [ 1 i == -— Xy .
L] r,D | ! ' ' L " )
SJ i 0 1 2 3 &l 1 Vix
- o I N —— e T e -l |
bercdi ccccncrcamsncnn e = - - - -
e distributi
o & m " u-n_,_r i!n'_:_ a2m foS2m { :,’““"’

Plan view of wave basin (slope 1:20).

Figure 5.11: Visser's experimental layout



113

Table 5.1: Visser’s measurements for experiments 1-5

Experiment 1

z (m) 0.10 0.30 050 0.70 0.90 1.10 1.30 1.50
h (cm) 05 1.5 25 35 48 65 8.6 106
V (cm/s) 39.6 59.4 662 659 59.2 432 28.7 18.8
V//gh 1.79 1.55 1.34 1.12 086 0.54 031 0.18
z (m) 1.70 1.00 2.10 2.30 2.50 2.70 3.10

h (cm) 12.7 14.7 16.7 18.7 20.7 22.71 26.7

V (cm/s) 124 83 60 41 28 1.9 1.1
V/V/gh 0.11 0.07 0.05 0.03 0.02 001 -
Experiment 2

z (m) 0.03 0.17 0.37 0.57 0.77 097 117 1.37
k (cm) ~ 1.2 26 42 54 68 88 108
V (cm/s) 217 63.1 71.0 720 66.2 575 43.0 316
V/V/gh - 1.84 1.40 1.12 091 0.70 0.46 0.31
z (m) 1.57 1.77 1.97 2.17 2.37 2.57 2.97

h (cm) 128 14.8 168 188 20.8 228 26.8

V (cm/s) 23.0 158 105 6.6 4.2 22 0.6
V/\/gh 0.21 0.13 0.08 0.5 0.03 0.01 -
Experiment 3

z (m) -0.02 0.18 0.38 0.58 0.78 0.98 1.18 1.38
h (cm) - 12 24 38 61 68 88 108
V (cm/s) 19.4 42.0 458 47.1 453 419 348 26.8
V//gh - 122 0.94 0.77 0.64 051 0.37 0.26
z (m) 158 1.78 1.98 2.18 2.38 2.58 2.98

k (cm) 129 150 17.0 19.0 21.0 23.0 27.0

V (cm/s) 20.3 145 93 58 3.7 23 038

V/\/gh 0.18 0.12 0.07 0.04 0.03 0.02 -
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Table 5.1: Continued

Experiment 4

z (m) 0.0 0.21 0.41 081 1.21 1.61 2.01 2.41
h (cm) 02 09 18 36 53 69 85 10.5
V (cm/s) 0 13.3 232 354 404 39.4 304 21.1
V/Vgh 0 045 055 060 0.56 0.48 0.33 0.21
z (m) 2.81 3.21 3.61 4.01 4.41 481 521 5.61
h (cm) 124 14.5 16.6 18.6 20.6 22.6 24.6 26.6
V (cm/s) 134 91 53 27 11 05 -01 -
V/v/gh 0.12 0.08 0.04 0.02 - " 2 3
Experiment 5

z (m) 0.12 0.32 0.52 0.92 1.32 1.72 2.12 2.52
h (cm) 08 15 22 3.7 5.1 65 82 103
V (cm/s) 103 183 26.0 36.8 40.7 40.1 33.9 26.5
V/Vgh 0.37 0.48 0.56 0.61 0.58 0.50 0.38 0.26
z (m) 292 3.32 3.72 4.12 452 4.92 5.32 5.72
h (cm) 123 14.3 164 184 204 224 244 264
V (cm/s) 188 113 6.2 28 1.2 0.7 0.3 -

V/\/gh 0.17 0.10 0.05 0.02 - - - -
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5.8.2 Numerical results for Visser’s experiments

The calculations presented here, have the eddy viscosity outside the surf-zone main-
tained at the level at breaking. The nonlinear bottom friction formulation has been used.
Also, the current refraction has been included although, as discussed earlier, this does not
alter the results very much.

The adjustable model parameters in the computation are the eddy viscosity coef-

ficient and the friction factor. There are three possible sources of the error. They are:
1. The forcing;
2. The bottom friction and
3. The mixing.

The forcing for these experiments was already discussed in chapter 3 where it was also
shown that the uncertainties involved in the determination of the forcing were expected
to be less than about 10-20%.

The principal uncertainty in the bottom friction comes from using a constant value
of f,, for all relative magnitudes of wave and current velocities. As indicated in chapter 4,
we expect the friction factor to be vary with the relative strength of the wave and current
velocities and, therefore, vary with the cross shore location. Another possible source of
uncertainty is associated with the use of a sinusoidal time variation for the wave induced
velocity.

Using a time variation that is different from a sinusoidal one would lead to a mean
bottom friction formulation similar to a mean bottom friction given by an equation similar
to (4.6) with coswt in 8y and B replaced by F(t), the periodic variation used. It is easy to
show that for the weak current case both 3; and 3; are proportional to m Therefore,
the error incurred in 31 and (8, may be absorbed by redefining the friction factor. Since
fu is unknown and one of the adjustable parameters of the model we conclude that, for
a weak current, using a sinusoidal time variation for the wave induced velocity causes no

error as far as the model results are concerned.
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The situation is somewhat different for the strong current case. In this case we
will have B; — (U/uo) and B, — FZcos(u — ). In this case a non-sinusoidal time
variation of the wave induced velocity causes an error which cannot be absorbed by a
simple redefinition of the friction factor. However, for this case, (4.6) indicates that the
contribution from the 3 term to the mean bottom stress is negligible. Therefore, for the
strong current case, the error incurred by using a sinusoidal time variation is negligible.

Based on the above we expect that, in the general case, the error induced by using
a sinusoidal time variation for the wave induced velocity will be relatively minor as far as
the frictional formulation is concerned.

The frictional resistance when integrated across the extent of the longshore current
should equal the total forcing. If the frictional resistance were linear in the velocity the
area under the measured velocity profile would be proportional to the total forcing and
this could be used to estimate the friction factor. The quadratic law changes the situation
somewhat. Nevertheless, we expect that the area under the measured profile gives an
estimate of the total frictional resistance.

The mixing term redistributes the velocity profile and has no contribution net
contribution when integrated over the entire extent of the longshore current. If the forcing
is accurately estimated and the friction is properly formulated then errors in predictions
of longshore currents can be attributed to incorrect modelling of the mixing.

Figures 5.12 through 5.16 show the variations predicted by the numerical model.
The criterion used for the optimization is a reasonable reproduction of the maximum veloc-
ity and an approximate reproduction of the total area under the measured velocity profiles
(both based on a visual judgement). The friction factors and eddy viscosity coefficients
used are also indicated on the figures.

These figures show that the measurements are fairly well reproduced in experiments
1 and 2. Experiments 4 and 5 show good agreement with the measured values up to the
maximum longshore current. Seaward of this location the longshore current is underpre-
dicted by the numerical model. Seaward of the break point the numerical model severely

overpredicts the longshore currents in experiments 4 and 5. Results for experiment 3 show
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Figure 5.16: Comparison of measured and predicted longshore currents for Visser’s ex-
periment 5

similar qualitative features but the quantitative comparison is rather poor. This was also
the experiment that showed unusually large values of P in chapter 3.

A general feature in all the comparisons is that seaward of the maximum veloc-
ity location the longshore current is underpredicted and seaward of the break point the
longshore current is overpredicted by the numerical solution. This indicates that the ex-
periments probably had a larger level of mixing between the maximum velocity location
and the breaker line and a smaller value of the mixing further seaward. The second of
these is readily understandable since we maintain the mixing level outside the surf-zone
at the breaking value. The results presented in figure 5.4 indicate that changing the eddy
viscosity outside the surf-zone will not alter the overall results significantly and hence will
not improve the overall solution. Furthermore, it is possible that the recirculation flow
may have affected the measured velocities in this region.

No effort was made here to fine tune the model parameters so as to get the best fit

(say in a least square sense) with the experimental results. The principal aim of the plots
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presented here was to demonstrate that very high levels of the eddy viscosity coefficient are

required to reasonably predict longshore current profiles. Note that for all the experiments
a reasonable prediction of the longshore current requires ¢, ~ 0.1-0.3. This is, as indicated
carlier. a significantly larger value than what the turbulence measurements inside the surf-
zone justifv. An additional indication of the fact that the lateral eddy viscosity may be
caused by a different mechanism than the one that causes the vertical mixing comes from

the predictions of the vertical structure of the currents. The prediction of the vertical

structure of the currents is dealt with in the following.

5.8.3 Vertical structure of the currents
The predicted depth variations of the longshore currents are shown in figures 5.17

through 5.21. These have been calculated using v;; = 0.02h+/gh. Figure 5.22 shows the

variation measured by Visser (1982). Corresponding undertow variations are shown in

figure 5.23 through 5.
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Figure 5.17: Predicted depth variations for Visser’s experiment 1
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The figures for the longshore currents show relatively small variations over depth.
The curvature of the profiles is small. Both these features are consistent with Visser’s
measurements. The longshore current calculations show that the inclusion of the v,y
term does reduce the curvature of the profile as anticipated earlier.

The undertow shows more variation in the vertical. In the transition zone (which
covers a significant fraction of the surf-zone for these experiments) the undertow profiles
show very little curvature and relatively large seaward oriented velocities. In experiments 4
and 5 we see one particular undertow profile (h/h;, = 0.85) which has a negative curvature
and a strong seaward directed cross-shore current. These features are generally consistent
with measurements of undertow profiles from other experimental sources.

It is interesting to note that in the inner surf-zone the nondimensional results for
the undertow profiles are very close to one another in experiments 1-3. The same is true
for undertow profiles close to the shore in experiment 4. Note that in these regions the
slope of the mean water surface is constant (see figure 3.2) and that the wave height to
water depth ratio does not vary very much in this region (H/h does vary somewhat for
experiment 2 in the region under consideration but the variation is less than 15%). The
fact that the nondimensional undertow profiles are quite close to one another may be
explained in terms of the following argument.

Let us assume that
e h; = constant
e A linearized bottom friction
e H/h =~ = constant

* Qs = BqHZ\/g_h/h

Under these assumptions it is relatively straightforward to show that the nondimensional

undertow profile is given by (see appendix C)

U 2
-\-/—g_?]: =€, + E(,% + €a (%) (5.81)



124

A g i e A : A" —
' 5 s . s
w6z =-x °* s WM“_ <+ w iy’ =X . W |0'f = X
L] -
o g ol o1
. ol . o &
by Witz =% 4 m m . 4 Y
oy 0z 0% o0z o) mm ... w.» 0z _— oy muﬂ
A A+ B o, AT »
s ol % ] .
s : s = S : s
wgtrex ¥y wzgi=x Yy W 9| =X 4 w 1z'y - x s

Figure 5.22: Depth variations measured by Visser

0y 0z oy 114 0 0
Aa—t——r A ——— A= ._.q ¢
. &9 < - L S
® g ex LIS I
. ol ot * ol
wgrrp=x ¥, * y "
PR B Ae OV 02 hed O 0z A 9 oy 0z
. L] L]
. . . L]
< . 9 4 . I <
- ﬁ L]
|gE'0 = X L WgL0 =X q W /g0 =X L a0 = X% 4y
g yuawrradxyy oy oz oy oz ¢ juowiriadxsg]
A *—t + A +—+ =
. :
L R & s LB A
—
= . ‘ ol
% o1
m vy Yy
- o “
E ey @ e
p .
x .
= S . s
; WOl =X ¥Y W 060 =% ¢y




h/hb = 1.0000
h/hb = 0.8167
h/hb = 0.6411

h/hb = 0.4864
h/hb = 0.3686

¢/h,

h/hb = 0.0996

h/hb = 0.0475
h/hb = 0.0227

OO0+ XpD>OeON

¥

-0.2 -0.15 -0.1 -0.05 0
U/(gh 0.5

Figure 5.23: Undertow predictions for Visser’s Experiment 1

where the €’'s are as defined in appendix C. This solution shows that if the assumptions
are satisfied then the nondimensional undertow solution should be independent of the
cross-shore location. The small differences in the solutions at the various locations of the
inner surf-zone may be attributed to nonlinearity of the bottom stress, variations in the
shape factors, wave height to water depth ratios, efc. In experiment 5 we find no region
in which b, stays approximately constant. Therefore, we do not find self-similar undertow
profiles in this experiment.

If the vertical eddy viscosity were to be increased by a factor of ten (to match
the horizontal value), we would see hardly any variation over depth for both the long-
shore current and the undertow. Visser's measurements of the vertical structure of the
longshore current indicate that the longshore current has some vertical structure. The
undertow measurements from other sources indicate that the undertow has significant
vertical structure and that the variation we would get by using the larger eddy viscosity
would be completely unreasonable.

Note that the vertical values of the eddy viscosity are consistent with the levels
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Figure 5.24: Undertow predictions for Visser’s Experiment 2

anticipated by the analysis of turbulence intensities referred to earlier (viz., Svendsen 1987,
Okayasu 1989). The horizontal eddy viscosity levels are much higher and are consistent
with the levels used by earlier investigators (e.g., Longuet-Higgins 1970). We emphasize
here that the difference in the lateral and vertical mixing levels does not seem to be
compatible with observed turbulence characteristics. This conflict suggests that the lateral
mixing may possibly be caused by some mechanism that is not related to turbulence.

As remarked in chapter 2, (5.8) has all the terms required to solve for longshore
currents on long, straight beaches. The only difference between (5.1) and (5.8) is the
interaction term present in the latter equation. If the contention of the previous para-
graph is valid then the possibilities are that 1) The interaction term neglected by (5.1)
is responsible for the mixing or 2) There is some external motion that is causing these
phenomena.

Note that the derivation of (5.8) assumed that the only type of organized motions
in the nearshore region are steady currents and waves. The derivation did not account

for the presence of low frequency motions. It is quite possible that Visser’s measurements
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Figure 5.25: Undertow predictions for Visser’s Experiment 3

reflect some effect of the low frequency motions and that could be a reason why the
measurements are not well predicted. However, Visser does not mention the presence of

any such motions. So, if low frequency motions were indeed present they would have been

extremely weak.

The next two chapters address some of the questions raised here. The next chapter

analyzes the effect of the interaction term. Chapter 7 studies a recently observed extremely

low frequency oscillation (“shear waves”) in the nearshore region.
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Figure 5.27: Undertow predictions for Visser’s Experiment 5



Chapter 6

MIXING DUE TO INTERACTION OF LONGSHORE CURRENT
AND UNDERTOW

6.1 Summary of previous mixing models

The earliest attempt to quantify mixing in the nearshore region was made by Harris
et al. (1963) who conducted field and laboratory studies to measure the intensity of mixing
in the nearshore region. They released known amounts of tracer into the surf-zone and
estimated the strength of the mixing based on measured concentration of the tracer at later
times. They found that the dye dispersed very quickly in the on-offshore direction and
that in the absence of rips, the on-offshore mixing was confined largely to the surf-zone.
They also found that the mixing in the longshore direction was mainly due to advection
by the longshore current.

Bowen (1969a) in his analysis of the longshore current phenomenon used a constant
eddy viscosity. To estimate the horizontal eddy viscosity Thornton (1970) assumed that
the velocity scale was given by the wave induced velocity and the length scale by the water
particle excursion amplitude. Using these he suggested that the horizontal eddy viscosity
is given by vy, = H?0/4n(kh)? where H is the wave-height, o and k are the frequency and
wavenumber of the gravity waves and k is the local water depth. Longuet-Higgins (1970)
assumed that the velocity scale was proportional to the wave celerity and the length scale
was proportional to the distance from the shoreline. Thus his estimates suggested that

the eddy-viscosity be modelled by

Vig = N&?\/gh (61)

where N is a dimensionless constant (less than 0.016). This, with minor modifications,

has become one of the most widely used models of mixing in longshore current models.
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Inman et al. (1971) conducted a field study similar to that of Harris et al. and found
results similar to the earlier study. Based on their measurements, Inman et al. suggested
that the horizontal eddy viscosity is roughly given by vy, = Hpz/T where z; is the width
of the surf-zone, Hj is the wave height at breaking and T is the period of the incident
gravity waves.

Bowen & Inman (1974) analyzed the measurements available up to that time and
examined the various suggestions for the horizontal mixing coefficient. They found that
Longuet-Higgins’ suggestion represented the mixing coefficient reasonably well with N ~
0.030.

Battjes (1975) argued that the use of wave orbital parameters to describe turbulence
characteristics as done by Thornton is not justifiable because the main source of turbulent
energy in the surf-zone is the dissipation of wave energy rather than the energy of the
orbital motion of the waves. Using scaling arguments he suggested that the eddy viscosity

be given by

vie = M (D/p)"/*\/gh (6.2)

where M is a dimensionless constant of order one and D is the rate of energy dissipation
of wave motion. He showed that for the usually made surf-zone assumption, viz., H = vh

(6.2) reduces to
5 1/3
Vig=M [E‘Tzhz] h\/gh (63)

Comparing this estimate to Longuet-Higgins’ suggestion he argued that N rather than
being a constant should be a rather strong function of the bottom slope h,. He also
suggested that (6.3) seems reasonable because, all else being equal, the eddy viscosity is
expected to increase with bottom slope because of the reduced distance available for the
dissipation of the incident wave energy. This trend is predicted by (6.3) and an opposite
trend is predicted by the suggestions of Thornton, Longuet-Higgins and Inman et al.

described above.
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Stive & Wind (1982), Nadaoka & Kondoh (1982), Okayasu et al. (1986, 1988)
and Okayasu (1989) performed a series of laboratory measurements where they mea-
sured, among other things, turbulence intensities and undertow profiles. Svendsen (1987)
analyzed available turbulence measurements and found that the intensity of turbulent

fluctuations, g, is given approximately by

g = Vk: ~10~%\/gh (6.4)

where k; is the turbulent kinetic energy. If the length scale is taken to be the depth A
then (6.4) implies that

ve ~ 107%h\/gh (6.5)

Predictions of the undertow profiles have confirmed that (6.5) gives a fairly good estimate
of the vertical eddy viscosity (Svendsen et al. 1987, Okayasu 1989).

Clearly, (6.1) and (6.5) are compatible if one assumes that the length scales in the
horizontal and vertical directions is given by z and h respectively and that the velocity
scale is given by (6.4). However, observations of turbulent eddies (Nadaoka et al. 1989,
Okayasu 1989) show that in the vertical plane the eddies are very nearly circular and
that, therefore, the length scales cannot be very different in the vertical and horizontal
directions.

The experimental results results and the analyses quoted in the previous two para-
graphs were all for 2D situations. It is conceivable that the presence of a longshore current
changes the situation. Turbulence measurements in 2D wave flumes (Stive & Wind 1982,
Nadaoka & Kondoh 1982, Nadaoka 1986, Okayasu et al. 1988, Okayasu 1989) suggest that
the turbulence intensities in the vertical and cross-shore directions are comparable. The
fact that the turbulence intensities are comparable even though the currents are quite
different emphasizes that, inside the surf-zone, the turbulence intensities are not related
to the strength of the currents.

At the present time there are no simultaneous measurements of all three compo-

nents of the turbulent velocity fluctuations in the nearshore region. In the alongshore
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of the turbulent fluctuations in the cross-shore direction in two dimensional experiments.
For example, Mizuguchi & Horikawa find \/ﬁ/ Vgh ~ 0.06 and the two dimensional ex-
periments have \/?/ Vgh ~ 0.04.° While these measurements are from different sets of
experiments and probably cannot be compared directly without referring to the experi-
mental conditions they do indicate that the intensity of the turbulent fluctuations in the
longshore direction is of the same order of magnitude as the intensity in the cross-shore
direction even though a strong longshore current may be present. Evidence from a wide
class of flows suggests that the turbulent fluctuations in the two horizontal directions are
typically of the same order of magnitude. For example, in open channels where the mean
flow is in the z direction Townsend (1976, p. 107) gives u”2/v2 ~ 3 indicating that the
intensity of the velocity fluctuations in a direction perpendicular to that of the mean flow
is about 60% of the intensity of the fluctuation in the direction of the main flow. Ex-
trapolating this result to the surf-zone where there may be a strong longshore current
on occasion and keeping in mind the evidence that suggests that inside the surf-zone the
turbulence intensity does not seem to depend strongly on the current strength we expect
\/v='2 ~ V4 to be a reasonable assumption.

Even in the case where the turbulent intensities are comparable the mixing could
still be larger in the horizontal direction when compared to the vertical direction if the
length scale in the horizontal direction were significantly larger than in the horizontal
direction. This could be the case if large scale horizontal circulations, like, e.g., rip currents

were present. The available experimental evidence (Visser 1982, 1984) do not indicate the

® These values were derived using the following procedure. Svendsen (1987) reported results for the
variation of the turbulent kinetic energy (= 1/2[u? + v + w?2]) for 2D experiments. In all the
experiments analyzed by him only the cross-shore and vertical components of the turbulent velocity
fluctuations were measured. Using results from many different types of turbulent flows Svendsen
assumed that k. = 1.33k} where k; is the TKE and k{ = 1/2(u”? +w?). He found that v/k¢ ~ 0.03+/gh.
Assuming that «2 = w2 we find that we may estimate that the intensity of the turbulent fluctuation

in the cross-shore direction is given by u? ~ k;/1.33 which implies that \/u2/gh ~ 0.04. Figure 20
of Mizuguchi & Horikawa indicates that \/v='3 Jvom o \/m (vm is the maximum longshore current
velocity). The above implies that \/v2/gh & v,/\/ghy. The constant of proportionality may be
determined by using the fact that at h = hy the referred figure indicates that \/v:a/um =~ 0.2
Therefore, we estimate that \/v? [gh =~ 0.2um/\/5.&_;,. Using the values for v,, and hy given in their
Table 1 we find that 1/ /gh = 0.06,0.06,0.07 and 0.08 for their cases 1 through 4 respectively.
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presence of any such large scale circulation features. Therefore, there seems to be no reason
to assume that the vertical and horizontal length scales are different from one another in
the surf-zone in the presence of a uniform (alongshore), steady longshore current.

In summary, the available experimental evidence seems to suggest that the total
horizontal mixing for the longshore currents should be comparable to the estimates of the
turbulent mixing based on two dimensional experiments.

Results from the previous chapter as well as the apparent success of various long-
shore current models based on variations of the Longuet-Higgins’ mixing scheme show
that a very high level of mixing (relative to measured turbulence intensities) is required to
predict the cross-shore structure of the longshore current. The mixing coefficient required
to get reasonable predictions of the vertical structure is consistent with the measured
turbulence levels as given by (6.4) and is significantly smaller than the horizontal mixing
coefficient. Since Visser does not report the presence of any large scale horizontal cir-
culation features or low frequency fluctuations we seek an explanation for the horizontal
mixing without having to assume the presence of any such phenomena.

The above discussion suggests that the total mixing in the horizontal direction is
very different from the vertical direction. Since this cannot be explained by turbulence
measurements, we conclude that the mixing in the horizontal direction is caused by some
mechanism other than turbulence.

A further complication seemingly arises from the fact that while a reasonably high
level of mixing outside the surf-zone is required for the prediction of longshore currents
none of the studies show any mixing outside the surf-zone (see, e.g., Mei 1983, p. 485).

It has been suggested (Battjes 1975, Thornton & Guza 1986) that this mixing
may be explained by the time variation of the breaker line due to random waves. That
suggestion, however, does not explain the mixing required to predict measurements of
longshore currents with regular monochromatic waves (like those of Visser 1982, 1984).
Additionally, the method of solution adopted by Thornton & Guza seems to be equivalent
to calculating the steady longshore current profiles for individual wave frequencies. The

overall longshore current calculated by their model is essentially a weighted average of the
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individual steady state profiles. Since their model has no turbulent mixing the longshore
current profiles due to individual waves would be equivalent to Longuet-Higgins’ triangular
profile and since the individual waves break at different locations these profiles would end
at different points. When the weighted average of many such profiles is calculated we
would find a longshore current that extends all the way to the farthest breaking location.
For a random wave field, this location will be significantly seaward of the location where
most of the waves break (loosely — the break point). Therefore, the calculated longshore
current would extend to a significant distance seaward of the break point thus showing an
affect not unlike the one caused by the mixing term.

Mei considers the source of the mixing outside the surf-zone to be one of the out-
standing problems of nearshore hydrodynamics. However, this problem may not be as
significant as previously believed since our results from the previous chapter show that
the variation of the eddy viscosity outside the surf-zone does not significantly influence
the longshore current profile as long as the eddy viscosity is continuos across the breaker
line.

In this thesis we will consider mixing contributions from two possible mechanisms.
The first — to be examined in this chapter — is the interaction of longshore and cross-shore
currents. The second, which will be examined in the next chapter, is the recently observed

phenomenon of shear motions in the nearshore region.

6.2 A discussion of the effect of the interaction

It was shown in chapter 2 that the longshore current is governed by

d( d% m d / _ 1dSy
= (v;,_h dm) - { VUdz + Vuwdz = (6.6)

As remarked in that chapter, this equation has all the terms required to predict steady
longshore currents on long straight beaches. If no external influences are present, an
incorrect prediction of longshore currents implies that one or more terms of the above
equation are not being modelled very well. The last term on the LHS of (6.6) has not been

included in any of the previous longshore current models. The idea here is to analyze the
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effect of this term and see if it is capable of providing the mixing required for predictions
of cross-shore variations of longshore currents.

Before embarking on a mathematical description of the problem it is probably
worthwhile to spend some time discussing the physical situation that we are trying to
model here.

Below trough level we have the undertow which, for the most part, is directed
seawards. Above the trough level, the mass flux due to the wave motion is directed
shorewards. The interaction we are after is the effect of these flows on the cross-shore
distribution of the longshore current.

Below trough level, the longshore current is pushed seawards by the undertow.
Therefore, we expect that the effect of the undertow on the cross-shore distribution of the
longshore current is to move the entire distribution seaward. The expected effect of the
undertow on the cross-shore distribution of the longshore current is as sketched in figure
6.1a. The line marked “1” represents the distribution in the absence of the undertow
and the line marked “2” represents the expected distribution after the undertow has been
included.

Above trough level, we expect the opposite of this situation to occur. We expect
that the mass flux due to the waves will push the longshore current profile shorewards
leading to a situation that is not unlike the one sketched in figure 6.1b. As, before the line
marked “1” represents the longshore current distribution in the absence of the interaction
term and the line marked “2” denotes the expected effect of the mass flux.

From the rather heuristic discussion above we see that the effect of the term under
consideration is unevenly distributed over depth. In a general setting, the contributions
from above and below trough level counteract one another — and, in fact, in the special
case of a longshore current independent of depth these contributions will exactly cancel
one another. However, the longshore current is not constant over depth and this turns

out to be important for the interaction terms.
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Figure 6.1: Expected effect of the interaction. Curve 1 — Without interaction; Curve 2
— With interaction.

6.3 A simplified mathematical model

To simplify the analysis and clearly demonstrate the effect of the interaction, we
will, in this chapter, make several simplifying assumptions. We note that the assumptions
made are not absolutely necessary and the effect could equally well be studied using the
numerical model employed in the previous chapter.

The following simplifications are made:

1. Use linear shallow water theory for the wave properties;
2. Use H/h constant inside the surf-zone;
3. Use a linearized bottom friction formulation and

4, No net cross-shore flow, so that @, = — ff‘ho U(z)dz.
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A benefit of these simplifications is that all terms other than the interaction terms take
the simplest possible form.

Under the assumptions listed above the equation governing the longshore currents

reduces to
d aVy fwroa € _1dSyy
e (u,,h dm) { " vuaz+ | Vuwdz} - (6.7)

Clearly, we need to evaluate the last term on the LHS of (6.7) before we proceed any
further. The first part of this term is relatively straightforward to evaluate if the depth
variation of the currents is known. The second part is the one that is difficult to evaluate.

To properly determine the effect of the interaction term it is necessary to take
recourse to the perturbation scheme devised in the previous chapter. The perturbation

expansion discussed in the last chapter had the following ordering.

ALe?
d dVo\ T, _ dSgy
d (h’”"”Em‘) P T Tdz (6-8)
At ¢!
AY h d [ [&
dd (h iz d:) % - {/ ViUdz + J V1uwdz} =0 (6.9)

The depth variation of the longshore current and undertow are given by (¢ is the

distance from the bottom, see figure 2.1)

Vi = Vi + 0o + au(? (6.10)
and
U = Uy + by + au(? (6.11)

where the coefficients @y, by, Uy, a, and b, are given by

1 [ o6 10(e2+08)
“ = 952 T2 a2 (6.12)
b, = Juvole (6.13)

TV
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Qs+ b, 40,28
= = 2t o _ (6.14)
110 (—~ . sinacosa @ —\ Uy dV,
R T ¢l ) 2 e e e 2 St SRl
6 = 7|55 (Beosasing) - RIS () + 20
19 [ oV
-3 (%52)] (6.15)
b, = {r‘:%% (6.16)
itz

Equations 6.10 and 6.11 imply that
[U,:,h% b,k 2 auh§.| e [Ubh? " b, h? N ayh}

3
ViUldz = —Viu Qs + by (6.17)

—ho + 3 4 5

2 3 4
Now, let us concentrate on evaluating the second part of the term under consider-
ation. To evaluate this term we write

: Vuywdz = asVe(€)Qs (6.18)

Ve(£) is defined as the velocity obtained by evaluating (6.10) at the mean water surface

(recall that equation 6.10 is, strictly speaking, valid only below trough level), viz.,
Vo(€) = Vi + byh + ayh? (6.19)

as can be calculated if we know the variations of the longshore current and the wave
induced velocity above the trough level. In this analysis, for simplicity, we assume that
a, = 1. Later in this chapter we will discuss the sensitivity of the results to this assump-
tion.

Therefore, we have
e —
[ UVdz+ (@)@ = FaVo + Fos (6.20)
=g

where V; is the solution to (6.8) and the Fp’s are given by

_ fuwuoh Ubh? buh‘? auhf
Fo1 = p— Qs+ oh + 3h 4h (6.21)
and
Uph?  byh?  a,hd
o 2 t wlty ully
Fg2 = ayh le-i- 352 + AR2 5he (6.22)
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The first order longshore current is now governed by

& Vi Tbly 4, .
= (hvt, o )- b L (FarVo + Foo) (6.23)

To complete the solution for the longshore current, the variations of the lateral and

vertical eddy viscosities both inside and outside the surf-zone need to be specified. Inside

the surf-zone, we may write vy as

ey = e /ah (6.24)
Vi = ¢ hn\/gh (6.25)

Outside the surf-zone, for the present, we let the eddy viscosities remain constant at the
breaking value. This means that we assume an unrealistically large value of the horizontal
eddy viscosity vy, in particular, outside the surf-zone. As will become apparent later this
is necessary for the assumed perturbation expansion to be valid. The sensitivity of the
results to the variation of the vertical eddy viscosity will be discussed later in this chapter.

The calculation of the zeroth and first order solutions for the longshore current
using a numerical procedure is straightforward. The solution correct to first order is
obtained by adding the first order correction calculated using (6.23) to the zeroth order
solution. As in the previous chapter, the longshore current shown in all the plots is the
near bottom value.

Figure 6.2 shows an example of the effect of the interaction on the longshore cur-
rent distribution calculated using the perturbation scheme. The parameters used in this
example are ¢; = 0.1, ¢; = 0.01, f,, = 0.01, hz = 1/30, 7 = 0.6 and by = —0.1. Vinae in
figure 6.2 represents the maximum value of the zeroth order longshore current. This figure
clearly demonstrates that the interaction term causes significant change in the distribution
of V(z) even in a case like the present where vy, is already very large (¢ = 0.1). A com-
parison of the location of the maximum velocity for the two cases (with and without the
UV interaction term) indicates that the mixing caused by the interaction term is roughly
equivalent to increasing ¢, by a factor of two relative to the already large value.

The predicted depth variations of the longshore currents are shown in figure 6.3.

Note that this figure shows that outside the surf-zone the longshore current profiles have
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Legend
With interaction
\ Without interaction
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Figure 6.2: Example of the effect of including the interaction

a negative curvature indicating that in this region the current terms in a, dominate over
the wave terms. Some evidence of the decreasing trend above the bed of the longshore
current may be found in the measurements of Visser (1984). A representative example of
his measured variation is reproduced here as figure 6.4. This figure shows a weak decrease
of longshore current with distance from the bed. While this variation is relatively weak
and the differences in velocity between the three depth locations probably are comparable
to the experimental inaccuracy, it seems significant that a decrease in velocity outside
the surf-zone is visible in almost all of Visser’s experiments. This suggests that outside
the surf-zone the longshore currents do decrease away from the bed. A similar, and
somewhat stronger, trend is found in the experimental results of Mizuguchi and Horikawa
(1978), though, as indicated in the previous chapter, these experiments had considerable
alongshore nonuniformity and therefore the results cannot directly be used in the present

work.
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Figure 6.3: Predicted longshore current variations over depth
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In the previous chapter we encountered an interesting variation of the longshore
current with the slope. We found that keeping ¢, constant reduced the level of mixing
as the slope was decreased. Here, we examine the slope dependence of the interaction
term to see how the slope affects the mixing due to the interaction. Figure 6.5 shows the
longshore currents calculated using the perturbation approach for different slopes. In all
cases ¢, is the same and hence by (5.67) each curve corresponds to a different value of
the parameter P’. The appropriate conclusion from this figure is that in the absence of
the interaction term the longshore current profile tends towards the triangular one. The

inclusion of the interaction term weakens this tendency significantly.

6.4 Discussion

The preliminary analysis presented above used a constant value for both the hor-
izontal and vertical eddy viscosities outside the surf-zone. In reality we would expect
both these eddy viscosities to decrease seaward of the break point. Figure 6.6 presents
a comparison of three different variations of the vertical eddy viscosity », outside the
surf-zone. In all three cases vy, was the same inside the surf-zone and the vy, was the
same everywhere and given by (6.24) inside the surf-zone and maintained constant outside
the surf-zone. The variations shown correspond to: a) Vi = Vizp, Viz = Vizb(he/h)? and
Vi = Vezp(hy/h)* where vy, is the value of vy, at breaking. This plot shows a rather sur-
prising insensitivity of the overall solution to the variation of the vertical eddy viscosity
outside the surf-zone.

The above result may be understood on the basis that the most important term in
the forcing for the first order longshore current is the UpdVp/dz term (in ay). This term
is significant inside the surf-zone and in a very limited region seaward of the break point.
In the region just seaward of breaking the vertical eddy viscosities are not changed signif-
icantly. Therefore, the UV forcing for the first order longshore currents and consequently
the solution for that current are not altered very much as long as the eddy viscosity varies
smoothly across the break point.

A comparison of the undertow and longshore current velocity profiles for two dif-

ferent values of the vertical eddy viscosity are shown in figures 6.7 and 6.8. The solid lines
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Figure 6.5: Effect of slope on the interaction term
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Legend
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Figure 6.6: Sensitivity of the interaction contribution to the vertical eddy viscosity vari-
ation outside the surf-zone

represent the profiles predicted using a constant value of v,, outside the surf-zone and
the dashed lines represent the profiles that have a quadratic decay of the eddy viscosity
seaward of the break point. The undertow profiles outside the surf-zone show a surpris-
ing lack of sensitivity to the vertical eddy viscosity. The longshore current variations are
somewhat more sensitive to the eddy viscosity variations.

The extreme lack of sensitivity of the undertow profile to the eddy viscosity varia-
tion may be understood by the following consideration. As shown in the previous chapter
the curvature of the undertow profiles outside the surf-zone is quite small. Therefore, to

a first approximation we have

buh “Qs
Uy + g = (6.26)
Substituting for b, in terms of U, and solving for U, we have
T (6.27)

h 1+y
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Figure 6.7: Undertow variations for two different assumptions for the vertical eddy vis-
cosity. Solid lines represent v;, = constant, dashed lines represent quadratic
decay of vy,.

0.24

where y = fyuoh/(27vi2). Using fu, ~ 0.01, ug ~ v/ghs/2, vz ~ 0.01hy\/gh, we find
that y < 1. The sensitivity of Uy to y and, therefore, to vy, is given by

o N S (6.28)

indicating that the value of the vertical eddy viscosity used does not affect the near bottom
cross-shore current significantly.

A comparison of the qualitative features of the predicted undertow velocity outside
the surf-zone with the measurements of that quantity by Nadaoka & Kondoh (1982) is
encouraging. Figure 5.2 indicates that just seaward of the break point they have undertow
velocities of the order 0.1m/s and these velocities are directed seaward all the way up to
trough level. The two measurements of that figure correspond to one spilling and one

plunging breaker. For the plunging breaker case they have hy = 0.25m and for the spilling
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Figure 6.8: Longshore current profiles for two different assumptions for the vertical
eddy viscosity. Solid lines represent v, = constant, dashed lines represent

quadratic decay of v;,.
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breaker case hy = 0.50m indicating a U/+/gh ~ 0.05. This value compares favorably with
our results (see figure 6.7). Unfortunately, since this value is quite insensitive to the way
the eddy viscosity varies seaward of the break point, this comparison cannot be used to
determine the nature of that variation.

The perturbation approach used here requires that the correction V; to the basic
velocity Vo be small. Outside the surf-zone, the basic profile Vp(z) is generated entirely
by the turbulent mixing represented by v,. For small 1, (as we expect in reality) this
condition may not be satisfied. This implies that the present method will not work very
well for cases where the basic velocities are very small outside the surf-zone. Also, large
gradients in the basic velocity profile as we find for small v, lead to extremely large
forcing for the first order velocity profile and, therefore, to first order velocities that are
substantially bigger than the zeroth order velocities thereby invalidating the perturbation
scheme.

One way to estimate the results for low (and probably more realistic) values of ¢,
would be by extrapolation of the results for higher values of ¢;. A second — and, more
reliable — method is discussed in the next section. Figures 6.9a and 6.9b show the basic
and the “complete” solution (the solution with the interaction term included) for the very
large values of ¢, = 0.2 and ¢, = 0.4 respectively. The other parameters of the problem
are not changed relative to the example presented in figure 6.2 which gives the solution
for ¢; = 0.1. A comparison of figures 6.9 with figure 6.2 clearly shows that the interaction
of the longshore currents and the undertow increases with increasing shear on the seaward
face of the longshore current (which is achieved by decreasing ¢;) and, therefore, we can
expect that the interaction term will provide enormous mixing for the case of an original
profile with small values of c,.

However, the present perturbation solution cannot be used to solve for that case.
It turns out that this problem is easily solved by a slight change in the solution procedure.

This is discussed below.
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Legend
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Figure 6.9: Effect of ¢, on the interaction
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6.5 Effect of interaction for small values of the horizontal eddy viscosity

The principal difficulty of using the perturbation expansion comes from the fact
that the Up(dVs/dz) is no longer small it is reasonable to expect that rearranging the
equation such that this term is accounted for in the first approximation may solve the
problem.

We assume that the longshore current is given by

V(() = Vs + by + au(? (6.29)

with b, = fuwtuoVs/(7ve:). Using the above we find that the interaction term may be

expressed as
£t =

[ uvdz+V@©Q = FaVi+ Far (6.30)
—o

where Fp; and Fgp2 are given by (6.21) and (6.22) respectively. The governing equation

for the longshore current becomes

d dvj fwuwoVy d _1dSz,
de (Vtrh dz ) T dx {ForVs + Foo} = p dz
Now write a, in the following form
Uy dV}
ay = ay1 + %, dz (6.31)
where
110 /—~ ’ sinacosa § —\ 10 v, ]
=i | S o8 Bt Y e U ]}
Qs = i [2 e (uw cos a sin a) 2 %% (uw) 59 (v;,,- 9z ) (6.32)

Using the above, the equation governing the longshore current may be written in the

following form

d dVb} d fuuwoVs  1dSzy d
.2 il 2 . Vi) — . L ;
dn {(Vtz + vizuv) b it o (F1Va) = 7 de + ik (Fg21) (6.33)
where

Uoh Ubhf' buh‘} auhf '

and
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Uphd | buhi  auhd
FQ_zl = ayh? (Qa+ 3bh; + 4h2t + 5h;) ) (6.35)

The vizpv term in (6.33) clearly demonstrates the mixing nature of the interaction
term that is being considered in the present chapter. Before we proceed any further it
may be worthwhile to estimate the size of the vyy term to see how this compares with
the vy, term.

The size of viyy is probably most easily estimated by considering the conditions
just seaward of the break point because the term in the parenthesis of (6.34) is most easily
estimated at that location. As shown before, seaward of the break point we have a, =~ 0

and b,hy < Uy. Therefore, to a very good approximation, we will have

. Ush Uph3 1Q?
VsV % =5 - (Qs e (6.36)
where the fact that Uy = —Qs/h: and hy ~ h have been used. Reasonable estimates of Q)
and v, are

H2
Qs ~ O.lT\/gh (6.37)
vz ~ 0.01h\/gh (6.38)

Using these estimates we find that
!
VigUv ~ 57411\/9!1 (6.39)

indicating that if vpyy were written in the form vyy = czuvh/gh we would have
czuv ~ 0.05 (using v = 0.6). Clearly, this is a very strong mixing. Also, this is perfectly
capable of replacing the mixing provided by the overestimated v4,. In other words: we
can now assume ¥ to be as small as we have as we have suspected all along (such as
10~2h+/gk inside the surf-zone and lower outside).

Equation 6.33 may easily be solved with minor modifications to the numerical
procedure developed for (6.8) provided the 14,0V} /0z term in a,; is known. We find that
this term is generally small and is easily handled iteratively. The numerical solution used
to generate the results discussed below has this term included in an iterative manner. We
find that convergence is achieved within three or four iterations. This modification allows

us to solve for the effect of interaction for small (and, we believe, realistic) values of ¢;.
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Figure 6.10 shows the results of a calculation using such reasonable values of c;.
The specific values used in this example are: ¢; = ¢, = 0.01, b, = —0.1 and f,, = 0.01.
Furthermore, in accordance with expected turbulence characteristics, we let both the
horizontal and vertical eddy viscosities decrease quadratically with distance from the break
point seaward of that location. The results clearly demonstrate the strength of the mixing
provided by the UV interaction between the longshore currents and the undertow and
also shows that the high level of lateral mixing required for predictions of the measured
cross-shore distribution of the longshore current can be provided by the interaction under
consideration here. This supports our earlier conjecture that the lateral and the vertical
mixing in the nearshore region is caused by fundamentally different mechanisms. The
results of figure 6.10 also support the alternative ordering scheme proposed in section
5.2.1. This ordering scheme suggested that the turbulent mixing does not enter the lowest
order equation governing the depth integrated longshore current and the mixing found
necessary to explain the longshore current variations comes from the interaction of the
longshore currents with the undertow.

These results also show that the undertow may play a very significant role in
the establishment of the cross-shore variation of the longshore current both inside and
outside the surf-zome. It is also possible to see now that the effect of using S7, =

pvizh(dVy/dz) in the longshore momentum equation (see equation 5.13) instead of S, =

pﬁhg V1z(dV/dz)dz is relatively minor since the S, term seems to be quite unimportant.

It is interesting to analyze how well the representation czh\/gh models the mix-
ing caused by the interaction of longshore currents and undertow. As a criterion for the
comparison we use equality of the maximum velocity. Figure 6.11 shows one such compar-
ison. The curve labeled “Interaction mixing” has ¢, = ¢, = 0.01 and the eddy viscosities
drop off quadratically seaward of the break-point. The dashed line has ¢, = 0.07 and a
quadratic drop of the decay of the eddy viscosity from the break point. The interaction
term is neglected in this calculation. (The solution represented by the dashed line essen-
tially assumes that 5%, + p{ & WUdz + W} = —csh/gh ph(dVh/dz).) The

comparison shows that the mixing caused by the interaction seems to be reasonably well
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Figure 6.10: Effect of the interaction for ¢, = 0.01

represented by the formulation adopted. This shows that the mixing found in longshore
currents may be caused by the mechanism considered here.

For reasons of clarity, the calculations presented here used very simple variations
of wave parameters and a linear friction formulation. It is straightforward to extend
the procedure adopted here for more realistic variations of radiation stresses and bottom
formulations (like, e.g., the ones used in the previous chapter). The results presented here,

we believe, clearly show the large effect of this term.

6.6 Effect of o,

The most significant assumption made in the results presented in this chapter was
assuming that a;, = 1 (see equation 6.18). a, can be calculated if the variations of
the longshore current and the wave induced velocity above the trough level were known.

However, as remarked before, the specification of the current above trough level is not
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Figure 6.11: Comparison of the interaction mixing with a parametric representation

straightforward. Therefore, there is some uncertainty associated with the contribution to
the interaction from above the trough level. To estimate the sensitivity of the results to
this contribution we calculate the results using different values of as.

Using (6.18) in (6.6) leads to

d AR d (5.
T {h(VtrUVI + i) <= } = f = FaVet Fp} = — (f) (6.40)
where
Uoh U, h byh} auhs
veovi = = (ast R ) (6.41)
. fwuoh Ubh? buh? auh?
b = TV, sQs 2h + 3h 4h (6:432)
and
Ush? = buhi ayhd
By =g P [a,Qs St Sh;] (6.43)
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Figure 6.12 presents the results for different values of ;. This figure shows that
the results depend quite strongly on a; indicating that the assumed value of fé Vu,dz has
a significant effect on the solution. This figure also shows that it is extremely important
to retain the interaction term even if measurements of the longshore current profiles show
very little variation over depth below trough level. This is because even if the longshore
current is constant over depth below trough level there is the possibility that above trough
level the longshore current shows variation with the vertical co-ordinate. The contribution
from the interaction term is zero only if the contribution above the trough level completely
cancels the contribution from below that level. This happens if the longshore current is
the same over the entire water column.!® Given the importance of the contribution from
above the trough level, the difficulty involved in calculating this contribution is particularly
disappointing. This presents the most significant uncertainty for a quantification of the
mixing caused by the interaction of the longshore currents and the undertow. The results
presented here seem encouraging and should provide motivation for an attack on this
problem.

In spite of this shortcoming which causes considerable uncertainty in the quantifi-
cation of the mixing there does seem to be a way to verify the present hypothesis that the
mixing in longshore currents is caused by the interaction of the longshore currents and

the undertow. This is discussed in the final chapter.

10 Tt is of course possible to imagine other special variations of the undertow and longshore current that
also give zero contribution when integrated over the entire depth.
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Chapter 7

SHEAR INSTABILITY OF LONGSHORE CURRENTS

In this chapter we examine the (inviscid) stability of longshore currents to small
perturbations of the velocity field. This work was motivated by the recent finding of Bowen
& Holman (1989; referred to hereafter as BH89) that under certain conditions steady
longshore currents may be unstable to perturbations of the velocity field. BH89 examined
the stability characteristics of an extremely simplified longshore current profile. We extend
the analysis here to more general profiles. BH89 also suggest that the instability of the
longshore currents is responsible for the recently observed extremely low frequency motions
in the nearshore region (Oltman-Shay et al. 1989). We also study the characteristics of
the motion resulting from the instability of the longshore current to determine whether
these motions could contribute to the mixing in the nearshore region and whether this

contribution could explain the high level of mixing needed for longshore currents.

7.1 Summary of previous work

Tang & Dalrymple (1988) and Oltman-Shay et al. (1989) identified extremely low
frequency motions in the nearshore region. Oltman-Shay et al. showed these motions were
a new class of oscillations in the nearshore region. These oscillations were shown to be
distinct from gravity waves. They are shorter in length and have longer periods than
gravity waves. Frequencies typically range from 1072 to 10~ Hz on natural beaches. This
band of frequencies has been called the FIG (Far Infra Gravity) band by Oltman-Shay
et al. (1989), and the term shear waves has also been used to denote these oscillations.
(Since gravity seems to play no part in the generation of these motions it seems more
appropriate to use the term “shear waves” as opposed to FIG waves.) Oltman-Shay et al.

plotted the observed dispersion relationship of the shear waves and compared the same to
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the dispersion relationship of traditional infra-gravity motions in the nearshore. A typical
plot of the observed dispersion relationship is sketched in figure 7:1. As this figure shows,
the frequency of the shear wave for a given wave number is significantly smaller than the
frequency of the zero mode edge wave of the same wave number. Zero mode edge wave
(the so-called Stokes’ mode edge wave) has the lowest frequency for a given wave number

among all traditional infra-gravity oscillations.

mode 1 edge wave
T \ mode 0 edge wave

p,

observed motions

v

k—»
Figure 7.1: Sketch of a typical observed dispersion relationship

Kinematics of shear waves were found to be closely linked to the strength of the
mean longshore current. BH89 showed that these observations are consistent with a model
based on a shear instability of a steady longshore current.

BHS89 solve the instability equation analytically for a horizontal bottom and as-
suming a triangular velocity profile (this combination of velocity profile and bottom to-
pography is plotted in figure 7.2a). They find that this velocity profile is linearly unstable
for a range of longshore wave numbers. Dodd & Thornton (1990) extended the stability
analysis to a velocity profile that increases from zero to its maximum value quadratically
and then drops off to zero linearly over a bottom topography that consists of a combi-

nation of sloping and horizontal regions (see figure 7.2b). Their results for the stability
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characteristics are not very different from those found by BH89.

The general problem, that of finding the linear stability of an arbitrary longshore
current profile over an arbitrary bottom topography, is far too complex to be amenable
to an analytical solution. Therefore, in this chapter we solve the equation of instability
numerically. This allows us to study a general range of beach and longshore current
velocity profiles.

As a model for the velocity profile, in most cases, we use the longshore current
variation given by Longuet-Higgins (1970). Our results for the characteristics of shear
waves are qualitatively consistent observations of Oltman-Shay et al. This confirms that
shear waves are a plausible explanation for the observed temporal and spatial oscillations.

Alternative mechanisms to explain these oscillations have been proposed by Fowler
& Dalrymple (1990) and Shemer et al. (1991). The first of these essentially consists
of the interaction of two wave trains of slightly different frequencies. They show that
such an interaction produces a migrating rip-current which has a low frequency signature
in the wavenumber-frequency space that is similar to the shear waves. This was also
the explanation originally suggested by Tang & Dalrymple to explain their observations.
Shemer et al. show that a sideband instability of the incident gravity waves leads to a slow
modulation of the radiation stress which, in turn, causes a modulation in the longshore

currents similar to the observations of shear motions.

7.2 Mathematical formulation
Neglecting the bottom friction and variation of radiation stresses and assuming a
gently sloping bottom so that the pressure driving the currents is hydrostatic the depth

integrated and wave averaged momentum equation reads
u;+u-Vu=—-gVyp (7.1)

where u(z,y,t) is the depth averaged velocity field. The instability equation is derived
from (7.1). Following BH89 we assume that the flow field consists of a steady longshore
current V() and an infinitesimal perturbation #@(z,y,t). Substituting this into (7.1) and

retaining only terms linear in the perturbation leads to
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Figure 7.2: Velocity profiles and depth variations used by Bowen & Holman (1989) and
Dodd & Thornton (1990)
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u+ Vuy = —g1, (7.2)
v+ uVy + Vo, = —gny (7.3)

where u and v are the z and y components respectively of #(z,y). Next, we assume that
the time rate of change of the surface elevation is small in comparison to the other terms
in the continuity equation. This approximation is sometimes referred to as the “rigid lid”
approximation though the “lid” is only applied to the conservation of mass. This reduces

the continuity equation to
V. (h@)=0 (7.4)

where h is the undisturbed depth of the fluid column. This form of the continuity equation
allows the introduction of a transport stream function, ¥, such that ¥, = hv and ¥, =

—hu. Furthermore, the perturbation may be assumed to be of the form

Y(z,y,t) = P(z)exp i(ky — ot) (7.5)
Elimination of 77 between (7.2) and (7.3) by cross differentiation and introducing ¥ yields
(V = O)(thsx — 2 = L22) — h(F2)2 =0 (1.6)

where ¢ = o/k. This is the equation governing the instability. Solutions will be progressive
waves with phase velocity equal to the real part of ¢ which is the speed with which the entire
perturbation pattern moves in the longshore direction. For those values of the wavenumber
where ¢ has a negative imaginary component, the solution has an exponentially growing
amplitude which, basically, indicates that the longshore velocity profile, V(z), is unstable
to perturbations of the velocity field with that wavenumber.

Equation 7.6 is a modified Rayleigh equation and the eigenvalues occur in complex
conjugate pairs similar to the well known result for the Rayleigh equation (Drazin and
Reid 1982, p. 131). With this in mind, in all the plots we show in the following we indicate
only the magnitude of the imaginary part of & — the sign is understood to be negative.

For the situations studied, the boundary conditions associated with (7.6) are

=0 @ z=0,z— o0 (7.7)
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Equation 7.6 is difficult to solve analytically for a general velocity distribution,
V(z), and/or bottom profile. Hence, we resort to a numerical solution. Before proceeding
to the numerical solution, however, it is probably worthwhile to spend some time deriving

some general conditions that are necessary for the existence of an instability.

7.2.1 Necessary conditions for the existence of an instability

We now proceed to derive some necessary conditions for the existence of an insta-
bility. Mainly, we will derive the modified forms of the Rayleigh and Fjortoft conditions.
The derivation here closely follows the derivation of these conditions for the Rayleigh
equation in Drazin & Reid (1982, pp. 131-132) and is a minor extension of those results.
To derive the modified conditions rewrite (7.6) in the form (for V # ¢)

($),-5- (D

Multiplying (7.8) by ¥*, the complex conjugate of 9, and integrating from z = 0 toz = oo

we get, after applying the boundary conditions,

f:’ [%4’%] dx"'/owllfb—_li(%)zdmzﬂ (7.9)

The fact that ¥, = hv implies that ¢, /h is bounded at the shoreline has been used above.

The real and imaginary parts of (7.9) are:

Real
ol 2 /°° |92 (V — ere) (Vx)
—_— 4 —|d — ) dz=0 7.10
'/0 l h ! h al 0 (V_Cre)2+cgm hls: % ( )
Imaginary

Cim /Doo - c!:f; ) (%)xdw =0 (7.11)

(7.11) leads to the Rayleigh condition stated by BH89, wiz., that V;/h must have an

extremum in the domain for the existence of an instability (¢in # 0). Adding

(cre = V3) _[o V- c[f;z oo (%)rd:r =1

to (7.10) we get (V; is the value of V where (V;/h), = 0)




163

© PV -Va) (Ve , _ _ [®[ll® k?hbl?]
o'—'(V—c,e)2+c?m(h)xdx_ /0 [h + = ds <0 (7.12)

which shows that (V/h).(V — V5) < 0 in some part of the domain for an instability

to exist. Note that the modified forms of the Rayleigh and Fjortoft conditions are not

sufficient conditions and, therefore, do not guarantee the presence of an instability.

7.3 Numerical formulation

To obtain ample numerical accuracy, we use a fourth order finite difference scheme
to represent the derivatives in (7.6) and solve for the eigenvalues and eigenfunctions of the
governing equation. The details of the numerical scheme are shown in appendix D. When
the governing equation (7.6) is discretized using the finite difference approximations given

in appendix D the following matrix equation results

(A%} = c[B{¥} (7.13)

Here A and B are N by N matrices and {1} is a vector of size N where N is the number of
points used across the flow region. For the prescribed boundary conditions this equation
can be solved only for certain values of ¢ — the eigenvalues. These eigenvalues of the matrix
equation are equivalent to the eigenvalues of the governing equation (7.6). For each value
of the wave number k, (7.13) will yield N eigenvalues. We are particularly interested
in values of k£ where the eigenvalue has an imaginary component. In cases where more
than one such eigenvalue is present, it is assumed that the one with the largest imaginary
component will dominate the instability of that wavenumber. If, for a particular value of
k, all the eigenvalues are real then the longshore current is neutrally stable to disturbances
with wave number k.

The solution of the generalized eigenvalue problem defined by (7.13) is quite stan-
dard and use may be made of well established mathematical routines. The routine used
here is based on the algorithm of Moler and Stewart (1973) and is capable of handling the

case where one of the two matrices A or B is singular.



7.4 Numerical results

The numerical model is used to investigate the stability of various longshore current
profiles on arbitrary bottom topographies. This implies that for a given velocity profile and
bottom topography, we solve (7.13) for various values of k and, for each k, the eigenvalues
are determined. Figure 7.3 shows a comparison of the numerical and analytical solutions
for the growth rate for the situation studied by BH89. The comparison presented is
for 6 = 0.5. 400 nodes were used in the numerical solution and the seaward boundary
condition was applied at @ = 22, (z; and & are defined in figure 7.2). Figure 7.3 shows

that the numerical solution is fairly accurate.!!

0.4
Legend
Analytical
0.3- Numerical

8 B
0 1 ’ I I 1 I I
0 1 2 3 4 5 6 7
k x,
Figure 7.3: Comparison of numerical solution with the analytical result of BH89 (6 =
0.5)

11 Note that a slight modification of the numerical procedure is required to handle the BH89 case. This is
because of the discontinuity of Vi at r = &z, and ry,. The solution has to be matched at these points.
The matching conditions used are continuity of » and ¢ at these points. As far as the numerical
procedure is concerned, this translates into replacing the differenced form of the governing equation
by the matching conditions at these points in the overall matrix equation (D.8) of appendix D.



165

The real part of o is much greater than the imaginary part shown in figure 7.3. The
absolute inaccuracies in the calculation of the real part of o are of the same magnitude
as those seen in figure 7.3. Inaccuracies of such small magnitude are not discernible on a
plot similar to figure 7.3 for the variation of o, vs k.

The longshore current distribution has a substantial influence on the occurrence
of the instabilities and the distribution used by BH89 is quite unrealistic. We wish to
study the stability of more realistic longshore current distributions. As a characteristic
example, we choose to use the distribution given by Longuet-Higgins (1970). As discussed

in chapter 4, these are one parameter profiles are given by

o = f(Z.P) (7.14)
with a shape that depends on the parameter P which is a dimensionless parameter de-
pending on the strength of turbulent mixing. In (7.14) z; is the width of the surf-zone,
Vi is the longshore current velocity at z, for P = 0. For the present purposes it suffices
to note that higher values of P reduce the maximum velocity, shift the point of maximum

velocity closer to the shoreline and lead to smoother velocity profiles. The profiles were

plotted in figure 5.1 for different values of P.

7.4.1 Effect of bottom topography
To get a first estimate of the effect of the bottom topography consider the form of

(7.6) for the special case of a beach profile given by
h = ax" (7.15)

Here a is a function of the ratio, hy/z;, breaker depth to surf-zone width (a measure of the
overall beach steepness in cases where n # 0). This class of profiles includes the constant
depth case studied by BH89 (n = 0), the plane beach case (n = 1) and the equilibrium
beach profile (n = 2/3) (Bruun 1954 and Dean 1977). Substituting into (7.6) leads to

(V_C)(‘:bxz—kz'w—' Elbﬁ e ’(,me:-F 2 VI =

z z

0 (7.16)

Since a does not occur explicitly in (7.16) or the corresponding boundary conditions we

conclude that the eigenvalues, ¢, of (7.16) are independent of @ and hence of the overall
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beach steepness. ¢, however, may still depend noticeably on the configuration of the depth
variation and also vary implicitly with other factors such as the beach steepness and wave
conditions via the way these factors influence V(z).

In this section we further limit the discussions to the study of four characteristic

topographies (figure 7.4). These are:
1. h(z) constant - Horizontal bottom
2. h(z) = 22/3 - ‘Equilibrium’ profile (Brunn 1954 and Dean 1977)
3. h(z) = z - Plane beach
4. h(z) =z — Zexp [—30 (%‘1)2] - ‘Barred’ profile with bar crest at break point

Figure 7.5 shows overall results for the variations of o (fig. 7.5a the real part and fig. 7.5b
the imaginary part) with k for these topographies. For simplicity, we keep the longshore
current distribution the same for all four topographies by letting P be fixed at 0.5.

In figure 7.5 we see that the real part of ¢ is quite insensitive to the bottom topog-
raphy. Since the magnitude of the imaginary part is generally very small in comparison
with the real part, the absolute value of ¢ is essentially determined from the real part.
These results suggest that not only is the magnitude of ¢ independent of the overall beach
steepness but it is also quite insensitive to the shape of the beach profile.

The imaginary part of o gives the growth rate of the instability and figure 5a shows
that o;, varies significantly with the shape of the beach profile. The higher the growth
rate, the more likely it is that the instability will overcome the threshold of stabilizing
frictional forces (neglected here) and become observable. The results of figure 7.5 therefore
indicate that a barred bottom topography is much more conducive to the development of
shear waves.

It is also interesting to see that there is a significant difference in the growth rates
for the horizontal bottom and the plane beach cases. On a plane slope, the maximum o,
is both much smaller and occurs at a somewhat smaller kzy than on the horizontal bottom.

This result is in direct contrast to the results of Dodd & Thornton (1990) who found no



167

h )

1 | 1 1

0.5 1 1.5 2
X/X,
Figure 7.4: The depth variations used

<9

such effect although part of beach profile was a plane slope. This is probably because their
combination of current distribution and beach profile actually have a constant depth on
the seaward face of the longshore current distribution similar to BH89. Our results and
the results of BH89 suggest that this is the important region for the instability mechanism.
This is also the region where typically (Vz/h)z(V — Vi) < 0 (V; is the value of V' where
(Vz/h)z = 0) which is a necessary condition for the the existence of an instability according
to the slightly modified form of Fjortoft’s theorem derived earlier. This is the likely reason
why the results of Dodd and Thornton do not show the strong effect of the slope. Notice
that for the profiles used by BH89 and Dodd and Thornton (Vz/h): is zero everywhere
except at z = dz; where it is undefined.

Some of the curves in figure 7.5a show irregular humps at the higher values of k.
The eigenvalues in that region are highly dependent on the number of nodes used in the

computation indicating that for these values of k convergence has not been achieved with
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Figure 7.5: Variation of ¢ for bottom topographies considered
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the number of nodes used in the computation. However, these are not of great concern
because we have found that the maximum value of 0;,, (which is the quantity of interest)
is well defined and does not depend on N for sufficiently large N. We will discuss this
problem further in section 7.8.

In the same region of large k values intervals occur where o is purely real. In
such cases there is no instability and we cannot define a unique eigenvalue. The gaps
(not clearly visible in these plots, but gaps are present at relatively large values of k)
in the dispersion relationship for the sloping bottom situation correspond to k values for
which there is no imaginary part of the frequency, o, for the number of nodes used in the

computation.

7.4.2 Effect of the location of the bar crest

Since figure 7.5 shows that the presence of a bar significantly influences the stability
characteristics of the longshore current profile, it is of interest to investigate this effect
more closely.

It turns out that on barred beaches one of the important parameters for the in-
stability is the position of the maximum of the current relative to the bar crest. On a
given beach profile the variation in wave conditions may change this position substantially.
Field data of Sallenger & Howd (1989) shows that the bar crest is not always located at or
near the break point. Hence, it is relevant to examine the effect of the location of the bar
crest relative to the break point. We have, for simplicity of discussion, chosen to illustrate
this effect by letting the position of the current maximum and bar crest be independent
parameters and have performed a parametric study using (7.14) for a range of P values.!?

To do this we model the bottom variation by

h(z) = ¢ — hczcexp l-—30 (a: — mc)gl (7.17)

Te

12 A direct computation of the actual longshore current profiles could easily be made for different depth
profiles, for example, using the numerical solution of chapter 5. However, that would only introduce
discussions regarding the various assumptions involved in the modelling of longshore currents and which
value of P to be used. Such discussions will only detract from the clarity of the present discussion.
Furthermore, the effects of bottom and velocity profiles on the stability characteristics can no longer
be separated.
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where z. is the location of the crest of the bar and h. is the dimensionless height of the
bar relative to the local plane beach depth (see figure 7.4). In all the results presented
here h, = 0.5 has been used.

Figure 7.6 shows the variations of o}, and o, with k for some characteristic values
of z. compared to the case of no bar (plane beach). For z, = 0.46z; (the crest location
coinciding with the location of the maximum velocity when P = 0.5) the imaginary part
follows quite closely the curve for the case without a bar.

The curve for z. = 0.6z} (bar crest seaward of the current maximum) on the other
hand, has values of o;,, that are significantly lower than that in the case of no bar. Also,
for this case, there is a local minimum in the value of oy, at kz; ~ 3.5. The values of g;,
for the higher values of k& are not insignificant.

The curve for z. = 0.652; has a maximum value comparable to that for z, = 0.6z}.
However, this maximum occurs at kz, =~ 5 as opposed to kz, =~ 1.5 for the former case.
Also, with 2. = 0.652; there are two relative minima of a;,.

The plot of the real part shows that the curve for z. = 0.6z, has a discontinuity at
kzy ~ 3.5. Also, the slope of o, vs k changes considerably at this point. The curve for
z. = 0.65z; starts out with a relatively high value of the slope (relative to the case without
a bar) which jumps to a value comparable to the case without a bar around kzp ~ 1.5 as
marked by the discontinuity in the value of o,. at that point. This process is reversed at
kzy, ~ 2 where there is another discontinuity in o,. similar to the case of z, = 0.6z}.

The curve for z, = 0.7z, shows that o,. varies almost linearly with £ with a slope
that is comparable to the higher of the slopes for the z. = 0.6z, 0.65z; cases and no
discontinuities occur. Comparison of figures 7.6a and 7.6b reveal that the locations of
the discontinuities in the dispersion relationship coincide with the locations of the relative
minima of the oy, curves indicating that these two phenomenon may be linked. Closer
inspection reveals that this is indeed the case.

The mechanism responsible for this behavior is illustrated in figure 7.7. Essentially

what happens is the following: For all the cases in the absence of the bar there is one
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eigenvalue with a dominant imaginary part for a given k (indicated by “dominant eigen-
value” on the sketch of figure 7.7a). This corresponds to one dominant mode of instability
in this case. The presence of a bar introduces other possible modes of instability. This
is indicated in figure 7.7b by the presence of more than one eigenvalue with comparable
imaginary components. In fact, several modes of motion are theoretically possible for this
case. If, for each value of k, we plot only the maximum value of oy, as per section 7.3,
the intersections of two of these modes would show up as local minima in the plots of
Oim provided the situation is as sketched in figure 7.7b. The minima in the plots of gj,
therefore separate intervals of £ where different modes of the instability dominate.

The real part for the various modes may be as sketched in figure 7.7c. Since a swap
from one mode to another is also associated with a change in propagation speed for the
whole instability pattern the swap of modes corresponds to discontinuities in the real part
at the intersections of the modes.

We have carried out extensive numerical experiments with various locations of the
bar crest, different velocity profiles, different basic bottom configurations (like, e.g., a bar
on a horizontal bottom), etc. The results indicate that a general sequence of events occurs
as the bar crest moves seaward from the maximum velocity location. Some elements of this
sequence have been alluded to in the preceding paragraphs. The sequence is essentially as

follows:

e In the absence of the bar (the plane slope case) there is one well defined mode which

has a growth rate that is significantly higher than the others.

e The presence of the bar introduces other modes which have non-zero growth rates.
The important parameter is the position of the bar crest relative to the maximum
location of the current profile. If the bar crest is shoreward of a certain position
relative to the current maximum (depending on the value of P and the bar height)

then the instability is essentially as on a beach with no bar.

e As the bar moves seaward relative to the current distribution the instability of the

mode that occurs in the absence of the bar gets weaker. At the same time, the
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Figure 7.7: Sketch of the jump mechanism

strength of the instability of the mode(s) induced by the bar increases.

As the bar moves further seaward, all the modes that are excited due to the presence
of the bar combine to give one mode with a dominant imaginary component. This
mode is quite different from that excited in the absence of the bar: a mode swap

occurs.

If the bar is sufficiently seaward of the maximum of the current profile the bar ceases

to influence the stability and we simply return to the solution for the case with no
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bar, and with the instability the same as that with a constant beach slope. The

entire instability is located shoreward of the bar.

A very similar effect and sequence of events occur if the location of the bar crest is

maintained a constant and the height of the bar is varied.

7.4.2.1 The flow pattern

To more clearly demonstrate the difference between the two characteristic modes
described above figures 7.8 and 7.9 show the particle velocities induced by the shear wave
instability for kz; = 3.5 and kzy = 3.6 for P = 0.5 and bar crest located at 0.6z;. (We
will discuss the spatial structure and the determination of the induced velocities in a later
section.) We choose these two values of kz; because although the two values are very close
the mode interchange occurs between these values of kz;. The first of the plots (kz) = 3.5)
shows that there is a significant induced velocity seaward of the bar crest at 0.6z;. The
induced velocity distribution is in fact very similar to that due to a shear wave generated
on a plane beach, which indicates that it is essentially the same mode of motion. In Figure
7.9 (kzp = 3.6) the motion is almost entirely confined to a region shoreward of the bar.
Hence, this is a mode that is virtually trapped by the bar. Our numerical experiments
indicate that the essential effect of the bar is to trap the shear wave shoreward of the bar

even when there are significant longshore current velocities seaward of the bar crest.

7.4.3 Effect of longshore current velocity profile

In this section we examine the the effect of varying P in the longshore current
distribution (7.14). As noted earlier, decreasing P is equivalent to increasing the maximum
velocity and shifting the position of the maximum velocity closer to the break point thus
increasing 6 and therefore increasing the shear on the seaward face of the velocity profile.
Figure 7.10 shows the variation of ¢;,, and o, with k for P = 0.1,1.0 (see figure 7.5 for
results corresponding to P = 0.5). Results for horizontal bottom, sloping bottom and a
sloping bottom with a bar crest at breakpoint are shown. It is clear that decreasing P
(i.e., increasing the shear) increases the maximum unstable frequency, oim,maz, and also

increases the range of wavenumbers over which the instability occurs. This implies that
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the strength of the instability increases with increasing shear on the seaward face. We also
note that the higher the value of P the more dramatic is the difference between the flat
bottom and slope situations and that in all cases the barred topography is significantly
more unstable than the other two situations. The variation of o, with k (figure 7.10b)
shows that that quantity and hence the propagation speed of the instability is much less
sensitive to the backshear.

Also, we have performed a similar analysis for the velocity profile used by BH&9.
Not surprisingly, similar behavior occurs for the BH89 profile and hence confirms the result
of BH89 that the shear on the seaward face is one of the more important parameters of

the problem.

7.5 Spatial structure of shear waves

Once the eigenvalues of (7.13) are known, the corresponding eigenvectors may be
calculated in a straightforward manner. As usual, the eigenvectors are can only be deter-
mined correct to an arbitrary multiplicative constant.

The strict mathematical formulation requires the imposition of ¥ = 0 as ¢ — .
Obviously, this condition has to be applied at a finite distance in a numerical solution.
Numerical experiments indicate that oim maz is quite insensitive to the location of appli-
cation of the seaward boundary condition (some evidence of this will be given in section
7.9). The same is true, though to a lesser extent, of the stream function.

Figures 7.11a and 7.11b show respectively the variations of the real and imaginary
parts of the stream function for the horizontal bottom, sloping bottom and barred profile
(with bar crest at break-point) cases. These correspond to values of the wavenumber, k,
which has the highest growth rate (kz; = 1.9 [horizontal bottom], kz; = 1.4 [plane beach],
kzp = 2.8 [barred profile] for the conditions considered here [P = 0.5]; see figure 7.5a for
the variation of o;,, with k). The stream function has been normalized such that it has a
value of 1+ 0 (in arbitrary units) at @ = z,. These plots show that up to about 0.75z;
the stream functions for the plane and barred beach situations are reasonably close to
one another. Since in this region the depths of these two situations have more or less the

same variation it follows that the induced velocities will be similar for these cases in this
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region. Around the break point the stream function for the barred beach shows extremely
rapid variation in comparison with the other two cases indicating that the induced velocity
in this region would be much higher for this case than in the other two cases. Seaward
of the break point the decay of the stream function for the barred profile case is much
weaker than the variation near the break point which indicates small induced velocities in
comparison with values at break point. This indicates that the induced velocities for the
barred profile case are mainly concentrated near the breaker line which coincides with the
location of the bar crest in this case. A plot of the induced velocity for this case shows
that the velocity distribution is very similar to that presented in figure 7.9 except for the
fact that in the present case the region of high induced velocities is around z; as opposed
to around 0.6z} in figure 7.9.

Similar plots of the shear wave induced velocities demonstrates that the horizontal
bottom solution has circulation cells extending much further offshore than the sloping
bottom case. This can be readily understood by noticing that before substituting (7.5)

the equation for ¥ can be written (neglecting small terms)

D~ Ve
—5? =V, (?) (7.18)

where D/Dt = 8/0t + Vd/dy and v = Uy, /h + (¥z/h). is the potential vorticity of the
shear wave. Thus for a given V(z) the rate of growth of potential vorticity of the shear
wave decreases much faster seawards on a slope than on a constant depth topography.
Figures 7.12, 7.13 and 7.14 show the total velocity distributions of the shear waves
superposed on the longshore current for the horizontal bottom, plane beach and barred
profile cases respectively. These have been scaled such that the maximum y component
of the velocity induced by the shear wave is the same as the maximum longshore current
velocity. The plots show that the instability creates a meandering of the longshore current

about its mean location.
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7.6 Mixing due to shear waves
As shown in chapter 2 and discussed in chapter 5, on a beach with no alongshore
variations of bottom topography, the first approximation to the longshore velocity is gov-

erned by
d /
o (Szy + Szy) + 7oy =0 (7.19)

The following question naturally arises at this point: Will the shear waves, as
described above, contribute to 57, the excess momentum flux. Based on figures similar
to 7.12-7.14, BH89 conjectured that this is indeed the case. In the following we estimate
the mixing produced by shear waves and the level of eddy viscosity required if this mixing
were parametrized by an eddy viscosity.

Without loss of generality, ¥ may be written as follows (recall that oy, < 0)
¥ = Ay(z)cos(ky — oret + 0) exp(—0oim?) (7.20)

where 6 is a phase angle. Substituting for v and v in terms of the stream function leads

to
_ Ak, df ., dA; ) :
w= -3 (Aldx sin® ¢ — I sin ¢ cos ¢ | exp(—20imt) (7.21)

where ¢ is defined to be ky — o,.t + 0. Averaging the above over a time 27 /0,. and using
the fact that —oi, < oy to argue that the factor exp(—20i,t) may be taken to be unity

over the averaging interval in the above leads to

% 8 . d [ A% do
_—= —(phu‘u) = —E ( Ed—x (7.22)

which shows that shear waves may produce mixing only if the phase, @, is a function of
z. This happens if the wave celerity ¢ has an imaginary part (i.e., whenever there is
an instability). Dodd & Thornton (1990) arrive at the same general conclusion using an
energy argument.!® The present method also supplies the magnitude of the mixing by

(7.22).

13 There seems to be a misprint in their paper. The RHS of their equation 21 should read j;w V(uv).dz
instead of — [ Vi uvdz.
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Figure 7.15 shows the variation of # with z for the bottom topographies considered
here (these have been calculated for P = 0.5 and the value of k¥ that is most unstable for
each of the topographies). This plot clearly shows that @ is indeed a function of z but only
inside the surf-zone. Outside the surf-zone, the value of 8 rapidly approaches a constant.
This means that although mixing occurs due to the growth of the shear waves the mixing
produced will be confined to the surf-zone. Outside the breaker zone, there is only weak

mixing and only in a region very close to the break point.

1

—

Legend

Horizontal bottom

Sloping bottom

Barred profile __

o
'3'/ 1 T T

0 0.5 1 1.5 2

X/X,

Figure 7.15: Variation of the phase for the different topographies used (P = 0.5)

The strength of the mixing will obviously depend on the strength of the instability.
We therefore proceed to estimate the required strength of the shear wave (or strength of
the instability) for it to be a plausible mechanism of mixing in the nearshore region. We

will perform a simple order of magnitude analysis to determine this.
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7.6.1 Order of magnitude analysis of the mixing

The following orders of magnitude may be written down -

T ~ T (7.23)
e 1

S (7.24)
Ay ~ tp ~ hyvszy (7.25)

where vy is a typical particle velocity induced by the shear-wave and hs is a typical depth.
Substituting the above into (7.22) leads to

dSy,  pha(key)o

.
dz xy (7:26)
If instead, we parametrize Sy, in terms of an eddy viscosity, v, then
ds;, d dv
& Pl (pv:hsa') (7.27)

We saw in chapter 5 that the eddy viscosity required for the prediction of longshore

currents was given by

If the shear wave growth should account for this mixing (7.26) and (7.27) should
be of the same order. Therefore, we can estimate the required order of magnitude of the

shear-wave velocity, vy, by equating (7.26) and (7.27). Doing this leads to

CW el (7.29)
f kzb Ty 0V ghs "

Typically, hy/zy < 1,kzy ~ 1 and Vo ~ \/ghs/(4 or 5).
Therefore (7.29) is equivalent to

1071 h
2 s e 2
e kzy wp (VO gh’") < Vo5 9hs (7.30)

which shows that even an extremely weak shear-wave may be capable of providing sufficient
mixing provided the phase, 8, is a function of the cross-shore distance. Therefore, we

conclude that this mechanism may possibly provide the high level of mixing required
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inside the surf-zone. Outside the surf-zone, the shear waves seem to provide very little
mixing. However, as discussed in chapter 5, the variation of the mixing outside the surf-
zone is not very critical to the longshore current predictions as long as the variation of
the mixing is continuous across the breaker line. The conclusion, therefore, is that shear
waves are a valid mechanism for lateral mixing in the nearshore region.

At this point, it seems appropriate to mention that BH89 compare mixing mech-
anisms in incident gravity waves and shear waves assuming that gravity waves exhibit

mixing that can be described an eddy viscosity v; given by
vn=UX (7.31)

where U is a typical particle orbital velocity and X a characteristic excursion amplitude.
Such a parametrization has frequently been adopted. However, since mixing is caused by
the time average of the convective acceleration terms (integrated over depth in the present

case) we find that regular incoming gravity waves cause no mixing.

7.7 Relevance to laboratory experiments

Most of the laboratory measurements of longshore currents have been conducted on
a sloping bottom. Therefore, while discussing possible shear wave instabilities in labora-
tory measurements, it is appropriate to consider scales corresponding to this topography.

These are:
o Length scale: kz, ~ 1.5 = L ~ 4z,
e Time scale : ¢/Vinaz ~ 0.5 = T = L/c ~ 824/ Viar

As discussed earlier, Visser (1982) measured longshore currents on relatively steep
slopes (1/10 and 1/20) in a reasonably wide tank (~ 21m). Typical measurements are
Vinaz ~ 0.75m/s and @, ~ 2m. Using these to estimate scales of shear-wave motion in the
laboratory leads to L ~ 8m and T ~ 20s. These scales indicate that shear wave motions
could be detectable in a laboratory although in this particular case the length of the tank

may have been too small to allow motion to develop freely. At least Visser does not give
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any indication of the temporal variations of the longshore current. The relatively long
lenigth scale could be one reason why shear waves had not been detected in the laboratory.

Another reason why shear waves have not been detected could be the damping
effect of bottom friction. On a straight coast the steady part of the bottom friction is
balanced by the longshore radiation stress component. Thus including those two contri-
butions and introducing the friction effect on the shear wave as a perturbation relative
to the equilibrium value leads to the same principal result as found by BH89 who simply
introduced a linearized bottom friction neglecting the radiation stress.

The resulting stability equation takes the form

(V = ¢ = ) (thoe = K = 2215 — hy(22), = 0 (732

Here ) is determined from the quadratic relationship for the bottom stress of the form
o, B
T = 5Pf“l“| (7.33)

where u is the total velocity (i.e., the shear wave velocity plus the longshore current
velocity as in section 7.2). For small perturbations @ from the mean longshore currents

we get
5 1
Ty =They + 7 = 5,ofv%;;, +pfVi (7.34)

where €; is the unit vector in the y direction. The linearization of the deviations from the
equilibrium of a steady current means that A = fV.

The presence of the ¢\ term equation 7.32 indicates the presence of a stabilizing
threshold that must be overcome for the instability to develop (—=0im > A/h = Othresh)
and the threshold, oypresh = fV/h, depends on the steady longshore current V.

For Visser’s experiments a crude estimate of the threshold is (using Viner/2 as a

representative value for the velocity)

A fVimar  (0.02)(0.75)

Tthresh = 7 = ~gp— ™ 2(0.1) = 0.075 Hz (7.35)
From figure 7.5a we get
Vmaz (0.1)(0.75)/(2) ~ 0.04 H= (7.36)

Tp
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This value is below the viscous threshold estimated by (7.35) indicating that the viscous
threshold is probably not overcome for this case, that is the viscous damping has probably
suppressed the instability in Visser’s experiment.

Using a barred bottom topography should be more conducive to the development
of shear motions. Not only does the bar make the longshore current profile more unstable
thus making it easier to overcome the viscous threshold it also reduces the length scale
relative to the plane beach case thus making it more likely that the instabilities have more
room to develop in a laboratory wave basin.

Results presented in section 7.4 indicate that for certain crest locations it was
possible to have more than one local maxima of ¢;,. In such cases the mode with the
largest value of the growth rate among the local maxima would get excited. If two or more
of the modes have growth rates that are equal to the maximum growth rate then, in the
absence of an externally imposed length scale, there is the potential for the excitation of
more than one mode of motion. However, we note that we have only found such behavior
at a transition from one dominant mode to another and in such cases, the growth rate
during the transition is substantially smaller than the growth rate of the two dominant
modes (see section 7.4). So, it is quite likely that the viscous threshold is not reached in
the transition process. If this is the case, then the actual swap of modes may never be

observed in practice.

7.8 Discussion
The observations of Oltman-Shay et al. (1989) suggest the following characteristics

of shear-waves
1. They propagate in the direction of the longshore current;

2. The variation of the observed frequency (o) with observed wave number (k) is

almost linear with a 0, 0 intercept;

3. The speed of propagation is in the range 0.5V}, - V;,, where V;,, is the mean longshore

current magnitude;
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4. Cross-shore and longshore velocity components are in quadrature phase and

5. The range of observed wave numbers is independent of the magnitude of the long-

shore current.

The last observation clearly suggests that phenomenon is linear — provided, of
course, that the phenomenon is linked in some way to the longshore current. This means
that the model of BH89, and the extension presented here, may be acceptable approxima-
tions to the actual situation.

In the model the assumption that the stream function may be assumed to be given
by (7.5) ensures that, if oi, is zero, the relative phase between the velocity components
will always agree with point 4 in the list of characteristics above.

Figures 7.5 and 7.10 show variations of o, with k for the different bottom to-
pographies and velocity profiles. First of all, we notice that the slope of the “dispersion”
relationship is positive indicating that the waves are propagating in the direction of the
longshore current (positive y direction). Secondly, we note that given the average beach
slope the dispersion relationship is relatively insensitive to bottom topography. Finally,
the dispersion relationship is remarkably linear with a slope which in our nondimensional
variables is about 0.5 and has a 0, 0 intercept. In physical variables a slope of 0.5 cor-
responds to ¢/Vimaer = 0.5. Clearly, this is in good agreement with observation three
above.

The observations show that shear motions span a range of wave numbers. The
instability theory predicts that the shear motions will be dominated by a single wave
number. The range of observed wave numbers cannot be explained by the instability
theory.

It is clear from the results that the shape of the beach profile has a strong effect on
the stability characteristics. As mentioned earlier, the higher the strength of the instability
the higher the likelihood that the motion would overcome the viscous threshold and be
discernible. Thus, based on the results presented here we would anticipate shear motions

to be more predominant on beaches with bars.
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The result that longshore current profiles with high backshears are extremely unsta-
ble leads to an interesting speculation regarding the development of longshore currents.
As has been pointed out many times in this thesis, observed longshore currents show
cross-shore distributions that indicate a level of mixing that is much higher than what
measurements of turbulence levels indicate. The speculation is this: As gravity waves be-
gin to approach the shore obliquely, they set up a longshore current distribution with large
backshears (consistent with observed turbulence levels). According to the present theory
such current profiles would be extremely unstable and generate shear motions which en-
hance the level of mixing. This enhanced level of mixing then sets up a longshore current
with a lower value of backshear. Such a profile is more stable and is probably what is
observed. If this mechanism is valid then the longshore current would approach the steady
value in an oscillatory fashion because the extremely unstable initial current profile would
generate strong shear motions which provide strong mixing and set up longshore currents
with very weak backshears. Because these profiles have small growth rates the viscous
threshold will probably not be exceeded and shear motions will be absent which means
that the available level of mixing would no longer be able to sustain a weak backshear.
The oscillatory process would probably continue (with decreasing amplitude) till a long-
shore current is generated whose instability has a growth rate that balances the viscous
threshold. Of course, all this is extremely speculative since we are using the results of a
steady situation to try and understand a fundamentally unsteady problem, viz., the de-
velopment of longshore current profiles. The above speculation assumes that the mixing
is not caused by the interaction of the longshore current and the undertow described in
the previous chapter.

We note that the frequencies encountered in these examples are indeed much smaller
than those normally associated with infra-gravity motions in the nearshore region (edge
waves). The slowest edge wave (Stokes’ or zero mode edge wave) travels with a speed
of gh;/o. The motions encountered here have a speed of approximately 0.5Viq,. For a

shear wave to travel with the speed of an edge wave we would need

h 1
% s §anr (7.3?)
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or using o = k¢ = 0.5kVinar and hy = hy/2y (hy is the depth at breaking) we get

© kay V2,
i S (7.38)

For this to hold we would need a longshore current velocity corresponding to V,2,,/ghs ~ 2
since the maximum instability on a plane beach occurs at kz, ~ 2. This is clearly not
very realistic. For V;2,./ghy < 1 we would have the shear wave traveling much slower than
the slowest infragravity motion for a given wave number. This implies that, for a given
wave number, the frequency of the shear wave is much smaller than the lowest frequency
of all possible traditional infragravity motions, which is precisely what was observed by
Oltman-Shay et al. (1989).

At this juncture, it is appropriate to discuss the validity of neglecting the dn/dt

term in the continuity equation. This term is of order ¢?,/gh times the terms retained.

dn cre \2 [ V2., [0(hu) O(hv)
—a—EN (Vmaa:) (ghb ){ 3.’3 : ay ] (7.39)

For the rather high V;2,./ghy ~ 0.5 we get

an d(hu) 0(hv)
5™ 0.1 [—é;—, 3_3;] (7.40)

using ¢re/Vmaz =~ 0.5. Thus, we may conclude that the vertical acceleration terms would

indeed be small and that it is justified to neglect the surface elevation in the continuity
equation.

Finally, concurrent with the present work, Dodd et al. (1991) added a friction term
and solved the instability equation numerically using longshore current velocity profiles
generated from a numerical model and found that the wavenumbers and frequencies of
the most unstable modes agreed with the experimental observations re-confirming that

the mechanism is a plausible one.

7.9 An observation on the numerical resolution of the eigenvalues

An interesting feature was encountered while developing the numerical results
shown in the previous sections. An indication of the problem may be found in figure
7.5. An examination of the variation of oy, with the number of nodes used in the compu-

tation N for the larger values of £ (kz;, > 4) for the sloping bottom situation shows that
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Oim is highly dependent on N indicating that the eigenvalues have not converged at the
number of nodes used in the computation for these values of k.

It was analyzed whether this is a problem with the accuracy of the solution and
if the problem could be alleviated by using a more accurate numerical procedure. To
examine this we conducted the following numerical experiment. We compared the results

for the eigenvalues on a plane beach for the following cases (Az = z3/50)

=i

. 200 nodes, Az spacing, 2" order finite difference scheme;
2. 200 nodes, Az spacing, 4" order finite difference scheme;

. 400 nodes, Az /2 spacing, 27d order finite difference scheme;

(V5]

N

. 400 nodes, Az /2 spacing, 4** order finite difference scheme and
5. 200 nodes, 2Az spacing, 2"¢ order finite difference scheme.

where the second order scheme referred to above is the usual central difference scheme.

Clearly, if the order of the numerical scheme were important, there should be a
noticeable difference in the solution for 1 and 2 above, whereas the solutions of 2 and 3
above should be roughly the same and the solution for 4 should be much better than the
solution for 3. The results are plotted in figure 7.16. It is evident from that figure that the
expectations listed above are not completely met. The solution seems only dependent on
N virtually independent of the overall order of accuracy of the scheme. Thus, we conclude
that the most important parameter is the number of nodes, N.

The matrix equation (7.13) has at most N distinct eigenvalues. The governing
differential equation has many more. Since the phenomenon under consideration seems
to be dependent mainly on N, it is our conjecture that it has some connection with not
resolving all the eigenvalues of the differential equation using the matrix approximation.

Note that in all the cases above the quantity that we are normally interested in,
viz., the maximum growth rate, oim, maz, is very well defined.

Also note that in cases 1 through 4 above the seaward boundary condition is applied

at ¢ = 4zp. In case 5 the seaward boundary condition is applied at z = 8z,. The fact
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Figure 7.16: Variation of o;, for different values of N and Az
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that the results of case 5 above compare favorably with the others for ¢jm mas indicates
that the size of the computational domain does not affect ng_m;-w, consistent with what

we claimed in section 7.5.



Chapter 8

CONCLUDING REMARKS

8.1 Summary and conclusions

The work presented in this thesis was an effort aimed at understanding some of the
basic mechanisms governing the mean circulation in the nearshore region. To simplify the
analysis we focussed on the case of a long straight beach. We particularly concentrated
on the various factors involved in the prediction of longshore currents.

Chapter 2 discussed the derivation of the equations governing the steady quantities
in the nearshore region. The equations derived in that chapter are valid for currents
that have a depth variation. These equations were then simplified for the case of a long,
straight beach and the simplifications afforded by the choice of this topography were also
discussed in some detail.

Existing laboratory measurements of the wave heights and set-up were analyzed in
chapter 3 in order to determine the variations of the radiation stress and energy dissipation
rate across the surf-zone. We showed in this chapter that the assumptions normally
made in surf-zone models (use of linear theory, bore dissipation model, etc.) require
reevaluation. We also showed in this chapter that the forcing for the longshore currents
may be overestimated by as much as a factor of two if linear theory is used.

Chapter 4 discussed a formulation of the quadratic law. We demonstrated in that
chapter that the quadratic law may be written in a convenient form. Some interesting
implications of the quadratic law were also discussed in that chapter.

In chapter 5 we first developed a perturbation solution for the longshore currents.
The perturbation scheme indicated that the equation normally solved for the prediction

of the longshore currents gives only the first approximation to the actual prediction of

196
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the longshore currents. We also found in this chapter that the lateral mixing needed to
explain the measurements of longshore currents while being consistent with the lateral
mixing level used in earlier models of longshore currents, is much higher than what the
turbulence measurements justify. Furthermore, predictions of the vertical structure of the
undertow and longshore currents required the use of mixing coefficients that are consistent
with turbulence measurements. This indicated that the vertical and horizontal mixing
processes may be controlled by different processes.

Chapter 6 analyzed the effect of the interaction of the undertow and longshore
currents in an effort to see if this interaction could provide the required mixing. We
demonstrated in this chapter that this interaction is extremely important and could sig-
nificantly increase the level of mixing and therefore easily account for the high level of
mixing. However, the strength of this mixing is significantly dependent on the evaluation
of the time average of the longshore current and the wave induced velocity above the
trough level. This quantity is not easy to evaluate because, as discussed in chapter 2, the
determination of the longshore current above trough level is probably not possible using
a wave averaged model.

Chapter 7 discussed the inviscid stability of longshore currents. A numerical so-
lution procedure was used to solve the stability equation for general longshore current
and depth profiles. We showed in this chapter that that the bottom topography plays an
extremely important role in the stability characteristics of longshore currents. We found
that the presence of a longshore bar significantly increases the strength of the instabil-
ity. It was also shown that the bar tends to trap motions shoreward of the bar. We
demonstrated here that the characteristics of the motions resulting from the instability
are consistent with the characteristics of the observations of low frequency motions in the
nearshore region (Oltman-Shay et al. 1989) thus indicating that the instability mechanism
is a plausible explanation for these motions as suggested by Bowen & Holman (1989). We
also found here that the viscous threshold probably suppresses the instability on plane
beaches and may possibly be one of the reasons why these motions have not been encoun-

tered in a laboratory so far. The shear waves were also found to be a plausible source of
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mixing in the nearshore region.

8.2 Suggestions for future work

The work presented here has clearly demonstrated the need for new and detailed
experimental data. An experiment in the spirit of Visser’s would be extremely useful
especially if detailed measurements can be made. We found in chapter 3 that measure-
ments of set-up and wave height could be used to accurately estimate the variation of the
cross-shore component of the radiation stress. If measurements of instantaneous surface
elevation are available to the extent that quantities of the type (?/ H 2) can be calculated
then the longshore component of the radiation stress can be accurately estimated from
the measurements of the set-up and wave height. Also, such an experiment could be used
to check the dependence of the longshore current on the slope. Such an experiment would
need to be carefully designed and monitored to ensure alongshore uniformity. Based on
our estimates of the strength of the instability in chapter 7 we would expect the longshore
currents to be stable if the beach has a monotonic depth variation. If the aim is to mea-
sure shear waves in the laboratory then it would be extremely conducive to introduce a
longshore bar. In fact, this feature could probably be used as a test for the instability
theory of shear waves. According to the instability theory shear motions are more likely
to develop on barred beaches than on plane beaches. The fact the shear motions seemed
to be more prevalent at SUPERDUCK where the beach profile is characterized by a bar
system in comparison with the rather weak evidence in the earlier observations at Torrey
Pines lends credence to this feature but a laboratory verification is necessary before one
can be convinced that the observations of the low frequency motions are a result of the
instability of longshore current. Successful verification of the predictions of the instability
theory would indicate that a new class of oscillations is present in the nearshore region
with potentially significant implications for the nearshore circulation.

Another application of such an experiment could be to test the hypothesis of chapter
6, viz., that the mixing required for longshore current predictions is controlled by the
interaction of the longshore currents and the undertow rather than the turbulence. If

this does turn out to be the mechanism that controls the mixing, the implication is that
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the presence of an undertow plays an extremely significant part in the establishment
of longshore currents. It is clear from the nature of the interaction that it is strongly
dependent on the mass flux due to the waves. Therefore, if the mechanism is a valid
one, a longshore current generated by waves with a higher value of the mass flux should
exhibit more mixing than longshore currents generated using waves that have a smaller
value of the mass flux. Since the mass flux in waves is strongly dependent on the wave
height this implies that longshore currents generated by using higher waves will exhibit
more mixing if the interaction mechanism controls the mixing. The level of turbulent
mixing will also increase with the wave height. The increase in the turbulent mixing
can probably be estimated by comparing vertical profiles of the horizontal currents for
different wave heights. Therefore, it seems possible that an experiment of the Visser type
could be used to test this hypothesis. There is, however, the drawback that in order to
quantify the mixing caused by the interaction the contribution from above trough level
has to estimated accurately. The proper evaluation of this contribution would probably
require the use of a depth and time dependent circulation model. None of the models
known to the present authors have both time and depth dependency. Currently available
computational resources probably make such models impractical. Therefore, until this
problem is resolved experiments can only provide qualitative verification of the hypothesis
that the mixing is controlled by the interaction of the longshore currents and the undertow.

It would be interesting to use a highly nonlinear numerical wave theory to calculate
the radiation stresses just prior to breaking and compare these results with those of analy-
ses similar to those carried out in chapter 3 and also with the radiation stresses calculated
from the basic definitions using direct measurements of velocities and pressures. It is con-
ceivable that for this purpose use could be made of one of the boundary element models
that have been developed in recent years for computations of highly nonlinear waves (like,
e.g., Otta 1992). Though such models cannot be used inside the surf-zone they could , for
example, be used to investigate the importance of the %,w,, term outside the surf-zone.
A first step in this direction was undertaken by Otta who calculated the velocities under

very steep solitary waves.
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There is also a need for a development of a boundary layer solution under surf-
zore conditions. As discussed in chapter 4, there are no measurements that are available
at the present time for boundary layer flows inside the surf-zone. While the lack of
experimental results will necessarily limit the theoretical efforts, the results from a theory
that uses realistic turbulence characteristics and wave conditions would aid in the planning
of experiments by suggesting quantities that are important and probably also indicating
whether these quantities are measurable using available measurement techniques.

The stability analysis performed here is linear and inviscid. Though estimates of
the viscous threshold were developed in chapter 7, a nonlinear viscous stability analysis
is required in order to completely address the stability of longshore currents. Such an
analysis could, for example, be carried out by using a two dimensional circulation model
(like, e.g., Ebersole & Dalrymple 1982, Vemulakonda 1984) and studying the evolution of

an arbitrary perturbation to the longshore current.



Appendix A

FIGURES SHOWING THE EXERIMENTAL DATA AND THE
VARIATIONS ADOPTED

In this appendix we show the measurements of the wave height and set-up along
with the variations adopted for the analysis in chapter 3. We also show here the variations

of the wave height to water depth ratio.

A.1 Variations of set-up and wave height

This section contains the variations of the set-up and wave height. The correspond-
ing variations for Okayasu S2C3 were presented in figure 3.2. In the figures that follow the
data points represent the measurements and the continuous curves represent the spline

variations used.
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Figure A.4: Spline variations used for Okayasu S3C1
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Figure A.8: Spline variations used for Okayasu S3C5
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A.2 Variations of H/h
This section contains the variations of the “measured™ value of the wave height to
water depth ratio and the interpretation of the same. Figure 3.3 contains the variation of

this quantity for Okayasu S2C3.
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Figure A.17: Variation of H/h for Stive & Wind Experiment 1
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Figure A.18: Variation of If/h for Stive & Wind Experiment 2
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Figure A.19: Variation of H/h for ISVA
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Figure A.20: Variation of H/h for Okayasu S3C1
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Figure A.21: Variation of H/h for Okayvasu S3C2
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Figure A.23: Variation of H/h for Okayvasu S3C4
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Figure A.25: Variation of H/h for Okayvasu S2C1
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Figure A.26: Variation of /[/h for Okayasu S2C2

=
:\E\ 0.5 --\.N__. ——
0 i I 1l 1
-2 -1.5 e -0.5 0 0.5
X(m)
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Figure A.29: Variation of H/h for Visser Experiment 2



i3 B =
g Rl
A
1
< os
3
0 T ! |
1 1.5 12 12.5 13

X(m)
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Appendix B

CONSERVATION OF THE LONGSHORE COMPONENT OF THE
RADIATION STRESS OUTSIDE THE SURF-ZONE

In this appendix we derive the condition that dS;,/dz = 0 outside the surf-zone.
The assumptions required for this derivation are also stated so that the applicability of
the result may be readily assessed. The derivation given here follows from James (1974a).
We assume that outside the surf-zone the wave motion is irrotational and may be

described by a velocity potential ¢. The Bernoulli equation states that

90 v a0
at+p+z(“+”+‘”)—0 (B.1)
where pgy is the dynamic pressure (= p + pgz). The energy flux in the z direction, Ey,, is
given by

" p
Byy= /ho [pd + 5(15;2 + v 4 wz)] udz (B.2)
Substituting (B.1) into (B.2) leads to

Y

Fy —f_ho Srud (B.3)

We now assume that the velocity potential is given by

d(z,y,t) = p(kez + kyy — wi) (B.4)

Therefore we will have

4 _—wbb  -—c 0¢

ot ky, Oy " sina dy (B:5)

where a is the angle of incidence of the wave. Substituting (B.5) into (B.3) leads to

¢ [" 0404, ¢
"~ sinaJ_p, 9y amdz "~ sin cxsxy (5:6)

By
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The second of the equalities above follows from the definition of the radiation stress. The
result relating the energy flux and the radiation stress was first proved Longuet-Higgins
(1970) for the linear case. The extension presented here is due to James (1974a).

By Snell’s law we have c¢/sina cosntant. This implies that if the energy flux is

conserved then

0E;, ¢ 0S4,

dz  sina Oz

=0 (B.7)

Thus, outsude the surf-zone we have conservation of the longshore component of the
radiation stress.

Bowen (1969a) points out that the result that 0Sz,/0z = 0 outside the surf-zone
is a consequence of the fact that in this region the wave motion is assumed irrotational

and hence cannot provide any forcing for a current of non-zero vorticity.



Appendix C

DERIVATION OF THE VARIATIONS INSIDE THE SURF-ZONE
FOR SIMPLIFIED CONDITIONS

In this appendix we show the details that lead to (5.81). Under the assumptions

of chapter 6 (which are the same as those listed before equation 5.81) we have

H!Z

Qs = by—Vgh = b7 hV/gh (C-1)
1 [ a6 1042

By = 5’;[93—3:4"5%] (C.2)

Therefore, we have after combining (6.13) and (6.14)

Up = fu\/g_h (C.3)

€u = (C4)
o ()
Substituting (C.3) into (6.13) leads to
h
bu o 61'.1E (0.5)
h
with
_ JuY
&g = ey & (C.6)
Similarly, we find that
v gh
Ay = Ea“ﬁ%— (C?)
where
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g _ (C.8)

Subsituting these results into (6.11) we find that the nondimensional undertow is

given by

T=aro(f)re(t)
\/g_h =€+ € h + €, h (Cg)
Equation 5.81 may be derived from the above after using the fact that under the as-

sumptions made here h;/h is a constant. This equation indicates that the nondimensional

undertow profiles inside the surf-zone are self-similar.



Appendix D

NUMERICAL FORMULATION FOR THE SOLUTION OF THE
INSTABILITY EQUATION

In this appendix we show the details of the numerical scheme used. We approximate
the derivatives by the following finite difference approximations which are correct to order

(Az)* (see, for example, Andersen et al. 1984, p. 45)

df _ fao2 = 8fn-1+8fnt1 = frs2

Az = 12Az (D)
ﬁ — "‘fn—-‘z + 16fn-—1 et 30fn + 16f'n+1 g fn+2 (D 2)
dz? 12(Az)? :

where f, = f(z,). With this scheme, the grid points n = 2, N —1 (N is the number of
nodes in the finite difference scheme) have to be handled in a special manner (see Orszag
and Israeli 1974). We derive a fourth order scheme for approximating the derivatives at
these points based on a Taylor series expansion. This derivation is given below.

The idea is this: We expand the function in a Taylor series about the point where
the derivatives are desired and then solve for the derivatives in terms of the values of the
function at various points. Let the function be given by f(z). The values of the function
at T = 29 — Az, 20 + Az, 70 + 2A2,2 = 20 + 3Az,2 = 2o + 4A7,2 = 2o + 5AT are given

in terms of quantities at zo correct to order (Az)® by

fa = fo-tef +(aerl - (aepLs (e Ll - (aap Lt

1 = fo+A:cf’+(A3;)2_ (Ag )sf"” +(Az )4}'"" +(Am)5fum

fi = Jot20ef+ (AsVhy + (282) fm + (202)* f”” QA:c)sfm

i = f°+3mff+(3“)2f” (342 )3fm+(3m)“f L Pl - (D.3)
fi = fotdhaf + by f” +(4’—‘~3«)3fm + (4A2)" fm (4Az)5f”m
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fs = fo+ 5Azf' + (5Az)° f”+(5A )3f”'f+(5A )4fw+(5Ax)5fﬂm

where f, = f(zo + pAz) and the primes denote the value of the derivatives at z = .

The system of equations (D.3) can be solved for the derivatives. This yields

—12f_1 —65f0+ 120f1 — 60f2 +20f3 — 3 f4

fo= 60Az (B:4)

The equation for f’ is correct to order (Az)® and the equation for f” is correct to order
(Az)*. The corresponding finite difference approximations for n = N — 1 can be derived
by a trivial change of notation. An equation for f’ correct to order (Az)* may be derived
by solving the first five equations of (35) with the order (Az)® terms neglected. Doing
this leads to

—3f-1—10fo+ 18f1 — 6f2 + fa

I = 12Az (D:5)

This is the equation that that has been used to approximate the first derivative at
n = 2,N — 1 since this is correct to order (Az)* consistent with the finite difference
approximations used for expressing the other derivatives.

The boundary conditions in discretized form are
1) = ¢(N) = ¢ (D.7)

When (7.6) is discretized using the finite difference approximations given above and

the boundary conditions applied we get the following system of equations

(1 =0
V5 ~15 5h Voh
¥ (1) 2 z\_ hay (2) _
Az'6Az T )‘b + [V 12/_\. S T v ) Vor + =719
h Vo1
L ) LA L A, (5) (6)
(3A:r wmy F Ax( )‘b 2A$ Az )‘b t Baap?
15 1 1 3h
= 5 hey 2 @_ 1, 1 3hey @
C(A:c(GAa: + )‘/) +( 12A F-E ahm:)‘b Az 3az T op ¥

AT e 1 bk 1.0
A ( + )’J’ ¥ A:r(/_\a:+6h)1'b +12(A:z:)2¢ )
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oz + A 4 (i BN W + )+ (e = T
T e e -
+[V(12_ii-2 -k - shm Vi k5 R 2 Mim_ %)d)(m
= (12(As~:)2 s ﬁ(ﬁ - Eﬁ)d’w - &7{5 - 2h)¢{N -
M) =

In the above 3 < n < N — 2. The system of equations (D.8) may be concisely expressed

in matrix form as follows

[Al{4} = c[Bl{¥}

This is equation 7.13 of chapter 7.

Finally, we note that there may be some question regarding the formal accuracy
of the system of equations (D.3). For example, because of the large value of 5% there is
some doubt whether the last equation in (D.3) can be considered correct to order (Az)°.
Consequently, it may be questioned whether (D.5) and (D.6) are actually correct to order
(Az)*. However, according to Orszag and Israeli (1974) it is sufficient to have the boundary
approximations correct to third order to ensure that the overall scheme is of fourth order

accuracy which the form of (D.3) used should satisfy with reasonable accuracy.
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