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ABSTRACT

A one-dimensional, time-dependent numerical model is developed to simulate the
flow on a rough slope of arbitrary geometry and the flow inside a permeable underlayer
of arbitrary thickness for specified norma,]ly-incidlent irregular waves. The continuity and
momentum equations are used to solve the flow fields, whereas the energy equation for
each flow field is utilized to estimate energy fluxes and dissipation rates. The derivations
of these equations and adopted finite difference methods are presented to clarify the
approximations and assumptions made in the numerical model,

The comparison with three test runs shows that the model can predict the time
series and spectral characteristics of the reflected waves and waterline oscillations on a
1:3 rough slope with a thick permeable underlayer. The examination of the computed
energy balance shows that the incoming wave energy is dissipated little over the rough
slope but is transmitted mostly into the permeable underlayer to be dissipated locally
by the turbulent and viscous flow resistance. The 1:3 permeable slope tends to reflect
low-frequency wave components and dissipate high-frequency wave components. The
average reflection coefficient increases with the increase of the surf similarity parameter.
The degree of the waterline oscillation on the 1:3 slope also increases as the surf similarity
parameter is increased. The low-frequency components in the waterline oscillations on
the 1:3 slope are very small unlike shoreline oscillations on sand beaches. The probability
distribution of individual run-up heights tends to follow the Rayleigh distribution, except
for very small exceedance probability. Moreover, the circulation of time-averaged mass
flux is as follows: into the permeable underlayer above the still water level (SWL), out
of the underlayer below SWL, landward above the rough slope, and seaward inside the

underlayer.
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The computed results for the 1:3 rough permeable slope and the corresponding
impermeable slope are also compared to quantify the differences caused solely by the
thick permeable underlayer. The thick permeable underlayer is shown to reduce the
wave reflection and run-up noticeably and increase the stability of armor units consider-
ably. The thick permeable underlayer is effective in dissipating the high-frequency wave

components.



Chapter 1

INTRODUCTION

Quantitative understanding of the interaction of irregular waves with permeable
slopes is essential for the design of breakwaters with S-shape profiles (Bruun and Jo-
hannesson 1976), berm breakwaters (Baird and Hall 1984), reef breakwaters (Ahrens
1989), dynamic revetments (Ahrens 1990), and bermed revetments (Ahrens and Ward
1991). Viscous effects inside permeable slopes are normally not in similitude between
small-scale physical models and prototypes (Johnson, Kondo, and Wallihan 1966; Del-
monte 1972; Wilson and Cross 1972; Hall 1991; Bruun 1992). Alternatively, numerical
models may be calibrated using model tests and applied to.simulate the viscous and
turbulent flow resistance inside the permeable slope. Furthermore, numerical models
yield quantitative information, some of which is difficult or impossible to measure, with
high spatial and temporal resolutions. The quantitative understanding of the hydrody-
namic processes involved with irregular wave interaction with permeable slopes is still
rudimentary, although extensive hydraulic model tests have been performed.

The existing computer programs developed by Kobayashi and Wurjanto (1989a)
and Wurjanto and Kobayashi (1991) are applicable only to impermeable structures and
beaches. As a result, they can not be applied to the highly permeable structures
mentioned above. An initial attempt to include the permeability effect was made by
Kobayashi and Wurjanto (1990) by assuming a thin permeable underlayer. The assump-
tion of the thin permeable underlayer allows one to neglect the region landward of the
waterline on the rough slope and the inertia terms in the horizontal momentum equa-
tion for the flow inside the thin permeable underlayer. However, this previous numerical

model has turned out to be of limited practical use since the permeability effects of the



thin permeable underlayer have been found to be minor or negligible. The previous
numerical model and computed results based on the assumption of the thin permeable
underlayer are summarized in the next section, whereas different models for permeable
breakwaters developed by other researchers is reviewed in Section 1.3.

An improved numerical model for a permeable slope with a thick permeable un-
derlayer is described in detail herein. The improved numerical model eliminates most of
the shortcomings of the previous models. Finite difference equations based on the numer-
ical methods of Lax and Wendroff (1960) and MacCormack (1969) are developed from
the governing equations. Section 1.4 provides a background for the adoption of these
numerical methods. The performance of the improved numerical model is then examined
and the computed results are interpreted physically. An outline of the presentation of
the present work is given in Section 1.5.

The numerical model developed by Wurjanto and Kobayashi (1991) is also used in
Chapter 7 to simulate the flow field on the corresponding impermeable slope to quantify
the permeability effects. A summary of the previous work related to this model for
impermeable slopes is provided in Section 1.2 since it is not explained in Chapter 7 and

the present numerical model is an extension of this previous model.

1.1 Previous Work for Thin Permeable Underlayer

Kobayashi and Wurjanto (1990) developed a numerical model to predict the flow
and armor response on a rough permeable slope as well as the flow in a thin permeable
underlayer for a normally-incident wave train. In addition to the continuity and mo-
mentum equations used to compute the flow fields, an equation of energy was used to
estimate the rate of energy dissipation due to wave breaking. Computation was made
for six test runs to examine the accuracy and capability of the numerical model for simu-
lating the fairly detailed hydrodynamics and armor response under the action of regular
waves. The computed critical stability number for initiation of armor movement was

compared with the measured stability number corresponding to the start of the damage



under irregular wave action to quantify the limitations of the regular wave approxima-
tion. The computed wave run-up, run-down, and reflection coefficients were shown to be
in qualitative agreement with available empirical formulas based on regular wave tests.
Kobayashi and Wurjanto (1989b) applied the developed numerical model to hypotheti-
cal permeable slopes corresponding to available impermeable slope tests. The computed
results with and without a permeable underlayer indicated that the permeability effects
would increase the hydraulic stability of armor units noticeably and decrease wave run-up
and reflection slightly. The computed results were qualitatively consistent with available
data although they were not extensive and limited to regular waves only.

Kobayashi, Wurjanto, and Cox (1990a) applied the developed numerical model to
compute the irregular wave motion on a rough permeable slope. The normally-incident
irregular wave train characterized by its spectral density at the toe of the slope was
generated numerically for six test runs. The computed critical stability number for
initiation of armor movement under the computed irregular wave motion was shown to
be in fair agreement with the measured stability number corresponding to the start of
the damage (Van der Meer 1988). The comparison of the computed armor stability
for the incident regular and irregular waves indicated that the armor stability would
be reduced appreciably and vary less along the slope under the irregular wave action.
On the other hand, the comparison between the computed reflected wave spectrum
and the specified incident wave spectrum indicated the reflection of Fourier components
with longer periods and the dissipation of Fourier components with shorter periods,
while the average reflection coefficient increased with the increase of the surf similarity
parameter. The computed waterline oscillations were examined using spectral and time
series analyses. The computed spectra of the waterline oscillations showed noticeable low-
frequency components, which increased with the decrease of the surf similarity parameter.
The statistical analysis of individual wave run-up heights indicated that the computed
run-up distribution followed the Rayleigh distribution fairly well for some of the six test
runs. The computed maximum wave run-up was in agreement with the empirical formula

based on irregular wave run-up tests.



Furthermore Kobayashi, Wurjanto, and Cox (1990b) analyzed the computed re-
sults for the six test runs to examine the critical incident wave profile associated with the
minimum rock stability for each run. The minimum rock stability computed for the runs
with dominant plunging waves on gentle slopes was caused by the large wave with the
maximum crest elevation during its up-rush on the slope. The minimum rock stability
computed for the runs with dominant surging waves on steeper slopes was caused by
the down-rushing water with high velocities resulted from a large zero-upcrossing wave
with a high crest followed by a deep trough. These computed results may eventually
allow one to quantify incident design wave conditions more specifically than the simple
approach based on the representative wave height and period. In addition, a simplified
model was proposed to predict the eroded area due to the movement and dislodgement of
rock units using the probability of armor movement computed by the numerical model.
This model was shown to be in qualitative agreement with the empirical formula for the
damage level proposed by Van der Meer (1988).

The numerical model based on the assumption of a thin permeable underlayer was
found to be inapplicable to three test runs conducted for a 1:3 rough permeable slope
with a thick permeable underlayer (Kobayashi, Cox, and Wurjanto 1991). The computed
results did not satisfy the time-averaged equation of mass conservation mainly because
the previous model did not account for water storage in the region landward of the

waterline on the slope.

1.2 Previous Work for Impermeable Slopes

Kobayashi and Wurjanto (1989a) developed a computer program called IBREAK,
which may be used for the design of rough or smooth impermeable coastal structures of
arbitrary geometry against normally-incident monochromatic or transient waves.
IBREAK had been extensively examined for regular waves. A summary of the previous
work related to IBREAK is given in Wurjanto and Kobayashi (1991). Attempts have been
made to simulate irregular waves on the slope of a coastal structure using IBREAK since

any incident wave train can be specified as input to IBREAK at the seaward boundary of



the computation domain. However, the irregular waterline oscillation on the slope was
found to cause numerical difficulties and stoppage during the computation of a sufficient
duration for a stationary random sea. The constant time step size At for the explicit finite
difference method used in IBREAK was reduced to overcome the numerical difficulties.
This increased the computation time considerably but did not always work.

Waurjanto and Kobayashi (1991) developed a computer program called RBREAK,
which is an improved version of IBREAK with an automated adjustment procedure. The
adjustment procedure reduces the time step size At for portions of the computation with
numerical difficulties. Since the portions with numerical difficulties are not known in ad-
vance, the time-marching computation needs to be reversed to an earlier time level before
the initiation of the current numerical difficulty and then resumed from the reversed time
level using a smaller value of At. To reduce the computation time, the value of At needs
to be increased after overcoming the current numerical difficulty. This automated ad-
justment procedure has been essential for making successful computations for incident
random waves of sufficient durations in an efficient manner. The subroutines required
for the spectral and time series analyses for random waves were reported separately by
Cox, Kobayashi, and Wurjanto (1991).

Kobayashi, Cox, and Wurjanto (1990) showed that RBREAK could predict the
time series and spectral characteristics of irregular wave reflection and run-up on a 1:3
rough impermeable slope. Kobayashi and Wurjanto (1992) showed that RBREAK could
also be used to predict shoreline oscillations on natural beaches, which are normally
dominated by low-frequency wave components (Guza and Thornton 1982, Holman and
Sallenger 1985). On the other hand, Wise, Kobayashi, and Wurjanto (1991) attempted
to predict the net cross-shore sediment transport in the surf and swash zones using
the depth-averaged velocities computed by RBREAK. Their attempt has indicated that
RBREAK will need to be expanded to account for the vertical variation of the horizontal

fluid velocity, if it is to be applied to predict the net cross-shore sediment transport.



1.3 Other Analytical and Numerical Models for Permeable Structures

This section summarizes existing analytical and numerical models for permeable
structures developed by other researchers so that the distinction of the present work from
those of other researchers can be seen in a perspective.

Most analytical models for wave interaction with a permeable structure assumed
a linear system forced by a simple harmonic wave motion from outside the structure to
analyze the simple harmonic wave motion inside the permeable structure (Sollitt and
Cross 1972, 1976; Kondo and Toma 1972; Madsen 1974; Madsen and White 1976; Mad-
sen, Shusang, and Hanson 1978; Madsen 1983; Scarlatos and Singh 1987; Dalrymple,
Losada, and Martin 1991). Massel and Butowski (1980) used a forcing in the form of
a wind wave spectrum, but assumed a linear system. Dalrymple, Losada, and Martin
(1991) considered obliquely-incident waves, while the others assumed normally-incident
waves. For the analysis of wave transmission through porous breakwaters, Madsen and
co-authors (1974, 1976, 1978) and Scarlatos and Singh (1987) adopted the long wave
assumption for the reason that severe design wave conditions for breakwaters normally
correspond to relatively long waves. Kondo and Toma (1972) and Madsen (1983) as-
sumed long waves as well, probably because the long wave assumption simplifies the
analysis considerably as demonstrated by Sollitt and Cross (1972, 1976) and Dalrymple,
Losada, and Martin (1991). Except for Madsen, Shusang, and Hanson (1978) who dealt
exclusively with trapezoidal breakwaters, the analytical solutions in the work mentioned
above were developed for rectangular structures. Trapezoidal structures were treated by
introducing a concept of an equivalent rectangular breakwater so that solutions devel-
oped for rectangular structures could be applied (Sollitt and Cross 1972, 1976; Madsen
and White 1976; Massel and Butowski 1980). Energy losses on the seaward slope of a
trapezoidal structure were taken into account in different ways. Sollitt and Cross (1972,
1976) considered energy loss due to wave breaking in an empirical manner. Madsen and
co-authors (1976, 1978) assumed no wave breaking but took into account energy loss due
to bottom friction.

There is no universally accepted formulation expressing the flow resistance inside



the permeable structures. However, most of available expressions have the following form
(e.g., Bear 1979):
0F = —p(a+b|v])v (1.1)

where p is the fluid density, 6F is the resistance force per unit volume, v is the dis-
charge velocity inside the permeable structure, @ and b are coefficients associated with
laminar and turbulent flow resistance, respectively. Eq. 1.1, which is also known as
the Forchheimer relation in honor of its originator (Scheidegger 1960), is based on the
widely accepted premise that laminar flow resistance follows the Darcy’s law, whereas
turbulent flow resistance varies approximately with the second power of velocity (Todd
1980). Hall (1992) compiled eleven different expressions for the coefficients a and b.
For example, Sollitt and Cross (1972, 1976) and Dalrymple, Losada, and Martin (1991)
used an eprI'eSSiOIl similar to Ward (1964). Madsen and co-authors (1974, 1976, 1978)
and Madsen (1983) utilized the expression introduced by Engelund (1953). Massel and
Butowski (1980) adopted the approach of Arbhabhirama and Dinoy (1973). In the ma-
jority of studies mentioned above, the Lorentz’ principle of equivalent work was applied
to linearize the resistance force expressed by Eq. 1.1 in order to derive a linear equation
of motion inside the permeable structure [e.g., Madsen (1983)]. Sollitt and Cross (1972,
1976), and Dalrymple, Losada, and Martin (1991) applied a potential flow approach and
presented their solutions in the form of eigenfunction expansions, whose leading term
corresponded to the long wave assumption. Massel and Butowski (1980) also used the
potential flow approach. Others assumed long waves in the first place and utilized various
analytical methods to arrive af their solutions.

A numerical solution to the problem of wave reflection and transmission at per-
meable breakwaters was given by Sulisz (1985) using a boundary element method. The
equation of motion was linear and forced by normally-incident simple harmonic waves.
Thanks to the use of the boundary element method, this model could handle any ver-
tically two-dimensional structure geometry. However, the model did not consider any

energy dissipation mechanism on the seaward side of an inclined structure.



Another class of numerical models for wave interaction with permeable structures
was developed by Hannoura and McCorquodale (1985), Barends and Holscher (1988),
and Holscher and Barends (1990). These models utilized a hybrid of finite difference (FD)
and finite element (FE) schemes. First, the water table elevation inside the permeable
structure was computed by a one-dimensional FD scheme. Second, an FE scheme was
then used to simulate the vertical flow field below the computed water table in the porous
medium. The numerical models required the measured pressure distribution along the
seaward side of the structure as a boundary condition. As a result, these models can not
be used to predict the flow field inside a permeable structure for given normally-incident
waves. This class of models dealt only with the interior processes inside permeable
structures. Any kind of the boundary pressure distribution can be imposed, unlike the
other models discussed in this section, which solved only the linear wave fields outside
and inside the permeable structure.

In the present work, a numerical model in the time domain is developed to solve
the flow fields inside and above a permeable slope for any incident wave train represented
by its surface elevation. Energy losses due to bottom friction and wave breaking above
the permeable slope are facilitated through the inclusion of a shear stress in the equation
of motion as will be described in Chapter 2. In perspective, the present work on wave
interaction with coastal structures may be seen as a milestone in the continuing efforts
to develop realistic numerical models of practical use starting from IBREAK (Kobayashi
and Wurjanto 1989a) and then RBREAK (Wurjanto and Kobayashi 1991). The wave hy-
drodynamics above the seaward slope of coastal structures have been extensively studied
using IBREAK and RBREAK as summarized in the preceding sections. An attempt is
made herein to simulate the nonlinear wave motion inside permeable coastal structures as
well. The permeability effects are considered to be important for highly porous coastal
structures. The present numerical model is the first model to simulate the nonlinear

interaction of the flow fields above and inside a thick permeable underlayer.



1.4 Background for Adopted Numerical Methods

Used in present numerical model are proven numerical methods in similar prob-
lems. No attempt is made to compare different numerical methods in solving the problem
at hand, although this may be done in a future work. Emphasis is placed on the appli-
cation of proven numerical methods to show the feasibility of simulating the nonlinear
wave interactions and gain an insight into the physical processes involved in the problem.
This is an important first step since the nonlinear interaction of breaking or non-breaking
waves with permeable slopes has never been computed previously.

The finite difference method introduced by Lax and Wendroff (1960) is adopted
in the present work to solve the flow field above the permeable slope. Basically, a
shock-capturing numerical method is needed to solve this flow field because of potential
development of steep fronts of breaking and broken waves on the permeable slope. A
recent review of numerical methods developed for flows with shocks was given by Moretti
(1987). The Lax-Wendroff method has been used in our previous numerical models
IBREAK and RBREAK because of its proven track record in solving problems involving
bores on beaches (Hibberd and Peregrine 1979, Packwood 1980 and 1983). Moreover,
the Lax-Wendroff method has a proven option to include numerical dissipation to damp
high frequency oscillations which tend to appear on the rear of computed steep fronts
(Richtmyer and Morton 1967).

The flow field inside the permeable slope, on the other hand, is solved using the
MacCormack method (MacCormack 1969) for several reasons. First, the Lax-Wendroff
method may not be applied easily because the Jacobian required in this method does
not exist as will be described in Section 4.4. Second, the MacCormack method may
be regarded as a simplified version of the Lax-Wendroff method without numerical dis-
sipation, where physical dissipation is dominant inside the permeable slope as will be
shown in Chapter 6. Third, the MacCormack method, besides being very popular in
computational aerodynamics (Roache 1982), is also a very efficient method for unsteady
open channel flow as shown by Fennema and Chaudhry (1986), who compared the Mac-

Cormack method against the Lambda method (Moretti 1979), Gabutti method (Gabutti
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1983), and Preissmann method (Cunge, Holley, and Verwey 1980). It should be men-
tioned that Fennema and Chaudhry (1986) selected the first three methods, which are
second order accurate, explicit finite difference methods, on the basis of their simplic-
ity, robustness, and capability of capturing shocks. While the three methods performed
comparably in those criteria, the MacCormack method fared the best in terms of CPU
usage. The implicit Preissmann method was included to demonstrate the efficiency of
explicit methods. The MacCormack method has been selected as a first choice in this

study in the light of the findings of Fennema and Chaudhry (1986).

1.5 Objectives and Outline of the Present Work

The present work examines the time-dependent, one-dimensional flow fields above
and inside a rough permeable slope. The rough permeable slope consists of a permeable
underlayer resting on an impermeable slope and an armor layer covering the permeable
underlayer. The upper boundary of the permeable underlayer separates the flow field
above the rough slope and the flow field inside the permeable underlayer. The computer
program called PBREAK, described in detail by Wurjanto and Kobayashi (1992), sim-
ulates this two-flow system. Hereafter, this user’s manual by Wurjanto and Kobayashi
(1992) will be referred to as WK 92 and the numerical model described in WK 92 will
be referred to as PBREAK for brevity,

The objectives of the present work are as follows:

1. To provide the derivations of the approximate governing equations and finite dif-

ference methods used in PBREAK.

2. To evaluate the performance of PBREAK by comparing it with available experi-

mental results.

3. To examine the computed results to elucidate the hydrodynamic processes involved

in the interaction of irregular waves with the highly permeable slope.
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4. To compare the computed results using PBREAK with those for the corresponding
impermeable slope in order to quantify the differences caused solely by the presence

of the thick permeable underlayer.

WK 92 has presented the final results of the approximate governing equations for
the two-flow system and the numerical methods of Lax and Wendroff (1960) and Mac-
Cormack (1969) without proof since it is a user’s manual. The seaward and landward
boundary conditions have been explained in detail, and the computational aspects in-
cluding examples have been discussed extensively. In short, WK 92 provides information
required to apply and modify PBREAK without knowing the detailed background of the
governing equations and numerical methods.

The derivation of the governing equations for the flow over the rough slope and
the flow inside the permeable underlayer starts in Chapter 2 where the two-dimensional
continuity and momentum equations are discussed and simplified. The simplified two-
dimensional equations obtained in Chapter 2 are further reduced to one-dimension in
Chapter 3. The basic assumptions and approximations involved in the numerical model
PBREAK are stated in these two chapters.

Chapter 4 derives the finite difference equations on the basis of the dissipative Lax-
Wendroff method (Lax and Wendroff 1960) to solve the flow over the rough slope. The
MacCormack method (MacCormack 1969) used to solve the finite difference equations
for the flow inside the permeable underlayer is discussed in this chapter in relation with
the Lax-Wendroff method.

Chapter 5 derives the one-dimensional energy equation for each flow field from
the corresponding continuity and approximate momentum equations to estimate energy
fluxes and dissipation rates.

The aspects of the numerical model PBREAK explained sufficiently in WK 92 are
not repeated herein. These include the boundary conditions, numerical stability, and
hydraulic stability of armor units. These aspects of the numerical model are explained

only to the degree needed for interpreting the computed results.
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The performance of PBREAK is evaluated in Chapter 6 by comparing it with the
three laboratory test runs for irregular wave reflection and run-up on a rough permeable
slope conducted by Cox (1989). The computed results are also examined to gain a better
physical insight into the hydrodynamic processes.

Chapter 7 examines how permeable and impermeable slopes interact with iden-
tical incident irregular wave trains where use is made of the numerical model RBREAK
developed by Wurjanto and Kobayashi (1991) to simulate the flow on the corresponding
impermeable slope. The permeable and impermeable slopes aresubjected to the identi-
cal incident irregular wave trains so that the differences on the computed results can be

attributed solely to the presence of the thick permeable underlayer.



Chapter 2

APPROXIMATE TWO-DIMENSIONAL EQUATIONS

The physical analysis domain is depicted in Figure 2.1 where normally-incident
waves interact with a thick layer of homogeneous permeable materials placed on top of
an impermeable slope and protected by a primary cover layer. The seaward end of the
analysis domain is at the location where the upper and lower boundaries of the permeable
underlayer intersect and the water depth below the still water level (SWL) is dj. The

symbols shown in Figure 2.1 are explained as they appear in the following analysis.

2.1 Flow over Rough Slope
Approximate governing equations for the flow over the rough slope due to normal-
ly-incident waves are derived from the two-dimensional continuity and Reynolds equa-

tions [e.g., Panton (1984)):

o',

Rl [ 2.1

52! 0 (2.1)
oul , oul 1 ap/ 1 97 e
o tYige, = Tpod YT o5 S

in which the prime indicates the physical variables and use is made of the summation
convention with respect to repeated indices. The symbols involved in Eqs. 2.1 and 2.2

are explained in the following:

t' = time
z} = horizontal coordinate taken to be positive landward
z, = vertical coordinate taken to be positive upward with 24=0 at SWL

uy = horizontal velocity

13
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AXx;

incident
waves

Figure 2.1: Definition sketch for flow over rough slope and inside permeable underlayer.

uh = vertical velocity

p = fluid density, which is assumed constant
p' = pressure
g = gravitational acceleration

bi2 = Kronecker delta

7. = sum of turbulent and viscous stresses

The following dimensionless variables and parameters are introduced to normalize

Egs. 2.1 and 2.2:
t' z} ) it uj _ _ T'uf

t=,17, ) 1‘1=T,— 77 (i $2=? o W= 77: (A Ug = 7L

/ !l
P TTJ: ' [ 9

where H' and T are the characteristic wave height and period used for the normalization.

(2.3) |

It is obvious from Eq. 2.3 that the length scales used in this analysis are

Ly = T'\JgH' = horizontal length scale (2.5)
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Ly, = H' = vertical length scale (2.6)

The following explanation is intended to clarify the choice of the length scales given in
Eqgs. 2.5 and 2.6. Shallow water wave theories generally involve one horizontal length
scale, A, and two vertical length scales: A5 for wave height and A3 for water depth. The
three length scales are normally reduced to the following two dimensionless parameters:
'y representing the ratio -}'3, and I'; representing the ratio l)% [e.g., Mei (1983)]. In the
present work, it is assumed that the water depth is on the same order as the characteristic
wave height:

Z=00) (27)
where the notation O (1) means the order of unity. This assumption is normally sat-
isfied for breakwaters and revetments located in relatively shallow water during severe
design wave conditions. This assumption leads to the single vertical length scale which is
taken to be the characteristic wave height H' based on the premise that wave steepness
is important to be represented by the resulting single dimensionless parameter. The
parameter o in Eq. 2.4 represents the ratio of the horizontal length scale L] to the
vertical length scale L. Since L) equals H', L| may be regarded as a characteristic
wavelength in shallow water and ¢ is then also a measure of wave steepness. For the
uniform slope inclination ', the parameter ¢ is directly related to the surf similarity
parameter £ = ﬁtanﬁ’ (Battjes 1974) which has been used extensively to describe
gross wave characteristics on uniform slopes.

For waves in shallow water, it may be assumed that the dimensionless variables
t, z1, 3, U1, Uz, and p are on the order of unity and the normalized stresses 7;; are on
the order of unity or less. The present analysis will be limited to the case where the

following conditions are satisfied:
02> 1 and (cotf)?>1 - (2.8)

with tan 6 being the characteristic slope in the analysis domain. The condition ¢? > 1
in Eq. 2.8 may be appropriate for waves in shallow water although this condition may not

be satisfied locally at the steep front of a breaking wave where the local horizontal length
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scale may become as small as the vertical length scale. The condition (cot#)? > 1 in
Eq. 2.8 is required since the horizontal and vertical length scales for a steep slope may be
imposed by the slope geometry and cot 8 may express the ratio between the horizontal
and vertical length scales.

Substituting Eqs. 2.3 and 2.4 into Eqgs. 2.1 and 2.2 yields

£y

= 2
ox; 0 (2.8)
Ouy ow 0 Tn) It :
ot 4 dz; T 9z, ( o + dxy (2:10)
1 [ Ouy Oy 0112 _ d ( T22 )
o? (W T % dz; 8:1:1) T~ T P o i )
Adding the following terms, which are zero,
9 (2’32) _0 (123)
dzy \ o oz, \ o
Eq. 2.10 is rearranged as follows:
Oy w0 T22 9 1l & o
755*%"%3 ax—J = B ( = ?) ot T + v Bay (11 = T22) (2.12)

Furthermore, assuming that the stress difference (717 — 732) is on the order of g-. or less,
the last term of Eq. 2.12 may be neglected under the assumption o? > 1 in Eq. 2.8.
Eq. 2.12 may thus be simplified as

6‘&1 3‘!!.1 6 ( il @) + 8']"‘21 (213)

at b r 6@,— 311:1 a 3$2
Also under the assumption 0% > 1 in Eq. 2.8, the normalized vertical momentum

equation, Eq. 2.11, may be simplified by neglecting the terms on its left hand side:

3 T22 E _ ‘
- 4m) o

The symbol #’ in Figure 2.1 represents the physical free surface elevation above

SWL. Its normalized counterpart, 7, is given by

n=— (2.15)
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where H' is the characteristic wave height. The dynamic boundary conditions at the
free surface z; = 7) are taken as zero normal and tangential stresses at the free surface,
which result in

T22

p—?=0 i Ta1=0 at zp=n (2.16)

as explained in the following. Figure 2.2 shows the surface stresses acting on an infinites-
imal fluid element bounded on one side by the free surface 2, = n’. There is no stress at

the free surface side because of the assumed dynamic boundary conditions thereat. For

/ /
dz) — 0 and gi — (%?,—, the vertical and horizontal force balances are expressed as
1 1
3 !
N 6—; at ol =1 (2.17)
3 '
(_p" + Til) _"? —_— T'.;l a,t 9_:;2 — ‘.'7’ (2.18)

!
oz

Substituting Eqs. 2.3 and 2.4 into Eq. 2.17 yields

T22 1 on
= T SR e P Cem— t S —
p+ = =2 T12 21 at Ty =7
Neglect term of order "0-}5 |
-p+ _7;2 2= at zo=n (2_19)

Substituting Eqgs. 2.3, 2.4, and 2.19 into Eq. 2.18 yields

1 on 1

) (‘-"11—7'22)5}: =L at  x3 =1
1
Neglect terms of order = |
1 = 0 at zy =17 (2.20)

Eqs 2.19 and 2.20 are identical to the dynamic boundary conditions given in Eq. 2.16.
Integrating Eq. 2.14 with respect to z; and employing Eq. 2.16, Eq. 2.14 yields

p-—-n—xg+? (2.21)

Eq. 2.21 will be substituted into Eq. 2.13 in Section 3.2.
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Figure 2.2: Surface stresses acting on fluid element near free surface.

2.2 Flow inside Permeable Underlayer

The major question in analyzing the flow inside the permeable underlayer is how
to express the flow resistance. Since there are so many formulas in the literature as
discussed in Section 1.3, any formula may be adopted provided empirical coefficients
have been calibrated for similar problems.

The flow resistance formula of Engelund (1953) used by Madsen and White (1976)
is particularly appealing since Madsen and White (1976) obtained a good agreement be-
tween their analytical model and the experiment on regular wave transmission conducted
by Sollitt and Cross (1972) with little calibration of empirical coefficients. This flow re-
sistance formula was also adopted by Madsen (1983) who compared his analytical model
with the numerical model developed by Abbott, McCowan, and Warren (1981). It may
be of interest to compare various resistance formulas but the empirical coefficients in-
volved in these formulas may need to be calibrated for specific problems. The flow
resistance formula of Engelund (1953) is adopted herein because it has been applied suc-
cessfully to the closely related problems of wave reflection and transmission at permeable
breakwaters.

Approximate governing equations for the flow inside the permeable underlayer
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may be derived from the the following two-dimensional continuity and momentum equa-

tions (Madsen and White 1976):

95 _ b ' 2.22
- (2:22)
1 av: 1 .f av: =k 1 8?’ ! ! | / 0
with
. \3
of e Bail=tg) W (2.24)
(n,, )
Bo (1 — ny)
g = —=—Fr (2.25)
ny d,
in which

v} = horizontal discharge velocity

vh = vertical discharge velocity

n, = porosity of the permeable underlayer

o' = coefficient expressing the laminar flow resistance

3’ = coeflicient expressing the turbulent flow resistance

v = kinematic viscosity of the fluid

d!, = characteristic stone diameter inside the permeable underlayer

o, = empirical constant in the range 780 < a, < 1500

3, = empirical constant in the range 1.8 < 3, < 3.6

It is noted that Madsen and White (1976) included the added mass terms in
Eq. 2.23 but eventually neglected them since the added mass coefficients are not well
established. The seepage velocity concept used in the standard analyses for flow in porous
media [e.g., Bear (1979)] is adopted in the following. The porosity and flow-resistance
coefficients are assumed to be uniform throughout the porous medium. The horizontal
and vertical seepage velocities of the pore fluid are given by % and %, respectively.

It is noted that the porosity n, used herein is actually the effective porosity excluding
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the part of the voids of the porous medium where molecular and surface-tension forces

hold fluid (Marino and Luthin 1982). To normalize Eqs. 2.22 and 2.23, the following

dimensionless variables are introduced:

. ; vzzT’vE ;  Pg = NpPy
peVgH' poH’ L

The variables v; and v, are assumed to be on the order of unity. The dimensionless

1

(2.26)

/ !
parameter p, indicates the order of magnitude of E}- and 1_? Accordingly, the dimen-
1

2

' N . vy /n vh/n v}

sionless parameter p, indicates the order of magnitude of ( 1%{, ) and ( 21, ) where ._,—l:;
1 2

!
and % are the seepage velocities. The parameter p, will be determined in the following
analysis.

Substituting Eq. 2.26 together with Eq. 2.3 into Eq. 2.22 yields

9%
ij

The following equation is obtained by substituting Eq. 2.26 together with Egs. 2.3

=0 (2.27)

and 2.4 into the horizontal component of Eq. 2.23:

81.’1 2 0vy Bp
Pu g TPubi dz; 0z
a,(1-n,)* v 2

1
— 2.
ﬁo Pu d,"p W + ?"'l + 0.3 le
Bo(l—mny) T'VGH ,

2.28
n, dfp Py U1 ( )
To simplify the expression of Eq. 2.28, a new parameter u is defined as
2
_— a, (1 —mny,) v (2.29)

Bopu  dfJgH'

whose significance will be discussed at the end of this section. Since vy and v, are assumed
to be on the order of unity, under the assumption % > 1, the following approximation
may be made:
(uf + ﬁyg) ~ v} (2.30)
As a result, Eq. 2.28 may be rewritten as
dny dvy dop

— 2 2 — T — —
p‘-‘-& 313 +pu UJ 39:3 63:1 (p.+[1?1|)

Bo(l—mnp) T'VgH' , .
n d! Pu 1

P

(2.31)
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As long as p, and p are on the order of unity or less, the term 5‘?:1% may be
assumed to be on the same order as the term containing (|v;| v) in Eq. 2.31. Under this
assumption, the parameter p, may be taken as

ny dy, .
_ . 2.3
i \/ﬁotl —) TGl "

The normalized horizontal momentum equation, Eq. 2.31, may then be expressed as

%,.'_ 2v-__.
Puge T Pu Gy,

8‘01 Bp

S g

(1 + |v1|) v (2.33)

Substituting Eq. 2.26 together with Eqgs. 2.3, 2.4, 2.29, and 2.32 into the vertical
component of Eq. 2.23 yields

1 vy 5, O\ _ 0 1 \/2—1—2 -
;(Puﬁ-+i’uv36—$j)—*5x—2{}?+xz)—§ pt ol + —03 | v (2.34)

For the case of 0 > 1, Eq. 2.34 may be simplified by neglecting the terms on the

order of ;12-

a "
— xzy) =10 2.35
632 (p + 2) ( )

Eq. 2.35 is integrated with respect to z; to get an explicit expression for the
pressure p under two distinct conditions. First, for the region inside the permeable

underlayer where the water table is exposed to air, the dynamic boundary condition at

the water table located at z; = 1 may be taken as
p=0 at xy =7 (2.36)

Integrating Eq. 2.35 with respect to z; and employing Eq. 2.36 yields the hydrostatic

pressure distribution
pP=1n—22 (2.37)

Second, for the region inside the permeable underlayer situated under the flow over the
rough slope, the pressure at the interface located at z, = z, between the flow fields over

the rough slope and inside the permeable underlayer needs to be matched. The pressure
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from the flow over the rough slope is given by Eq. 2.21, which at the interface z4 = z,
gives

T
=9—-2+ % at ®p =2 (2.38)

where 7 is the normalized free surface elevation above SWL. Assuming that the value
of I{"},z at x3 = 2 is negligible, the pressure governed by Eq. 2.35 inside the permeable
underlayer situated under the flow over the rough slope may also be expressed by Eq. 2.37.
Thus, Eq. 2.37 may be applied to the flow inside the permeable underlayer whether 7 is
the normalized water table or free surface elevation. .

Finally, the significance of the parameter p defined by Eq. 2.29 can be seen by
evaluating the ratio of the term expressing the laminar flow resistance to the term ex-
pressing the turbulence flow resistance in Eq. 2.23 as shown below:

!

o'v) _ /—]—1
ﬁ" ' Tk, ﬁ’ ( i i
AV

- 3 3 df -1
st e (e
p

-1
a (1 -n,)° n v 1
- =l ——( i+ )

-1
= #'( v12+;”22)
| Use Eq. 2.30
a'v! i
2 o () (239)
B} 'qu

Since vy is assumed to be on the order of unity, the parameter p expresses the order of

magnitude of the laminar flow resistance as compared to the turbulent flow resistance.



Chapter 3

APPROXIMATE ONE-DIMENSIONAL EQUATIONS

3.1 Introduction

Approximate one-dimensional governing equations will be derived for the analysis
domain depicted in Figure 3.1, which shows normalized structure geometry and variables
in contrast to the physical definition sketch in Figure 2.1. The normalized variables shown
in Figure 3.1 are explained in the following. The normalized coordinate system used
hereafter is denoted by (z,z) with @ = 2; and z = z3. The toe of the slope is located at
2 = 0 where d; is the normalized water depth below SWL at the toe. The upper and lower
boundaries of the permeable underlayer are located at z = 2z, and 2z = z,, respectively,
where z, and z, are given functions of . The impermeable szlope constitutes the lower
boundary at z = z,. The primary cover layer on top of the permeable underlayer may be
treated separately as surface roughness (Madsen and White 1976). The free surface and
the water table inside the permeable underlayer, denoted by 7 in Figure 3.1, are assumed
to be continuous at the moving waterline situated at z = z, where the instantaneous
water depth, h = (n— z), above the rough slope is zero. The thickness of the permeable
underlayer in the region 0 < z < z, is given by h, = (2, — z,), while the depth below
the water table in the region z, < # < z,, is expressed as h, = (7 — z,) where h, = 0 at

& = Z,. Since n varies with ¢ and z, s and z,, are unknown functions of ¢.

3.2 Flow over Rough Slope

Approximate one-dimensional governing equations for the flow over the rough
slope are derived from the two-dimensional continuity equation given by Eq. 2.9, the
approximate horizontal momentum equation given by Eq. 2.13, and the approximate

vertical momentum equation given by Eq. 2.21.

23
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incident
waves

Figure 3.1: One-dimensional model for flow over rough slope and inside permeable

underlayer.

Substitution of Eq. 2.21 into Eq. 2.13 yields
% 8u1 31;1 6?? Brz,,

3 Mt T et 5.
The term (ul%l - Hg%%_") in Eq. 3.1 can be manipulated as follows:

3‘&1 8u1 _ 6u% 6‘u1 6(’:‘1,111.2) 311.2
WH B T "mtTe By
_ Bu% 3(1&11&2) (3u1 aug

T Oz i 0z . dz T 3::)

=0 by Eq. 2.9

(9_1,&%" 8(1::,&2)
dz 0z

Eq. 3.1 then becomes

% 3_’0:% O uruz) - _@ 0Tz
ot Jx 0z Oz + 0z

(3.1)

(3.2)

The physical free surface of the flow over the rough slope may be expressed as

S’(:‘L‘I, zr't!) - z." 550 T}’($’, t.r) =0

(3.3)
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The kinematic boundary condition at the free surface requiring that the fluid particle at

the free surface stays at the free surface is written as

D8'(a' 2 8)

Dt
4
o’ o’
—W—u;%—}-u; = 0 st d=y
Normalized using Eq. 2.3 |
0 0
~-a—2—-ula—z+ug = 0 at z=n (34)

At the interface located at z’ = z| between the flow over the rough slope and the
b g p

flow inside the permeable underlayer, the volume flux is expressed as

dz,

uy d—;’; —uh = q at 7 =2 (3.5)
where g} is the volume influx per unit horizontal area into the permeable underlayer which
is taken to be positive downward as shown in its normalized form, g, in Figure 3.1. In

this analysis, ¢ is normalized as

T q;
Eq. 3.5 can then be expressed in the following normalized form:
dz
Uy L 8 Uy = Pab at z=2 (3.7)

dz

where use is made of Eq. 2.3 to normalize the left hand side of Eq. 3.5. The normalized
volume influx ¢, in Eq. 3.7 is unknown and needs to be obtained by analyzing the flow
inside the permeable underlayer.

The one-dimensional continuity equation for the flow over the rough slope is ob-
tained by integrating Eq. 2.9 with respect to z from 2=z, to z=7 and applying Leibniz

rule [e.g., Greenberg (1988)] and the boundary conditions expressed by Eqs. 3.4 and 3.7.
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aul 6u2 _
LBty e =
Leibniz rule is used |
a [m an dz
5= / :, wdz =[],y oo+ [ilims, o+ [M2lzy = [U2]y, =0
I
on a [n dzy _
[—u1‘a‘;+u2:|z=n+'8;‘/zb uldz + [U]E—ug]z:zb =10
Egs. 3.4 and 3.7 are used |}
L R (3.8)
ot " oz 1B = ’

where m is the normalized volume flux per unit width and defined as

n
m=f uydz (3.9)
2p

Closely related to the normalized volume flux m is the normalized depth-averaged

horizontal velocity u defined as
m

where h is the instantaneous water depth as shown in Figure 3.1.

The one-dimensional horizontal momentum equation for the flow over the rough
slope is obtained by integrating Eq. 3.2 with respect to z from z = 2, to 2 = n, applying
the appropriate boundary conditions, and imposing assumptions to be discussed as the

derivation proceeds in the following.

] But n(‘:;uld +/ﬂ 6(u1u2)d ”'_f Bnd f aT‘”’d (3.11)
Iz L o b

W

B C D B

The five integrals in Eq. 3.11 are evaluated one at a time for clarity. The term A

in Eq. 3.11 is evaluated using Leibniz rule

K. © P n 0z _ 3 n .
-/;b af dz Bt Thdz—' [ul];?,:r; It + [u ]z:zb dt e [ I]z =n B¢ (312)
=0

where use is made of Eq. 3.9.
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The term B in Eq. 3.11 is evaluated using Leibniz rule
n Qu? d (7 n dz
14 - _/ 205 — [q® ol ) 2
/zb 8:8 # 33} 2 thez [ul] z=n 63: £2 [ul]z:zb dm

INO BRI

b

1 Qui

% 0%

7z Cnmu =[] _ S+ (] _ (31

z=n 02

I

where use is made of Eq. 3.10 and C,, is the momentum correction coefficient defined as

2
B n(ﬁ> dz (3.14)
A

u

The term C in Eq. 3.11 reduces to

7 8
L %dz = [wua],, — [m1ug],—,, (3.15)

The term D in Eq. 3.11 is rewritten using h = (n — 2z;)

O o L (@ %)
_/,baxdz - _hax__h 3$+dx
Y
non, a (h* "y
_/% oz = - (7) —8h (3.16)

where 6 is the normalized gradient of the interface located at z = 2z, between the flow

over the rough slope and the flow inside the permeable underlayer, and is given by

physical =0
‘ -~ e —
dz H! dz' H' da!
4
dz dz
6 = d—; =0 (3.17)

For a uniform slope, @ given by Eq. 3.17 is proportional to the surf similarity parameter,

£=—L.
Vor
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The term E in Eq. 3.11 is evaluated as follows:

m BTZI
2p _52_-"_dz = [T"’”Jz=n - [T’"‘"’]Zﬂb
4
787 -
A LA -

where the dynamic boundary condition 7,,=0 at the free surface z=n given in Eq. 2.16
is used, and 73 is the normalized bottom friction, 7., at z=z;,, which has been expressed
as

1
B=50 I ulu (3.19)

where the constant bottom friction factor f’ has been calibrated for rough impermeable
slopes (Kobayashi, Otta, and Roy 1987; Kobayashi and Greenwald 1988). This friction
factor f’ represents the roughness effect of the primary cover layer on the flow.
Substitution of Eqs. 3.12, 3.13, 3.15, 3.16, and 3.18 into Eq. 3.11 yields the one-
dimensional z-momentum equation which can be simplified as follows:
adm 0

Apply Eq. 3.4 here

P =

7))
[‘!h (- T U1 e + ug - +
Apply Eq. 3.7 here

T dz ) a [h?
I
Om 0 m?  h? L, .
5 T (C‘m y + ?) + 0h+ §of lulu+pg [w1),—., @ =0 (3.20)

The normalized horizontal fluid velocity u; at 2z = 2z in Eq. 3.20 needs a special
treatment, although the physical horizontal fluid velocity should be continuous at z=2z,.
Both flow fields over the rough slope and inside the permeable underlayer exert influence
at their interface located at z = z,. An impartial symbol u; is used hereafter to denote

the normalized horizontal fluid velocity at z = z,. For the one-dimensional model with
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the two flow fields which will eventually be derived in this chapter, u; may need to be

expressed as (Kobayashi and Wurjanto 1990)

u for ¢, > 0
Up = (3.21)

Pully for g, < 0
which implies that u, is determined by the vertically-averaged velocity of the flow above
the rough slope for the case of influx (¢, > 0) and the flow inside the permeable underlayer
for the case of outflux (g, < 0). The normalized velocity u, in Eq. 3.21 is related to its

physical counterpart by

'l
W

up = VoIl (3.22)
The velocity u, in Eq. 3.21 will be explained in Section 3.3. Replacing [u1],_,, by us in
Eq. 3.20 gives
e, 8 (o 0 1 Bhd Sl il e =D (3.23)
ot "oz \ ™ h 2 2 Pa™ ®= '

The coefficient ', defined by Eq. 3.14 was discussed in Kobayashi and Wurjanto

(1992) where the following approximation was made:
O 2 1 (3.24)

which may result in errors on the order of 10%. This 10% estimate is explained again
for clarity. Figure 3.2 depicts the vertical distribution of the horizontal fluid velocity u,
assumed by Svendsen and Madsen (1984) for which uy=u, at z=7n and uy varies in the
turbulent region (1 — b) < z < 7 with b being its thickness, while u;=u, in the region
2z, < z < (p—b) below the turbulent region. Figure 3.3 shows the computed values of
the momentum correction coefficient C,, as a function of b/h and us/u,. These values
may be compared with the typical range of 1 < (', < 1.06 for turbulent flow in regular
open channels (Henderson 1966). Since h, b, u,, and u, vary with time and location, it is
difficult to estimate the typical range of C), for the present problem even for the assumed
vertical velocity distribution. Kobayashi and Wurjanto (1992) tentatively suggested that

the assumption C), ~ 1 as stated in Eq. 3.24 might result in errors on the order of 10%.
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Figure 3.2: Vertical distribution of horizontal fluid velocity u; assumed by Svendsen
and Madsen (1984).
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b/h

Figure 3.3: Momentum correction coefficient C,, computed as a function of b/h and
us/u, for vertical distribution of horizontal fluid velocity u; assumed by
Svendsen and Madsen (1984).



- 31

The approximation expressed by Eq. 3.24 is adopted here since the vertical velocity
variation is not computed in the one-dimensional model. Hence, Eq. 3.23 is approximated

by
%—?+% (%2+%2) +9h+%af’lulu+pq u @ =0 (3.25)

3.3 Flow inside Permeable Underlayer without Free Surface

Approximate one-dimensional governing equations for the flow inside the perme-
able underlayer in the region 0 < z < z, are derived from the two-dimensional continuity
equation given by Eq. 2.27, the approximate horizontal momentum equation given by
Eq. 2.33, and the approximate vertical momentum equation given by Eq. 2.37.

Substitution of Eq. 2.37 into Eq. 2.33 yields

o g  Om g Ovp _ dp
Pu W +pu " 8.’1? +p‘u v az - 62: ()u’ + lvll)vl (326)

Similar to the rearrangement from Eq. 3.1 to Eq. 3.2 to facilitate the use of Leibniz
rule, Eq. 3.26 is rewritten as follows:

Ovi | 5 0vf |, 0(viva) _ O .
Pu _a_t +pu ax + Dy dz - dz (nu‘ + |'U;|)U] (3‘2?)

where use is made of Eq. 2.27 in the process.

Since the volume influx into the permeable underlayer, ¢;, must be continuous at
the interface located at 2’ = z; between the flow over the rough slope and the flow inside
the permeable underlayer, the flux equation for the permeable underlayer in the region
0 < 2’ < 2, corresponding to Eq. 3.7 is given as

/
dzb ! ! !

‘U; @ Uy = q}; at z = Zp
Normalized using |} Egs. 2.3, 2.26, and 3.6
dz
" ey v2 b al z=2p ( )

The kinematic boundary condition at the lower boundary of the permeable un-
derlayer located at z' = z, states that the fluid particle at the assumed impermeable

boundary stays there. Introducing the function defined as

B'(z',#) =2 - 2(z") =0 (3.29)



32

which describes the physical impermeable boundary, the kinematic boundary condition

at the impermeable boundary requires

DB'(z',2")
—0or -0
4
dB" v 0B v} dB
=i ol s = 0 at
ot "~ n, 0z' ' n, 02
4
dz!
—1)1‘&;?; o o U; = at
Normalized using | Egs. 2.3 and 2.26
—v b +v3 = 0 at
Yz g 5

(3.30)

The one-dimensional continuity equation for the flow inside the permeable under-

layer in the region 0 < z < z, is obtained by integrating Eq. 2.27 with respect to z from

Zz = zp to z = 2, and applying the boundary conditions expressed by Eqs. 3.28 and 3.30.

% Juy

> 0T

p

Zb 31)2
p 0%

Leibniz rule is used

2 d
/ vidz — [vl]z=zb 'chi + [vllz:zp

P

b d d
/ ndz — [Utd_% - 1:2] + [v £
Zp €T =z

dz + dz

d

Oz

dz,
P

d

oz

[Uz]zzzb
1—"}3 — V2

dx ] z=zp
Egs. 3.28 and 3.30 are used
1 dm,

Pu Oz Qb

dmy,

=

=

[v2]z=zp = 0

(3.31)
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where m,, is the normalized discharge per unit width in the permeable underlayer defined

Z
pu/ bvldz for 0<z<L=z,
g = ZZ (3.32)
Pu/ v dz for 2z, 20%5%y

P

where the flow inside the permeable underlayer in the region z, < & < z, will be
described in Section 3.4. The relation between the normalized discharge m, and its
physical counterpart m, is given by

m.f

= 3,
mp VL (3.33)

with the physical discharge mj, expressed as

%
f vidZ for 0<a' <zl
my, = : : (3.34)
n
/ vidZ for gzl <z’ <zl
zf

P

Similar to the normalized depth-averaged horizontal vélocity u given by Eq. 3.10

for the flow over the rough slope, the normalized vertically-averaged horizontal discharge
velocity u, for the flow inside the permeable underlayer is defined as

il

= 3.35
S b (3.35)

Up

where hy, = (25 — 2p) for 0 < z < z; and hy, = (9 — 2p) for z, < z < z,, as shown in
Figure 3.1.

The one-dimensional horizontal momentum equation for the flow inside the per-
meable underlayer in the region 0 < z < z, is obtained by integrating Eq. 3.27 with
respect to z from 2z = 2, to z = 23, employing the appropriate boundary conditions, and

adopting additional assumptions along the way.



% Qv “g /‘b vt
Pu | Y —dz+ p, i 6:cdz

2p P

Use
Eq. 3.32 =0
P R —~—
o [ 0z
Pu a / U]dz —Pu ["l'Jl]z=::;J W
) dzp
2 R i ozl
+ Py 5 Oz dw Py [vllz=zb dz
+ pu [vlv'Z]z:zb - pu [U]T}Z]z_zp
om, 50
5 +p "3z dz
Apply Eq. 3.30 here
- = ~
+ik [ (n G -]
om

d
p , 29
ot +puaz-/zpvdz Pu Up qp
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+

-+

+

Pu (1]

Pﬁ [t"f ] s=p @b

/ Ul‘t’z

f"° 3’?d~-/ G o [ mdte

=0
B2
=2 5y
dzp,

Use
Eq. 3.32
——
2p 2y
~h, ? — 1 j vydz —/ |v1] v1d2
T zp 2p

Replace Apply Eq. 3.28 here

by u, .
,—/—\ d
Pu [puvl]z=zb [ s ey d + vzjl
z=zb
Use
Eq. 3.17
=
h 2By, OB
P 0z ¢ dz
m %b
— p_j -—/zp [v1| v1dz
ah

" % +/ o1 v1dz = 0 (3.36)
u Zp

It is noted that the replacement of [p,v1],_,, by us in the process of deriving Eq. 3.36

is in concordance with the matching of the physical horizontal fluid velocity at z=2z; as

explained in relation to Eq. 3.21.
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To simplify Eq. 3.36, the following assumptions are made:

hl_ b(?lydz:l for 0<z<z,
p

z up a
P
e (3.37)
v s <z<
E-/zp (-up) dz ~ 1 for 2:f2< 2u
2 F
hl_[b(lvl'”l)dzzl for 0<z< 2,
PJz, \|Up|Up
(3.38)

where the approximations for z < z, will be used in Section 3.4. The above
assumptions for the flow inside the permeable underlayer are similar to the assumption
Cyn =~ 1 expressed by Eq. 3.24 for the flow over the rough slope. Applying Eqgs. 3.37 and

3.38 to Eq. 3.36 produces

Use
Eq. 3.35 qu?s3?35
0mp+£(zﬂzh“2)“mm%+h O o Ohtn 2 Rl =0
9t T 9z \Purp " Oa R TR
4
om, 0 [m dh my, Imp| | :
5 +5;(’E;)_puubqb+hp_3'; 4 thi-;): ﬂ--l'm =0 (3.39)

3.4 Flow inside Permeable Underlayer with Free Surface

Approximate one-dimensional governing equations for the flow inside the perme-
able underlayer in the region z, < z < z,, are derived from the two-dimensional conti-
nuity equation given by Eq. 2.27 and the approximate horizontal momentum equation
given by Eq. 3.27.

The kinematic boundary condition at the water table is derived in a manner

similar to Eq. 3.4 at the free surface of the flow over the rough slope.

o _vion v

ot T ny 0z " my
Normalized using |} Eqgs. 2.3 and 2.26

on on B - '
—5? = pu'”l% +puv2 = 0 at z=7 (3.40)

0 at 2 =17
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The one-dimensional continuity equation for the flow inside the permeable under-
layer in the region z, < z < z,, is obtained by integrating Eq. 2.27 with respect to z

from 2z = 2, to z = 1 and applying the boundary conditions expressed by Eqgs. 3.30 and

3.40.
i) 6‘01 d'vg _
" —dz ., D% —dz = 0
Leibniz rule is used |}
a [ an dz,
a lb Ll dz — [Ullz—q a + [vl]z_zp dx e [v'Z]z-—-n = [02]::::,, =0
Y
Use
Eq. 3.32
e —
a (7 an dzp
% LP vdz — [‘ula - vz]z:n + [1;1;!—5 - ng:zp = 0

Egs. 3.30 and 3.40 are used |}
Oon | Omy
ot Oz

(3.41)

The one-dimensional horizontal momentum equation for the flow inside the per-
meable underlayer in the region z, < z < z,, is obtained by integrating Eq. 3.27 with
respect to z from z = 2, to z = n and applying the boundary conditions and assumptions

in a manner similar to the derivation of Eq. 3.39.

61.?1 3?}1 2 n 8(1}11}2)
6td+ / T2t p“/zp 0z 4

10 n
= “./z,, 6—:dz—fzp (1 + |v1]) mdz
3
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4
Use
Eq. 3.32 =0
E/nvdz— [v1] i) + [v1] =5
pu 6t s p | p‘l-'. 1;:1} 6t u 1 z=zp 3t
Use
Eq. 3.37
J dz
3 9 2 [.2 Gzy
+ pu 8$ _/zp dZ pu [v]']z =n 83: + Py [vl]z:zp dz
Use Use
Eq. 3.32 Eq. 3.38
. e N prm———
2 2 an n n
+py [nva].oy, — Py [M1v2],=y, = —hp o — vidz — [ |vi|ndz
4 dz 2 2
4
EqU;e% Apply Eq. 3.40 here
omy 07 5 2 2 | dn On i
e+ s () + 82 [ (g7 mgn )]
See
Apply Eq. 3.30 here Eq. 3.43
T 7 s ) oh T,
Z.
+ p5 [‘Ul (1?1‘-—2—@2)] = —hy =L ~—h —
dx - P Oz ¥ dz
Use
Eq. 3.35
m —_——
—p —= = hyJup|up =0
Pu
U
dm, & [m?2 k2 m ||
T vl 6, h, + —L —LE\)1=0 3.42
ot +8$( + + p+pu ‘u+puhp ( )
where 6, is the normalized gradient of the impermeable slope z=z, given by
dz, dz;,
= — = ==t oy .4!
0, i (3.43)

which is similar to the definition of # in Eq. 3.17. The physical inclination 6} of the

impermeable slope located at z'=z}, is depicted in Figure 2.1,






Chapter 4

NUMERICAL METHODS

4,1 Introduction

For easy reference, the analysis domains of the three flow fields discussed in Chap-

ter 3 are referred to as
o Region | for the flow over the rough slope,
e Region 2 for the flow inside the permeable underlayer with 0 < z < z,, and
o Region 3 for the flow inside the permeable underlayer with z; < z < z,,.

The three regions are visualized in Figure 4.1 for clarity.
The three one-dimensional continuity equations, Eqgs. 3.8, 3.31, and 3.41, and the
three one-dimensional horizontal momentum equations, Eqgs. 3.25, 3.39, and 3.42, are

rewritten in the following as a recapitulation.

REGION 1:
oh Om
5;+—3;+Pq%:0 (4.1)
om 0 [m* h?
5 t5s (T + ?) +0h + flulu + pyupgs = 0 (4.2)
REGION 2:
am
# —Pugs =0 (4.3)
om, 8 (m} Oh myp lmp| | _
REGION 3:
dh am
R e (5]

39
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Figure 4.1: Three regions for computation of flow fields.

om, 0 (ml: h my Imel ) _
o1 +6x(hp+2 L L o B (4:5)
with the normalized bottom friction factor f given by
]' !
f= 3 of (4.7)

The present numerical model, which is time-dependent and one-dimensional with
two layers, is developed on the basis of the three one-dimensional continuity equations,
Egs. 4.1, 4.3, and 4.5, and the three one-dimensional horizontal momentum equations,
Eqs. 4.2, 4.4, and 4.6, derived in Chapter 3. In addition, the assumption expressed
by Eq. 3.21 is used to estimate the horizontal fluid velocity at the interface between
Regions 1 and 2. The numerical procedures used in the present model are given in WK
92 without the derivation of the adopted finite difference methods. A summary of the
" procedures is given in the following.

Use is made of a finite difference grid of constant space size Az and varying

time step At in which At is reduced in a semi-automated manner whenever numerical
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difficulties occur at the waterlines situated at # = z, and 2 = z,,. The initial time ¢t = 0
for the computation marching forward in time is taken to be the time when the specified
incident wave train arrives at the seaward boundary z = 0 and there is no wave action in
the region z > 0. At the seaward boundary x = 0, the normalized incident wave train,
n; = n./H', is prescribed as a function of time ¢ and the normalized reflected wave train,
n, = n./H', is computed as a function of ¢ from the characteristics advancing seaward
where Eqs. 4.1 and 4.2 are expressed in characteristic forms (Kobayashi and Wurjanto
1990). It is assumed that 2z = 2, at z = 0 as shown in Figure 4.1 so that h, = 0 and
my = 0 at ¢ = 0. At the moving waterline + = z, on the rough slope, h, and m,
inside the permeable underlayer are assumed to be continuous. Simplified versions of the
predictor-corrector-smoothing procedure described by Kobayashi and Wurjanto (1990)
are used to track the locations z, and z,, of the moving waterlines on the permeable and
impermeable slopes, respectively.

For the known values at all the spatial nodes of h = (n — z), m = uh, @,
My = Puhptp, by = (25— 2p) or (n—2,), ¢s and z,, at the time level ¢, the values of these
variables at all the spatial nodes at the next time level ¢* = (¢ + At), which are denoted

by the asterisk, are computed in three stages as follows:

1. First, for Region 1, A* and m* together with z7 are computed from Egs. 4.1 and 4.2
with Eq. 3.21 using the explicit dissipative Lax-Wendroff method employed by
Kobayashi and Wurjanto (1990) where the treatment of ¢ and usgy in Egs. 4.1

and 4.2 is improved herein.

2. Second, for Region 2 where hy = (2, — 2,), m} is computed from Eq. 4.4 which is
solved using the MacCormack method (MacCormack 1969), which is similar but
simpler than the Lax-Wendroff method. Then ¢ is computed using Eq. 4.3 in

s O . . —_—_
which _HE-E is approximated by the central finite difference.

3. Third, for Region 3, mj and hj together with z}, are computed from Egs. 4.5

and 4.6 which are also solved using the MacCormack method.
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The finite difference equations used in the numerical model PBREAK are derived

herein in the following sequence:
o Lax-Wendroff method without dissipation for Region 1 (Section 4.2), and
o Lax-Wendroff method with dissipation for Region 1 (Section 4.3).

In addition, the MacCormack method used to solve the flow fields in Regions 2 and 3 is
discussed in Section 4.4 to clarify the similarity and difference between the Lax-Wendroff

and MacCormack methods.

4.2 Lax-Wendroff Method without Dissipation

First, the terms without dissipation and with dissipation used for the Lax-Wendroff
method (Lax and Wendroff 1960) need to be clarified to avoid confusion.

In the present problem, large jumps of values may occur at the steep fronts of
breaking and broken waves. This phenomenon resembles a shock wave, which is a dis-
continuity in the solution (e.g., Roache 1982), which could create numerical problems.
Numerical treatments of shock waves are aimed at smearing the shock over a wider but
limited space, thus, reducing potential numerical problems. This is normally done by
the introduction of an explicit or implicit artificial dissipation. The notions ezplicit and
implicit refer to whether an artificial viscosity appears explicitly (hence, ezplicit) or not
(hence, implicit) in the finite difference equations (Roache 1982).

The numerical method proposed by Lax and Wendroff (1960) has an option to
include an explicit artificial dissipation. This section derives the Lax-Wendroff method
for the flow field in Region 1 without the explicit artificial dissipation. The next section,
Section 4.3, will derive the explicit artificial dissipation term which is added to the scheme
derived in this section to produce the dissipative Lax-Wendroff scheme used for the flow

field in Region 1.
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The following vectors are introduced to express the governing equations 4.1

Gl

ul?

F

G2

elt)

through 4.6 in a vector form.

(o)

\ 72" )

([ F

\ 72 )

(i)

\ G4

(mp)

m;u
hop

(ﬂl

h
2

2
/
{'m‘;_l_‘z

\ m

% Pqqb

dh

(— puttsqs + hp— + 0h, +

(P

\ o)

([ A

\ 7
[ GE13} \

Jz

\ 6¢ )

[ 6h + flulu + pousgs

mp
—2 p+
s

[y

Puhp

)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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The normalized governing equations 4.1, 4.2, and 4.4 through 4.6 can now be

written in the following vector form:

oulkl  gFH
at oz

+GH =0 (4.17)

where the bracketed superscript [k] with & = 1, 2, and 3 denotes the region k to which
Eq. 4.17 applies. It is noted that each of the vectors Ul2l, F2I, and G has only one
element. Eq. 4.3, which is not included in Eq. 4.17, is used to express the normalized

volume influx ¢, in terms of one of the dependent variables involved in Eq. 4.17.

1 om, 19Ul
_——— = S e ——— f i i X
b . B g or Regions 1 and 2 (4.18)

The Lax-Wendroff method based on the component k=1 (Region 1) of Eq. 4.17
will be derived in the following since the original method did not include the term G,
The Lax-Wendroff method originates from a Taylor expansion in time of the vector U,
To prepare for the use of the Taylor expansion, the first and second derivatives with
respect to time ¢ of the vector Ul are sought. The first derivative is found simply by

rearranging the component k=1 of Eq. 4.17 as follows:

(1] HF(l]
Bgt — (d;; +G[11) (4.19)

Since the derivation in the rest of this section is limited to Region 1, the bracketed
superscript [1] is omitted for brevity, except in the parts of the derivation that involve
quantities from Region 2. The second derivative of the vector U with respect to time ¢

is evaluated in the following:

+— +G

9*U A 6‘(8F )_ d OF G _ B(BFBU)_E}G

ot at ot ot \ oz "9z ot ot o0z \ou ot) ot

I
92U 0 OF oG ,
7 - ulrGre)-w -

where use is made of Eq. 4.19 and the matrix A is the Jacobian given as
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au ) !
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(4.21)

The four elements of the matrix A in Eq. 4.21 are evaluated in the following:

OF,
Uy
OF,
U,
OF,
oy
OF;
U,

d [m? + h? B 2m
dm \ h 21 'k

8 (m? h? m?
9 (? . ?) =h-g

am
am
om
Oh

=1

=10

so that the matrix A can now be expressed as

m m?
g (h-%)
A= (4.22)
1 0
First, the simpler second element of the term %‘%—; in Eq. 4.20 is evaluated as
follows:
. Use : Use Eq. 4.17
q. 4.1 it e
% Do nl ) =Bl (O
ot~ ot D)= Pagy )= L 0 \ o
U ,
aG o (oFC
In addition,
3(}5 . 1 aGQ . 1 d BFEQ] (2] .
E Y [a— (_6‘;': +6 )

Second, the more complicated first element of the term %“;i in Eq. 4.20 is worked

out in the following:
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Use
Eq. 4.1
=
0G4 o) oh
S0 = 00+ flulutpue)=0 -+ f—(Iuru)+pth (wqp)
Y
B = 05~ 0wt g (lulu) + P (wa) (4.25)
The term 33_1: (Julu) in Eq. 4.25 is evaluated as follows:
J 0 [|m|m
sl = & (57
'(% (%‘;) for m >0
—?% (%‘;) for m <0
: 2
{ 2}—1’%% 2%%% for m >0
- m Om m? Oh
-—2? i +2"};’3"-3'E for m <0
Use Use
Eq. 4.2 Eq. 4.1
~~ P
NN ET TR
~ h2 ot h ot h? ot ot
u o (m* h dm
= zlﬁ—l [—% (T + 7) — 0h — flulu — pyusgy + e + pquqb]
_ olul [ mom m*dh  dh  Om
B B F TR
~0h = flulu+ py (u - us) g |
Y
d u oh dm
5 (lulu) = 2% [(uz - h) % “9a Oh — flulu + pg (v — up) o (4.26)

The term ;% (usqs) in Eq. 4.25 is worked out using Eq. 3.21 as follows:

g d
a(ub%) = ub—-l- b%:é
4
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4
0 w9 | g,9u for g 20
gi(wa) = § Ot Mot
¢ (o) = ;] ou
Putly e + Puth g for ¢ <0
() e
Pu“rsa‘tb ¥ %%nfﬂ for gy <10
9 : .
(2ol pe) wen
?np 2 tb + g_s;f?Ut[z] for g <0
(1] (1]
m O 1 0U;"  m 9U;
= " :""q"(?i g~ h2 ot the peie)
¢ . 2
%%4‘31%}# for g, <0
§ Use Eq. 4.17
(1] (1]
= | m Btb = (Qg_L i dF G[;]) for g, >0 (427)
e — uﬁqb = I y
ot ™y 00 _ g (dFm i G[z]) © for <0
. p P

The term %%ﬁ in Eq. 4.27 is given by Eq. 4.24. Using the relations given in Eqs. 4.26

and 4.27, Eq. 4.25 can now be written as
0GH om
—_— = —-0——-40
at oz Py s

+2flu| [( h)%_ iﬁ—ﬂh flulu + pg (uw — wup) ‘E‘b]

(1]
‘5% Pq% ( %+ G[I] —a-z—di - uG[;I) for @, > 0
Pq ‘5%‘ % (BF[ ] + GM) for g, < 0

with the term ﬁa?f given by Eq. 4.24.

(4.28)

The vector U is expanded in time to the second order using the Taylor series:

dU _ (At)? d"'U

Ule,t+ A1) = U At + 2520+ O [(aty’] (4.29)

in which all the terms on the right hand side are evaluated at the location z and the

time ¢, and the notation O [(At)3] refers to additional terms of order (At)® and higher.
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The accuracy of the difference |U(z,t 4+ At) — U|, which is the second order in time, de-
termines the order of accuracy in time of the numerical method (Richtmyer and Morton
1967). The essence of the Lax-Wendroff method is to eliminate the time derivatives in-
volved in Eq. 4.29 and replace them with the corresponding spatial derivatives. Denoting

U* = U(z,t+ At) and substituting Eqs. 4.19 and 4.20 into Eq. 4.29 yield

% = Tt o ARG
dx
. oG
At)? ¢ F At)? _
! 2) E%[A(%;+G)]~ (29" | g (4.30)

where the terms 35 and %%3 are given by Eqs. 4.28 and 4.23, respectively. Eq. 4.30 no
longer includes time derivatives. Thus, the elimination of the time derivatives has been
accomplished. The next step is to discretize Eq. 4.30. For this purpose let the indices j,
(j-1), and (j+1) indicate the nodal locations z, (z — Az), and (z + Az), respectively,
where Az is constant throughout the time-marching computation. The asterisk indicates
the next time level (¢ + At) as in Eq. 4.30. Quantities written without an asterisk in the
following are of the present time level and known.

To discretize the spatial derivatives involved in Eq. 4.30, the central finite differ-
ence is used so that a second-order accuracy in space is obtained. The discretized form

of Eq. 4.30 is as follows:

U; = UJ‘—At (d—F) - At G;
%3
oG
A 121, (2, 6]} - (&Y k! ‘
LT T e Wk i 2 [BG] Cuil)
¢t lj
The term (-‘3%) _in Eq. 4.31 is expressed as
3
oF 1 ,
(55). = 325 Fom1 —Fima) (4.32)
F i

The term {vo% [A (g% - G)]}j in Eq. 4.31 is given by

BBl (mome)



49
with

2
where the matrix A is given by Eq. 4.22.
Define the difference AU as

1 Az
H;=> [A;‘+1 + Aj] [(Fj+1 = Fj)+ =5 (Gin + Gy) (4.34)

AU; = Ujy1 - Ujg (4.35)

and a new vector B as

1

=

(P8, - FP) + % (G, +c¥) (4.36)

Using the definition of the difference AU in Eq. 4.35, Eq. 4.18 can be discretized

as

1 ,
() = 32570 aul! (4.37)

Using the definition of the vector B in Eq. 4.36, Eq. 4.24 can be discretized as

O\ _ 1 T
(W)j o 7 7y (B; —B,_1) | (4.38)

The two elements of the term (2 _in Eq. 4.31 are discretized in the following:
ot /;

— = e G o e
at [QHC%A]J Az 7 Az

where the vector S is chosen to be the same as the vector S used for the impermeable

(aG) - [Qg?]; 1 % p, (4.39)
§

slope (Wurjanto and Kobayashi 1991), whereas the vector P includes the remaining
terms related to the permeability of the slope.
The vector S in Eq. 4.39 is given by

s; = [ Vs (4.40)

0
where the element (.51); is defined in the following:
" (9m o4l [7 2 ,\Oh  0Om |
(51); = — Az, (-5;)3 + Az 2f £ [(u uh) 5%~ Y — 0h — flulu )
I
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4
y s h; 1—h.'_1 my —m;—1
(51); = Az2f Ile—l [(uf - hj-) :+M$: — u; J+12A$ L= — 0;hj — fluj|u;

1
= :jgj (Mj41 — mj_1) (4.41)

Substituting Eq. 4.41 into Eq. 4.40 would result in a cumbersome expression for the

vector S. To avoid this, define

U, hivq—hi_ My — M
ej = 2f% [(uj? ~ h;) L L Gk flughy|  (442)

so that the vector S can be expressed concisely as

Az e; — 10 (m;pq —m;_
3= ! “(0 41 = M) (4.43)

The vector P in Eq. 4.39 is expressed as

p= | " (4.44)

(P2);
The element P; in Eq. 4.44 is worked out as follows:

(P = = b+ 20 B - )] o0 (@)

A 1 oFd -
= "ﬁqum (%); (—52_—4-(}[21). for g, <0



(P1);

(P1);
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Use Eq 4.37 Use Eq 4.37
K
7 1 [, - (w);] @aep) (@), - 6 Bapa) (@),

h;

( Use Eq. 4.38

m; y aq
(8 pa) (2 )

tj

T 1 2

- u—gi— — u(; for g, > 0
+:4 J

Use Eq 4.38
m dq
e (),

gF[2]
— Az p) (%), (‘31‘" + Gfﬂ*l) for g < 0
m (Az pu) (@) | 57~ } @

Use Eq. 4.37

U; : 1 :
f % [u; = (w),] AUF! - 26,407

% (B; - Bj_)
2] n 3F[” 0]
+—h—AU TL+C . - u@@ for gy > 0
j

1 2] ( QF [2])
+iz AU’ (_B_ +G forq, < 0
| 2(hp); 2 & j *
U . 1 . 5
f IT:’?l [ — (w);] AU - 593'AU£-2] - B, (4.4
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with P given by

S (G O

2h; = 2Ar

e - Lo -1 forq, > 0
Fo=id f 24z t (4.46)
(myp),
(e 1,
1
(2] (2]
1 @ [ Fi—Fio [2]
Yo, Y (—Lm’— +G; ) ot 20
\
The element Py in Eq. 4.44 is worked out as follows:
Use Eq. 4.24 Use Eq. 4.38
(P, = Az (d_Gz_) _ Az (%) -r(/_\r )(6%)‘
Yi T o, at );  n, Pa \ ot 5 Pu) \ Bt i
4 .
(P2); = —(Bj-Bj.1) (4.47)

Substituting Eqs. 4.45 and 4.47 into Eq. 4.44 yields the following expression for

the vector P:
i . ;
TLflj | [ — (ws);] AU - 1, AU - P,
—(B; —Bj-1)

(4.48)

where AU, PJ-, and B; are given by Eqgs. 4.35, 4.46, and 4.36, respectively.
Substituting Eqs. 4.32, 4.33, and 4.39 into Eq. 4.31 yields the finite difference

equation for Region 1 based on the Lax-Wendroff method without dissipation.

e _ gl_ At [l /am (1 (1]
1 fAE\E n, (At)® :
+ ‘2‘ (E-.’L:) [ (HJ = HJ'_I) — Az Sj] - E T P; (4.49)

where the vectors H;, S;, and P; are given by Eqs. 4.34, 4.43, and 4.48, respectively.
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It is now clear that the addition of the terms p,q, and p,usq in Eqs. 4.1 and 4.2
due to the presence of the permeable underlayer increases the algebraic manipulations
required for the Lax-Wendroff method considerably, as compared to the case for imper-

meable slopes (Wurjanto and Kobayashi 1991).

4.3 Lax-Wendroff Method with Dissipation

One might erroneously regard the Lax-Wendroff method used in Section 4.2 as
dissipative since the formulation may be considered as an approximation of a parabolic
type diffusion equation (Richtmyer and Morton 1967, Hibberd 1977). Hibberd (1977)
argued that without the explicit artificial dissipation, energy would be merely shifted
into higher-frequency components resulting in the formation of parasitic waves near a
jump. The artificial dissipation is intended to reduce these unwanted parasitic waves.
This artificial dissipation is used in the present numerical model following the experience
of Hibberd and Peregrine (1979) who utilized the Lax-Wendroff method for studying the
behavior of bores over sloping beaches. Hibberd and Peregrine (1979, p. 330) stated as
follows:

With a single bore incident on the beach these [parasitic] oscillations do
not unduly affect the solution away from the bore or the stability of the
scheme. However, in further work to be reported on periodic solutions where
bores advance into thin, fast-moving back-wash from previous waves such
oscillations prove unacceptable.

Incident irregular wave trains specified in the present work include much more individual
waves than the periodic waves computed by Hibberd and Peregrine (1979) and Packwood
(1980). As a result, the inclusion of the artificial dissipation in the Lax-Wendroff method
herein is judged to be necessary.

The Lax-Wendroff method with dissipation for the flow field in Region 1 originates
from a modification of the component k=1 of Eq. 4.17 where an artificial viscosity term

is added as follows:

5t T oz T 2 9z

Z1810! (1] v ¢ Z101L!
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The method to derive the matrix Q in Eq. 4.50 is the same as that used by Hibberd
(1977) for a system of governing equations similar to Eq. 4.17 where the vector GI! has

no effect on the outcome,

The added term in Eq. 4.50 affects the first derivative %IT‘T in Eq. 4.19, which
becomes i
oult oFil Az 0 aulll
a5 s (1] e .
T ( 92 + G ) + 5 72 (Q % (4.51)

However, the second derivative B;U in Eq. 4.20 is assumed to be unaffected by the added
term in Eq. 4.50.
Define a new vector D as

D= At % d% (Qa()i:l) (4.52)
which is introduced to carry the effects of the added artificial dissipation in the numerical
scheme. The finite difference equation for the flow field in Region 1 using the dissipative
Lax-Wendroff method based on Eq. 4.29 together with Eqs. 4.51 and 4.20 becomes the
same as Eq. 4.49 with the vector D; added on its right hand s';ide.

Uk _ g At 1 ) [ 1]
U = 1 —3;[5 (Fh - L) + 80 G

1/ At\? n, (At)? )

The bracketed superscript [1] is omitted for the rest of this section since the discussion
in this section involves only the flow in Region 1.

The introduction of the artificial dissipation in the numerical scheme is intended
to smear the large jump of values over a wider but limited space. The matrix Q in
Eq. 4.50 needs to be selected to satisfy this requirement. The matrix Q at the location
(z + —‘5—‘23-) is denoted by Q; with the index j instead of (j + %) for simplicity, and is
regarded to be a function of the vector U; at the location z and the vector Ujy; at

(z + Az) as expressed in the following:

Q; =Q;(U;,U;41) (4.54)
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The matrix Q; is so chosen as to produce the desired dissipation when the two values
of U are widely different but negligible dissipation when the two values are nearly equal
(Richtmyer and Morton 1967). Accordingly, the matrix Q takes the following form of a
polynomial in A (Lax and Wendroff 1960):

Q=q I+@p A+...+¢. A* ' for n dependent variables (4.55)

where I is a unit matrix and n=2 for the matrix A given by Eq. 4.22. The coefficients ¢
and ¢, are determined using an eigenvalue analysis as will be performed for the matrix
A given by Eq. 4.22, following Lax and Wendroff (1960), as explained more clearly by
Richtmyer and Morton (1967) and Hibberd (1977).

Let A be the eigenvalue of the matrix A given by Eq. 4.22 and & the eigenvalue
of the matrix Q given by Eq. 4.55 with n=2.

The eigenvalue A of the matrix A is evaluated by equating to zero the determinant

of the matrix (A — A I).

I
=3

det (A — A T)

4

ey (-2)| _

1 =&

4

M-t (wP—h) = 0
U

(o VR - (V)] = o
U

M=¢ and A =% (4.56)

with

e=u+tc ; tvYv=u—c ; c=vh (4.57)
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Similarly, the eigenvalue & of the matrix Q is evaluated by equating to zero the

determinant of the matrix (Q — & I).

det(Q-xI) = 0
U
det (s I+ A—-kI) = 0
U
@+n-r0) G- |
q2 M —K
Y
Use Eq. 4.57 Use Eq. 4.57
! N e N —
(ki—@1)—q (u+vh) =0 and (k2—q1)—q2 (u—vh) =0
4
K1= ¢ +qp and Ky =q + @ (4.58)

The coefficients (¢1); and (gz); at the location (z + %—3‘) indicated by the index
J instead of (j + %) for simplicity are obtained by relating the eigenvalues of the matrix
Q; at the location (z + -"-\‘—2@-) to those of the matrix A at the locations z and (z + Az)

indicated by the indices j and (j + 1), respectively.
(ki)j = & |(Ai)j41 — (Ai);] with i=1,2
U
1 .
(0); +5(0)i (pir1+ @) = @ lpjn -l (4.59)

€2 |¥j41 — ¥l (4.60)

(q1); + "21*(9‘2)3‘ (i1 + ¥5)

where ¢; and €; are positive constants of the order unity determining the amount of
artificial dissipation. The artificial dissipation is supposed to increase with the increase

of €; and €;. In the numerical model PBREAK, ¢; and ¢; are specified by the user.



Solving Eqs. 4.59 and 4.60 yields the following expressions for the coefficients ¢,

and ¢g:
1
(q1); 2 ) [€1|%'+1 — @l (i1 + ;)
e | J
= &|Yi+1 — ¥l (pj41 + %‘)} (4.61)
1 "
(2); = m [€1|99j+1 — @i = €| — ;) ] (4.62)

The discretized form of Eq. 4.55 with n=2 gives the value of Q; at (z + ’AT:")
1 -
Q; = (0)i I+ 5(a)i (A + Ajn1) (4.63)

where ¢, g2, and A are given by Eqs. 4.61, 4.62, and 4.22, respectively.
Finally, the term D; at the location = in Eq. 4.53 is given by discretizing Eq. 4.52

as
; (Ul o) - g, (Ul - U[}_ll)] (4.64)

where the matrix Q; at the location (z + %ﬁ] is given by Eq. 4.63 and the matrix Q;_;
corresponds to the location (z — %35)

It should be mentioned that the final expression given by Eq. 4.53 has been given
in WK 92 without proof since the above derivations are very lengthy. The dissipative
Lax-Wendroff method presented herein for the permeable slope reduces to that used for
the corresponding impermeable slope if ¢,=0 and u;=0 in Eqgs. 4.1 and 4.2.

Even though the computation of the flow field in Region 1 is by default dissipative
in the present numerical modél, the explicit numerical dissipation can be turned off
simply by specifying the numerical damping coefficients ¢;=€¢;=0. All the computations
in the present work are made with non-zero ¢; and €;, except for one case in Chapter 6
where ¢; and €; are specified to be zero. This particular computation is intended to
find out whether the explicit numerical dissipation will modify the computed flow field
noticeably or not. The experiences with RBREAK for impermeable slopes have indicated
that the explicit numerical dissipation modifies the computed flow field very little but

tends to improve the numerical stability.
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4.4 A Discussion on the MacCormack Method

While the flow field in Region 1 is computed using the dissipative Lax-Wendroff
method derived in Sections 4.2 and 4.3, the flow fields in Regions 2 and 3 are computed
using the MacCormack method (MacCormack 1969). This is because the MacCormack
method without explicit numerical dissipation is much easier to apply in Regions 2 and 3
where the physical dissipation due to the flow resistance inside the permeable underlayer
is expected to improve the numerical stability. Even though the MacCormack method
is generally regarded to be in the class of two-step Laz-Wendroff methods, it is not clear
whether the MacCormack method could be derived from the Lax-Wendroff method in
an analytical manner, as Roache (1982, p. 253) put it

It is not at all obvious that the [MacCormack| method is a Lax-Wendroff
type, nor even that it is consistent with the partial differential equation, but
the excellent results obtained bolster confidence.

On the other hand, for systems of equations in the form of Eq. 4.17 without the term
G, Peyret and Taylor (1983) cited Lerat and Peyret (1973, 1974, 1975) who proposed a
generalized two-step scheme that could yield the Lax-Wendroff or MacCormack method
by adopting certain assumptions and choosing specific coefficients. The purpose of the
discussion in this section is to show that the MacCormack method closely resembles the
non-dissipative Lax-Wendroff method derived in Section 4.2 for a special case. Con-
sequently, the derivation of the non-dissipative Lax-Wendroff method in Section 4.2
should be sufficient as a basis for the use of the MacCormack method in the numerical
model PBREAK. Furthermore, the numerical stability criterion imposed on the numeri-
cal method for Region 1 should be appropriate for Regions 2 and 3. It is noted that the
numerical stability criterion imposed in the numerical model PBREAK is adopted from
Packwood (1980) for the case of impermeable slopes.

Consider a system of equations in the form of Eq. 4.17

ou JF
"6—t+a—x+G=U (4.65)

in which the vectors U, F, and G are regarded to be general where the vectors given in

Egs. 4.8 through 4.16 may be considered as an example.
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The discussion in this section is given in the following manner. First, the non-
dissipative Lax-Wendroff method will be derived using Eq. 4.65 in a slightly different
manner from that in Section 4.2. Second, the MacCormack method is developed from
Eq. 4.65 under an assumed special condition. The resulting finite difference equations
from both methods are then compared to examine the similarity between the two methods

under the assumed special condition.
Non-dissipative Lax-Wendroff Method

The initial procedure in the present derivation is identical to that in Section 4.2.

Eq. 4.31 is rewritten as

U = U;-At (g—f)'—mej
|
+ (A;)'z {%[A (gm)”; (A;f (%—?)i (4.66)

where the matrix A is the Jacobian A = g-{FJ
The term %% in Eq. 4.66 is rearranged for the special case where G depends on

U only.

Use Eq. 4.65
i
0G oG ou JF
P -0 ot -‘Y(a—w‘}) (467)

where the matrix Y is the Jacobian Y = g% [t is noted that the Jacobian Y does not

exist for Gl defined by Eq. 4.10.
Eq. 4.67 is substituted into Eq. 4.66 and the resulting equation is then discretized

further,
G oF
Uj = U; - At (B—I)J - At G;
+ 2 Ba:Af?a-:+G j+ 2 Y6x+Gj

, 1 At
Ui = Uj-55x; Fit1 = Fia)
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+% (it) [ (Aj+1+ Aj) (Fip1 — Fj) = (Aj + Aj1) (F; — Fip)

2
-At G; + (At) —Y;Gj
At At 2
+_L(A) X Eyen —Fp1) v ( ; (Aj+1Gjy1 — A;1Gj1)  (4.68)

Eq. 4.68 corresponds to the full form of Eq. 4.65. The first two lines on the right
hand side of Eq. 4.68 corresponds to Eq. 4.65 with G=0 and hence Y =0.

MacCormack Method

The MacCormack method consists of two steps, one of a forward space difference
and another of a backward space difference, which are interchangeable (Roache 1982,
Anderson et_al. 1984). The backward-forward setting used by Fennema and Chaudhry
(1986) is adopted for convenience dealing with the landward boundary conditions as
explained in WK 92. Their use of the term predictor step referring to the first step and
the term corrector step for the second step is also adopted here.

PREDICTOR STEP:

. At

U; =1U; - o (FJ‘ -~ FJ'_,1) - Al G; (4.69)
CORRECTOR STEP:

" : At [ - ; ;

U;=1U; - = (Fj+1 = Fj) - At G; (4.70)
The value of the vector U at the next time level t* = (¢ + At) is given by

: T .
Uj=§(Uj+UQ (4.71)

The quantities written with an overhead dot ( *) in Eq. 4.70 are evaluated after the
predictor step but before the corrector step.
It is assumed in the following that the Jacobians A and Y are constant, and F

and G can be expressed in the following forms:
F=AU ; G=YU (4.72)

It then follows that
F=AU ; G=YU (4.73)
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Utilizing the relations expressed in Egs. 4.69, 4.70, and 4.73, Eq. 4.71 is manipu-

lated as follows:

Use Eq. 4.70
" 1 Sy
Use Eq. 4.69 Use Eq. 4.73 Use Eq. 4.73
1 e At [ =" =
= E[U + Uy "E( Fipn—F; ) At G;
1 1 At
Use Eq. 4.69 " Use Eq. 4.69
1 At T 1 =
1 At 1
= Uj-5x, Fi-Fi) - SALG;
1 At At
B { U1 = x5 (Fir1 = Fj) = At G

At
Ui+, (Fi-Fj1) + AL Gy ]

1 At
—--.-jAtY [ UJ'—E(FJ~FJ‘_.1)—-At G; ]

Use Eq. 4.72 Use Eq. 4.72
1 At 1 1 At ey e

o Use Eq. 4.72
t 1 oo
+5 (E [ A(Fjp1 —Fj) - A(F; - Fj) ] =gt XU,

4+ G;

2 2
SRS I T

2
Fad T vl Ag 2(Gi1=G)

} 1 At ‘
Ui = Uj-53x, Fit1 —Fja)

. (ﬂ) [ A(Fjy1 —F;) - A(F; — F;_1)

2 \ Az
2
_AtG; + (m) YG,
At 1(A)?
+E(A—) Y(FJ-—F,,-_13+§(M) A (G —G5) (4.74)
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Eq. 4.74 corresponds to the full form of Eq. 4.65. The first two lines on the right
hand side of Eq. 4.74 corresponds to Eq. 4.65 with G=0. Comparing Eq. 4.68 and 4.74
for the case where the Jacobians A and Y are constant and Eq. 4.72 is satisfied, it may

be concluded that

e the Lax-Wendroff and MacCormack methods based on the full form of Eq. 4.65 are

almost identical, and

e the Lax-Wendroff and MacCormack methods based on Eq. 4.65 with G=0 are

identical.

The MacCormack method is simple to implement since it does not involve com-
plicated terms like the Jacobian A in the Lax-Wendroff method. The implementation
of the MacCormack method to solve the flow fields in Regions 2 and 3 is sufficiently
described in WK 92 and is not repeated here. The artificial dissipation in the form of
Eq. 4.64 or in the form used by Fennema and Chaudhry (1986) could have been added to
the MacCormack method but is not included in WK 92 since the turbulent and laminar
flow resistance inside the permeable underlayer is normally significant and expected to

cause sufficient physical dissipation.



Chapter 5

ONE-DIMENSIONAL ENERGY EQUATIONS

In the line of work from the first numerical model IBREAK (Kobayashi and Wur-
janto 1989a) to the present numerical model PBREAK, the energy equation was first
introduced by Kobayashi and Wurjanto (1989c¢) who invoked the analogy between wave
breaking and hydraulic jump so that the rate of energy dissipation due to wave break-
ing could be estimated without analyzing the dissipation processes explicitly. The idea
is extended in the present work. In addition to computing the flow fields in the three
regions using the one-dimensional continuity and momentum equations, the numerical
model PBREAK also estimates energy fluxes and dissipation rates in the flow fields using

the one-dimensional energy equations derived in this chapter.

5.1 Energy Equation for Region 1

The one-dimensional energy equation for the flow in Region 1 is obtained by
multiplying Eq. 3.1 by the normalized horizontal velocity u; and then integrating the
resulting equation with respect to 2 from the interface z = z, between Regions 1 and 2
to the free surface z =

First, multiply Eq. 3.1 by u4

‘M;1@+‘b&1v’v1'(aial-l-‘uiz‘hilaﬂ = —M@-l-ul Orss
ot Oz 0z oz 0z
4
9 (ui 0 (ui O (ut) _ _, 0, , 0=
a2 )t l2)teeml2) = MEth s,
Y

63
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Pilay, 0 () sid

ot \ 2 oz \ 2 2 Oz

6 A

0z \ 2 2 0z

o [u? 9 (u} 9 [ uiu,
5(3)4—?3_:3(‘_ To:\ 72
=0 by Eq. 2.9

a(% @)

2 \0z ' 0z

a [u?  (u3 9 (ulus
a(?)w_m(?%@:( 2

U
+
= —-u @+u Oz
- ! 9z L
il
= ey O
= = Oz " 0z
!/

an OT2z
B Lk )

Next, integrate Eq. 5.1 with respect to z from z = z, toz = 7.

/

n 9 [u 9 (u}
ba(?)d.«?*}‘ Zba(? dz -
n Q9 u%uz _
fzb E( 2 )d’z - _/,-,
Leibniz rule is used )
Use Eq. 3.14
0 1 u?
a Ay
at 2p 2 d 2 [ ]Z =1} 6: +
n ul
-/z d B E [ﬁ]] z=n d:‘c +
1, 2 dn
*I-2 [“1 Uz} 5 [“1“2] - R

(ge)ie+ [ (w5

—D

6
i 3

d
=[] .-

Use Eq. 3.9

PR —
n n
urdz + f (ul
2y zp

0Ty

Bsz

b

P )dz

(5.1)



65

’ Apply Eq. 3.4 here
i (30mn) + 3 [0 + 3[4 (-G - gt em)],
F;iplzcge Apply Eﬂ;_3'7 here
g bl (g -l = e ()
4

J 0 ["ud a7
hu = = . z p
6t( Cw )+3x/z,, 2d zZ+4 = pquuh m +/ ( ) z (5.2)

To simplify Eq. 5.2, (1) define the energy correction coefficient C, as

&= if (‘_"1)3dz (5.3)

(2) denote the last term in Eq. 5.2 by (— D) where D represents the normalized rate of

energy dissipation per unit horizontal area for the flow in Region 1

n 0Tz
D= _/::g. (u1 e )dz (5.4)

and (3) manipulate the term (mg—g) as follows:

Use Eq. 4.1
67} 0 '(-f'n?
" = % DT B
; =0
9 o, D oy
- gg(huanat+pqu—%(hun)+n( i )+pqu
I
an 10
mﬁ = §a—z+—(hun)+pqun (5.5)

Substituting Egs. 5.3, 5.4, and 5.5 into Eq. 5.2 yields

55 (3Cmhid + 507) + 5 (50 + hun) = =D = pyas (3ud+7) (59
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In addition to the rate of dissipation, D, given by Eq. 5.4, the following energy

quantities for the flow in Region 1 are introduced:

L(Cnhu? + n? for 2z, <0
B o 4 BCRICFT) A (5.7)

% (Crhu? +n* = 22) for z, > 0

1
F = hu (EC'EM2 + -r;) (5.8)
1
DE] = Py (Euf + 7}) D0<e<a, (5.9)
where
E = normalized specific energy, defined as the sum of kinetic and potential

energy per unit horizontal area, of the flow in Region 1
F' = normalized horizontal energy flux per unit width of the flow in Region 1
DE] = normalized vertical energy flux per unit horizontal area from Region 1

to Region 2

It is noted that in the definition of the normalized specific energy F in Eq. 5.7, the datum
for the potential energy is taken to be SWL except for the region above SWL where the
water exists only in the range z, < z < 7.

Utilizing the definition of the energy quantities in Eqs. 5.7 through 5.9, Eq. 5.6

can concisely be rewritten as

oE OF
E—I—%: —D—DI[?] (5.10)

Eq. 5.10 expresses the instantaneous wave energy balance in Region 1. The as-
sumption of C,, ~ 1 has already been made in Eq. 3.24. The following assumption is
now made:

Cex1 (5.11)

Kobayashi and Wurjanto (1992) indicated that the assumption €, ~ 1 might cause errors
on the order of 30%. This 30% estimate was made in line with the approximation of the
momentum correction coeflicient C,, ~ 1 in Section 3.2 where the vertical distribution

of the horizontal fluid velocity proposed by Svendsen and Madsen (1984) was used to
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0.0 0.2 0.4 0.6 0.8 1.0

b/h

Figure 5.1: Energy correction coefficient C, computed as a function of b/h and u,/u,
for vertical distribution of horizontal fluid velocity uy assumed by Svendsen
and Madsen (1984).

compute C,, as a function of b/h and us/u, (see Figure 3.2 and the related explanation
in Section 3.2). Using the same velocity profile, the energy correction coefficient C', was
also computed as a function of b/h and u,/u, as plotted in Figure 5.1. The tentative
estimate of () (10%) errors resulted from the assumption C,, ~ 1 roughly corresponded
to O (30%) errors as a result of the assumption C, ~ 1. The assumption C, ~ 1 is made
herein despite of the associated large errors so as to estimate the energy balance in the
flow field at least qualitatively. It should be stated that the computed flow fields using
the continuity and momentum equations are not affected by this approximation C, = 1.

With the assumptions C, ~ 1 and C¢ ~ 1 now in place, the specific energy F, the
horizontal energy flux F', and the vertical energy flux DE] can be computed for the flow

field determined by the one-dimensional continuity and momentum equations. The rate

" of energy dissipation, D, may then be estimated approximately using Eq. 5.10. Eq. 5.10
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will be time-averaged at the end of this chapter along with the energy balance equations

for Regions 2 and 3.

5.2 Energy Equation for Region 2

The one-dimensional energy equation for the flow in Region 2 is obtained by mul-

tiplying Eq. 3.26 by the normalized horizontal discharge velocity »; and then integrating

the resulting equation with respect to z from the impermeable bottom z = z,

interface z = z, between Regions 1 and 2.

Multiplying Eq. 3.26 by v, yields

d‘[ 31.?1 2 8‘”1
Pu 1 5= +piv v EWLP“ B,
2 : 2 2
N \uoled (MY i 0 (0
p“@t(2)+p“vlam(2)+ . 3(2)
d (v? 5 0 (v} 2 v O
p“ﬁ(?)+p“ de\2) ™2 0z

2

=0 by Eq. 2.27

/_"“_\
Puy (d:c + 0z

d (v} g 8 (V3 g 0 [vivg
“6t(2)+p“55 2) TR\ 2

~=

Il

+ <«

to the

d
~01 51 = (i + o) of

on
—v1 5= (1 4+ |n)v
-V dx — (p+ |va]) v}
on

—t 5~ (1 + |v1]) v}

on

o= o+ [l o (5.12)

As a preparation for integration of Eq. 5.12 with respect to z from z = 2, to

z = z, the following approximations are made to be consistent with the approximation

Ce ~1in Eq. 5.11:
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" ps (5.13)
hl;/z,,(%) dz~1 for 2z, <2< 2,
l/%(v‘vz)dzzl for 0La<@

E Zg |up|u§ ’
(5.14)

h—/ (upl )dz~1 for 2, <o <2y

where the approximations for z, < z < z,, will later be used for Region 3. In addition,

the following algebraic manipulation will be utilized:

Use Eq. 4.3
p——
mp 0 _ ii(m )_i Omy _iﬂ( uh,)_i
pu 0z p, Oz w4y pun dz  p,0z S s Pu T
I
my On d k1B
p_ja = (uphpn) — @7 (5.15)

The approximations expressed in Eqgs. 5.13 and 5.14, and the relation given by
Eq. 5.15 are utilized in the following integration of Eq. 5.12 with respect to z from z = z,

02 = &t

% g » 9 (v} o [ 0 [viv,
m Bt( )d”p“]z az(z)d" s p“fzp 83( I o

P P
Use Eq 3.37 Use Eq. 5.14
f_/—\

=—./z:b( g)dz - uf 1dz —f |vy| vidz

Leibniz rule is used |
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4
Use Eq. 3.37 -0 =
o —— ~= ~
Ny Rgp Lp, [l 02 4 L[]
p“at zp 2 Zp“ 1 2=z, Of 2pu 1 z=zp OF
Use Eq. 5.13
0 d 1 1
2 Zb 1;1 1 9 _ﬁ 1 D) 3 ﬁ
Py 5' 2p Pu[ Jz—zb dz + 2Pu [Ul]z=2p dz
Use Eq. 3.32
L oors L ogr g _ On (@
+§pu [vl UQ] z=zy - Epu [vl 1;2} z=zp - _E_I— /zp ‘Uldz
—yugh? I*L.r.p|t.¢§h,1p
U
I‘wl',)iplz%e Apply Eq. 3.28 here
i (3mitn) + 5 (390im) — 5ol [ -] _
Apply Eq. 3.30 here Use Eq. 5.15
¥ sl dz ~ ) my, 01
BT I GZp TR . .../ 2
+2pu I:'U1 (vl dz 1Jz)]z:zp Pu dx ('u + |u?|) uphp

Multiply by py = nppy |

d (1 9 (1 1 0
i (greviudte) + g7 (Grarbush) = Greawsd =~z (ughyn)

Paqs — Pq (14 + |up|) uihy

= o+

Il

1 4
Pad | 5% +7

2 (1 + |up|) ulhy (5.16)

d /1 a 1
2 (bt + & s (bt )

The following energy quantities for the flow in Region 2 are introduced:

iughp for <0, 0<2 <,

i
Eg[;?j = 2
iny (pﬁu;‘;hp + zf) for >0, 0<z <z,

(5.17)
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' 1
F, = pyuphy (Epﬁu§+n) (5.18)

Dy = pg(lupl + p)ughy (5.19)

where
E;[,gl = normalized specific energy of the flow inside the permeable underlayer
in Region 2 where the potential energy is taken relative to SWL
F, = normalized horizontal energy flux per unit width of the flow inside
the permeable underlayer
D, = normalized rate of energy dissipation per unit horizontal area due to

the laminar and turbulent flow resistance

It is noted that the definition of the normalized specific energy EE'} given by
Eq. 5.17 is valid only for Region 2, whereas the definitions of the normalized energy flux
F, and the normalized energy dissipation rate D, given by Eqs. 5.18 and 5.19 will be
shown to be valid for Region 3 as well as Region 2. Utilizing the definitions of the energy
quantities in Eqs. 5.9, 5.17, 5.18, and 5.19, Eq. 5.16 can now be rewritten as

OEY oF, _ i
T + i Dy — D, for Region 2 (5.20)

All the four terms in Eq. 5.20 can be computed for the flow fields determined
by the continuity and momentum equations. Hence, Eq. 5.20 may be used to check the

energy balance computed by the numerical model PBREAK. The time-averaged form of

Eq. 5.20 will be derived at the end of this chapter.

5.3 Energy Equation for Region 3
The procedure in deriving the one-dimensional energy equation for the flow in

Region 3 is identical to that for the flow in Region 2 except that
1. the upper limit of the integration is the water table at z = 7, and

2. the boundary condition at the water table z = n is given by Eq. 3.40.
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The following relation will be needed in the derivation of the energy equation for

the flow in Region 3:

Use Eq. 4.5
N
mon “l_i(m )_i Oy -._1_3( n
py 0 p, Oz »'l N oz Py 0z Puttphyn) + un_'(ii_f
I
mpon _ 0 L on? .
Pu dz Oz (uphpn) + 2p, Ot (621)

The energy equation for the flow in Region 3 is derived by integrating Eq. 5.12

fromz=2toz=1.

L n 0 1_;% 2 n 9 V12
pfaz( )d “’“/,,%(?)dz * Pu/ az( 3 | %

Use Eq. 3.37 Use Eq. 5.14
e e e

7 9 n 7
:-LP (m%)dz - W _/zvlzdz _Lplv1|'ufdz

P
Leibniz rule is used |}

Use Eq. 3.37 =0

e e, /_/.-\

7 [ ae -5+ el 5

o L, 8 21"“ =y a: ol i |

Use Eq 5.13
v} on

i, f e gt ] _ 50 + il 2

Use Eq. 3.32
+l 2 [1:2'0 gl [021: ] gt d 2h 4
5Pu |V1V2 . Pu [ViV2 oy B J ndz  —pughy — |uy| uzhy,

r
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Apply Eq. 3.40 here

=,

(L n) e 2 (L s)_i[(an [z )]
ot (quuphp) ¥ B ( h 2?’& ot +puvld — Pu¥2 —

Apply Eq. 3.30 here Use Eq. 5.21
i.:] dz m dn
L ) Qap = s 2B _ 2p
+2pu [”1 ('U‘[ dz ”f«.’):lz:zP Pu 61 (:u' + 'HPD uphp

Multiply by p, = n,p. !}

2 1 2.2 ) 6 (1 2 3 ) _ 3 _1&3?}
ot (2””” oo ) + 5z \gPaPutle ) = = Pagy (uphem) = 505
= Pq ﬁ‘+|“w|)“§hp
4
@ [1 d 1
& i 1] & ot (o) < mis 62

The normalized specific energy EE’] for Region 3 is defined as follows:

np (PRulhy +0?) for 2, <0, 2, <z < 2y

ER = (5.23)

NI-—‘ NI"

(puph +n? —z) for 2 >0, 2,595 %

where the datum for the potential energy is taken to be SWL except for the region above
SWL where the water exists only in the range z, < 2z <.
Utilizing the definitions of the energy quantities in Egs. 5.18, 5.19, and 5.23,

Eq. 5.22 can now be rewritten as

(3]
3;1 + %—Z = —D, for Region 3 (5.24)

5.4 Time-Averaged Energy Equations
The numerical model PBREAK computes many time-averaged quantities for vari-
ous purposes. It is hence imperative to clarify the definition of time average used in the

model. The time average denoted by an overbar is defined as follows:
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V= _1—__f'"“ V(t)dt (5.25)
tmae = tmin Jtmin
where
V' = computed time-varying quantity at given location z
tmin = normalized time when the time averaging begins

tmar = normalized time when the time averaging ends

It is noted that ,,,, also denotes the computation duration starting from ¢ = 0.

Since the waterlines z,; and z,, are moving, Regions 2 and 3 are not fixed domains,
and the time averaging of the energy equations for Regions 2 and 3 is hard to perform
separately. As a result, the energy equations for Regions 2 and 3, Eqgs. 5.20 and 5.24,

are unified as follows:

0E, O0F, ; .
T + Ty = D, — D, for Regions 2 and 3 (5.26)

where Fj, and D, are given by Egs. 5.18 and Eq. 5.19, and

E,[,z} for Region 2 (0 < z < z,)

E, = g (5.27)
E;U for Region 3 (2, <z < )
i, = DE?J for Region 2 (0 < z < x,) (5.28)

0 for Region 3 (z, <z < z)

where E,[,Z], E,[JSI, and D;[?] are given by Eqgs. 5.17, 5.23, and 5.9, respectively.
The new definition of the normalized vertical energy flux given by Eq. 5.28 is also

adopted for the energy equation for Region 1, and Eq. 5.10 is rewritten as
0E OF :
B + ;R D-D, for Region 1 (5.29)

where E, F', and D, are given by Eqgs. 5.7, 5.8, and 5.28, respectively.
Integrating the finalized energy equations, Eqs. 5.26 and 5.29, from t=t,,;, to

t=t,nqz yields the following time-averaged energy equations:
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REGION 1:
S dF E(tmaa:) i E(tmf‘n)
= = T - Dp B tmaz — tmin (530)
REGIONS 2 AND 3:
d_p i Ep(tma;:) — Ep(tmin) -
2 - = 5.31
dz + Dr DP * tmaz = tmin . () : )

In the numerical model PBREAK, Eq. 5.30 is used to estimate the normalized time-
averaged rate D of energy dissipation per unit horizontal area for the flow in Region 1.

For random waves, the computation duration is typically long and (tmaz — tmin)
is much greater than unity. The last term on the left hand side of Eq. 5.31 is then

negligible. For such cases, Eqs. 5.31 may be reduced to

ﬂ o D= ﬁp =0 for Regions 2 and 3 when (tmaz — tmin) > 1 (5.32)
T

which is used herein to check the energy balance for the flow in Regions 2 and 3.






Chapter 6

COMPARISON BETWEEN NUMERICAL MODEL AND
EXPERIMENT

6.1 Experiment on Irregular Wave Run-up and Reflection

Six test runs for irregular wave reflection and run-up on rough impermeable and
permeable slopes were conducted by Cox (1989). The tests were performed in a wave
tank whose dimension was 30m long, 2.5m wide, and 1.5m high. The water depth in
the tank was d;=0.40m. The rough impermeable slope consisted of a 1:3 plywood slope
with a single layer of glued gravel installed at a distance of 25m from the wave paddle.
The rough permeable slope was constructed by placing a thick layer of loose gravel on
top of the 1:3 glued gravel slope. The median diameter of the gravel was d;,=0.021m.
The thickness of the entire gravel layer perpendicular to the impermeable base was 0.2m.
The impermeable and permeable slopes were exposed to three different incident irregular
waves, For each of the six runs, measurements were made of the incident and reflected
waves in front of the slope and the waterline oscillations on the slope. The three test runs
for the rough impermeable slope were used by Kobayashi, Cox, and Wurjanto (1990) to
evaluate the numerical model iiBREAK for impermeable slopes developed by Wurjanto
and Kobayashi (1991). The six test runs for the impermeable and permeable slopes
were compared by Kobayashi, Cox, and Wurjanto (1991) to examine the permeability
effect on irregular wave run-up and reflection. The experimental procedures were already
explained in these papers.

This chapter presents and discusses comparison between the numerical model
PBREAK with the three test runs for the permeable slope, which are denoted by Runs P1,

P2, and P3. In addition, attempts are made to interpret the computed results and gain

77
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an insight into the physical processes associated with irregular wave interactions with
permeable slopes. Both time series and spectral analyses are employed using the standard
subroutines provided by Cox, Kobayashi, and Wurjanto (1991).

The experiment conducted by Cox (1989) may contain errors on the order of 5% on
the basis of instrument calibrations and repeated test runs. The experiment is definitely
more accurate than the present numerical model with expected errors of 10% or greater
because of the assumptions of C', =~ 1 as well as (cot #')? >> 1 made in Eqgs. 3.24 and 2.8,

respectively.

6.2 Summary of Input to Numerical Model

The 0.2m thick loose gravel layer is separated into the primary cover layer and
the permeable underlayer. The top single layer whose thickness equals to d,=0.021m is
assumed to be the primary cover layer determining the bottom friction factor f’ used in
Eq. 3.19 since the value of f’ has been calibrated for the 1:3 slope with the single layer
of glued gravel by Kobayashi and Greenwald (1988). The remaining 0.179m thick gravel
layer is considered to be the permeable underlayer. The seawalmrd boundary z'=0 for the
numerical model is taken to be located at the intersection between the upper boundary
of the permeable underlayer and the horizontal bottom of the wave tank. The upper and
lower boundaries of the permeable underlayer, denoted by zj(z') and 2(z'), respectively,

are then given by

zp = —dy+2z'tand for ' >0 (6.1)
. —~d} for 0 < a2’ < 0.566m
z, = (6.2)
—d} + (2’ — 0.566m) tan#’  for 2’ > 0.566m
with dj = 0.40m and cot# = 3. Figure 6.1 shows the permeable slope geometry spec-

ified as input to the numerical model. The other input data related to the permeable

underlayer are:

e Porosity of the permeable underlayer, n,=0.48.
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24m

upper slope
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X

0.566 m 1.8356m

Figure 6.1: Permeable slope geometry specified as input to numerical model.

e Characteristic diameter d;, used in Eqs. 2.24 and 2.25, which is represented by the

median gravel diameter 0.021m.

e Temperature of water, 20°C, which results in kinematic viscosity v = 1.004x10~8

m? /s for the fresh water used in the experiment.

o Empirical constants a, and 3, in Eqgs. 2.24 and 2.25, which could be calibrated
but are simply taken as a,=1140 and 3,=2.7. These are the median values of the
ranges suggested by Madsen and White (1976).

The characteristic wave height H" and period 7" used for the normalization of the
governing equations are taken to be the significant wave height H; and the mean period
T!. of the measured incident wave train for each run. The zero-upcrossing method is used
to separate the wave train into individual waves. The values of H' = H} and T' = T},

for each of the three runs are listed in Table 6.1 along with the following:



30

In column (4): The parameter o defined in Eq. 2.4 expressing the ratio between

the horizontal and vertical length scales.

In column (5): The surf similarity parameter £ based on H' and 7" and given by

' 9 ' o ' .
£ TMQ:{'H" tan T tan 6 (6.3)

In column (6): The normalized duration of computation, t,,q., starting from
t=0 as discussed in Section 5.4. It is noted that ¢,,,. is also the number of zero-

upcrossing waves in each run.

In column (7): The value of the bottom friction factor f’, which is determined

somewhat arbitrarily but is a reasonable estimate based on the limited calibration

made by Kobayashi and Greenwald (1988).

In column (8): The spectral estimate of the normalized significant wave height

H,,, defined as
H,, =4,/m, (6.4)

where m, is the zero moment of the normalized incident wave spectrum S;(f.)
computed from the normalized incident wave train 7;(¢) with 0 < ¢ < ¢,,,,; where

f« is the normalized frequency defined as
fo= LT (6.5)

In column (9): The normalized peak period T, of the incident wave spectrum

defined as T, = T, /T"

In column (10): The surf similarity parameter £, based on the spectral parame-

ters Hpo = H,,,/H' and T,, and given by

g ’ Tp
£ =T tan @' = £ (6.6)
PP\ 2rH!, H..

In column (11): The parameter p, defined by Eq. 2.32 as explained later.
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Table 6.1: Three test runs compared with numerical model.

RuN H' T a £ tmaz f’ Hpo Tp 5}3 Pu M
No. | [m] | [sec]

(1) | () | @) | @ |G| (6 [(M] @) |(10)](L)](12)
P1 [.0685 | 1.082 | 12.9 | 1.72 | 170.98 | .05 | 1.01 | 1.09 | 1.88 | .090 | .074
P2 | .0535 | 1.357 | 18.4 | 2.44 | 268.98 | .05 | 1.03 | 1.56 | 3.75 | .085 | .088
P3 | .0457 | 1.738 | 25.5 | 3.39 | 210.01 | .10 | 1.06 | 1.58 | 5.22 | .079 | .104

e In column (12): The parameter x defined by Eq. 2.29 as explained later.

The value of the parameter o for the three runs ranges from 12.9 to 25.5. Thus,
the required condition of 0? >> 1 stated in Eq. 2.8 is well satisfied. The other required
condition in Eq. 2.8, (cot #)2 > 1, is less satisfied for the relatively steep slope cot §' = 3.
This may cause errors on the order of 10%.

Both parameters p, and g are small for these tests. The parameter p, ranges
from 0.079 to 0.090, whereas the parameter pu from 0.074 to 0.104. The small values
of the parameter p, imply that the order of magnitude of the fluid velocity inside the
permeable underlayer is small relative to that over the rough slope. The small values of
the parameters u indicate that the laminar flow resistance is small as compared to the
turbulent flow resistance inside the permeable underlayer. As a result, scale effects in
these small-scale tests should be small.

For the purpose of the computation of the hydraulic stability of armor units to be
discussed in Chapter 7, the armor stability parameters listed below need to be specified
as input to the numerical model. The following values are based on the related work by

Kobayashi and Greenwald (1988) and Kobayashi, Cox, and Wurjanto (1991):
e Specific density of the gravel, s,=2.7.
e Frictional angle of armor units, ¢=>50°.

e Area coefficient, C';=0.9.
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Volume coefficient, C'3=0.6.
Drag coefficient, Cp=0.5.
Lift coefficient, C',=0.3.
Inertia coefficient, C'pr=1.5.
Upper limit of the normalized fluid acceleration, a@,,,-=1.0.

Lower limit of the normalized fluid acceleration, a@,,;,=-0.8.

Lastly, the numerical model also requires the following computation and experi-

mental parameters specified as input:

&

Space interval Az’ of the finite difference grid where the normalized space interval

A."
A= e

. Largest normalized time step At of the finite difference grid based on the numerical

stability of the adopted explicit finite difference method as well as the convenience

of storing computed time series as discussed in WK 92.

. Numerical damping coefficients €; and €; in Eqs. 4.61 and 4.62 for the dissipative

Lax-Wendroff scheme discussed in Section 4.3.

Largest normalized water depth 8, used to determine the location z; of the upper

computational waterline in the numerical model PBREAK.

. Largest normalized water depth §,, used to determine the location z,, of the lower

computational waterline in the numerical model PBREAK.

. Normalized time ?¢,,i, in Eq. 5.25 marking the beginning of the time averaging

process as discussed in Section 5.4 where use is made of ¢,,;, =0 corresponding to

the beginning of the measurements and computation.

Physical water depth é. corresponding to the vertical distance of the waterline
meter placed above the upper boundary of the permeable underlayer to measure

the waterline oscillations.
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Table 6.2: Computation parameters specified as input to numerical model.

Run | A2’ Az Largest At | €¢; | €; | Largest §; | Largest §,,

No. | [m

(1) | ) (3) (4) (5) | (6) (7) (8)

P1 | 0.006 | 0.00676 0.00118 1 1 0.001 0.001-0.002
P2 | 0.006 | 0.00610 0.00100 1 1 0.001 0.001-0.002
P3 | 0.006 | 0.00516 0.00080 1 1 0.001 0.001

RUN | timin ol A
No. [m] [m]
() [ (9 | (10) | (11)
Pl 0 0.0275 | 0.021
P2 0 0.0275 | 0.021
P3 0 0.0275 | 0.021

8. Physical water depth 6§, marking the landward limit of the armor stability compu-
tation where the choice of §;=d;, is reasonable since the armor units are assumed

to be fully submerged in the numerical model.

The computation for each run may consist of a number of sequences as summarized in
the following. Whenever a non-remediable numerical problem is encountered, the present
sequence is terminated and the user is called to manually specify different computation
parameters for the next sequence. This sequential computation along with examples
is explained in detail in WK 92. The computation parameters At, ¢, €, 85, and 4,
are adjustable by the user from one sequence to another to overcome various numerical
problems. The space interval Az is fixed during the computation for each run. The
experimental parameters t,,;,, 0., and é/, are related to the specific experiment conciucted
by Cox (1989) and have nothing to do with numerical problems. The specified values
of the parameters listed above are given in Table 6.2. The number of sequences of the

computation was two for Run P1, three for Run P2, and one for Run P3.
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6.3 Comparison Between Measured and Computed Reflected Waves

The measured time series of the reflected wave train and waterline oscillation for
each of Runs P1, P2, and P3 are available for comparison with the numerical model. Since
the performance of a numerical model is judged primarily by the agreement between the
measured and computed results, it is imperative to show all the figures depicting the
comparison between the numerical model and the measurements for all the three runs.
The comparison between the measured and computed reflected waves is presented first
in the following.

The free surface elevations at the toe and at two locations seaward of the toe were
measured for each test run. The measured free surface elevations were used to separate
the incident wave train 7{(#') and the reflected wave train 7).(#') at the toe of the slope.
The separated incident and reflected wave trains were termed the measured incident and
reflected waves (Kobayashi, Cox, and Wurjanto 1990). The separation procedure based
on linear wave theory was judged to be sufficiently accurate since the water depth at
the toe of the slope was deep enough to apply the linear theory with some confidence.
The normalized incident and reflected wave trains are denoted by 7;(t) and 7,(t) where
the significant wave height, H' = H!, and the mean period, 7' = T , are used for
the normalization. The normalized incident wave trains for Runs P1, P2, and P3 were
plotted in WK 92. The measured and computed reflected wave trains for the three runs
are shown in Figures 6.2, 6.3, and 6.4. The numerical model predicts the overall trend
of the reflected waves but tends to underestimate the crest heights and trough depths.
It is also noted that the reflection from the permeable slope increases with the increase
of the surf similarity parameters £ and &, listed in Table 6.1 for each of the three runs.

Figure 6.5 presents the normalized measured and computed reflected wave spectra
Sr(f«) for the three runs. The normalized incident wave spectra S;( f.) are also plotted
to show the incident wave energy at given frequency. Since Figure 6.5 is the first spectral
plot presented herein, it is appropriate to clarify the present spectral analysis procedures

which are outlined as follows:

1. The normalized time duration is 0 < t < t,,,, where the value of t,,,. for each test
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Table 6.3: Effective range of normalized frequency domain.

BROW | (Fdsn | (haisa

No.
(1) (2) (3)
Pl 0.12 1.6

P2 0.15 2.0
P3 0.19 2.6

run is given in Table 6.1.
2. In performing the Fourier transform, the mean of the time series has been removed.

3. The spectral quantities are presented in a smoothed form where a band-averaging

method is used with 16 degrees of freedom.

4. The effective range of the frequency resolution as dictated by the spacings of the
three wave gages was 0.11Hz < f. < 1.5Hz (Kobayashi, Cox, and Wurjanto 1991),
where the measured wave components outside the effective range were negligible.
The corresponding normalized range is (f.)min < fe < (f«)mae Where the values of

(fae)min and (fi)maz are listed in Table 6.3.

. To be consistent with the frequency resolution limitation, the integration of a

on

spectrum to find its zero moment is performed over the effective frequency range

(fnx)min < f* < (ft)ma..?: Oill)’.

Furthermore, to examine the wave reflection by the frequency component, the
reflection coefficient 7(f.) may be defined as the square root of the ratio between the

reflected and incident wave spectral densities at the normalized frequency f,:

_[8.(f)
r(fa) = S (6.7)

Figures 6.6, 6.7, and 6.8 depict the variations of the measured and computed

reflection coefficient r in the frequency domain for Runs P1, P2, and P3, respectively.
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Also plotted in these figures are the measured and computed coherence squared 72 and
phase difference 6;, [e.g., Bendat and Piersol (1986)] between the incident and reflected
waves. The average reflection coefficient ¥ may be defined as

(mo)r

My

T = (6.8)

where m, is the zero moment of the normalized incident wave spectrum S;( f.) as intro-
duced in relation with Eq. 6.4, and (m,), is the zero moment of the normalized reflected
wave spectrum S,(f.). The measured and computed values of the average reflection
coefficient 7 are listed in columns (2) and (7) in Table 6.4.

The numerical model tends to overestimate the reflection of wave components with
longer periods and the dissipation of wave components with shorter periods. The overall
characteristics of the waves reflected from the permeable slope are predicted well by the
numerical model. The crests and troughs of the time series shown in Figures 6.2-6.4 as
well as the reflection coefficient in the high frequency range shown in Figures 6.6-6.8 are
not predicted very well probably because of the assumption of long waves made in the
numerical model which may not be appropriate for the high frequency wave components
at z = 0.

The coherence squared between any two time series indicates how the two time
series are related. The coherence squared of unity indicates that the two time series
are fully correlated. Zero coherence means no correlation whatsoever. Therefore, the
coherence squared is a measure of degree of correlation between two processes. On
the other hand, the phase difference 0;+( f«) may be related to the normalized travel
time given by (_T':fﬁ) for the wave component f, propagating up-slope from =0 and
then down-slope to z=0 (Kobayashi, Cox, and Wurjanto 1990). The coherence squared
and phase difference are used herein, in addition to the time series and power spectral
densities, to examine the agreement between the measured and computed results. These
quantities turn out to be harder to predict accurately.

The numerical model generally predicts the coherence squared 2 and the phase
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Table 6.4: Measured and computed values of average reflection coefficient 7, wave set-
up ZV, significant swash height kY, significant run-up RY, and maximum
run-up RY, . on the upper slope.

MEASURED COMPUTED
RuN
No.
= 7 U U U = U r 9 U
T Z‘IE hs RS Rﬂlﬂ.q‘”..' r Z‘!{ '&8 RS RT?L(I.I

M@ ]G | 4| 6G) | 6 f-(7) ] @ [ |10)] 101
PI | 0.120 [ 0.047 | 1.047 | 0.668 | 1.324 [ 0.093 | 0.061 | 1.067 | 0.573 | 1.006
P2 | 0.211 | 0.055 | 1.578 | 0.963 | 1.458 || 0.154 | 0.047 | 1.413 | 0.781 | 1.112
P3 | 0.282 | 0.051 | 2.092 | 1.192 | 2.280 || 0.258 | 0.045 | 1.746 | 0.940 | 1.851

difference 6;. reasonably well for the low and peak frequency components, but unsat-
isfactorily for the higher frequency components. This may be due to the long wave
assumption underlying the numerical model which may not be appropriate for the high
frequency wave components at z = 0. The examination of Figures 6.5-6.8 indicates that
the coherence squared tends to become small in the frequency range where the measured
incident and reflected wave components are small and may not be very accurate, It is
noted that the measured and computed phase differences 6;, are plotted herein in the
range of —180° < 6;. < 180°. As Kobayashi, Cox, and Wurjanto (1990) pointed out,
the agreement would appear better if the normalized travel time (Z__:E) were plotted,
instead of 6;., as a function of f. without the restriction of —180° < 6;, < 180°. It can
be seen in Figures 6.6-6.8 th#t the phase difference 6;. would decrease monotonically

with increasing normalized frequency f, if the restriction of —180° < 6;, < 180° were

not imposed for the plotting purpose.
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Figure 6.2: Measured and computed reflected wave trains at 2=0 for Run P1.
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Figure 6.3: Measured and computed reflected wave trains at z=0 for Run P2.
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Figure 6.4: Measured and computed reflected wave trains at z=0 for Run P3.
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Figure 6.5: Measured and computed reflected wave spectra shown relative to
incident wave spectrum at z=0 for three runs.
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Figure 6.6: Measured and computed reflection coefficient, coherence and phase
between incident and reflected waves at =0 for Run P1.
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Figure 6.7: Measured and computed reflection coefficient, coherence and phase
between incident and reflected waves at =0 for Run P2.



94

Run P3 Computed

Measured

e L

1.0

r 0.5-

0.0

1.0

0.0 = . . :
180

90 -

ir
.....90_

-180
0.0

Figure 6.8: Measured and computed reflection coefficient, coherence and phase
between incident and reflected waves at =0 for Run P3.
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6.4 Comparison Between Measured and Computed Waterline Oscillations

Cox (1989) used a waterline meter of wire-resistance type to measure the waterline
oscillation on the rough permeable slope which is called the upper slope hereafter for
brévity. The meter measured the elevation (ZY)" above SWL of the intersection between
the instantaneous free surface situated at 2’ = n’ and the platinum wire placed at 2z’ =
(z, + 6;.) where 6. ~ 0.0275m as indicated in Table 6.2.

Figures 6.9, 6.10, and 6.11 present the measured and computed time series of
the normalized waterline elevation Zy(t) for Runs P1, P2, and P3 where the significant
wave height H' = H/ and the mean period T’ = T}, are used to normalize the physical
elevation (Z”)’ and the time #, respectively. The numerical model predicts the waterline
oscillation better than the reflected wave train at z = 0 perhaps because the assumption
of long waves is more appropriate near the waterline,

The normalized spectra Sy( f.) corresponding to the normalized waterline eleva-
tion ZY(t) for Runs P1, P2, and P3 are shown in Figures 6.12, 6.13, and 6.14 together
with the coherence squared y%;, and the phase ;7 between the incident waves and the
waterline oscillations on the upper slope. The agreement between the measured and
computed spectra Si/( f«) is good in both low and high frequency ranges. The numerical
model predicts the coherence squared v%; well near the peak frequency but marginally
for the low and high frequency ranges probably because of the long wave assumption
used in the model and noise in the measurement. The phase difference 6;;7( f.) is related
to the normalized travel time given by (5_7?%) for the wave component f, propagating
from =0 to the moving waterline on the upper slope (Kobayashi, Cox, and Wurjanto
1991). The model performs reasonably well in predicting the phase difference 8;;; except
for the high frequency components, even though there is a lag between the measured and
computed #;; for Runs P2 and P3. For the high frequency range, however, the numerical
model predicts the phase difference poorly. This may be related to the underestimation
of the crest (run-up) elevations of Z,(¢) by the present numerical model as shown in
Figures 6.9-6.11.

Furthermore, to examine the statistics of the run-up and swash on the upper
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slope, the time series ZU(t) with 0 < t < tyaz is separated into individual swash events
using a zero-upcrossing method. Several definitions related to the waterline oscillation
are first introduced. The set-up used herein refers to the time-averaged value of the
waterline elevation above SWL over the specified duration. The set-up on the upper
slope denoted by ZU is the time-averaged value of the time series ZU(t) according to
Eq. 5.25. Run-up is defined as the highest elevation above SWL reached by the waterline
of the physical depth ¢, during an individual swash event. Swash height is the vertical
distance between the highest and lowest points reached by the waterline corresponding
to the depth 8. during an individual swash event. Listed in the following are the run-up
and swash statistics calculated from this time series analysis, where the superscript U

denotes the upper slope:

o hY = normalized significant swash height, defined as the average of the highest

one-third swash heights, on the upper slope.

e RY = normalized significant run-up, defined as the average of the highest one-third

run-up elevations above SWL, on the upper slope.

o RU . = normalized maximum run-up, defined as the highest elevation above SWL

reached by the waterline during 0 < ¢ < t,,42, on the upper slope.

o RY = normalized run-up corresponding to the specific value of P where P is the

exceedance probability estimated by

n
= 9
£ N 1 (6.9)

where n is the rank of the individual run-up elevations and N, the number of the

swash events during 0 < t < tap.

The measured and computed values of the set-up ZU, the significant swash height
RY, the significant run-up RY, and the maximum run-up RY . on the upper slope are
given in Table 6.4. The present numerical model generally underestimates the run-up and

swash height as is also apparent in Figures 6.9-6.11. The agreement could be improved
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by reducing the friction factor f’ listed in Table 6.1 and based on the limited calibration
for the rough impermeable slope since the values of f’ for the rough impermeable and
permeable slopes may not be the same.

Finally, the measured and computed exceedance probabilities P as a function
of (RE/RE) for the three runs are presented in Figure 6.15 along with the exceedance

probability Pg according to the Rayleigh distribution given by
2 ;
Pr = exp [—2 (RY/RY) ] ‘ (6.10)

The numerical model predicts the measured run-up distribution well partly because the
measured and computed values of R, in Figure 6.15 are normalized by the measured and
computed values of R, respectively, to offset the underestimation of R, and R, for small
P by the numerical model. The numerical model predicts the data points for small P

much better than the Rayleigh distribution.
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Figure 6.9: Measured and computed waterline oscillations on upper slope for
Run P1.
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Figure 6.10: Measured and computed waterline oscillations on upper slope for
Run P2.
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Figure 6.11: Measured and computed waterline oscillations on upper slope for
Run P3.
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Figure 6.12: Measured and computed spectra of waterline oscillations on upper
slope as well as coherence and phase between incident waves and

waterline oscillations on upper slope for Run P1.
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Figure 6.13: Measured and computed spectra of waterline oscillations on upper
slope as well as coherence and phase between incident waves and

waterline oscillations on upper slope for Run P2.
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Figure 6.14: Measured and computed spectra of waterline oscillations on upper
slope as well as coherence and phase between incident waves and
waterline oscillations on upper slope for Run P3.
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Figure 6.15: Measured and computed exceedance probability of run-up as com-

pared with Rayleigh distribution for three runs.
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6.5 Computed Time-Dependent Flow Fields

The agreement between the numerical model and the measurements discussed
in the preceding two sections may be good enough to allow one to examine, at least
qualitatively, the quantities which were not measured in the tests conducted by Cox
(1989).

The computed results for Runs P1, P2, and P3 that can be obtained directly from
the numerical model without additional analyses have already been presented in WK 92

in the normalized form. The presented results include:

1. Reflected wave train 7,(t) at the seaward boundary =0

(Figures 6.2-6.4).

2. Time series of the waterline elevation on the upper slope, ZY(t)

(Figures 6.9-6.11).

3. Time series of the waterline elevation on the lower slope, ZX(t), where the lower
slope corresponds to the impermeable lower boundary of the permeable underlayer

(Figure 6.16 for Run P2).

4. Portions of time series of the free surface elevation 7(t) at three different locations

(Figure 6.17 for Run P2).

5. Instantaneous spatial variations of the free surface and water table elevation n

(Figure 6.18 for Run P2).

6. Instantaneous spatial variations of the depth-averaged horizontal velocity u over
the upper slope, defined by Eq. 3.10
(Figure 6.18 for Run P2).

7. Instantaneous spatial variations of the volume influx g into the permeable under-
layer, introduced in Eq. 3.7
(Figure 6.19 for Run P2).
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Instantaneous spatial variations of the horizontal fluid velocity u, at the upper
boundary of the permeable underlayer, defined by Eq. 3.21
(Figure 6.19 for Run P2).

Instantaneous spatial variations of the vertically-averaged discharge velocity u,
inside the permeable underlayer, defined by Eq. 3.35
(Figure 6.20 for Run P2).

Instantaneous spatial variations of the discharge m, inside the permeable under-
layer, defined by Eq. 3.32
(Figure 6.20 for Run P2).

Spatial variations of the mean, maximum, and minimum values of 7 where the
maximum and minimum values indicated by the subscripts ;u.- and ,,;, are with
respect to ¢ during 0 < t < t,,,, at given location z

(Figure 6.21 for Run P2).

Spatial variations of the mean, maximum, and minimum values of u

(Figure 6.22 for Run P2).

Spatial variations of the mean, maximum, and minimum values of the horizontal
volume flux m over the upper slope, defined by Eq. 3.9

(Figure 6.23 for Run P2).

Spatial variations of the mean, maximum, and minimum values of g,

(Figure 6.24 for Run P2).

. Spatial variations of the mean, maximum, and minimum values of u,

(Figure 6.25 for Run P2).

Spatial variations of the mean, maximum, and minimum values of m,

(Figure 6.26 for Run P2).

Time-averaged mass balance for the flow over the upper slope in Region 1

(Figure 6.32 for Run P2).
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18. Time-averaged mass balance for the flow inside the permeable underlayer in Re-
gions 2 and 3
(Figure 6.33 for Run P2).

19. Time-averaged energy quantities for the flow over the upper slope in Region 1

(Figure 6.35 for Run P2).

20. Time-averaged energy quantities for the flow inside the permeable underlayer in
Regions 2 and 3
(Figure 6.36 for Run P2).

21. Time-averaged energy balance for the flow inside the permeable underlayer in Re-
gions 2 and 3
(Figure 6.37 for Runs P2 and P3).

The reflected waves and waterline oscillations on *he upper slope have been ex-
amined in detail in Sections 6.3 and 6.4 to evaluate the numerical model using the
measurements. The rest of the items in the above list will be presented to the degree
necessary to explain the hydrodynamics involved with the irregular wave interaction with
the rough permeable slope. The computed results for Run P2 presented in Figures 6.16
through 6.31 are representative unless stated otherwise. The time-averaged mass and
energy balances will be presented separately in the next two sections. Figures 6.16
through 6.31 are explained in somewhat arbitrary order in the following.

Figure 6.22 needs a special attention regarding the spike appearing in the spatial
variation of the maximum depth-averaged horizontal velocity ,,,.. To eliminate spikes
like this, which tend to occur at the moving waterline, WK 92 suggested a measure that in
effect would reduce the largest time step At allowed in the computation. To demonstrate
this remedy, another computation for Run P2 is performed using the largest allowable
time step At of 0.5x10™3, which is one half of the value used in the first computation as
listed in Table 6.2. The spatial variations in Figure 6.22 from the first computation with
(At)maz=1.0x10"3 are replotted in Figure 6.27 along with the results from the second

computation with (At)mqr=0.5x10"3. The second computation does not exhibit any
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spike, indicating that the spike is numerical by origin. The computation for Run P3
with the input parameters as listed in Table 6.2 also exhibited similar spikes. The
appearance of spikes in the spatial variations of %45 and ., is an unwanted nuisance
but can be remedied. To provide a stronger basis for this claim, the second computation
for Run P3 is performed using (At),,q:=0.267x1073, which is one third of the value used
in the first computation as listed in Table 6.2. The spatial variations of #qz, %, and
Umin from the two computations for Run P3 are shown in Figure 6.28. It can be seen in
this figure that no spike appears in the second computation.

[t should be pointed out that in the numerical model, the depth-averaged hori-
zontal velocity u is obtained by dividing the horizontal volume flux m by the water depth
h as given by Eq. 3.10. The dependent variables computed directly by the numerical
model for Region 1 are m and h, the two elements of the vector U in Eq. 4.8. The
spatial variations of the maximum and minimum values of m and h themselves do not
exhibit any spike even if spikes exist in %pmqer and umyin, as can be seen in Figures 6.21,
6.22, and 6.23 for Run P2. Moreover, the spikes always occur near the waterline z; on
the upper slope. These facts indicate that this spike problem is related to the landward
boundary condition at the moving waterline z,. The present Lax-Wendroff scheme does
not show any numerical problem as long as the adopted numerical stability criterion
given in WK 92 is satisfied. As a matter of fact, the adopted numerical stability crite-
rion is always imposed in selecting the largest time step At as explained in relation to
Table 6.2. It is also noted that even when spikes do appear in the spatial variations of
Umag ANd Upin, the mean value 7 is hardly affected. This is because the values of u,, .z
and %y, occur only once during the computation duration, which is generally long for
random waves, and can easily be affected by local numerical problems.

While the waterline oscillations on the lower slope shown in Figure 6.16 can not
be measured using a waterline meter unlike the waterline oscillations on the upper slope
shown in Figure 6.10, some realistic features can be observed. First, the waves are
significantly damped as they enter the permeable underlayer, which is realistic in the

light of the measured water table elevations presented by Bruun and Johannesson (1976)
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and Hall (1991). The vertical range of the waterline oscillations on the lower slope is
about one-third of that on the upper 'slope for the three runs. Second, the high-frequency
wave components are damped more than the low-frequency wave components as shown in
Figure 6.29 where the computed spectra Sy(f.) and Sp(f.) of the waterline oscillations
on the upper and lower slopes for Runs P2 and P3 are plotted.

Figures 6.30 and 6.31 are intended to show how the waterline oscillations on the
lower slope, ZE, are related to the incident wave train, 7;, and the waterline oscillations
on the upper slope, ZY, for Run P2. Figure 6.30 depicts the coherence squared v% and
the phase difference 6;;, between 7; and Zf’ where the corresponding spectra are also
plotted to make it easier to interpret the figure. As compared to Figure 6.13 depicting
the coherence squared 73, between 7; and ZV, Figure 6.30 indicates that the degree of
coherence between 7; and ZF is less than that between 7; and ZV. Figure 6.31 shows
the coherence squared 77, and the phase difference 61, between ZU and Z~F. It can be
seen in Figures 6.30 and 6.31 that the degree of coherence between 7; and Z~ is about
the same as that between ZY and Z~.

In Figure 6.18, the shaded areas correspond to the permeable underlayer and
the permeable underlayer is relatively thick compared to the wave height H' used for
the normalization. The presence of the thick permeable underlayer modifies the wave
patterns. In the case of an impermeable slope, waves can only up-rush and down-rush on
the slope. The permeable underlayer, on the contrary, absorbs waves as can be seen from
the spatial variations of n at different time levels shown in Figure 6.18 for Run P2. As a
result, the type of wave breaking in the presence of a thick permeable underlayer will be
different from wave breaking on impermeable slopes. The dominant breaker types for the
three impermeable slope test runs conducted by Cox (1989) were plunging, collapsing
and surging. The spatial variations of the free surface elevation n shown in Figure 6.18
do not show very steep fronts computed in the case of impermeable slopes [e.g., Wurjanto
and Kobayashi (1991), Kobayashi and Wurjanto (1992)]. The lack of very steep fronts
is also reflected in Figure 6.17 where asymmetry of wave profiles are not very apparent

even in very shallow water where the locations of £=0.31, 0.61, and 0.92 on the rough
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permeable slope can be found in Figure 6.18. Comparison of the variations of 5 and
u in in Figure 6.18 reveals the sequence of water up-rushing and down-rushing on the
permeable slope from t=124.75 to t=126.

The spatial variations of the normalized volume influx g, shown in Figure 6.19
indicate water flowing into the permeable underlayer during wave up-rush and water
outflow in the region below the trough of the free surface 1 shown in Figure 6.18. The
corresponding variations of the normalized horizontal velocity u; is also shown in Fig-
ure 6.19. The sudden jumps in the variations of u; are the consequence of the assumption
made to estimate u; using Eq. 3.21 for the present one-dimensional model.

Comparing Figures 6.20 and 6.18, the flux inside the permeable underlayer appears
to be driven mainly by the hydrostatic pressure gradient related to the term (—gg] in
Eq. 3.27 as is the case with the thin permeable underlayer (Kobayashi and Wurjanto
1990). Since m, = pyhpu, from Eq. 3.35 and h, approaches zero at the waterline on
the lower slope, m, approaches zero at this waterline even though u, does not approach
zero.

Figures 6.21 through 6.26 show the maximum, mean, and minimum values of 7,
U, M, @b, Up, and m, for Run P2. These values are readily available from the numerical
model but can not be verified using available experimental data. The variations of 7,44,
7, and 7min, however, look realistic in the light of the work of Bruun and Johannesson
(1976) who observed wave set-up inside a porous breakwater. A spike in the variation
of Umaz in Figure 6.22 has been discussed. The variations of (up)maz and (tp)min in
Figure 6.25 also show spikes near the landward end. However, the variations of (mp)mas
and (Mp)min in Figure 6.25 do not exhibit any spike. This is similar to the spike problem
in the variations of #pay and Upi, already discussed. It is noted that the dependent
variables obtained directly by the numerical model for Region 2 and 3 are m, and
hp, whereas u, is obtained using Eq. 3.35. The small mean fluxes and velocities in

Figures 6.22 through 6.26 will be discussed in detail in Section 6.6. Finally, these figures
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show that the order of magnitude of 5, v, m, u,, and m, is indeed unity but the order
of magnitude of ¢, can be much greater than unity. The normalization of ¢ given by
Eq. 3.6 could be modified since p,qy with p, = (n,p,) = 0.041 for Run P2 is much less

than g¢.
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Figure 6.16: Computed waterline oscillations on lower slope for Run P2.
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Figure 6.17: Portions of time series of surface elevation 7(z,t) at z = 0.31, 0.61,
and 0.92 for Run P2.
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6.6 Time-Averaged Mass Balance

Being based on the continuity equations, the computed flow fields need to satisfy
the time-averaged mass balance. This is one way to check the accuracy of the numerical
model. The three one-dimensional continuity equations, Eqs. 3.8, 3.31, and 3.41, are
time-averaged in a manner similar to the time-averaging of the energy equations in
Section 5.4.

Integrating Eq. 3.8 with the definition of the time average given by Eq. 5.25 yields

the time-averaged equation of mass for Region 1.

dm . h(tma:c) = h(tmin) -
e + P + -

The time averaging of the continuity equations for Regions 2 and 3 separated by

0 (6.11)

brnaze — tméva

the moving waterline z; on the upper slope becomes easier by combining the two conti-
nuity equations into one equation. The volume influx ¢y given by Eq. 4.18 is rewritten
as 2
p%—g%z for Regions 1 and 2 (0 < z < )

| (6.12)
0 for Region 3 (z, < z < zy)

a6 =

where g is set equal to zero in the region # > z, during the time-marching computation.

Introducing a new parameter I defined as

0 for Region 2 (0 < z < z;) :
I= (6.13)
1 for Region 3 (z; < 2 < zy,)

the continuity equations for Regions 2 and 3, Eqs. 3.31 and 3.41, can be unified as follows:
dmy on

Pt 5 =

Integrating Eq. 6.14 with the definition of the time average given by Eq. 5.25

0 (6.14)

yields the time-averaged equation of mass for Regions 2 and 3.
dm*p tmaz an

P - 2 —/t 150t = 0 (6.15)

For random waves, the computation duration is typically long and (¢4 — tmin) is

min

much greater than unity. The terms associated with water storage effects and involving
the integral limits ¢,,i;, and t;,4, in Eqgs. 6.11 and 6.15 should then be negligible, and
Egs. 6.11 and 6.15 may be approximated by
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dm = _
£ o + P =0 (6.16)
. dm

Pl — Tp —d;’ = (6.17)

The computed spatial variations of %, P, and *npd%—lﬂj are plotted in Fig-
ures 6.32 and 6.33 for Run P2 to check whether the computed results satisfy Eqgs. 6.16
and 6.17.

To show that the last terms in Eqgs. 6.11 and 6.15 are indeed negligible, the last
term of Eq. 6.11 is expressed as

h(.’!:., tmax) - h’(x! t‘nfﬂ)

tmaz — tmin

Ri(z) =

(6.18)

For I=1, the last term of Eq. 6.15 is identical to R; given by Eq. 6.18 since n(z,t) =
h(z,t)+ z(z). The largest absolute value of R, for the three runs are listed in Table 6.5.
Compared to the values of %, Py, and npd—d? as plotted in Figures 6.32 and 6.33
for Run P2, the value of R}, is indeed negligible. This is also true for Runs P1 and P3.
Thus, the water storage effects in Eqs. 6.11 and 6.15 are negligible for the three runs.

Figure 6.32 also shows the sum of the two terms in Eq. 6.16 as a function of z
for Run P2. Eq. 6.16 requires that the sum be zero. Similarly, Figure 6.33 also shows
the sum of the two terms p,g and —np%n;z in Eq. 6.17 as a function of z for Run P2
where Eq. 6.17 requires that the sum be zero. These requirements are not satisfied in
the vicinity of the still waterline on the upper slope where 2,=0 (located at z=1.22
for Run P2). The computed results for Runs P1 and P3 are similar to those shown in
Figures 6.32 and 6.:33 for Run P2. This problem may be attributed to the landward
boundary condition, which is somewhat intuitive, used in the numerical model of WK
92. It should be noted that the time-averaged quantities are harder to predict accurately
since they are small relative to the corresponding time-varying quantities as shown in
Figures 6.23, 6.24, and 6.26.

Figure 6.34 shows the spatial variations of three normalized time-averaged vol-

ume fluxes: the horizontal volume flux 77 in Region 1, the volume influx @ (shown as
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Table 6.5: Largest absolute values of Ry, Rg, and Rg,.

RUN IR"'*'Inmz IR’E|maz lREP |mrr..7:

P1 | .003956 | .002515 | .000178
P2 | .000976 | .000454 | .000057
P3 | .003544 | .001723 | .000398

PqT5) between Regions 1 and 2, and the horizontal discharge m, (shown as n,7;) in
Regions 2 and 3 for Runs P2 and P3. The time-averaged volume flux @ is into the
permeable underlayer above SWL and out of the permeable underlayer below SWIL where
¢ has been taken to be positive downward. Correspondingly, the time-averaged volume
fluxes 7 and T, are landward and seaward, respectively, in the vicinity of SWL. The
mean depth-averaged horizontal velocity u in Region 1 and the mean vertically-averaged
discharge velocity u, in Regions 2 and 3 have been plotted in Figures 6.22 and 6.25,
respectively. The computed values of %, are negative and consistent with the computed
seaward volume flux inside the permeable underlayer. On the other hand, the computed
values of @ are negative below SWL and positive above SWL. Since 7 is negative and
related to undertow for impermeable slopes as shown by Kobayashi, DeSilva, and Wat-
son (1989), the permeability effect produces the time-averaged landward volume flux and
fluid velocity above SWL. The overall mass balance requires that the three time-averaged
volume fluxes approach zero at z=0. Figure 6.34 indicates that 7 approaches a very
small negative value at 2=0. The computed results for Run P1 show similar patterns.
This implies that the seaward boundary condition used in the numerical model may need

to be adjusted to predict m=0 at z=0.
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6.7 Time-Averaged Energy Balance

The time-averaged energy equations derived in Section 5.4 serve the following
purposes in this study: (1) Eq. 5.30 is used to estimate the normalized time-averaged
rate of energy dissipation per unit horizontal area in Region 1, D, and (2) Eq. 5.32 is
used to check whether the energy balance in Regions 2 and 3 is satisfied or not.

Figure 6.35 for Run P2 shows the four time-averaged normalized energy quantities
in Region 1: the specific energy E, the horizontal energy flux F, the vertical energy flux
D,, the rate of energy dissipation D, of which the first three quantities are computed
and the last is estimated using Eq. 5.30. Figure 6.36 for Run P2 depicts the four time-
averaged normalized energy quantities in Region 2 and 3: the specific energy E;, the
horizontal energy flux F,, the vertical energy flux D, the rate of energy dissipation _2:,
all of which are computed. Figure 6.37 plots the three terms involved in Eq. 5.32: %gﬂ,
D,, —D,, and the sum, which should be zero, for Runs P2 and P3.

Eq. 5.32 is a simplification of Eq. 5.31 under the assumption that ({42 — tmin) >

1. The neglected term in Eq. 5.31 is expressed as Rg,:

REp(x) - EP(xatmaa:) - EP{:E: tmin} (619)

tnaz — tmin

The largest absolute values of Rg, for the three runs are listed in Table 6.5. Compared
to the values of the other three terms in Eq. 5.31 as plotted in Figure 6.37 for Runs P2
and P3, the neglected term is indeed negligible. Table 6.5 also shows the largest absolute
values of Rg defined as

E(z,tmez) — E(2, tmin)

tmaz == tmin

Ri(z) = (6.20)

which is the last term in Eq. 5.30, to show that this term is also small. In the numerical
model, however, Eq. 5.30 used to estimate the normalized rate of energy dissipation, D,

is not simplified by neglecting the term defined by Eq. 6.20.
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The specific energy E shown in Figure 6.35 increases somewhat and then decreases
landward, whereas the energy flux F' decreases landward. This decrease of F in Eq. 5.30
is mostly caused by the energy flux D, into the permeable underlayer. The double peaks
of D, in the vicinity of the still waterline where z, = 0 may be related to the spatial
variation of @ shown in Figure 6.34 where D, is defined by Eqs. 5.9 and 5.28. The
rate of energy dissipation D due to the shear stress in the flow over the rough slope
is small for Run P2 as shown in Figure 6.35. This is also true even for Run P1 with
the surf similarity parameters £=1.72 and £,=1.88, as listed in Table 6.1, which would
correspond to plunging waves if the slope were impermeable. The small dissipation rate
in the flow over the rough slope is in qualitative agreement with the visual observations
of Kobayashi, Cox, and Wurjanto (1991) who noticed more intense wave breaking and
chaotic flow on the impermeable slope than on the permeable slope.

The rate of energy dissipation D, inside the permeable underlayer depicted in
Figure 6.36 is roughly the same as D, except in the region of D,=0 which is situated
landward of the intersection between the envelope of 7,4, and the upper slopiin Fig-
ure 6.21. This implies that D, and D, are dominant in Eq. 5.32 except that %:—D_,
when D,=0. e,

Eq. 5.32 requires that the sum of the three terms %, D,, and =D, be zero.
This requirement is not satisfied in the vicinity of the still waterline on the upper slope
where 2,=0, as shown in Figure 6.37 for Runs P2 and P3. This problem is similar to
the time-averaged mass balance problem discussed in the preceding section, indicating
some numerical difficulties at the moving waterline. It can be seen in Figure 6.37 that
the results for Runs P2 and P3 look similar. The corresponding results for Run P1 is
also similar. The permeability effects appear to reduce the differences associated with
the surf similarity parameters £ and £, listed in Table 6.1.

The numerical damping coefficients ¢; and €; are listed as input to the numerical
model in Table 6.2. These coefficients are associated with the artificial dissipation of
the Lax-Wendroff scheme used to solve the flow field in Region 1. One may legitimately

question how these user-specified coefficients influence the outcome of the numerical
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model. To answer this question, a second computation for Run P1 is executed using
€1=€2=3 as compared to ¢;=¢;=1 in the first computation. This difference in the value
of the damping coefficients should appear in the time-averaged energy quantities for
Region 1 such as those plotted in Figure 6.35. Figure 6.38 presents the time-averaged
energy quantities for Region 1 from the two computations for Run P1. The increase of
the numerical damping coefficients ¢; and ¢, has not caused any noticeable difference,
indicating that the computed results are not sensitive to the values of ¢; and €, of the
order unity.

Further, one may ask whether the artificial numerical dissipation described in Sec-
tion 4.3 is needed at all in this numerical model. To answer this question, a third compu-
tation for Run P1 is executed using €;=e3=0 which means that the artificial numerical
dissipation is deactivated. Figure 6.39 presents the time-averaged energy quantities for
Region 1 from the first computation for Run P1 using ¢; =¢;=1 and the third computation
using €;=€3=0. There is no noticeable difference between the two results. This implies
that the dissipation of energy in Region 1 is numerical but implicit since the physical
dissipation mechanism in Region 1 is not modeled in the present one-dimensional model.
In this case, the artificial explicit damping of the Lax-Wendroff method has turned out to
be secondary perhaps because the energy dissipation in Region 1 is small relative to that
in Regions 2 and 3 as shown in Figures 6.35 and 6.36. However, the artificial damping
has been effective in reducing numerical problems. The computation using ¢;=¢;=0 has
undergone considerably more [remediable] numerical problems than those using non-zero
€1 and €. It is therefore recommended that the numerical damping coefficients ¢; and

€3 be specified to be on the order of unity to reduce possible numerical problems.
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Figure 6.35: Time-averaged energy quantities for Region 1 for Run P2.
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Figure 6.36: Time-averaged energy quantities for Regions 2 and 3 for Run P2.
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6.8 Sensitivity of Computed Results to Finite Difference Grid

The finite difference grid in the numerical model PBREAK consists of the space
interval Az and the time step At. The space interval Az is fixed during a computation,
whereas the time step At may vary.

Section 6.5 has shown two computations for each of Runs P2 and P3 using different
values of A¢ but the same value of Az. The computed results have been presented in
term of the spatial variations of the mean %, maximum ..., and minimum u,,;, of
the depth-averaged horizontal velocity u in Figures 6.27 and 6.28. On the other hand,
Section 6.7 has shown three computations for Run P1 using the same value of Az but
different values of the damping coefficients ¢; and €5, which result in different values of At
since the increase of €; and €3 causes the reduction of At to satisfy the numerical stability
criterion givén in WK 92. The results have been presented in Figures 6.38 and 6.39 in
terms of the time-averaged energy quantities in Region 1. It may be concluded from
these figures that the computed results are not sensitive to the time step At as long
as the numerical stability criterion is satisfied for the specified space interval Az which
needs to be small enough to yield an adequate spatial resolution.

To examine the effect of different values of the space interval Az, two more com-
putations for Run P1 are performed using Az'=0.0075m and Az’=0.004m, in contrast to
the previous three computations with Az’=0.006m where the normalized space interval
is given by Az = ﬁ";—;?, with 77=1.082s and H'=0.0685m for Run P1. These space
intervals are small relative to the computation domain shown in Figure 6.1. Figure 6.40
shows the spatial variations of the the mean 7, maximum 7,,,,, and minimum 7,,;,, of the
free surface and water table elevation 5 from the three computations for Run P1 with the
same damping coefficients €;=€e3=1 but the different values of Az. It may be concluded
from this figure that the computed results are not sensitive to the space interval Az as
long as Az is sufficiently small. It is noted that the different values of Az result in the

different values of At because of the imposed numerical stability criterion.
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Chapter 7

COMPARISON BETWEEN PERMEABLE AND IMPERMEABLE
SLOPES

7.1 Introduction

Kobayashi, Cox, and Wurjanto (1991) examined the permeability effects on irreg-
ular wave run-up and reflection by comparing the six test runs for the permeable and
impermeable slopes conducted by Cox (1989). It was found very difficult to generate the
identical incident wave trains for the permeable and impermeable slope tests in a wave
tank.

In the present work, use is made of the numerical model for impermeable slopes
developed by Wurjanto and Kobayashi (1991) to compute the hypothetical Run 1J with
J=1,2,3 in which the impermeable slope without the permeable underlayer is subjected
to the same incident irregular wave train of Run PJ explained in Chapter 6. This chapter
examines how the permeable and impermeable slopes affect the flow fields induced by
the identical incident irregular wave train.

The input data related to the incident wave trains have already been explained in
Chapter 6. The impermeable structure geometry is given by Figure 6.1 with the upper
slope being impermeable. The following input parameters for Run IJ with J=1,2,3 are

identical to those for Run PJ summarized in Section 6.2:
e Bottom friction factor f’.
e Space interval Az of the finite difference grid.

e Physical water depth 6/ associated with the waterline meter used to measure the

waterline oscillations on the rough permeable slope.

139
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o Physical water depth 6§/ marking the landward limit of the armor stability compu-

tation, which is taken as the median gravel diameter.

e All the armor stability parameters required as input to the numerical model.

The numerical model RBREAK of Wurjanto and Kobayashi (1991) used to com-
pute Runs I1, I2, and I3 uses a finite-difference scheme similar to the dissipative Lax-
Wendroff method discussed in Section 4.3. The damping coefficients ¢; and €, are re-
quired as input. The landward boundary algorithm of RBREAK at the moving waterline
on the impermeable slope is similar but more involved than the simplified treatment
at the moving waterline z,, on the impermeable slope of the present numerical model
PBREAK. The largest normalized water depth ¢, defining its computational waterline is
also required as input to RBREAK. Table 7.1 lists the values of ¢, €, and §, specified
for Runs I1, 12, and I3. Also listed is the largest allowable value of the time step At used
in each run.

It is relevant to mention here that Kobayashi and Wurjanto (1992), who applied
the numerical model RBREAK to beaches, found that their computations using €; =€3=1
and €; =€;=2 produced essentially the same results. The discussion in Section 6.7 related
to Figure 6.38, where ¢y =€3=1 and €;=¢3=3 are used, has come to the same conclusion
for the numerical model PBREAK. The damping coefficients ¢; and e of the order
unity may influence the numerical stability of the dissipative Lax-Wendroff scheme where
the increase of the damping coefficients tends to improve the numerical stability of the
computation. However, these coefficients do not make any noticeable difference in the
computed results as long as the computation is successful.

The subsequent sections compare and discuss the computed results for the flow
fields over the rough permeable and impermeable slopes for Runs PJ and IJ with J=1,

2, and 3.

7.2 Irregular Wave Reflection
Figure 7.1 shows the computed reflected wave spectra S,( fi) for the six runs. This

figure indicates that the permeable underlayer dissipates the incident high-frequency
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Table 7.1: Computation parameters specified as input to computations for Runs I1, 12,

and I3.
RUN | Largest At | €1 | € by
No.
(1) (2) 3)| )] (5)
Il 0.001176 1 1 | 0.003
12 0.000667 2 2 | 0.003
I3 0.000526 2 2 | 0.003

wave components but damps low-frequency wave components little. This is consistent
with the conclusion drawn from the discussion comparing the waterline oscillations on
the upper and lower slopes in Section 6.5.

The computed values of the average reflection coefficient 7 defined by Eq. 6.8 for
the six runs are listed in columns (2) and (7) of Table 7.2. The zero moment (m,), in
Eq. 6.8 is computed from the spectra shown in Figure 7.1. Comparison of the values of 7
for the permeable and impermeable slopes exposed to the same incident irregular wave
train indicates that the thick permeable underlayer reduces ¥ by a factor of more than
two.

Figures 7.2 and 7.3 depict the computed reflection coefficient »(f.) defined by
Eq. 6.7 together with the coherence squared y2 and the phase difference 6;, between the
incident and reflected waves for Runs P1 and I1 as well as P3 and I3. The computed
values of the reflection coefficient r exceeding unity for Run Il in Figure 7.2 may not be
correct since r should not exceed unity unless additional waves propagating seaward are
generated in the region > 0. It is also noted that the coherence squared for Run I1
shown in Figure 7.2 is well below unity.

The plots of the coherence squared 72 and the phase difference ;. for Run I3
shown in Figure 7.3 may be more reliable than those for Run I1. The permeability
effects on the coherence and phase difference may thus be discussed using Figure 7.3.

The results for Runs P2 and 12, which are not presented here, show trends similar to
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Table 7.2: Computed values of average reflection coefficient 7, wave set-up ZU, signif-
icant swash height hf;’, significant run-up RE, and maximum run-up Rqxr
for permeable (P) and impermeable (I) slopes.

PERMEABLE (P) IMPERMEABLE (I)
Run
No.

z7 | h{ | RY | RO, Z7 | k) | R | Rpe
W @16 | @[ G [ 6 || @6 | @ |10)](dn
0.093 | 0.061 | 1.067 | 0.573 | 1.006 || 0.195 [ 0.123 | 1.648 | 0.914 | 1.482
0.154 | 0.047 | 1.413 | 0.781 | 1.112 |{ 0.549 | 0.138 | 2.741 | 1.521 | 2.199
0.282 | 0.051 | 2.092 | 1.192 | 2.280 || 0.658 | 0.113 | 3.201 | 1.718 | 3.239

|
=l

Lo B = —

those shown in Figure 7.3 for Runs P3 and I3. Figure 7.3 indicates that the permeability
effects on the coherence is limited to the high-frequency range, for which both numerical
models do not perform very well anyway. The phase differences shown in Figure 7.3
indicate that the travel time up-slope from z=0 and then back down-slope to z=0,
as explained in Section 6.3, on the impermeable slope is slightly greater than that on
the corresponding permeable slope. These findings based on the computed results are
in accordance with those based on the corresponding measured results presented and

explained by Kobayashi, Cox, and Wurjanto (1991).
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Figure 7.1: Computed reflected wave spectra at =0 for six runs.
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Figure 7.2: Computed reflection coefficient, coherence and phase between inci-
dent and reflected waves at =0 for Runs P1 and Il.
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Figure 7.3: Computed reflection coefficient, coherence and phase between inci-
dent and reflected waves at =0 for Runs P3 and I3.
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7.3 Irregular Wave Run-up

Figures 7.4 and 7.5 present the computed spectra Sy(f.) corresponding to the
normalized waterline oscillations ZU(t) on the (upper) slope for Runs P1 and I1 as well
as P3 and I3. The coherence squared ‘Y?U and the phase difference 6;;; between the
incident waves 7; and the waterline oscillations ZU(t) are also plotted in these figures.
The permeable underlayer reduces the waterline oscillations across the entire frequency
range, unlike the selective reduction of the waterline oscillations on the lower slope and
the reflected waves discussed in Sections 6.5 and 7.2, respectively. The interaction of up-
rushing and down-rushing water on the impermeable slope seems to generate additional
low-frequency wave components, whereas the permeable slope appears to absorb the
incident waves with little water up-rushing as shown in Figure 7.6.

To show the contrast between the waterline oscillations on the permeable and
impermeable slopes, the instantaneous spatial variations of the free surface elevation 7
and the depth-averaged horizontal velocity u are plotted side by side for the permeable
and impermeable slopes in Figures 7.6 through 7.9 for Runs P1 and Il as well as P3
and I3. Figures 7.6 and 7.8 indicate how the thick permeable underlayer absorbs the
incoming waves. While the waterline on the impermeable slope shown on the left panel of
Figures 7.6 and 7.8 appears to moves freely on the slope, the waterline on the permeable
slope shown on the right panel is tied up to the movement of the water table inside
the permeable underlayer. These two figures also show that the water table inside the
permeable underlayer does not move much, which in effect prevents the waterline on the
permeable slope from running up and down freely. Figures 7.7 and 7.9 indicate that the
magnitude of u is reduced by the presence of the thick permeable underlayer. Figures 7.6
through 7.9 also show that the permeable underlayer does not allow very steep fronts
of waves to develop in the surf zone. The very steep fronts on the impermeable slope
are associated with the local phenomena of wave breaking, which can not be predicted
accurately by the two numerical models used herein.

The permeable underlayer effects on 1 and u are summed up in Figures 7.10

and 7.11 which show the spatial variations of the mean, maximum, and minimum values
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of 7 and » with respect to ¢t over 0 < ¢ < f,,,, for the permeable and impermeable
slopes for Runs P1 and I1 as well as P3 and I3. As has also been shown in the preceding
four figures, the thick permeable underlayer reduces the vertical range of 5 and the
m;dgnitude of u in the vicinity of the still waterline. It is noted that the still waterline
intersects the (upper) slope at 2=1.353 for Runs P1 and I1 and £=1.031 for Runs P3
and I3. The mean water level 77 on the impermeable slope is shown to approach 7,4
asymptotically since A = (p — z) > 0 in the region reached by up-rushing water during
0 <t < tyae, Wwhereas 7j on the permeable slope is connected to that inside the permeable
underlayer. The negative value of % is related to the undertow on a beach (Kobayashi,
DeSilva, and Watson 1989), whereas the time-averaged fluxes for the permeable slope
shown in Figure 6.34 result in the positive value of of @ above SWL. This suggests that
the permeability may affect the net cross-shore transport of gravel and sand.

A comment should be given regarding the presentation of Figures 7.10 and 7.11.
The spikes which originally appeared in the spatial variations of 4,4, and w,,;, in these
two figures have been removed manually. This manual smoothing may be justified in
the light of the discussion in Section 6.5 in relation to Figure 6.22 where it is argued
that the spikes are localized numerical problems that are remediable and do not affect
the overall computation results. Instead of using the manual smoothing, the spikes
could have been removed using the remedial measures suggested and demonstrated in
that discussion, and the remedied results without any spike could have been presented
here. In any case, the computed results presented herein are those obtained by using the
computation parameters listed in Table 6.2.

A time series analysis is performed for the waterline oscillations on the imperme-
able slope to obtain the run-up and swash statistics corresponding to those presented in
columns (8)-(11) of Table 6.4 and in Figure 6.15 for the permeable slope. The statistics
are presented in Table 7.2 and in Figure 7.12 where the corresponding results for the per-
meable slope are also presented for comparison. For both permeable and impermeable

slopes, the significant swash height AU, the significant run-up RY, and the maximum
U

run-up R .. increase with the increase of £ and £, where the values of £ and £, are
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listed in Table 6.1. The computed values presented in Table 7.2 also indicate that the
thick permeable underlayer reduces hY, RY, RV . and the set-up ZU by a factor of
slightly less than two. The probability distributions of the normalized run-up (RE/RE]
for the permeable and impermeable slopes shown in Figure 7.12 are very close to each
other, which indicates that the normalized run-up distribution is affected little by the
permeable underlayer. The permeability effect on run-up may be accounted for by RY

only as a first approximation.
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Figure 7.4: Computed spectra of waterline oscillations on 1:3 slope as well as co-
herence and phase between incident waves and waterline oscillations

for Runs P1 and I1.
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Figure 7.10: Mean, maximum, and minimum values of free surface elevation n
and depth-averaged horizontal velocity u for Runs P1 and I1.



Figure 7.11: Mean, maximum, and minimum values of free surface elevation 7
and depth-averaged horizontal velocity u for Runs P3 and I3.



157

13
0.1'§
P 3
s Run I1 =
g e Run P1
] Rayleigh
0.001 T j ! I
Ly
. 0.13
P :
5.5 Run 12
= e Run P2
] Rayleigh
0.001 T T T j
1-
0.14
P
0.0% Run I3 &
’ e Run P3 Oe
——— Rayleigh
0.0014 T ] T T
0.0 0.5 1.0 1.5 2.0 2.5
U U
R/R,

Figure 7.12: Computed exceedance probability of run-up as compared with
Rayleigh distribution for six runs.



158

7.4 Irregular Wave Energy Dissipation

The energy equation for the flow over the rough permeable slope has been derived
in Section 5.1 and the corresponding time-averaged energy quantities have been discussed
in Section 6.7. For the impermeable slope, the time averaged energy equation is given

by (Wurjanto and Kobayashi 1991)

_— d-ﬁ i E(tma_.":) . E(tmin)
Dg = - FA Dy

(7.1)

tmaz = tmin

The symbols F and E in Eq. 7.1 represent the same energy quantities as in Eq. 5.30
where the vertical energy flux D,=0 for the impermeable slope. The symbols Dy and
Dp in Eq. 7.1 represent the normalized time-averaged rate of energy dissipation per unit
horizontal area due to bottom friction and wave breaking, respectively. The normalized
time-averaged rate of energy dissipation, D, in Eq. 5.30 may be assumed to be the sum
of D; and Dp (Kobayashi and Wurjanto 1992).

D= f+ Dg (7.2)
with

Dy =7pu (7.3)

where the normalized bottom shear stress 7, is expressed in the form of Eq. 3.19 together
with Eq. 4.7.

The normalized time-averaged energy quantities for Region 1 for Runs P1 and P3
plotted on the upper panels of Figures 7.13 and 7.14 are similar unlike the normalized
time-averaged energy quantities for Runs I1 and I3 shown on the lower panels. For the
permeable slope as compared to the impermeable slope, the specific energy E does not
increase much near the still waterline and the decrease of the horizontal energy flux
F starts from z=0, while the vertical energy flux D, is dominant as compared to the
dissipation D. For the impermeable slope with D,=0, the comparison of Dy and Dp for
Runs I1, 12, and I3 indicates that Dp is dominant for mostly plunging waves observed in
Run I1 and Dy is dominant for mostly surging waves observed in Run I3, while both are
equally important for Run I2 which is not shown here. Consequently, the thick permeable

underlayer modifies the time-averaged energy balance significantly.
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7.5 Hydraulic Stability of Armor Units

The hydraulic stability of armor units is analyzed using the computed flow fields
over the rough permeable and impermeable slopes. The computation procedure is the
same as that of Kobayashi and Wurjanto (1990) for the case of a thin permeable under-
layer. In the numerical model, the permeability affects armor stability in two ways. First,
the expression for the fluid acceleration involves a term reflecting mass and momentum
exchanges between the flows in Regions 1 and 2:

du=@+u@: _?_h_a_flulu+pqqa(u—ub)

dt ~ ot ' oz oz h h

where use is made of Eqs. 4.1 and 4.2. Second, the horizontal velocity u is also affected

(7.4)

by the presence of the permeable underlayer since Eqs. 4.1 and 4.2 include the mass
and momentum fluxes into and out of the thick permeable underlayer. The permeability
effect on u has been shown and discussed in Section 7.3. No attempt has been made
in this simplified approach to consider the direct effects of the water flowing in and out
of the thick permeable underlayer. Consequently, the prediction of the armor stability
by the present model may not be very accurate. For the impermeable slope, the armor
stability computation in RBREAK (Wurjanto and Kobayashi 1991) follows essentially
the same procedure as in the numerical model PBREAK as outlined in WK 92, excluding
the permeability effects. The two procedures originated from Kobayashi, Otta, and Roy
(1987).

In both numerical models, the hydraulic stability condition against sliding or

rolling for an armor unit is expressed as
H.’
W/ (ps)]'"° (54 = 1)

< Nr(t, z) (7.5)

5
where
N, = stability number
Npgr= armor stability function varying with the normalized time ¢t and the
armor location represented by z;, which is the normalized z-coordinate

of the (upper) slope
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H' = significant wave height used for the normalization of the governing
equations
s, = specific gravity of the armor unit whose unit mass is given by ps,

W' = median mass of the armor unit

For the gravel used in the experiment conducted by Cox (1989), s,=2.7, W'=1.48x102
kg, and (W'/ps,)'/® = 1.763x10 3m.

The armor stability computation is performed for the entire computation duration
0 < t < tyas for the stretch of the slope from the seaward boundary where z,=—d; to
the landward location where the physical water depth A’ equals §,=0.021m, which is
equal to the median diameter of the gravel assumed to be fully submerged. The local
stability number N,.(2) is defined as the minimum value of the armor stability function
Nrg(t,z) at given z, during 0 < ¢ < tyae. The critical stability number N, is defined
as the minimum value of the local stability number N, (z3) for z, > —d,.

The computed values of the critical stability number N, are given in Table 7.2
along with the values of the stability number N;. Figure 7.15 shows the spatial variations
of the local stability number N,;(z;) for the six runs. The values of the stability number
N, are also plotted on this figure. The numerical model predicts that the gravel units in
the region Ny, < N, should slide or roll. Cox (1989) observed that loose gravel units on
the permeable slope remained at their initial locations whereas those on the impermeable
slope were dislodged during the tests. Figure 7.15 indicates the intense movement of loose
gravel units in the wide region of the impermeable slope and the limited movement of
loose gravel units on the permeable slope. The improved stability of the gravel units due
to the permeability as predicted by the numerical model is qualitatively consistent with
the observations and the empirical formula of Van der Meer (1988). In relation with
the test results of Cox (1989), the limited sliding or rolling of loose gravel units on the
permeable slope predicted by the numerical model may not result in the dislodgement

of the units from their initial locations.
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Table 7.3: Computed values of critical stability number N,., time t,., and coordinates
(Z5¢,25c) of minimum stability for permeable (P) and impermeable (I) slopes,
together with stability number N; for each test run.

PERMEABLE (P) IMPERMEABLE (I)

Ny tse Tse Zsc Nse Lse Tge Zse

M@ [ B | @[ 6 6 ] (M |6 9 |doy
1 [[1.155 [ 163.434 | 1.049 | -1.314 || 0.493 | 114.669 | 1.353 | 0.000 || 2.285
2 | 1.485 | 197.657 | 1.001 | -1.346 || 0.377 | 91.829 | 1.135 | ~0.523 || 1.785
3 || 1.431 | 199.115 | 0.846 | -1.575 || 0.454 | 72.880 | 0.974 | -0.481 || 1.525

In Table 7.3, the normalized time when the critical stability number N,. occurs
is denoted by t,.. The normalized coordinates of the (upper) slope where the critical
stability number N,. occurs are denoted by z,, and z,.. The flow conditions for Runs P1
and I1 as well as P3 and I3 at the time of the minimum armor stability ¢,. are depicted
in Figures 7.16 and 7.17. In these figures, the normalized surface elevation 7, the depth-
averaged horizontal velocity u, the horizontal acceleration %%, and the armor stability
function Ng are shown as functions of 2, at t=t,.. The computed results for Runs P2
and I2 show similar flow conditions at the time of the minimum armor stability. For
the impermeable slope, the minimum armor stability occurs during wave up-rush when
the landward fluid velocity a,nc_l acceleration are large. For the permeable slope, on the
contrary, the minimum armor stability occurs during wave down-rush when the seaward

fluid velocity and acceleration are large.
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Figure 7.15: Spatial variations of local stability number N,, for six runs.
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Figure 7.16: Flow conditions at time of minimum armor stability for Runs P1
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7.6 Spectral Evolution of Surface Elevation

Figures 7.18 and 7.19 for Runs P1 and I1 as well as P3 and I3 show the evolution
of the normalized power spectral density S, (f.) of the free surface elevation 7 over the
slope. The four locations shown in each figure are equally spaced along the slope with
the first being at the seaward boundary of the computation domain.

As expected in the light of the discussion regarding the spatial variations of the
free surface elevations in Section 7.3, the spectral density S5, for the impermeable slope
is generally larger in magnitude than that for the permeable slope. Since the free surface
elevations over the slope were not measured in Cox (1989), these computed results for the
permeable slope can not be verified. The numerical model RBREAK for the impermeable
slopes, on the other hand, has been shown to be in agreement with the measured free
surface eleva.tions inside the surf zone on a laboratory beach by Cox, Kobayashi, and
Wurjanto (1992).

It is noted that the generation of additional low-frequency wave components ap-
pears significant for Run Il as shown in Figure 7.18, which might explain why the
reflection coefficient 7(f.) exceeds unity for the low frequency range as shown in Fig-
ure 7.2 in Section 7.2. However, the time-domain model for the impermeable slopes is
unable to explain how and where the additional low-frequency wave components could

be generated.
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Figure 7.18: Evolution of spectra of surface elevation for Runs P1 and I1.
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Figure 7.19: Evolution of spectra of surface elevation for Runs P3 and I3.
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Chapter 8

CONCLUSIONS

The essential equations used in the one-dimensional, time-dependent numerical
model with two layers have been derived in this study. The numerical model simulates
the flow over a rough permeable slope of arbitrary geometry as well as the flow inside
a permeable underlayer of arbitrary thickness for specified normally-incident irregular
waves. Any incident wave frain can be specified as input at the seaward boundary of
the computation domain. The numerical model computes the reflected wave train at
the seaward boundary from which the reflected wave spectrum can be calculated. It
also computes the waterline oscillation on the permeable slope from which the run-up
spectrum and exceedance probability can be calculated. In addition to the equations of
mass and horizontal momentum used to compute the flow field, equations of energy are
used to estimate the spatial variations of energy fluxes and dissipation rates.

The numerical model has been compared with three test runs to assess the ca-
pabilities and limitations of the numerical model for predicting the reflected waves and
waterline oscillations on the rough permeable slope with a thick permeable underlayer.
The agreement between the measured and computed results may be acceptable but could
be improved by calibrating the empirical parameters included in the model. The com-
puted results for the three runs have also been examined to elucidate the hydrodynamics
involved in the interaction of irregular waves with the highly permeable slope. The wave
propagation, attenuation, and setup inside the permeable underlayer reduce the intensity
of wave breaking and resulting energy dissipation on the permeable slope. Most of the
energy transmitted into the permeable underlayer is dissipated locally by the turbulent

and viscous flow resistance. The time-averaged mass flux is into the permeable underlayer

171



172

above SWL and out of the underlayer below SWL. Correspondingly, the time-averaged
mass flux near the still waterline is landward above the slope and seaward inside the
permeable underlayer. These computed results will need to be verified experimentally.

The computed results have also been compared with those for the correspond-
ing impermeable slope to examine the differences caused solely by the presence of the
thick permeable underlayer. The thick permeable underlayer has been shown to increase
the armor stability considerably and reduce the wave reflection and run-up significantly.
Most of the results from this comparison have been observed visually or described qual-
itatively by previous researchers.

The numerical model is capable of providing quantitative data with high spatial
and temporal resolutions. It also allows one to perform sensitivity analyses easily by
changing only one input parameter at a time. For example, it may be important for
the design of berm breakwater to examine the sensitivity of the computed results to the
thickness, porosity, and stone diameter of the permeable underlayer.

This numerical model is probably the simplest time-dependent model that can be
applied for breaking and broken waves on a permeable slope. The limited verification
presented herein indicates that the model may predict some quantities accurately but
other quantities only marginally. As a result, correct interpretations of the output of
this model are essential to avoid a misuse. It will eventually be necessary to develop
unsteady two-dimensional and three-dimensional models to improve the accuracy of the

predictions, although computational efforts will increase considerably.
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