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Abstract

Longshore currents on a long straight coast have in the past been analyzed assuming
that the lateral mixing could be attributed to turbulent processes. It is found, however,
that the mixing that can be justified by assuming an eddy viscosity v; = £v/k where £
is the turbulent length scale, k the turbulent kinetic energy, combined with reasonable
estimates for £ and k is at least an order of magnitude smaller than required to explain
the measured cross-shore variations of longshore currents.

Based on a perturbation solution for the three-dimensional equations of motion aver-
aged over a wave period, it is shown that the nonlinear interaction terms between cross-
and longshore currents represents a dispersive mechanism that has an effect similar to
the required mixing. The mechanism is a generalization of the one-dimensional disper-
sion effect in a pipe discovered by Taylor (1954) and the three-dimensional dispersion in
ocean currents on the continental shelf found by Fischer (1978).

Numerical results are given for the dispersion effect, for the ensuing cross-shore vari-
ation of the longshore current and for the vertical profiles of the cross- and longshore
currents inside as well as outside the surf zone. It is found that the dispersion affect is at
least an order of magnitude larger than the turbulent mixing and that the characteristics
of the results are in agreement with the sparse experimental data material available.

1 INTRODUCTION

Lateral mixing on gently sloping beaches plays an important role in the distribution of
nearshore currents. The possible mechanisms responsible for the mixing current distribu-
tion have been discussed in the literature even before the concept of radiation stress was
introduced and shown to be the primary forcing for the nearshore circulation (Harris, et

al. 1963). In particular, the longshore currents on a long straight coast have been analyzed
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so extensively that one would expect to find little new to add to the topic. In the present
paper, however, we analyze the effect of current dispersion caused by the nonlinear interac-
tion between the wave generated cross- and longshore currents. This is an extension of the
three dimensional current pattern found by Svendsen & Lorenz (1989) who neglected the
non-linear current interactions. We find that this mechanism includes an effect that has an
effect similar to the traditional turbulent mixing, but even inside the surf zone is an order of
magnitude stronger than the mixing that can be justified on the basis of the information we
have about turbulence in the nearshore region. Thus, it is suggested that the unrealistically
strong mixing that normally is assumed in model predictions of longshore currents can in

fact be attributed to the dispersive effect of the vertical structure of the currents.

It is well known that when waves approach the shore and break, they exert a net force
on a water column due to the decrease in radiation stress (Longuet-Higgins & Stewart 1960,

64).

The cross-shore component of this force is, in average over the depth, balanced by a
pressure gradient caused by a slope in the mean water surface which results from a substantial
wave setup in the surf zone. Due to the unequal distribution over depth of the forces involved,
this mechanism also creates a cross-shore circulation which is fed by the shoreward mass flux
in the breaking waves. It also includes the strong, seaward oriented undertow current which

is particularly strong near the bottom (Svendsen 1984).

In the longshore direction, the longshore component S, of the net radiation stress on
the water column is in the average balanced by a bottom shear stress 7, which is created

by a longshore current. The equation describing this balance is simply

88y
dz

+ Ty =0 (1.1)
where the z-axis is assumed in the shore normal direction. As indicated by Bowen (1969),
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Thornton (1970) and Longuet-Higgins (1970), a lateral mixing process will create a third
type of force on the water column in the form of shear stresses. If these shear stresses are
assumed described by a gradient law of the type

v
Ty = PVie . (1.2)

where vy, is a turbulent eddy viscosity and V' (z) the longshore current, then the force balance

for a water column reads

g (v:xav 95zy =0 (1.3)

P oz 9z) "™ oz

Here 73, is a function of V' too.
Longuet-Higgins (1970; L-H in the following) demonstrated with clarity that because of
the singular nature of (1.3), the mixing term is crucial in creating predictions of V'(z) that

have resemblance with measured current distributions across the surf zone.

L-H also suggested that vy, might be described by an expression of the form

Vizg = N z+/gh (1.4)

where N is an empirical constant, h the water depth, and z the distance from the shoreline.
L-H used this assumption also outside the breaker line and found that his model predicted

the cross-shore variation of V(z) quite well.

If we describe the bottom shear stress m, by a simple interaction between waves and
longshore currents, which is linear in V/(2), the only parameter of the problem is P =
2w hy N/7v f,. Here f is the bottom friction coefficient and 7 is the wave height to water
depth ratio in the surf zone. Values of P = 0.01-0.4 (were found by L-H) to give realistic

results, corresponding to N ~ 0.01 on, say, a slope of 1/35.

The expression (1.4) has been widely used in the literature both for simple longshore

currents and for more complex numerical circulation models. Often v, outside the surf zone
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is limited to its value at the breaker line.

The hydrodynamical mechanisms responsible for creating the lateral mixing have also
been discussed. Thus, Inman et al. (1971) identified the surf zone generated turbulence and
nearshore circulation cells associated with rip-currents as two possible sources of mixing.
These ideas were further discussed, still in a rather qualitative manner, by Bowen & Inman
(1974) who also emphasized the significance of the much lower level of turbulence outside
the breaker zone in comparison to inside, and identified the nonlinear mass flux caused by
the wave motion as a possible source of mixing. As will be seen in the following, the shore
normal component, Quz, of the wave mass flux does indeed play a prominent role in the

mixing though the mechanisms are far more complicated than have hitherto been suggested.

Also, the oscillatory particle motion itself has been suggested by some authors as a
contributing source of mixing. Simple considerations will confirm, however, that there cannot
be any net effect from a purely oscillatory wave motion. Neither should it be expected that
the mixing can be made proportional to the wave motion by assuming that the turbulence

level inside the surf zone is proportional to the strength of the wave motion itself.

The turbulent mixing coefficient v;, can be described by
vie = tVk (1.5)

where k is the turbulent kinetic energy and £is a characteristic length scale for the turbulence.
Hence, estimates of the actual magnitude of the turbulence in- and outside of the surf zone
are important steps towards quantifying the mixing. Battjes (1975) linked the turbulence
energy to the energy dissipation D in the wave breaking which leads to k o« D3. In the
assessment of the variation of the length scale however, Battjes follows the Longuet-Higgins
model which assumes ¢ « 2z, the distance from the shoreline, which leads to vy, o h:‘?.

Alternatively, Svendsen et al. (1987) suggest that £ « A, the local water depth, which leads
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to vz hé. Svendsen (1987) also finds that
vk = 0(0.05)\/gh (1.6)
(although there is some variation with breaker type). Thus

v ~ C; hy/gh (1.7)

Comparing measurements for undertow with model predictions leads to the assessment for
a 1:35 slope (Svendsen et al., 1987), C; was found to be 0.01-0.02 corresponding to £ ~ 0.3h
which seems reasonable. This estimate was later modified by Hansen & Svendsen (1987) to
C; ~ 0.007-0.01. Outside the surf zone, C, is be expected to be even smaller though no

results are available.

If we assume that the characteristic length scale £ in the horizontal and vertical directions
are similar, we have v4; ~ ¥4, and (1.7) also becomes an estimate of ;. Substituted into (1.4)
and assuming z = h/h, (plane beach), however, we get (for h, = 1 : 35) that N ~ 3—4.10~4,
This is several orders of magnitude smaller than the N ~ (1 —2)10~2 found by Longuet-

Higgins and many others to fit measurements.

Fig. 1 shows calculations of the longshore current distribution predicted by the L-H
model for the two values of N mentioned above. The figure clearly illustrates the need for
Viz values larger than given by (1.7) with C, = 0.01 even though the use of (1.7) outside the

surf zone is supposed to overestimate v, there.

In the present paper, we first briefly outline the difference in the depth integrated equa-
tions required to incorporate depth varying currents and present the equations for the depth
variation of the currents as well. Since we consider only time averaged equations, the wave
motion is assumed known and the effects of the wave motion are represented by quantities

such as mass flux, Q,., and radiation stress, Saps (@, B being horizontal tensor indices,
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Phillips (1977)). The latter also has a local values s,g at each point of a vertical over depth.

For simplicity, we concentrate in section 4 on the conditions on a long straight coast
(no longshore variations) and establish a perturbation solution which is based on a set of

parameters being small.

The first small parameter, ¢, is associated with the assumption of a slowly varying water

depth as is usually the case on littoral beaches.

The second small parameter is § = v¢z/(h+y/gh). According to (1.7), & is small and we

assume that § = 0(¢).

Associated with § is a third small parameter, the existence of which is based on the
observation that the turbulence generated by the wave breaking is much stronger and of
larger scale than the turbulence created near the bottom. This assumption is closely linked to
the idea that a (mainly oscillatory) boundary layer exists near the bottom in which waves and
currents interact. The nature of such a boundary layer under a combination of non- breaking
waves and currents have been studied by a number of authors (see e.g., Grant & Madsen
(1979), Christofferson & Jonsson (1985), Trowbridge & Madsen (1984)). Also, experimental
investigations have been reported (Brevik (1980), Brevik & Aas (1980), Kemp & Simmons
(1983)). Little, however, is known about the situation under breaking waves, and we can
only speculate what the near bottom conditions are. The hypothes;is of an oscillatory bottom
boundary layer with low intensity turbulence dominated by the near bottom turbulence
production is supported by the fact that the cross-shore undertow velocities are large even
very close to the bottom (Svendsen et al., 1987). Detailed measurements in particularly very
close to the bottom (Okayasu et al. 1986, 1988) have shown that, although the velocity

profiles are smooth, there are large vertical velocity gradients very near to the bottom.

A possible explanation for this could be that there is a gradual transition between the



bottom and the breaker generated turbulence in the direction away from the bottom. An al-
ternative explanation is that the breaker generated turbulence only intermittently penetrates
to the bottom and then as large scale vortices which temporarily may even momentarily wash
away the entire small scale bottom boundary layer by simple convection. Such a pattern
with a time scale of maybe 1/10 of a wave period would show up in the wave averaged data

only as a reduced turbulence intensity.

In the absence of actual data and to reduce the complexity of the analysis without sig-
nificantly changing the nature of the problem, we assume here that there is a low turbulence
boundary layer so that the vertical current profiles have a finite “slip” velocity Vj, near the
bottom. Vi, essentially represents the current velocity outside the bottom boundary layer
and the bottom shear stress is related to V;, and the wave bottom velocities through
a dimensionless friction factor f. The third small parameter A then represents the ratio
f hv/gh/viz. Tt will be assumed that A = O(§). With § = O(e) this then implies that
f=0(e).

A perturbation expansion of the variables is then established in section 4 which leads to
equations for the bottom velocity V; in the longshore current. It is found that the lowest
order solution V} represents a simple local balance between rate of change of radiation stress
and bottom friction with no mixing similar to eq. (1.1). Though mixing is formally included
in the second order approximation for V3, a meaningful solution for the cross-shore variation
of the longshore velocity Vj(z) is obtained only by combining terms of the first and second
order. Hence, in this respect the proper equation for V;(z) resembles the KdV equation for
weakly nonlinear, dispersive long waves which also includes terms of two different orders of

magnitude.

The appropriate equation thus obtained for V4(z) includes both the turbulent mixing



represented by the eddy viscosity vt and a contribution from the nonlinear interaction

terms.

In the nearshore region studied here, both current-current and current-wave interaction
contributes to this dispersion, and additional terms in the equations represent other effects

of nonlinear interaction.

In section 5, analytical and numerical results are given for the simplified case where both
v, and the driving radiation stresses, s,g are uniform over depth and the results for the

cross-shore variation of the longshore current are discussed in section 6.

It appears that the dispersion effect found in the present paper is analogous to the lon-
gitudinal dispersion in a pipe caused by the lateral variation of the mean velocity (Taylor
1954) and generalized by Fisher (1978) for the three dimensional current patterns on a con-
tinental shelf. It is interesting to note that reasonable estimates for the turbulent mixing,
yield dispersion determined from the vertical profile equations which are an order of magni-
tude stronger than the turbulent mixing even inside the surf zone. Nevertheless, since the
turbulent mixing is largely responsible for shaping the vertical current velocity profiles, the

turbulence actually controls the total depth integrated dispersion effect.

2 DISCUSSION OF FLOW PATTERN AND ADDITIONAL
ASSUMPTIONS

The flow problem considered involves a combination of cross-shore and longshore currents
generated by the obliquely incident waves. Figs. 2 and 3 show the situation schematically.
The angle of incidence for the waves is @,. The waves in general, and the breaking waves
in particular, create a mass flux, which for (the usually) small o, is primarily in the cross-

shore direction. On a long straight coast, there can be no net cross-shore flow so that all the



shoreward oriented mass flux in the waves must return seaward through the undertow. (On
an arbitrary topography, large scale current patterns may, of course, create any combination

locally of cross- and longshore net flux.)

The radiation stress and setup pressure gradients play important roles in driving these
flows and the vertical shear of the currents create shear stresses which are essential to the

force balance.

The classical near-shore circulation theories (see e.g., Philips, 1977) implicitly assume
depth uniform currents V,, which are isolated from the total water particle velocity u, by
averaging over a wave period and assuming that the wave part u,, of the fluid velocity
has a zero mean value. Though this process only makes sense below wave trough level, it
is customary for depth uniform currents to assume the current velocity above trough level

equals that below.

In the case considered here of non uniform currents, we make the analogous assumption
that the mathematical expression for the current profile determined below wave trough level
applies all the way to the instantaneous water surface. Since this is not a trivial assumption,
a parameter . is introduced, the variation of which will gage the effects of deviations from
the assumption. It is worth to emphasize that resolution of this question would follow from

a solution in the time domain of breaking waves on arbitrary shear currents.

This aspect of the problem implies, however, that the level, (;, of the wave trough (Fig.

3) plays a significant role in the mathematical expressions developed.
3 BASIC EQUATIONS

The equations describing nearshore circulation are depth integrated, time averaged equations

for conservation of continuity and momentum. Since the flow is highly turbulent, the starting



point for the derivation is the Reynolds equations which can be written (i =1,2.3)

au.-_
a_:'l:;.— (3‘1)
and
Oui  OQuiw;  10p  109m
i - Pra paz,-+g‘+paz,- (3.2)

where u;, p are the turbulent (or Reynolds) averaged velocities and pressure, respectively.
7ji is the sum of viscous and turbulent stresses, and in the following the viscous part of T

will be disregarded.

With both waves and currents present, the total velocities u; can be divided into a current
part V; = U, V, W (where the vertical component W will be much smaller than U,V) and

a wave part Uy; = Uy, Vy, W, so that
u; = Vi 4+ %y (3.3)

Using — for average over a wave period, we define u,,; so that below wave trough level
Uy vanishes, i.e.,

T =0 below wave trough (3.4)
This corresponds to Phillips (1977) and differs from Mei (1983). Also following Phillips,

we use indices (@, ) = (1,2) to indicate horizontal coordinate and velocity components and
then denote the vertical coordinate by z (see Fig. 3). The boundary condition satisfied at

the bottom is

ah
— Uy ﬁ at 2= —ho(za) (3.5)

where hg is the undisturbed water depth. At the free surface we have

X _w—g X = .
9 W Ua 6z;“3}z=c(z,,,t) (3.6)
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The traditional depth integration of the equations assume that the current V; is uniform
over depth (see e.g., Phillips (1977) or Mei (1983)). It is, however, essential for the effect we
are studying here to avoid that assumption, which leads to depth integrated equations dif-
ferent from those found in the literature. A brief outline of the derivation for the momentum
equation is given following steps analogous to those used by e.g., Phillips (1977) for depth

uniform currents.

We introduce the definition of horizontal discharge

¢
Qo =/ uo,dz=j( Valdz + Qo (3.7)
—ho —ho
where
¢
Qwa =/; UyodZz (38)

is the mass flux due to the wave part of the motion.

The first step is the integration over depth of the two horizontal components of (3.1),
followed by the use of the Leibnitz rule to move 8/dt and 8/8z4 outside the integrals and
using the bottom and free surface boundary conditions (3.5) and (3.6) to reduce the boundary

terms. Finally, the equations are time-averaged.

The result of these operations can be written as

Qs 8 (€ . a8 [ B
ot + 8_$:./._h0 VaVﬁdz 4 6$a -[:t (‘uanﬁ + ﬂwﬁVa)dz =

_Pp(—ho) Ohg _gh 0C 9 (Sap+Sas _ T8 (3.9)
P 3:&'3 5‘.1:3 33:0 p P '
where pp is the dynamic pressure defined as
Pp =p—pg({ — 2) (3.10)
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Sop is the radiation stress due to the waves and is defined by

¢ 1
Sup = f M(Pumuwﬁ — Pbag)dz — 8up §pgh2 (3.11)

S4p is the radiation stress due to turbulent fluctuations defined by
; ¢
aff = —[-ho ro,ﬁdz (3.12)

Finally, 7; 4 is mean the bottom shear stress. Normal and tangential stresses at the free

surface have been neglected.

The pressure pp(—ho) can be eliminated from this equation by integration over depth
of the vertical component of (3.2). Under realistic assumptions which include gently sloping

topography and reasonably slowly varying waves, we find
pp(—=ho) =0 (3.13)
which means in average over a wave period the weight of each water column is carried entirely
by the pressure on the bottom under the column.

Introducing this result into (3.9) then yields

Qo @ fc ;
3 l [ VaVidz + ]c (uwﬁVQ)dzJ

0 8 (Sapt+Ss)\ | Tha
b 4 e 1
bzt o ( - B (3.14)

It may be noticed that this equation differs from the usual form for depth uniform currents
in that second and third terms cannot be reduced further. For depth uniform currents, we

would get

d

e ¢
2 i +/ WV B T
azﬂ/% pdz _ho( B+ twpVa)dz
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b5 QaQﬁ _ anQwﬁ] (3.15)

Oz h h
see e.g., Phillips (1977). Phillips includes the last term in (3.15) in his definition of Sap
whereas Mei (1983) neglects it. In Stokes waves, this term is O(H*) and hence is usually
considered negligible. In the present context, however, and particularly for the breaking

waves in the surf zone, this turns out not to be a valid assumption.

Equations for the current profiles.

In order to evaluate the integrals in (3.14) of currents, we also need to determine the
current variation over depth. This is done by solving the Reynolds equations between the
bottom and wave trough level using suitable simplifying assumptions and boundary condi-

tions as discussed in the following.

The Reynolds equations for the general situation of breaking waves with currents were

presented by Svendsen & Lorenz (1989). They are, using the same notation as above,

6Ve+6VaVa+8WVa+am3_6@;+m_
ot 024 0z Oz, Oz 8z

- LAP ! L—
¢ uaup y ow? _ Oupw

ke 0zg 0Oz,  Ozp 0z —

In these equations, the U W, /0z terms represent the horizontal mean shear stresses
created by the wave motion. In any permanent form periodic wave motion, these terms are
zero. On a beach, however, two mechanisms contribute to these terms. One is the disturbance
of the wave motion caused by the sloping bottom. The second is the deformation of the waves,
as the wave height decreases, required to transport energy vertically to the regions near the
surface or bottom where energy is being dissipated. This second mechanism was discussed

by Deigaard & Fredsoe (1989).
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The first can be estimated for long waves with depth uniform horizontal velocities. Re-

calling that Quye /02 = 0 and using the continuity equation yields

Ouwpwy 0wy Oy
8z  WPThp T Mg o)
Combined with the Quwauys/0z4 term, this yields
OUyalyg | OUppWy u O0uyp (3.18)

Thus, in the case of a plane wave, this is equivalent to reducing the du?, /8z, term by a

factor of two.

Inside the surf zone, these effects are relatively small because the driving forces below
trough level are dominated by the 8(/8zs (Svendsen et al., 1987). Outside the surf zone,
however, the contributions from the velocity terms become important and in that region we

use the approximation given above (see section 6).

For the purely 2D cross-shore flow of shore normal waves on a long straight coast, equa-
tions (3.16) have been solved by different authors using different boundary conditions (Svend-
sen, 1984; Dally & Dean, 1984; Stive & Wind, 1986; Svendsen et al., 1987) and different
assumptions for the eddy viscosity used in the turbulent closure (Okayasu et al., 1988;

Deigaard et al., 1991).

The 3D combination of both cross-shore and longshore currents was analyzed by a per-
turbation method by Svendsen & Lorenz ( 1989) who, however, neglected the UV interaction
term. Svendsen & Putrevu (1990) generalized the formulation and outlined the assump-
tions for the interaction between the vertical profiles and 2D horizontal models which will

be formalized in the following.

To determine the current profiles from (3.16), we first recall that all the terms with index

w represent (known) inhomogeneities in (3.16). The term d¢ /0zp represents the slope on
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the mean water level.

We assume that the turbulent shear stresses can be modelled by horizontal and vertical

eddy viscosities vy, and v, so that

T v, 8V,

—Uplly = Vpg, (E + ﬁ) (3.19a)
e oV,

—upw’ = ut,-é-f (3.19b)

and for the sake of later discussion, we assume Vi and vy, can be different.

Substituting into (3.16) and also applying that by continuity

Vo  OW
P + i 0 (3.20)

(3.16) takes the form

Do 0,0y 0 (, (0% o%)_
0z, Oz e Oz, Viga 6:::,@+3m°, -

9 5 0wl | Ouggw,
T 0zq (Twathu +90) - dzp * 0z
3V3 3V5
"V“aza - oz {321)

To simplify the equations and make possible a comparison of the results with experimental
data, the following derivations are limited to the steady state case of obliquely incident waves

generating a longshore current and a cross-sore circulation on a long, straight coast.
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4 SOLUTION OF THE EQUATIONS ON ALONG STRAIGHT
COAST

The assumption of a gently sloping bottom is introduced into the analysis by assuming that
the characteristic vertical length scale (e.g., the water depth h; at breaking) is much smaller
than the characteristic horizontal length scale £, (say, the width of the surf zone). We define

the scaling parameter ¢ accordingly as

m
Il
S

<1 (4.1)

Dimensionless variables marked by / are introduced based on £,, hj and ¢cg = (ghbﬁ

b By e . B o W
T ﬂ_, i W= ‘ea B & hb ' hb
’ Uy ’ Vay ’ U , _V
= =— s V== : V=— ;
' Vi [ Tb ! Sﬂﬁ
m=—;; n=—z ; Syp=
" hyep ' 0 pet ' o8 pcih

We let the z-axis be normal to and directed towards the shore, y parallel with the
shoreline so that the assumed uniformity in the shore parallel direction implies d/8y = 0
everywhere. The steady state version of (3.14) in the non-dimensional variables introduced

above then becomes (z and y components respectively):

as’ . 80
GW =—ch -a% =Tl (43)

o (¢ v a [ ¢ ¢ a5
2 ] . =i idst IR T4 ' Utds| = Ty
e (/—ho Viz o dz) Toy = €57 l:/:-ho U'vidz' + » ul, V' + ol U dzJ o (4.4)

in which we have also neglected the turbulent normal stresses.
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Similarly (3.20) yields for U’(2’,2’) and V'(2’,2") (again neglecting turbulent normal

stresses):
(130 - [y Do ] o
and
B (455) o (435) - [ v s ] o

Solution of (4.5) and (4.6) require two boundary conditions for each in the vertical direction
in addition to conditions in the z-direction. One boundary condition for each of the two

equations relate the wave averaged bottom shear stress 7,5 to the derivative of the current

(%&)5 - (4.7)

PVtz

velocity at the bottom:

Assuming, as discussed earlier, the existence of a (partly) oscillatory wave-current bound-
ary layer at the bottom, suggests that mp is related to Vjp and the bottom wave velocity
amplitude u,;. A simple relationship of this form used by Longuet-Higgins for small angles

of incidence and weak currents gave

1
Toy = '_;JO f Uy V (48)

This expression is a special case of the more general description that assumes that the

instantaneous shear stress 7;5(t) has the form

alt) = 5p £ ua(®) | ug(1) | (49)

where up(t) = uyg + Vp is the total instantaneous velocity of the bottom and f a (constant)
friction factor. This model was studied for other special cases by Liu and Dalrymple (1978)

and generalized by Svendsen & Putrevu (1990).
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For the present purpose, it suffices to assume that an expression exists that links T to
Vo

Tog = T(uwb, Vig) (4.10)

Combining (4.7) and (4.10) gives a mixed boundary condition at the bottom of the form

3Vﬁ) T(Uysy Vig)

- =0 4.11
T (1)
which in the simple case of (4.8) corresponds to

6V3) 1 fuy
-] =bVgp =0 ; b= — 4.12
( 0z /4 = T (Ve2)b (12)

The second boundary condition for the vertical current variation differs in the z and Y
direction. In the shore normal z- direction, the condition of shore parallel uniformity implies

that there can be no net cross shore flow. Hence, (3.7) yields:

¢
Bk / . Udz=—Qus (4.13)

where Up, is the depth averaged value of U(2), and the wave volume flux Q,,, is supposed

to be known.

In the shore parallel direction, there is no such constraint and the second boundary
condition in the y-direction for (4.6) consists of (4.4) which states that the total depth
integrated momentum in the y-direction is a balance of the forces in (4.4) most of which

depends on the U’ and V' variation over the depth.
Perturbation Solution

A perturbation solution of these equations will also help reveal the relative importance

of the many mechanisms at play. We introduce the following series expansions.

Vl‘

Vo(2) + eVi(a', 2') + €V3(a', ) + - -
U = eUi(2',7)+ EUN2' 2 )+ --- (4.14)
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Whereas, the vertical variation of V' is assumed €V with Vj = O(1), the vertical variation

of U is expected to be of the same order as U.
For reasons of continuity, we have
W' = EWj(z', 2') + EWy(z', ') + - - (4.15)

We also expand the bottom velocities Uy and Vj and the bottom shear stress 7,

Vi = V3(z')+EVi(z') + - --

U = Uiy(a)+ V() + -

Ty = €1(Vo) + gt

The = €T(Up)+- (4.16)
The magnitudes assumed for the 7, components and Vj will be justified below.

Finally, we assume that
Vizs Viz = O(6) (4.17)
where § is an independent small parameter which is assumed O(€). Using (4.8) to assess the
magnitude of 7;,, we get
=2 Vi = 0(f) (4.18)

if we assume u;,, = O(1) as will be the case in breaking or near breaking waves. Measure-

ments suggest that both the scale and intensity of turbulence in the bottom boundary layer
is much smaller than in the region between bottom and surface where the turbulence mainly
originates from the breaking process (for further discussion reference is made to Svendsen et
al. (1987)). Thus, we let

Vi:z =0(e) or f=0(e) (4.19)

and hence
Ty = O(€?) (4.20)
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Since nyy = O (8S5zy/0z) this implies

OSay _ o (Tw\ _
k=0 (7) = 0(¢) (4.21)

This is possible, although (uy, v,) are assumed O(1), because the time averaging process
of uy, vy that leads to S,y reduces u,, v, by an order of magnitude relative to their maximum

values. For similar reasons Qo defined by (3.8) is assumed O(e).
We also find, however, that a consequence of assuming U = O(¢) is that
Toe = O(f wup Up) = O(€%) (4.22)

Since 57, = O(Sz,) = O(e), (4.3) implies that 8/dz = O(¢). Comparison of this with

(4.22) shows that 7. is a small term in (4.3) as wouid be expected.

We also notice that in consequence of (4.22), we have

(an)b = T O(€?) = O(eU")

87 vy,
v’ Ty
(3;,-)5 = = 0(9) = 0(eV")

which means that both U’ and V' have gradients near the bottom which are an order of

magnitude smaller than U’, V'’ themselves.

Substitution of the expansions and order estimates into (4.5) yield (now returning to

dimensional variables)

ad U 0 ¢ — 0ty
s (v pe) = 5 (90 +7%) + 2= (42)
and
o ( 90U\ _ . aU
a—z (L’gz"_az ) — Ul 837 (4‘24)

Thus the equation for U; is the same as has been used in the literature to analyze
undertow and cross-shore circulation currents. To the second order (Eq. 4.24), a correction

Uz can be determined which accounts for the (nonlinear) modification of the current by itself.
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In the longshore direction, we get for V:

o, MY D 0 o
'é; (Vtzg) == gguwvw + 9z Uy Wy + UI ™ (4.25)

and

72 \"= 55 7z \"= 5, s+ Wt Us— (4.26)

d( O\ _ B8 e\ ., OV Vi . oV
(Ut )_- ( )+U13z dz oz

Here the essential new feature relative to Svendsen & Lorenz (1989) is the term U;0V,/dz
in (4.25) which shows that the current-current interaction plays an important role in the

depth variation of the longshore current.

It is also noted that, in parallel with the result by Svendsen & Lorenz (1989), there is
a third order approximation V, to the longshore current variation which is driven by the
turbulent mixing induced by the Vo-term. In addition to the earlier solution, however, V; is
also influenced by the UV contributions originating from the interaction between U;, V; and

Uz, Vo, and by a contribution from the weak vertical current component W in combination

with 9V;/0z.

The most significant effects of the UV-interaction appear in the depth integrated mo-

mentum equation for the longshore current. To the lowest order, we simply get

a5,
Tv2 = t':»‘:.':!ir

= 0(é%) (4.27)

which corresponds to the triangular velocity profile found by Longuet-Higgins in the case of
no mixing at all. That solution, however, is unacceptable as the fundamental solution for Vj.
A realistic solution for Vg requires that we include both €? and €® terms. Thus the equation

for V becomes

¢ ¢ ¢
/ utzdzavn - 72(Vo) - 2 / Uy Vidz + ] U,V + v, Uydz| = 133” —I-O(e*)
E Oz P 0z |J-n, Ce p 0z

(4.28)

9
oz
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Here we have utilized that

¢ ¢
/  UnVadz + /c wuVodz = —QuzVo + QusVo = 0 (4.29)

by virtue of the definition of Uj.

It is interesting to notice the analogy of this result with Boussinesq wave theory which
also requires terms of two orders of magnitude as, e.g., in the KdV equation to obtain
meaningful results. As in the KdV-equation the two terms in (4.7), which individually are
O(€?), together represent a contribution O(e3) which is also the magnitude of the other terms

in (4.33).

For the next approximation of the depth integrated equation we get

a% (f_ch., Yo ‘Z‘ dz) _""y“f:?’l) —% U_‘hﬂ (Vs + UsVi) dz + /c( (4wVz + v (Un + U1)) dz

(4.30)
Here the first term and the integrals are all O(e*) which shows that Ty4 must be O(e?).
Comparing with (4.8) and recalling (4.19), we see that this implies V3; = O(€?) as already
assumed in (4.16). The physical explanation for this is that the net forcing represented by
the terms in (4.30) are quite small. This also Justifies that we do not need to include a

T(Vp1)-term in (4.28).

Solution to the Equations

The equations (4.23) and (4.25) for U; and V4, respectively, may be readily solved.

Defining
0 ( = —\ K Oupw
a o w M w
o = 5 (oC+u2) + - (4.31)
we get from (4.23)
¢ 1 £ Tz3 Edf
U:j—/azdd ——]* U 4.32
k 0 Yz Jo E§+P 0V£z+ & ( )
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Here the sum of the last two integrals is zero which shows that Vb1 does not contribute to

these integrals. We introduce the definition

1 ¢ 1 r¢
Dc=——/ U,Adz——/ o Al
h —ho h (e

Introducing the definition (4.36) for A, we get

Dp==21 B je L [0, deded 1/( /E - fo déded 4.39)
= —— S - Uw e ¥4 .
o h./—ho ! 0 szjl; ’ h (e 0 Viz Jo . £ (

It is also convenient to define a coefficient a, (expected to be close to unity) so that the

second integral in (4.38) can be written

./: wy(ay(2) + by(2))dz = ae(ay(h) + by(h))Quz (4.40)

Substituting these results and definitions into (4.28), that equation may then be written

a o\ _m2(Vo) 9 [¢
32 (h(.v:,,. + D¢) 5 ) - 3-’-’:./40 Ui(ay + by)dz

= % [@e(ay(h) + by(h))Que] = %ag.:y

(4.41)

Clearly, D¢ here plays the same role as an additional mixing coefficient. Furthermore, the
current-current interaction terms provide additional terms in the equation (the third and
fourth terms) which essentially have the nature of driving terms. Thé mechanisms and
effects will be discussed and illustrated in more detail in the following sections. First, it is
convenient, however, to further identify the nature of Dg. We introduce the variables

Viz

N
Ngz = % y Viz = E/‘; Vtzdf (4.42)

and also the local vertical dimensionless coordinate

§* =¢&/h (4.43)

We then get

itz

A(h) =

T4
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where

(' £l
= —/ —-de- g+ (4.44)
Nz
Similarly, we define
¢* - " I
/ L4} / / L dgs dee doe (4.45)
Ntz
by which D¢ can be written
U ) h2
Dc =2 (aeIA — ID) (4.46)

where the coefficient a, has been introduced by (4.40). As expected, Uy, = O(¢) and 7; =
O(€) leads to D¢ = O(¢) = O(v;). In the examples below, we will find, however, that the

numerical value of D¢ is significantly larger than vy, if Vip = V4, 18 assumed.

When we analyze the other interaction terms in (4.41), it is important to realize that b,
depends on the longshore bottom velocity V3 through 7y2 in (4.36). By virtue of (4.18), we

have

1
Ty2 = ;Pf Uyp Vo

Substituting into the two remaining interaction terms in (4.41), these terms can be written

M

[ aas(2) 4 8,2 + iy B) 4 5,8

"o L Pagasts I° 2 P oo
L0 [ o [ ewdededz+ [0 [faydgise

f“wb [/ Ux/ —«d{dz-f—Qm:fho d:i Ve (4.47)

Introducing again the dimensionless variables of (4.42) and (4.43) and in addition

1 r¢
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the solutions inside and outside the breaker point. The boundary and matching conditions

for the solution of (4.52) is as follows:

m:om{mLm (6.2)
Vi(zot) = Vi(zo—) (6.3)
5 )y = ). ©4

Here z; represents the breaker line position, and the last condition is equivalent of con-
tinuity in 7y, the horizontal shear stresses in the longshore direction along vertical shore

parallel surfaces.

To simplify the discussions, a, is assumed constant in the surf zone. This is in accordance
with the assumption of ¥ = const which yields 8(/dz constant (Bowen et al., 1968). As
indicated in section 5, a characteristic value corresponds to a, ~ 0.15. Invoking (4.2) for

nondimensionalizing (U, Up) and (4.43) for £, we can then write (5.1) as
U'=a; £+ 0.6+ U, (6.5)
which is evaluated inside the surf zone with the above mentioned al = 0.185.

The longshore driving force represented by e, is in the computations assumed to cor-
respond to an angle of incidence for the waves of 11.4° at the breaker point which yields

vy ~ 0.2 Uy, OF Uy ~ 0.2 u2,. For linear theory with u, ~ en/h and y = 0.7 this gives
:—z—”uwww ~ 0.2 gh.y’12/H? ~ 0.012gh,

which is approximately a,/10.
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we can write (4.47) as

2
M = Znl [a—,,h Lo+’ b chvo]
itz ;
= R+ FBV (4.48)
where
{‘ Ul - 1 E. a 1 e. a
o | [ [ Sdedg - — 7 Sgee| e 4.49
—hg [Um 0 TNtz Jo Qy ¢ 6 iz Jo ayd€ . ( )
* Uy 1§ dz* 1
I =/ —--f 5 4.50
9 —ha [Um 0 Vi ntx] ( )
and
ha
Fl - Um_ Tycs
Uty
B = — Ta (4.51)

For purposes of generalizing to arbitrary topographies, it has been chosen to express the
final results in terms of Uy, rather than Q.. (since it is only for the case of long straight

coast considered here Uy, is —Qyz/h).

Thus (4.41) becomes

0 ¢ Vo (Vo) 0 _ 198,y  OF
Oz ((Dch * ./:-ho v,,,dz) o0z ) P Oz (£aVo) = p 0z * oz (4:52)

The solution of this equation gives the variation of the bottom velocity Vo(z) in the cross
shore direction and it represents—as mentioned earlier—the last condition required to deter-
mine the integration constants in the solutions given above for the total three dimensional

current profiles (U(z,z2),V(z,2)).
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Preliminary Discussion of Results

It is worth already at this point to notice that the additional terms in (4.52) originating
from the current-current interactions (D¢, Fy & F3) of course depends on the driving forces
a, and ay as defined by (4.31) and (4.35). They depend only on the cross- shore current-
velocity profile U(z,z), however, seemingly not on the longshore velocity V itself which
means that (4.52) is really a linear equation for V; (at least as long as a linear relationship

is used for m,,(Vp) but this is not a necessary condition for the validity of (4.52)).

Both by the seemingly total dependence on the cross-shore velocity profile, and in respect
to the way in which the vertical eddy viscosity 14, enter the value of D¢, the results are
completely parallel to the results for the longitudinal dispersion in a pipe found by Taylor
(1954), and the dispersion coefficient for three dimensional continental shelf currents given by
Fischer (1978). The additional effect here is the direct influence from the waves represented

by the second term in D¢ and by F; and F;.

The results also deviate from the above mentioned earlier results, in particular those of
Fischer, by the deceiving way in which D¢, Fy and F; all depend also on the longshore
velocity profiles. From the expressions (4.39) and (4.48)-(4.51) for those quantities, one may
get the (false) impression that the dispersion effect they represent exists even for a depth
uniform longshore current. That situation, however, would correspond to V3 = 0 which,
as (4.30) shows, would cause all dispersion effects to vanish. The clue to this paradox lies
in equation (4.34) which shows that if there is a longshore radiation stress (represented by
ay) and a longshore current gradient (a dVp/9z) then the first integral in (4.34) is generally
non-zero and the second term will be so as well. Hence, a depth uniform longshore current

is not a consistent solution to the present problem. Or, in other words, although D¢, Fy
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and F seem independent on the longshore current profile, that profile is intimately linked

to the same mechanism that generated D¢, F; and Fj.
5 NUMERICAL RESULTS

The results obtained so far are fairly general as they apply to arbitrary variations over depth

of the driving terms o, and a, as well as the eddy viscosities v, and v,.

To illustrate the nature of the variations which can be expected, it is instructive to
consider the special case of v4; = ¥4, = ¥4 = constant over depth and o, ay similarly depth

uniform. In this case, the expressions for U; and V = V; + V; can be written as

Ui = a: E+b:6+Us

(5.1)
2 A%
Vo= oS +bf+ TV + A) 5
where we will neglect Vj; (see eq. (4.16) for justification) so that Vj = V; and where
1 az ) _ Tz
UG=g— by = e (5.2)
1 ay Thy
Gt 3§ b= 5.3
v 2 Vs Y PVtz ( )

are functions of the local meanwater depth k(= ho+ () through the way in which Az, Qy, Vi

are specified. For 73, we have from (4.8)

1
Tbz = ;P f b Up (5'4)
which means that
by = L9y, — 1, (5.5)
TV,



where b (independent of Uj) is defined by (4.12).

Invoking (4.13) for the depth integral of U, substituting (5.5) for 7, and solving for U,

we get
14§
Up=Upn - T:!I,L (5.6)

which means U(z, 2) is completely determined.

Thus in this simplified case, the results for D¢, F; and F; can be expressed in terms
of the parameters a,, a, which essentially represent the driving forces from the cross- and
longshore radiation stresses, the parameter b, linking v;,, the bottom friction parameter and
the wave motion together, and v, the (vertical) eddy viscosity. U,, the depth averaged cross

shore mean velocity is also a parameter.

Typical values of U, are —(0.03 — 0.1)y/gh (see e.g., Svendsen et al., 1987). From the
same source, we assess o, mainly on the basis of d(/8z which in th;e surf zone typically
is 10% of the undisturbed bottom slope, ho;. Together with an estimated vy, of 0.01h+/gh
(4.31) then yields for hor = 1/30 that al, ~ 0.15 where a’, = a,h?//gh.

A realistic value of f ~ 21072 (see e.g., Jonsson & Karlsen, 1976) gives b’ ~ 0.1 where
b’ = bh. i

These values are used as guidelines for the choice of parameter values for the numerical
results shown below.

Fig. 4 shows the variation of Dy = D¢ (7 /UZA?) for b’ = b, = 0 and a’, = 0, 0.1 and
0.2 versus Up,. Although there clearly would be a dispersion effect even in the (unrealistic)

case of a depth uniform undertow (a, = 0), it is also clear that the usual depth variation of

the undertow current (@, # 0) greatly enhances the dispersion effect.

It may be mentioned that although D¢ grows for Un — 0, D¢ = (U2 h?/1.) Dy does
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tend to zero in that limit as one would expect.

As indicated by (4.46), D¢ is composed of two contributions, I4 and Ip. Of those,
Ip is analogous to the dispersion coefficient found by Fischer (1978) for three dimensional
currents on the continental shelf; whereas I4, representing interaction between the waves

and the currents, is new. The numerical computations show that I, is the dominating term.
Fig. 5 shows the corresponding undertow profiles for the typical case of U}, = —0.06.

In Figs. 4 and 5, b has been chosen to be zero. As has been found many times in the
past (see particularly Svendsen & Hansen, 1988), the cross-shore bottom shear stress is quite
small and exercises a very weak influence on the undertow velocity profile. Accordingly, it
is found that the curves for D¢ for b’ = 0, 0.1 and 0.2 can hardly be distinguished from
one another. Consequently, the results in Fig. 4 for b = 0 (i.e., no mean cross-shore bottom

shear stress) are representative for all reasonable values of b.

On the basis of Fig. 4, it is possible to give a crude estimate of the magnitude of D¢

relative to vy,. For the case v, = vy = 7;, we get from (4.46)

D UZh?
— 2= "2 (acl, - Ip)

Viz £

Here we have U h = —Q., and a typical value of Q. is 0.06h+/gh, which means Q. is
approximately 5 7. At the same time, Fig. 4 shows that a.I,—Ip ~ 0.5 which suggests that
D¢ /viz = 0(10). In the example in Section 6, the D¢ value turns out to be approximately

17 Vig.

The expression for the dispersion coefficient D¢ also includes the turbulent eddy viscosity
V12, both directly and through Uy /U, where v, occurs both in a, and b,. The computations
in Fig. 6 are for o, in the range found for the experimental results analyzed by Svendsen

et al. (1987), and with b = 0 (and hence b, = 0). We see that in the range of v, values
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around 0.01 h+/gh found in experiments, there is a substantial variation of D}, which grows
with decreasing v;,. This essentially is equivalent to the growing curvature on the undertow
velocity profile with growing a, shown in Fig. 5. Since decreasing v, represents decreasing
turbulence from breaking, this will usually also be associated with a decline in the slope
9(/0z on the mean water level and hence, in Fig. 6, a reduction in a,. No firm relation
between the two parameters is available but it means that for real wave situations, the
variation of D, with v, will be much more moderate than indicated by the a, = const

curves in Fig. 6.

The significance of the assumption that the longshore current profile determined below
trough level can be continued into the region between trough and crest of the waves can be
illustrated by varying the parameter a, defined by (4.40). Fig. 7 shows a realistic range of a,
values. a. = 1.0 essentially corresponds to a linear extrapolation of the velocity profile above
wave trough. . = 1.1 thus retains a positive curvature (92V/92? > 0) whereas a. = 0.9
represents a situation with 9?V/82? < 0 above trough level. This figure, in which @, = 0.1,
may be compared with Fig. 4 (which corresponds to a, = 1.0). Clearly, there is an effect

from this assumption but the nature of the results for Do does not seem seriously affected.

Finally, results are shown in Figs. 8 and 9 for the two integrals I, and I in the

additional terms in the equation (4.52) for Vo, again versus U, .

It may also be mentioned that in the numerical evaluation of all the integrals, such as
14, Ip, I, and Iy, where the time averaging includes the entire integral, the results contain
terms of the form d® where d = h + 7. Hence, strictly speaking, these results can only be
evaluated correctly if the wave surface profile n(t) is known. It turns out, however, that for
most wave forms and for the wave height to water depth ratios of 0.5-0.7 common in the

nearshore region, it is a reasonable approximation to set d* ~ h™, As an example, for a sine
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wave with y = H/h = 0.6, we get d> = 1.05h2, d° = 1.14h% and d4 = 1.27h". Furthermore,

the magnitude of the terms in the results decrease with increasing power of d.
6 CURRENT VELOCITIES ON A STRAIGHT COAST

In the present section, equation (4.52) is solved for the cross-shore variation Vi(z) of the
longshore velocity at the bottom on a plane beach. The solution also provides results for the

vertical profiles of U and V in the regions inside and outside the surf zone.

The solutions are developed under the simplifying assumption that sine wave theory is
applicable for the calculation of the radiation stresses, and the assumption of a constant
wave height to water depth ratio, 7, inside the surf zone. Outside the breaker point, Green’s

law of H o h~1 is applied.

Since these assumptions are known to give rather inaccurate representations of the actual
conditions on a beach, in particular for the situation inside the surf zone, they imply that
the results given are generic. The purpose is to illustrate the nature of three dimensional

current patterns and the effect of the mechanisms considered.

The distinction between wave conditions before and after breaking implies that at the
breaking point (h = hj) we have discontinuities in several of the driving parameters. Thus,
0Szy/0z jumps from zero outside the surf zone to a finite value at the breaking point and

throughout the surf zone we get

05zy 5 , 3 (sinaw)
oz 167 plgh)? e mhz (82

Also, o, and ay, and hence a, and a, are discontinuous at h = h; which influences the

vertical velocity profiles and thereby the longshore current distribution Vj(z).
Thus, the solution of (4.52) from the shoreline to deep water is a matched combination of
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the solutions inside and outside the breaker point. The boundary and matching conditions

for the solution of (4.52) is as follows:

Vi = 0 at {;:/szo—»oo (6.2)
Vi(zot) = Vi(zp—) (6.3)
0 oV
B)a, = B 4

Here z represents the breaker line position, and the last condition is equivalent of con-
tinuity in 75y, the horizontal shear stresses in the longshore direction along vertical shore

parallel surfaces.

To simplify the discussions, a, is assumed constant in the surf zone. This is in accordance
with the assumption of v = const which yields 8(/dz constant (Bowen et al., 1968). As
indicated in section 5, a characteristic value corresponds to a’, ~ 0.15. Invoking (4.2) for

nondimensionalizing (U, U;) and (4.43) for £, we can then write (5.1) as
U' = a; €2+ 0,6 + Uy (6.5)

which is evaluated inside the surf zone with the above mentioned o/, = 0.15.

The longshore driving force represented by e, is in the computations assumed to cor-
respond to an angle of incidence for the waves of 11.4° at the breaker point which yields

Uy ~ 0.2 Uy, OT Uy Uy ~ 0.2 EE:. For linear theory with u, ~ ¢n/h and v = 0.7 this gives
ﬁ—irw_-vO?- hoy*n? | H? ~ 0.012gh
az w w = g 3'7 2. g T

which is approximately o, /10.
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Outside the surf zone however, the picture is significantly different, mainly because of
the lack of energy dissipation, which implies that 8(/dz is quite small. Using, again, linear

theory we get

o _ E(E)” _m

9z _ 32 \h he pgh (6.6)
ou2, 3 (H\?

5 = 59 (%) b i

Invoking the arguments given in section 4 for 9%, w,,/dz, this then yields

10
% =983 e (8:8)
or, by virtue of (6.6) and (6.7)
p—:
oy = o (6.9)

which is much smaller than «, inside the surf zone.

Thus, below trough level the setup gradient and the wave radiation stresses balance each

other except for the small contribution from the bottom friction.

At the same time, the steady streaming in the bottom boundary layer, which was shown
by Svendsen et al. (1987) to have a negligible effect on the undertow inside the surf zone,
modifies the cross-shore profiles by significantly reducing the (seaward oriented) bottom
velocity Up. In the computations of this effect, we have essentially followed Svendsen &

Hansen (1988).

In the surf zone, the eddy viscosity v; is chosen as 0.01hy/gh. Outside the surf zone,
however, v, and v, are expected to decrease as we move seaward. Very little information
is available, even of the level of turbulent kinetic energy & in (1.5). Fig. 10 from Nadaoka

& Kondoh (1982) shows the only known measurements of k outside the breaker point. The
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results indicate that although k deceases, the level of turbulence outside the breaker point
is not negligible and does not seem to vanish completely even several times the surf zone
width seaward of the breaker point. Based on these observations, we have used the following

expression for v; = vz = 4,

3 -
- { 0.01h+/gh inside surf zone (6.10)

[0.8(h/hs)* + 0.2)vy, outside surf zone

where vy = 0.01hy/ghy

As reference and comparison for the computations are used computations that largely
correspond to Longuet-Higgins’ analytical solution (L-H, 1970) which is based on similar
assumptions as the computations reported here regarding the use of linear wave theory
even in the surf zone, and the expression (4.8) for the bottom friction. The mass flux
Quz for breaking waves (which is not part of the L-H solution) has again been taken as

Quz = 0.12(H?/h)\/gh (which yields U,, = —0.06+/gh inside the surf zone for vy = 0.7).

Our numerical reference computations as well as the solution of (4.52) and associated
equations also deviate from the analytical L-H solution by using Greens law for the wave
height variation outside the breaker point (against v = H/h = constant used in the analytical
(L-H) solution). Since dS,,/8z = 0 outside the breaker point, the major effect of this is the

equivalent change of 7, through the change of u,,; in (4.8).

Fig. 11 shows the results of four different computations of V3(z) on a 1/30 slope beach.
One (marked a) corresponds to the L-H solution with v = 0.01h\/gh everywhere. This means
vy increasing seaward as h3 even outside the break point. The solution marked b shows the
effect of using the eddy viscosity given by (6.10). In both these cases, the dispersion effects
represented by D¢ and the other interaction terms in (4.52) have been neglected. We see
that the effect of changing the already small eddy viscosity »; outside the surf zone is very

modest indeed.
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The curve marked c represents the results from solving (4.52) including D¢ and the F}
and F; terms in combination with the solutions for the vertical profiles for the currents U &

V and v; given by (6.10).

Finally, curve d represents a computation similar to b (i.e., with no dispersion effects)
but with v; increased to a level that gives the same maximum longshore current velocity as
found in computation c. This turns out to require »; = 0.17h+/gh, or 17 times the eddy
viscosity used in case c. In terms of Longuet-Higgins’ P, the curves have P = 0.005 (a, b &
c) and P = 0.085 (curve d). This latter value of P is in accordance with what has, generally,
been found gives the best agreement with measurements for V(z), with the approximations

made about use of linear theory and linearized bottom friction.

Thus, it is found that for the example considered in these computations, the effect of
the dispersion has provided a longshore current variation equivalent to what measurements
usually indicate while keeping the eddy viscosity at values compatible with the estimates we

can justify from turbulence measurements.

Simultaneously, with the computation of Vj the solutions for U (z,2) and V(z,z) are
obtained as indicated earlier. These profiles are shown in Figs. 12 and 13 for the parameter

values and assumptions corresponding to case ¢ in Fig. 11.

In the absence of steady streaming, with the many simplifications introduced, there is
only one undertow velocity profile inside the surf zone. The inclusion of steady streaming
introduces less than 10% variability of the undertow cross-shore location. The profiles outside
the breaker point decrease with increasing depth which reflects the general decrease seaward

of wave heights and forcing.

The complicated variations in the neighborhood of the break point must necessarily be

rather schematically represented by the simple discontinuities in wave conditions assumed at
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the point. In agreement with what was mentioned earlier, the shape of the undertow profiles
outside the surf zone are remarkably different from those inside, the bottom velocities being
quite small, and the velocity increasing upwards from bottom. This almost triangular shape
is in fact in agreement with the available measurements from that region (see e.g., Nadaoka

& Kondoh (1982), Fig. 14.

The longshore current profiles also show an interesting shift near the breaker point.
Outside that point, these currents are entirely driven by the dispersion mechanisms described
above and the (much weaker) turbulent mixing. The realism of these profiles is therefore
a very sensitive indicator of the—at least qualitative—accuracy of the description of the

dispersive mechanism.

For all positions, we find that V(z,z) only vary slightly over the depth. Hence, the
cross-shore distribution of V3 in Fig. 11 is really characteristic for the entire variation of
the longshore current velocity field. Fig. 13 also shows, however, that from the shoreline
and till a depth of about 0.8 hy, the longshore current velocities increase slightly from the
seabed towards the surface. From h = 0.8h; and seaward, this tendency is reversed and the

maximum value of V(z) now appears at the bottom.

Recalling that a depth uniform V yields no dispersion effects whatsoever, this shift in
the sign of 9V/0z indicates a similar shift in the sign of the dispersion effect, represented in

the equation essentially by the change of sign of *V/0z? around the same depth.

The significance of this change in the shape of longshore current profiles as we go seaward
is further enhanced by examination of the (only) experimental information available about
the vertical profiles of the longshore currents (see Visser, 1984). These measurements are
shown in Fig. 15. It is remarkable that all Visser’s profiles show exactly the same pattern

as predicted by the present method: dV/dz > 0 for h < hy and 9V/8z < 0 seaward of that
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point. Given the important connection between this feature and the dispersion mechanism,

this qualitative agreement between measurements and theory seems very encouraging.

Finally, it is mentioned that a direct quantitative comparison with experimentally mea-
sured longshore current velocities has deliberately been omitted. To make sense such com-
parisons would require a much more accurate evaluation of radiation stresses and other wave
properties. The accuracy of the rather crude model for the time averaged bottom shear

stress would also have to be more closely examined.
7 CONCLUSIONS

It has been shown that the three-dimensional structure of the cross- and longshore currents,
generated on a beach by the breaking waves, plays a crucial role in the horizontal distribution
of these currents. A perturbation solution of the full set of equations on a long straight
beach leads to analytical representations of the three-dimensional effect which is dispersive
in nature. It corresponds to a generalization of the longitudinal dispersion effect found by
Taylor (1954) for flow in a pipe and by Fischer (1978) for ocean currents on the continental
shelf. In addition to these mechanisms, the dispersion in the nearshore region includes an
interaction with the wave mass flux which is the largest contribution. For typical nearshore
conditions, the effect is found to be 10-20 times stronger than the turbulent lateral mixing
that can be justified on the basis of our knowledge of the turbulence inside and outside the

surf zone.

Accordingly, it is found that the shape of the cross-shore variations of the longshore
currents typically found in the literature can be predicted with a turbulent lateral mixing
that is one to two orders of magnitude smaller than what is normally assumed and which

falls within the bounds of what can be justified from turbulence measurements.
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Simultaneous with the longshore current profiles, results are also obtained for the vertical
structure of cross- and longshore currents. It is shown that these results show characteristics
differences in and outside the breaker point and these differences are found to be in qualitative

agreement with experimental results.
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Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig.15

Computed cross-shore variations of longshore bottom velocities Vj. v = 0.7, f =
0.02, Q. = 0.1282./gk.

a) V; from (4.52), without dispersion, v; = 0.01h+/gh everywhere.

b) As a), v; given by (6.10).

c) V; from (4.52) with dispersion. »; given by (6.10).

d) V4 from (4.52) without dispersion, v = 17 times the value given by (6.10).

Cross-shore (undertow) current profiles for different values of h/hy. Parameters

and assumptions as in Fig.11, case c.

Longshore current profiles for different values of h/h;. Parameters and assump-

tions as in Fig. 11, case c. Note the change in 8V/8z around h = 0.8h;.

Measured undertow profiles (from Nadaoka & Kondoh 1982). Note the triangular

shape of the undertow profiles outside the surf zone.

Measured longshore current profiles (from Visser 1984, experiment No. 2). The
first three locations are inside the surf zone, the fourth location is at the point of
breaking and the last four locations are outside the surf zone. Note the change

in 9V /0z around the break point.
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