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ABSTRACT

A quantitative understanding of the steady state condition of a beach is an
important aspect of predicting the shape of nearshore bathymetry due to changes in
the wave climate. In this thesis, a numerical model will be developed to simulate the
presence of longshore bar formations in an equilibrium beach profile. The method will
utilize the work of Roelvink and Stive (1989), who modelled cross-shore flow mechanisms

that produced longshore bars.

A no-net sediment movement condition across the surf zone is applied to the
cross-shore energetics sediment transport formulation of Bailard (1982), resulting in an
equilibrium beach slope equation. The proposed flow models of Roelvink and Stive
(1989) will be used as approximate representations of the nearshore hydrodynamics and
will be applied directly as the representative flow field across the equilibrium beach
profile. Combining the bottom slope equation with the energy and the momentum
balances, the system of equations is numerically integrated as an initial value problem
across the surf zone, calculating the local values of the wave and current fields that drive
variations in bottom slope. The results are solutions for depth, root-mean squared wave

height, and mean water surface elevation across the equilibrium profile.

This model provides a solution for the equilibrium beach profile resulting from a
no-net sediment transport condition. A breakpoint longshore bar exists in the equilib-
rium beach profile due to a change in the near-bottom steady current from onshore to
offshore as wave breaking begins. The results are qualitatively compared to the exper-
imental tank data of Roelvink and Stive (1989), where a longshore bar was generated

with an exaggerated undertow mechanism, and to time averaged profile measurements

vii



at the U.S. Army Corps of Engineers Field Research Facility. In a qualitative sense,
for a broad range of incident wave conditions with relative small wave steepness values,
the model predicts the trend for bar migration as the wave climate changes varies in a
mild erosional state. However, the model cannot be used to predict quantitatively the

equilibrium beach profile for an arbitrary set of wave conditions.
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Chapter 1

INTRODUCTION

Coastal engineers require accurate methods to determine the shape of the near-
shore bathymetry under given wave conditions. The design of beach fills and coastal
structures requires methods to predict how a beach will respond to changes in wave
climate, especially during storm events, and nearshore current conditions. The ability
to make such predictions proves beneficial in engineering applications when estimates
for volume changes of a beach during climatic and seasonal changes provide low cost
solutions to beach stablization and management. Most shore response models are time-
varying predictors that model the change in the nearshore bathymetry in response to
changes in wave climate. These types of models demand many computations and large
amounts of computer time that can prove costly for most engineering applications. How-
ever, the ability to predict accurately the steady state shape of a beach for an arbitrary

set of wave conditions proves to be a low cost solution to nearshore management.

To date, the most accepted means to quantify the steady state shape of a beach,
or the equilibrium beach profile, is the h(z) = Az?/3 model presented by Dean (1977).
This model has proven useful for a number of engineering applications but lacks versa-
tility due to inherent assumptions related to the wave field and wave breaking. Recent
advances have led to models that better quantify the physics of the nearshore wave
environment through more complete breaking models. These models include the work
of Larson (1989), who establishes an equilibrium beach profile model by utilizing the
monochromatic breaking model of Dally et al. (1985). Further work by Kaihatu (1990)
and Dalrymple (1992) apply the spectral breaking models of Thornton and Guza (1983)
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to quantify the equilibrium beach profile caused by a random wave field. These models
provide more realistic assumptions of the processes in the nearshore region, but still
offer only a monotonic description of the beach shape and cannot generate or identify
the presence of longshore bars, which are frequently observed to exist in natural stable

beach shapes.

In this thesis, a numerical model is developed to simulate the presence of long-
shore bar formations in an equilibrium beach profile using a random representation of the
wave field. The flow models proposed by Roelvink and Stive (1989), hereafter referred
to as R&S, are adopted as representations of the dominant nearshore flow mechanisms
that govern sediment transport across the beach. The replication of the models for wave
asymmetry-induced onshore flow and the momentum decay-induced mean return flow

will be calibrated with the 1:40 plane beach data of R&S.

To determine the equilibrium beach profile resulting from the wave and current
fields across the surf zone, an equilibrium bottom slope equation will be derived by
applying a no-net sediment transport condition to Bailard’s (1982) energetics total load
sediment transport formulation. The no-net sediment transport condition requires a
local time-averaged sediment transport to be zero for all locations across the nearshore
region. This condition artificially imposes a local balance between the bedload and

suspended load at each location across the equilibrium profile.

A system of three ordinary differential equations governing nearshore wave, cur-
rent and sediment transport interaction is used to solve for the equilibrium beach profile.
The aforementioned bottom slope equation is combined with the energy and the momen-
tum balances to establish a system of ordinary differential equations coupled through
Hims wave height, mean water surface elevation, 7, and bottom depth, d. The system of
equations is solved numerically as an initial value problem using a fourth order Runge-

Kutta scheme, where all three equations are solved simultaneously. The model provides



solutions for the equilibrium conditions of Hpy,, wave height, mean water surface ele-
vation and bottom depth. For variations in the wave and sediment characteristics, the

system of equations will provide unique solutions for each combination of conditions.

Solutions to the system of equations will be compared to wave tank profile data
of R&S and to a time-averaged profile at the U.S. Army Corps of Engineers Field
Research Facility to determine possible applications of the model for predicting stable
beach shapes with predominant longshore bar features. Further, analysis of the model’s
response to variation in offshore wave_climate will be conducted to determine whether

trends in the model’s response replicate observations in nature.



Chapter 2

BACKGROUND AND PROBLEM STATEMENT

This thesis is concerned with applying highly accurate numerical descriptions of
the nearshore wave and current climate to predict the equilibrium shape of the nearshore
bathymetry through what is defined as a kinematic approach, also known as an energet-
ics approach. Historically, the equilibrium beach profile has been described by dynamic
and empirical methods. Section 2.1 will review methods based on the dynamic approach
as described by Dean (1977), where the general form of the beach shape results from
a balance between the constructive and destructive forces in the surf zone. Section 2.2
will discuss early attempts at energetics approaches, where simple approximations to

nearshore processes have led to less than desirable descriptions of the nearshore slopes.

2.1 Dynamic Approach
2.1.1 Monochromatic Methods

Qualitative models for equilibrium beach profiles date back to Bruun (1954) who
hypothesized that the general shape of a beach in the cross-shore direction is concave
upwards, decreasing in depth from offshore to onshore. Dean (1977) quantified this
hypothesis with an analytical model that represents the stable shape of a beach or what
has been termed the equilibrium beach profile. Dean’s equilibrium condition requires
that a given sediment size must be able to withstand a given level of energy dissipation
per unit volume induced by wave breaking. To apply this hypothesis, Dean related the

change in wave energy flux, which is the change in the rate at which energy is transferred

4
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by the waves per unit volume, to a constant rate of wave energy dissipation, D., for

which the sediment is stable. The resulting expression is

OEC,
e
33 - h-D.’ (2-1)

where EC, is the wave energy flux.

For simplicity, Dean developed the model based on linear shallow water wave

theory where the linear shallow water wave energy flux is

1 f
EC, = Epgﬂz\/gh, (2.2)
where E is the linear wave energy,

E= %ng’, (2.3)

and Cj is the shallow water group celerity,

Cy = Vgh (2.4)

The wave height is defined as H, h is the water depth, p is the fluid density, and g is

the gravitational acceleration.

Introducing a spilling breaker assumption, H = kh, where & is taken as O(1),

eqn. 2.1 is written explicitly in terms of the water depth, h, as

3(’5.(‘-*9&’\/55

= = —hD, (2.5)

where h is the only variable in z.



The equilibrium shape of the beach is determined by defining the shoreline as the
location of zero water depth and integrating eqn. 2.5 in z, where z is the shore normal
direction defined as positive offshore. The resulting expression for the equilibrium profile

is

h(z) = Az*/ (2.6)
where
_ 24Do 2!3

The equilibrium beach takes a shape that is a balance between the destructive forces
induced by the wave energy dissipation and the ability of the sediment to resist those

destructive forces.

One aspect of interest with this model is an accurate representation and calibra-
tion of the dissipation term D,, which is assumed to be constant across the surf zone.
Moore (1982) related A, and thus D,, to surf zone sediment grain size by applying
a least squares fit between the Az?/3 model and measured profile data where average
sediment grain size is known and assumed constant over the entire surf zone. Moore
presented tables that directly relate values of D, to sediment size, allowing the Az?/3 to
predict the shape of the equilibrium beach profile at a specific site given local sediment
size characteristics. This model has proven to be very useful in predicting the general
shape of beach profiles In fact, Dean (1977) showed that profiles along the East and
Gulf coasts of the United States can be generally defined as having Az?/3 shapes, where,

again, A is adjusted according to local sediment conditions.

However, this model is limited in its validity by its basic assumptions: (1) wave

breaking is modelled according to the spilling breaker assumption, H = kh, (2) the
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wave field is linear and monochromatic, and (3) a fixed breakpoint is used. Further,
the model yields an infinite slope at the still waterline where the depth approaches zero
and cannot predict the presence of sand bars which were found by Dean (1977) to be

common features in some stable beach shapes.

Modifications to this method have been presented by recent authors, (e.g., Lar-
son 1989, Bodge 1991.) Larson modified Dean’s method by replacing the spilling breaker
assumption with the more comprehensive breaking model of Dally et al. (1985). This
breaking model is based on the argument that the rate of energy flux decay is propor-
tional to the amount of excess energy flux in the wave form and is expressed mathemat-

ically as

08% = —a = -5 [(BC)) - (ECy)] 28)

where K is an empirical constant equal to 0.17, EC, is the energy flux of the wave and
(ECy), is the stable energy flux of the wave. The excess of energy flux is described as
the difference between the actual energy flux and the stable energy flux where the stable
energy flux is defined as the energy flux, associated with the height of a broken wave
propagating across a flat bottom. The stable wave height is found to be approximately
H = ~h, where 7 is about 0.4.

To determine the wave height across the equilibrium beach profile, Larson ap-
proximated the dissipation assuming linear shallow water wave theory and equated the

dissipation term to Dean’s equilibrium concept of constant dissipation per unit volume

hD, = ¢ (2.9)

where the dissipation term is approximated as



fis % (%pg\/g‘h(m - 1’h’)) (2.10)

Solving for H, Larson obtained

8h2D
H = [ ——=—= + 7?h?, 2.11
‘/pgs/EEK ¢ (211)

which provides the wave height across the equilibrium profile as a function of the profile

depth, h.

To proceed, this expression for wave height is substituted into the energy flux
expression (eqn. 2.2), and subsequently into the energy balance (eqn. 2.1). After some

manipulation and integration in z this leads to

ho 5 e (2R
2K+24pg (D. =2 (2.12)

This equation, relating the equilibrium water depth to the distance offshore, is
best solved for the distance z in terms of h. This relationship differs from Dean’s in that

the profile now includes a linear term which removes the infinite slope at the shoreline.

The monochromatic methods present simple, very usable representations of the
general shape of cross-shore bathymetry. With knowledge of sediment size at a given site,
Dean (1991) has shown his model to be a valuable tool in estimating beach response to
sea level rise and added beach fill material. However, the models are based on extremely
idealized conditions and simple additions to these formulations may be valuable for

better descriptions of the nearshore bathymetry.



2.1.2 Spectral Methods

Recently, the work of Larson was extended to account for the dissipation in
a random wave field. Kaihatu (1990) adopted the random wave breaking model of
Thornton and Guza (1983) as the dissipation term in the energy balance presented by
Larson (eqn. 2.8). Thornton and Guza had presented two dissipation terms based on
the probability density of breaking wave heights across the surf zone, The two terms are
categorized as simple and complete expressions for wave height decay. Kaihatu adopted

the simple expression,

35 B3
€y = .—l—'ﬁ_Pg‘T‘th:’m, (2.13)

which is a reduced version of the complete expression. This can be solved analytically

across a planar beach for the root-mean-squared wave height, H s

Following Larson, the dissipation term was equated to Dean’s constant dissipa-
tion per unit volume (eqn. 2.9), and an expression for Hyms wave height was obtained

in terms of the cross-shore depth as

2D 1/7
Homs = ("’T-) RS/ (2.14)

where the constant A’ has been introduced for convenience and is defined as

A = g B

T (2.15)

where f is the mean frequency of the wave field, B is the fraction of white water on the

breaker face, and 7 is a constant taken to be 0.42.
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Substituting this relationship for Hm, wave height into the energy flux expression
(eqn. 2.2), and subsequently into the energy balance (eqn. 2.1), the resulting expression
was integrated with respect to the offshore distance z, using the initial condition h(z) =

0 at z = 0. The resulting expression for depth across the profile is

h(z) = B 2"/ (2.16)

where the dimensional coefficient 3 is given by

136D l' . 14/17

where all terms are previously defined.

This result provides an analytical solution for the equilibrium beach profile under
attack by a random wave field and the corresponding Hrms Wave height across the profile.
There are similar characteristics between the $z14/17 solution and Dean’s Az?/3, which
include a monotonic decrease in water depth from offshore to onshore, an infinite beach
slope at the still water level, and a constant dissipation term D.. The D,, although well
calibrated for Dean’s model, may be different for the case of random wave dissipation.
Kriebel (1992) has suggested that the value of D, be related to probability distribution
of the breaking waves through an effective value of D,, say D.

Dalrymple (1992) derived the solution for the equilibrium beach profile using the

complete dissipation term of Thornton and Guza,

(2.18)

3vx B o [1_ 1 ]

c = rrm
S RS (L + (Hrma/ 7))



11

Dalrymple followed the method of Larson and Kaihatu, and presents the solution

of the H,ms Wave height across the surf zone as

A'H3 1
hD, = —-08 1] - 3 2.19
h3 [ (1 + (Hema/7h)?)*? (2.19)

where A’, B, f, and 7 are defined above. From this expression the H,y, wave height

must be solved for by iteration.

Because the expression for wave height cannot be solved analytically, a gener-
alized bottom slope equation is required. From the energy balance (eqn. 2.1), the
expression for bottom slope can be expressed in terms of the bottom depth, h, and the

H,ms wave height as

dh 8hD,

B g /gR Homa (2500 + Epe)

The equilibrium depth across the surf zone can be found by numerical integration of

(2.20)

eqn. 2.20. When integrated, this solution does not differ drastically from the results
of Kaihatu (figure 2.1), but this formulation does allow for more elaborate dissipation
terms or bottom slope formulations to be added to the numerical scheme. As shown
iﬂ figure 2.1, with calibration of B and D, the models can be used to represent the
equilibrium beach profile and the associated Hrms Wave height across the surf zone. The
fit to data for both the profile depths and the Hym, wave heights is remarkably good

considering the assumptions and approximations in the formulations.

2.2 Kinematic Approach

A second type of equilibrium beach profile method is described as a kinematic
approach where more fundamental physics are taken into account to describe the stable
shape of the beach. To apply this method, a suitable model for bottom slope as a

function of wave and current climate must be considered. In our work we are interested
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Figure 2.1:

Equilibrium beach profile solutions for simple (dashed) and complete (dot-
ted) dissipation models compared to wave and profile data (solid) (Torrey
Pines CA., November 18, 1978), (with permission of Dalrymple and Kai-
hatu).
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in the energetics-based sediment transport formulations of Bagnold (1963, 1966), Bowen
(1980), Bailard and Inman (1981) and Bailard (1981) to obtain such formulations for

bottom slope.

2.2.1 The Energetics Sediment Transport Models

Historically, the energetics sediment transport models of Bagnold (1963, 1966)
have been used as suitable descriptions of fluid-sediment interactions. Bagnold’s origi-
nal formulation dealt strictly with two-dimensional stream flow where the unidirectional
downstream flow and gravity work in parallel to transport sediment. This energetics
model is based on the argument that sediment is transported in two distinct modes, bed-
Joad and suspended load, where each mode of sediment transport results from different
mechanisms and thus requires different percentages of the total power of the stream.
The bedload transport is maintained through grain-to-grain interactions under the force
of the bottom flow, while the suspended load transport is maintained via turbulent dif-
fusion throughout the water column. Two efficiency factors ¢, and ¢, for bedload and
suspended load, respectively, are measures of the amount of total flow power required
by each mode of sediment transport and have been calibrated through experimental

measurements.

Bagnold’s total load instantaneous sediment transport for unidirectional flow can

be written as

epu’ £,u° |uf

tan ¢ — -——ﬁ‘”’:’l‘ ¥ w — utanf§

i, = cpp (2.21)
where i, is the cross-shore immersed weight sediment transport weight, u is the repre-
sentative velocity component, cp is a drag coefficient, w is the settling velocity of sand,
p is the fluid density, tan ¢ is the angle of internal friction of sand, and tanf is the

bottom slope.
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Bagnold (1963) developed an energetics model for oscillatory flow to investigate
nearshore sediment transport. The result is a model based on the argument that the
wave-induced oscillatory motion suspends the sediment and maintains the sediment
suspension, but does not produce net transport of the sediment, A mean current or
a higher order flow component superimposed on oscillatory current will produce a net
transport of sediment in the direction of the current. Bagnold’s final formulation of

instantaneous total load sediment transport under oscillatory flows is

ig = K'w:i- (2.22)
where i is the time-averaged immersed weight transport rate in an arbitrary direction,
ug is the steady current in the 8-direction from shore normal, w is the local time-averaged
rate of energy dissipation (not to be confused with the angular frequency of the wave
field), up,, is the magnitude of the wave orbital velocity, and K’ is a dimensionless

constant.

Bailard and Inman (1981) and Bailard (1981) recognized that Bagnold’s for-
mulation for oscillatory flow does not include a bottom slope term or a time-average
sediment transport rate. Bailard and Inman reformulated this problem for bedload
using Bagnold’s energetics sediment transport formulation for unidirectional flow and
accounted for the time-varying flow over a sloping bottom. Bailard furthered this study
to include suspended load sediment transport, and combined his findings with those of
Bailard and Inman, yielding a model for total load sediment transport in the presence of
time-varying oscillatory flow over a sloping bottom. Assuming a normally incident wave

climate and considering only onshore-offshore transport, Bailard’s total load model is

{a

€ nf 3 €s Es
2 [uomeor - G5 wor] + 5§ [uotuor - G snor]]
(2.23)

iz(t) = csp [
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where iz(t) = ip + is is the time-varying total cross-shore immersed weight sediment
transport weight, ip begin the bedload component and ig the suspended load compo-
nent, ¢, and ¢, are efficiency factors as in Bagnold's formulation, ¢ is the drag coefficient
for the bed, w is the settling velocity of sand, tan ¢ is the angle of internal friction of
sand, and tan 3 is the bottom slope. The velocity terms u(t) |u(t)|" and |u(t)[* are
the odd and even velocity moments, respectively, and are the mechanisms relating the
flow field to the transport of sediment. The first term in the right-hand-side is the
contribution from bedload transport, and the second term describes the contribution
from suspended load transport. It is this formula of time-varying cross-shore sediment
transport under oscillatory flows that provides the basis for the modelling of equilibrium

conditions of the nearshore region.

2.2.2 No-Net Transport Condition

The equations for bottom slope are arrived at via a no-net sediment transport
condition. Unlike the null-point hypothesis addressed by Ippen and Eagleson (1955),
Fagleson and Dean (1961), and Eagleson, Glenne and Dracup (1963), where the null-
point is based on a stable grain size distribution across the equilibrium profile, the no-net
transport condition is a time-averaged balance between the bedload and suspended load
contributions across the equilibrium profile. In essence, the total net transport must be
zero at a given horizontal location, but net transport can be represented through the

bedload and suspended load components.

Equations 2.21 and 2.23 are the basis for the total load equilibrium beach slope
solutions by Bowen (1980) and Bailard (1981), respectively. Imposing a no-net sediment
transport condition across the entire profile and solving for the bottom slope, analytical
expressions for the beach slope are shown to represent trends apparent in nature. This
approach was first used by Bowen, who presented equilibrium solutions to the suspended
load, bedload, and total load formulations of Bagnold’s unidirectional sediment trans-

port model, where the flow is defined as positive onshore. Later and Bailard applied the
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method of Bowen to his generalized form of Bagnold’s stream flow model and presented

a qualitative comparison to the results of Bowen.

Bowen argued that the existence of a beach is due to a balance between onshore
forcing of the incident wave field balanced by the effects of gravity in the downslope or
offshore direction. Specifically, the onshore forcing from the flow field is a combination
the orbital velocities from linear wave motion and a perturbation from a higher order
wave component, causing time-averaged onshore flow, or an imposed mean current,
such a bottom drift velocities. Ideally, it is this mean onshore flow which opposes the
downslope forces of gravity to create a beach. Without the forcing of the shoreward
directed flow field, gravity would bring a beach to an equilibrium shape or a slope equal
to the angle of internal friction of the sediment, which is approximately 33° from the

horizontal for sand.

Bowen applied this argument by adopting Bagnold’s unidirectional sediment
transport model (eqn. 2.21) as a basis for sediment transport representation and where
forcing effects of a flow field are related to the forcing of gravity. The slope term in this
model is represented by tan 8. To describe the flow field, Bowen assumes the flow to be
a combination of two components, u = ¥ + #, where @ 3» . The larger component i is
the fandamental component of the flow modelled by the orbital flow under a linear wave.
The smaller component T may be the result of flows induced by a steady current super-
imposed on the orbital flow, flow induced by the presence of higher harmonics in the
wave form, or the effects of wave forms not bound to the fundamental wave form (i.e.,
nearshore infragravity waves). Of these, Bowen addressed the first two as flows that can
be modelled and attributed to the tendency for onshore sediment transport from the
incident wave field. The steady current was chosen as the steady-streaming velocities
found by the conduction solution of Longuet-Higgins (1953), where the mean drift in
the boundary layer of a second order wave is in the direction of wave propagation. The
higher order harmonic, bound to the linear wave, forms a vertically asymmetric wave

form where the short, intense forward flows are under the crest and longer, less intense,
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offshore flows are under the trough, resulting in a net onshore movement of sediment.

It is straightforward to model these flows individually; however, the total flow
moments (i.e., u" |u]), seen in eqn. 2.21 and 2.23, are combinations of the individual
flows. In order to represent the total flow moments in a form where the individual
flow mechanisms can be modelled, the moments must be expanded in terms of a small
quantity . Bowen argues that under the assumption that # » ¥ and applying a

binomial expansion, terms of the form u" |u| can be approximated as

u" |u| = @ |@| + (n 4+ 17" 0] + -"(J‘zillii? a2 |&| + ... (2.24)

where now the total flow moments are expressed in terms of the fundamental and

secondary flows.

As a simple first approximation, Bowen chose to represent the oscillatory flow
field containing a higher order nonlinear harmonic with Stokes second order wave solu-

tion,

. 3 upm
il = ¥m cos ot + 4 Csinh? (Kh) cos 20t (2.25)

and the mean current with Longuet-Higgins’ streaming velocity,

2
_— “’m
=2 (2.26)

The combination of these flows provide a net onshore flow across the nearshore region.

Requiring the system to steady, Bowen time-averaged the flows over several wave

periods and imposed the no-net sediment transport condition,
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(iz) = 0, (2.27)

to obtain the total load bottom slope model

= {(525) [(sramirm) () (D ()
(=) (sammm) (2) + () e+ 5 ()"} e

This model is a function of wave amplitude, wave period, and sediment fall velocity.
Changes in bottom slope due to variations of these variables are shown graphically in

figure 2.2.

Bowen pointed out the qualitative advantages of this model in that beach slope
increases as fall velocity increases, as depth decreases, and as wave period increases. All
of these characteristics of the nearshore beach slope are generally observed in nature,
It must be noted that Bowen does not use this model explicitly to express changes in

bottom bathymetry as a function of changes in the wave field.

Bailard also used this approach with his cross-shore total load sediment transport
model but had less success in representing realistic beach slope magnitudes. Only a
qualitative order of magnitude comparison to Bowen's results was made where trends in
the models response to changes in wave field and sediment characteristics are recognized.

Bailard’s resulting expression,

ans={(:25) | (o) () + (5) (%‘)] +
(22) o[ (samvam) () ++ ()| Hs
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Figure 2.2: Normalized beach slope B/ak, as a function of the nondimensional depth
k,h for various values of the suspension parameter ao/w, (Bowen 1980).
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Figure 2.3: Normalized beach slope f§/ak, as a function of the nondimensional depth
k,h for various values of the suspension parameter ao/w, (Bailard 1981).

is expressed graphically in figure (2.3). It can be seen through a comparison of figures
(2.2) and (2.3) that the two models respond identically for pure bed load conditions but
quickly differ as suspended sediment is added to the system. This response is attributed

to the additional ¢, term in the denominator of Bailard’s expression.

These kinematic models present the beach slope in terms of nondimensional pa-
rameters that can be used to relate general trends of the beach slope to changes in
relative water depth k,h and suspension parameter ao/w. Unfortunately, these models
are not solved explicitly for the shape of the beach. Bailard points out that the extreme
slopes obtained in shallow water from these models may be the result of the inappro-
priate use of Stokes theory in shallow water and until a better flow model is developed,

including more accurate shallow water wave representations, solving for beach shape
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may be problematic.

To conclude, the results from the dynamic approach have been shown to give
reasonable and usable representations for the beach shape explicitly. However, the as-
sumptions and approximations used to derive these models and the quantification of
D. leads to a search for a more complete and accurate description of the nearshore
bathymetry. The kinematic approach presents a possible alternative for describing the
equilibrium shape of a beach profile and offers enormous flexibility in that any sed-
iment transport model based on nearshore processes and accurate wave and current
descriptions can be applied through numerical methods. The most critical aspect of
these models is obtaining wave and current models that can model the actual flow fields
present in nature. In this study, the accurate stream function theory of Dean (1965) will
replace the Stokes second order approximation as a model for the short wave climate,
and the undertow model of Stive and De Vriend (1987) will provide a representation of
the steady cross-shore flow. A wave height decay model for a random wave field will be
intergrated simultaneously with the bottom slope model to provide the solutions to wave
height, mean water level, and bottom depth for a state of no-net sediment transport

across an equilibrium beach shape.



Chapter 3

GOVERNING EQUATIONS AND MODEL FORMULATION

The method in this thesis is described by Dean and Dalrymple (1992) as a kine-
matic approach to the solution of an equilibrium beach profile. The kinematic approach
is applied to define the balance between the modes of sediment transport, via a no-net
motion requirement along the profile, providing a bottom slope relationship dependent
on variations in the wave and current climate. Specifically, an equilibrium beach profile
can be modelled kinematically by establishing a relationship between the change in wave
height across a surf zone and, thus, the current field and the response of the bottom

slope, balancing the system to maintain no-net sediment motion.

The model proposed here will address the use of a generalized bottom slope for-
mulation as a means to describe the shape of the nearshore bathymetry in an equilibrium
state. The no-net sediment transport argument of Bowen (1980) and Bailard (1981) will
be applied to Bailard’s (1982) instantaneous, energetics cross-shore sediment transport
equation resulting in a generalized expression for the bottom slope. The bottom slope
equation will be re-expressed in terms of the nearshore velocity moments following the
method of R&S, resulting in a generalized bottom slope equation expressed explicitly
in terms of a steady current component, central odd velocity moments and central even
velocity moments in the cross-shore direction. Following the definition of R&S, the
central odd velocity moments are the time-averaged terms of the form (i |i|") and the
central even moments are terms of the form (|@|"), arising from the expansion of the
total velocity moments in terms of time-varying # and steady current ¥ contributions.

A method similar to that of R&S, who isolated longshore bar generating flows, will be

22
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used to model the velocity moments in an attempt to produce a longshore bar formation

in the equilibrium beach profile.

The energy decay model adopted will be applied for a random wave field where
extensive work has been conducted in the calibration of the wave height distribution and
velocity flow moments across the surf zone (e.g., Bailard (1982), Guza and Thornton
(1985), Battjes and Stive (1984), Stive (1986), and R&S). The wave energy dissipation
in a random wave field will follow the work of Battjes and Janssen (1978) and Battjes
and Stive (1985) to be consistent with the decay model used by Stive (1986) and R&S,
where specific calibration of the total flow moments in a random wave field has been

made.

Specifically, the basic formulation of this model consists of three first order linear
differential equations: the bottom slope equation, the energy flux equation, and the
momentum equation. This system of equations is coupled through wave energy, mean
water surface elevation, and bottom depth and must be solved with an iterative scheme,
or by simultaneous integration of all three equ ations. An attractive characteristic of this
system is that it is an initial value problem and solutions to these equations are found
with a standard O(Az)* Runge-Kutta ordinary differential equation solver, where all
three equations are solved simultaneously. Given this system of equations, solutions
for water depth, wave height, mean water surface elevation, are provided as function
of z, positive in the onshore direction. This will also provide solutions for the velocity
moments and their respective components as a function of cross-shore distance. A

definition sketch of the proposed model solutions is seen in figure 3.1.

In the following chapter, the equations for the generalized equilibrium beach
profile model, referred to hereafter as the GEBP model, will be developed in a detailed

discussion of the bottom slope equation and energy decay model.
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Figure 3.1: Definition sketch of proposed model solutions and sign convention.

3.1 Bottom Slope Equation

For the depth solution, the bottom slope model of Bailard (1981) is used as a
basis for the development a more elaborate slope model by considering more complete
wave and current current models. The new model will be formulated to correct problems
with the simplified representations of wave and current models used in Bailard’s model.
Specifically, the use of Stokes second order solution in shallow water for the nonlinear
wave component may lead to erroneous results for beach slope in the shallower areas of
the surf zone; therefore, the Stream Function theory of Dean (1965) will be applied to
ensure valid nonlinear wave solutions for a vertically symmetric wave form in any depth
across the entire surf zone. Further, using the bottom drift velocity as the representative
mean current may be suitable outside the surf zone, but we are interested in solutions
across the entire nearshore region; therefore, the undertow solution of Stive and de
Vriend (1987) will be used as the steady current model across the entire nearshore
region, providing onshore flows outside the surf zone and offshore flows inside the surf

zone.
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3.1.1 Bailard’s Analytical Model

Bailard (1981) addresses the equilibrium solutions of his total load sediment
transport formulation by imposing the no-net sediment transport condition and defining
the nonlinear nearshore wave field with Stokes second order solution and the steady
current with Longuet-Higgins’ (1953) steady streaming solution. In his analysis, Bailard
only presents solutions for bottom slope and does not solve for the profile shape due
to unrealistically steep values for bottom slope in shallow water. Bailard speculates
the steep values may be the result of the suspended load efficiency factor €,2 in the
denominator of the slope equation and the use of Stokes second order solutions well
into the surf zone, where this wave theory is known to provide physically invalid results.
Without addressing the physics of the sediment transport formulation, €2 must remain
in the model; however, substitutions can be made for the wave and current models
representing the velocity moments. Using Bailard’s model as the fundamental sediment
transport formulation for the equilibrium slope, we will present Bailard’s analytical
solution for the equilibrium beach slope equation and point out terms that can be

replaced with more accurate wave and current models.

To begin, Bailard’s instantaneous, time-averaged total load sediment transport

equation for flows in an arbitrary direction is

() = erp [ (e - anf ()] + 2 [(a1ae) - 2w p ()| @)

where (?;) is the total, time-averaged immersed weight sediment transport, i is the
instantaneous velocity vector, (ﬁ‘ ]t'r.'|2> and (t'c’ |ﬁ'|3) are the total, time-averaged odd
velocity moments, (lﬁ[a) and (|1T|5> are the total, time-averaged even velocity moments,
€y and ¢, are efficiency factors describing the ability of the flow to transport bed load
and suspended load, respectively, cs is the drag coefficient for the bed, w is the settling

velocity of sand, tan ¢ is the angle of internal friction of sand, and tan 3 is the bottom
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slope. The time-average will be over a wave period; but in the case of random waves,
which will be addressed later, the time average is over the wave groups. Therefore, the

time average is defined as

@y= [ () (32)

where T is the wave period and n is the number of wave periods required for the

averaging.

To express eqn. (3.1) in terms of arbitrarily directed velocity components, it is
necessary to define the instantaneous velocity vector #; in the onshore direction z and

longshore direction y as

it,:(ﬁcosa+'ﬁcos8)3+(ﬁsina + Wsin0) 3, (3.3)

where  is the time-varying velocity component, @ is the steady current component, a
and @ are the angles of the time-varying velocity and the steady current, respectively,

related to shore normal direction (figure 3.2).

In order to make use of this expression in eqn. 3.1, Bailard approximates the
total flow moments with a binomial expansion assuming # » @ and (u/ (|@])) < 1.
Nondimensionalizing with the amplitude of the orbital wave velocity u, Bailard arrives
at two sediment transport expressions, one cross-shore and the other longshore, each
being functions of cross-shore and longshore velocities. With interest in the cross-shore
direction only, the cross-shore sediment transport component from the expansion is

presented as
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PLAN

Figure 3.2: Schematic of orientation and defined direction of time-varying velocity
vector, steady current vector and bottom slope.

()= c;pu?,, ([¢1 cosa + 82 + 6, (% + cos’ a + 63) w

&, sin a cos a — % (u3)'])

+espud, (.‘:.um [12 cos a + 6, (u3)*] - (-&:1‘%'1"-)2 tan g (uS)') y (3.4)

w

where

u
éu B a (2059, (3.5)
8, = —win b, (3.6)
Um

1, and 1), are the nondimensionalized odd velocity moments defined as



o = 45 (3.7)

(3.8)

The odd velocity moments are zero for purely oscillatory flow and only contribute to
sediment transport when higher order flow effects are present, such as those associated

with nonlinear wave forms.

The even velocity moments are expressed as the integrals,

T
(ud)* = -;-1 /0 (62 + 26 cos (0 — a)cos ot + cos? at) M (3.9)

/2

(uS)* = % j: (52 + 26 cos (0 - @) cos ot + cos? o) (3.10)

which are the lowest order even moments from the expansion and are nonzero for oscil-
latory flows. Therefore, to a first order approximation and assuming weak cross-shore

currents, these moments can be modelled with the time varying velocity approximation,

=t

= tly, €08 ot + Uz, cO8 201 + ... (3.11)

where Uy 3P Ugm P ... Substituting this approximation and integrating in time leads
to the following values for the even moments, which essentially are the first order linear

values for the even moments,

i 4ud
(lal*) = =0 (3.12)
(jaf) = 1o (3.13)
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Assuming the beach to be in longshore equilibrium, where no changes in the long-
shore sediment transport occur, and imposing the no-net sediment transport condition,

eqn. 3.4 can be reexpressed as the bottom slope equation

tanf = [?fﬁ?; (qh cosa + 83 4 &, (-% + cos? a + 63) + Jusinacosa) &

UmnEs “ « Eb « 2 [ ¥m 2] !
—0 (2 +(u3) éu)] (13)* g7 + (WO)e (;) (3.14)

where @ = 0 and a = 0. Substituting the above defined expressions and values for the

odd and even velocity moments, respectively, the expression for bottom slope is finally

wng= [ (n+ () + 222 (14 1 (2))]
-1
fradsrma(P)] e

where Py, ¥ and ¥ remain unevaluated.

To evaluate the odd moments, t; and t; and the mean current %, Bailard as-
sumes Stokes second order solution (eqn. 2.25) and Longuet-Higgins’ (1953) streaming
velocity model (eqn. 2.26), respectively, to explicitly evaluate the model in terms of
wave parameters. It is noted that eqn. 3.14 is still intractable due to the appearance of
1o, which is still represented in terms of the total of the time-varying velocity vector .
For this reason, t, requires further expansion before individual flow contributions can
be applied to this term. After some manipulation, the resulting expression is presented

in Section 2.2.2 as eqn. 2.29.

To this end, we use this approach to obtain a more generalized expression for
the bottom slope where models for the steady current, and the central odd and even

velocity moments can be chosen from more complete theories. Therefore, in the following
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section, the expansion of the flow moments will follow the work of Stive (1986) and R&S,

resulting in a generalized expression for bottom slope.

3.1.2 Generalized Solution

For the study of equilibrium beach profiles, only the cross-shore sediment trans-
port is of interest in developing a slope formulation. Since the development of Bailard’s
cross-shore sediment transport model, work by Stive and Battjes (1984), Stive (1986), de
Vriend and Stive (1987), and R&S has been conducted which utilizes this sediment trans-
port model as a physical basis for time-dependent sediment transport in the nearshore
region caused time-averaged flows in a random wave field. However, after long term
calculations of the sediment transport under a constant wave climate, an equilibrium
solution describing the stable cross-shore shape of the nearshore bathymetry has not
been obtained. Therefore, with interest in an equilibrium solution to these models, we
adopt these wave and current models as the driving mechanisms of nearshore sediment
transport and force an equilibrium solution by applying the no-net transport condition
directly to Bailard’s transport model. Thus, from the start, the problem is assumed
to be two-dimensional in z and z. The instantaneous cross-shore total load sediment
transport model of Bailard (eqn. 3.1) is used where the instantaneous total flow vector

is defined as

i = (&4 7)1 (3.16)

where i is the time-varying velocity component, % is the steady current component, and

1 is the onshore unit vector.

The time-averaged, instantaneous, total cross-shore sediment transport equation

is presented again for completeness in this derivation. The cross-shore approximation of
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this equation is governed by the assumption of the instantaneous velocity vector (eqn.

3.16).

(@) = esr [t [(arar) - P (I‘l)]+ [(a1ar) - £ tan p (jar )]] (3.17)

where tan 8 is the bottom slope and (ﬁ’lﬁ]z), (ﬂ’ltﬂ:’), (|ﬁ|3), <|11’|5) are the total

velocity moments in the cross-shore direction.

As before, to obtain the equilibrium bottom slope model, the no-net motion

condition

(i) =0 (3.18)

is applied and after grouping the terms and solving for bottom slope, we arrive at

oo ety + 2 (1) [ () + (2) )] o

This form of the slope model is different from Bailard’s in that the flow moments have
not been nondimensionalized with the fundamental velocity, #m, and no simplification of
the flow moments has yet been made. This result is quantitatively the same as Bailard’s
for the case of Stokes second order solution and bottom stream velocities; however, it
is not necessary to nondimensionalize this expression for application of the proposed

moments.

To express the velocity moments in terms of the steady current and central odd
and central even velocity moments (eqn. 3.16) is substituted into the total velocity

moment expressions which are approximated with a binomial expansion. Assuming
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ii *» W, which is basically stating that the mean return flow is several orders of magnitude

smaller than the flow induced by the wave groups, the expanded flow moments are

(@1a) = (alal?) +3a (jal’) + 3 (al) + & (3.20)
(a1 = (alal®) + au {|al®) + 63 (i lal) + 4u° (Jil) + & (3.21)
(1) = (Jal) + 3a (alal) + 3a* (jal) +9° (3.22)

() = () + 53 (alal®) + 1082 (Jal’) + 108° (alal) + 5 al) +3° (329)

and to the lowest order approximation,

(#laf*) = (alaf*) + 3 (lal*) (3.24)
(alar®) = (@ lif*) + 43 (|a[*) (3.25)
(1af’) = (1) (3.26)

(1) = ar’) (327)

Only the first terms of the total even moments are retained by the argument that wave
asymmetry does not strongly effect these terms. This point will be addressed in detail
in Chapter 4.
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These expressions are substituted directly into eqn. 3.19, resulting in the ap-

proximate expression for bottom slope

tanf = [tﬁz ((a1a?) + s (Jal)) + == ((alal®) + 4w (laqs))]

[t;—‘;q,.(lﬁIs)wL(%)’('“")\-l )

This is the final form of the bottom slope equation explicit in terms of the steady
current and the time-varying central odd and even moments. Given models for each of
these individual components, various bottom slope equations can be obtained depending
on the combinations of wave and current models used and assumptions made in the wave
field representations. From this bottom slope expression, the central odd moments
(ﬁ |ii]2) and (ii |11|3), can be approximated with Stokes second order, the central even
moments, (|ii|3) and <|ﬁ|5) with linear approximations, and the steady current with
the bottom streaming solution (eqn. 2.26) and recover the bottom slope expression of
Bailard (eqn. 2.29).

The generalized bottom slope equation is extremely flexible in that any available
nearshore wave or current theory can be used to model the velocity moments. The

models chosen for use in the GEBP will be presented and discussed in Chapter 4.

3.2 Wave Energy Decay Model
3.2.1 Random Wave Field

Formulation of the equilibrium beach profile model requires a wave height model
which responds directly to local changes in bottom bathymetry across the surf zone.
Battjes and Janssen (1978) presented a method for describing the change in root-mean-
squared wave height, Hy,, across the surf zone due to the dissipation of a random wave

field. They related the change in energy flux to a dissipation term based on the rate of
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dissipation of a single monochromatic wave, modelled after the dissipation in a hydraulic
jump, and the probability that a particular wave will be breaking at a given z location.
To better understand this model, Battjes and Stive (1985) conducted further verification
and calibration against tank experiments and present guidelines for estimating the two
free parameters v and a given the incident wave field. To extend the work of Battjes
and Janssen to field application, Thornton and Guza (1983) reformulated the random
dissipation by considering the transformation of the wave height probability density
function across the surf zone as well as a change in wave height. Further recognizing
that the wave field inside the surf zone can be described as a narrow-banded Gaussian
distribution, Thornton and Guza presented two forms of the dissipation in a natural
surf zone, one simple and one complete, where the simple form provides an explicit
analytical solution for wave height across a plane beach. These models were established
by calibrating the distribution of wave heights across the surf zone to measured field

data at Torrey Pines, California.

For completeness, the use of both of these breaking models should be attempted;
however, to be consistent with the work of R&S, where tank calibration of the velocity
moments has been made, we have chosen to the breaking model of Battjes and Janssen.
It may be argued that for comparisons to field data, the breaking model of Thornton

and Guza should be used.

3.2.1.1 The Energy Equation

Wave height variation across a changing bathymetry is determined by the con-
servation of energy flux, where energy flux is the rate of energy propagation in the wave
form. Where no energy is dissipated, the energy flux remains constant but allows the
wave height and wave length can increase and decrease with changes in depth in shallow
water. This is the effect known as shoaling. However, in the nearshore region where
the waves have shoaled to a critical or unstable height, energy is dissipated from the

system in the form of wave breaking. After the wave has broken, all the energy is not
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lost instantaneously, but rather, the wave continues to travel across the surf zone as
a dissipative bore. The reduction of wave energy will continue until a stable height is

reached by the propagating broken wave or all the wave energy is dissipated.

To formulate the change in wave energy and thus wave height across the surf
zone, neglecting bottom friction and other losses, the change in energy flux is equated
to the dissipation of wave energy due to wave breaking. Thus the energy balance takes

the form

%1 +D =0, (3.29)

where EC, is the linear onshore energy flux per unit width, D is the dissipation per

unit width, and F is the linear wave energy,

1
E= -s-ng", (3.30)

and C, is the group speed of the linear wave form,

_2xf[1 kh
€=3 [2 + 3k (2kh)] (8:31)
This form of the energy balance establishes a relationship between the potential for the
wave field to shoal and slow down with decreasing depth and the need for the waves to
break as the stable wave height is exceeded. The establishment and calibration of the
dissipation caused by wave breaking is critical in describing the change in wave height

across the surf zone,



36

3.2.1.2 Random Wave Energy Dissipation

The wave field has been established to be random and thus a dissipation term
for the change in the characteristics of the random wave height across the surf zone is
required. Battjes and Janssen (1978) present a model for the change in the Hy,, wave
height across a mildly sloping bottom, arguing that not all waves break at the same
location. At a given location, wave breaking will occur only for the waves exceeding a
maximum wave height criteria, Hmax, where those waves exceeding the critical height

are represented through the function,

Honse = 2 tanh (g%g-) (3.32)

Again, the local wave number, k, is determined using linear dispersive monochromatic
theory and the spectral peak frequency, fp. The maximum height is determined follow-
ing the Miche-type criterion for periodic waves. The term 7 is an adjustable calibration
parameter allowing for the effects of bottom slope and incident wave steepness that can

change the breaking characteristics of the wave field.

Across the surf zone in a random wave field, only a fraction of the waves are
breaking at any given location. Typically, further offshore the fraction is small and
most waves pass the point unbroken. However, as the depth decreases, most notably at
locations closer to the shoreline, the fraction of waves breaking increases until the water
depth approaches zero where all waves are breaking or broken. Battjes and Janssen
model the fraction of breaking or broken waves based on the argument that the wave
height distribution is Rayleigh-type and the probability of exceedance for a given wave
compared to the maximum wave height, Hmax, at a given location. Following this

hypothesis, they arrive at the following expression for the percent of waves breaking,

Qh
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11_;?% e (1—;&)’ (3.33)

This expression must be solved by iteration for the local value of @, given the Hyy,
wave height found by integration of the energy equation, and Hpmax. The function is

seen, figure (3.3), to vary between zero and one for combinations of (Hrms)/(Hmax)-

The dissipation term for the fraction of breaking and broken waves is funda-
mentally based of the dissipation in a propagating bore, such as a moving hydraulic
jump. However, for a random wave field, given the values for local maximum wave
heighi and the measure of the breaking fraction of the wave field, Qs, the expression for

time-averaged dissipation of wave energy per unit area is

|
D = —70QufypgHiu (3.34)

where a is taken to be 1 in the calibration of Battjes and Stive (1985).
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Battjes and Stive also present a calibration of 4 which is found to be a function

of the incident wave steepness. The expression for v is

v = 0.5+ 0.4tanh (33 s,) (3.35)

where the deep water wave steepness s, is

. (3.36)

3o s

9

where Houso is the deep water root-mean-squared wave height.

The change in wave energy flux due to D is coupled to changes in depth through
Qs and the intensity of wave breaking is governed by the changes in depth which makes
this model attractive for variable depth beaches such as those with bar fields.

3.2.1.3 Shallow Water Asymptote for Random Wave Energy Dissipation

In our model, particular interest is in the shallow water asymptote of the energy
decay model and the dissipation limit in the shallow water region. Considering the

shallow water asymptote of Hyax,

and taking the derivative of this expression in z, the change in the maximum wave

height is found to linearly varying with changes in bottom slope as

O Hoise oh
S e (3.38)
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In this region where all the waves are breaking or broken, Hyms = Hmax and
Qs = 1. After substitution of these relationships into the energy balance (eqn. 3.29),

and some manipulation, the change in energy where all waves are breaking or broken is

0E 24E O8h
 ra —'—Hnm-a-; (3.39)

This expression linearly relates the change in wave energy to bottom slope
through the local values of 4, E and Hme. This is a somewhat ad hoc approach,
but it is an alternative to stopping the integration once @4 = 1, as used by Battjes and
Janssen. This result will be shown to be useful in the equilibrium beach profile solutions
in regions of extreme beach slope, where the assumption of a mildly sloping bottom is

violated.

3.2.1.4 Momentum Equation

For completeness, the momentum balance used by Battjes and Janssen (1978)
is adopted for further calibration of the wave heights and velocity moments on a plane
beach. To begin, the total water depth is defined as,

h=d+ 'ﬂ (340)

The momentum balance is governed by the relationship between the radiation
stress S, and changes in the mean water surface elevation 7. Radiation stress was
first conceptualized by Longuet-Higgins and Stewart (1962) and is defined as the flux
of excess momentum caused by the presence of the wave. A force balance on the
water column between the vertical pressure gradient and the radiation stress yields the

following mathematical relationship:
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65::

9 _
9z + pghaz =0 (3.41)

Al

To the first order the radiation stress in the cross-shore direction is

1 2kh
Siz = (E + m‘j) E (3.42)

Inclusion of this equation provides more accurate results for wave height near
the shoreline where there is an increase in water depth due to the excess of mass flux

from wave breaking.

3.3 Model Summary

In this chapter the governing equations for the evaluation of the total depth h
and H.n wave height across a profile where there is no-net sediment transport have
been presented. The generalized bottom slope equation does not require predefined
wave or current models for the evaluation of the total velocity moments. In the fol-
lowing chapter, the models for the components of the total velocity moments will be
presented as the driving wave and current models for the sediment transport. The
wave energy decay model is chosen to be the time-averaged random dissipation model
of Battjes and Janssen (1978) following the work of R&S where the nearshore shore
total velocity moments have been modelled and measured. In Appendix A, a detailed
general description of the equations and algorithm used in this model is presented. The
explicit expressions for the derivatives required by the Runge-Kutta scheme are describe
in the logical order necessary for a solution to these equations. To this end, the reader

is referred to Appendix A for the explicit description of the model’s equations.



Chapter 4

MODELLING CROSS-SHORE FLOWS

This chapter will introduce the wave and current models used to evaluate the
steady current component, the central odd, and central even velocity moments, defined
in Section 3.2.1, required by the total load cross-shore sediment transport formulation
of Bailard (1982). The flow models will be calibrated according to the data of R&S
for the case of a plane 1 on 40 beach and assumed to be valid in the solution for the
equilibrium beach profile. First, an introduction to the experiments of R&S, where
the cross-shore variation of the wave height, mean water surface elevation, and the
total velocity moments are measured, will be presented. Next, solutions to the wave
energy decay model of Battjes and Janssen (1978), calibrated according to Battjes and
Stive (1985), will made for the case of the 1:40 plane beach. From the known wave
height and mean water surface elevation, the total velocity moments can be calculated.
Following the assumptions and basic procedure of R&S, the analytical and numerical
solutions for the undertow, odd central moments, and the central even moments, with
slight modifications to the models for the central odd and central even moments, will
be presented. It is noted that the measured values of the velocity moments may not
be accurately represented across a profile in no-net transport equilibrium, but this
calibration is accepted as a means to establish an accurate representation of the flow

mechanisms in the nearshore region.

41
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4.1 Experimental Procedure and Results

R&S conducted experiments to measure the wave height, mean water surface
elevation, and current field across the surf zone of two idealized beach profiles. The
experiments allowed for the calibration of their proposed cross-shore sediment trans-
port model and established the magnitude of the individual mechanisms for cross-shore
sediment transport. Their goal was to isolate and measure specific flow contributions
to the cross-shore sediment transport, specifically the breaking-induced turbulent flow,
wave-induced asymmetric oscillatory flow, momentum decay-induced return flow, and

wave grouping-induced long-wave flow.

The experiments were conducted at Delft Hydraulics with a flume 55 meters in
length, 1 meter wide, and 1 meter deep. Two beach geometries were chosen, one plane
and one barred, to simulate two distinctive nearshore bathymetric features present in
nature and to determine the near-bottom current characteristics across such profiles.
Because the calibration is based on the data presented by R&S, where only data for the
total velocity moments over the plane beach are presented, the discussion will address

this case only.

The plane beach was set initially to 1 on 40 and the depth of closure to the flat
bottom was 0.59 meters deep. Measurements for the wave height variation and mean
water level was taken across the surf zone using conductivity-type wave gages where
effects of the aerated breaking waves were found to have little effect on the free surface
measurements. The near-bottom horizontal velocities were measured at 5 cm above the
bottom using an acoustic sediment transport meter and provided measurements within

the accuracy of + 1 cm/sec.

The random wave conditions were selected using a Jonswap-spectrum where the
peakedness factor was assigned a value of 3.3 to simulate a normal storm wave climate.
This was selected to enhance the wave and current fields ability to produce excessive

offshore transport and thus create a longshore bar. The plane beach test was conducted
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Table 4.1: Incident Wave Climate for Initially Plane 1:40 Beach (Roelvink and Stive
1989)

limad Tp hq 3o J
(m) | (sec) | (m
[0.123 T 2.00 [ 0.59 [ 0.021]

for 12 hours with a constant incident wave field, but the bottom, composed of 100 xm
sediment, deformed throughout the experiment. The fall velocity w of the sediment is
taken to be 0.01 (m/s).

The wave conditions selected have a relatively steep offshore wave steepness, s,,
as seen in table 4.1. This will prove to be an extreme erosional condition when using
the GEBP. The wave height in table 4.1 is the input wave height at the wave paddle for
the given depth hg. This input and the resulting measurements of the H,,, wave height
variation and the total velocity moments will be used for comparison in the following
sections to verify the analytical and numerical representations of the cross-shore wave

and flow models.

4.2 Calibration of the Breaking Model

To demonstrate the implementation of the wave height model over a mildly slop-
ing plane beach, the results for the H s wave height and mean water surface elevation,
7, as presented by R&S are reproduced. This specific example is chosen to be consistent

with their model and data measurements throughout this discussion.

The wave energy decay model follows directly from Battjes and Stive (1985)
where calibration involves the selection of the free parameters a and 7. As has been

recommended by Battjes and Stive, the value of a is set to 1 enabling the calibration
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to be based on a single free parameter. With a = 1, v is obtained from the proposed
relationship of Battjes and Stive (eqn. 3.35). This relationship is based on changes in
the numerical wave field representation, compared to data, in response to changes in the
incident wave steepness. Therefore, given the incident wave climate, v is found directly
from eqn. 3.35. The incident wave field characteristics presented in table 4.1 result in
4 = 0.73. Using a standard fourth order Runge-Kutta scheme, the energy balance (eqn
3.29) and momentum balance (eqn 3.41) are integrated simultaneously to obtain values

for Hyms and 7) across the surf zone.

It must be pointed out that eqn. 3.33, the percent of breaking waves, is solved
at each z location. It is this expression that couples the energy dissipation to changes
in depth and thus is the mechanism which adjusts the intensity of breaking as the

numerical solution propagates across the domain.

Our results agree well with those presented by R&S. For a comparison, solutions
for Hyme and 7] as a function of z directed from offshore to onshore are presented in figure
3.1. Accepting these results as accurate representations of the wave field variations
across the surf zone, we progress to modelling the current fields driven by wave height

and water depth.

4.3 Nearshore Wave and Current Fields

An accurate representation of the combined, time-averaged surf zone flows re-
quired by Bailard’s (1982) total load sediment transport equation is presented by R&S.
R&S argued that surf zone flows can be recognized as breaking-induced turbulent flow,
wave-induced asymm'etric oscillatory flow, momentum decay-induced return flow, and
wave grouping-induced long-wave flow. Each of these flows can be modelled individually
via respective formulations. It was shown in Chapter 3, with a mean flow % much smaller
than a time-varying oscillatory flow i, and a binomial expansion, that the total flow

moments can be expressed explicitly as combinations of a steady current, central odd,
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velocity moments and central even velocity moments. In this study, for simplicity, the
turbulent flow induced by breaking, which is modelled by R&S to improve the location
of the maximum intensity of the undertow will be neglected. Further, only short wave
contributions to the total odd moments will be considered and contributions from the

grouping-induced long-wave flow will be neglected.

4.3.1 Steady Current Component - Undertow Solution

It is well established that the dominant mean flow within the surf zone in the
cross-shore direction is the momentum decay-induced undertow, or return flow estab-
lished due to the excessive shoreward directed mass flux above trough level induced
by wave breaking. This mechanism was first addressed by Dyhr-Nielsen and Sorensen
(1970) who recognized the imbalance between the vertically non-uniform wave momen-
tum flux and the vertically uniform pressure gradient in the presence of wave breaking.
The problem has been addressed for the case of monochromatic waves by Dally (1980),
Borekei (1982), Svendsen (1984), Stive and Wind (1986), Svendsen and Hansen (1988),
and Svendsen, Schaffer and Hansen (1987). For the case of random waves, the problem
was first attempted by Stive and Battjes (1984), which led to further studies by de
Vriend and Stive (1987), Stive and de Vriend (1987), and R&S.

The model of Stive and de Vriend (1987), which includes the matching solution
of Svendsen et al. for the bottom boundary layer, is presented in a usable final form
and is the model used by R&S in their bar generating cross-shore sediment transport.
Following this work, the model of Stive and de Vriend is accepted as a suitable analytical
representation of the near-bottom mean return flow. To this end, the solution from this
model is established as the dominant cross-shore steady current in the nearshore region
in the presence of random waves and define it as the mean flow component  in our final
bottom slope equation. For completeness, the governing equations, resulting analytical
expressions, and respective calibration is discussed in Appendix B. For purposes here,

only the resulting analytical expression will be presented.
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The expression for the undertow comes directly from the solution presented in

Appendix B and is

b a g
= —84+—6"+u,(z 4.1
P 2 () )
where T is the steady current, n is the bottom shear stress, a is the driving force, § is
the thickness of the bottom boundary layer, and u, (2) is the bottom streaming velocity.

The depth to the bottom is z.

To utilize this result, the location of the patching level, z, where the middle and

bottom layers are interfaced, is defined as

2=z — 6, (4.2)

where the thickness of the bottom boundary layer, 8, is the thickness of wave induced

laminar boundary layer

gy (B} 4

where vy is the turbulent viscosity defined in Appendix B and w is the angular frequency
of the wave field. This specification provides the best results between our reproduction

of this model and the results presented by Stive and de Vriend.

This result provides a complete model for the momentum decay induced return
flow for random wave breaking where the wave height, water depth, and energy dissipa-
tion D, are required to determine the mean flow. An important aspect of the solution is
that when wave breaking is minimal, dissipation D being small, the streaming velocity
u, (2) provides onshore flow at our chosen z = 2 location for near-bottom flow. How-

ever, as wave breaking increases, the disspation induced return flow overcomes the drift
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velocity and the mean flow becomes offshore. This transition from onshore to offshore

mean flow will prove to produce longshore bars in the equilibrium beach profile.

The contributions of a change in the direction of the bottom velocity to bar
formation is a concept first presented by Dyhr-Nielsen and Sorensen (1970), who quali-
tatively described the presence of longshore bars as the result of the change in direction
of the bottom shear stress from onshore to offshore as the waves begin to break. Dally
(1987) supported this hypothesis from findings of experiments conducted which exag-
gerated two possible mechanisms thought to be responsible for the establishment and
movement of longshore bars. The two mechanisms were surf beat generated from ran-
dom wave field induced wave groups and breaking induced mean return flow. Dally
concluded that the dominant mechanism in the establishment of the longshore bar is
the breaking induced mean return flow. The hypothesis of Dyhr-Nielsen and Sorensen
and the observations of Dally are important in describing the results obtained with the

GEBP.

The undertow model is calibrated with the data provided by R&S using the
results from the wave energy decay model and the final form of the near-bottom return
flow. Figure 4.2 shows the results for the undertow across the 1:40 plane slope where the
starting depth restricts the model’s ability to produce onshore flow due to substantial

wave energy dissipation at the starting location.

4.3.2 Central Odd Flow Moments

From expansion of the total time-averaged flow moments, the terms (ﬁ |ﬁ|2> and
(ﬁ |ﬁ|3> are found to contribute to the total odd moments. As a first approximation,
the group-induced long wave flows are assumed to be negligible and the time-averaged
central odd moments are represented with only the short wave flows under nonlinear

wave forms as
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Figure 4.2: Undertow Solution (Stive and de Vriend 1987) (computed = solid) vs.
Measured Data (Roelvink and Stive 1989) for 1:40 Plane Beach.



(alal?) = (ulul®) (4.4)

(@laf’) = (ualwal®) (45)

where u, is the bottom-velocity of a given wave form.

With these definitions, the central odd moments are zero for symmetric flows

such as

U, = U, cos ot : (4.6)

and thus require a higher order wave representation to produce nonzero values. As shown
in Chapter 2, Bailard (1981) represents the nonlinear wave field with the Stokes second
order solution. This approach is effective in describing the central odd velocity moments
outside the surf zone, but as shallow water is approached, the Stokes solution becomes
invalid in representing the free surface variations and thus the time-varying bottom
velocity. Recognizing this, the Dean’s Stream Function theory solution is selected to
ensure valid representations of vertically symmetric waves forms in any depth across the
surf zone. The routine developed by Dalrymple (1974) has been adopted as a means
to determine the stream function solution of any set of conditions. Six components
are required for stream function convergence to optimize computer time and to insure
accurate representation of the wave field. Stream Function theory provides the harmonic
amplitudes for the stream function, ¥, describing the fluid motion. The derivative of ¥

in 2z,

av
Upp = _E|z=0y (4°7)
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provides the bottom velocity under the wave form for each stream function harmonic.
From this, a time series for the bottom velocity over a wave period can be constructed

as

6
U, = 2 Upp €08 (nwpt) (4.8)

n=1

where g, is the amplitude of the velocity for each of the 6 components.

Following R&S, the breaking and unbroken waves are assumed to be uncorrelated
and vertically symmetric wave form solutions are acceptable representations of unbroken
waves in the inner surf zone. Following this approximation, the contributions to the odd
moments from the unbroken waves are represented by considering the fraction of waves

breaking Qp and relate the difference from all waves as
(a181*) = (1- Qo) (wa lual’) (4.9)

(a1P) = (1 - Qs) (us lual’) (4.10)

These expressions represent the unbroken short wave contributions to the central odd

velocity moments.

Solving for the time series necessary to compute the time averaged odd moments,
the method by Dalrymple requires the wave height, wave period and water depth at a
given location. The monochromatic equivalent wave height needed by Stream Function
theory is approximated with the H,,, wave height from the breaking model. The energy
in a nonlinear wave form can differ greatly from a linear wave across the surf zone,
especially in very shallow water where the wave is very peaked. Thus, this increase in

wave energy is accounted for through an effective wave height for the Stream Function
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convergence. To do this, the nondimensional total energy equivalents tabulated by Dean
(1974) are adopted, which account for the percentage difference in energy in a linear wave
of given height to that energy due to the nonlinear effects in a wave of the same height.
The values presented by Dean (1974) are tabulated in table 4.2. Using a standard two
dimensional cubic spline routine, Press et al. (1986), the nondimensional total energy

equivalent is found and used to adjust the representative wave height accordingly.

Table 4.2: Dimensionless Total Average Energy, ®

h/L, H[Hy

0250 | 0500 | 0.750 | 1.000
0.002 0.424 0.308 0.249 0.213
0.005 0.605 0.446 0.344 0.263
0.010 0.755 0.580 0.455 0.342
0.020 0.880 0.722 0.577 0.467
0.050 0.966 0.873 0.733 0.527
0.100 0.988 0.939 0.830 0.618
0.200 0.995 0.966 0.887 0.686
0.500 0.988 0.979 0.928 0.750
1.000 0.988 0.979 0.932 0.811
2.000 0.988 0.979 0.933 0.836

Defining the energy in the wave form with the linear representation

1
E = 'épgﬁu?ma (411)

and determining the scaling ® from linear to actual energy from table 4.2, the effective

wave energy is calculated as

E' = &E (4.12)

where ® = dimensionless total average energy for a given h/L, and H/Hy. Given this

expression, the effective wave height for use in the Stream Function solution can be
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Figure 4.3: Central Odd Moments (Dean'’s Stream Function theory) vs. Measured
Data (Roelvink and Stive 1989) for 1:40 Plane Beach: (u,|u,|*) (computed
= solid - measured = z), (u,|u,|*) (computed = dashed - measured = o)

determined as

H' _=

L 419

rg

which will in effect be converging on actual wave energy rather than wave height.

Again, applying the results from the wave energy decay model, solutions for the

central odd moments across the 1:40 plane slope are seen in figure (4.3).

As an additional comment, it is well established, Flick (1978), that waves in the
inner surf zone are not vertically symmetric and achieve a phase relationship between

successive wave components of 7 /2, where the wave form is unsymmetric in the vertical
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and horizontal. This wave form has been termed the “saw-toothed” shaped wave. An
analytical method for describing the moments for “saw-toothed” wave forms is not
available, thus the assumption of a vertically symmetric wave form across the surf zone

is accepted as an approximation.

4.3.3 Central Even Flow Moments

The central even moments (|i|") are nonzero for symmetric wave forms and
thus do not require the high order nonlinear wave solutions to produce contributions
to the mean flows in the surf zone. Guza and Thornton (1985) address the accurate
representation of the even velocity moments for a linear Gaussian random wave field.
For a linear monochromatic wave field, Bowen (1980) and Bailard (1981), as well as

Guza and Thornton, estimate the time-averaged low order even velocity moment as

(lal*) = 0.502, (4.14)
(laf*) = 1.20(|ﬁ;|’)m (4.15)
(I = 192 (jap?)"” (4.16)
where
= Sl @i

These expressions are the same as those presented for the even moments in Section

3.1.1.2.
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For the case of a random wave field, Guza and Thornton argued that a simple
linear representation of the wave field is not sufficient to describe the even moments and
suggest as a first approximation representing the wave field using a Gaussian description
of the wave heights in the surf zone of a linear random sea. They recognized that a
Gaussian distribution is not a complete representation of the wave field in the surf zone,

but argue that for the lower order moments the Gaussian distribution is acceptable.

The lowest order even velocity moments are

(lal*) = 0.502, (4.18)
(|ﬁ|3> = 1.58 (|ﬁ|’)3‘r . (4.19)
(1) = 6.38 (jaf*)"* (4.20)

where they equated the variance in a monochromatic wave train to the variance in a
linear Gaussian wave field and presented the lowest order moments as scaled quantities
of the variance. It is shown that accounting for the Gaussian nature of the random
wave field, the even moments are larger than those found with the monochromatic
representation. This difference is noted by Guza and Thornton to be the result of
infrequent large velocities in the Gaussian distribution which contribute to the even
moments. The effect of this mechanism is seen to have a greater effect as the order of
the moments increase. The results for these expressions are presented as functions of z

over the 1:40 plane beach, (figure 4.1c), in figure 4.4.
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4.3.4 Total Velocity Moments

The total flow moments, described in Section 3.1.2 as the combinations of the

undertow, central odd velocity moments, and the central even velocity moments, are

(a1a”) = (alal®) + 3u (jal*) (421)
() = (alal®) + 4a jaf) (4.22)
(1) = (1a) | (4.23)
(1) = 1) I

Substituting the resulting expressions for the even moments and recalling the results

from the undertow and central even moments, the total velocity moments are expressed

(ala?) = (@ lal®) + 1.5Tun (4.25)
(al@®) = (alal*) + 6uu}, (4.26)
(1) = 0.75u3, (4.27)

(1@°) = 3.19u, (4.28)
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Figure 4.5: Total Velocity Moment <ﬁ'|a’|’) vs. Measured Data (Roelvink and Stive
1989) for 1:40 Plane Beach: (computed = solid - measured = o).

For completeness, the values for the total odd velocity moments from eqn. 4.25 and
eqn. 4.26 are determined as functions of z over the 1:40 plane slope and shown in figure

4.5 and figure 4.6, respectively.

To conclude, the purpose of this chapter was to develop the flow fields necessary
to compute the total time-averaged velocity moments across a 1:40 plane slope and
compare the results and data of R&S. This exercise provides a method for calibration of
the flow moment models to be used in the GEBP model where the bottom is not known
a priori. To this end, the calibration of the velocity moment across a plane beach is
assumed to provide sufficient and approximate representations to the velocity moments

across the depths found with the no-net sediment transport condition.
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Figure 4.6: Total Velocity Moment <ﬁ'|ﬁ'|3) vs. Measured Data (Roelvink and Stive
1989) for 1:40 Plane Beach: (computed = solid - measured = o).



Chapter §

RESULTS AND DATA COMPARISON

In this chapter, we will present results obtained with the generalized equilibrium
beach profile model, GEBP, as presented in Appendix A. Since the selection of deep-
water wave conditions and initial starting depth are critical to accurate execution of the
model, a methodology for selection of suitable offshore starting conditions is established.
A solution to the model given an arbitrary set of initial conditions is presented to
emphasize the mechanisms required to establish a longshore bar in an equilibrium beach
profile. The sensitivity to offshore wave conditions is addressed to characterize, trends
of the model in response to changes in wave climate. The GEBP model is based on the
proposed flow moment models of R&S and is calibrated to their measured data over a
plane beach. Thus, input from R&S will be used in the GEBP model to determine if
an equilibrium solution exists for their input parameters. Finally, comparison to data
from the U.S. Army Corps of Engineers - Field Research Facility is made in an attempt

to relate the model to field conditions.

5.1 Selection of Input

The model requires wave height, mean water surface elevation, and depth as
input for the integration of the three governing equations. The offshore incident wave
conditions are established as a datum for the Hymso Wave height and wave period, Tj,.
The mean water surface displacement, 7, is taken to be zero far offshore from the surf

zone. The selection of the input depth, d, is arbitrary as long as wave breaking has

60
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not been initiated. It is satisfactory to chose a depth just outside the region where
the largest waves will begin to break. Given the deep water incident wave conditions,
linear theory is used to shoal the waves to a starting depth. (It is noted that this
may not be an accurate representation for shoaling the Hm, wave height, due to the
probabilistic nature of the representative wave height, but for our purposes we accept
this approximation well in to the shoaling region before wave breaking begins). The
conservation of energy flux argument is applied and, assuming the Hy, wave height to
be a representative monochromatic wave height, the wave height at any depth relative

to the offshore wave conditions is found by the linear shoaling expression,

Homaa = Koo = [ €22 Homsn (5.1)

gd
where K, is the linear shoaling coefficient, Himsa is the equivalent Hyms wave height
at the starting depth, Hpmeo i8 the deep water Hpy, wave height, and Cyq and C, are
the linear group speeds at the starting depth and deep water, respectively. The use
of the linear shoaling saves computational time in that the same results will be found

numerically from the energy balance equation where dissipation is negligible.

For the bottom slope equation, we adopt Bailard’s (1981) calibration of the
bedload and suspended load sediment transport efficiency factors as ¢, = 0.025 and
G = 0:01, respectively. The internal angle of friction sand, tan ¢, is taken as 0.63, the
fluid density, p, is 1000 (kg/m®) and the gravitational acceleration, g, is 9.81 (m/s?).

5.2 Generalized Equilibrium Beach Profile Model (GEBP)

The GEBP model is unique in the fact that the undertow model provides an
onshore directed steady current outside the breaking region which is reversed as break-
ing begins and dissipation increases. In the following section, the results for the GEBP

model will be discussed to identify the mechanisms responsible for a change in slope
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Figure 5.1: Definition Sketch for the GEBP Model Solution.

across the equilibrium beach profile. A set of input conditions has been selected which
demonstrate a solution and emphasize the mechanisms responsible for a change in bot-

tom slope.

5.2.1 Solution Characteristics

Solutions for the GEBP model are difficult to compare directly to measured
laboratory data due to the lack of equilibrium profile experiments carried out with
random waves. Therefore, no attempt will be made to quantitatively compare the
results to data, and we will only make qualitative observations of the solutions. The
resulting values for the velocity moments may be hypothesized as the values of these
terms necessary for an equilibrium beach profile to exist. In this discussion, the offshore
location is the portion of the solution offshore of the break in slope. The arca between
the break in slope and the shoreline is referred to as the foreshore. See the definition

sketch in figure 5.1.

Input conditions for a relatively mild offshore wave steepness are selected for

this discussion. These are based on average values recorded at the U.S. Army Corps
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of Engineers Field Research Facility (CERC-FRF) in 1981, Miller et al. (1985). For
this discussion, we modify the average values from the FRF measurements to obtain a
solution that provides the best descriptive results for this discussion. The deep water
H,.ne wave height, Hymeo, i8 taken to be 1.0 m, the peak period, T} is 10.0 sec and the
starting depth, hy, is 20 m and the sediment fall velocity, w, is approximated to be
0.03 (m/s). (It is noted, that these values are well within the standard deviation of the

averaged values and do represent occasional wave conditions at the FRF.)

In general, the GEBP model provides equilibrium solutions for the H,,, wave
height, the mean water level, 7, and the water depth, d. The equilibrium solutions are
the result of the balance of the total velocity moments in the bottom slope equation (eqn.
3.28) necessary to maintain the no-net sediment transport condition. The total velocity
moments are combinations of the wave-asymmetry-dependent central odd moments,
(@|i|?) and (@/ii|?), the wave field variance-dependent central even momeants, (lif®) and
(|ii[®), and the steady current, %, across the nearshore region. These components vary
in magnitude across the nearshore region which lend to variations in the bottom slope
across the equilibrium beach. |

The system of equations is strongly coupled through the H,ns wave height, the
mean water level, 7, and the water depth, d, and solutions depend on the response of
the individual components of the total flow moments to changes in total depth and wave
height. Therefore, as will be presented in the following discussion, the central moments
and the steady current provide physically descriptive solutions for the respective flow
field components, but variations in the relative magnitude of these terms are the results
of the balance within the system to establish the no-net sediment transport condition.
The solution for each of these equations and flow components will be discussed for the

present input conditions.

Figure 5.2a shows the results for the H;n, wave height across the equilibrium

beach profile, where z is positive onshore. As the waves shoal, the wave height first
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increases in size, up to where most of the waves begin to break, and then the wave
height decreases to zero where the mean water level is zero. Figure 5.2b shows the
solution for the mean water surface, 7}, across the equilibrium solution, where set-down
is most pronounced as the waves shoal to their maximum height and set-up increases

as wave breaking intensifies.

Figure 5.2c shows the equilibrium beach profile as a function of onshore distance.
The point of interest is the change in slope in the equilibrium solution between z =
200 m and z = 250 m where the slope changes from a steep offshore slope before
breaking to a milder foreshore slope after breaking has initiated. This is the result of
a change in the direction from onshore to offshore of the steady current, ¥, as wave
breaking dissipation increases with the decrease in depth. In figure 5.3, the resulting
mean flow across the surf zone changes direction at approximately z = 200 m. As
seen in eqn. 3.28, a change in the steady current, T, is directly related to the bottom
slope equation through the total odd velocity moments, and a decrease in magnitude
or change in sign of ¥ results in a decrease in bottom slope. Strictly speaking, the
bottom slope is influenced by a balance of forces between the flow field and gravity. In
the offshore region, the flow forcing is predominantly in the onshore direction where
the mean wave-induced current and asymmetric flows are onshore. The combination of
onshore flows works against the flattening effects of gravity to produce a steep bottom
slope. As wave breaking begins and the mean return flow is established, the onshore
flow forcing is reduced as the result of the offshore directed mean current opposing the

asymmetric onshore flows and the slope becomes milder.

The switch in the direction of the mean flow is a result of the inclusion of the
conduction solution streaming velocity in the bottom boundary layer. Where there is
little breaking offshore, the streaming velocity is substantial enough to maintain onshore
near-bottom mean flow. As the probability of wave breaking increases and the percent
of waves breaking, Qy, increases, (figure 5.4), the wave breaking induced dissipation

establishes a mean return flow that changes the steady current from the onshore to the
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offshore direction. The resulting change in slope due to the change in direction of the
steady current, T, can be defined as a longshore bar following the hypothesis of Dyhr-
Neislen and Sorensen (1970), where a change in the direction of the bottom shear stress

contributes to bar formation.

Figure 5.5a shows the total odd moments across the equilibrium profile. In the
equilibrium state, the magnitude of the total odd moments, (u|u|?) and (u|u[*) in eqn.
3.28 is forced by the relative magnitude of the central moments and the steady current.
As seen in figure 5.5a, the total odd moments are predominately positive across the
entire surf zone. This is a result of the net balance of the flow forcing in the onshore

direction. The balance is established through the combinations of the central odd and
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even moments and the steady current where net onshore flows are required to balance
the system and maintain a negative sloping bottom, reducing the depth from offshore

to onshore.

As in the case of the plane slope, discussed in Section 4.3.3, the even moments
(figure 5.5b) are positive for all values of wave height and water depth and contribute
to the intensity of the net onshore flow. The magnitudes of the even moments are a

function of local value of wave height, water depth, and wave period.

Figure 5.6 shows the central odd moments, which are the result of the asymmetric
onshore flow of the nonlinear wave form in the nearshore region to maintain positive
values across the entire surf zone. A qualitative comparison to figure 4.3, where the
measured values of R&S for the central odd moments are presented, demonstrates the
GEBP models ability to establish physically valid results for these terms across the
equilibrium profile. However, the relative magnitudes of these terms in the GEBP
model are governed by the balancing of the equilibrium solution between the suspended
load and bedload and do not result in a order of magnitude difference between (iiii|?)
and (ii|i#|®) as measured by R&S.

As an example of the balance between the suspended load and the bedload modes
of transport, which is the governing condition in this system, the values for the bottom
slope and total moments are back substituted into eqn. 3.17 and solved for the total load
sediment transport across the surf zone. Figure 5.7 demonstrates the balance between
the two modes of transport and provides a means to demonstrate the magnitude of
the total velocity moments required to satisfy the no-net sediment transport condition
across the surf zone. The change in direction between the bedload and suspended load
components results from the response of the total velocity moments to the restriction of
the no-net transport condition. When compared to figures 5.5a and 5.5b, the changes in
direction of the sediment transport modes are related to abrupt changes of magnitude

in the total velocity moments. However, the solution is not dependent on the specific
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direction of each mode of transport as long as the balance between the modes results

in no-net transport.
It has been shown that the bottom slope responds to changes in the wave height

and, thus, total velocity moments to maintain the no-net sediment transport balance.

For the present case, the combination of the total odd moments is positive across the
entire surf zone. This result contradicts the values for the odd moments measured

by R&S (figure 4.5), in that the results from their model provide negative total odd
moments across the entire surf zone. This difference may be the result of the extreme
erosional conditions imposed in their experiment, which produce strong offshore flows,

and an equilibrium may not be obtained for their input conditions. This point will be

addressed in a later section.
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Additionally, the solutions obtained with this model are strictly dependent on the
input. Because the scheme is a forward difference scheme, the solution at the previous

z location contributes to the solution at the next successive z location.

5.2.2 Sensitivity Analysis

To understand the response of the model to changes in wave climate and sediment
characteristics, a sensitivity analysis to variations in these wave parameters is made.
Values for the Hyms Wave height, wave period, Ty, and sediment fall velocity, w, will be
adjusted individually to determine relationships between these input parameters and

the GEBP model solutions.

Additionally, beach response has been characterized by nondimensional relation-
ships that relate combinations of wave and sediment characteristics to changes in the
nearshore bathymetry. Specifically, Dean (1973) related the wave height, wave period,

and sediment fall velocity with the nondimensional parameter,

H
Do = ﬁl (5.2)
known as the Dean number. Large wave periods (small Dean Number) lead to ac-
cretional beach conditions, and short period waves produce erosional conditions char-

acterized by a breakpoint bar. Dalrymple (1992) developed the dimensionless profile

parameter,

Hﬁ
3

L)

p=2_, (5.3)

e

€

based on large scale tank tests, which has been shown to predict the erosional and
accretionary conditions for values above and below P ~ 10,400, respectively. These

two nondimensional parameters and the deep water wave steepness, 3, (steeper waves
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Table 5.1: Input - GEBP Model Sensitivity Analysis

CaseNo. | Hymao | Tp 3o v hq w D, P
(m) | (sec) (m) [(m/s) |
1 0123 | 3.25 | 0.00746 | 0.596 | 3.00 [ 0.01 | 3.78 | 45670
2 0.133 | 3.50 | 0.00695 | 0.590 | 3.00 | 0.01 | 3.80 | 49580
3 0.123 | 3.50 | 0.00643 | 0.584 | 3.00 | 0.01 | 3.51 | 42400
4 0.113 | 3.50 | 0.00591 | 0.577 | 3.00 | 0.01 | 3.22 | 35790
5 0.123 | 3.75 | 0.00561 | 0.573 | 3.00 | 0.01 | 3.28 | 39580 |
6 0.123 | 3.50 | 0.00643 | 0.584 | 3.00 | 0.005 | 7.02 [ 339000 |
7 0123 | 3.50 | 0.00643 | 0.584 | 3.00 | 0.015 | 2.34 | 12560

erode the beach and milder waves build the beach) have been related to trends in beach
shape. Therefore, they will be calculated to determine if the results from the GEBP
model exhibit trends predicted with these parameters.

Values selected for the sensitivity analysis (table 5.1) are based on numerous
trials to determine the range of validity where the GEBP is most effective. The GEBP
works best for mild accretionary wave parameters, where the offshore wave steepness is
between O(10~*) for accretionary profiles and 0(10?) for erosional profiles. The values
chosen as input are combinations of Hyms Wave height, wave period, T, and sediment
fall velocity, w, to determine the semsitivity for a broad range of initial conditions.
These input conditions are similar to the range of input conditions specified in the work
of R&S, used for comparison in the next section. Trends from the variations in wave
height, wave period and sediment fall velocity will be presented and compared to the
related nondimensional parameters. The values for v, which is an adjustable parameter
of the time-averaged wave energy dissipation D, are given as an indication of variations

in the characteristics of the breaking model.

Figure 5.8 shows the relationship between changes in incident offshore wave
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height and the location and shape of the longshore bar. For the largest wave height,
Case 2, the longshore bar assumes a position farther offshore and in deeper water, com-
pared to the two solutions resulting from the smaller wave heights in Cases 3 and 4.
The offshore bar from the larger wave height, Case 2, is in deeper water, as a result of
the increased probability of wave breaking at a greater depth for larger wave heights.
The increased wave height strengthens the onshore flow from the steady streaming, and
the bottom slope increases. As a result, the offshore depth approaches shallow water
more quickly than the cases for smaller wave heights. However, as the waves begin to
break, the intensity of wave breaking is approximately the same for Case 2, 3 and 4
(figure 5.9), but, because the larger wave, Case 2, requires a greater amount of energy
dissipation, the foreshore region becomes broader and the slope milder. Solutions for
large waves develop a steep offshore slope and a mild foreshore slope and small waves

attribute to a mild offshore slope and a steep foreshore slope.

Figure 5.10 shows the relationship between changes in the peak frequency of the
wave field and the location and depth of the longshore bar. The lower frequency wave
field, with longer waves, develops a steeper overall solution across the profile. This is the
result of a strong dependence of wave asymmetry, and the central odd velocity moments
on wave length. Longer waves develop the characteristic vertical asymmetric shape in
deeper water than shorter waves, which contributes more strongly to the central odd
velocity moments across the nearshore region and results in an increased onshore flow
forcing. For the longer period waves, Case 5, the offshore slope is steeper as a result of
an increase in the onshore forcing from central odd moments. As the waves begin to
break, the relative magnitude between the central odd moments and the combination of
the mean return flow and the central even moments result in an increased net onshore
forcing, thus creating a steeper foreshore. The relative magnitude between the central
odd moments and the combination of the mean return flow and the even moments is
defined as the total odd moments, (u|u|?) and {(u|u|?), Section 3.1.2. As the wave length
is shortened, Cases 1 and 3, the total odd moments become smaller compared to those

for the longer waves, Case 5 (figures 5.11 and 5.12), and create a stronger net onshore



73

0.15

Depth (m)
1
[ =]
1]
.\
\\
‘\

(b) Onshore (m)

100

Figure 5.8: Sensitivity of GEBP Model to Changes in Offshore Wave Height () Hns,

(b) d: Case 2 (solid), Case 3 (dashed), Case 4 (dotted).



1.8

1.6

14

1.2

0.8

0.6

0.4

0.2

74

Figure 5.9:

Onshore (m)

Sensitivity of Disspation D to Changes to Variations in Offshore Wave
Height: Case 2 (solid), Case 3 (dashed), Case 4 (dotted).



0.15 v
E 0.1} &
E 005- -
00 210 40 60 80 100 120 140

Depth (m)
=

'30 20 40 60 80 100 120 140

(b) Onshore (m)

Figure 5.10: Sensitivity of GEBP Model to Changes in Peak Frequency (a) Hyms, (b)
d: Case 1 (solid), Case 3 (dashed), Case 5 (dotted).

flow, forcing a milder bottom slope across the foreshore. Bar depth is also dependent on
wave length. Solutions for the longer period waves, Case 5, establish the bar formation
in relatively shallow water, yet the shorter period waves, Cases 1 and 3, which begin
breaking at a deepe‘r depth, force the bar to a deeper location. Because of the sensitivity
of the central odd moments to wave period, the response of this model is strongly related

to variations in wave period.

In a qualitative sense, the trends of the model’s response to changes in wave
climate have been shown to be strongly related to wave period and to a lesser degree to
wave height. Additionally, figure 5.13 shows the model’s response to changes in sediment
fall velocity. Variations in sediment fall velocity do not greatly change the results of the

GEBP model. For variations in wave height and wave period, when significant changes
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in the GEBP model solutions are recognized, the Dean number and P-parameter do
not greatly differ. However, as indicated by large variations in the Dean Number and
P-parameter, Cases 3, 6 and 7, the change in beach profile shape is expected to be
significant. This demonstrates the strong dependency of the sediment transport model

to wave period and and wave height as compared to the sediment fall velocity.

Relating the values of the Dean number, P-parameter and deep water wave steep-
ness to variations of the solutions for Cases 1-5, it is seen (figure 5.14) that the state
of the foreshore slope can be predicted as a function of the deep water wave steepness,
where a mild slope corresponds to the erosive conditions of large wave steepness. How-
ever, the offshore slope and shape is individually related to variations in wave height and

wave period (figure 5.14), and is not predictable from the Dean number, P-parameter
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and deep water wave steepness. The reason for this is in the response of the central
velocity flow moments and the mean current model to changes in wave characteristics.
A trend for the shape and location of the offshore bar with variations in deep water
wave steepness, Dean number, or P-parameter does not exist as as seen in table 5.1
and figure 5.14. Thus, as the GEBP model is defined, solutions are unique for specific
combinations Dean number, P-parameter and deep water wave steepness, but variations
in solutions cannot be predicted with variations in in these parameters. Only changes

in foreshore slope may by characterized by variations in deep water wave steepness.

The results from this sensitivity analysis agree with the observations of Dally
(1987). Dally recognized that longer period waves, and thus milder wave steepness,

produced bar formations in shallow water and thus closer to the shoreline, and the
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shorter period waves move the location of the bar to deeper water and further offshore.

5.3 Comparison to Roelvink and Stive (1989)

To validate the model against actual wave conditions and beach profile data,
comparisons to the results of R&S will be addressed. Because the GEBP is based on
the flow moments proposed and calibrated by the work of R&S, an attempt will be

made to determine why their model never reached an equilibrium condition.

As stated in Chapter 4, R&S intended to simulate strongly erosive conditions
with emphasis on generating longshore bar formations from an initially plane beach.
Thus, the input conditions they used provided a large offshore wave steepness (Case
1, table 4.1). Under these conditions, their experimental profile and numerical model

never reached an equilibrium condition.

Implementing the GEBP model under the extreme wave conditions used by R&S
does not converge to a physically reasonable solution (figure 5.15). The result can
be described as an infinitely wide beach. Our reasoning for this solution draws on
the previous argument that as wave steepness increases, the contributions for the odd
velocity moments (the dominate onshore forcing mechanism in this model) is reduced
to values too small to balance the forcing for the mean return flow and thus an infinite
flat beach results. This is a physically unreasonable result, but demonstrates the ability
of this type of model to predict the equilibrium beach profile if one were to exist, under
storm conditions. However, to emphasize this point and to demonstrate the model’s
limits to extreme wave steepness, we arbitrarily increase the wave length and thus the
contribution from the central odd moments. This is Case 2 of table 5.2, where the value
for s, is 0.0083 is a order of magnitude smaller than the value in the R&S experiments
and will be shown to be an approximate upper limit of this model as an input offshore
wave steepness. Figure 5.16 shows the solution for these input conditions. The model

converged to a solution, but the width of the foreshore region is unrealistically wide.
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Table 5.2: Input - Roelvink and Stive (1989) Data Comparison

Case No. | Hymea | Tp | ha & ¥
(m) | (sec) | (m)
1 0.123 | 2.00 | 3.00 | 0.0210 | 0.73
2 0.123 | 3.00 | 3.00 | 0.0083 | 0.61

This proves two points; (1) this model does not predict equilibrium beach profiles for
extreme wave conditions under the inherent assumptions, and (2) physical mechanisms
important to changes in the beach profile during storm events are likely not to be

included in the model.

This exercise brings to light two interesting questions: (1) For a given set of
offshore wave conditions, is there always an equilibrium profile? The GEBP predicts
that for an extreme offshore wave steepness, the equilibrium beach solution exists as an
infinitely wide foreshore for which the bottom is flat and the waves propagate without
dissipation. (2) Is there a value for offshore wave steepness that is the determining
quantity of whether or not a beach can establish an equilibrium condition. From this
brief investigation, the limit of deep water wave steepness to obtain an equilibrium is
0(10~?) under the assumptions of this model. We accept the limits of this model in
that the physics describing the sediment transport are not accurately quantified across
the entire nearshore region and that the model neglects many of the nearshore forcing

mechanisms present in the nearshore environment.

5.4 Comparison to FRF Data

A beach profile existing in pure equilibrium on a real shoreline may never be
observed as defined by the assumptions of the GEBP model. Only in controlled ex-

perimental conditions can a beach be subject to constant a wave field for an indefinite
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period of time. However, a profile averaged over a long period of time, may be assumed
to exhibit the features of an equilibrium profile. To this end, we use data from the
Corps of Engineers Field Research Facility, which provides accurate measurements of
the time varying wave conditions and nearshore bathymetry. We have chosen the data
collected at the facility during the years 1981 to 1984, Howd and Birkemeier (1987),
as our representative sample. Measurements along profile line 58 have been selected to

represent the nearshore variations at the FRF.

To analyze the average shape of profile line 58, the Empirical Orthogonal Eigen-
function method (EOF) of Winant et al. (1978) is applied, which describes the time
dependent profile change with a measure of the mean squared variance of the cross-
shore depth. This method describes variations in the data with combinations of orthog-
onal eigenfunctions, where the the first eigenfunction represents the largest amount of
variation in the data and the remaining variation is describe with the successive eigen-
functions. The largest amount of variance, approximately 98%, resulting from the time
dependent profile measurements, is represented with first eigenfunction which has been
defined as the mean beach function. Ninety-one profiles measured between 1981 and
1084 are use in the analysis. Profiles that are not measured to the depth of closure or
are taken during extreme storm events are remove as not to bias the data to a larger

than average longshore bar.

The average profile from the data set is of particular interest due to the presence
of a longshore bar at z = 400 (m). Assuming this to be the equilibrium beach profile
and adopting the mean nearshore wave height and peak wave period during the four

years, the equilibrium beach profile will be calculated.

The wave characteristics at the FRF, which are measured at the end of the
research pier in 4 meters of water, are tabulated as average values. Therefore, as a
result of the GEBP requiring the H,,, wave height, the wave field is assumed to be

represented by a Rayleigh distribution and the statistical relationship between the mean



85

Table 5.3: Wave Data - CERC-FRF (1981): Case 1 (measured); Case 2 (adjusted)

Hpean | Std.Dev. T, | Std.Dev. | Humeo | Tp s,
| _(m) | Hmean (m) | (sec) | Ty (sec) | (m) | (sec) N
Casel| 0.9 0.6 87 | 29 | 1.02 | 87 [0.0079 ]
Case 2 1.02 | 10.0 | 0.0056

wave height, Hiean and the Hpy, i8

Heee = LIBH ean (5.4)

The peak wave period is taken as the reported value at the FRF, the sediment fall
velocity is estimated to be 0.03 (m/s) and the initial depth is 20 m. The offshore wave
conditions are determined from the measure values at 4 meters following the linear
shoaling approach presented earlier in this chapter. The wave parameters are presented
in table 5.3 along with the adjusted wave period that provide a better fit to the data.
Figure 5.17 shows the representation of the GEBP, given the measured values at the
FRF, superimposed onto the first eigenfunction from profile line 58. The agreement is
unsatisfactory in a quantitative sense, but trends in the shape of the cross shore are
represented in a qualitative sense as indicated by a deep offshore bar in the data and a

broad foreshore region.

Optimizing the sediment transport efficiency factors, ¢, and ¢,, by a best fit pro-
cedure across the profile may provide suitable results in replicating barred equilibrium
beach profiles. However, due to the complexity of the GEBP model and the compu-
tational time required for solution, the problem becomes increasingly difficult. To this
end, adjustment of the offshore wave parameters within the range of the standard de-

viation of the measurements is accepted for a qualitative comparison to the data. A
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1.
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beach profiles. However, due to the complexity of the GEBP model and the compu-
tational time required for solution, the problem becomes increasingly difficult. To this
end, adjustment of the offshore wave parameters within the range of the standard de-
viation of the measurements is accepted for a qualitative comparison to the data. A
methodology for adjusting the offshore waves conditions to match the nearshore beach
profile data is not established and may not be useful in terms of developing a better
quantitative estimation of the profiles. However, the wave height and wave period will
be adjusted to determine in a approximate representation of the data is obtainable with

reasonable variations of the wave parameters.

Figure (5.18) presents the results for the first eigenfunction as the representative
profile where the results from the GEBP model from the adjusted wave parameters are
superimposed. The agreement is qualitatively promising in that the location and depth
of the outer longshore bar is predicted reasonably well as well as the approximate average
slope of the for shore region. The depth and location of the outer bar is location and
depth that would be influence by waves present during extreme storm events and not by
the average wave conditions. Thus the adjusted values do not seem to be unreasonable

for the prediction of the outer bar.

A problem with the GEBP model is the predicted extreme offshore bottom slope
that is not found in the FRF field data. As secen in the earlier discussions, this is a
feature of the model that is not unique to this set of input conditions, but, rather, is
consistent for all case of the model that have been examined. Possible sources for this
feature could be that Bailard’s sediment transport model is not valid in the offshore
region where bottom ripples and low suspended load concentrations exist. Further, the
strong onshore flow, which has been shown to steepen the beach slope, established by
the GEBP model outside the surf zone, may be an overestimation of the actual onshore

flow that exists over the offshore region of an equilibrium beach profile.
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Figure 5.18: GEBP (solid) and First Eigenfunction (dashed) FRF (1981-1984): Case
2.



Chapter 6

CONCLUSIONS

Establishing a quantitative method for accurately describing the equilibrium
state of a beach profile is a necessary tool for coastal engineers in developing accu-
rate general descriptions of the nearshore bathymetry. Certain models may quantify
the stable cross-shore shape, but these models require empirical calibration of at least
one adjustable parameter to account for the many uncertainties in the problem. Addi-
tionally, although longshore bars exist in many measured beach profiles assumed to be
in an equilibrium state, the existing quantitative models fail to describe this feature.
This thesis considers the physics of the nearshore region in more detail by utilizing well
established models that quantify the mechanics of the nearshore wave, current, and

sediment transport characteristics.

The approach in this thesis adopts the energy and momentum equations and a
bottom slope equation, which is established by imposing a no-net sediment transport
condition on Bailard’s (1982) instantaneous energetics cross-shore sediment transport
formulation, as the governing equations of the nearshore environment. Bailard’s sed-
iment transport equation has been used to model satisfactorily time dependent cross-
shore sediment transport processes when models for the nearshore hydrodynamics are
applied for time-averaged near-bottom flows, R&S. However, an equilibrium solution

has not been obtained with such models.

Adopting the proposed models of R&S for the nearshore hydrodynamics, which

are approximate representations of the velocity moment terms required by Bailard’s
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sediment transport equation, an equilibrium beach profile solution is achieved that is
dependent on the flow variations across the nearshore region. Assuming the wave field
to be a linear Gaussian process and the wave heights to be represented by the Rayleigh
distribution, the asymmetric flow contributions from unbroken wave field are modelled
with vertically symmetric waves according to Dean’s Stream Function theory (1965).
The random variation of the wave field is modelled following the even moment approxi-
mations of Guza and Thornton (1985), and the steady current resulting from the steady
streaming under nonlinear waves and the momentum decay induced return flow are

modelled following Stive and De Vriend (1987).

The model establishes an offshore break point bar at a location that agrees qual-
itatively with the observations of Dally (1987) and R&S, who experimentally developed
longshore bars with an emphasised undertow mechanism. The establishment of the
longshore bar is directly related to the change in direction of the steady current from
onshore flow offshore of the bar to offshore flow shoreward of the bar. However, the
model is sensitive to the value of offshore wave steepness and produces an infinite beach
solution for extreme values of offshore wave steepness. The infinite beach solution may
result from an imbalance of the flow forcing terms that establish excessive net offshore
flows when wave steepness exceeds O(107!). For cases of relatively mild offshore wave
conditions, the model produces the qualitative trends of longshore bar response to vari-
ations in offshore wave climate. For constant wave length and varying wave height, the
longshore bar is established farther offshore and in deeper water for large wave heights,
while smaller wave heights create nearshore, shallow water bars. For example, constant
wave height and variations in period, the longer period waves create a nearshore bar
and the shorter period waves move the bar offshore. These trends support observations
in laboratory experiments (i.e., Dally 1987, Kraus and Larson 1988). Trends in the
solutions are not related the Dean number, P-parameter, or deep water wave steepness
across entire profile, but, rather, to individual variations in wave height and wave pe-
riod. However, the variation in steepness of the foreshore is related to variations in

the offshore wave steepness, where steeper waves create a milder foreshore slope. The
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apparent poor response to prediction outside the bar location could be the result of the
bottom slope model’s response to variations in wave height and wave period under the

no-net sediment transport condition.

The system of equations has been difficult to model due to the strong sensitivity
of the solutions to offshore wave steepness. For extreme wave steepness, the infinite
beach solution is obtained, where low wave steepness provides for excessively steep
offshore solutions. Further, because the system is established as an initial value problem,
each successive step is dependent on the previous one to maintain the no-net sediment
transport condition, and the system lacks flexibility in predicting detail descriptions of

the nearshore bathymetry, such as a trough on the shore side of the bar.

Despite the inherent problems associated with this model, a more descriptive
method to model equilibrium beach profiles has been developed. By considering the
spatially varying sediment transport characteristics of the nearshore region and by de-
veloping better models to represent the waves and currents, a better description of the
equilibrium beach profile may be achieved. The results of this model may be improved
with calibration of the adjustable parameters, ¢, and ¢, in the bottom slope equation,

with a fit to measured equilibrium beach profile data.
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Appendix A

EXPLICIT DERIVATIVES FOR RUNGE-KUTTA METHOD

In this appendix, the explicit derivative expressions for wave energy, E, mean
water surface elevation, 7, depth, d, and the associated derivatives for the analytical
expression of linear wave number, k, linear wave speed, C, and linear wave group speed,
C,, are presented. The discussion begins by defining the total water depth, h, as the

combination of the still water depth, d, and mean water surface elevation, .

The general expression for the bottom slope is expressed as

an = [ (o) ) 2 (o) + )]

[t,-:l52 é (lal’) + (‘%)2 (lﬁls)] B (A.1)

where tan § = —8d/dz. For expressions of the velocity moments, the reader is referred

to Chapter 4, for a detailed discussion of these terms. For this discussion, the slope

model is accepted as a general form.

The first step in the integration scheme at a given location is to determine flow
field characteristics given the H,y,s wave height, water depth, h, and the wave number,

k, which is found with the linear dispersion relationship

o? = gktanh kh (A.2)
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For the random wave case, Battjes and Stive (1985) recommend using the peak frequency
of the wave field, f,, as the governing frequency. Thus, the wave number will be the

peak wave number, kj.

The energy balance is presented in the form of a conservation of energy flux,

EC,, as

JEC,
__....-..2 —
32 +D=0 (A.3)
To solve directly for the wave energy, E, derivatives in z are taken for all terms that

are functions of z which results in the expression

9E _ 1 3_1)
=T (d+E : (A)

With the derivative in this form, an explicit solution at each z location can be found for
the right hand side given the linear representations of the local wave energy, E, group
speed, Cy, dissipation, D, and the gradient of the group speed, 8C, /0z.

The gradient for the group speed is obtained by taking all z derivatives of the linear

expression

= 2x f (1 kh )
Co =% \3* smh 2Fh) (A5}
which results in

9c, 18C 1 oc . ok ad o7
Pz = 209z | sinh(2kh) (“‘ +Chgs 0Ok (a i ))

—2Ckh coth(2kh) ( gk k (g + -g;)) (A.6)
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This expression can be explicitly evaluated from the known value of the bottom slope,

eqn. A.l1.

To express the derivative for the change in mean water surface elevation, 7, the

momentum equation is used as

05z

91
e T pghaz =0 (A7)

where the term for the radiation stress is directly substituted before the derivatives are

taken.

1 2kh

Again, the terms with recognized z dependency and all derivatives in z are taken using

chain differentiation. The resulting expression is

i _ 4khEcosh(2kh)( ak g_t_i_) 3 2 ( OE ok 6d)
9z ( sinh?(2kh) 3z T kaz sinh(2kh) - oz * hEaz + kEﬂz

10E 2%kE  4k?hEcosh(2kh)\ ™"
~20z (pg“sinh(zkh)" sinh?(2kh) ) (A.9)

where it is recognized that derivatives for bottom slope, wave speed, wave number, and
wave group speed are implicit in the right hand side. However, assuming that these
variables can be approximated with linear theory, the first order linear expressions from

Dean and Dalrymple (1984) are adopted.
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For the derivative of the wave number, k, the linear dispersion relationship, eqn.
A.2, is used where all derivatives in z are taken and solved for 8k/@z. This exercise

results in the following expression for the change in wave number with changes in depth.

ok

e ( sech’(kh)(ad 3_)) (tanh(kh)  khsech?(kh)) ™" (A.10)

For the wave speed C the relationship

a
=3 (A.11)

is used, where o = 2r f and is the peak angular frequency of the random wave field.

Taking the derivatives in z results in

ac o Ok

B9z~ 2CKk? 0z (A-12)

where the gradient for the wave number is known a priori from eqn. (A.10).

Through successive substitution and arranging these expressions to ensure each
right hand side is explicitly expressed, the equations are simultaneously solved for bot-
tom depth d, wave energy, E, and mean water level, 7, at each z location given local
water depth. The subroutine is arranged in the following order, defining the derivatives

by the vector dy/0z.

op\ _ 0d
(8:) T Oz (A-13)

o) _ 25
({n) =22 (A.14)
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(%%’:) = o (A.15)

One potential problem with this scheme is the implicit term, 7/dz, in the right
hand side of these derivatives. However, the term is small in the offshore regions of the
domain and can be approximated with the value calculated at the previous z location. In
the shallower regions of the domain, where d7/8z increases, the size of Az is decreased
with a step-size control routine, Press, et al. (1986); thus, the value at the previous z

location is an adequate representation of the term and iteration is not necessary.



Appendix B

DERIVATION OF UNDERTOW MODEL

This appendix presents the derivation of Stive and de Vriend (1987) for the mean
return flow across the surf zone, which includes the flow in the bottom boundary layer
as proposed by Svendsen et al. (1987). Stive and de Vriend (1987) divided the water
column into three layers, trough level and above, between the bottom boundary layer
and trough level, and the bottom boundary layer. Figure B.1 provides a definition
sketch for the three layered problem. The top, or surface, level is not considered in

detail, but the information in that domain is represented via an effective shear stress at

trough level,
uzk 1, _kh\ D
7= pv,%—- sinh (2kh) + (5 + 75;) ol (B.1)
where,

v, is the kinematic Viscosity

k is the wave number

C is the wave phase speed

D is the mean energy dissipation due to wave breaking

ily is the near-bottom oscillatory velocity amplitude

and the mass flux, m, above trough level

m=(1+@5) 5 (B.2)
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The effective shear stress represents the dissipation of energy from the nonbreaking por-
tion of the wave field through the viscosity term, v, and the breaking wave dissipation
due to the momentum decay above trough level through the dissipation term, D, as
defined in the wave energy decay model. The mass flux above trough level is modified
from a monochromatic representation to account for only the mass flux of the breaking

wave portion of the wave field, Q;.

The middle layer is modelled with time-averaged horizontal momentum equation

-g; (pug?—t:%) = % (,0 (ﬁ’ - Wz)) g ‘3% (pg7) (B.3)

which describes the balance between the vertical variation of the flow and the vertically
varying stress and pressure forces required to maintain the flow in the domain. The
time-averaging is over many waves to include mean flow effects of the turbulent flow

and wave flow.

The bottom layer flow also is modelled by the time-averaged horizontal momen-

tum equation

;% (pb': &;&;)) = ga; (p (‘ﬂ’ - "ﬂi’)) + 8% (pg7) + % (pi0) (B.4)

which is in the same form as the momentum layer, but an additional term is produced
from the time-averaging due to the turbulent stresses induced by the flow in the turbu-
lent boundary layer. Essentially, due to the turbulent nature of the flow, an additional

driving force governs the flow.

The right hand side of the middle layer momentum equation, which represents
the driving forces due to the viscous shear stresses and the pressure gradient is redefined

as
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a(z,z) = -6% (p (‘ti’ - ‘t‘v")) + —% (pg7) (B.5)

and assume a is constant over and varies in z, or a(z). Now the equations are

5 (752) = ata) (B.6)

for the middle layer and

7] 3&(:)) _ 0 =
o (1 752) = ate) + 5 (5TD) (B.7)
for the bottom layer, where the turbulent shear stress term remains undefined.

The system of equations can solved with the application of five conditions: a
no-slip condition at the bed, the shear stress condition at trough level (eqn. B.1) the

integral mean flow condition to compensate for the net mean flow above trough level,

z¢ m
fz u(z)dz = ~ | (B.8)

L]

and two patching conditions for the velocity and shear stress at the interface of the
middle and bottom layers. The patching solution of Svendsen et al. (1987) is applied
to the bottom layer to account for mean flows induced by the nonbreaking fraction of

the wave field.

The final solution requires a measure of the turbulent viscosity in the middle and
bottom layer. Due to the turbulent flow in the bottom layer, the turbulent viscosity in
that layer is several orders of magnitude smaller that in the middle layer. Expressions
adopted by Stive and de Vriend for the turbulent viscosity in the middle and bottom

layers are
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=3
v = c}—:- (B.9)

for the middle layer where ¢; is a bottom friction factor for wave motion and is O( 1079,

w is the angular frequency of the wave field and

iy = MR (g)é (B.10)

for the bottom layer, where M is an empirical constant of O (10?)m and D is the

time-averaged energy dissipation for the waves.

Applying the above conditions, the middle layer flow is solved for by integrating

once in z and applying the surface shear stress, 7¢,

u T
g = ;‘- (B.11)
which results in
1 0u - Ti
;;"5; = p + 0‘(2 - Zg) (812)

Again, integrating in z and defining the velocity at the interface between the middle
and bottom layers as u(z), which is an unknown, the expression for the middle layer

becomes

W(ehm = () + (2 = 1) - * (% i — i) %(z = z,)ﬁ) (B.13)

where u(2) and a remain unknown.
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Next, the time-averaged equation for flow in the bottom layer is solved following
the solution of Svendsen et al. (1987) for the breaking waves. Integrating once, and

defining an arbitrary unknown bottom shear stress, i, the relationship becomes,

1 8u Tt o
e +a(z—2z)+uw (B.14)

where @|,, = 0.

Again, integrating in 2z and applying the condition u = 0 at z = 2, the expression for

the vertical velocity distribution in the bottom layer is

w2l = -0 (= 4) = o7 (2 = ) + u(a) (B.15)

where nonlinear term

/1_1?5 dz = u,(2) (B.16)

is defined as the steady streaming in the bottom boundary layer.

At this point there are three unknowns, u(z), n and a. The velocity at the
interface, u(z), and the bottom shear stress, 7, are found from matching the velocity
and shear stress at the interface. For u(z), equations B.13 and B.15 are equated and

solved for u(z), resulting in

T (s}
u(z) = ;;i;u a0+ s (2) (B.17)

Next, equations B.12 and B.14 are equated and the resulting bottom shear stress, 1, is

n =1 — p(ad; - Wid);,) (B.18)



106

the definitions for d; and é are found in figure (B.1). The value for « is still undefined.

However, by applying the only remaining condition, the continuity condition

]:‘ u(2)m dz + fﬂ u(z)p dz = ——’:—, (B.19)

integration yields

1 s, 1 o= Y52 a — oy 4 Lo2a — Ls3)] =
a[a—w(d,——a)+m(d;6(d, )~ 58 (dh - 6) + 58% Ga)]_

§(di—6)+ =8|+ (B20)
[sa-0r+ 3¢

)y,

Vib

Tt 1 2 L _ 12 _

[ (= 8 4 8 a)+2a]
1 m

u,(z;)[(dg—6)+§6] +2

where a can be found from substituting the previously defined terms and the expressions

from the conduction solution.

The Longuet-Higgins’ (1953) conduction solution yields the terms wu, (2), the

streaming velocity, and 1itD|4,, the steady streaming shear stress, which are expressed as

- l_ff;_ -2 -1
u (2) = ;& [3+e72 -2 (3cos(1))] (B.21)
and
Tl = %kﬁﬁé [.r‘ (sin(1) + cos(1)) - 3% - %] , (B.22)

respectively. The term i is the maximum bottom velocity of a linear wave.

This formulation provides a complete model for the momentum decay induced

return flow for random wave breaking where only the wave height, water depth, and
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Figure B.1: Definition Sketch for Undertow Solution (Stive and de Vriend 1987).

energy dissipation D, are required to determine the mean flow. The near-bottom steady
current ¥ is defined as the velocity at the interface level, 2, defined in eqn. B.17.
An important aspect of the solution is that when there is minimal wave breaking,
the dissipation D is small, and the conduction solution provides onshore flow at the
chosen z = z location for near-bottom flow. However, as wave breaking increases,
the disspation induced return flow overcomes the drift velocity and the mean flow is
offshore. This transition from onshore to offshore mean flow will prove advantageous in

producing longshore bars in the equilibrium beach profile.



