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Abstract

In this study, a computer software for two-dimensional wave propagation and runup over
arbitrary bottom topography, was documented, and made available for use in the public
domain. This software was developed over the past five years by Grilli et al. *"?7, based
on fully nonlinear potential flow equations, and although well validated as a research tool, it
was not available in a form allowing easy use by others (see, e.g., 3% 3%),

After an introduction covering theoretical aspects of the problem, numerical algorithms
used in the solution are presented (Boundary Element Method, time updating), as well as
detailed flowcharts for the software. A user’s manual is finally provided, giving step by step
instructions on how to use the software, along with a few typical applications of the program,
that can be used for training and verification.

The source code for the software (FORTRAN 77) has also been documented as part of
this project. Each of the 64 subroutines and functions in the source code has been given an
internal description of its task and main variables, and each routine has also been listed and
summarized in the user’s manual. The software source code, too long for being attached to this
report, is available on request through internet, as well as data and results for the few example
presented in the report. Please send Email with inquiry to : grilli@mistral.oce.uri.edu.

Studies presented in this report have been supported by a grant from National Science
Foundation’s : Sitting and Geotechnical Systems, Division of Biological and Critical Systems
(NSF award nb. 9111827).
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1 Introduction

1.1 Background of the project

A numerical model for fully nonlinear water waves was developed and validated over the
past five years, and used as a research tool for calculating various wave propagation and
wave-structure interaction problems in coastal areas (Grilli **2%; Grilli et al. ?**%; Grilli,
Losada & Martin 26 27 28; Grilli, Skourup & Svendsen **3!; Grilli & Svendsen 3% 34 35.36.37, 38,
Otta et al. *%; Skourup et al. %5 7; Grilli & Subramanya **; Svendsen & Grilli ?).

This model solves unsteady two-dimensional potential flow equations in domains of
arbitrary geometry, and can be used to calculate wave shoaling and runup on slopes, and
wave interaction with coastal structures. Because of its Eulerian-Lagrangian description of
the free surface, the model is also capable of modeling wave overturning over slopes and
structures, up to the instant the tip of the breaking wave hits the free surface.

Waves are generated in the model, by imposing waves directly on the free surface, by
simulating a piston wavemaker motion, as in laboratory experiments, or by using a line of
internal sources. Except for the assumption of potential flow, no further approximation is
made in the model, unlike in most wave theories. The model, therefore, is not restricted
to special types of waves (e.g., short, long, periodic, non-periodic,...), and can be used for
arbitrary incident wave conditions. Submerged or emerged structures of arbitrary shape, like
obstacles on the bottom or breakwaters, can be introduced in the model, as well as gentle or
steep bottom slopes.

Although well validated as a research tool, this computer model was not available in a
form allowing easy use or modification by others. The purpose of the present project has
been to document and maintain this computer software, in order to make it available for other
researchers and scientists.

The present text constitutes the final report for this research project, along with the

documented source code for the computer software, that is available on request.



1.2 Project achievements

The main task in this project was to prepare a user’s manual detailing the theory underlying

the computer model, the organization of the computer software (flowcharts), the algorithms

implemented for solving wave propagation and runup problems (Boundary Element Method,

time updating, wave generation,...), and the input data required for running the software.

Detailed technical achievements for the project are as follows :

i) Theory and numerical algorithms for the mathematical and numerical model are de-

scribed in sections 2,3, and 4 of the report.

Assumptions, accuracy and limitations of computations are clearly stated. Many checks
of data and results, and error messages have been implemented at various stages of
computations, to stop the program in case of computational errors or inaccuracies, and

to inform users on why computations have been interrupted.

i) The computer software is presented in section 5, along with instructions on how to use

it.
Each of the 64 subroutines and functions in the source code were internally documented,

and are summarized in the report. Flow chart diagrams, and general descriptions of

sequences of functions corresponding to subroutines in the program are also included.

Parts of the computer program that were not yet written in “structured programming”
have been reorganized and well commented. Descriptions of tasks, algorithms, input
and output variables, called subroutines or functions, have been added as a header to
each subroutine source code, following a standard format. This will make it possible
for other researchers to easily understand the structure of the program, and to make

their own modifications as required by their research project.

Input data for using the software are detailed in the user’s manual, and typical in-

put/output listing for a few typical problems are given in section 6. Inputs have been

2



reorganized to make it easier generating data for typical problems.

iii) A few sets of complete calculations have been prepared for typical applications of the

program (long-wave and tsunami runup), and are presented in section 6 of this report.

A clear description and discussion of input/output data for these cases is given, and
references to related specific publications is made, for further detail or information on

the physical meaning of these applications.

Computer files, with complete source code (about 10,000 lines in FORTRAN 77 code),
user’s manual, and examples, for this software—too voluminous to be included in this
report— are available on request through the internet computer network (send Email to :

grilli@mistral.oce.uri.edu, for inquiry).

1.3 Modeling of highly nonlinear waves

Over the past fifteen years, accurate numerical methods have been developed for calculating
propagation of two-dimensional (2D) space-periodic waves in deep water and over constant
depth, up to initiation of breaking (Longuet-Higgins & Cokelet ** 1976, Vinje & Brevig
76 1981, New et al. 3 1985, and Dold & Peregrine '* 1986). These methods are based
on potential flow equations, with full nonlinearity included in the free surface boundary
conditions, and use a representation of the flow that allows for multi-valued free surface
elevations appearing during breaking (i.e., a Lagrangian representation; see Fig. 1).
Propagation, shoaling, and runup of 2D waves over a slope have also been the object
of numerous theoretical and numerical studies over the past thirty years, particularly for the
case of long waves or swells (Carrier & Greenspan ¢ 1958, Carrier ® 1966, Camfield & Street
41969, Hibberd & Peregrine *2 1979, Kobayashi et al. ** 1989, and Synolakis " 1990, using
Linear or Nonlinear Shallow Water equations; Peregrine ° 1967, Pedersen & Gjevik ** 1983,

Freilich & Guza ' 1984, Liu et al. 5! 1985, Zelt & Raichlen 77 1990, and Kirby *¢ 1991,
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Figure 1: Instability by plunging breaking of a large periodic sine wave over constant depth
h, as computed with the model by Grilli et al. 2 1989. Initial wave height % = (.333, length
£ = 1.85, and period T\/: = 2.50. A periodicity condition is used in the model on lateral
boundaries, to create a situation similar to that examined by Longuet-Higgins & Cokelet *°.
Symbols (o) denote BEM discretization nodes, identical to individual fluid particles whose

motion is calculated in time.

using Boussinesq or parabolic approximations of Boussinesq equations). The reader can find
details about various wave theories, and some of the above listed studies, in Mei % 1983,
and Dean & Dalrymple '? 1984. Most of the existing methods, however, are based on first-
or low-order theories, whose assumptions—for instance, small amplitude mildly nonlinear
waves, or mild bottom slope—may no longer be valid for waves that, due to shoaling, may
be close to breaking (i.e., highly nonlinear), before they run up the slope

For predicting characteristics of shoaling and impending breaking waves on slopes
(shoaling coefficients, profile, and kinematics), the state-of-the-art method has been to using
the higher-order expansion methods, originally developed for waves of permanent form over
constant depth (Stiassine & Peregrine ¢ 1980, Peregrine 37 1983, Sobey & Bando ® 1991).
These methods, however, by nature, cannot include effects of bottom slope or change of wave
form during shoaling. In particular, shoaling waves may become strongly asymmetric when
approaching breaking (e.g., Skjelbreia ®! 1987), an effect that is not included in the above

approaches. Griffiths et al. ' 1992, recently compared measurements of internal kinematics
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of periodic waves shoaling up a 1:30 slope, with predictions of the 5th-order Stokes theory,
of the 9th- and higher-order streamfunction theory, and of the full nonlinear model by New
et al. % (see ' for definitions of these wave theories). They found, horizontal velocities
were correctly predicted by most theories below still water level. In the high crest region,
low-order theories underpredicted velocities by as much as 50%, whereas predictions of the
full nonlinear theory were quite good up to the crest. These comparisons, however, were
only done for a mild slope (i.e, with limited bottom effect), and for cases in which breaking
occurred by spilling. The authors pointed out “all theories are grossly in error when compared
to severe plunging breakers”.

Other fully nonlinear wave studies will be mentioned for completeness, that have either
inherently been limited to non-breaking waves (Fenton & Rienecker '® 1982, Kim et al
1983, Nakayama ! 1983), or have represented extensions (e.g., to axisymmetric or three-
dimensional problems), or variant of existing methods— mostly by *° and '*—(Isaacson *!
1982, Jansen *2 1986, Dommermuth & Yue ' 1987, Gravert ' 1987, Greenhow %° 1987,
Tanaka et al. "> 1987, Klopman *° 1988, Cooker '° 1990, Cointe 7 1990, Romate ** 1990,
Seo & Dalrymple © 1990).

The 2D potential flow model developed by Grilli et al. 22%35 follows the strategy
of deep water and constant depth nonlinear wave models mentioned above (e.g., Dold &
Peregrine '*). It is based on a mixed Eulerian-Lagrangian representation and includes full
nonlinear terms in the free surface boundary conditions. Unlike most other approaches,
however, this model works in the physical space and is valid for arbitrary bottom topography
and incident wave conditions. It is therefore applicable to shallow water wave shoaling and
breaking, and to wave runup over arbitrary slopes, without any approximation on the wave
shape, or on the free surface boundary conditions. Development and verification of this
model have been carried out under a 2D formulation. All elements in the model, however,
were selected to allow implementation of a three-dimensional model, as a direct extension

of the 2D formulation. This is unlike most other 2D models based on complex variable



formulations.
Detailed equations and numerical procedures for this wave model are presented in
sections 2,3, and 4. Applications of the model to cases of wave propagation in shallow water

and wave runup on slopes are presented in section 6.



2 Mathematical model

Equations for the two-dimensional potential model by Grilli er al. *"*7, and its most recent
extensions, are presented in the next subsections. Full nonlinearity is maintained in the free
surface boundary conditions, and time integration of these conditions is based on higher-order
Taylor expansions, for both the free surface position and the potential. Laplace’s equation is
solved using a higher-order Boundary Element Method (Brebbia 2 1978). No-flow boundary
conditions are prescribed along solid boundaries of the domain (bottom, coastal structures),
and arbitrary waves are generated in the model, either by specifying an initial wave on the free
surface, by simulating a wavemaker at the open-sea boundary of the computational domain

(as in laboratory experiments), or by uding a line of internal sources.

2.1 Governing equations and solid boundary conditions

The velocity potential ¢(x, t) is used to describe inviscid irrotational 2D flows in the vertical
(z, 2) plane, where the velocity is given by u = Vé = (u,w). The continuity equation in
the fluid domain Q(¢) with boundary I'(¢) is a Laplace equation for the potential (see Fig. 2

for definitions),

On the free surface I'4(t), ¢ satisfies nonlinear kinematic and dynamic boundary condi-

tions,
Dr
Sy =u= Vé on I's(t) (2)
D¢ 1 Pa
Dt = —gz + 5V¢'V¢— " on I's(t) 3)

respectively, with r the position vector of a free surface fluid particle, g the acceleration due

to gravity, z the vertical coordinate (positive upwards, and z = 0 at the undisturbed free
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Figure 2: Typical computational domain for wave shoaling and runup on a slope, with
definition of various boundaries. The domain is sketched with a slope s =1:35, terminated
by a shelf of depth h; = 0.1k, at its upper part, and the free surface profile corresponds to
a solitary wave, of initial height % = (0.2 generated by a piston wavemaker at boundary

T (2).

surface), p. the atmospheric pressure, and p the fluid density. The material derivative is
defined as,

D _ 8
D =Zru-w @)

Along the stationary bottom T', and other fixed boundaries I';2, a no-flow condition is

prescribed as,

Vé-n= @ =) onIy and T';, (5)
on

in which n is the unit outward normal vector.

2.2 Boundary conditions for wave generation

Waves are generated in the model by either prescribing a wavemaker motion on the “open

sea” boundary I',1(¢) of the computational domain, by prescribing the elevation and potential



on the free surface, of a known “exact” wave solution of flow equations, or by using an
internal line of sources.
General boundary conditions for these three types of wave generation are given in the

following. Generation of specific waves is detailed in section 3.

2.2.1 Exact wave solution

“Numerically exact” permanent form solutions of the nonlinear “Wave Boundary Value
Problem” over constant depth (WBVP, (1)-(5); i.e., solitary or streamfunction waves), are
generated by specifying their potential ¢(z, ¢,), and elevation n(z,,), on the free surface
I'4(t,), atinitial time ¢,. In this case, normal velocity is also prescribed to U(t) over the fixed

vertical lateral boundaries Iy, I';2. We get,
g = ¢(m:to) y 2 = n(mato) on I‘.f(to)
= U(t) on I‘rl, PrZ (6)

in which overbars denote prescribed values.

2.2.2 Plane wavemaker

A plane wavemaker motion Z = z,(z,t) is specified on the moving boundary I';;(2), to
generate waves as in laboratory experiments. Paddle motion and normal velocity are specified

over the surface of the paddle, as,

dzp
? = e = B on Tri(2) (7)
n i+ Gy

in which the right hand side represents the normal paddle velocity. Equation (7) will be

developed in section 3, for the case of piston or flap wavemakers.



2.2.3 Internal sources

The traditional way of generating waves by specifying a velocity distribution or movement
along a part of the boundary has the disadvantage that this boundary also reflects waves prop-
agating towards the boundary, from inside the computational domain (such as the scattered
wave field from a structure). This is a major problem in any physical model.

In a computational model, this can be avoided to a large degree by generating waves by
internal sources (an idea first suggested by Brorsen & Larsen * (1987) for a linear model).
If oscillating sources are distributed along a vertical, say, line placed a short distance inside
the fluid domain, waves will be generated and will propagate away from the sources in both
directions. The waves moving into the computational domain are the ones we are interested
in. On the other hand waves scattered from structures inside the computational domain will
essentially pass through the sourceline . Those scattered waves, along with waves generated
away from the domain, should be leaving the domain through its open sea boundary. Hence,
a radiation condition should be specified. This case will not be detailed here (see Otta et al.
371992 for detail).

When sources (or sinks which are negative sources) are introduced in the fluid domain,

Laplace’s equation (1) becomes the Poisson equation,
Vi = b(x,t) in Q(t) (8)

where b(x, t) is the density of a known distribution of sources inside the domain ().
Values of b(x, t) will be discussed in section 3, in the case of the generation of specific

waves in the model.

2.3 The time integration

Free surface boundary conditions (2) and (3) are integrated at time ¢, to establish both the new
position and the relevant boundary conditions on the free surface, at a subsequent time ¢ 4 At

(with At being a small time step). This is done, following the approach introduced by Dold

10



& Peregrine ', using Taylor expansions for both the position r(¢) and the potential ¢(r(t))
on I'4(t). Series, truncated to Nth-order, are expressed in terms of the material derivative

(4), and of time step At, as,

T(t + At) )+ Z kr ;ti ) + O[(At)N ] ©)

for the free surface position, and,

#(x(t+ At)) = ¢(x(t)) + Z A;, il D(ik(t)) + O[(At)V*] (10)

for the potential. The last terms in (9) and (10) represent truncation errors. The time updating
of the free surface geometry described by (9) actually corresponds to following the motion of
fluid particles in time. This procedure is often referred to as a “Mixed Eulerian-Lagrangian”
formulation.

Second-order series are used in the present case (N = 2). Higher-order Taylor series,
however, have successfully been used by others, to provide highly accurate solutions for
periodic problems (Dold & Peregrine '* (N=3), and Seo & Dalrymple ©* 1990 (N=4)). First-
order coefficients in (9) and (10) are obtained, based on equations (2) and (3), using ¢ and
%, as provided by the solution of Laplace’s equation (1) at time t. Second-order coefficients
are expressed as 1% of (2) and (3), and are calculated using the solution of a second Laplace
problem of the form (1), tor( 56> atBn) This is because all time derivatives of the potential
satisfy Laplace’s equation (1). Higher-order series would simply require that more Laplace’s
equations are solved for higher-order time derivatives of ¢.

No-flow boundary conditions for a second Laplace problem for —f are readily obtained

along solid boundaries, as,

0%¢
Bion 0 onI'y and I';, (11)
The boundary condition at the free surface is obtained from equation (3) and (4) as,
d¢ 1 Pa
s i o V¢ ——— 12
T 5 V¢ -V - gz on I's(t) (12)

11



Hence, % can be specified on the free surface as a function of known geometry and potential
at time t.
When T, (t) represents a wavemaker boundary moving at velocity u,(x,(t), t), we have
by (7),
o0 0
oton g(up )

or,

32(f) - [d(uP : n) .
Oton dt

u, - V(up - n) on I'y4(2) (13)

in which, dﬁi = % + u, - V, represents the time derivative following the motion of the
boundary x,(t). This boundary condition is developed in section 3.
When waves are generated by a line of internal sources, the time derivative of the source

strength %(x, t) is introduced in a Poisson equation of the form (8), for %‘f i

2.4 Expressions of Taylor series coefficients

Detailed expressions of coefficients of Taylor series (9) and (10) are derived in the following,
using a curvilinear coordinate system (s, n) on the boundary (Fig. 2).

The kinematic free surface boundary condition (2) provides the first-order coefficient in
the series (9), for the free surface position vector r, as,

Dr 9¢ ¢
D85 T Am (14)

Applying the material derivative (4) to equation (2), we get the general expression of
the second-order coefficient in (9) as,

D*’r Du 0du
— = — = -V 15
e m TR 3y
By definition, the first term on the right hand side of (15) is,

du_ _0p 0% . 0%
5t = Vot oos" T Bion "

(16)

12



where the curvilinear gradient operator,
—Ss+—n a7
is used, with definitions,

s = [cosB, sinf], n = [—sinfB, cosf] (18)

and,

cosﬁ=%, sinf = g—j (19)

where 8 denotes the angle between the horizontal axis z and the tangent s at the free surface.

Derivatives of (s,n) with respect to their directions are obtained from (18) as,

s 98  on 9P
i Lt i i 20

ds 9B on 0B
B R R " @l

Now, in a family of curves, n = cst, and of straight lines, s = cst, along the free surface,
derivative g—g vanishes in (21), and the scale factor h,, associated with curves n = cst, is

defined along the free surface as,

16h, 1 88 . ~
W om "R s with, h, =1 (22)

where R(x) is the radius of curvature of the free surface. Thus, A, is independent of s and
only depends on n. Using the above definitions, the second term on the right hand side of

(15) becomes,

1 0V ov
u-Vu:Vqﬁ-[h— 68¢s+ szn]

which, using orthogonality of s and n, can be expressed as,

L 949V¢ 040V

u-Vu=h—§63 Os on On

13



or,

1 3¢> 1 0% 6(,&6‘_5 0%¢ 3(;5 on
N = h233 h.((';?s +?3:33)+336nn On Os
3@5 1 0%¢ 1 8h, 0¢ 0%¢

[ (3n83 h, On E) + On? n] 23)

in which, g‘f‘. = () and %’1: = (), were used. Using equations (17)-(22), it can be shown,

continuity, V - u = 0, and irrotationality, V x u = 0, conditions transform to,

2 2
6¢+6¢ 0B 0¢

0s: ' On? 0Oson =0 24)
0%¢ 0%¢
dsOn  Onds (23)

respectively, along the free surface. Using (24) and (25), equation (23) can be expressed as,

0¢ ., 6% 0B o i op o
oY = é[(a_f—ﬁf"b_i) (3n§3+ af af)“]
8¢ . 8% Bﬁ d¢ 0%*¢ aﬁ 0¢
+on(Bnos T 2505 T Bz T Bsan) ™
or,
_ 09 0%*¢ 0¢ 0*¢ 0¢ 0%*¢ 3(;5 32¢S aﬂ a¢
YR = s Os? gr—r.('?nﬂs}s {33 Onds On 632 [( )2 ( )2]} (26)

Combining (15), (16), and (26), we get the final expression for the second-order coefficient
in (9) as,

e 09 290¢ 08 Fds, .
Dtz ‘9tds ' 0s 0s* ' OnOnds

D% 0p0% 09 5% 0B, 0y, O,

{5i6m ~ ngs2 + s m0s + 253s) T (3m

“I}n (27)

In the same way, the dynamic free surface boundary condition (3) provides the first-order

coefficient in the series (10) for the free surface potential ¢, using (17) and (22), as,

Dd’ e 1 ¢ @)2]_1&_0

B = ezl G -5 (28)

14



The second-order coefficient in (10) is obtained by material derivation of (3) as,

D¢ Dz 1D Dpu)

De- I tam vt V) 25
with, by (2), (17) and (18),

Dz 0¢ 0¢

N ui 3

W 6ncosﬁ+ 2 sinf3 (30)
and, by definition,

Du du

2Dt(v¢ Vé)=u- ﬁ—=u-§+u-(u-Vu) @31)

Now, using orthogonality of s and n, and (2), (14), (16), and (26), we get,
2 2
du 04 3°¢ 04 8¢ (32)

U5t ~ Bs0ids @ OnOtdn

and,

2 2 2 3
u- (u-Vu) = ‘9‘35[34"6?5 3¢3¢>]+3¢=[6’¢ 0%p 0 0% 55

9595 052 T Bn 9nds) T O Bs Gnds G dst T Bs Vo VAN

Finally, by combining (29)-(33) and using (17), we get the final expression for the second-

order coefficient in (10) as,

D¢ 5(;5{ 9%¢ 6«;63% 0 9*¢ b+
D12 Btas Os 0s2 ' On Onds
6¢> 0*¢ 0¢0°¢  0¢ ¢ 86
% 5i0n  On0st T 0s0nds [(

g{ 00846’+—é sin ﬁ}——Dp“

9¢

2+ ( )2]}
(34)

where %}—‘ is the total rate of change of the free surface atmospheric pressure in time.

2.5 Discussion of model assumptions and limitations

No approximations beyond potential flow theory have been made in the model. In particular,

unlike analytical or numerical expansion wave theories (see, Dean & Dalrymple '*), no small
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parameter, periodicity, or constant shape wave conditions, have been assumed. This makes
the model valid from deep to shallow water, and for arbitrary length waves.

The only limitations—inherent to potential flow theory—of this type of model are that
bottom friction and flow separation cannot be modelled, and that computations have to be
interrupted shortly after breaking of a wave first occurs. These limitations are discussed in

the following :

e Long wave theory shows bottom friction should attenuate long waves in shallow water,

whereas short waves should be relatively unaffected.

For solitary waves shoaling over gentle bottom slopes, however, experiments by Cam-
field & Street * (1969) showed, “bottom roughness has no measurable effect”. This
was later confirmed in other experiments by Grilli er al. * (1993). The likely reason
for this is, bottom friction only becomes significant when wave height is large and this

only occurs in a small region over the slope, just before the wave starts breaking.

For solitary waves running up a steep slope, Svendsen & Grilli 7 (1990) compared their
nonlinear computations to experiments and found frictional effects were negligible, In
this case, the distance of propagation over steep slopes was likely too small for friction
effects to significantly affect the waves.

Hence, bottom friction is not an important factor when either wave height and/or

distance of propagation are small.

e Flow separation over obstacles on the bottom is significant for steep obstacles (like
steps or rectangular bars) of large height to depth ratios, and for high waves (Grilli et
al. %77 1992).

Flow separation leads to an energy loss at the obstacle that reduces the wave crest

height downstream of the obstacle.
e When a wave starts overturning, a small horizontal jet forms in the highest region of
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the wave crest (Fig. 1). The jet curls up on itself and falls towards the free surface.
Breaking occurs when the tip of the falling jet impinges on the free surface, leading to a
local violation of continuity equation, manifesting itself by strongly unstable numerical
results. Hence, computations with the model are in essence limited to prior to the time
impact of a wave on the free surface first occurs. Because of potential flow theory
hypotheses, however, computationally accurate results may not be physically realistic

up to that stage. This is discussed below.

Dommermuth et al. ' (1988) compared wave profiles calculated using a fully nonlinear
potential model, to experimental results, for deep water overturning breakers. They
concluded that potential theory is valid up to the moment the tip of the breaker hits the

free surface (i.e., slightly further in time than in the situation illustrated in Fig. 1).

Skyner et al. ®* (1990) confirmed this conclusion, and compared computed and
measured velocities inside plunging breakers. The good agreement they found for the

velocities further confirmed the validity of potential flow theory.

For a train of solitary or periodic waves shoaling over a sloping beach, the front wave
of the train is also the steepest wave that first breaks in the shallower wate. Hence,
the model can be used to calculate detailed shoaling coefficients over the length of the
beach, up to the point the front wave breaks (breaker line). In this case, computations are
not greatly affected by the limitation of the model to the first breaking wave discussed
above (Grilli & Svendsen ¢ (1991), Otta et al. *° (1993), Grilli & Subramanya *
1993).

For irregular wave trains or complex bottom geometry, however, breaking may occur
almost anywhere in the shoaling region, due to nonlinear interaction between wave
components and between waves and bottom geometry. Hence, computations may have
to cease, and the above limitation reduces the utility of the model in its present form

for these situations.
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3 Wave generation in the model

3.1 Exact solitary waves

“Numerically exact” solitary wave solutions of the WBVP in water of constant depth A, can
be obtained using Tanaka’s ™ (1986) method— in the following, these solitary waves are
referred to as exact solitary waves—, and surface elevation and potential for such waves of
specified height can directly be prescribed in the model, as in (6) (notice, in all cases, initial
waves are being introduced far enough from lateral boundaries, U(t) = 0 is assumed).
Dimensionless variables, z', z',#' and ', will be used in the discussion of exact (and

later on of first-order) solitary waves,

! ! ! g !
a2 i = ¢ - 5
T = ha y o = 7 ) = F ; C \/—h— (3 )

in which ¢ denotes the (constant) wave celerity. The initial wave height H, is identical

for solitary waves, to the wave elevation above z = 0, and we denote, H' = ;‘H— the
non-dimensional wave height. The wave Froude number is defined as, F'* = ;ZT”.

Tanaka’s method solves Cauchy’s integral theorem in a frame of reference moving with
the celerity c. The crest velocity V. fully defines the wave in this frame, and the dimensionless
crest velocity is defined as, g, = % The original method by Tanaka was modified by Cooker
? (1990), so that the wave height H' could be prescribed as a parameter, instead of g..

Main steps in the calculation of exact solitary waves are as follows (superscripts denote

iteration numbers),
o An approximate crest velocity ¢¢ is estimated from the specified H', by interpolation
in a table of values of (H', q.) predetermined within the interval (H’=0.833197, ¢.=0)
for the highest possible wave (like found, e.g., in Tanaka ™ (1986)), to (H’=0,g.=1) for

a flat free surface.

o Free surface velocity is calculated using the original Tanaka’s method, with the ap-

proximate crest velocity ¢°.
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o Wave celerity ¢® and Froude number (F%)°, are calculated using the free surface
velocities, and the corresponding wave amplitude H' is obtained from Bernoulli’s

equation as,

- 1 : 2

A = 5[1- @11y (36)
Tanaka’s method involves an iterative solution of Cauchy’s theorem, using the Froude
number as the convergence parameter. The convergence criterion selected here is
10719 in relative value of F2. We found, 70 to 75 iterations were necessary to achieve

convergence within this accuracy.

e A better approximation for the crest velocity, g, is re-estimated from (H', H'®), in the

table of values (H', q.).

o And s0 on, iteratively, until AH' =| #ZE" | is found sufficiently small.

The convergence criterion selected here is AH' < 1075, Three to four iterations only

are found necessary to achieve convergence within this accuracy.

e When convergence is reached for both F'Z and H’, the wave shape is calculated from
free surface velocities. Normal velocity gff(m, t,) is also calculated on the free surface
at this stage (for being used as initial data in the first time step of computations with
the model), by noting that, for a constant shape wave,

9¢

-é-;(a:) = F'sinB(z) (37)

e Wave area above still water level, m, and kinetic and potential energy, (ex, ep), are
calculated for the resulting solitary wave, based on the following standard integrals
(W'=¢=1),

m = p | 2'dz
Ty
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L, ,0¢
€k = §P F!‘ﬁ%dr

& = %pfg* / " (38)

e The resulting wave is finally truncated left and right to points at which free surface

elevationn’ = e, H', with e, < 1, a pre-selected treshold.

The overall method is found to be quite computationally efficient. Convergence on both
F? and H' is reached, and all the wave data are calculated within less than 0.6s CPU time

(IBM-3090/300), using 80 points on the free surface to describe the wave.

3.2 Wave generation by a plane wavemaker
3.2.1 Introduction

A plane wavemaker is simulated on boundary I';1 (%), to generate waves in the model, the same
way as in most laboratory experiments. For selected incident waves, the wavemaker motion
x,(t) and velocity uy(x,(t),t) are obtained from first-order wave theory (i.e., Boussinesq
theory for long waves, and first-order Stokes theory for periodic short waves).

Waves generated this way propagate without change of form in a model based on
first-order theory equations. In the present full nonlinear model—or, for this respect, in a
laboratory wavetank—, however, such waves are not expected to correspond to permanent
form solutions. Goring %° (1978), for instance, found that solitary waves of small amplitude
(H' < 0.2) generated by a piston wavemaker in a wave flume, kept their shape constant
within a very small margin. For such small waves, the first-order wave profile is quite close
to an exact solitary wave. For steeper waves (H' > 0.2), however, Goring found, solitary
waves shed a tail of oscillation behind them as they propagated down the flume. Grilli &
Svendsen * 1990 also observed in their computations with the model, waves of significant

height generated by a wavemaker modulate and adjust their shape while propagating.
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Since computations solve the full equations, if one assumes friction to be small, the
computed wave train should also be expected closely to follow what actually happens in a
wave flume after generation of a wave motion by a wavemaker. For long waves, this was in
fact confirmed in many comparison of model results with laboratory experiments (Grilli &

Svendsen ** 1990, Grilli e al. 3262728 19921993, Svendsen & Grilli " 1990).

3.2.2 General boundary condition

Boundary conditions for % and 5%% can be expressed for any specified wavemaker motion

and velocity, based on (7) abd (13). The latter equation, for 86_:2;?;1. , includes a time derivative

with respect to the rigid body motion that needs to be developed with great care. This was

done by Cointe ® (1989), for the motion of a rigid body of arbitrary shape. In the case of a

plane rigid body like a wavemaker, Cointe’s expression simplifies into,
) 08, 0% o L TR
dton

=(a-n)+0[(x-s) (39)

a -3;] B Bnas(a %) 652(a B)
in which a denotes the position vector of points on the body surface, and € the angle
of rotation around x4, and dots denote absolute time derivatives with respect to the body
motion, %, defined as in (13).

Velocity and acceleration of points on the body boundary can be derived for specific

cases and used along with (39). If r, denotes the distance between point, & = (e, 3), and

Xg = (Zg, 24), We get,

a = z4+rgcosd

B = z;+r1ysinf (40)
Since 7, is constant with respect to any rigid body motion, we also have,
(;c = ﬂ:lg—f'gSin96=$.g"“(ﬁ_zg)9

B = z,+ryc0s08=2z,+(a—z,)0 (41)
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And,
a = zg—rgcosff —rysinfg
- B .
B = zg—rgsinfg +rgcosfp
or,

a = zg—(a—2g)0 —(B—2)0

- s Wi
B = s—(B-2)0 +(a—2,)d @2)

Motion and boundary conditions can now be expressed for two standard types of plane
wavemakers.

i) Piston wavemaker : This corresponds to a flat vertical plate (6 = %) moving
horizontally in depth h,, with, z,(t) and u,(z,(t), t) = z,(t), the specified horizontal piston
motion (stroke), and velocity, respectively. Along the wavemaker paddle, we have by

(40),(41),(42),

n = [—1,0], s = [0,1], g=0=0

a=x=[ap(t) 2,  G=up=[u),0l, &=, = [(t),0] @43)
Hence,

Amp—— G, e waceil

and from (7),(39), and (43), boundary conditions on the piston wavemaker boundary read,

9% _

on —up(t)

62(,6 . 62(;5

aon — ut) multlgs on Ty () (44)

in which g—i‘? = ‘Z—i‘?; and ﬁp = z,(t) denotes the specified wavemaker acceleration.
ii) Flap wavemaker : This corresponds to a flat plate, hinged at x, = (0, —h,) on the

bottom, and oscillating with an angle 6(t) € [%,0] (defined trigonometrically with respect
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to the bottom), with, z,(t) and u,(z,(t),t) = z,(t), the specified flap horizontal motion

(stroke) and velocity at z = 0, respectively. Along the wavemaker paddle, we have by (40),
n = [—sinf(t),cos 8(t)], s = [cosb,sinb], a =x,+rgs = [a(t), B(1)) (45)
in which ry is given by,
r4(t) = a(t) cos 0(t) + [B(t) + ho) sin 6(t) (46)

Now, by (41) and (42), with x, = X, = 0, we have,

a = uy(t) = [-B(t) - hoya(t)] 8 2
a = uyt) = [~B(t) — ho,alt)] 6(t) — [a(t), B(t) + o] 6 (t) (7)

Hence, by (45),(46),(47),

a-n = [at)cosd(t) + (B(t) + ho)sin 6(t) o(2)
ro(£)6(2)
a-n = [a(t)cosO(t)+ (B(t)+ ho)sin6(2)] 6(2)
b [=(B(E) + ho)cos 8(8) + at) sin (1)) 5 (2
r(£)0(2)
a-s = [~(B(t)+ ho)cosB(t) + a(t) sin 6(4)] 6(t)
= 0 (48)

I

since one can show, by simple geometric considerations, [—(8 4 ko) cos 8 + asin 8] = 0.

From (7),(39), and (48), boundary conditions on the flap wavemaker boundary read,

A OL0
i, = Te(t)6(t) +6(t)[re(t) 55 — 5] (49)
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Time derivatives of () can be expressed as a function of wavemaker stroke z,(t), and

of its time derivatives as,

ho

tan6(t) = m

or,

6(t) = arctan

zp(t)
z,(t)  ho
T+ ()2 2200
tan? 6(t) up(t)
1+ tan?0(t) h,

= —sin? e(t)“;—(t)

;Si(t) = —25in9(t)cosﬂ(t)u*;ft)é(t)_Sinzf)(t)‘l_;ﬂf}:(_t_)

Il

_ sin? e(t)[”;—?) _sin 2a(t)(“;—?))2] (50)

Now, with R(t) = ?%:’m we get,

sin6(t)

R(t) hg-i—:cg(t)
cosb(t) = wmp(t)\/h2 + z3(t)

sin20(t) = 2R(t)z,(t) (51)
and by (46),(50),(51),

o) = —R(t)u(t)

6(6) = —R(t) [in(t) - 2u§(t)‘”;—“)1

ro(t) = R(t)\/[h + (1) [(t) + B(t) + ho) (52)

in which [a(t), B(t)] are coordinates of points along the flap wavemaker.

24



3.2.3 Generation of a long wave by a piston wavemaker

In a long wave of permanent form over constant depth &,, we have at any instant,

/ 1 . A, (53)

in which ¢, is the propagation speed of the wave in a fixed frame of reference, 7(zx, t) is the
wave elevation above still water level, @, is the nonlinear mass flux averaged over a wave
period, and u., the speed of the current defined as the averaged particle velocity below wave
trough level.

For a first-order long wave, the right hand side of (53) simply reduces to cp, where ¢
is the speed of the wave relative to the water, so that (53) becomes the simpler expression
used, e.g. by Goring % (1978), for determining the motion required by a piston wavemaker
to generate a specified water surface elevation immediately in front of the wavemaker. Since

the piston motion creates a depth uniform horizontal velocity u,(z,(t), t), (53) reduces to,

wt) =5 (54)

which means, a surface elevation 7 can be generated by specifying the piston velocity u, as

defined above. In this case, corresponding horizontal piston motion z,(t) is given by,

_t_cen(z,T)
wlt) = [ gror s dr (55)

i) Generation of a “first-order” solitary wave by a piston wavemaker : In water
of depth h,, a first-order solitary wave elevation of amplitude H (i.e., a permanent wave

solution of Boussinesq equations) reads,
7'(z',t') = H'sech?[k(z’ — c't')] (56)

where k = ‘;H' and the celerity ¢ = /1 + H'. Substituting (56) into (55), while specifying
z' = z,(t) throughout the integration, gives the corresponding piston motion.
Since the solitary wave profile (56) extends to infinity in both directions, however, it is

necessary to truncate the wave at some distance from the origin, before it is used in the model.
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Goring *° introduced the significant horizontal extension 2’ of the wave, corresponding to a
reduction in wave elevation to, n' = €, H'. Using this, we get by (56),

e.H' = H'sech’[k)]

e+ = coshkX (57)

and,

&

¢=arcosh[e,"1]  with X = (58)

Now (see Abramowitz & Stegun ! (1965)),

arcoshz = log(z + (z* — 1)i]
arcosh[e, 1] = log{az“li[1+(1~5,)§]} (59)

Hence, since e, < 1,

Lo Tgg ¥~ (60)

2es

In the numerical applications, we usually use €, = 0.002, to which it corresponds £ ~ 3.80.

Wave generation by the piston wavemaker, hence, starts at t, = 0, with 2’ = =, + A".

Introducing this in the theoretical wave profile (56), and integrating (55) we then get,

!

z(t') = H? [tanh x(¢') 4+ tanh kA']  with  x(t') = k(c't' — z(t') — X') (61)

P
This transcendental equation in z;, is solved by Newton iterations for any given time t.
W
Wavemaker velocity, up(t') is then computed by (54), for 7'(z,(t'), ¢'), and u,(t') is

found by time derivation of it. We get,

1
'4) = H'(1+H)
up(t) (+H) cosh? x(t') + H'
' cosh? x(t') sinh x(¢')

u(t) = V3HI(1+H (62)

(cosh® x(t') + H')?

These values are introduced into (44), to define the boundary conditions on the wavemaker.
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Initial wavemaker velocity and acceleration at ¢!, = 0 are deduced as a function of H'

and €, by introducing (58), (61) into (62). Since we have z(t;) = 0, x(t,) = —{ and,
L )
coshx(t.) =23 %; sinh x(t.) = €. %[l —e)}

which, by (62), leads to,

1 Ez
wit) = H(+HP 17
¥y \/_ '3 1 (1_51)%
'up(to) - 3H2(1+H)6:(1—}——Ezﬂ'rﬁ (63)

which both are approximately proportional to e, for a given H'.

Hence, the initial wavemaker acceleration, an important parameter that must be kept
small in order to avoid initial mathematical singularity of the solution (see section 4.8),
is controlled by selecting the truncation parameter €, of specified solitary waves, small
enough. For e, = 0.002 and H'=0.5, for instance, we get uy(t,) ~ 0.00122/gd, and
u,(t,) ~ 0.00184g which is quite small.

ii) Generation of a “first-order” cnoidal wave by a piston wavemaker : First-order
cnoidal waves are periodic wave solutions of KdV or Boussinesq’s equations. In water of
constant depth, k! = 1, a cnoidal wave elevation of amplitude H', period 7", and length

L' = ¢'T' is given by (e.g. Dean and Dalrymple '* 1984),

7'(z',t') = H'{B + cnz[zL—}f(m' —c't'),m]} (64)

in which, L' = 4K (2;)2, the celerity ¢ = /T + AH' with A = A(m) = L(2—-m~-3%),

3H
and the dimensionless trough B = B(m) = L(1 —m — £).
In (64), cn is a Jacobian elliptic function of parameter m, and K = K(m), E = E(m)
denote complete elliptic integrals of the 1st and 2nd kind, respectively (for details and
definitions, see Abramowitz & Stegun ).
Wave generation starts for z;, = ¢' = 0, ata given initial phase z' = A’ of the wave profile

(64). Setting ¢’ = m; + A'in (64), and integrating (55), we get the following transcendental

27



expression for z;,(#'), which is solved by Newton iterations,

i B 2 e+ X — ) 65)

zp(x(t)) = —H'{_(x(t) Xo) — ﬁ[E(x(f),m) = E(x0,m)]} (66)

in which x, = 25X, and E(x(t),m) is the incomplete elliptic integral of the 1st kind.
Finally, u,(¢') and ﬁ;(t’) are obtained by derivation and introduced into (44), which defines
the boundary conditions at the wavemaker.

Initial acceleration ﬁ;(t;) of the wavemaker varies with the initial phase A’, and hence
can be made sufficiently small by adjusting this phase. For A\’ = 0, for instance, initial
acceleration is zero. For cnoidal waves, however, this also corresponds to maximum crest
elevation and velocity. Hence, the origin is shifted to a point with zero water elevation and

velocity, by selecting,
L' -y
X = ﬁ[ﬂ{ —cn™'v/—B] + z,(0) (67)

where z1,(0) is obtained from (66) for x = 0. Doing so, the initial acceleration is no longer
zero but, for long waves, it is still quite small compared to gravity (O(4¢’ KE ))

For a cnoidal wave of height H' = 0.2, and period 7" = 25, which is close to the upper
limit of long wave theory, for instance, we get L' = 25.99, ¢ = 1.040 and K = 5.035,
and Figure 3 shows the free surface elevation and paddle motion calculated with these data.

Corresponding initial acceleration is about 0.03g.

3.24 Generation of a sum of periodic sine waves by a flap wavemaker

A sum of sine waves can be generated by a flap wavemaker in water of depth A,, by specifying
boundary conditions, based on first-order Stokes theory, as in laboratory experiments. Due to
nonlinearities, however, it is well known, free second and higher-order harmonics are created
when waves of finite amplitude propagate down a tank (see, e.g., Mei 53 1983). This will be

illustrated in the applications.

28



Figure 3: Cnoidal wave elevation and paddle motion as a function of time #', for H' = 0.2,

T = 25, with (—), Z,(- - - -), up(- — -) and up(. — .).

The paddle stroke z,,(%) is specified as the sum S(t) of n sine functions of frequency 27w,
phase p;, and amplitudes A;. Amplitudes A; are related, in a linear sense, to the corresponding
wave component amplitudes to be generated, a;, by a transfer function 7 (w;, h,) that can be
derived from wavemaker theory (see, e.g., Dean & Dalrymple '* 1984).

Furthermore, a smooth start with small and bounded initial acceleration of the paddle is
ensured by multiplying z,(t), by a damping function D(t), varying from 0 to (1 — €.) over
a given time 2t,,. For e, < 1, the damping function gives a smooth transition from 0 to

~ S(t), over a time 2t,,. We get,

z,(t) = S(t)D(t) with Sit)=>_ % A; [1—cos(wit + ¢i)]
=1
: 4 sinh? k;h,
a; = A; T(w;i, ho) with T (ki(w;, ho), o) = 2%id 1 sinh 2k:h, (68)

with H; = 2a;, the wave height (predicted by linear wave theory), and k;(w;, ko), the
wavenumber of a given sine wave component to be generated. By the linear dispersion

relation, we have,

[35]

bodonlikih, = “_;-. (69)
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Now, by analogy with the smooth initial paddle motion, obtained above for the generation
of solitary waves by a piston wavemaker (61), the damping function is selected as,

14

2 J (70)

D(t) = —2= [tanh p(t — t.,) +

with g, a damping coefficient defined from the condition that D(0) = 0 as,

1
21,

p= loge, (71)

in which use has been made of the definition (see Abramowitz & Stegun '),

14z

l—2

arctanhz = %log (72)

One can easily check using (72), that (70)-(71) also satisfy D(2t.,) = 1 — €., which allows

to select the rate of damping corresponding to given values of t., and €, : fore, = 0.001,

~ 3.454

for instance, we get p o~ 5=,
The time 2t., is selected as an integer multiple N,, of the average wave period of the
wave components T defined as,

t., = N;T and T = %Z 2% (73)

=1 w;

By time derivation, we now get the paddle velocity and acceleration at z = 0, from

(68)-(70), as,

uy(t) = SD+SD and u,(t) = SD +2DS + SD
. L | a8 n o1
St) = ZiAiwi sin (wit + ¢;),  S(t) = ZEA,‘w‘-zcos(u,-t-{-cp‘-)

1=1 =1

" W l + £, e 3
t) = C )= —p (1 +e,
D( ) 7) COShZ #(t - t:‘)! D( ) H ( + € )

tanh p(t — t.,)
cosh? u(t — t.,)

(74)

Hence, boundary conditions (49),(52) can be defined on the wavemaker.
The wavemaker velocity and acceleration at initial time ¢, = 0 can also be obtained
from (74), by noting D(t,) = 0 as,

1
1+e,

D(t,) = 2ue, and D(to) = 4;35,;— (75)
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For e, = 0.001, we get by (75), b(to) ~ (0.00204 and ’b(t,,) = 2,u.‘1')(to). This leads by (74)

to,
up(to) = S(to)D(to) and Up(to) ~ 2D(t.)(5(to) + pS) (76)

If we further require S(t,) = 0, we get by (76), up(t,) ~ 0 and uy(to) = 0.0040;1.5‘(%), with

p~ 1 fort,, ~ 3.454. The acceleration is thus rather small at ¢ = 2,.

3.3 Wave generation by an internal line of sources

Using the Boundary Integral Equation representation introduced in section 4.3, based on free

space Green’s function, Poisson equation (8) transforms into,

a)px) = [ 1220060 x) - 902052 ar)
LR CRECEDELCY (77)

which can itself be solved by the Boundary Element Method (BEM) introduced in section
4.4 for Laplace’s equation. Domain integrals, however, have to be calculated to account for
the source field b(x, t) contribution in (77).

Using a vertical line of sources with linear density for wave generation, g(s(x),t) (s(x)
being measured along the line I'y), the source contribution in (77) reduces to,

fn b(x, )G(x, x;) d = jr a(s(x),1)6(x, %) dT (78)

In two dimensions, a line of sources with continuously varying strength creates a velocity
normal to the line, equal to 1q. Thus, specification of the strength of the source distribution
q is straight-forward if particle velocities are known along the line, for the waves to be
generated.

In most cases, it is sufficient to specify the source strength only at points along the line

I';. Doing so, N, concentrated sources of strength B,(t) are specified at these nodes. For
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a vertical source line located at z = z,, and divided into N, segments from bottom to free

surface, we thus have,

s ho
B,(t) = 2%%(:&,,3,&) g 10000 (79)

where Ty (z,, 2,, t) represents the mean horizontal velocity of the wave in the s-th segment,
and = n(z,,t) the wave elevation above the source line (a stretching has been applied to

the line to account for the wave elevation above the line). In this case, also,
N,
q(s(x),t) =) By(t)6(x — xs) CE ) — (80)
a=1

where §(x — x) is the Dirac function at point Xs. Equation (78) simplifies into,

N,
/n b(x, t)G(x, x1)dQ = 3 B,(t) fn G(x, x1)6(x — xs) d

s=1
and by the sifting property of the Dirac function,

N,

fn b(x, 8)G(x, %) d2 = 3 B,(t)G(x,, X1) 81)

s=1

Hence, this method of generation makes it possible to model any wave motion for which
particle velocity distribution is given along a chosen bottom-to-surface line. Two such cases

are detailed in the following.

3.3.1 “Second-order” solitary waves

For a solitary wave whose first-order profile is given by (56), the horizontal velocity can
be deduced as a function of depth from Boussinesq’s theory (see Mei **). The horizontal
velocity is constant over depth, to the first order in H’. Identical developments can be made
up to the 2nd-order accuracy, and we get,

a2, 8) = Dsech(1) 1+ (= + hoF(2tankx(2) + sinh* x()]  (82)

in which x(t) is defined as in (61), and the solitary wave has been limited to its significant

part 2\ defined as in (58).



In dimensionless form, (82) reads,
H.f
ul (2], 2, t) = Eisechzx(t’) (14 (k*(2' + 1)*(2tanh?® x(¢') + sinh?® x(¢"))] (83)

Equation (82) could be extended to higher-order.
Notice, in the implementation of this procedure in the model, source strengths defined
based on (81) and (82) correspond to the Poisson equation (8) for ¢. Corresponding devel-

opments have been made for the equation for &2, using 2%« instead of wu,.

3.3.2 “Second-order” periodic waves

For a wave of period T' and height H, the horizontal velocity calculated from Stokes theory

in water of depth ho, up to second-order in &, reads (see Dean & Dalrymple '),
p p E

Ecosh k(ho + z)
2¢  coshkh,
3H2wk cosh 2k(h, + z)

- T T kR cos 2(kz, — wt) (84)

in which, w = %—,‘5, is the wave circular frequency, ¢ = ¢ the wave celerity, and the wavenum-

Uil D52 2) cos (kz, — wt)

ber k is given by the linear dispersion relation (69).
To avoid initial singularity during a “cold start”, the velocity (83) is multiplied by a

damping function of the form,
wt
Dit)=1- e 85
(t)=1-exp(-2) (85)

in which g, is a damping coefficient defined from the condition that the damping reach, 1 —¢,,
after a specified number N, of wave periods, i.e., D(N,T) = 1 — ¢, or,

B 2N,
loge,

For N,, = 3, for instance, we get p = 1 for e, = 0.0025, and p = 0.65 for g, = 0.0001.

b= (86)

Notice, again, source strengths defined by (81) and (84) correspond to the Poisson

equation for ¢. Corresponding developments have been made for the equation for %%. using

Qfﬁ“i instead of wu,,.



4 Numerical Model

4.1 General principle

Taylor series (9) and (10) are truncated to second-order in At (N = 2), and coefficients (14),
(27), (28) and (34) are expressed as function of values of {qﬁ, e Ba , %c% E‘?, ;3%, ;3‘?;‘%, aa—;%,

6 58y pa, } along the free surface. Potential ¢ and their n-derivatives, are directly

i
obtained from the numerical solution of two Laplace’s equations, for ¢ and %‘f, expressed in
the same domain geometry at time ¢.

The s-derivatives of field variables are computed along the free surface, using a 4th-
order “sliding” polynomial interpolation on the boundary, and by differentiating inside each
polynomial.

At the intersection of the free surface with a moving wavemaker boundary, however,
accuracy of the s-derivatives is not in general sufficient, and special relationships have been

developed by Grilli & Svendsen ¥ (“compatibility conditions™) for improving the accuracy

at corners on the free surface. These are discussed below.

4.2 Time stepping method

When initial conditions are known on the free surface at a given time, ¢, i.e., the position
r(t) of the free surface boundary T's(t) and the potential 4, its normal gradient 22 and time
derivatives —Q and %ﬂ along I'4(¢), the free surface position and potential can be updated
to a subsequent time, t + At, using Taylor series (9) and (10). This only requires calculating
s-derivatives of the field variables along the free surface (see details about that in a subsection
below).
Hence, assuming {¢, 2¢ , 9¢  2¢ ¢ 06 24 24 g 96 4 Dpe} are known or

calculated at time ¢ on the free surface I's(¢), position r and potential ¢ on the free surface



are updated to time ¢ + At, up to second-order accuracy in At, as,
Dr (At)? D*r
it 7 D
D¢ Do (At)2 D*¢

Dt 2 Di?

T(t + At) = r(t) + At (t) + O[(At)’] (87)

F(x(t+ At),t+ At) = ¢(t) + At—— D% 1)+ ofany (88)

with the coefficients in (87),(88) given by (14), (27), (28) and (34), and s and n given by
(18),(19) as a function of .

Values of ¢ or g—ﬁ and the geometry can be specified on lateral boundaries at time ¢ + At,
depending on the specific problem (motion and gﬁ 5‘%‘—;‘ for instance, will be calculated by
(44) along a piston wavemaker, and % is invariably zero along solid boundaries, by (5)).

Hence, well posed boundary values can be specified at t 4+ At, for ¢ or g—ﬁ , along
the whole boundary I'(¢ + At), and a “first” Laplace problem can be defined with these,
and solved to calculate ¢ or gﬁ (whichever is unknown) along I' (the solution of Laplace’s
equation by a Boundary Integral equation is discussed later).

Now, 2¢ can be specified on the free surface using Bernoulli’s equation (12), as,

T at
1,04

¢ 1
St AY) =—3l(5;

)2 ( )2] = P - g92(r) on T's(t) (89)

in which all right hand side variables and geometry are known at time ¢ + At. Depending

9%

3¢ can now similarly be

on the type of conditions along the rest of the boundary, 5‘%"—“ or
specified and, hence, well posed boundary values for solving a Laplace’s equation for —é can
be determined and a “second” Laplace problem be solved.

Notice, since both the above Laplace problems are expressed in the same boundary
geometry, I'(¢ + At), the extra computational effort required to solve the second problem
will be very small. Therefore at this stage, geometry of the boundary and values of ¢, g‘é
—‘é and Eaﬁ along the boundary are known for time ¢ 4+ At, and the whole procedure can be
applied again.

The above operations are globally referred to as “time stepping” and the above procedure

corresponds to time ¢, with the time step being At.
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4.3 Transformation of Laplace’s equations into BIE’s

Both Laplace problems for ¢ and %f can be transformed into Boundary Integral Equations
(BIE), using third Green’s identity, and the free space Green’s function G’ being defined such

as to satisfy,
ViG(x,x1) + 6(x,x1) = 0 (90)

in which &(x, x;) represents a Dirac function at point x; of domain €2. With definition (90),

third Green’s identity for the potential ¢ reads,
0¢ aG
#x) = [ 1y [ G000 506) = $0x) 5706, 3) | dT(x) 1)

in which the “sifting” property of the Dirac function has been used to eliminate the domain
integral.

In two-dimensions, solution of (90) yields (e.g., Brebbia ?)
1
G(x,x;) = ~he log| x —x; | (92)

The function G(x,x;), also called the fundamental solution of Laplace’s equation, has a
logarithmic singularity when point x approaches point x;.

To derive a BIE only involving values of the field variables on the boundary, however,
it is necessary, in (91), to select points x; on boundary I' over which functions in the right
hand side of (91) are integrated. It follows that some of the integrals in (91) become strongly
singular, and the limiting process by which x; is made to approach the boundary must be
carried out with great care.

Such an analysis can be found in many references dealing with BIE problems (e.g.,
Brebbia %), and can be shown to introduce “jumps” in the potential value when point x;
moves from inside the domain to the boundary and from the boundary to outside the domain.

Values of these “jumps” are only function of boundary geometry.
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Based on the above discussion, final singular BIE’s corresponding to Laplace problems
for ¢ and %? read,

a()dx) = [ [5G0 %) - $) 5 ()] ()
a5 () = [ [ (0G0 = () 5 (5, 5] dT () 3

in which x = (z,z) and x; = (i, 2) are points on boundary I' and a(x;) is a geometric
coefficient only function of the angle of the boundary at point x;. This coefficient actually

represents the “jumps” in potential mentioned above. Values of a(x;) are discussed later.

4.4 Discretization of the Boundary Integral Equations
44.1 Principle

The Boundary Element method (BEM) (Brebbia 2) is used for the discretization required for
the numerical solution of the two BIE’s (93). Collocation nodes x; are distributed along the
entire boundary to describe the variation of boundary geometry as well as boundary conditions
and the unknown functions of the problem. Between collocation nodes, the variation of all
quantities is described by means of shape functions or of splines, and for this purpose, the
boundary is divided into elements each of which contains two or more nodes. Details of
these procedure are given in a following section.

Each integral in the BEM is transformed into a sum of integrals over each boundary
element. Non-singular integrals are calculated by standard Gauss quadrature rules. A
kernel transformation is applied to the weakly singular integrals, which are then integrated
by a numerical quadrature exact for the logarithmic singularity. An adaptive numerical
integration is used for improving the accuracy of regular integrations near corners and other
locations, like the overturning jet in breakers or at the upper part of a gentle slope, where

elements on different parts of the boundary are close to each other.
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A double node technique (Brebbia %) is used in combination with specific continuity and
compatibility relationships to utilize and make compatible all information given in corners by
the boundary conditions. Corner double nodes represent two nodes of identical coordinates
with different nodal values of the field variables. Hence, two algebraic BIE’s are expressed
for each double node, which, however, are not independent. Continuity conditions express
continuity of ¢ or %{3, for both nodes of the double nodes, and compatibility conditions

express uniqueness of the velocity vector at corners, based on the values of %‘:3 and gf on

both intersecting boundaries, i.e., again, for both nodes of the double nodes.

4.4.2 Definition of boundary value problems

Nr points x; are selected on boundary I' to define a spatial discretization. On the free surface
I'; these points represent both actual water particles whose trajectory is followed in time
by the Eulerian-Lagrangian time stepping, and collocation nodes at which BIE’s (93) are
expressed.

With u the unknown field variable (either ¢ or %% ), boundary conditions prescribe either

u (Dirichlet) or % (Neuman) on portions of the boundary. Hence, each BIE (93) reads, for

each collocationnode x; (I = 1,..., Np),
Ou oG
a(aulx) = [ 15200606 x0) — ulx) 5 (6 x)] dr(x)
0 oG
+ 50600 x0) = w0 5 (6, x)) ) ©4)

in which G(x, x;) is the free space Green’s function (92) corresponding to Laplace’s equation

and % represents its normal derivative. In two dimensions we get, by (92),

1
G(x,x;) = ~% logm

6G( )_ irl-n
an X = Ty i
r;=[r;|,r;=x—x; (95)



in which 7, is the distance from the “integration point” x to the collocation point x; on the
boundary I'. T, represents all parts of the boundary on which % is imposed (“Neuman
boundary”), and I'y all parts on which % is imposed (“Dirichlet boundary”). Depending on
the case these, for instance read :

For a generation of waves by a wavemaker,
I.=TauUlnUly Fa=Ty (96)

For a space periodic wave train with periodicity conditions prescribed on lateral bound-

aries,
I'.=TaUT, I‘JEP;UFQ (97)

Coefficients (x;) can be expressed as functions of the interior angle ; of the boundary at

x; (Brebbia ?) as,

a(xi) = 7 (98)

4.4.3 Discretization of BIE’s using boundary elements

i) Principles : The Boundary Element Method (BEM) is used to describe the variation of both
geometry and field variables along the boundary (interpolation), and hence discretize and
solve the BIE’s. The interpolation between nodes on the boundary is based on higher-order
isoparametric boundary elements, using shape functions (1st to 4th-order) for both geometry
and field variables, and on quasi-cubic spline elements for which the interpolation of field
variables is based on 1st-order shape functions, and the interpolation of the geometry is based
on cubic parametric splines.

Quasi-spline elements have been implemented to ensure continuity of the free surface

slope. They are used, when the free surface curvature is large, in combination with isopara-



metric elements on the rest of the boundary . Quasi-spline elements require small extra
computational effort, for enforcing the inter-element continuity of the derivatives.

As in the Finite Element Method, both isoparametric and quasi-spline boundary elements
are mapped onto reference elements, before integrals are calculated in the BEM, and the
Jacobian of the mapping function is determined analytically as a function of the coordinates
of the nodes of the discretization, and of the interpolation functions.

ii) Isoparametric boundary elements : To compute integrals in (94), the boundary is
divided into Mp elements, each of them having m nodes. Within the k-th element corre-
sponding to boundary section I'¥ both the boundary geometry and the field variables (u,2%)
are discretized using identical sets of higher-order shape functions defined as polynomials of
degree (m — 1) in x whose value is 1 at point j of element k, and 0 at all other points 3 # j.
These shape functions are noted N3 ~'(x), forj = 1,...,m,and k = 1,..., Mr.

The use of higher-order shape functions for the discretization increases the rate at which
the approximate BEM solution converges to the exact (unknown) solution of the BIE, when
the normalized size h (spatial step) of the discretization (i.e., the average distance between
two nodes on the boundary is reduced). It can be shown, this rate is roughly proportional to
h™ for an m-node element.

For convenience, the set of shape functions is analytically defined on a simple reference
element of boundary T, onto which each element of the BEM discretization of boundary I'¥
is mapped by a transformation of coordinates. The intrinsic coordinate on this isoparametric
reference element is ¢ € [—1, 1]. Boundary geometry x* and field variables (u*, %) over
the k-th element corresponding to boundary section I'* are represented as function of their

auk . . _p
nodal values (x¥, U¥,—<), in which 7 numbers the nodes within each element I and of the

TWwith full spline elements, cubic splines would also be used for the field functions. This, however, would
require knowledge of the derivatives of these functions at the extremities of the free surface which may be hard

to accurately obtain in some cases.
It is worthwhile pointing out, since all variables— geometry or field functions— are defined by a piecewise

interpolation within each element, their nodal values (i.e. values at the nodes of the discretization) can either
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shape functions set N*~'(¢), withj = 1,...,m as,
x5(€) = NjTU(E)x
ouF .Uk
wk(e) = NPUOUE: SO =NP'(© 55 i=1..,monTe  (99)

Notice, from now on, the summation convention will be used for repeated subscripts.
Analytic expressions are derived for the shape function coefficients, by expressing that,
at nodes x* (7 = 1,...,m), u*(¢) in (99) is equal to nodal value U¥, or,
uh(€(xt)) = NP (&) U = UF
or

6;UF = UF

where &;; is the Kronecker symbol. Since NJ*~'(¢) has been defined as a polynomial of
degree m — 1 in &, this leads, for the i-th node &; of an m-node reference element, to the

equation,
NP~Y(&) = &5

&i=(2i—-m—1)/(m—1); ij=1,...,m onT (100)

be referred to with indices varying within each element k (local definition), or with indices varying in the
global boundary discretization (global definition). For instance, UJ?‘ represents the nodal value of the potential
at node 7 of element k and also represents the potential at, say, node [ of the global discretization. The local
numbering will usually be used when dealing with the representation within an element k (i.e., superscript
:element, subscript: node number within element) and the global numbering will be used when dealing with the
“assembled” representation, i.e., the final system matrix of the discretized problem (i.e., subscript: node number
in the global discretization), unless otherwise mentioned. It is implicit that there is a functional correspondence
between local and global numbering, depending on the degree (m — 1) and position on the boundary of each

element k.
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Solving (100) for a given m yields the corresponding polynomial coefficients. For example,

for a cubic reference element, we get, 77 (m = 4),
1 9
NI(E) = (1= )08 ~ 1), N3(E) = 21— €)1 +36)

N3(€) = o1~ £)(1-36) , N}(€) = 1c(1+6)(9¢ — 1) (101

iii) Quasi-spline boundary elements : Cubic spline elements have been used in other
studies using the BEM, and have been found accurate, although computationally time con-
suming. Spline elements, however, require specification of tangential derivatives of both
geometry and field variables at extremities of the free surface. For periodic wave problems,
this can be avoided using extended periodicity conditions. For non-periodic problems in
the physical space, however, tangential derivatives are not directly known and have to be
independently calculated.

Based on the observation, for wave problems, higher-order continuity is somewhat more
important for the boundary geometry than for the field variables, quasi-spline elements have
been introduced (see, e.g., Longuet-Higgins & Cokelet *2, Dommermuth & Yue ', and Grilli
& Svendsen **37 (1989,1990)) for which geometry is modeled by 2-node cubic splines and
field variables by linear shape functions. Quasi-spline elements turn out to be rather accurate
and efficient and provide the additional advantage against full spline elements, that only free
surface slopes have to be specified at corners.

To be able to model breaking waves, the spline approximation of the geometry must
account for a multi-valued free surface. For that purpose, the point index 7 (also used in
Longuet-Higgins & Cokelet *?) is adopted as a parameter, whose value is equal to the index
of the free surface nodes, at the position of these nodes (i.e., 1 to Ny where Ny is the total
number of free surface nodes). Instead of defining the splines in polar coordinates, however,

regular Cartesian coordinates are used to define two single-valued spline approximations of

ITgee, e.g., Brebbia 2, for other orders of shape functions.
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the free surface : ¢ = z(7) and z = z(7) (where r = (z, z) represents a free surface point).

Hence, at the free surface nodes,
z; = z(7) g z1 = z(7) i D (102)

Two standard cubic spline analyses are performed on the free surface, for the points
(z1,m) and (z;, 7). In such analyses, the slope must be specified at each extremity of the
approximated curve. In this case, j—ﬁ and j—: must be specified at both extremities of the free
surface, and are estimated based on cubic polynomials fitted to the 4 first and 4 last nodes
of the free surface. In some particular cases, however, the slope at one extremity of the free
surface can be deduced from the physics of the problem and imposed explicitly as a boundary
condition to the geomeltry.

The spline analyses lead to two tridiagonal matrices, that are solved by LU decomposition
(operations of O(Ny)), to provide ('f—:}, ‘%{») at each node of the free surface (I = 1, ..., Np).

Hence, for the k-th quasi-spline element of the free surface, we get,

x*(r) = (k+1—=7)xF+ (7 — k)x:

A7), ., d’x}  B(T), 1 dox)
ERGa Cab i S

A(t)=k+1—71 : B(r)=7-k
O —
on on’

Notice that for any variable V, V{¥ represents the value of V' at the first node of element k,

_+_

u*(&) = N} (OUF , ——(¢) = N, (¢) j=1,2 onT¢ (103)

and VF at the second node. Because quasi-spline elements are 2-node elements, however,
this is also the same as (Vi, Vi41), in the global numbering of the free surface nodes, defined
from 1 to Np.

The reference element for the quasi-spline element, is a 2-node element with the intrinsic
coordinate ¢ € [-1,+1] and,

d@:k+§%i k=1,...,M; (104)

where My = Ny — 1 is the number of quasi-spline elements on the free surface.
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Figure 4: Sketch for the transformation of coordinates on the boundary.

4.4.4 Transformation of coordinates, high order s-derivatives

i) Isoparametric boundary elements :

e Jacobian and normal vector :
All the BEM integrals are computed on a reference element Iy onto which each
element on the actual boundary T'* is mapped by a transformation of coordinates. The
transformation from the k-th boundary element of ' : T'* to the reference element
I'e = ¢ € [~1, 1] (Figure 4), is described by the Jacobian J*(¢) of the transformation
given, by definition, by,

7o =20 =Gy + G (105

and becomes by (99),

de -1
E

(©)ah) + (W— (€)2byt

JH(€) = [(
i=1l,...,m;k=1,...,Mp on T (106)

In the same way, the outward normal vector is given by,

nk(¢) = (- sinB%(€), cos B*(€)) (107)
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which becomes by (19), the discretization (99) and (106),

1 8zF  Oz*
n*(¢) = (E)[ T 3$] (108)
AN dN"‘"
“’“(E):Jkl(e)[‘ a5 (O — g (0)a]] (109)

which also provides, together with (107), the expression of (cos B*(¢), sin B%(¢)),

within each element.

e s-derivatives :
. k - - P QQ Qé =
Using v*(£) to denote either of the variables ¢, 32 or 3% over the k-th element, and

I/;-‘“ to represent their nodal values, we have,

oo ... o, . 0
E(E) = 3—5(5)5‘3"

or, by (99), (105),

(€) (110)

ok dNT!
On the same way, we get,
0%k KA 31} 1 8. 1 ok
1 -1 9J* 1 9%*
i} J*(s){(ﬂ(s))z oc O+ Jagy oe )
62,01: 1 dZN;n—l 1 de ~1
o7 &) = rapt e O T 9
m—1
o Qe Out PO (1)
Now, applying (112) to z and z, 22 in (22) is easily expressed over the k-th element
as,
k m—1
% € =1 J,:(IE))Z dzfgz (€)[cos B*(€)z — sin B*(€)al] (113)

Therefore, various s-derivatives in (18)-(34) can be calculated from (111)-(113).
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ii) Quasi-spline boundary elements :

e Jacobian and normal vector :
The Jacobian of the transformation from the cartesian quasi-spline element I'¥, defined
on the nodes (k, k + 1) of the free surface, to reference element I'y = £ € [—1, 1] is,
by (103)-(105),

Ho =S @ win FO=3 (114)
Hence by (106),
7€) = S (e + (Z (e} (115)

The derivatives with respect to 7 of z and z are deduced from the sections of the two
spline approximations (103) corresponding to the k-th quasi-spline boundary element

of the free surface as,

dx* 3 —1d° B%(r —1d*x
i = = (T(é)) : = = (60) =118

where A, B are given in (103), and 7 as a function of £ is given in (104). Notice nodal

values have been written in their global numbering (subscript k).

The outward normal vector and (cos 8%, sin 8*) inside the k-th element are again

defined by (111), (108). Now, with (114), we get,

zlc k
2(6) = sy 1= g ) G (117)

where J*(¢) is given by (115), and the other terms by (116), (104).
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e s-derivatives :

Equations (110), (112) are valid which, with m = 2 and (114) gives,

gt 1 dNAO) .,
08 = FH e v
o*vk B 1 dN;(¢) " d*z*
02 (6) - w4(.]k(£))3 dE [COSﬂ (T(f))d—rf(T(E))
zk
+sin B (r(O) S5 (Y} (118)

The derivatives with respect to 7 of z and z are deduced from (116) as,

o (€)= A (€)% + B(r(6)

dzxk—H

(119)

where, again, A, B are given in (103), as well as 7 as a function of £ (104).

4.4.5 Discretized system of equations

The BIE (94), discretized element by element, using (99) or (103), becomes a sum of
integrals over each Cartesian element, for each collocation node, I = 1, ..., Nr (notice local
numbering within elements is used at first). Boundary conditions % on I'g (Dirichlet boundary

: total Np, nodes, Mr, elements), dl'ld » on I',, (Neuman boundary : total Nr, nodes, Mr,

elements) are also discretized for consistency, the same way as v and g—:. We get,

Mr,,
a(x)Ui + Z{[f,,“ P (x) 9 (%, ) AT ()] U2}
My, Uk
- S V0G0 %) G012
i aU¥

N;“_ x)G(x,x;)dI‘(x)]——’}
it NT x)—(x x;)dF(x)]U"}
Transformation of coordinates is then performed within each element, for calculating the

integrals. Global numbering is adopted for the nodal values, as well as for the shape
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functions, with s the global numbering for nodes on boundary section I'g, and p for nodes on
I. We get,

My,

a(a)li + SALL NPH(OF 0 (€, x)IH(E) Ty

k=1 ¢
Mr,

- A )G (E),3)4(E) de)
= LA, Moe (), ) 4(E) )

Mp,

- XAl A 95 (A (), x0)4(€) eI}

}

in which J* is the Jacobian of the transformation of element I'* into T'¢ defined in the previous
section. In matrix form, this leads to a linear algebraic system of equations for the unknown
fields u or “ on the boundary, in which each coefficient of the system matrix is one of the

above sums of integrals. We get,
ou, U,
[C;p + Kn ]U th an Kdlp B [C;, + Km.]U (120)

with the following definitions,

. oG

K, = ety — *¢)d

s = LA NP7, 0 x0I € de} = z:

My

Ki; = Y 4[ NPTUOGEH(€),x)I*(€)dé} = zrd,
k=1 “Le

l,j = 1,...,Np . e 1,...,di yp= l,...,an : Np=Nr‘d+Nr‘N (121)

in which j is now a global index representing s or p. This can also be written in condensed

form as,
KuX; =6 (122)

in which Ky;, X;, and £; represent the system matrix, unknown and load vectors, respectively.
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In (120), c;; represents a diagonal matrix whose diagonal coefficients ¢y are equivalent to
the geometric coefficients a(x;) in (94). For a smooth boundary, these diagonal coefficients
have the values 1, 1/2 or 0 when x; represents points inside the domain 2 (6; = 27 in (98)), on
the boundary " (6; = =), or outside  (f; = 0), respectively. When there are discontinuities
on the boundary (corners), coefficients ¢;; must be calculated by a direct numerical evaluation
of the interior angles 6;.

In the present model, however, these coefficients are deduced by the “rigid mode”
technique (Brebbia 2) which does not require calculation of angles, and also leads to a
somewhat more accurate solution of the final system. This corresponds to considering a
particular Dirichlet problem in which a uniform field u is applied on the whole boundary

I' = T'4. In such a case, the normal gradients g—: must vanish at each node. Hence by (120),
[C;j + ij]ﬁj = (123)
or by isolating the diagonal terms of (123), we have for j,l = 1,..., Nr,

[en + Kny]l = — D Kn, (124)
3(#1)

which provides the diagonal term of a row of (123), as minus the sum of its off-diagonal
coefficients. The comparison of numerical results in which the ¢ were directly computed or
deduced from (124) showed, in our case, a decrease of the system matrix condition number

of more than one order of magnitude.

4.5 Numerical integration of matrix terms in the discretized BIE’s
4.5.1 Principles

The regular integrals in (93), or its discretized form (120),(121), are computed by Gaus-
sian quadrature using up to ten Gauss points per interval between the nodes, and a kernel
transformation is applied to the singular integrals which are then computed by a Gauss-like

quadrature dealing with the logarithmic singularity.
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An adaptive numerical integration method is used for improving the accuracy of the
regular integrations for very curved elements and for the elements close to the corners of the
fluid domain. This method is based on a binary subdivision of the element to integrate, while
keeping the number of integration points constant within each subdivision. Subdivision is
performed until the intercept angle from which subdivisions are seen from the considered
collocation point outside the element falls under a pre-set value. The same technique is also
used when the distance between two boundaries of the fluid domain tends to vanish (e.g.
during wave overturning or rundown on a slope). Almost arbitrary accuracy can be achieved
in the numerical integrations using this method (i.e., about 15 significant digits in computer

double precision).

4.5.2 Element by element numerical integration

Due to the higher-order shape functions and spline interpolation functions, the integrals in
(121) cannot be calculated analytically within each element. When the collocation node !
doesn’t belong to the integrated element k, the integrals are regular and a standard Gauss-
Legendre quadrature is used, with up to 10 integration points for each interval between two
nodes.

When [ does belong to the element k, r; tends to zero at one of the nodes of the
element, which leads to a weak logarithmic singularity of G, in the integrand of Ifflj (see
(95)). Although this integral is not singular, large variations of the integrand occur for I,’,fu.,
when [ belongs to an element k with high curvature (like in the crest of a wave approaching
breaking). (it can be shown : ¢ — L8 when r; — 0). This leads to a loss of accuracy in
its regular integration.

Hence special techniques have been developed for computing both I, flj and I:u'

i) Singular integrals for I"fu, : A kernel transformation developed for higher-order
elements is applied to the weakly singular I(’;U which are then integrated by a numerical

quadrature exact for the logarithmic singularity. In the intervals where r; — (), we extract
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the singularity by adding and subtracting log | ¢ — & |. For each of the integrals Iffu written

in short as,

Iy = [ GOHO )€ e, £5E) = Ny (@)I*@)

we get after some transformations,

1 2ry(€)

Ly = =37 ), logra—g 1) + talogbn ff(6nt' = t)
S ‘pr 10g ‘E;'.'Z.ch(fxﬂfJr + {'pl )] d‘f;
4 [ 26— 26€) + 56+ 2608 lop 5 (125)

in which & is given by (100), in case of a m-node element, and Epl = ﬁ‘.:,L—l, £y = ﬁz_—l It
can easily be shown, that the first integral in (125) is not singular. Hence a Gauss-Legendre
quadrature formula is used. The second integral in (125) is weakly singular and is integrated
by the Berthod-Zaborowsky quadrature formula (Brebbia %), which provides the same error
properties for the weakly singular logarithmic kernel as the Gauss-Legendre formula does
for non-singular integrals.

ii) Improved integrals for I:;,» : When r; — 0, although there is no singularity,
integrations of Ir’f;,- are improved by performing a change of variable and an analytical
integration by part, before using the numerical quadrature. These both result in the somewhat

smoothing out of the large variations of the integrand over the element. The change of variable

is similar to the one performed by Longuet-Higgins & Cokelet %2,
k
k z"(¢) — &
= arctan —————— 126
Ha (E) mk(s) -z ( )

and is followed by an analytic integration by parts, which makes it possible to avoid any

numerical s-derivation of the integrand (unlike in *?). We find, for an m-node element, that,

I = [ GeeHO,xONHEIHE) de

becomes,
1 N“‘ :
5, = (=106 — b (bmg + [ SE— ()b () de] (127)
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Since pf can be singular when z*(¢) = =;, the formulae (126) and (127) are only valid for
elements in which the “clement slope” | p1(1) | (i.e., slope of a straight line from node 1 to
node m) is less than 45°. If this is not the case, numerator and denominator must simply be
permuted in the definition (126) of y, and the right hand side of (127) multiplied by -1. The
integral in (127) is regular and again calculated by the Gauss-Legendre quadrature formula.
Notice, terms such as (127) are zero for straight line elements (since in (95),r-n = O in %f—),
and very small for gently curved ones.

iii) General procedure : N, integration points are used in each element, and N;, is
chosen to be even in order to avoid having integration points at ¢ = 0. In the examples shown
hereafter, up to 10 integration points are used per interval between 2 nodes. In regions of I's
with high curvature and concentration of nodes, however, this may not be sufficient, mainly
because of the rapid variation of -g-ff— in the very curved elements and of the Jacobian within
the elements when nodes are getting close to each other. The adaptive integration described

in the next section is used for these situations.

4.5.3 Adaptive integration

An adaptive numerical integration method is developed and used for improving the accuracy
of regular integrations made with respect to a collocation node x;, not belonging to the
considered element k, from which the element is seen with too large an intercept angle (say
Q@ > Omaz)- This indeed leads to large variations of the integral kernels over the element
which cannot quite be caught by regularly spaced Gauss points (% being, again, the most
sensitive term to this). Large intercept angles ¢; occur in the discretization for the elements
close to the corners and also when the distance between two boundaries tends to vanish (e.g.
through time updating of the fluid domain geometry during wave motion on a slope). In
general also large angles occur when the discretization mesh varies quite a lot from one part
of the boundary to another one (e.g. due to high ratio length over height of the fluid domain,

or due to the concentration of fluid particles-collocation nodes in some region of the flow).
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The adaptive integration performs ns binary subdivisions of the element k into segments
within which the number of integration points (GP) is kept constant. The subdivision
procedure divides the reference element geometry (I'y = ¢ € [—1,+1]) into 2™ equal
segments of length 2!, until the intercept angle oy; of segment 7 seen from the collocation
point x; in the actual geometry, becomes smaller than a preset angle @ma. (ie. @y <
QAmag 31 = 1,...,2™). Then, each segment is itself mapped onto the interval [—1, +1]. Both

types of integral over an element k in (121), say I* for I} - or I, can be written as,

= [ Flo)d ¢ = > [ A @

=1

ns (_ 1 )H—B(i,b)

w s B(?., b) INT[

s f,] (128)

b=1

where Fi(¢) represents the product of G (or g%), a shape function and the Jacobian J*.
Integrals in (128) are computed by a regular Gauss quadrature, with respect to the variable
. Almost arbitrary accuracy can be achieved in the integrations provided ns is chosen large
enough (i.e., about 15 significant digits in double precision). To reduce the computation
time, however, the number of successive binary subdivisions is limited to ns = 4 in the
applications (i.e. 16 segments), and, based on our computing experience, Gma. is selected
equal to 40°. Notice, for ns = 0, the integration formula (128) reduces to one segment of
length 2, which corresponds to the usual regular integral over I'g.

The adaptive integration (128) is computationally quite efficient over one element, for a
given ns, with respect to a given x;. The selection of the number of subdivisions ns which
satisfies the criterion on the intercept angle, for all the elements k, with respect to all the Np
collocation points /, however, is computationally expensive. It requires (2"*)! computations
of angles ay; for each couple of values (k, 1) (to be compared with ayqz), which themselves
require to perform the change of variable from the reference element I' to the actual geometry

514
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It is therefore necessary to “a priori” restrict these operations to a number of pairs (k, )
in the computational data. In general, the 8 elements defining the 4 domain corners are
selected, and also the elements on parts of the boundary discretization which, one anticipates,
will become close to each other in the following time steps (e.g. tip of a plunging breaker,
wave running down on a slope,...). These selections can be and are, of course, interactively
modified during the computations when the domain geometry changes through the time
evolution. Doing so, the extra computational effort of performing adaptive integrations is,
in general, reduced to a few percents of the computation time per time step, used otherwise

without them.

4.6 Sliding element for s-derivatives

The representations of the field variables inside each element (isoparametric (99) and quasi-
spline (103)) only provide interelement continuity of the fields themselves, not of their
derivatives. This is also true for the geometry and for the normal vector, in case of isopara-
metric elements. In case of quasi-splines, both the slope of the free surface and the normal
vector are continuous, but not the gradients of the field functions, which are based on a first
order shape function only.

The s-derivatives along the free surface are calculated in a special element providing local
continuity of at least the 2nd order derivatives. The special element is a 4th-order (5 node)
isoparametric element, superimposed on the nodes of the discretization, but independent of
the BEM interpolation functions, whose five nodes are mapped, onto the reference element
¢ € [—1,1] by the Jacobian. Direction cosines and derivatives are then computed at the
central node of this element, corresponding on the free surface to, say, node I. The whole
element is then moved forward by one node, to have its central node at next node [ + 1, before
calculating new derivatives (hence this process is named “sliding” derivation or “sliding”

element).



Sliding Element

Boundary

in+7
in in+l In+6

Figure 5: Sketch for the sliding element on the boundary.

Notice that due to corners at both extremities of the free surface, the sliding element
remains in the same place, for calculating derivatives at the three first or at the three last
nodes of I'y. When a space periodic problem is solved, however, periodicity conditions are

used to make the sliding process continuous.

4.7 Automatic grid refinement on a slope

Itis observed that,during wave motion on a slope (runup-rundown), the size of the last element
on the free surface may become much smaller than the size of the first neighboring element
on the slope. This leads to somewhat less accurate integrations close to the surface corner,
even with the adaptive integration procedure. To improve the accuracy of the integrations,
the discretization on the slope is stretched, as suggested by Klopman *7 1988, according to an
exponential law which imposes the length of the upper element on the wall (closest to the free
surface) to be the same at all time steps as the length of the last element on the free surface.
The other elements on the wall are, accordingly, becoming wider towards the bottom. This
automatic grid refinement, associated with the adaptive integration, increase the accuracy of

the numerical solution in the corner by several orders of magnitude.

n
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4.8 Corner problems
4.8.1 Mathematical problem

When waves are generated by a wavemaker, there is a corner on the boundary, at the
intersection between the wavemaker and the free surface. The same situation also occurs at
the intersection of the free surface with other surface piercing structures, like fixed slopes.
The flow near the intersection with a moving solid body has given rise to substantial concern
in the literature. This was reviewed by Grilli & Svendsen *’, in the particular context of
wavemakers starting from a state of rest (“cold start””). The principal conclusion of the review
is, provided the initial acceleration of the wavemaker is small with respect to gravity, there
will be no strong singularity at the free surface corner.

In the model, the wavemaker cold start is specified in such a way that the acceleration
remains small during the first few time steps of the computations. Doing so, no singular

behavior or instability of the solution is observed at the corner.

4.8.2 Numerical problem

Well-posedness of governing equations and boundary conditions must be ensured at corners.
On the free surface, both ¢ (or ) dI'Id (or S ) are specified on the “body side” (e.g.,
wavemaker, slope) of corners, whereas there is a different normal gradient, to be calculated
as part of the global solution, on the free surface side of corners. Double nodes are used in
the model to represent corners, for which coordinates of both nodes are identical, but normal
vectors differ. This makes it possible to express that each node belon gs to a different part of
the boundary, with different boundary conditions. Hence, —‘E and 22 355 are explicitly different
for both nodes of a corner, and two algebraic expressions of the BIE’s (93) are derived for
each corner. As an additional constrain, continuity of ¢ (or %?) is imposed explicitly in these
algebraic expressions.

In addition, natural kinematic or geometric relationships between ¢’s and i‘s (or, 5‘?’
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and gg;-l’s) must be satisfied at corner double nodes— these are referred to as compatibility
relationships—, like uniqueness of the velocity vector, or a horizontal free surface tangent at
a fixed vertical solid boundary. Although these conditions should automatically be satisfied
by the numerical solution, it is not in general the case due to numerical errors. Because
there is no damping in the model, such errors may add up through time updating, and
lead to instability of the corner solution. Hence, errors are reduced by explicitly imposing
compatibility relationships to the solution, after each time step.

Details of the numerical treatments of corners can be found in Grilli & Svendsen *7.

4.9 Automatic selection of optimum time step

Accuracy of the computations is checked by computing the change in volume and total energy
of the computational domain at each time step. Errors are function of both the resolution and
the degree of the elements of the BEM discretization, and of the size of the time step.

Grilli & Svendsen *’ used the model to compute propagation over constant depth h of
exact solitary waves, in a series of spatio-temporal discretizations. For these waves, volume,
total energy and speed of propagation can be calculated as a function of height, with an
accuracy of at least eight significant figures, by equations (38).

Results showed, for a given initial distance between nodes on the free surface Az,, and
for a constant time step At,, numerical errors are proportional to At.} when the mesh Courant
number C, = %ﬁ;— > 0.5 (with Az! = A—:ﬂ, and At' = At\/f). This is consistent with the
second-order accuracy of the Taylor series (9) and (10) used in the time integration. When
C, < 0.5, errors cannot be further reduced by decreasing At., and become proportional to
Az! only. This corresponds to the effect of the spatial discretization on the accuracy of the
BEM solution.

For waves of rapidly changing shape, due to the Lagrangian time updating of free

surface nodes, the distance between nodes on the free surface may significantly change at



every time step. In fact, in some configurations of the flow, as in the jet of breaking waves or
during wave runup-rundown on a slope, for instance, this distance may decrease considerably.
Unless the time step is adjusted accordingly, any pre-set criterion on the value of the Courant
number, based on the initial distance between nodes will be violated, and accuracy will
rapidly deteriorate.

Hence, a varying time step procedure is introduced in the computations. At initial time
¢!, the initial Courant number C, is selected equal or around 0.5 and, for any subsequent time

t', time step is adjusted as,
At'=A|r ™ C, (129)

where A | ' |™™ represents the minimum nondimensional distance between two nodes on
the free surface.

In typical applications, maximum relative errors on volume and total energy of a wave
propagating without change of form are on the order of 0.01%, even after 1000 time steps
of propagation. For strongly unsteady waves and, particularly, for waves close to breaking,
errors may be larger. This is because discretization nodes gather at some areas of the boundary
where hydrodynamic jets are forming (e.g., crest of an impending breaking wave), and scatter
at some other areas (e.g., wave troughs), leading to a less accurate description of the flow.

Computations are generally interrupted when errors become greater than 0.50%.
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5 Computer Program

5.1 Introduction

A computer software in FORTRAN 77 was written, based on the equations of the mathematical
and numerical model presented in sections 2,3, and 4.
This software has three main sub-programs, performing pre-processing, processing (the

model itself), and post-processing tasks.

e Pre-processing programs are stored in module RADIAP.

The program GENER helps generating geometric data for simple domain geometry,

like a constant depth with a slope.

The program SOLWAVE generates initial data for exact solitary waves, based on

Tanaka’s 7 (1986) method (see section 3.1).

e The processing program RADIA, the model itself, contains 64 subroutines and functions
which, for convenience are split up between four main modules (RADIAO, RADIAL,

RADIA2, RADIA3), with each module containing several subroutines.

Most arrays in these subroutines are declared with variable dimensions or are specified
in COMMON statements. A main routine MRADIA declares parameters, performs fixed
dimensioning of arrays and COMMON statements, and calls the subroutine RADIA.
Hence, changing the maximum size of problems that can be solved with the model just

requires modifying parameters in MRADIA and recompiling it.

All modules of RADIA are to be compiled independently, and linked into one executable
file. Subroutines performing time consuming tasks have been written in such a way,
automatic vectorization should occur when the code is compiled with a compiler and
on a computer featuring such characteristics (e.g., FORTVS2 on the IBM-3090 or -9000;
use options VEC and OPT(3)).
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e Post-processing programs are also stored in module RADIAP.

The program CURMUL interactively creates data for plotting detailed results on the
boundary, and global results, as curves, under format of the commercial graphic soft-

ware TELEGRAF.

The program IFIELD interactively creates data for plotting results inside the domain

(internal field, velocity and pressure) under TELEGRAF format.

The program PRESHYD calculates equivalent hydrostatic pressure under a wave run-

ning up a slope, and creates data for plotting them as curves, under TELEGRAF format.

The program DI3000 creates contour levels of pressure inside the domain, based on

subroutines from the commercial graphic library DI3000.

If TELEGRAF or DI3000 are not available on the system used, the generated data file

should be modified and used with some other graphic package.

The program code should be portable on any computer featuring a standard FORTRAN
77 compiler, except for one machine dependent subroutine FILEINF (IBM-VM system), which
sets up size parameters of direct access files used for storing detailed results of computations,
for postprocessing purpose. This routine is used three times in SAVE (subroutine in module
RADIAOQ), two times in CURMUL, and once in IFIELD and in PRESHYD, and should be
replaced by the relevant routine for the specific operating system used. The use of FILEINF

is illustrated below,

CALL FILEINF (IFRC, 'MAXREC’, ILMAX* (ISNIN+NOM) )
CFILE=NFILES (1) //MDISK

OPEN (UNIT=JCURVE, STATUS='NEW' , ACCESS='DIRECT' , FORM=

UNFORMATTED’ , RECL=12*MOT, FILE=CFILE)
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In this example, the maximum number of records MAXREC of file CFILE (opened
immediately after) is specified within the program as ILMAX*(ISNIN+NOM), which varies
with the size of the problem. Notice, the format of file name CFILE is also based on the IBM-
VM system, with three operands : filename (arbitrary), filetype (e.g., data, exec,...), filemode
(i.e., disk code). This format should also be adapted to the specific operating system used.

Definition of the 50 or so sequential input/output files used in the model has also been
written for the IBM-VM environment, using .EXEC files. These files should be re-defined
for the specific system on which the program will be run. This, however, should not pose
problem.

Computer files, with complete source code, user’s manual, and applications are available
on request through the internet computer network (send Email to : grilli@mistral.oce.uri.edu,

for inquiry).

5.2 Overview of the computer model

The wave model is implemented as the main processing program RADIA mentioned above.
In this program, the subroutine RADIA (called from the main program) performs the main
stages of model computation by calling a series of twelve specific subroutines. The flowchart
in Fig. 6 corresponds to these subroutines, as successively called in RADIA, and brief
descriptions of the subroutines are presented in subsequent sections. A general overview of

the computations in RADIA is given in the following,

e The input of problem data specified by the user is performed in INPUTD. Data are
read and checked, from a sequential data file whose filename and filetype have been

supplied to the program.

e Initialization of domain parameters is performed in subroutine INTIAL, which in turn

utilizes subroutines SLIDING, FSVELO, BEMK to define initial values for the sliding
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derivation on the free surface (section 4.6), the double nodes at the corners (section

4.7), and the boundary element matrices, respectively (section 4.4.5).

At this stage, values for the geometry and for (¢, a—f ) have been specified on the free
surface, either from initial conditions (i.e., “cold start”, or specified wave), or from

previous computations.

Values of u, w, and g—i? are computed in subroutine DUDTPR over the moving bound-
aries (in general the free surface) as a function of s— and n—derivatives of potential
¢. A prediction of %‘;‘ and % is also made on lateral moving boundaries (radiation

conditions) (sections 4.2. and 4.4.2).

This represents the first step in a series of routines used in a loop over time, up to tmax,

or to a maximum number of iterations (loops) lomax.

Predicted pressure is computed on lateral Dirichlet boundaries in subroutine PREFIX,
when specified, and the value of %{1 is calculated on all Dirichlet boundaries (including

the free surface).

Control is then passed for a first time to RESOL, in which boundary conditions are
updated for Laplace’s equation for %? (section 3 for wave generation), and the BEM
analysis is performed, out of which either %{3 or a—%% are computed on the boundary,
whichever is unknown (sections 4.4., 4.5).

e The subroutine D2UTPR computes updated value for 2% and 2%, using the full Taylor

series (equation (27)), and estimates the value of 92—2‘1 and &‘2", when needed for a
q Dt Dt

moving lateral boundary (radiation boundary).

In this case, predictor-corrector iterations are performed, and this estimate is refined
until the error is less than a preset value folmax, or the index pc is equal to a maximum

preset value pcmax.
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SAVE post-processes results of the computation, and stores them for postprocessing.

When there are internal field computations, INTERN computes internal field variables.

e DPRFIX computes temporal gradient of pressure on lateral Dirichlet boundaries, when

required.
e WRRES prints results of computations when the listing option is selected.

e UPDTDB performs the final updating of the geometry and potential of moving Dirichlet
boundaries to time, ¢ + At (in general the free surface), using the full solution at time

t and equations (87) and (88).
The time increment based on the Courant number is determined by DTSTEP.

Control is then passed for a second time to RESOL, in which geometry of lateral
boundary and boundary conditions are now updated for Laplace’s equation for ¢
(section 3 for wave generation), and the BEM analysis is performed, out of which
either ¢ or % are computed on the boundary, whichever is unknown (sections 4.4.,

4.5).

This terminates the time loop, and operations are repeated from this point onward.

The detailed flowchart for RESOL is given in Fig. 7. As mentioned above, this subroutine

. . . . . y A - . . . a
is called twice, once for solving each of the Laplace’s equations for ¢ (iflag=2), or for g'f

(iflag=1), whose solutions are needed for performing time and geometry updating. Boundary

conditions are set-up on lateral and bottom boundaries, and moving lateral boundary geometry

is also updated (only prior to solving for ‘%‘? ). Details of the flowchart for RESOL are discussed

in the following,

e Lateral boundary conditions are updated in UPLABC.

e If flagv is set to 1, the bottom boundary conditions are updated in UPBOTC, and new

s-derivatives are computed in SLIDING.
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Otherwise, if flagv is set to 2, the control is passed directly to the next step.

e FSVELO imposes compatibility conditions at double nodes on the free surface (section
4.8.2).

o If flags is set to 1, the geometry has changed, and the BEM analysis is performed in

BEMK, out of which, new matrices are created.

e Internal source strengths are computed in SOUSTE, SOURCE, if sourc is assigned a

value of 1 (section 3.3).
e The final load vector is assembled next in ASSEMP (section 4.4.5).
e Double node compatibility is imposed on the load vector in DBNODP.

e The final system matrix is then solved by Kaletsky’s elimination method, in SOLVE.
Notice, the system matrix is kept in eliminated form from the solution for %? (iflag=1),

and used in the solution for ¢ (iflag=2), for which only the load vector is eliminated.
e And the solution is sorted by type, variable or its normal gradient, in SORT.

Flowchart for the boundary element analysis in BEMK is given in Fig. 8. Details of the

flowchart for BEMK are discussed in the following,

e If isplin(k) is set to 1 for boundary section k, a parametric spline analysis of boundary
section k is performed in SPLANA, for later use in setting up parameters of two-node

quasi spline elements (section 4.4.3).

The spline analysis is not required for BEM analysis of isoparametric elements.
e Computations then enter a loop over each of NELEM elements on the boundary.

e GAUSSP computes regular Gauss points and weights for numerical integration.
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e Shape functions and their first and second derivative interpolation functions are then

computed for all the Gauss points in FUNF1, DFUNFI1, D2FUNI.

e Once the interpolation functions are computed, a decision is made on whether adaptive
integration is required, on the basis of the intercept angle on the element. Flag nsubm

is set to 0 if no adaptive integration is required.

e For nsubm=0, BIMAT computes local ks and k, matrices (section 4.4.5), with both
regular and singular integrations (as in section 4.5.2), for the elements, and saves

intrinsic and geometric data for later post-processing of results in SAVE.

e When nsubm=1, adaptive integration is required, and BISMAT performs these inte-
grations on the element (as in section 4.5.3), in addition to computations done in

BIMAT.
e ASSEML does matrix assembling of local k4 and k,,, into global K4 and K.

e Once the above computations are performed on all elements, the rigid mode technique

is implemented by INTRCI (section 4.4.5).
e Final assembling of the system matrix K is done in ASSEMK (section 4.4.5).

e Double node compatibility conditions are finally imposed to the system matrix in

DBNODK. This completes the BEM analysis.

5.3 Preprocessing and generation of input data

Preprocessing essentially consists in defining,

i) the computational domain geometry and discretization, by generating a set of nodes on
the boundary of the physical domain, and specifying boundary elements, to interpolate

between the nodes.
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Figure 9: Definition of geometry and parameters for pre-processing program GENER

ii) the type of problem to be solved with the model, by assigning values to various

parameters in an input file.

5.3.1 Generation of domain geometry

For simple domain geometry, the first task (i) is performed with the help of the pre-processing
data generation program GENER, contained in the module RADIAP.

GENER assumes the domain to have the simple bottom geometry depicted in Fig. 2 or 9,
with a flat initial free surface (length Lr,), a constant depth area (length Lp, — Lps — s (Lr, —
Ly, ); depth Lp,), in front of a slope s of angle 6, and a small shelf at the upper part of the
slope (length Lys; depth Lr,) (see Fig. 9 for definitions).

Input data for GENER are provided as four lines of freely formatted data in a sequential
file ( fname.data),

I1: Mp, Mr, Mr, Mp Mp: My
2: mp, mr, mp, mp mpz M
i3: Ip Lr, Ly ©
l4: nintm nsub
in which My denotes the number of elements on the specified boundary segment (Fig. 9),

my is the type of element (i.e., number of nodes per element, 2,3,...), Lr is the length of the
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particular boundary segment, 6 is the angle of the slope with the bottom in degrees, nintm is
the maximum number of Gauss points per element (normally 10), and nsub is the maximum
number of subdivision for the adaptive integration (see example in section 6).

GENER generates the node coordinates, defines the boundary elements connectivity and
parameter matrix, and writes this data in a sequential output file : gener.data (see example
in section 6). Four lines of input parameters must be added at the top of this file, to fully
define a problem (see next section). Of these parameters, GENER provides the first two :
nom, nelem.

For the generation of exact initial solitary waves, the program SOLWAVE, also in RA-
DIAP, can be run to provide initial free surface geometry and kinematics for a solitary wave of
specified height H/h, with its crest located at an initial specified location z,/h. Results from
SOLWAVE are provided at specified boundary element node coordinates, under the format
used in the input data file for the model, and can thus directly be substituted into the file
gener.data previously created by GENER, with a flat, non-moving free surface.

For other types of boundary geometry, the user must create its own mesh data file, under
the format described in the following section. Notice, in many cases, it is possible to use
GENER for generating part of the required mesh, and to edit and modify the generated file for

the actual bottom geometry (e.g., an obstacle on the bottom can easily be added this way).

5.3.2 Input parameters

The second task (ii) is performed by defining a sequential input file for the problem, that
will be read in subroutine INPUTD. This subroutine reads user defined parameters from a
specified sequential input file, in the following format,

The following is a general description of user-defined input parameters listed in the first

4 lines in the following table,

nom : Total number of nodes of the boundary element mesh
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INPUTD

Line Format Parameters

| (1015,F10.0) | nom, nelem, isave, lomax, pcmax, iptyp, nbs,

iprint, init, ismoth, tolmax

2 (815,2F10.0) | ibcond(1), isplin(1), ibcond(2), isplin(2), ib-
cond(3), isplin(3), ibcond(4), isplin(4), al-

maxb, almaxi

3 (7F10.0) | dt, tstart, tmax, rho, cpress, cprest, ge

4 (5F10.0,515) | tdamp, del, de2, omega, voh/ulat, isourc, nos,

ifield, noi, nht

5-(44+nom) (nodes) (4F20.0) (x(i), z(i), phi(i), phin(i), i=1,...,nom)

(5+nom)-(4+nom+nelem) (515,415) | (node(i,j), j=1,.., nnode(i)), nnode(i),

(elements) nintr(i), nsubm(i), nside(i)), i=1,..., nelem)
(5+nom+nelem)- (3F10.0) (z4, zi, 8iy% = 1,...,n0s) (optional)
(44+nom+nelem+nos)

(5+nom-+nelem+nos)- (2F10.0) | (=i, 2,1 = 1,...,n0i) (optional)

(44+nom+nelem+nos+noi)

Table 1: Parameters and formats for input file (filename.data), for the model, to be read in

subroutine INPUTD
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nelem : Total number of boundary elements
isave : Saving flag,
0: no saving for postprocessing
1 : saving and postprocessing of global simplified results

2 : saving and postprocessing of detailed numerical results and saving of data for

plotting curves
lomax : maximum number of time steps in the general time loop (Fig. 6)
pemax @ maximum number of predictor-corrector loops per time step (Fig. 6)
iptyp : type of wave generation,

0 : specification of wave potential on the free surface with possibly lateral current U

(e.g., exact solitary waves)

1 : generation of a sum of sine waves by a flap wavemaker, with initial damping (see

tdamp, and file paddle.data)
3 : generation of first-order solitary or cnoidal waves by a piston wavemaker
5 : generation of second-order Stokes waves by internal sources

6 : generation of second-order solitary waves by internal sources

nbs : number of segments between nodes on the bottom to which stretching is applied for
the geometry updating, when specifying a wavemaker or a moving free boundary, on

a lateral boundary (< 150)
iprint : index for selective output listings,

0 : no output listing is created
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n: output listing is printed for results generated at every n loops. Result types will
depend on the value of isave (0,1: simplified results; 2: detailed results), and

ifield (0 : no interior field results; 1 : print interior field results)
init : initialization of predictor-corrector loops for radiation conditions,
1 : initialization data exist for radiation conditions and will be used
0: ignored

When init=1, initialization data must be provided at the very end of the input data file

(see INPUTD for detail).

ismoth : when K = 2 or 3 (lateral boundaries), this parameter indicates the precision of
numerical computations, 4 to 17, involved in the predictor-corrector loop for the

radiation condition. Ignored when there are no radiation condition boundaries.
tolmax : absolute tolerance for predictor-corrector loops, used when, pcmaz > 1 (Fig. 6).
If toler < tolmaz predictor-corrector looping stops, in which,

Du™

= [ (130)

toler = |%|1rl+l — |

Ignored when there are no radiation condition boundaries on lateral boundaries, K = 2

or 3.

ibcond(K) : type of boundary condition on boundary segment K ( (1) free surface; (2)
leftward lateral boundary; (3) rightward lateral boundary; (4) bottom)
0 : Impermeable boundary ¢,, = 0 (homogeneous Neuman condition)
1 : Dirichlet boundary condition (i.e., specified ¢ or %‘{3)

2 : Wavemaker boundary with geometry updating (non-homogeneous Neuman con-

dition function of the value of iptyp)
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3 : plane impermeable boundary with exponential stretching of nodes (i.e., slope)

Notice, on the bottom (K = 4), a value 0 is selected for ibcond, and the geometry is
arbitrary. On lateral boundaries, when ibcond(k)=0 or 3, the boundary must be plane,
and a simple updating with node stretching is performed. When ibcond(k)=2 on lateral
boundaries, the geometry must also be plane, for a wavemaker boundary. Finally, when

ibcond(k)=1, the boundary is free (radiation boundary), and the geomeltry is arbitrary.
isplin(K) : definition of general type of boundary elements for boundary segment K,

0 : no spline analysis, isoparametric elements, 2-5 nodes

1 : spline analysis performed on the geometry, quasi-spline elements, 2 nodes
almaxb : limiting angle for adaptive integration on the boundary
almaxi : limiting angle for adaptive integration for interior field calculations

dt : initial time step, for t = t,, used to calculate initial Courant number by,

dt * \/ge x del

o = :
iAr|msﬂ

with C, < 0.8. At later time steps, C, is assumed constant, and the time step dt is

modified as,

B co |Ar|miﬂ.
T Vgexdel

tstart : initial time of stepping, i.e., t, =tstart. Notice, computations can be re-started from

dt

carlier results calculated with the model, and saved through subroutine START.

tmax : maximum time of stepping, ¢ > tmaz, will stop computations even if, loop < lomaz

(Fig. 6)
rho : fluid density in arbitrary consistent units, rho = 1, implies dimensionless quantities
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cpress . atmospheric pressure at the free surface I'y (K = 1), usually 0
cprest : atmospheric pressure gradient at the free surface I'y (K = 1), usually 0

ge : acceleration due to gravity in arbitrary consistent units, ge = 1, implies dimensionless

quantities

tdamp : time over which damping is performed for waves generated by a flap paddle motion
(iptyp=1; hyperbolic tangent damping, tdamp=t,, in (70),(71)), or damping coeffi-
cient for Stokes waves generated by internal sources (iptyp=6; exponential damping,
tdamp=p. in (85),(86))
0: no damping
# 0 : time over which damping is €, = 1% (iptyp=1), or damping coefficient p (ip-

typ=6).

del , de2 : depth at boundary T, and T'5, respectively. del = 1, means dimensionless

quantities will be used, and del will be used as the reference depth everywhere.
omega : incident wave circular frequency with,
iptyp =1; nht=0 : single sine wave frequency for flap wavemaker generation
iptyp =3 : 0 for a solitary wave, and > 0 for a cnoidal wave

iptyp =5 : > 0 for a 2nd-order Stokes wave generated by internal sources

voh /ulat : flap paddle stroke velocity (vo), wave amplitude (h), or current velocity on lateral

boundary (ulat), with,

iptyp =1; nht=0 : single sine wave flap paddle stroke velocity at z = 0.
iptyp =0; ibcond(K)=0 : current velocity on lateral boundary K (as in (6))

iptyp =3 : solitary or cnoidal wave height
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iptyp =5,6 : 2nd-order Stokes or solitary wave height generated by internal sources
isourc : flag for wave generation by internal sources,

0 : no generation by internal sources

1: generation by internal sources

When isourc=1, waves will be generated according to iptyp=5 or 6, and the initial
location of internal sources must be provided as input data at the end of the input file

(see below)
nos : number of internal sources specified along the vertical source line
ifield : flag for internal field computations,

0: no internal field computations

1 : internal field computations

When ifield=1, the location of internal points must be provided as imput data at the end

of the input file (see below)
noi : number of specified internal points at which internal fields will be calculated
nht : index for wave generation by a flap wavemaker,

0 : only one sine component of circular frequency w=omega will be generated, with
max

paddle stroke velocity ép =voh

n : number of sine components to be generated with equations (68)-(76).

When nht> 0, a file paddle.data must exist on the same disk as the general input

data, and contain the following information about the sine components to be generated,
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formatted as,

Sine component :  amplitude frequency phase
nht lines (3F20.0) : ap(ih) op(zh) sp(ih)

For internal source generation (isourc=1), and internal fields calculations (ifield=1),
locations of sources or internal points must be specified, successively, at the end of the input

file,

e for the sources : (&, 2, 8i,1 = 1,...,n0s) (3F10.0), in which z, denotes the constant
z-value for the vertical line of sources, and s; the strength of each sources. Notice, for
a cold start, only z, must be specified in the input data, and (s, 2;) will be calculated
in the model at every time step, depending on the value of iptyp. All the values will be
needed only when calculations will re-start from previously calculated results saved

through START.

e for the internal field points : (z;,2;,7 = 1,...,n0i) (2F10.0), must be provided in

sequence in the input data file.

Initialization data, if required (init=1), will follow these two sets of data.
The following is a general description of input parameters listed after the first 4 lines in

the above table,

(x(i), z(i), phi(i), phin(i), i=1,...,nom) : initial nodal coordinates (z, z), and initial value of
the potential phi, and normal gradient phin, for the nom elements in the boundary
discretization.

Notice, only the free surface values of the potential and of the normal gradient will be

used in calculations, and thus have to be specified at initial time £ = 2,

(node(i,j), j=1,..., nnode(i)), nnode(i), nintr(i), nsubm(i), nside(i)), i=1,..., nelem) : initial
boundary element connectivity matrix, for the nelem elements of the BEM discretiza-

tion, with,
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node (i,j) : a vector containing 2 to 5 node numbers for element 2
nnode (i) : number of nodes for element 2
nintr (i) : number of Gauss points for element ¢

nsubm (i) : maximum exponent of 2, for subdivisions in the adaptive integration (0 : no
need for subdivision is even tested; > 1: intercept angle is checked from element
i to every node, versus almaxb and/or almaxi, and adaptive integration is carried

out, if needed, for element 7, up to 2™**¥™(}) subdivision)

nside(i) : number (K=1 to 4) for boundary segment to which element 2 belongs

5.4 Subroutines and Functions

59 subroutines and 5 function are used in the program. They are listed in alphabetical order in
the following, and a brief description of their tasks is given. Sufficient internal documentation

is provided in each subroutine or function source code, to facilitate comprehension.

5.4.1 Subroutines

AGM : Computes arithmetic and geometric mean tables, for elliptic integrals and functions.
First and second kind complete integrals are then calculated for the given complemen-

tary parameter, 1 — m

ASSEMK : Assembles global K, and K, matrices into the system matrix K, based on
specified boundary condition types (Dirichlet or Neuman). When ibcond(k) = 1, ¢
(or %f) is imposed, and when tbcond(k) # 1, gf(or ai:%) is specified on boundary k

ASSEML : Assembles local matrices in the global K and K,, matrices.
ASSEMP : Assembles the right hand side (load vector) of the general system, based on

specified boundary condition types (Dirichlet or Neuman)
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BEMK : Boundary element analysis. Computes Ky and K, performs rigid mode analysis
on K,, assembles the system matrix K, imposes double node compatibility, and
boundary conditions for the 2D-BEM and introduces free coefficients c’s into K, (Fig.
8).

BIMAT : Computes local matrices k4 and k,, for each element ie, and saves geometric and
intrinsic data for the 2D-BEM. Used only if no adaptive integration is required are

required (nsubm=0) (Fig. 8)

BISMAT : Performs similar operations as BIMAT, but is called only when adaptive integra-
tion is required (nsubm> 1) (Fig. 8)

CARACI1 : Computes z;p, Zip, NTip, n2Zip and Ds;, at the integration points ip=1,...,nintr of

the isoparametric element ie.

CARASI1 : Computes z;p, zip, NTip, NZzip and Ds;p, at the integration points ip=1,...,nintr
of the quasi-spline element ie. The second derivatives with respect to z and z at the

extremities of each element have been previously determined in SPLINE.

CELES : Computes wave celerity from the linear dispersion relation,

ktanh(kh
(kh) z

CHARAC : Calculates the complementary elliptic parameter for cnoidal waves, given the

wave height and period

CHSUB : Checks whether adaptive integration is required over each element ie. The check
is performed by determining whether the angle from which the element is seen from
node 1 = 1,...,nom is less than almaxzb. Then, nsub(ie), the exponent of 2 for the

number of subdivisions required, is stored in the array Isub(nom) for element ie

79



CNIDAL : Implements the generation of cnoidal waves by a piston wavemaker according

to Goring’s first order KdV solution. The method is accurate for —I,f > 20, and % <03

CUBICT : Fits a third-order 4-node polynomial, and computes “XZ, for the boundary

conditions at extremities of the free surface, in the spline analysis in SPLANA

D2FUN1 : Computes second derivatives of shape functions with respect to their intrinsic

coordinate 7, for one-dimensional isoparametric elements (2-5 nodes)

D2UTPR : Computes the corrected value of accelerations %‘:, ‘3‘:, based on kinematics, as
¢
a function of 22 B 63 A 53%, %, 5;%, é:gj, cosf3, sinf3 and B’s. Also predicts 2 th ¥ and

Dt , based on current and previously calculated values of the acceleration, for later

use in If estimation in DPRFIX

DBNODK : Imposes corner double node compatibility in the general system matrix K,

according to specified boundary condition types (Dirichlet or Neuman) (see ibcond(k))

DBNODP : Impose corner double node compatibility at domain double nodes, for the right

hand side load vector of the global system matrix

DFUNF1 : Computes first derivatives of shape functions with respect to their intrinsic

coordinate 7, for one-dimensional isoparametric elements (2-5 nodes)
DKE : Computes m-derivatives of elliptic integrals K (m) and E(m)

DPRFIX : For lateral radiation boundaries, computes the temporal gradient of pressure

Dw Du

S¢» De)» and on

on lateral Dirichlet boundaries, based on corrected accelerations (

redicted velocity of accelerations, namely 7.5 and 2w by integrating Euler equations
p Y Dt g g q

in the tangential s direction along the boundary

DTSTEP : Fixes the time step At for each time loop, based on a constant Courant number
criterion set at initial time step. The maximum value of this Courant number is limited

to 0.8 for reasons of stability
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DUDTPR : Computes (u, w) values over the boundary as a function of known % and %f.
Also computes 3—2’? for later use. Predicts %—‘;’. %, based on current and previously

calculated values of u & w

ERRORS : Displays appropriate error messages

FCTS : Computes GHT(m) = 0 and ST atm to find the parameter m of a cnoidal wave

FSVELO : Imposes compatibility condition at double nodes on the free surface. the sub-
routine determines direction cosines for both nodes, and the potential derivative with

respect to the s direction, for both nodes

FUNF1 : Computes shape functions with respect to their intrinsic coordinate #, for one-

dimensional isoparametric elements (2-5 nodes)

GAUSSP : Computes values of Gauss points and weights, for the specified number of
integration points nintr, and calculates values of shape functions and their derivatives

at these points

IMPLAT : Updates lateral boundary conditions and geometry (with 2 flagv = 1), for im-
permeable Neuman boundaries (ibcond(k)=0,> 3, and K = 2,3)

INTIAL : Performs geometry and potential initialization for all time step arrays. This
initialization is performed by calling in turn the subroutines SLIDING, FSVELO, BEMK
(Fig. 6). The sliding derivatives on all four boundaries, computed in SLIDING, are
stored in temmbbc. Double node compatibility is imposed in FSVELO, and BEMK
performs the initial boundary element analysis for the specified initial geometry, to set

up the integral common savef

INPUTD : Reads input data for 2D boundary element method, i.e. nodal coordinates,

element definitions, flag values to specify problem etc. The data is read from a
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specified input file, filename.data, containing the data in the format described in the

Table above

INTERN : Computes internal fields ¢, 22, 28, &¢ 8¢ 24 .44 p at noi user-specified

points
INTRCI : Introduces free coefficients ¢ into K, based on the rigid mode technique

NEWTON : Computes zeros of GHT function, using a discrete Newton’s method. Part of

the m-derivatives are computed using finite differences

PADSIN : Simulation of a flap wavemaker oscillating on a lateral boundary. Boundary
conditions, or geometry and boundary conditions are updated, depending on the value
of iflagv. The paddle motion is damped(hyperbolic tangent function), according to

tdamp

PADSOL : Simulation of a piston wavemaker motion, based on first-order solitary or cnoidal
wave theory, specified on a lateral boundary. iflagv determines whether both boundary

conditions and geometry are updated or only the boundary conditions are updated

PREDICT : Fits cubic temporal polynomials over nt — 1 steps, starting at nt — 2y. For the

component ¢p of y. Values of y or gff are computed after fitting

PREFIX : Computes pressure on lateral Dirichlet boundaries based on predicted acceler-

Dw Du

Si» pi)» by integrating Euler equations in the tangential s direction along

ations (
the boundary. If initial data are not provided for prediction, the pressure is assumed
hydrostatic, till 2loop = nt — 1. Computes %? by Bernoulli’s equation on all Dirichlet

boundaries

PRESPR : Computes pressure or its temporal gradient on boundary K, by integrating the

Euler equations in the s direction along K
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RADIA : Performs main stages of computations (Fig. 6), by calling the corresponding
modules. The general algorithm for the solution of the boundary value problem is
implemented in this subroutine. The program is modular, and each step of the solution

described in preceding sections is solved in different subroutines

RESOL : Updates boundary conditions and geometry if iflagv = 1, otherwise only updates
boundary conditions (Fig. 7). If iflags = 1 performs BEM analysis in BEMK, double

nodes, sources, global assembling and solves for either ¢ or %?

SAVE : Performs postprocessing of both boundary and internal fields, saves all results in
direct access files. Specifically, SAVE computes the discharge through boundaries,
domain (or wave) volume, domain (or wave), kinetic, potential and total energy, forces
and moments acting on lateral boundaries (in both dimensional and dimensionless
forms), and the internal fields through calling INTERN. It saves the data for generating

and plotting result curves in the post-processing

SAVGEO : Saves geometry and shape functions of boundary element for all integration

points. These values are stored in savef and used in SAVE for post-processing

SGDUDN : Computes local particular integral for :—: for 2D-BEM, set to () if the element is

a straight line element.

SLIDING : Computes parameters of s-derivatives 3‘-‘;, and of dif;, along each of the four
boundary subsections, as a function of domain geometry, and saves them in tembbc in
the form of shape functions. These computations use a sliding fourth-order isopara-
metric boundary element, independent from the actual BEM discretization, and the
derivatives are being computed at the mid-node of the sliding element, except at the 2
extremities of the free surface, where the element stays unchanged for the 3 first and 3

last nodes
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SOLITA : Goring’s first-order solution for solitary waves. The equations for the motion of

the wavemaker and its kinematics are solved iteratively by Newton’s method

SOLVE : Computes the Kaletsky solution for anonsymmetric, fully populated, linear system

of equations. The method provides the solution X;; of the linear system A;; x X; = B;

SORT : Sorts the unknowns according to type of boundary conditions, after solution in

SOLVE

SOURCE : Performs domain integration to specify wave generation by an internal line of

sources

SOUSTE : Generates interior source strength according to wave type (2nd-order Stokes or

; : P 8
solitary wave), and problem, namely ¢ or ?;:3

SPLANA : Analysis of the domain free surface boundary geometry by cubic splines. Since
the free surface can be multivalued, two spline analyses are performed, for both z and

z, as functions of a parameter chosen to be the point index 7 of the nodes
SPLINE : Performs spline analysis and saves g’i

START : Saves information required for re-starting calculations for the next iteration, after
stopping computations with the program. Results are saved in file start.data, such as
domain geometry, previous time step variables, interior sources and fields etc... and
the program is stopped. This procedure, of stopping and re-starting computations, may

be required due to memory limitations on the computer used in the calculations

STRBOT : Performs stretching of bottom boundary geometry and nodes, close to the lateral
boundary, and over nbs intervals between nodes. The bottom is assumed horizontal

over the nbs intervals
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TRAJEC : Computes displacement, velocity and acceleration of a piston wavemaker, for
generating a cnoidal wave. The initial stroke is 0, and the stroke varies from 0 to

2 * zpmaz. Velocity and wave elevation are () at time £ = ()

UPBOTC : Updates boundary conditions and geometry on the bottom boundary when iflagv
= 1, according to the value of iptyp and ibcond (Fig. 7)

UPDTDB : Updates geometry of moving Dirichlet boundaries, based on a second-order
Taylor expansion in time using the previously determined kinematics (u, w) and ( %,
Bu). The potential is also updated based on a second-order expansion in terms of

previously determined parameters (Fig. 6)

UPLABC : Updates boundary conditions or boundary conditions and geometry (iflagv =
2/1), on lateral Neuman boundaries, depending on the value of iptyp and ibcond (Fig.

7

WRRES : Prints results when listing is required

5.4.2 Functions
ACN : Computes the inverse of the Jacobi elliptic cosine of argument », and parameter m,

acn(u, m).

ATANS : Returns the arctangent for subroutine ATANV, and checks for the indeterminate

case g

ATANY : Returns the arctangent depending on the position in the OXZ coordinate system. It
is called in the local particular integration over the element ie, for %&. If the arctangent

provides an indeterminate form, L’Hospital’s theorem is applied up to 2 times.

CN : Computes the Jacobi elliptic cosine of argument u, and parameter m, cn(u,m). If

1 — m is less than 5 * 107°, a hyperbolic approximation is used to improve numerical
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stability.

EINC : Computes the complete elliptic integral of the second kind, E(u, m), with argument

u and parameter m.

5.5 Program Execution

To run the program on a large application case, and saving all computed results, a sufficient
amount of disk space must be reserved (either physical or virtual). In the IBM-VM operating
system, a virtual disk space can be defined, that will exist only for the current logon session.

The reserved disk space is used for storing result data files, for subsequent post-
processing computations. Some listing files will also be stored therein, to be printed if
required.

A typical IBM-VM session, is included below, for the case of a fully non-linear solitary
wave, with wave elevation and potential generated in the program, SOLWAVE. Commands
by the user are in boldface, computer outputs in verbat im, and comments in italics.

A command file radia.exec has been created for making all the file definitions, and

loading and running all the program modules.

A Typical Session

(A virtual disk (type t3380 with 50 cylinders) is defined at first, for storing files containing program results)

def t3380 as 210 cyl 50

def t3380 as 210 cyl 50
DASD 0210 DEFINED
Ready; T=0.01/0.01 14:35:06

(formatting the disk)

format 210 e
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DMSFOR603R FORMAT will erase all files on disk E(210).

Enter 1 (YES) or 0 (NO).

1

DMSFOR605R Enter disk label:

(any character will suffice)

e

Formatting

disk E

50 cylinders formatted on E(210)
Ready; T=0.03/1.69 14:37:32

(disk status)

q disk

g disk

LABEL VDEV M STAT CYL

RAVI 18l
E 210
MNT190 190
MNT19E 19E
ACC19F 19F
Ready; T=0

A R/W 18
E R/W 50
S R/O 70
Y/S R/O 120
Z/s R/O 150
.01/0.01 14:38:

TYFPE
3380
3380
3380
3380
3380
40

BLKSIZE
4096
4096
4096
4096
4096

FILES
48

0

377
550
152

BLKS USED- (%) BLKS LEFT

1721-64 979

6-00 7494
7269-69 3231
15513-86 2487
10679-47 11821

Do you wish to continue?

BLK TOTAL
2700
7500
10500
18000
22500

(radia is the executable file radia.exec being called, stepl) contains the initial model data (input file

stepO.data), regarding the wave and domain geometry and the potentials, e is the temporary disk on which

temporary data files will be stored and a is the disk on which the input files required for re-starting the program

are stored.)

radia step0) e a
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radia step0 e a
ERASE FIELD DATA E
File FIELD DATA E not found

+++ R(00028) +++

ERASE CURV1 DATA E

File CURV1 DATA E not found

+++ R(00028) +++

ERASE CURV2 DATA E

File CURV2 DATA E not found

+++ R(00028) +++

FI 4 DISK CURVE DATA E ( BLKSIZE 80 LRECL 80
FI 5 DISK STEP0O DATA A

FI 80 DISK PADDLE DATA A

FI 6 DISK STEPO LISTING E

FI 7 DISK START DATA Al

FI 10 TERM

FI 13 DISK EPSC DATA E

FI 14 DISK EPSV DATA E

FI 15 DISK ET DATA E

FI 16 DISK OUTF DATA E

FI 18 DISK VOLU DATA A

FI 19 DISK QNF DATA E

FI 20 DISK QONR1 DATA E

FI 21 DISK QNRZ DATA E

FI 22 DISK EP DATA E

FI 23 DISK EK DATA E

FI 30 DISK GENDAT DATA E

FI 48 DISK FSLX1 DATA
FI 49 DISK FSLZ1 DATA
FI 50 DISK FSLX2 DATA
FI 51 DISK FSLZ2 DATA

(s I s R 5 B s B |

FI 52 DISK FSLR1 DATA
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FI 53
FI 54
FI 55
FI 56
FL 57
FI 58
FI 59
FI 60
FI 61
FI 62

DISK
DISK
DISK
DISK
DISK
DISK
DISK
DISK
DISK
DISK

FSLP1
MSLE1
FSLR2
FSLP2
MSLB2
HMAXT
HMAXX
TXMAX
XZMAX
GREEN

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

GLOBAL TXTLIB IMSL11A

File UTILITY TXTLIB *

+++ R(00028) +4++

ryor m P B ®H @B @8 @8 H

IMSL11B VSF2FORT CMSLIB UTILITY

not found

GLOBAL LOADLIB VSF2LOAD

LOAD MRADIA RADIAO RADIA1l RADIA2 RADIA3 ( CLEAR

The following names are undefined:

STRVEL

STRETA

+++ R(00004) +++

START
Execution begins..

Input Fm of DISK files

b Y

§ H

(File Mode of temporary disk files.)

Loop
Loop
Loop
Loop
Loop
Loop

Loop

N oy N e W N
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Loop :

Loop

Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :

Loop
Ready;

(temporary disk files generated)

8
9
10
i A
12
13
14
15
16
17
18
19
20

flist * * ¢

flist * * e

LVL 0 --- E 210
TXMAX DATA
HMAXT DATA
MSLB2 DATA
FSLP2 DATA
FSLR2 DATA
MSLBE1 DATA
FSLP1 DATA
FSLR1 DATA
FSLZ2 DATA
FSLX2 DATA
FSLZ1 DATA
FSLX1 DATA
EK DATA

T=67.03/67.99 14:43:30

El
El
El
El
El
El
El
El
El
El
El
El
El

7500 BLKS 3380 R/W
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22 FILES

m = = =m =M™ 49 o =mom ToToTm oo

80
80
80
80
80
80
80
80
80
80
80
80
80

20
20
20
20
20
20
20
20
20
20
20
20
20

L - e O A

1 oF
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92

14
14
14

14:
14:
14:
14:
14:
14:
14:
14:

14

22
14:
:43

43

143
143

43
43
43
43
43
43
43
43

: 43



EP
QONR2
QONR1
ONF
OUTF
ET
EPSV
EPSC
STEPO

Ready; T=0.01/0.02 14:44:58

(disk files generated on disk a.)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
LISTING

flist ¥ ¥ a

flist * * a

START
LOAD
GREEN
HMAXX
XZMAX
VOLU
FILE

Ready; T=0.01/0.04 14:48:16

DATA
MAP

DATA
DATA
DATA
DATA

El
El
E1l
El
El
El
El
El
El

Al
A5
Al
Al
Al
Al

FT99F001 Al

(End of Session.)

5.6 Output Files

< m m = m T T T

e I I S

80
80
80
80
80
80
80
80
133

80
100
80
80
80
80
80

20
20
20
20
20
20
20
20
1467

466
302
19
20
19
20
20

The following .data files are generated automatically by the program.

L = O T =

w

N = < - T =]

9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92

9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92

START : Data required for restarting the program, generated after a first set of iterations

EPSC : Dimensionless error on continuity equation at every time step, obtained by adding

up flow rates (discharges) through each boundary segment

14:
14:
14:
14:
14:
14:
14:
14:
14:

14:
14:
14:
14:
14:
14:
14:

43
43
43
43
43
43
43
43
43

43
40
43
43
43
43
43



EPSV : Dimensionless error on total volume of the domain at every time step

ET : Total energy at every time step. If nondimensional quantities are used and an exact

solitary wave is generated, the total energy is the one corresponding to the wave only

EK : Kinetic energy at every time step. If nondimensional quantities are used and an exact

solitary wave is generated, the kinetic energy is the one corresponding to the wave only

EP : Potential energy at every time step. If nondimensional quantities are used and an exact
solitary wave is generated, the potential energy is the one corresponding to the wave

only

VOLU : Total volume of computational domain at each time step. If nondimensional
quantities are used and an exact solitary wave is generated, the total volume is the one

corresponding to the wave only
OUTF : Sum of net fluxes through all four boundary segments at each time step
QNF : Volume flow through the free surface at each time step
QNRI1 : Volume flow through lateral boundary 1 (K = 2) at each time step
QNR2 : Volume flow through boundary 2 (K = 3) at each time step
FSLX1 : Horizontal force on boundary 1 at each time step
FSLZ1 : Vertical force on boundary 1 at each time step
FSLX2 : Horizontal force on boundary 2 at each time step
FSLZ2 : Vertical force on boundary 2 at each time step
FSLR1 : Magnitude of force vector on boundary 1

FSLP1 : Angle of force vector on boundary 1 at each time step
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MSLB1 : Moment about the bottom on boundary 1 at each time step

FSLR2 : Magnitude of force vector on boundary 2 at each time step

FSLP2 : Angle of force vector on boundary 2 at each time step

MSLB2 : Moment about the bottom on boundary 2 at each time step

HMAXT : Maximum value of free surface elevation at each time step

HMAXX : Maximum value of free surface elevation, and its position along the z coordinate

TXMAX : The z position of the maximum value of free surface elevation, and its variation

with ¢ (time).

XZMAX : Maximum value of free surface elevation divided by the local depth, as a function

of z

GREEN : Tests for adherence to Green's Law

5.7 Error and Warning Statements

Values of parameters and results are constantly tested within each subroutine, versus exact

or pre-specified values.

In case an error occurs, an eight character error code is transferred to the error handling
subroutine ERRORS (e.g., INPUTD02), and the program is stopped. The following message
is printed by the program, prior to stopping,

PROGRAM STOP DUE TO ERROR : INPUTDO02

The six first characters in the error code contain the name of the subroutine in which the

error was found (e.g., INPUTD), and the last two characters contain the error code (e.g., 02).
Errors codes, with definitions of errors, are listed within the source code of each sub-
routine. In INPUTD, for instance, we find the following list,
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CE ERRORS 01= Element, nodes, sources, or int. fields nb. out of range

CE 02= Logical data are out of range

CE 03= Boundary conditions are out of range

CE 04= End of data in input file

CE 05= Spline analysis is impossible with data defined
CE 06= Element order is messed up

Hence, the user can consult each subroutine code header, for the list of relevant error

codes.

In case the code definition (e.g., “Logical data are out of range”) is not sufficiently clear,
the user can look for the location of the call to the error routine in the subroutine in which
the error was found, and find out more details. For instance, when searching for the error
code INPUTDO2, in INPUTD’s source code, we find it to be stored in the variable TEXTE2,
and when searching for TEXTE2, we get to the following sequence of FORTRAN code,

C
IF((IPTYP.LT.0.OR.IPTYP.GT.6).0OR. (ISAVE.LT.0.0OR.ISAVE.GT.2) .OR.
(ISOURC.NE.O.AND.ISOURC.NE.1).OR. (IFIELD.NE.O.AND.IFIELD.NE.1))
THEN
CALL ERRORS (TEXTE2)
o A S ——
END IF
c

which gives us the full extent of the error check done in the program at this stage. We
for instance see above that the error code 02 in INPUTD is related to a wrong value for IPTYP,

ISAVE, ISOURC, or ISOURC in the input data.
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6 Applications

6.1 Introduction

Over the past 5 years, many applications have been calculated with the model, for various
types of wave propagation, shoaling, and runup, and wave interaction with emerged and
submerged coastal structures or obstacles in the bottom.

Main types of applications are listed in the following, along with references to publica-
tions in which the reader can find details of both computational and physical aspects of the

problems,

o Wave generation by a moving vertical boundary : Grilli & Svendsen ¥ (1990)
studied the generation of breaking waves by horizontally moving vertical boundaries,
using the present model. They analyzed the accuracy of results as a function of both
discretization and time step, and evaluated the performance of corner compatibility
relationships in the very demanding case where both lateral and free surface boundaries

take large displacements.

Grilli 2 (1991) extended this method to the calculation of breaking bow waves, and
wave resistance coefficient of forward moving slender ships. This application is also

implemented in the present model, but has not been described in this report.

e Wave runup over and reflection from a steep slope : Grilli & Svendsen ** 33638
(1989,1990,1991) and Svendsen & Grilli 7 (1990), through careful numerical ex-
periments, extensively studied the runup on, and reflection of solitary waves from
steep slopes, and from vertical walls. They compared model results to laboratory

experiments, and in general found surprisingly good agreement between both of these.

Similar cases are presented in the applications in section 6.2, for the runup of a solitary

wave of incident height %: = 0.12, over two slopes of angle © = 20°, and 45°, and in
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section 6.3, for the runup of a cnoidal wave of incident height f—: = (.10, over a slope

of angle © = 20°.

These applications were selected for sake of comparison with results obtained by Liu

et al. *° (1992) with their nonlinear model, as part of the present NSF project.

Wave shoaling and breaking over a gentle slope : Grilli et al. ¢ (1991), Otta et
al. %% (1993), and Grilli & Subramanya ** (1993) used the model to calculate shoaling
of solitary waves over a gentle slope, up to initiation of breaking. Recently, cases
with periodic waves have also been calculated, to study the kinematics and integral

properties of breaking waves on beaches, very important for surf-zone dynamics.

Grilli et al. ¥ (1993), in particular, made a detailed study of shoaling of solitary
waves, up to breaking over various slopes, and compared their results to classical
Green’s and Boussinesq’s law, and to recent very careful laboratory experiments. They
concluded, whereas none of the theoretical “shoaling laws” could accurately predict
observed shoaling and breaking behaviors, the present fully nonlinear model agreed

with experiments up to the breaking point.

Otta et al. *° (1993), in addition, based on their calculations with the model, developed
a criterion for breaking of solitary waves over slopes, and analyzed the kinematics of

waves at breaking.

A similar case is presented in the application in section 6.4, for an incident solitary

wave of initial height f": = (.20, shoaling and (spilling) breaking over a slope s =1:35.

Wave interactions with submerged obstacles : Accurate prediction of water wave
propagation over submerged obstacles is of prime importance in coastal engineering.
Submerged breakwaters are becoming increasingly used as both aesthetic and econom-
ical means of shoreline protection against extreme storms and tsunamis. Natural reefs

and sandbars are frequent coastal features that function as natural submerged break-

96



waters. In addition, the study of waves close to the shoreline, and in the surf zone,
requires that the offshore wave climate is adequately “propagated” over any existing

submerged obstacle, man-made or natural.

Propagation of waves has been calculated with the present nonlinear model, over three
different types of submerged obstacles of various engineering implications. Cases with
both large incident waves or shallow submerged obstacles have been solved that lead to
strong nonlinear interactions between incident waves and the obstacles, and to various
instabilities and breaking of incident waves on, or downstream of the obstacles. It is
worth pointing out, these phenomena cannot be modeled by any of the standard wave

theories, and require a fully nonlinear theory to be accurately described,

— Step in the bottom : The simplest possible steep obstacle on the bottom is the
step discontinuity between two constant depth regions. Numerous studies of
the interaction of a long wave with a step have been carried out using various
wave theories, from linear to mildly nonlinear, and numerical models. The
main motivation for these studies has been to answer the question : How do
long waves behave when propagating from deep water into shallow water over
the continental shelf ? More specific questions have also been addressed, by
assuming the step represents a first approximation for a wide crested obstacle in
shallow water, like a bar, a reef, or even a submerged breakwater.

In this line, Grilli ez al. % (1992) have used the present model to study strong
nonlinear interactions—leading to breaking—of large solitary waves with steps
in the bottom. They compared numerical results to laboratory experiments, and

found fairly good agreement between both of these.

— Rectangular bar :  After the steps in the bottom, rectangular obstacles have
the simplest possible geometry for representing submerged bars or breakwaters.

One may expect, in fact, that most of the phenomena observed or computed over
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rectangular bars are, at least qualitatively, also occurring for obstacles of more

complex geometry.

Driscoll et al. 7 (1993) studied the propagation of small amplitude normally
incident cnoidal waves, over an infinitely long submerged shallow bar, with a
rectangular cross-section. They compared laboratory experiments to first and
second-order analytic models, and to the present full nonlincar BEM model.
They found the BEM model could accurately predict the generation of higher-
order harmonics, observed in laboratory, in the wave train downstream of the

obstacle.

Submerged trapezoidal breakwaters : Submerged breakwaters used for shore-
line protection are usually built by dropping rocks from barges at selected off-
shore locations. Breakwaters, hence, take an approximate trapezoidal shape.
The protection offered by submerged breakwaters consists in inducing breaking
and partial reflection-transmission of large incident waves, while small wave
propagation, and, in some cases, local navigation, can still take place over the

structure during normal conditions.

Cooker et al. '? (1990) used an extension of Dold & Peregrine’s ™ nonlin-
ear model, to calculate solitary wave interaction with a submerged semicircular
cylinder of radius R in water of depth h,. Results showed, a variety of behavior
occurs depending on wave height and cylinder radius. In short, for small cylin-
ders (f: < (0.5), waves essentially transmit and exhibit a tail of oscillations. This
is a regime of weak interactions. For larger cylinders (EB; > ().5), interactions
are much stronger : small waves partially transmit and reflect (crest exchange);
medium waves undergo a stronger crest exchange over the cylinder, and the first
oscillation in their tail may break backward onto the cylinder (direction opposite

to propagation); and large waves break forward (plunging), slightly after passing
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over the cylinder. A limited number of experiments confirmed these theoretical

predictions.

Grilli et al. * (1993) extended the above study to submerged breakwaters with a
more realistic trapezoidal cross-section. Computations using the present model
were compared to laboratory experiments, for a large number of solitary wave
heights H, and for a breakwater geometry defined by : a height h; = 0.8h,, a
width at the crest b = hy, and two (seaward and landward) 1:2 slopes. Results
qualitatively agreed with earlier observations by Cooker et al. '2, as far as crest
exchange and breaking behaviors are concerned. In all cases, a reflected wave
also forms at the breakwater front face, and starts propagating backward into the

tank.

e Wave impact on coastal structures : Two cases with more realistic coastal structures
have been studied in earlier applications with the model, illustrating its ability to
predict shoaling of incident waves from deep to shallow water, over a mild slope, and

interaction with a structure in the shallow water region.

In addition, the model was able to accurately predict peak impact pressures from
breaking waves, on the vertical wall of mixed breakwater. Such numerical simulations

are helpful for designing coastal structures.

— Mixed berm breakwaters : Most classical breakwaters used for shoreline or
harbor protection are constituted of a main trapezoidal breakwater, with a small
submerged berm at the toe of an emerged structure. Part of the incident wave
energy dissipates by breaking over the berm which, hence, offers some protection

to the main structure.

A similar case has been studied with the model by Grilli & Svendsen 36 (1991),

for which, unlike with traditional berm breakwaters, a small detached submerged
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structure has simply been located slightly in front of the main structure. The
combination of the two structures is called a “mixed berm breakwater”. This
configuration, while offering the same degree of protection, may be more eco-

nomical and simpler to build than classical berm breakwaters.

—~ Mixed vertical breakwaters : Mixed vertical breakwaters are composed of a
vertical concrete caisson, sitting on a wide berm made of rocks. They function
as vertical walls during high tide and as mound breakwaters during low tide.
Their upper section is designed to be safe against sliding and overturning due to
wave impact force. Laboratory and field experiments show, impacts of normally
incident breaking waves are the most severe. In this case, the maximum impact
force on the wall may rise up to 10 times the hydrostatic force based on wave

elevation at the wall.

Cooker ? (1990), and Cooker and Peregrine '' (1991), solving 2D fully nonlinear
potential flows, confirmed these observations. Their model, however, although
very accurate, was limited to a vertical wall, and used a large incident long wave,

with characteristics selected to create a large scale breaker in the model.

Grilli et al. *?%" (1992,1993) computed violent impact of breaking waves on
mixed vertical breakwaters, using the present nonlinear model. Laboratory
experiments were performed and compared to computations.

As pointed out in ', peak impact pressures are obtained for waves with large
height to depth ratio. This was achieved in ', by artificially introducing a very
high incident wave in the model. The present model works for arbitrary geometry
and wave conditions, which permitted using both more realistic incident waves,

and a breakwater geometry closely reproducing the experimental set-up.

Following are details of data and results for three specific applications of the model to

long wave shoaling, runup, and breaking over a plane slope.
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Although the model can address much more general problems, as described above,
detailed applications presented here have been limited to these simple, more academic cases,
both for sake of simplicity, and because of the focus of the present NSF sponsored research

project on long wave runup.

6.2 Solitary wave runup on a steep slope

The computational domain and set-up for this problem are similar to the case sketched in Fig.
2, except, due to the steep slope used in the present case, there is no need for, and therefore
there is no shallow shelf at the rightward extremity of the computational domain.

The runup of a solitary wave of incident height %:— = (.12, is calculated over two
different slopes of angle ©® = 20°, and 45°. The incident wave is generated by simulating a

piston wavemaker on the leftward boundary (I'y).

Discretization data can automatically be generated for this simple case, using the pre-
processing program GENER with the following input data file. The case with a 20° slope is
first presented (see Fig. 9 and corresponding table for definition),

120 7 55 0 0

2 3 3 0 0

3

3
30.0 1.0 0.0 20.0
10 0

Values of the above parameters generate a discretization with 120 2-node elements on
the free surface (these elements will be later specified as quasi-spline type), three 3-node
elements on the leftward boundary, seven 3-node elements on the rightward boundary (i.e.,
the slope in the present case), and 55 3-node elements on the bottom.

The domain has a length 30.0, a constant depth 1.0, and a slope angle 20°. There will

be 10 Gauss points per element, and no pre-specified subdivisions for adaptive integration.
Following is the (simplified) file generdata generated by the pre-processing program
GENER, with the above data (see Table 1 for details of formats),
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{\em (Total number of nodes and elements on the

are missing and have to be user-specified)}

254

(Nodes for boundary T ; free surface)

(Nodes for boundary T's; slope)

185

=, o O O O

29.
29.
29,
30.

30.
29.
25
29~

27
27
27

.0000000000
.2500000000
.5000000000
.7500000000
.0000000000

2500000000
5000000000
7500000000
0000000000

0000000000
8037516129
6075032258
4112548387

.8412677419

6450193548

.4487709676

Qo o O O O

o O o o

-0

=0,
=0+
-0.

.0000000000
.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0714285714
-0.

1428571429

.2142857143

7857142857
8571428571
9285714286
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o o o o o O O O O

o O O O

boundary; other data in first 4 lines

.0000000000
.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000

Qo o o O o o O o o

Lo SR == B o N o |

.0000000000
.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000



(Nodes for boundary I's; bottom)

27.2525225805

27.
27.
26.

2525225805
0025225805
7525225805

.5025225805
.2525225805
.0000000000

|
=

.0000000000

i

0000000000

.0000000000

it

=1,

1.
=il

(Nodes for boundary I's; piston wavemaker)

o O O o O O O

.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000
.0000000000

0000000000

0000000000
0000000000
0000000000

.0000000000
.8333333333
.6666666667
.5000000000

.3333333333
.1666666667
.0000000000

(Boundary Element connectivity matrix and parameters)

(Free surface)

= W N e

ol W

o O O O
o O O ©

o o o o

BN NN

10
10
10

(= = I

10

N = T = =

o O O O o o ©o

.0000000000

.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000
.0000000000
.0000000000
.0000000000

o O o o o o ©o

.0000000000

.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000

.0000000000
.0000000000
.0000000000
.0000000000
.0000000000
.0000000000
.0000000000



5 6
109 110
110 111
111 112
112: 113
120 121
(Slope)
122 122
134 135
(Bottom)
137 138
139 140
141 142
241 242
243 244
245 246
(Wavemaker)

o O O O

124

136

139
141
143

243
245
247

o o o O

o o o O

(ST S N S S

10

10
10
10
10

10

10

10

10
10
10

10
10
10
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248 249 250 0 0 3 10 1 2
250 251 252 0 0 3 10 1 2
252 253 254 0 0 3 10 1 2

We see, in the above file, GENER has generated a discretization with 254 nodes, and
185 elements. The initial distance between nodes is Az, = 0.25 on the free surface, 0.167
on boundary I';, 0.20 on boundary I';, 0.25 on boundary I'y. Element types are as requested
on each boundary segment.

Notice, in the above data, the number of subdivisions for adaptive integration has been
setto 1 (i.e., maximum 2 subdivisions if needed), for corner elements, and for slopes elements,
and for free surface elements above the slope. This was done using an editor, after generation

of the raw data.
The next task is now to specify values for all the parameters in the 4 first lines of the
input file, as described in Table 1. For the present application, these values have been set as

follows,

100 0 0 0.000000
0 0.7 0.7
.0000 0.0000 0.0000 1.0000
.0000 0.1200 0 1 0 10

254 185 1 1200 1 3
1 1 2 0 0 0
0.0800 0.00000 90.0000

o = o

0.0000 1.0000 1.0000
Details of the above parameter values are as follows,

e In the first line, we see, simplified data will be saved (1), we will calculate up to 1200
time loops (1200), a solitary wave will be generated using a piston wavemaker (3),
four intervals on the bottom will move with the wavemaker motion (4), and results will

be printed every 100 loops.

e In the second line, we see, the free surface is a Dirichlet boundary with quasi-spline
elements, the leftward lateral boundary is a wavemaker, and all other boundaries are

Neuman’s impermeable. Maximum angles for adaptive integration are 0.7 rad.
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e In the third line, we see, the initial time step At, = 0.09. The initial Courant number
is thus C, = At,/(Azov/gho) = 0.36 (with g = h, = 1). The initial time is t, = 0.,
the maximum time for stepping i$ tnae = 90.0, the water density p = 1.0, and the

gravity g = 1.0.

e In the fourth line, we see, the depth is constant to h, = 1.0 (with the unit value of
other parameters, we see, the problem is a nondimensional one), the wave height is

H,= H,[h, = 0.12.

These lines have to be placed at the top of the above listed input data file, using an editor.

The data file can now be given a name (e.g., runup.data), and the problem is ready to be
run as described in section 5.5 (command : radia runup e a). Similar data can be generated
for the case with a 45° slope, by just changing the angle © in the data file for GENER. The
average CPU time used per time for this run is 3.3s, on an IBM9000, i.e., 66min for the
whole run of 1200 time loops.

Results for the free surface elevation at successive times are presented in Fig. 10-12
(20° slope), and 14-16 (45° slope). One sees, waves propagate from left to right, up to about
t = 43, and 41, respectively. The maximum runup calculated on both slopes is R, = 2.351
(at t = 43.07), and R, = 2.275 (at t = 41.16), respectively, which agrees quite well with
computations by Liu er al. %, and experiments by Hall & Watts *' (1953). Waves then
rundown, reflect on the slopes, and propagate backward into the numerical tank, trailing a
(well resolved) tail of oscillations behind them, and one sees, these oscillations are more
pronounced for the smaller slope. After time ¢ = 60, the leading oscillations in the reflected
waves are seen to reflect on the wavemaker.

Fig. 13 and 17 show indicators of global accuracy of computations for each case,
respectively. These are the relative errors on total wave energy Ae/e, and volume Av /v,
in which e = 0.06762 and v = (0.83227 for the generated solitary wave, Av(t) is given in

file volu.data, and Ae(t) is given in file et.data. We see, both of these errors are very small
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quantities for the initial stages of wave propagation (O(1077)), and then gradually increase.
Errors both temporarily decrease during runup and rundown of the waves on the slopes, and
then increase to stabilize at about O(10~?) or smaller.

Many detailed results can be saved, listed, plotted, and discussed for these cases, as
detailed in section 5. These, however, can not be listed in the present report due to lack of

space.

6.3 Cnoidal wave runup on a steep slope

The runup of a cnoidal wave of incident height -‘E: = 0.10, and period T'y/g/h, = 20 (i.e.,
w = 0.31416, for which L/h, ~ 20) is calculated over a slope of angle © = 20°, using the
same discretization and initial data as for the first case with a solitary wave in the previous

section.
More specifically, the 4 lines of parameters in the input file runup.data now look as
follows,

254 185 1 1200 1 3 4 100 0 0 0.000000
1 1 2 0 0 0 0 0 0.7 0.7
0.0900 0.00000 90.0000 1.0000 0.0000 0.0000 1.0000
0.0000 1.0000 1.0000 0.31416 0.1000 0 1 0 10

in which parameters omega and voh, have been set to the right value, and the rest of the
data is unchanged.

Results for the free surface elevation at successive times are presented in Fig. 18-20.
One sees, waves propagate from left to right, and a first crest runs-up the slope at about
t = 36, reflects and propagates back into the tank, interacts with the second crest to produce
a slightly higher runup for the second crest at about ¢ = 56, and so forth.

Fig. 21 shows the relative error, AV/V/, on total volume of the computational domain
(V = 28.626), as afunction of time. One sees, this error is very small during all computations.

Fig. 21 also shows the paddle trajectory z,(t), as calculated in the program for generating
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Figure 10: Runup of a solitary wave of height H,/h, = 0.12, on a 20° slope. Axes are non-
dimensional with respect to depth h,, and figures correspond to successive dimensionless

time ¢
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the specified cnoidal wave, and the calculated runup at the shoreline R(t). One sees, the
first crest runs-up and down, to about twice its height, and the second and third crests run-up
to about 2.4 times the incident wave height, while keeping the same rundown value. These
results also fairly well agree with results by Liu et al. °, as far as we can tell from their
figure.

Many detailed results can again be saved, listed, plotted, and discussed for this case, but

will not be shown in the preent report due to lack of space.

6.4 Solitary wave shoaling and breaking over a gentle slope

A case similar to those calculated by Grilli & Subramanya 32 (1993), and Otta et al. ¢ is
presented in the following, for incident solitary waves of initial height {f—: = 0.10,0.15, 0.20,
shoaling and breaking over a 1:35 slope.

The computational domain is as sketched in Fig. 2. To improve accuracy of regular
integrations in the upper part of the slope where the domain geometry becomes very narrow,
a small shelf has been specified to the right of the domain, in depth A; = 0.1h,, unlike in
computations with steeper slopes reported in the previous sections. This is to avoid elements
on different parts of the boundary from getting too close to each other, thus leading to a
loss of accuracy of numerical integrations of the Green’s function kernels. This change in
geometry—as compared to a plain slope—does not affect shoaling and breaking of a solitary
wave, provided these occur as observed in the present case, before reaching the shelf, i.e.,
for ;= < 41.5.

The free surface discretization has 180 two-node quasi-spline elements, with Az! =
0.25, and there are 100 quadratic elements on the bottom and lateral boundaries. The total
number of nodes is 384. The distance between nodes on the bottom is (0.5 in the constant
depth region, and reduces to 0.40, 0.25, 0.20, 0.15, and 0.10 on the slope, in order to get

increased resolution where depth decreases. The distance between nodes is (.15 on the shelf
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bottom. Adaptive integration with up to 2'° subdivisions (as function of the geometry) is
specified on the free surface and on the bottom, for the elements located between z' = 36
and 45. The mesh Courant number is C, = 0.50 and, hence, At! = 0.125. With these data,
the CPU time is 10.2sec per time step (IBM9000).

The incident solitary waves are generated on the leftward lateral boundary of the domain,
using the numerical piston wavemaker. Fig. 22 shows stages of wave shoaling and breaking
calculated for h_fi = 0.20. During propagation, time step reduces down to At’' = 0.020 at the
time of breaking (¢ = 43.92). The total number of time steps is 680 and the average time
step is 0.065.

In Fig. 22a, free surface profiles are shown at six different times, up to the instant of
wave instability by spilling breaking (last profile). Fig. 22a and 22b show blow-ups of the
region over the slope where breaking occurs. Fig. 22b shows, breaking occurs at z; = 35.8,
with a wave height H, = 0.364, and a local ratio wave height over depth (“breaking index™)
%: = 1.38. This index is much larger than the usual design value for gentle slopes (~ 0.80),
and agrees to within 5% with measurements by Grilli et al. * (1993). Such an agreement
can only be obtained when full nonlinearity is used in the equations.

Detailed results of calculations for the three wave heights show, maximum relative errors
on volume and total energy are less than 0.01% for ' < 28., i.e., more than half the way
up the slope (Fig. 23). Notice, for {-ff = .10, the wave energy is e = 0.14977, and the
volume is v = 1.09765. In the last stages of shoaling over the slope, however, discretization
nodes gather in highly curved regions of the boundary where hydrodynamic jets are forming
(e.g., crest of an impending breaking wave in Fig. 22c), and scatter at some other areas
(e.g., wave troughs), leading to a less accurate description of the flow, and to larger errors.
Fig. 22c¢ shows, due to the rather long computational domain, only a few nodes end up
approximating the breaking wave jet on the free surface. This, hence, limits the jet resolution
or, more exactly, the period of time over which calculations are able to accurately follow the

jet further than the overturning point. To improve on this, it would be necessary to either use
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regridding, or a finer initial discretization.
In the present application, computations have been interrupted when relative errors
become greater than 1.5%. Fig. 23b shows, the energy error first reaches this threshold. The

last wave profile shown in all Figs. 22 corresponds to the time of maximum energy error.
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Figure 22: Shoaling of a solitary wave with initial height H = 0.20, over a 1:35 slope.

PLots correspond to : (a) six profiles at time ¢’ =

17.46, 37.21, 39.93, 40.40, 43.27, and

43.92 (left to right); (b) blow-up in full scale of last four profiles in (a), (- - - -) shoaling

curve; (¢) blow-up of last profile in (a), (o) BEM discretization nodes.
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