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ABSTRACT

A computer program called SBREAK has been developed by expanding the
computer program IBREAK which was developed in 1989 for the design of rough or
smooth impermeable coastal structures of arbitrary geometry against normally
incident monochromatic waves as well as for predicting the wave transformation
in the surf and swash zones on impermeable beaches. An additional option has
been provided in SBREAK to allow the specification of an incident solitary
wave as input at the seaward boundary of the computation domain. SBREAK
computes the reflected wave train at the seaward boundary for a specified
incident wave train. For a subaerial structure or beach, SBREAK computes wave
runup on its seaward slope or wave overtopping over the crest of the structure
or beach if it is not high enough to prevent flow over its crest. For a
submerged structure or nearshore bar, SBREAK computes the transmitted wave
train at the landward boundary of the computation domain. In addition to the
conservation equations of mass and momentum used to compute the one-
dimensional, time-dependent flow field, an equation of energy is used to
estimate the rates of energy dissipation due to wave breaking and bottom
friction. Moreover, SBREAK computes the hydraulic stability and sliding
motion of individual drmor units under the action of the computed flow if the

structure is protected with armor units.

First, the related numerical models published before SBREAK are
introduced to provide an overall perspective. Second, the equations and
numerical procedures used in SBREAK are summarized concisely. Third, the

essential parts of SBREAK are explained to facilitate the effective use of



SBREAK. The computer pfogram SBREAK consists of the main program, 37
subroutines and one function, which are written in self-explanatory manners.
The common parameters and variables are listed and explained so that users may
be able to modify SBREAK if necessary. The input parameters and variables
together ﬁith various options are detailed so as to reduce input errors. The
output parameters .and variables are also explained in detail so that users may

be able to make the best use of the output of SBREAK,

Finally, SBREAK is calibrated and evaluated using available data on
breaking or broken solitary wave runup on smooth uniform slopes. For an
efficient comparison of SBREAK with a large number of tests, the dimensionless
parameters involved in the problem are identified using the normalized
incident solitary wave profile and governing equations. The representative
solitary wave period and associated surf similarity parameter are introduced
so as to examine the similarity and difference between solitary and
monochromatic (regular) waves on smooth uniform slopes. The breaking, runup
and reflection of solitary and monochromatic waves are qualitatively similar
in terms of the surf similarity parameter. For given surf similarity
parameter, breaking solitary wave runup is definitely larger than breaking
monochromatic wave runup affected by the interaction between wave uprush and
downrush on the slope. The present numerical model is shown to be in good
agreement with the data of Synolakis (1987a) on breaking or broken solitary
wave runup with a limited‘calibration of the bottom friction factor employed
in SBREAK. Solitary wave overtopping and transmission could also be predicted

using SBREAK, although only solitary wave runup is examined in this report.
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DOCUMENTATION OF COMPUTER PROGRAM FOR PREDICTING LONG WAVE RUNUP

1. INTRODUCTION

1.1 Background

Kobayashi and Wurjanto (1989c) developed a computer program called IBREAK
for the design of rough or smooth impermeable coastal structures of arbitrary
geometry against normally incident monochromatic and transient waves. The
previous work based on IBREAK is summarizea in Section 1.2. 1In order to make
successful computations for incident random waves of long durations in an
efficient manner, Wurjanto and Kobayashi (1991) developed a computer program
called RBREAK by expanding IBREAK with an automated adjustment procedure of
the time step size for the explicit finite difference method used in IBREAK.
The previous work based on RBREAK is summarized in Section 1.3. Furthermore,
Wurjanto and Kobayashi (1992) developed a computer program called PBREAK by
extending RBREAK to simulate the flow inside a permeable underlayer of
arbitrary thickness as well as the flow above a rough permeable slope of
arbitrary geometry. The previous work related to PBREAK is explained in
Section 1.4. These numerical models have been calibrated and evaluated for
monochromatic and random waves only. Consequently, it is not certain whether
these models can also be applied to predict the runup of very long waves such
as tsunamis on beaches.

A computer program called SBREAK is presented in this report by expanding
IBREAK to predict the runup of solitary waves on beaches. SBREAK is
documented in such detail that other researchers will be able to apply or
modify SBREAK for their research projects. Examples are presented on the

basis of comparison between SBREAK and the laboratory data on solitary wave



runup presented by Synolakis (1987a, 1987b) and Synolakis and Skjelbreia

(1993) .

1.2 Previous Work Based on IBREAK

Kobayashi et al. (1986,1987) developed a numerical flow model to predict
the flow characteristics on a rough impermeable slope for specified normally-
incident monochromatic waves. The numerical flow model was based on the
finite-amplitude shallow-water equations including the effects of bottom
friction (Madsen and White, 1975, 1976) which were solved numerically in the
time domain using an explicit dissipative Lax-Wendroff finite-difference
method (Richtmyer and Morton, 1967; Hibberd and Peregrine, 1979; Packwood,
1980). A review of numerical methods developed for flows with shocks was
given by Moretti (1987). The adopted numerical method is a shock-capturing
method for which a separate treatment of a wave front (shock) is not required,
although it can not describe the detailed behavior of waves plunging on the
slope (e.g., Peregrine, 1983). The numerical flow model was developed in such
a way that any incident wave train could be specified at the toe of the slope.
The reflected wave train at the toe of the slope was computed from the
characteristics advancing seaward. Wave runup and run-down were predicted
from the computed osc?llation of the instantaneous waterline on the slope.
Comparison was made with available monochromatic wave test data for large-
scale uniform riprap slopes (Ahrens, 1975; Ahrens and McCartney, 1975) and
small-scale composite riprap slopes (Kobayashi and Jacobs, 1985). The
numerical model was shown to predict wave runup, run-down and reflection well

except for some uncertainties associated with the friction factor for the



rough impermeable slopes, the quantitative definition of visually-measured
wave runup and the seaward boundary condition used in the model.

Kobayashi and Otta (1987) developed a numerical stability model to
predict the hydraulic stability and sliding motion of armor units on a rough
impermeable slope under the action of specified normally-incident
monochromatic waves. The drag, lift and inertia forces acting on an armor
unit were expressed in terms of the fluid velocity and acceleration predicted
separately using the numerical flow model. The numerical stability model
predicts the variation of the local stability number along the slope whose
minimum value corresponds to the critical stability number for initiation of
armor movement. The critical stability number computed for available riprap
tests was shown to be in good agreement with the observed zero-damage
stability number (Ahrens, 1975; Kobayashi aﬁd Jacobs, 1985), although the lift
coefficient used in the model was calibrated within a reasonable range
(Sleath, 1984). The critical hydrodynamic conditions for the minimum armor
stability were shown to be different for plunging, collapsing and surging
waves.

Kobayashi and Greenwald (1986,1988) performed an experiment to calibrate
and evaluate the developed numerical models in more detail. Eight test runs
were conducted in a wave tank using a 1:3 glued gravel slope with an
impermeable base. For each run with the specified monochromatic wave train
generated in a burst, measurements were made of the free surface oscillation
at the toe of the slope, the waterline oscillation on the slope, the temporal
variations of dynamic pressure on the base of the slope and the displacements
of loose gravel units placed on the glued gravel slope. The calibrated

numerical models were shown to be capable of predicting the measured temporal



variations of the hydrodynamic quantities and the measured spatial variations
of the amount of the gravel movement,

Kobayashi and Watson (1987) applied the developed numerical flow model to
predict wave reflection and runup on smooth impermeable slopes by adjusting
the friction factor and the water depth specifying visually observed wave
runup. Comparison with available empirical formulas (Seelig, 1983; Ahrens and
Martin, 1985) indicated that the numerical flow model could also predict
monochromatic wave reflection and runup on smooth slopes. Furthermore, the
experiment conducted using the 1:3 glued gravel slope was repeated using a 1:3
plywood slope. The adjusted numerical flow model was shown to predict the
measured temporal variations of the hydrodynamic quantities on the smooth
slope as well. This comparison suggested that the numerical flow model
developed for coastal structures could also be used to predict the flow
characteristics in the swash zone on a beach. The applications of the
numerical flow model for predicting the wave transformation and swash
oscillation on beaches were presented by Kobayashi et al. (1988,1989), whereas
the prediction of the sliding motion of individual sand particles was
attempted by Kobayashi and DeSilva (1987).

Kobayashi and Wurjanto (1989a) predicted the monochromatic wave
overtopping over the crest of an impermeable coastal structure located on a .
sloping beach by modifying the numerical flow model. The modified model
accounted for wave shoaling on the sloping beach in front of the structure
located in relatively shallow water. The average overtopping rate per unit
width was computed from the predicted temporal variations of the velocity and
depth of the flow over the crest of the structure. The computed average

overtopping rates were shown to be in agreement with the extensive small-scale



test data of Saville (1955) for which smooth impermeable structures were
fronted by a 1:10 slope.

Kobayashi and Wurjanto (1989b) predicted the monochromatic wave
reflection and transmission over a submerged impermeable breakwater by
modifying the numerical flow model. The modification was related to the
landward boundary condition required for the transmitted wave propagating
landward. In addition to the equations of mass and momentum used to compute
the flow field, an equation of energy was used to estimate the rate of energy
dissipation due to wave breaking. The computed reflection and transmission
coefficients were shown to be in agreement with the small-scale test data of
Seelig (1980). The numerical model also predicted the spatial wvariation of
the energy dissipation, the mean water level difference, and the time-averaged
volume flux per unit width, although available measurements were not
sufficient for evaluating the capabilities and limitations of the numerical
model for predicting these quantities.

Kobayashi and Wurjanto (1989e) showed that IBREAK could be calibrated and
applied to predict the hydrodynamic forces and sliding motions of dolos units
at the Crescent City Breakwater in California. The calibrated numerical model
was used to hindcast the response of the dolos units during a storm. The
hindcast results were shown to be consistent with the measured results
including the upslope.movement of poorly interlocked dolos units and the
importance of the static and wave forces with negligible impact forces. The
numerical model was then used to predict the response of the poorly and well
interlocked dolos units under extreme wave conditions. The predicted results

have suggested that the wave forces acting on these dolos units may possibly
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exceed the static forces, while the poorly interlocked dolos units may move
considerably, resulting in possible impact forces.

Other researchers (e.g., Allsop et al. 1988; Thompson 1988; Van der Meer
and Breteler 1990; Losada et al. 1992) applied the numerical model IBREAK or a
similar numerical model to predict the monochromatic wave motion on coastal
structures and evaluated the accuracy of the numerical models using their own
laboratory measurements. As a whole, their results are consistent with our
experiences with IBREAK for the last several years. The numerical model
IBREAK is fairly versatile and robust although it is not as accurate as

careful hydraulic model tests.

1.3 Previous Work Based on RBREAK

IBREAK was initially used to simulate irregular waves on the slope of a
coastal structure since any incident wave train can be specified as input to
IBREAK at the seaward boundary of the computation domain. However, the
irregular waterline oscillation on the slope was found to cause numerical
difficulties and stoppage during the computation of a sufficient duration for
a stationary random sea. The constant time step size At for the explicit
finite difference method used in IBREAK was reduced to overcome the numerical
difficulties. This increased the computation time considerably but did not
always work.

To avoid the unnecessary increase in the computation time, it was decided
to vary the time step size At such that smaller values of At should be used
for portions of the computation with numerical difficulties. Since the
portions with numerical difficulties are not known in advance, the time-

marching computation needs to be reversed to an earlier time level before the
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initiation of the current numerical difficulty and then resumed from the
reversed time level using a smaller value of At. To reduce the computation
time, the value of At needs to be increased after overcoming the current
numerical difficulty. This adjustment procedure was automated. The computer
program RBREAK was hence an expanded version of IBREAK with the automated
adjustment procedure which is really essential for making successful
computations for incident random waves of sufficient durations in an efficient
manner.

Kobayashi, Cox and Wurjanto (1990) conducted three irregular wave test
runs to obtain detailed data on irregular wave reflection and run-up on a 1:3
rough impermeable slope. The test results were also used to evaluate the
capabilities and limitations of RBREAK for predicting the time series and
spectral characteristics of the reflected wave and waterline oscillations on
the slope. The numerical model was shown to predict the measured time series
and spectra reasonably well, including the selective nature of wave reflection
and dissipation as well as the appearance of low-frequency components in the
waterline oscillations on the 1:3 slope.

Kobayashi and Wurjanto (1992) derived the one-dimensional equations of
mass, momentum, and energy from the two-dimensional continuity and Reynolds
equations in order to elucidate the approximations involved in the one-
dimensional equations employed in the numerical model. The numerical model
RBREAK based on these equations was then compared qualitatively with the set-
up and swash statistics on a moderately steep beach with a nearshore bar. The
numerical model was shown to predict the essential features of the irregular
wave transformation and swash oscillation on the barred beach. The computed

set-up and swash heights were found to follow the lower bound of the scattered
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data points partly because of the neglect of low frequency components in the
specified incident wave train. A more quantitative comparison was also made
with the spectrum of the shoreline oscillation measured on a 1:20 plane beach
for which the corresponding wave spectrum was given. RBREAK was shown to
predict the dominant low frequency components of the measured spectrum fairly

well.

1.4 Previous Work Related to PBREAK

Kobayashi and Wurjanto (1990) developed a numerical model to predict the
flow and armor response on a rough permeable slope as well as the flow in a
thin permeable underlayer for a normally-incident wave train. This model
based on the assumption of a thin permeable underlayer neglected the region
landward of the waterline on the rough slope and the inertia terms in the
horizontal momentum equation for the flow in the thin permeable underlayer.
Computation was made for six test runs to examine the accuracy and capability
of the numerical model for simulating the fairly detailed hydrodynamics and
armor response under the action of regular waves. The computed critical
stability number for initiation of armor movement was compared with the
measured stability number corresponding to the start of the damage under
irregular wave action to quantify the limitations of the regular wave
approximation. The computed wave runup, run-down, and reflection coefficients
were shown to be in qualitative agreement with available empirical formulas
based on regular wave tests. Kobayashi and Wurjanto (1989d) applied the
developed numerical model to hypothetical permeable slopes corresponding to
available impermeable slope tests. The computed results with and without a

permeable underlayer indicated that the permeability effects would increase
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the hydraulic stability of armor units noticeably and decrease wave runup and
reflection slightly. The computed results were qualitatively consistent with
available data although they were not extensive and limited to regular waves
only.

Kobayashi, Wurjanto and Cox (1990a) applied the developed numerical model
to compute the irregular wave motion on a rough permeable slope. The
normally-incident irregular wave train characterized by its spectral density
at the toe of the slope was generated numerically for six test runs. The
computed critical stability number for initiation of armor movement under the
computed irregular wave motion was shown to be in fair agreement with the
measured stability number corresponding to the start of the damage (Van der
Meer 1988). The comparison of the computed armor stability for the incident’
regular and irregular waves indicated that the armor stability would be
reduced appreciably and vary less along the slope under the irregular wave
action. On the other hand, the comparison between the computed reflected wave
spectrum and the specified incident wave spectrum indicated the reflection of
Fourier components with longer period and the dissipation of Fourier
components with shorter periods, while the average reflection coefficient
increased with the increase of the surf similarity parameter. The computed
waterline oscillations were examined using spectral and time series analyses.
The computed spectra of the waterline oscillations showed noticeable low-
frequency components, which increased with the decrease of the surf similarity
parameter. The statistical analysis of individual wave runup heights
indicated that the computed runup distribution followed the Rayleigh

distribution fairly well for some of the six test runs. The computed maximum
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wave runup was in agreement with the empirical formula based on irregular wave
runup tests.

Furthermore, Kobayashi, Wurjanto and Cox (1990b) analyzed the computed
results for the six test runs to examine the critical incident wave profile
associated with the minimum rock stability for each run. The minimum rock
stability computed for the runs with dominant plunging waves on gentle slopes
was caused by the large wave with the maximum crest elevation during its
uprush on the slope. The minimum rock stability computed for the runs with
dominant surging waves on steeper slopes was caused by the downrushing water
with high velocities resulted from a large zero-upcrossing wave with a high
crest followed by a deep trough. These computed results may,eventualiy allow
one to quantify incident design wave conditions more specifically than the
simple approach based on the representative wave height and period. In
addition, a simplified model was proposed to predict the eroded area due to
the movement and dislodgement of rock units using the probability of armor
movement computed by the numerical model. This model was shown to be in
qualitative agreement with the empirical formula for the damage level proposed
by Van der Meer (1987, 1988).

The numerical model based on the assumption of a thin permeable
underlayer was found to be inapplicable to three test runs conducted fér a 1l:3
rough permeable slope with a thick permeable underlayer (Kobayashi, Cox and
Wurjanto 1991). The computed results did not satisfy the time-averaged
equation of mass conservation mainly because the earlier model did not account
for water storage in the region landward of the waterline on the slope. These

three test runs corresponded to the three test runs for the 1:3 rough
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impermeable slope conducted by Kobayashi, Cox and Wurjanto (1990) except for
the presence of the thick permeable underlayer.

Wurjanto and Kobayashi (1993) developed a one-dimensional, time-dependent
numerical model to simulate the flow over a rough permeable slope as well as
the flow inside the permeable underlayer of arbitrary thickness for specified
normally-incident irregular waves. The derivation of the one-dimensional
continuity, momentum and energy equations employed in the numerical model was
presented to clarify the basic assumptions.made in these equations. The
comparison of the numerical model with the three test runs conducted by
Kobayashi, Cox and Wurjanto (1991) has shown that the numerical model can
predict the time series and spectral characteristics of the reflected waves
and waterline oscillations on the 1:3 rough slope with the thick permeable
underlayer. The computed results for the three runs have indicated that the
wave propagation, attenuation and setup inside the permeable underlayer reduce
the intensity of wave breaking and resulting energy dissipation on the slope
but increase the energy influx and dissipation inside the thick permeable
underlayer. The permeability effects also result in the time-averaged
landward and seaward mass fluxes above and inside the permeable underlayer,
respectively. Furthermore, Kobayashi and Wurjanto (1993) compared the
computed results for the rough permeable and impermeable slopes to quantify

the differences caused by the thick permeable underlayer.

1.5 Scope and Outline

The numerical model SBREAK is based on the one-dimensional finite-
amplitude shallow-water equations including the effects of bottom friction.

SBREAK is suited for predicting nonlinear long wave runup on an impermeable
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slope of arbitrary geometry and roughness characteristics. Since various
options included in IBREAK may be useful to users of SBREAK, these options are
kept in SBREAK. The specification of an incident solitary wave as input to
SBREAK is added herein to compute solitary wave runup and reflection. The
automated adjustment procedure of RBREAK is omitted herein since this
procedure is lengthy and may not be necessary for solitary waves of relatively
short durations. The permeable underlayer included in PBREAK is not
considered herein partly because of the compactness of the resulting computer
program and partly because the permeability effects are likely to be less
important than the roughness effects for tsunamis.

The numerical model is explained in Section 2 together with the options
for specifying the three types of incident waves as well as for computing wave
reflection, runup, ovértopping, transmission, energy dissipation, and armor
stability and movement. The computer program SBREAK is documented -in Section
3. SBREAK consists of the main program, 37 subroutines and one function,
which are written in self-explanatory manners. The common parameters and
variables are listed and explained since a large number of parameters and
variables are involved in SBREAK. The input parameters and variables together
with various options are detailed so as to minimize input errors. The output
parameters and variables are also explained in detail since the proper
interpretation of the computed results is essential. SBREAK is compared with
available data on solitary wave runup on a smooth uniform slope in Section 4.
An example of the input and output is also provided. The compared results are
elucidated to evaluate the capabilities and limitations of SBREAK for
predicting solitary wave runup as well as to quantify differences between

solitary and monochromatic wave runup.
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2. NUMERICAL MODEL

2.1 Governing Equations

The wave motion on a rough or smooth impermeable slope is computed for
the normally incident wave train specified at the seaward boundary of the
computation domain as shown in Fig. 1 for the case of a rough slope. The
prime indicates the dimensional wvariables in the following. The symbols shown
in Fig. 1 are as follows: x’' = horizontal coordinate taken to be positive
landward with x'=0 at the seaward boundary; z’' = vertical coordinate taken to
be positive upward with z'=0 at the still water level (SWL); dé = water depth
below SWL at the seaward boundary; #' = local angle of the slope which may
vary along the slope; n' = free surface elevation above SWL; h’ = water depth
above the impermeable slope; and u’ = depth;averaged horizontal velocity.

For finite-amplitude shallow-water waves over the gentle impermeable
slope, the vertically-integrated equations for mass and x'-momentum may be

expressed as (Kobayashi et al., 1987; Kobayashi and Wurjanto, 1992).

oh' P K
ag T gy W) =0 (1)

L fqq! i tagt 2 PR !al__l_ 1 ] [

gor (B'w') + 57 (B'u'?) = —gh! = — 5 £ |u’|u B

where t' = time; g = gravitational acceleration; and f' = friction factor
related to the shear stress acting on the slope. The friction factor f' is
assumed constant, although it could be varied spatially. In this simplified
analysis, the constant friction factor f’ accounts for the roughness

characteristics of the impermeable slope surface. The range of f’
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used in the previous applications was f' = 0.05-0.3 for rough slopes and f' =
0.01-0.05 for smooth slopes. The computed results except for wave runup and
overtopping were not sensitive to f£'. Relatedly, the theoretical bed level
for the flow over the rough impermeable slope is difficult to pinpoint as is
the case with oscillatory rough turbulent boundary layers (Jonsson, 1980).

The following dimensionless variables and parameters based on the

assumption of finite-amplitude shallow-water waves are introduced to normalize

Egqs. 1 and 2:
t=t'"/Tr ; x=x'/[T(gip)¥2] ; u = u'/(gHp)l/2 (3)
z=z'/H ; h=h'/He ; n=r1n'/Hy ; de = de/Hy (%)
o = Tp(g/Hp)Y2 ; 8 =0 tand' ; £ = of'/2 (5)

where Té = representative wave period; H; = representative wave height; ¢ =
dimensionless parameter expressing the ratio between the characteristic
horizontal and vertical length scales; § = dimensionless gradient of the
slope; and f = normalized friction factor. The present numerical model
assumes that o2 >> 1 and (cot ﬂ’)2>>1 in the computation domain (Kobayashi
and Wurjanto, 1992). The representative wave period and height used for the
normalization can be taken as the period and height used to characterize the

incident wave for a particular problem. Substitution of Eqs. 3-5 into Eqs. 1

and 2 yields

dh 3

E""é‘;(hu)-() (6)
_g. _3 2 l 2 PNl —
3¢ (hw) + 3= (hu? + 5 h?) = - gh — flu|u (7
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where § and f express the effects of the slope and friction, respectively.
For a uniform slope, ¢ in Eq. 7 can be replaced by the surf similarity
parameter, £ = §/(2x)'/? (Battjes, 1974). In terms of the normalized

coordinate system, the slope is located at

v

>'4
z = [ fdx — d¢ ! X 0 (8)
0

which reduces to z = (#x — d¢) for a uniform slope.

The initial time t=0 for the computation marching forward in time is
taken to be the time when the specified incident wave train arrives at the
seaward boundary located at x=0 as shown in Fig. 1. The initial conditions
for the computation are thus given by =0 and u=0 at t=0 in the region x=0.
It is noted that h and n are uniquely related for given slope geometry
expressed by Eq. 8.

In order to derive appropriate seaward and landward boundary conditions,

Eqs. 6 and 7 are expressed in the following characteristic forms

da - S flulu | dx

It + (u+c) Ix [ h : e~ + e (9)

B, ueey B _ gy flulu . oax

3t+ (u—c) ax e + ™ 2 T u-—c (10)
with c=ht2 ; a=u+2 ; B=-u+ 2 (11)

where a and B are the characteristic variables.

Assuming that u < ¢ in the vicinity of the seaward boundary where the
normalized water depth below SWL is dy, a and § represent the characteristics
advancing landward and seaward, respectively, in the vicinity of the seaward
boundary. The total water depth at the seaward boundary is expressed in the

form (Kobayashi et al., 1987)
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h = d¢ + ni(t) + ne(t) at x =0 (12)

where nj and 7, are the free surface variations normalized by H; at x=0 due to
the incident and reflected waves, respectively. The incident wave train is
specified by prescribing the variation of n; with respect to t = 0. The
normalized reflected wave train n, is approximately expressed in terms of the

seaward advancing characteristic g at x=0

np(t) = % at? pte) = dp = B at x =0 (13)
where B is given by Eq. 10. The correction term C¢ in Eq. 13 introduced by
Kobayashi et al. (1989) to predict wave set-down and set-up on a beach may be

expressed as

By = 5 A

5 (n = m(u-u) (h)? at x =0 (14)

where the overbar denotes time averaging. For coastal structures, the
nonlinear correction term Cy expressed by Eq. 14 is normally negligible and
use may be made of Cp = 0.

The landward boundary condition of the numerical model depends oﬁ the
crest height of a structure as will be explained in relation to the numerical

procedures for wave runup, overtopping and transmission.

2.2 Numerical Method

Eqs. 6 and 7 are combined and expressed in the following vector form:

au  aF
at + % + G =20 (15)
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with

U = [E] ; F - qu+g.5h2] : G [8h+féu|u] (16)

where m = uh is the normalized volume flux per unit width. The vectors F and
G depend on the vector U for given 4 and f.

Eq. 15 is discretized using a finite difference grid of constant space
size Ax and constant time step At based on an explicit dissipative Lax-
Wendroff method (e.g., Richtmeyer and Morton, 1967). In the following, the
known quantities at the node located at x=<j—1)Ax (j=1,2,...,8) and at the
time t=(n—1)At are indicated by the subscript j without a superscript. The
integer s indicates the wet node next to the moving waterline at t=(n—1)At for
the case of wave runup and the node at the specified landward boundary for the
case of wave overtopping or transmission. The unknown quantities at the node
j and at the time t=nAt are denoted by the subscript j with the superscript *
where the asterisk indicates the quantities at the next time level. The
values of Uf and Ug for j = (s—-1) are computed using the seaward and landward
boundary conditions, respectively. The values of Uf for j=2,3,...,(s-2) are
computed using the known values of Uj.;, Uj and Uj4; at the time t=(n-1)At

J
(Kobayashi et al., 1987)

1
U}r - Uj e /\I: -Z-(Fj.H - Fj-l) + Aij ]
A
+2—(gj-gj_l—ﬁx SJ) +DJ' (17)

where A = At/Ax. The vector gj in Eq. 17 is given by

1 Ax
gj = 3 [Aj+1 + AJ] [Fj+1 = By * = [Gj+1 + GJ]:’ (18)
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with

B 2u (h — u?)
A - [ 1 : 0 } (19)
The vector Sj in Eq. 17 is defined as
gy | 250 705 By g = Wgesd | (20)

with ' 3 5 =1
ej = 2f|uj|h;j [[uj — hj ][hj+1 - hj_,] [21‘.‘.}{]

d ;
= uj [mj+1 - mj_l] [ZAX] - thj — f|UjIUjj‘ 2D

The vector Dj in Eq. 17 represents the additional term for damping high
frequency parasitic waves, which tend to appear at the rear of a breaking

wave, and is given by

A
;=3 [Qj [“jﬂ B Uj] = 81 [“j B Uj-z” k=22
with
Q = by T+ 5 a5 (A5 + g (23)

where I = unit matrix; and the coefficients Pj and qj are given by

1 -1
Pj =3 [Cj + Cj+1] [52|Wj+1 = wjl [VJ' ¥ Vj“]
~ elvin = vyl [ + v - .
by |
qj = [Cj + Cj+x] [€1|Vj+1 . Vj] - E2|""j+1 - w.'il] (25)
with -
c = hl/2 . v=1u+oc¢ H Wmam gy —C (26)

where ¢, and €, are the positive damping coefficients determining the amount
of numerical damping of high frequency parasitic waves at the rear of a

breaking wave. The values of ¢; = ¢, = 1 or €; = ¢, = 2 have been used in
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previous computations. The increase of €, and ¢, tends to improve numerical
stability with negligible effects on computed results (Kobayashi and Wurjanto,
1992).

The numerical stability criterion for this explicit finite difference

method is given by (Packwood, 1980)
At 4 ) el
< (lual +ea) ™ [+8) - £ (27)

where up = maximum value of u expected to be encountered in the flow field:

¢y = maximum expected value of h'/?; and ¢ = greatest coefficient of ¢, and

€;. The values of At, Ax, €; and ¢, need to be specified, considering the
numerical stability criterion and desirable spatial and temporal accuracy as
will be discussed in Section 4 where the numerical model is compared with data

on solitary wave runup.

2.3 Incident Wave Profile

The normalized incident wave profile, ni(t) = ni(t’)/ﬂé, with t = t'/T;
at the seaward boundary of the computation domain needs to be specified as
input where H; and T; are the representative wave height and period used for
the normalization in Eqs. 3-5. The temporal variation of ni(t) can be the
measured incident wave profile at the seaward boundary in the absence of a
coastal structure (Kobayashi and Greenwald, 1986,1988). If no data on the
incident wave profile is available, an appropriate wave theory may be used to
specify nj(t) for t = 0 such that ni = 0 at t = 0 to be consistent with the
assumed initial conditions of no wave action in the region of x = 0 at t = 0.

The computer program SBREAK provides three options using the integer

IWAVE specified as input. For IWAVE = 1, an incident monochromatic wave train
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is computed using Stokes second-order or cnoidal wave theory depending on the
value of the Ursell parameter. For IWAVE = 2, the incident wave profile nj(t)
is read from a file. This option has been used for the cases where the
incident wave profiles were measured in a wave flume or generated numerically
using separate subroutines developed for random waves (Cox et al., 1991). For
IWAVE = 3, an incident solitary wave train is computed as explained in Section
2.3.2. The computed results presented in this report are limited to solitary

waves with IWAVE = 3.
2.3.1 Monochromatic waves

For the case of IWAVE = 1, the computer program SBREAK uses cnoidal or
Stokes second-order wave theory to specify the periodic variation of ni(t).
The height and period of the incident monochromatic wave at the seaward
boundary located at x = 0 are denoted by H' and T'. The reference wave period
T; is taken as Té = T' for the incident monochromatic wave. The reference
wave height H; specified as input may be referred to deep water (Kobayashi and
Wurjanto, 1989a) or the location of wave measurement (Kobayashi et al, 1988).
Since the numerical model is based on the finite-amplitude shallow-water
equations given by Eqs. 1 and 2, the seaward boundary should be located in
relatively shallow water. As a result, it is not always possible to take H; =
H'. Defining Kg = H’/H;, the height and period of the monochromatic wave
profile nj(t) at x = 0 is Kg and unity, respectively.

For Stokes second-order wave theory (e.g., Shore Protection Manual,

1984), the normalized incident wave profile nj(t) at x = 0 is given by

ni(t) = Kg (0.5 cos[2x(t+t,)] + a, cos[4m(t+ty)]) for t =2 0 (28)

with
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d -1
a, = ?—I-‘T cosh [2—8 [2 + cosh[i%]] [162{_: sinh?® [2%]] (29)

L =1L tanh[g%] (30)

where t,= time shift computed to satisfy the conditions that ni =0att=20
and nj decreases initially; a, = normalized amplitude of the second-order
harmonic; L = L’/d; with L' = dimensional wavelength at x = 0; and Ly = Lé/dé
with Lé = gT'2?2/2x being the wavelength in deep water. The normalized
wavelength L satisfying Eq. 30 for given L, is computed using a Newton-Raphson
iteration method. Eq. 29 yields the value of a, for given dy = dé/H;, Kg and
L. Since Eq. 28 satisfies nj(t+l) = nj(t) and nj(-t-t,) = ni(t+ty), it is
sufficient to compute the profile ni(t) for 0 < (t+t,) < 0.5. Eq. 28 may be
appropriate if the Ursell parameter Up < 26 where U, = (H'L'Q/dé3) = (KgL?/d:)
at x = 0, It is notéd that the value of U, based on the normalized wavelength
L computed from Eq. 30 is simply used to decide whether cnoidal or Stokes
second-order wave theory is applied.

For the case of Uy = 26, cnoidal wave theory (e.g., Svendsen and Brink-

Kjaer, 1972) is used to compute the normalized incident wave profile ni(t) at

x =0
ni(t) = . Kg en? [2K(t+t,) ] for t = 0 (31)
with i
S E
ia ~ 5 25 % 32)

where Uit ™ normalized trough elevation below SWL; en = Jacobian elliptic
function; K = complete elliptic integral of the first kind; E = complete

elliptic integral of the second kind; and m = parameter determining the
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complete elliptic integrals K(m) and E(m). The parameter m is related to the

Ursell parameter U,

= — mK? (33)

For Uy = 26, the parameter m is in the range 0.8 < m < 1. The parameter m for

given o, dt and Kg is computed from

K E 1/2
|1+ |-m+2-32 -1=0 (34)
1/2 md K
Ldg

where the normalized wavelength L is given by Eq. 33 as a function of m for
given di and Kg. The left hand side of Eq. 34 is a reasonably simple function
of m in the range 0.8 < m < 1. As a result, Eq. 34 can be solved using an
iteration method which successively narrows‘down the range of m bracketing the
root of Eq. 34. After the value of m is computed for given o, di and Kg, the
values of Up and L are computed using Eq. 33, while Eq. 32 yields the value of
. The incident wave profile nj(t) is computed using Eq. 31 for 0 < (t+t,)
=< 0.5 where the time shift t, and the periodicity and symmetry of the cnoidal
wave profile are used in the same manner as the Stokes second-order wave
profile given by Eq. 28. It should be mentioned that the Jacobian elliptic

function and the complete elliptic integrals of the first and second kinds are

computed using the subroutines given by Press et al. (1986).

2.3.2 Solitary wave

For the case of IWAVE = 3, the computer program SBREAK uses solitary wave
theory to specify the normalized incident wave profile nj(t) at x = 0.
Solitary wave theory corresponds to cnoidal wave theory as the Ursell

parameter U, approaches infinity (e.g., Dean and Dalrymple, 1984). As Uy
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approaches infinity, the cnoidal wave parameters m and E approach unity, while
the parameter K approaches infinity. Substitution of m = 1 and E/K = 0 into
Eq. 32 yields Vot ™ 0. Moreover, for m = 1 and E/K = 0, Eq. 34 with L being

given by Eq. 33 results in 2K = Ky where K3 is given by

3 e Kg) 172
K2 =5 a Kg + d, (35)

Correspondingly, the normalized solitary wave profile may be expressed as
ni(t) = Kq sechz[Kz(t - tc)] for t = 0 (36)

where t, = normalized arrival time of the solitary wave crest such that nj =
Kg at t = t,. It is noted that Eqs. 35 and 36 can also be derived by
normalizing the dimensional solitary wave profile using Eqs. 3-5 together with
Kg = H'/Hy and t, = t&/Ts.

In order to compute nj(t) as a function of t = 0 using Egqs. 35 and 36,
the parameter t. and the reference wave period T{ included in ¢ = Tf(g/Hf)l/z
for the solitary wave need to be specified. Since the time t’ is normalized
as t = t'/Ty, the unit duration (to — 0.5) < t < (t. + 0.5) about the crest
arrival time t. may be selected such that nj = §; in this unit duration where

6i needs to be very small and is given by
2 |K2
85 = Kg sech > (37)
which can be rewritten as

K2=2£n[F+ 53—1] (38)
61 61

In the computer program SBREAK, a small value of §; = 0.05 is specified on the

basis of the sensitivity analysis performed in Section 4.1. Then, Eq. 38
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yields the value of Ky for given Kg. Eq. 35 is rearranged to compute the

value of ¢

2
2d K )-1/2
o = 7§t [KS + Eﬁ ] Ko (39)

/2

The reference wave period Ty = o(Hf/g)l can thus be estimated for the
specified small value of §j. On the other hand, the initial value of nj at

t=0 is given by
ni (£=0) = K¢ sech? (Kp tg) (40)

Since the initial conditions for the computation are taken to be =0 at t=0 in
the region x = 0, the value of t. needs to be selected such that ni(t=0) is
essentially zero. In the computer program SBREAK, t, = 1 is specified on the
basis of the sensitivity analysis performed in Section 4.1 as well as to make
it easier to interpret the computed temporal variations relative to the crest

arrival time t.=1.
2.4 Wave Reflection

The normalized reflected wave train n,(t) in Eq. 12 at the seaward
boundary is computed using Eq. 13. It is also required to find the unknown
value of the vector Uf at x = 0 at the time t = nAt which can not be computed
using Eq. 17.

A simple first-order finite difference equation corresponding to Eq. 10

with £ = 0 is used to find the value of ﬂf at x = 0 and the time t = nAt

BY = By - 55 (uy = ¢,) (B, — By) + ath, (41)
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where B, = (-u; + 2¢,) and B, = (-u, + 2¢,). The right hand side of Eq. 41
can be computed for the known values of Uj with j = 1 and 2 at the time

t = (n—1)At where the spatial nodes are located at x = (j—1)Ax. The value of
ny at the time t = nAt is calculated using Eq. 13. Eq. 12 yields the value of
h}, while u} = [2(h})Y/2 - BF] using the definition of B given in Eq. 11.

f and mf = ufhf at x = 0 and t = nAt are obtained.

Thus, the values of hf, u
The nonlinear correction term Cy given by Eq. 14 needs to be estimated to

compute 7n,(t) using Eq. 13. For incident monochromatic waves on gentle

slopes, Cy may be estimated by (Kobayashi et al., 1989)
Ce = K2 (16dy) 71 for gentle slopes (42)

where the assumptions of linear long wave and negligible wave reflection were’

made in Eq. 14 to derive Eq. 42. For coastal structures, wave reflection may

not be negligible. It is hence suggested to choose the location of the

seaward boundary so that Ct may be assumed to be C¢ = 0 for coastal

structures. This assumption may be checked using Eq. 42 as a rough guideline.
The reflection coefficient for incident monochromatic waves may be

estimated using the following equations (Kobayashi and Wurjanto, 1989b)

By = [rd e = <”r)min] Kg™1 (43)
sy 7 ey AA7R '

r, = | n¢ [ ni] ] (44)
P ——————— 5.y 1172

rg = | (nx — np)? [ ni] ] (45)

where the subscripts max and min indicate the maximum and minimum values of
ny(t) after the periodicity of n,(t) is established, whereas the overbar

indicates the time averaging of the periodic variation. The normalized height
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of the periodic variation of nj(t) is equal to Kg. Eq. 43 is based on the
normalized height of the reflected wave train as compared to that of the
incident wave train. Eqs. 44 and 45 are based on the time-averaged reflected
wave energy as compared to the time-averaged incident wave energy, ;E = K%/8,
where the'energy is estimated using linear wave theory. Eq. 45 accounts for
the difference n, between the still water level and the mean water level at x
= 0 where nj(t) is specified such that E; = 0. The method used to compute the
reflection coefficient should be consistent with the method used to estimate
the reflection coefficient from measured free surface oscillations. If the
temporal variations of 5,(t) and nj(t) are sinusoidal, Eqs. 43 and 44 yield
r, = r,. It may be noted that Eqs. 44 and 45 may also be used for incident
random waves if the irregular variations of 5j(t) and n,.(t) for a long
duration are used to compute the time-averaged values. For an incident
solitary wave, the temporal variations of 5j(t) and 5,(t) should be compared,
although Eqs. 43-45 may still be used to estimate the degree of wave

reflection over a specified duration qualitatively.
2.5 Wave Runup

For the case of no wave overtopping on a subaerial coastal structure as
shown in Fig. 1, the landward Boundary of the numerical model is located at
the moving waterline on the slope where the water depth is essentially zero.
This case corresponds to the integer IJOB=1 specified as input in the computer
program SBREAK. The kinematic boundary condition requires that the horizontal
waterline velocity is the same as the horizontal fluid velocity. In reality,
it ;s difficult to pinpoint the exact location of the moving waterline on the

slope. For the computation, the waterline is defined as the location where
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the normalized instantaneous water depth equals a small value § where § =

0.001-0.003 has been used and the increase of § tends to improve numerical

stability near the moving waterline.

The following numerical procedure dealing with the moving waterline
located at h = § is used to compute the values of U? at the time t = nAt for
the nodes j = (s-1) which are not computed by Eq. 17. It is noted that the
procedure is somewhat intuitive and may be improved since the moving waterline
tends to cause numerical instability.

1.  Compute hgy;=(2hg—hg.,), ug4;=(2ug—ug.,), and mgy,=hgi,ugy, at the time
t = (n—1)At where the integer s indicates the wet node next to the moving
waterline at t=(n—-1)At such that hg.> § and hgy, =< §.

2. Compute h? and mf at t=nAt for the nodes j=(s-1) and s, using Eq. 17
without the damping term Dy since the water depth h can be very small at
these nodes.

3. LE h:_l = §, the computation is aborted since the waterline should not
move more than Ax because of the numerical stability criterion of the
adopted explicit method given by Eq. 27. It is suggested to reduce At to
avoid the numerical instability.

4. If hg > hg_,, use hy = (2hg_, — hi ,), and u¥ = (2u¥_, — u%_,), so that
the water depth near the waterline decreases landward. The following
adjustments are made: if |u:| > |u§_1|, set ug =0.9 ug_l; if hg <0,
set hg = 0.5 hg_,; and if hg > hi_,, set hf = 0.9 h¥_,. Then, m¥ = n¥u®
based on the adjusted values of h: and ug.

5. If hz =< §, set &% - (s—1) and return where the integer s* indicates the

wet node next to the waterline at t=nAt.
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10.

1

12,

13

1if h: > 6, compute'h:+1 = (Zhg = hg_l), u:+1 = (2u§ = u:—1)- and m§+1 =

* *
hg4y Ugty-

* *

If hgyy = 6§, set s” = s and return.

1f h:+1 > §, compute Ug* at the time t=(n+l)At using Eq. 17 without the
damping term where U? and Uj in Eq. 17 are replaced by Ug* and U:,
respectively. Improve the linearly extrapolated values in Step 6 using

the following finite difference equations derived from Eqs. 6 and 7 with

£=0:
* * _ Ax R 46
Mgty = Mg—; — 7= (hg s) (46)
5 Ax
wiy, =ul = @He LEE (ug* — ug) + h¥,, —n¥_, + 2Ax85] (47)

The upper limit of the absolute value of (u:)'1 in Eq. 47 is taken as 67!

to avoid the division by the very small value. Calculate h§+1 =

* *
Mgy, / Ugyy

1f |u§+1| < 6§, set s* = s and return.

If hgy,

1A

* * *
hg and hgy; < §, set s° = s and return.

IA

If h:+1 hg and h’_.:+l > §, set s* = (s+1) and return.

£ h:_,.1 > h:, the linearly extrapolated values of hi,,, “:+1 and m§+1 in
step 6 are adopted in the following instead of those computed in step 8.
Furthermore, set s* = s if h§+1 > h: and s* = (s+l1) if h:+1 < h: where
hgy; is the adopted value given by hi,, = (2h¥ — n¥_)).

Set h? =0, u} = 0 and m§ = 0 for j = (s*+l) since no water is present

above the computational waterline.

Once the normalized water depth h at the given time is known as a

function of x, the normalized free surface elevation, Zy = Z;/H;, where the

physical water depth equals a specified value 6;, can be computed as long as
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§y = (§y/Hy) > 6. The use of the physical depth §, is related to the use of a
waterline meter to measure the waterline oscillation on the slope (e.g.,
Kobayashi and Greenwald, 1986,1988). The specified depth Sé can be regarded
as the vertical distance between the waterline meter and the slope, while the
corresponding elevation Z; is the elevation above SWL of the intersection
between the waterline meter and the free surface. The computed oscillations
of Z,.(t) for different values of 5; can be used to examine the sensitivity to
6; of wave runup and run-down, which are normally defined as the maximum and
minimum elevations relative to SWL reached by uprushing and downrushing water
on the slope, respectively. For incident monochromatic waves, the normalized
runup R, run-down R4q and setup Z, for given 6; are obtained from the computed
periodic oscillation of Z,(t). The computed results such as those presented
by Kobayashi et al. (1989) indicate that wave runup is insensitive to 6; but
wave run-down is very sensitive to 6; since a thin layer of water remains on
the slope during wave downrush. This implies that wave run-down is difficult

to measure visually or using a waterline meter.

2.6 Wave Overtopping

Wave overtopping will occur if uprushing water reaches the landward edge
of the crest of a subaerial structure as shown in Fig. 2 where x} = x'-
coordinate of the landward edge of the crest. This case corresponds to the
integer IJOB=2 specified as input. If wave overtopping occurs, the

computation domain for the numerical model is limited to the region 0 =< x < x,
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where x¢ = X4/[Tr(gHy)!/2] and the dimensionless variables defined in Egs. 3-

5 remain the same. For the computation, wave overtopping is assumed to occur

when the computed water depth h at x = x, becomes greater than the small value

6 used for the location of the computational waterline on the slope. It is

assumed that water flows over the landward edge freely. The flow approaching

the landward edge can be supercritical as well as subcritical since the water

depth at x = xo is relatively small.

For the computation starting from the initial conditions of no wave

action in the computation domain, wave overtopping occurs when the integer s

indicating the wet node next to the computational waterline at t'= (n—1)At

becomes equal to the given integer j, indicating the most landward node for

the case of wave overtopping. When s = jg at t = (n—1)At, the values of U at

J

t = nAt for the nodes j = (s—1) and s are computed as follows:

L

Compute U:,l using Eq. 17 with j = (s—1) without the damping term Dg_,
since the water depth h can be very small at this node.

§?1 ,» the flow approaching the landward edge

If ug.; > cg., where cg., =
is supercritical, and both characteristics given by Eqs. 9 and 10 advance
to the landward edge from the computation domain. Since Eqs. 9 and 10

are equivalent to Eqs. 6 and 7, use is made of the following finite

difference equations derived from Eqs. 6 and 7 with f = 0:

At
by = == (g = mg.y) (48)

o
0 %
]

N

At 1
mg = mg — = [[msus + hg] - [m5_1u5_1 * 2 hg,l]] — Atfghg (49)

Then, u: - mg/h: and Ug is obtained.
If ug.; = cg.,, the flow approaching the landward edge is subcritical or

critical, and only the characteristics a given by Eq. 9 advances to the
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landward edge from the computation domain. For this case, the flow at
the landward edge node is assumed to be critical, that is, ug = cg at t =
nAt. Use is made of the following finite difference equation derived

from Eq. 9 with £ = 0:

At
ay = ag — A& (Us + cg) (ag — as.;) — Atdg (50)
where ag = (ug + 2¢g) and ag_; = (ug.,; + 2cg.,). Since ug = cg =

(h$)¥2, a§ = (us + 2c§) = 3uf. Thus, uf = o¥/3, n¥ = (2, n¥ = uin?
and U: is obtained.

4, If h: < §, wave overtopping is assumed to cease. Set s* = (s—1) and
return where the integer s* indicates the wet node next to the waterline

at t = nAt.

B 1f h¥ > 6, wave overtopping continues and s* = j_.
s PpPing Je

For incident monochromatic waves, the normalized average overtopping rate
per unit width, Q, is obtained from the computed temporal variation of m = uh

at x = Xg.

Q = Q'/[Hp(gHp)Y2] = m at x = X, (51)

where the overbar indicates the time averaging of m(t,x) at x = Xe after its
periodicity is established. Eq. 51 does not include the volume flux during
the interval when h < § at x = X, since the values of m at the nodes landward
of the computational waterline are set to be zero during the computation. Eq.
51 can also be used to predict the value of Q for incident random waves if the
temporal variation of m at x = X, is averaged over a long duration. For an

incident solitary wave, the temporal variation of m at x=x, should be
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examined, although Eq. 51 may still be used to estimate the degree of wave

overtopping over a specified duration qualitatively.

2.7 Wave Transmission

For wave transmission over a submerged breakwater, the landward boundary
is always located at x' = xé as shown in Fig. 3 where xé = ®'-coordinate of
the landward boundary which can be taken to be any convenient location such as
the landward toe of the submerged breakwater. This case corresponds to the
integer IJOB=3 specified as input. The computation domain for the numerical
model is the fixed region 0 < x < x, where x¢ = xo/[Ty(gHy)'/2] and the
dimensionless variables defined in Eqs. 3-5 remain the same. To avoid the
appearance of the waterline in the region 0 < x < x,, the normalized water
depth h in the computation domain is taken as h = § if the computed value of h
becomes less than §. It is assumed that the transmitted waves propagate
landward without being reflected from the shoreline and the transmitted water
flows landward without a return current. If the effects of the shoreline and
return current need to be included, it will be required to extend the
computation domain to the shoreline and specify IJOB=l as input in a manner
similar to the computations made by Kobayashi et al. (1988,1989) for the wave
transformation over a shore-parﬁllel bar and resulting swash oscillation on a
beach.

Assuming that u < ¢ in the vicinity of the landward boundary located at
X = Xp where the normalized water depth below SWL is de = dé/HL, a and g
represent the characteristics advancing landward and seaward, respectively, in
the vicinity of the landward boundary. The boundary conditions at x = x, may

then be expressed as (Kobayashi and Wurjanto, 1989b)

h = dg + ne(t) at x = x, (52)
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ne(t) = % deuzna(t) - S at X = Xg (53)
where n is the free surface oscillation at x = X, normalized by Hé due to the
transmitted wave, provided that no wave propagates seaward from the region
X > Xg. Eq. 53 expresses the transmitted wave train 5y in terms of the
landward-advancing characteristic a given by Eq. 9 in a manner similar to Eq.
13 for the reflected wave train except that the nonlinear correction term is
neglected in Eq. 53.

The following numerical procedure is used to compute the values of Uf at
t = nAt for the nodes j = (s—1) and s where the integer s for this case is the
landward boundary node jo located at x = Xg:
L Compute U:_l using Eq. 17 with j = (s—1) with the damping term Ds_lsince'
the water depth h is large at this node.
2. Compute a: at t = nAt using Eq. 50.
3 Compute qﬁ at t = nAt using Eq. 53 with a = a:. Then, h: = (dg + qt)
from Eq. 52, while u} = [ag - 2(h§)”2]. Thus, my = hgug and U: is

obtained.

For incident monochromatic waves, the transmission coefficient associated
with the computed periodic wave train n{(t) may be estimated using the

following equations if dg = d.

T - [(ﬂt)max = (nt)min] Kg™1 (54)
s 1 i N 1/2

W[ ()]
- . (—\-11%2

T, = [ (ne — ne)? [ﬂi] ] (56)
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Eqs. 54, 55 and 56 correspond to Eqs. 43, 44 and 45, respectively. Eq. 54 is
based on the normalized height of the transmitted wave train as compared to
that of the incident wave train. Eqs. 55 and 56 are based on the time-
averaged transmitted wave energy as compared to the time-averaged incident
wave energy, ;E = KZ/8, based on linear wave theory. Eq. 56 accounts for the
difference ny between the still water level and the mean water level at

X = Xg. For incident random and solitary waves, the computed temporal

variation of n¢(t) should be examined, although Eqs. 54-56 may still be used

to estimate the degree of wave transmission over a specified duration.

2.8 Wave Energy Balance

The normalized equations of mass and x-momentum given by Eqs. 6 and 7 are
used to compute the flow field. The normalized energy equation corresponding

to Eqs. 6 and 7 may be expressed as (Kobayashi and Wurjanto, 1989b, 1992)

dE ad

3¢ T 3x (EF) = — Df — Dp (57)
with
E = % (hu? + 92) for h > ¢ (58a)
E = % [hu?z + n2 — (h—n)2] for h<n - (58b)
u2
Ep = uh [5— + n] (59)

Df = f|u|u? (60)

where E = normalized specific energy defined as the sum of kinetic and
potential energy per unit horizontal area; Ep = normalized energy flux per
unit width; Dg = normalized rate of energy dissipation per unit horizontal

area due to bottom friction; and Dg = normalized rate of energy dissipation
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per unit horizontal area due to wave breaking. The dimensional rate Dé of
energy dissipation due to wave breaking is given by Dé = (ngéz/T;)DB where p
= fluid density, which is assumed to be constant ﬁeglecting air bubbles. The
normalized potential energy is taken to be relative to the normalized
potential.energy at t = 0 when the incident wave train arrives at x = 0 as
shown in Figs. 1-3. Eqs. 58a and 58b are applicable for the portion of the
structure below and above SWL, respectively.

Since the wave energy balance is normally analyzed in terms of the time-
averaged quantities, the time-averaged dissipation rate, Dp, due to wave

breaking is computed using the time-averaged energy equation derived from Eq.

57
Da Bl e, A (Ep) —= D (61)
B dx \°F £

The present numerical model needs to predict that ﬁE is positive or zero
depending on whether wave breaking occurs or not. The energy flux Ep should
decrease with the increase of x, while Df > 0 since Df defined in Eq. 60 is
positive. It should be noted that Eq. 61 may be used even for the region
which is not always exposed to water since h = 0 and u = 0 in the absence of
water.

For the case of wave overtopping or traﬁsmission, integration of Eq. 61
from the seaward boundary to the landward boundary yields the time-averaged
energy equation for the region 0 < x =< xg

Xe
EF (x=0) — Ep (x = %g) -J (Df + Dp) dx (62)
0
where the first and second terms on the left hand side of Eq. 62 are the

values of Ep at x = 0 and x = Xe, respectively. Eq. 62 implies that the

difference between the net energy fluxes at the seaward and landward

43



boundaries equals the rate of energy dissipation between the two boundaries.
For the case of wave runup on a slope, Eq. 62 needs to be modified such that
EF (x=x¢) = 0 and x should be interpreted as the maximum value of x reached
by the waterline on the slope.

The specific energy E and the energy flux Ep at the seaward boundary

where n = (ni + ny) at x 0 from Eq. 12 may approximately be given by

(Kobayashi and Wurjanto, 1989b)

E =92+ (np = nyp)? at x=0 (63)
Ep = di/? [,?_i_ (ny — Ng)? ] at x =0 (64)

where di/? is the normalized group velocity at x = 0 based on linear long wave
theory. The reflection coefficient r; given by Eq. 45 including the effect of
ny is based on Eqs. 63 and 64. The reflection coefficient r, given by Eq. 44
corresponds to Eqs. 63 and 64 with n, = 0.

For the case of wave transmission over a submerged breakwater, the

specific energy E and the energy flux Ep at the landward boundary where n = n¢

at X = Xg may be approximated by
E = (ne — ne)? at X = Xg (65)
Ep = d3/? (9 — 1p)? at x = xXg (66)

where di/? is the normalized group velocity at x = x, based on linear long
wave theory. The transmission coefficient T; given by Eq. 56 for the case of
de = dt is based on Eqs. 65 and 66, whereas the transmission coefficient T,

given by Eq. 55 does not include the wave setup ng at x = Xg.
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2.9 Hydraulic Stability of Armor Units

The hydraulic stability of armor units is analyzed using the computed
flow field on a rough impermeable slope. The drag, lift and inertia forces
acting on individual armor units may be expressed in terms of the fluid
velocity and acceleration on the rough impermeable slope. The normalized

fluid acceleration, du/dt, is given by

du _du_ gu__an_ _ flufu

dc ~ 3t T Y5x % h (67)

where use is made of Egqs. 6 and 7.
Kobayashi and Otta (1987) expressed the stability condition against
sliding or rolling of an armor unit located on the slope with its local slope

angle #' as shown in Fig. 1 in the following form:
INg + E,| + E,Ng < E, (68)

which is applicable for the case of u ¥ 0. The stability number Ng in Eq. 68

is defined as

N H, -1 [ W e
s = Hy (sg = ) ;;“ (69)

where H; = reference wave height used for the normalization: sg = specific
gravity of the armor unit whose unit mass is given by psg; and W' = median
mass of the armor unit. If the stability number Ng required for the hydraulic
stability of armor units is known, the required mass W' can be found using Eq.

69 for given H;. E,, E; and E; in Eq. 68 are defined as

2/3 c
2C, M du e
S [ [ [(sg—l)a dt Smg] (70)
E, = Cy, tang/Cp (71)
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268 ey 79
E; = C,Cpu? cos ang (72)

where Cp, C;, and Cy are the drag, lift and inertia coefficients, respectively,
while C,, C; and ¢ are the area coefficient, volume coefficient and frictional

angle of the armor unit, respectively. Eq. 68 can be solved in terms of Ng
Ng < Ng(t,x) = (E; + Eg)/(E;, — 1); 1if E; <0, E;, > 1 and E; < (-E,E,) (73a)

Ng

IA

Nr(t,x) = (Eg — E;)/(E, + 1); otherwise (73b)

where Np = dimensionless function expressing the degree of the armor unit
stability as a function of t and x. For the computation, Eqs. 73a and 73b are
used if |u| = 1073 and Ny is set to be Ng = 1000 if |u| < 107%.

For the case of u = 0, Kobayashi and Otta (1987) expressed the stability

condition in the form

c
M du — '
m Ac sind < cosf' tang (74)

The condition given by Eq. 74 is satisfied if the normalized fluid

acceleration remain within the following lower and upper bounds

ca. =<du/dt <0 a (75)
min max
with
Sg-l  sin(g—6') Sg™l  sin(é+9')
a ., P : a =< (76)
min CM cos¢ max CyM cos¢

In terms of the dimensional variables, Eq. 75 can be rewritten as ga i, S
(du'/dt') = 82 ax where g = gravitational acceleration. The dimensionless

parameters a . and - need to be chosen so as to satisfy the conditions

given by Eq. 76 as discussed by Kobayashi and Otta (1987).
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The local stability number Ngy(x) for initiation of armor movement at
given location x is defined as the minimum value of Nr(t,x) at the same
location for a specified duration. For incident monochromatic waves, this
duration can be taken as one wave period after the establishment of the
periodicity of Np(t,x) with respect to t. If Ng < Ngy(x), the armor unit
located at given x will not move during the specified duration. The critical
stability number Ng. for initiation of armor movement is defined as the
minimum value of Ngy(x) with respect to x in the computation domain. If Ng =

Ngc, no armor units in the computation domain will move during the specified

duration.
2.10 Movement of Armor Units

Kobayashi and Otta (1987) also performed a simplified analysis to predict
the sliding motion of armor units when the criterion for initiation of armor
movement is exceeded. In the following, the results presented by Kobayashi
and Otta (1987) are rearranged so that the computer program SBREAK attached in
Appendix may be understood without difficulties.

The normalized forces acting on an armor unit are separated into

Fp = % o Ju-—uy| (u-uy) (77)
Fp, = ggs; glu — 14)2 (78)
Fp = Oy & (79)
We = 0 (sg — 1) cosd’ (80)
Ws = o (sg — 1) sing’ (81)
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with 1/3 o
ar ' W’ U
d =7 = (Hy) ! [ ] ; - 82

where Fp = normalized drag force; Fp, = normalized lift force; F1 = normalized
inertia force due to the fluid acceleration only; W, = component of the
normalized submerged weight downward normal to the slope; Wg = component of
the normalized submerged weight downward parallel to the slope; d = normalized
length of the armor unit; and u, = normalized velocity of the armor unit along
the slope. The prime in Eq. 82 indicates the corresponding physical variable.
It is simply assumed that the drag and inertia forces act upward or downward
parallel to the slope, whereas the lift force acts upward normal to the slope.
The normalized forces expressed by Eqs. 77-82 are based on the normalization
by (gW'/asg). It is noted that the condition given by Eq. 75 is not imposed
on the value of du/dt in Eq. 79 to account for possibly large fluid
accelerations at the point of wave breaking.

The sliding motion of an armor unit starts if the following condition is

satisfied
|Fp + F1 — Wg| > Fg (83)
with FR = (We — F) tang = 0 _ (84)

where Fp = magnitude of the normalized frictional force acting on the armor
unit which is zero if Fp = Wo. In Eqs. 83 and 84, Fp and Fp, are given by Egs
77 and 78 with uy = 0, respectively, where u; = 0 for a stationary armor unit.
The normalized equation of the sliding motion of the armor unit moving with

the normalized velocity u, along the slope is given by

d
(sg + Cn) g® = Fp + Fy — We — JFg (85)
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with

J = uy/|ugl (86)

where Cyp = added mass coefficient given by C = (Cy — 1) and FR is assumed to
act in the direction opposite to that of the armor movement. The displacement
X; of the sliding unit along the slope from its initial location is normalized

in the following two different ways:

t
Xa(t) = 37 = % u, dt (87a)
=)
t
a
Xaa(t) — W = ugdt (87b)
to

where t, = normalized time when the armor unit starts moving. Eq. 87a is used
to estimate the degree of the armor movement relative its characteristic
length d’', whereas Eq. 87b is used to find the x-coordinate of the moving unit
since the values of u and du/dt in Eqs. 77-79 should be those at the
instantaneous location of the unit.

For the computation of the movement of individual armor units, the grid
points used for the computation of the flow fields are used to specify the
locations of the units before the armor movement computation. - Alternatively,
the locations of individual arﬁor units placed on the slope could be specified
but these locations are generally unknown before the actual placement. The
movement of the armor unit located at the node j starts when the condition
given by Eq. 83 is satisfied at the node j. If the armor unit located
initially at the node j starts moving, a Lagrangian approach is used by
tracking the location of the moving unit identified by its node number j. A
forward difference equation in the time t derived from Eq. 85 is used to find

the normalized velocity u, of the identified unit whose instantaneous location
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is computed using Eq. 87b. The values of u and du/dt in Eq. 77-79 are
evaluated at the node closest to the instantaneous location of the moving
unit. The moving unit is assumed to stop when the condition given by Eq. 83
is not satisfied. The stopped unit resumes its movement when the condition
given by Eq. 83 is satisfied. The temporal variation of X, defined by Eq. 87a
is also computed for the armor unit identified by its initial location on the

slope.
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3. COMPUTER PROGRAM SBREAK

3.1 Main Program

The computer program SBREAK attached in Appendix consists of the main
program, 37 subroutines and one function, which are written in self-
explanatory manners. Double precision is used throughout the program. SBREAK
has been written for a mainframe computer, IBM 3090-180E as well as a Sun
workstation, which operates diskless in conjunction with a central file
server. Consequently, SBREAK may not have to be modified much for other
computers. The computation time of SBREAK for one wave period is on the order
of a minute for the mainframe computer and on the order of ten minutes for the
Sun workstation.

The main program lists all the important variables and parameters in the
common statements. Before the time-marching computation based on Eq. 17, the
main program performs the following tasks:
¢ Open files and read input data using the subroutines OPENER, INPUT1 and

INPUT2.
* Process the input data for the time-marching computation using the
subroutines BOTTOM, PARAM, INIT1 and INWAV.

* Document the input and processed data using the subroutine DOC1

During the time-marching computation, the unknown quantities at the time
t = nAt are computed from the known quantities at the time t = (n—1)At. The
computational procedure during the time-marching computation is as follows:
* Estimate hgy,, ugy; and mgy, at the time t = (n—1)At by linear extrapolation
for the case of wave runup where the integer s indicates the wet node néxt

to the moving waterline at t = (n—1)At.
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Retain the values of the quantities at the time t = (n—1)At which are
required for the seaward and landward boundary computations.

Compute cj = hEIz for j = 1,2,...,s used in the characteristic equations
given by Eqs. 9 and 10 with Eq. 11.

Compute the unknown quantities at the time t = nAt using the subroutines
MARCH, LANDBC and SEABC.

Check the simplified condition of |u| < (Ax/At) that will be satisfied if
the numerical stability criterion given by Eq. 27 is satisfied.

Compute the quantities related to wave energy balance at the request of a
user.

Compute the statistics of 5, u and m=uh so that the mean, maximum and
minimum values can be found after the time-marching computation.

Compute the hydraulic stability of armor units or the movement of armor
units at the request of a user.

Store the computed results during the time-marching computation using the
subroutine DOC2 at the request of a user.

Write the time level n every 500 time steps and the value of the normalized

- ' - -
time, t = t'/T,, whenever t is an integer.

After the time-marching computation, the following tasks are performed:
Compute the statistics of the quantities related to the flow field and armor
stability using the subroutine STAT2.

Compute the overall balance of wave energy using the subroutine BALANE at
the request of a user.

Document the computed results using the subroutine DOC3,
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3.

Subroutines and Function

The 37 subroutines and one function arranged in numerical order in the

computer program SBREAK are listed in Table 1. The page numbers for the

subroutines and function listed in Table 1 correspond to the page numbers used

for SBREAK attached in Appendix. Each of the subroutines and function are

explained concisely in the following:

L

OPENER :

INPUTI:

INPUT2:

BOTTOM:

PARAM:

this subroutine opens input and output files. Some of the files
are opened on the basis of opéions selected by a user,

this subroutine reads input data from the primary input daﬁa
file and checks whether the options selected by a user are
within the ranges availablé in SBREAK.

this subroutine reads the incident wave profile ni(t) at the
seaward boundary for the case of IWAVE = 2 where the incident
wave profile measured in a wave flume or generated numerically
is specified as input.

this subroutine computes the normalized structure geometry and
the value of Ax from the dimensional structure geometry
specified as input.

this subroutine calculates the dimensionless parameters used in
the other subroutines.

this subroutine specifies the initial conditions given by n =0
and u = 0 at t = 0 as well as the initial values of various
quantities used for the subsequent computation.

this subroutine facilitates the assignment of the initial values

in the subroutine INIT1.
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TABLE 1 - 37 Subroutines and One Function in Computer Program SBREAK

Subroutine Page No. Subroutine Page No,
No. or Function or Function
i OPENER 184-187 20 MOVE 221-223
2 INPUT1 187-194 21 FORCES 223-224
3 INPUT2 194-195 22 ACCEL 224
4 BOTTOM 195-198 23 STAT2 224-226
5 PARAM 198-201 24 COEF 226-227
6 INIT1 201-203 25 BALANE 227-229
7 INIT2 203-204 26 MATAFG 229
8 INWAV 204-206 27 MATGJR 229-230
9 FINDM 206-207 28 MATS 230
10 CEL 207-208 29 MATD 230-231
11 SNCNDN 208-209 30 MATU 231-232
12 MARCH 209-211 31 ASSIGN 232
13 LANDBC 211-213 32 DERIV 232
14 RUNUP 213-215 33 DOCL 232-237
15 OVERT 215-216 34 DoC2 237-240
16 SEABC 216-218 35 DOC3 240-244
17 ENERGY 218-219 36 CHEPAR 244
18 STAT1 219 3 CHEOPT 244-245
19 STABNO 219-221 38 STOPP 245
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10.

11.

12,

13.

14,

15,

16.

|
2
=

)

(=]
—

@]

this subroutine computes the incident monochromatic wave profile
at the seaward boundary using Eq. 28 or 31 for the case of IWAVE =

1

this subroutine computes the value of the cnoidal wave parameter m

“which satisfies Eq. 34.

this function computes the values of the complete elliptic
integrals K and E used in Eqs. 31-34 for given m.

this subroutine computes the Jacobian elliptic function cn used
in Eq. 31.

this subroutine performs the time-marching computation on the
basis of Eq. 17.

this subroutine manages the landward boundary conditions for wave
runup, overtopping or transmission as well as the computation of
the normalized free surface elevation Z, for given 5; as discussed
in relation to wave runup.

this subroutine computes the waterline movement on the slope of a
subaerial structure on the basis of the procedure discussed in
relation to wave runup.

this subroutine computes the overtopping flow at the landward edge
of the crest of a subaerial structure on the basis of the
procedure discussed in relation to wave overtopping.

this subroutine computes the flow at the seaward boundary using
Eq. 41 and the reflected wave train n,(t) using Eq. 13. For the
case of IWAVE = 3, the incident solitary wave profile nj(t) given

by Eq. 36 is also computed in this subroutine.
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LT

18.

19.

20.

21.

22.

23.

24.

25

26.

20

ENERGY :

STABNO:

MOVE:

FORCES:

BALANE:

MATAFG:

MATGJR:

this subroutine computes the values of E, Ep and Df defined by
Egqs. 58, 59 and 60, respectively, in relation to the normalized
equation of wave energy.
this subroutine is used to calculate the sum, maximum and minimum
values of quantities varying with time.

this subroutine computes the armor stability function Np(t,x)
using Eqs. 70-73 and the local stability number Ngy(x) defined as
the minimum value of Np(t,x) at given location.

this subroutine computes the displacement of armor units using
Eqs. 83-87.

this subroutine computes the normalized forces given by Eqs. 77-
81.

this subroutine computes the value of du/dt using Eq. 67.

this subroutine finds the statistical values of the computed
variables after the time-marching computation.

this subroutine computes the wave reflection coefficients given by
Eqs. 43-45 as well as the wave transmission coefficients given by
Eqs. 54-56 for the case of a submerged structure.

this subroutine checks the balance of wave energy using Eqs. 61
and 62 as well as the approximate expressions given by Egs. 64 and
66 based on linear long wave theory.

this subroutine computes the values of the elements of the matrix
A defined by Eq. 19 and the vectors F and G defined in Eq. 16.
this subroutine computes the values of the elements of the vector

g defined by Eq. 18.
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28.

29.

30.

3%

32.

33.

34,

35.

36.

37.

38.

ASSIGN:

CHEPAR :

CHEOPT :

this subroutine computes the values of the elements of the wvector
Sj at the node j defined by Eq. 20.

this subroutine computes the values of the elements of the wvector
Dj at the node j defined by Eq. 22,

this subroutine computes the values of the elements of the wvector
U? at the node j and at the time t = nAt using Eq. 17.

this subroutine changes a matrix to a vector or a vector to a
matrix.
this subroutine computes the first derivative of a function using
a finite difference method.
this subroutine documents the input data and dimensionless
parameters before the time-marching computation.

this subroutine stores some of the computed results at designated
time levels during the time-marching computation.
this subroutine documents the computed results after the time-
marching computation.

this subroutine checks whether the values of the integers N1, N2,
N3, N4 and N5 used to specify the sizes of matrices and vectors in
the main program are equal to the values of the corresponding
integers N1R, N2R, N3R, N4R and N5R used in the subroutines.

this subroutine checks whether the options selected by a user are
within the ranges available in SBREAK.
this subroutine executes a programmed stop if some of the input

requirements for SBREAK are not satisfied,
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3.3 Common Parameters and Variables

The parameters and variables included in the common statements in the
main program are explained so that a user may be able to‘comprehend the
computer program SBREAK and modify it if required. 1In the following, the
common stafements are explained one by one.

/DIMENS/ integers used to specify the sizes of matrices and vectors:

+ NIR = Nl= maximum number of grid points allowed in the computation domain
where NIR = N1 = 500 in SBREAK.

* N2R = N2 = maximum number of time steps allowed for the time-marching
computation where N2R = N2 = 30000 in SBREAK.

* N3R = N3 = maximum number of different values of the phyéical water depth
6; allowed for wave runup where N3R = N3 = 3 in SBREAK.

* N4R = N4 = maximum number of points allowed to specify the structure
geometry consisting of linear segments where N4R = N4 = 100 in
SBREAK.

* N5R = N5 = maximum number of time levels allowed for storing the spatial
variations of the computed quantities as well as the maximum number
of nodes allowed for storing the temporal variations of the computed

quantities. N5R = N5 = 25 in SBREAK.

/CONSTA/ constants and input to the numerical model:
-« PI = x = 3.141592
* GRAV = gravitational acceleration g = 9.8l m/s? or 32.2 ft/s2.
* DELTA = normalized water depth § used to define the computational
waterline as discussed in relation to wave runup.

« X1 = damping coefficient €, included in Eqs. 24 and 25.
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- X2 = damping coefficient e, included in Egqs. 24 and 25.

/ID/ integers used to specify the options of a user:

+ IJOB = integer indicating the type of the landward boundary condition,
where IJOB = 1 for wave runup on the seaward slope of a subaerial
structure; IJOB = 2 for wave overtopping over a subaerial
structure; and IJOB = 3 for wave transmission over a submerged
structure.

* ISTAB = integer indicating the type of the armor analysis, where ISTAB = 0
for no computation of armor stability or movement; ISTAB = 1 for
the computation of armor stability; and ISTAB = 2 for the
computation of armor movement.

* ISYST = integer indicating the system of units, where ISYST = 1 for the
International System of Units; and ISYST = 2 for the U.S.
Customary System of Units.

* IBOT = integer indicating the type of input data for the structure
geometry, where IBOT = 1 for the width and slope of linear
segments; and IBOT = 2 for the locations of end points of linear
segments.

* INONCT = integer indicating.whether the nonlinear correction term Ct is
included in Eq. 13 for n,(t), where INONCT = 0 for Ct = 0; and
INONCT = 1 for C¢ given by Eq. 42.

* IENERG = integer indicating whether the quantities related to wave energy
are computed or not, where IENERG = 0 for no computation; and
IENERG = 1 for the computation of the energy quantities discussed

in relation to Eqs. 57-66.
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« IWAVE = integer indicating the type of the incident wave profile specified

« ISAVA =

+ ISAVB =

« ISAVC =

at the seaward boundary, where IWAVE = 1 for the incident
monochromatic wave profile nj(t) computed using the subroutine
INWAV; IWAVE = 2 for the incident wave profile nj(t) read in the
subroutine INPUT2; and IWAVE = 3 for the incident solitary wave
profile nj(t) computed in the subroutine SEABC,

integer indicating the storage of the spatial variations of p and
u in the computation domain at specified time levels if ISAVA = 1.
integer indicating the storage of the temporal variation of h at
specified nodes if ISAVB = 1.

integer indicating the storage of the temporal variation of the
displacement X, given by Eq. 87a from specified initial nodal

locations if ISAVC = 1.

/IDREQ/ 1integers used for the special storage of the spatial variations of

. IREQ

+ IELEV

+ IDUDT

+ ISNR

specified quantities:

integer indicating the option of the special storage, where IREQ =
0 for no special storage; and IREQ = 1 for the special storage.
integer indicating the storage of the spatial variation of n at
specified time levels if IELEV = 1.

integer iﬁdicating the storage of the spatial variation of u at
specified time levels if IV = 1,

integer indicating the storage of the spatial variation of du/dt
given by Eq. 67 at specified time levels if IDUDT = 1.

integer indicating the storage of the spatial variation of Ny

given by Eq. 73 at specified time levels if ISNR = 1.
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« NNREQ = number of the specified time levels at which the spatial

variations of the requested quantities are stored. It is required

that 1 < NNREQ < N5.

» NREQ(i) = specified time levels with i = 1,2,...,NNREQ at which the

/TLEVEL/

+ NTOP

« NONE

*NJUM1

« NJUM2

« NSAVA

» NSTAB

» NSTAT

spatial variations of the requested quantities are stored.

integers indicating specific time levels and time steps:

= last time level for the time-marching computation performed for
the duration 0 < t < At NTOP.

= even number of time steps in one wave period where NONE = 1/At.

= integer indicating the storage of the computed temporal variations
at the seaward and landward boundaries every NJUMl time steps as |
well as the temporal variations of h and X, every NJUMl time steps
if ISAVB = 1 and ISAVC = 1, respectively. NONE/NJUM1l must be an
integer.

= integer indicating the computation of NR given by Eq. 73 every
NJUM2 time steps if ISTAB = 1. NONE/NJUM2 must be an integer.

= time level at the beginning of the storage of the spatial
variations of n and u if ISAVA = 1.

= time level when the computation of armor stability or movement
begins if ISTAB = 1 or 2,

= time level at the beginning of the computation of the statistics
such as the méan, maximum and minimum values. This computation
must be made after the establishment of the periodicity of the

computed temporal variations for the case of IWAVE = 1.
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+ NTIMES = integer indicating the storage of the spatial variations of n

and u NTIMES times at equal intervals from the time level NSAVA to

the time level NTOP if ISAVA = 1.

/NODES/ integers used to indicate specific nodal locations:

- S =
- JE =
« JE1 =
« JSTAB =
. JMAX =

integer s indicating the wet node next to the moving waterline at
t = (n—-1)At such that hg > § and hgy, < § except that S = JE for
IJOB = 3 as discussed below. It is required that 1 < S < N1.
integer indicating the most landward node jg of the structure
geometry specified as input, where it is required that JE < N1.

If IJOB = 1, S < JE all the time. If IJOB = 2, wave overtopping
occurs when S = JE. If IJOB = 3, S is taken to be equal to the
node JE at the landward boundary of the computation.

(JE-1)

largest node number at each time level for which the computation
of armor stability or movement is performed. JSTAB is taken as
the largest node number based on DELTAR(1) in the subroutine
LANDBC, although this can be modified easily.

largest value of S during the time levels from NSTAT to NTOP where
JMAX < JE if IJOB = 1; JMAX = JE if IJOB = 2; and JMAX = JE = § if .

1JOB = 3.

/GRID/ time step; grid size and related quantities:

« T =

« X =

constant time step At used for the discretization of Eq. 15.

constant space size Ax used for the discretization of Eq. 15.

« TX = At/Ax

« XT = Ax/At
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TTX

TTXX

TWOX

(At)?/Ax
(at)?/(ax)?

2A%

/WAVEl/ dimensional incident wave characteristics:

« HREFP = representative wave height HL introduced in Eqs. 3-5 for the

TP

=

normalization of the governing equations.
L}
representative wave period T, introduced in Eqs. 3-5 for the

normalization of the governing equations.

« WLOP = dimensional deep water wavelength Lé defined as Lé = gT;2/2w.

/WAVE2/ dimensionless incident wave characteristics:

L]

KS

KSREF

KSSEA

WLO

normalized wave height, Kg = H'/H;, at the seaward boundary
located at x = 0 where H = wave height at x = 0.

shoaling coefficient, H;/H;, at the location where H; and Té are
specified. It is noted that H; is the corresponding deep water
wave height.

shoaling coefficient, H'/H;, at the seaward boundary. It is noted
that SBREAK requires only KS = KSSEA/KSREF. If H, = H', KS = 1
since KSSEA = KSREF. It is hence sufficient to set KSSEA=KSREF=1
for Hy = H'.

normalized deep water wavelength L, given by L, = Lé/d; where dé =
water depth below SWL at the seaward boundary.

normalized wavelength L defined as L = L'/dé with L' = dimensional
wavelength at the seaward boundary based on linear wave theory
except that the computed value of L is subsequently replaced by

the value based on cnoidal wave theory if IWAVE = 1 and U, > 26.
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« UR = Ursell parameter Uy at the seaward boundary defined as U, =
(H'L'2/d{3) = (KsL2?/d.) based on linear wave theory except that
the computed value of U, is subsequently replaced by the value
based on cnoidal wave theory if IWAVE = 1 and U, > 26.

» URPRE = value of U, based on linear wave theory used to decide whether
cnoidal or Stokes second-order wave theory is applied if IWAVE =
L.

« K8I = surf similarity parameter £ defined as £ = atanﬁé/jﬁ? B
tanﬂé/(Hé/Lé)”z where tan&é = slope specified as input to define

the surf similarity parameter for a specific structure or beach.

SIGMA = dimensionless parameter ¢ defined as ¢ = T;(g/H;)lfz.

/WAVE3/ mnormalized free surface elevations as a function of t:

« ETA(n) = time series with n = time level and n < N2 of the incident wave
profile nj(t) at the seaward boundary which is specified in the
subroutine INPUT2 if IWAVE = 2 or computed if IWAVE = 1 or 3.

+ ETAIS(ng) = time series of the incident wave train nj at x=0 stored such
that ng = [(t/At) — NSTAT + 1] where t = normalized time and NSTAT
= time level at the beginning of the statistical computation. It
is required that ng =< N2.

* ETARS(ng) = time series of the reflected wave train 5, at x=0 stored in
the same way as 5 at x=0.

*» ETATS (ng) = time series of the transmitted wave train 5y at x=x, stored

in the same way as nj at x=0 if IJOB = 3.
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/WAVE4/ mnormalized maximum and minimum free surface elevations:
+ ETAMAX = maximum value of the specified or computed time series ETA(n)
where ETAMAX = Kg for the solitary wave profile given by Eq. 36.
+ ETAMIN = minimum value of the specified or computed time series ETA(n)
where ETAMIN = O for the solitary wave profile given by Eq. 36.
/WAVE5/ parameters related to cnoidal wave theory:
* KCNO = complete elliptic integral of the first kind, K(m), used in Egs.
31-34,
+ ECNO = complete elliptic integral of the second kind, E(m), used in Egs.
32-34,
* MCNO = parameter m computed from Eq. 34,
= KC2 = value of (1-m) used to compute the values of K(m) and E(m) using

the function CEL.

/WAVE6/ solitary wave parameters:
* TCSOL = normalized crest arrival time t. introduced in Eq. 36.

* KTWO = parameter Ky computed using Eq. 38.

/BOT1/ dimensional parameters related to the structure:
* DSEAP = water depth dé below SWL at the seaward boundary.
* DLANDP = water depth d; below SWL at the landward boundary used for IJOB =
3 only.

* FWP = constant friction factor f' used in Eq. 2.

/BOT2/ mnormalized parameters related to the structure:

* DSEA = normalized water depth, d; = dE/H;, at the seaward boundary.
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- DSEAKS = dy/Kg corresponding to the value of d¢/H’ .

» DSEA2 = normalized group velocity di/? at x = 0 based on linear long wave
theory.

« DLAND = normalized water depth, dg = dé/Hé, at the landward boundary for
IJOB = 3,

« DLAND2 = normalized group velocity di/? at x=x, based on linear long wave
theory.

« FW = normalized friction factor f given by f = of /2 and introduced in
Eq. 7.

» TSLOPS = slope tanﬂé used to define the surf similarity parameter €£.

* WIOT = normalized horizontal width, (jeg—1)Ax, of the computation domain.

/BOT3/ wvectors related to the normalized structure geometry:
* U2INIT(j) = normalized water depth below SWL at the node j with
j=1,2,...,JE located on the structure surface, corresponding to

the value of -z where z is given by Eq. 8.

THETA(j) = dimensionless gradient of the slope, Bj, at the node j where 4

is defined in Eq. 5.

SSLOPE(j) = sinﬂj where #j = local angle of the slope at the node j

required for the computation of armor stability and movement.
* XB(j) = normalized x-coordinate of the node j located on the structure

surface.
* ZB(j) = normalized z-coordinate of the node j, corresponding to the

normalized structure geometry given by Eq. 8.

/BOT4/ input parameter for the structure geometry:
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« NBSEG = number of linear segments of different inclinations used to
specify the structure geometry. It is required that 1 < NBSEG =<
(N4=1). A sufficient number of linear segments will be required
for a complicated bottom geometry partly because sudden changes of

slopes may cause numerical difficulties.

/BOT5/ dimensional quantities associated with linear segments of the

structure:
* WBSEG(i) = horizontal width of the segment i with i=1,2,...,NBSEG where
the segment number i increases landward.
. TBéLOP(i) = tangent of the slope of the segment i which is negative if the
slope is downward in the landward direction.
« XBSEG(i) = horizontal distance from the seaward boundary located at x'=0
to the séaward end of the segment i.

* ZBSEG(i) = vertical distance below SWL at the seaward end of the segment i

which is negative if the end point is located above SWL.

/HYDRO/ hydrodynamic quantities computed by the numerical model:

* U(k,j) =values of the components of the vector Uj defined in Eq. 16 at
the node j such that U(1l,j) = mj and U(2,j) = hj where m =
normalized volume flux per unit width; and h = normalized water
depth below the instantaneous free surface.

* V(j) = value of the normalized depth-averaged velocity, uj = mﬁ/hj, at
the node j.

* ELEV(j) = value of the normalized free surface elevation 7§ above SWL at

the node j.
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« C(j) = value of ¢y = h}lz

defined in Eq. 1l at the node j.
« DUDT(j) = value of the normalized fluid acceleration du/dt given by Eq. 67

at the node j.

/MATRIX/ elements of matrices used in the numerical model:

+ Al(k,j) = values of the elements of the first row of the matrix Aj defined
by Eq. 19 at the node j such that AlL(1l,j) = 2uj and A1(2,j) =
(hj-u3).

« F(k,j) = values of the elements of the vector Fj defined in Eq. 16 at the
node j such that F(1,j) = (mjuj + 0.5hj) and F(2,j) = mj .

* G1(j) = value of the non-zero element of the vector Gj defined in Eq. 16
at the node j such that Gl(j) = fyhy + flUjIUj.

« GJR(k,j) = values of the elements with k—l and 2 of the vector g3 defined
by Eq. 18 at the node j.

* 81(j) = value of the non-zero element of the vector Sj given by Eq. 20 at
the node j such that S1(j) = Axej - 0.5 6j (mj+1 -nﬁ_1) where ej
is given by Eq. 21.

« D(k,j) = values of the elements with k=1 and 2 of the vector Dj defined by

Eq. 22 at the node j.

/RUNP1/ input parameter for wave runup computation:
* NDEIR = number of different values of the physical water depth E;
associated with the measured or visual waterline for which the
normalized free surface elevation Z, is computed as discussed in

relation to wave runup. It is required that 1 < NDELR < N3.

68



/RUNP2/ quantities related to wave runup:

DELRP(i) = different values of 6; with 1 < i < NDELR specified as input

such that DELRP(i) < DELRP(i+l).

DELTAR(i) = normalized water depth, §, = 6;/H;, corresponding to the
different values of 6;. It is required that 6, = § where the

small value § is used to define the computational waterline.

RUNUPS(i) = normalized free surface elevation Z, above SWL at the location
of h=§, at each time level, where RUNUPS(i) corresponds to

DELTAR(1i).

.

RSTAT(k,i) = mean, maximum and minimum values of RUNUPS (i) during the time
levels between NSTAT and NTOP indicated by k=1,2 and 3,
respectively.

/OVER/ quantities related to wave overtopping:

+ OV(k) = quantities calculated from the computed values of m at X=Xg during
the time levels between NSTAT and NTOP if IJOB=2, where OV(1l) = Q
given by Eq. 45; OV(2) = normalized time when the value of m at
X=Xo is the maximum; OV(3) = normalized duration of wave
overtopping; and OV(4) = maximum value of m at x=x,. The
normalized time and duration are taken to be relative to the

duration from the time level NSTAT to the time level NTOP.

/COEFS/ reflection and transmission coefficients:
» RCOEF(k) = wave reflection coefficients defined by Eqs. 43, 44 and 45 for
k=1, 2 and 3, respectively.
. ICOEF(k) = wave transmission coefficients defined by Eqs. 54, 55 and 56

for k=1, 2 and 3, respectively.
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/STAT/ statistics of the hydrodynamic quantities computed during the time

levels between NSTAT and NTOP:

ELSTAT(i) = time-averaged values nj, n, and n¢ calculated from ETAIS(ng),

ETARS(ng) and ETATS(ng) for i=l, 2 and 3, respectively.

UlSTAT(j) = mean value of mj at the node j.

ESTAT(k,j) = mean, maximum and minimum values of nj at the node j

indicated by k=1, 2 and 3, respectively.

VSTAT(k,j) = mean, maximum and minimum values of uj at the node j

indicated by k=1, 2 and 3, respectively.

/ENERG/ quantities related to wave energy:

* ENER(i,j) = quantities related to the time-averaged energy equation
expressed by Eq. 61 which are computed during the time levels
between NSTAT and NTOP, where ENER(i,j) with i=1, 2, 3 and 4
correspond to the values of E, Ep, Df and Dg at the node j,
respectively. E, Ep and Df are the time-averaged values of E, Ep
and Df given by Eqs. 58, 59 and 60, respectively, whereas Dp is
computed using Eq. 61.

* ENERB(k) = quantities related to the time-averaged energy balance in the
computation domain expressed by Eq. 62, where ENERB(1) = Ep(x=0);
ENERB(2) = Ep(x=Xe) which is zero if IJOB = 1; ENERB(3) = J‘:e Df
dx; ENERB(4) = J‘:e Dp dx; ENERB(5) = left hand side of Eq. 62;
ENERB(6) = right hand side of Eq. 62, ENERB(7) = difference

between the right and left hand sides of Eq. 62; ENERB (8) =

percentage error defined as 100 x ENERB(7)/ENERB(5); ENERB(9) =
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di/2 ni; ENERB(10) = di/2 (ny—np)?; ENERB(1L) = 43/2 (ne—ng)? only
for IJOB = 3; ENERB(12) = right hand side of Eq. 64; ENERB(13) =
percentage error in the approximate expression given by Eq. 64;
and ENERB(14) = percentage error in the approximate expression
given by Eq. 66. These percentage errors may be used to estimate
the uncertainties associated with the computed reflection and
transmission coefficients as discussed in relation with Eqs. 64

and 66,

/STABLl/ input parameters related to armor stability and movement:

c2

C3

CDh

CL

CM

SG

area coefficient C, of the armor unit.
volume coefficient C; of the armor unit.
drag coefficient Cp used in Eq. 77.

lift coefficient Cp, used in Eq. 78.
inertia coefficient Cy used in Eq. 79.

specific gravity Sg of the armor unit.

TANPH]1 = tan¢ with ¢ = frictional angle of the armor unit.

AMIN

AMAX

DAP

parameter a . specified as input. The condition for a . given
min min

in Eq. 76 needs to be satisfied if ISTAB = 1.

parameter a specified as input. The condition for a given
max : max

by Eq. 76 needs to be satisfied if ISTAB = 1.

characteristic length d of the armor unit defined in Eq. 82 which

needs to be sﬁecified as input if ISTAB = 2,

/STAB2/ computed parameters related to armor stability and movement:

« SG1

(sg—l) used in Eqs. 80 and 81.
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« CTAN(j) = value of cosﬂj tang at the node j where 93 = local angle of the

slope at the node j.

/STAB3/ armor stability parameters used in the subroutine STABNO:
« CSTABLl = 2 C%/3/(C,Cp) used in Eq. 60.
+ CSTAB2 = CM/[(Sg — 1) o] used in Eq. 60,
« AMAXS = o0 a used in Eq. 75.
max
e AMINS = 0 a_. used in Eq. 75.
min
« E2 = Cj, tang/Cp used in Eq. 71.

« E3PRE(j) = value of 2 C%/3 cosﬂj tang/(C,Cp) at the node j used in Eq. 72.

/STAB4/ armor movement parameters used in the subroutine MOVE:

+ CSTAB3 = C,Cp/(2C,d) used in Eq. 77.

CSTAB4 = C,C1/(2C4d) used in Eq. 78.

*+ CM1 = (Cy — 1) = added mass coefficient Cy used in Eq. 85.

- DA = normalized characteristic length d of the armor unit defined in
Eq. 82.

* SIGDA = o/d used in Eq. 87a.

« WEIG = a(sg — 1) used in Eqs. 80 and 81.

/STAB5/ node number and time levels related to armor stability:
¢ JSNSC = node number j where the critical stability number Ng, for
initiation of armor movement occurs.
* NSNSC = time level n when the critical stability number Ng. for initiation

of armor movement occurs.
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"+ NSNSX(j) = time level n when the local stability number Ngx (x) at the node

j occurs.

/STAB6/ stability numbers for initiation of armor movement:
« SNSC = critical stability number Ng, defined as the minimum value of
Ngx(x) with respect to x.
* SNR(j) = value of armor stability function NR(t,x) at the node j and at
the time t = nAt computed during the time levels from n = NSTAB to
n = NTOP if ISTAB = 1.
« SNSX(j) = value of the local stability number Ngy(x) at the node j defined

as the minimum value of Ng(t,x) at the node 7j.

/STAB7/ integers related to armor movement:
* NMOVE = number of armor units moved from their initial locations where
armor movement is computed during the time levels between NSTAB

and NTOP if ISTAB = 2.

NSTOP = number of armor units stopped after their movement,

ISTATE(j) = integer indicating the state of the armor unit initially
located at the node j, where ISTATE(j) = 0, 1 or 2 depending on
whether the armor unit is stationary, moving or stopped,

respectively.

NODIN(j) = node number at the initial location of the armor unit which

must be equal to the node number j.

NODFI(j) = node number closest to the armor unit at the end of each time
step where each armor unit is identified by the node number j at

the initial location of the armor unit.
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« NDIS(j) = time 1evei n when the armor unit identified by the node number j

has started moving.

/STAB8/ mnormalized velocity and displacement of moving or stopped armor
units:
* VA(j) = normalized velocity u, of the armor unit located initially at the
node j which is computed using Eq. 85.
» XAA(j) = normalized displacement X,, defined by Eq. 87b of the armor unit
from its initial location at the node j.
* XA(j) = normalized displacement X, defined by Eq. 87a of the armor unit

from its initial location at the node j.

/FILES/ file names and associated node numbers for ISAVB = 1 and ISAVC = 1:

* NNOD1 = number of nodes where the temporal variation of h is stored if
ISAVB = 1. It is required that 1 < NNOD1 =< NS5.

* NNOD2 = number of nodes for which the temporal variation of the normalized
displacement X, is stored if ISAVC = 1. It is required that 1 <
NNOD2 =< NS5.

+ NODNO1(i) = i-the node number with i=1,2,...,NNOD1 where the temporal
variation of h is stored.

+ NODNO2(k) = k-the node number with k=1,2,...,NNOD2 for which the temporal
variation of X, is stored.

« FNAME1(i) = file name-associated with NODNOL1(i).

+ FNAME2(k) = file name associated with NODNO2(k).
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/VALUEN/ wvalues at the time t = (n—1)At stored at the beginning of each time
step:
« VSN = ug used in the landward boundary computation.
« USN(i) = Ug such that USN(l) = mg and USN(2) = hg used in the landward
boundary computation.
* VMN = ug., used in the landward boundary computation.
« UMN(1) = mg_, used in the landward boundary computation.
* VIN = u,; used in Eq. 41 in the seaward boundary computation.

* V2N = u, used in Eq. 41 in the seaward boundary computation.

3.4 Input Parameters and Variables

The input parameters and variables are summarized in the sequence of the
data input in SBREAK. First, the name of the primary input data file, FINP1,
is read in the Main Program as follows:

WRITE(*,%*) ‘Name of Primary Input-Data-File?'
READ(*,5000) FINP1

5000 FORMAT(A20)
where some of the write statements are discussed here for convenience.

Almost all the input data are read in the subroutine INPUT1 from the
input data file with its unit number = 11 and its file name = FINPl as
explained in the subroutine OPENER. The data input in the subroutine INPUT1
begins with the following comment lines:

READ(11,1110) NLINES

DO 110 I=1, NLINES
READ(11,1120) (COMMEN(J), J=1, 14)
WRITE(28,1120) (COMMEN(J), J=1, 14)

WRITE(29,1120) (COMMEN(J), J=1, 14)
110 CONTINUE
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where NLINES = number of the comment lines proceeding the input data. The
unit numbers 28 and 29 correspond to the file names ODOC and OMSG in the
subroutine OPENER. The file ODOC stores the essential output for the concise
documentation, while the file OMSG stores the messages written under speciai
circumstances during the computation. The format statements used in the

subroutine INPUT1 are listed below.

1110 FORMAT .(I8)

1120 FORMAT (14A5)

1130 FORMAT (2I1, I8)

1140 FORMAT (I1)

1150 FORMAT (Il, 2X, A20)
1160 FORMAT (3I1, I8, 314)
1170 FORMAT (5I1, I6)

1180 FORMAT (3F13.6)

1190 FORMAT (I6, 2X, A20)

The integers indicating the user’s options and the related time levels

and node locations are then read in the subroutine INPUT1.

READ(11,1130) 1IJOB, ISTAB, NSTAB

READ(11,1140) 1ISYST

READ(11,1140) 1IBOT

READ(11,1140) INONCT

READ(11,1140) IENERG

READ(11,1150) IWAVE, FINP2

READ(11,1160) ISAVA, ISAVB, ISAVC, NSAVA, NTIMES, NNOD1l, NNOD2

READ(11,1170) 1IREQ, IELEV, IV, IDUDT, ISNR, NNREQ
where IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE, ISAVA, ISAVB and ISAVC
are explained in the common /ID/, whereas NSTAB, NSAVA and NTIMES are
discussed in the common /TLEVEL/. On the other hand, NNOD1l and NNOD2 are
explained in the common /FILES/, while IREQ, IELEV, IV, IDUDT, ISNR and NNREQ
are discussed in the common /IDREQ/. If IWAVE = 2, the file name FINP2

containing the data on the incident wave profile at the seaward boundary needs
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to be specified as input. The specified options are checked in the subroutine
CHEOPT which writes the appropriate error message and correction instruction
for each input parameter. If IREQ=1, at least one of IELEV, IV, IDUDT and
ISNR must be unity. Furthermore, IDUDT=0 if ISTAB=0 and ISNR=0 if ISTAB = 1.

If IREQ=1, the following input is required:
READ(11,1110) (NREQ(I), I=1, NNREQ)

where NREQ is explained in the common /IDREQ/.
Some of the integers included in the common /TLEVEL/ are read as input

READ(11,1110) NTOP

READ(11,1110) NONE

READ(11,1110) NJUM1
The value of NSTAT is taken as NSTAT = (NTOP — NONE + 1) if IWAVE = 1
corresponding to incident monochromatic waves, and NSTAT = NSAVA if IWAVE = 2
or 3. Furthermore, if ISAVA=0, NSAVA = (NTOP + 1) which has the same effect
as ISAVA=0. Likewise, NSTAB = (NTOP + 1) if ISTAB=0. For incident
monochromatic waves with IWAVE = 1, use has been made of NTOP = NONE X (tp +
1), NSTAB = (NTOP — NONE + 1), NSAVA = (NTOP — NONE), NTIMES = 5 and NJUMl =
(NONE/100) where tp = normalized time when the periodicity is established.
For coastal structures, tp = 4 and NONE = 2000 have been used typically. It
is noted that the incréase of NONE tends to reduce numerical instability as
long as the numerical stability indicator ALPHAS described at the end of this
section is less than about ten. The computation of the armor stability has
been made during the last wave period after the establishment of the
periodicity. The spatial variations of 5 and u have been stored at the

normalized time t = tp, (tp + 1/4), (tp + 1/2) , (tp + 3/4) and t = (tp + 1)
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where the spatial variations of n and u must be the same.at t = tp and (tp +
1) after the establishment of the periodicity.
Next, the following parameters are read:
READ(11,1110) S
READ(11,1180) FWP
READ(11,1180) X1, X2
READ(11,1180) DELTA
READ(11,1110) NDELR
DO 120 1L=1, NDELR
READ(11,1180) DELRP(L) (units: mm or in)
120  CONTINUE
where DELTA, X1 and X2 are explained in the common /CONSTA/, whereas FWP is
discussed in the common /BOT1/. The integer S included in the common /NODES/
is specified as input. The value of S specified as input corresponds to the
number of spatial nodes from the seaward boundary to the wet node next to the
initial waterline at SWL if IJOB = 1 or 2, whereas the input value of § is the
number of spatial nodes from the seaward boundary to the landward boundary if
IJOB = 3. Use has been made of S = 100-400 to provide adequate spatial
resolution. On the other hand, NDELR and DELRP are explained in the common
/RUNP1/ and /RUNP2/, respectively. If IJOB=3, NDELR=0 indicating no
computation of wave runup. The physical values of DELRP(L) with 1 < L < NDELR
need to be specified in millimeters if ISYST = 1 and in inches if ISYST = 2 as
indicated above,
The incident wave characteristics are specified as follows:
READ(11,1180) HREFP (units: m or ft), TP (units: sec)
READ(11,1180) KSREF, KSSEA

where HREFP and TP are explained in the common /WAVEl/, whereas KSREF and

KSSEA are discussed in the common /WAVE2/. The value of TP is read in
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seconds, while the value of HREFP is read in meters if ISYST=1 and in feet if
ISYST=2.
The input parameters related to the structure geometry are read as
follows: i
READ(11,1180) DSEAP (units: m or ft)
READ(11,1180) TSLOPS
READ(11,1110) NBSEG
where DSEAP, TSLOPS and NBSEG are explained in the common /BOT1l/, /BOT2/ and
/BOT4/, respectively. The dimensional quantities of the linear segments used
to describe the structure geometry are explained in the common /BOTS5/ as well
as in Fig. 4. If IBOT=1, the width and slope of each segment need to be read
as input.
DO 130 K=1, NBSEG
READ(11,1180) WBSEG(K) (units: m or ft), TBSLOP(K)
130 CONTINUE
On the other hand, if IBOT=2, the locations of the end points of the segments
need to be read as input.
DO 140 K=1, NBSEG+1
READ(11,1180) XBSEG(K), ZBSEG(K) (units: m or ft)
140  CONTINUE
- The dimensional quantities DSEAP, WBSEG(K), XBSEG(K) and ZBSEG(K) are read in
meters if ISYST=1 and in feet if ISYST=2.
If ISAVB=1, the following quantities explained in the common /FILES/ need

to be read as input:

DO 150 1I=1, NNOD1l
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FIGURE 4,
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READ(11,1190) NODNO1(I), FNAMEL(I)
150 CONTINUE
If ISTAB=1 or 2, the following parameters explained in the commons
/TLEVEL/ and /STABl/ need to be read as input:
READ(11,1110) NJUM2
READ(11,1180) <C2, C3, SG
READ(11,1180) CD, CL, CM
READ(11,1180) TANPHI
READ(11,1180) AMAX, AMIN

where AMAX and AMIN are used only for ISTAB=l.

If ISTAB=2, the characteristic length of the armor unit needs to be

specified as well
READ(11,1180) DAP (units: m or ft)

where DAP is read in meters if ISYST=1 and in feet if ISYST=2.

If ISAVC=1, the following quantities explained in the common /FILES/

needs to be read as input:

DO 160 1I=1, NNOD2

READ(11,1190) NODNO2(I), FNAME2(I)
160  CONTINUE

This is the end of the data input in the subroutine INPUTI.
In the subroutine INPUT1, the following two parameters associated with
the incident solitary wave profile are specified if IWAVE=3:

te = TCSOL = 1.0

§; = DELTAI = 0.05
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where t, = normalized arrival time of the solitary wave crest introduced in
Eq. 36; and §; = small value used to estimate the reference wave period Ty
associated with the solitary wave on the basis of Eqs. 37-39. These values of
te. and §; can be changed by modifying only the two lines in the subroutine
INPUTL.

If IWAVE = 2, the time series associated with the normalized incident
wave profile at the seaward boundary as explained in the commons /ID/ and
/WAVE3/ are read from the file with its unit number = 12 and its file name =
FINP2 in the subroutine INPUT2

READ(12,1210) (IDUM, ETA(I), I=1, N2)

1210 FORMAT(I10, F10.6)

The number of the data points read is written on the file OMSG with its unit
number = 29 as explained in the subroutine OPENER. The time series read as
input are reduced such that ETA(I) with I=1,2,...,NTOP where NTOP/NICE is an
integer and NICE=500 is specified in the parameter statement of the subroutine
INPUT2.

Finally, the numerical stability indicator ALPHAS is computed in the

subroutine DOCl before the time marching computation. This indicator is

defined as

Ax s 1 T al had
ALPHAS = AL (1 + de ) 1+ — —— (88)

The numerical stability criterion given by Eq. 27 requires that the value of
ALPHAS should be greater than about unity where |up| = 1 and ¢y = d}/2 are
assumed in Eq. 27. As a result, the conditional stop before the time-marching

computation is included in the subroutine DOCl as follows:
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WRITE(*,6010) ALPHAS
WRITE(*,6020)
READ(*,*) ISTOP
IF (ISTOP.EQ.l) STOP ,
6010 FORMAT (‘'Numerical stability indicator =', F7.2)
6020 FORMAT (‘'Time-marching computation is about to begin’/'l = stop
here, else = proceed’)
If ALPHAS < 1, it is suggested to increase the value of NONE = At~ ! specified
as input since the numerical instability is likely to occur during the time-
marching computation. On the other hand, our experiences have indicated that

the use of ALPHAS greater than about ten does not improve numerical stability

in spite of the increase of computation time.

3.5 Error and Warning Statements

The computer program SBREAK includes various error and warning
statements, some of which have been discussed in relation to the data input
for convenience.

In the main program of SBREAK, if the normalized water depth hj = U(2,J)
< 0, the following statement is written and the computation stops:

WRITE(*,2910) U(2,J3), J, S, N
WRITE(29,2910) U(2,J), J, S, N
2910 FORMAT (/'From Main Program: Negative water depth
=',D12.3/'J="',18,";S="',18,"';N=",18)
where J = node number; S = waterline node number; and N = time level.
Furthermore, if I“jl > (Ax/At), the following warning statement is written
WRITE(*,2920) V(J),XT,J,S,N
WRITE(29,2920) Vv(J),XT,J,S,N
2920 FORMAT(/‘From Main Program: Abs(V(J)) > (X/T):',‘'V(J)=',
D12.3,';X/T=',D12.3/'J="',18,"';S=",18,";N=",18)
where V(J) = normalized fluid velocity uj; and XT = Ax/At. It may be shown

that the numerical stability criterion given by Eq. 27 is violated if luj| >
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(Ax/At) . In order to inform the progress of the time-marching computation,
the following statement is written whenever the value of the time level N

divided by 500 is an integer:
WRITE(*,*) 'N’', N

Moreover, whenever IDUM = N/NONE is an integer, the following statement

appears:
WRITE(*,*) ‘Finished’, IDUM, ‘'Wave Period(s)’

In the subroutine INPUT1, if none of IELEV, IV, IDUDT and ISNR are unity
for the case of IREQ=1, the subroutine STOPP is called to write, ‘Special
storage requested, but pertinent identifiers not specified correctly. Check
identifiers IREQ, IELEV, IV, IDUDT, ISNR.’ Then, the computation stops.
Furthermore, the computation stops if the subroutine CHEOPT finds an input
error in the options specified by a user. If ISTAB=2 and ISAVC=1, the number
of the elements of the vectors NODNO2(I) and FNAME2(I) must be the same as
NNOD2. The subroutine STOPP is called to write 'Need more data’ if the number
of the elements of these vectors is less than NNOD2.

In the subroutine BOTTOM, the computation stops if the structure geometry
specified as input is not consistent with the specified value of IJOB. 1If
IJOB=1 or 2, the structure must be subaerial. Otherwise, the subroutine STOPP
is called to write 'SWL is always above the structure. RUNUP/OVERTOPPING
computation can not be pefformed.' If IJOB=3, the structure must be
submerged. Otherwise, the subroutine STOPP is called to write ‘Part of the
structure is above SWL. TRANSMISSION computation can not be performed. "’
Furthermore, if the number of nodes in the computation domain, JE, becomes

greater than N1 = 500 specified in SBREAK, the following statement is written:
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WRITE(*,2910) JE, Nl
WRITE(29,2910) JE, N1
2910 FORMAT (/‘End Node=', 18,'; Nl=', 18/'Slope/Structure is too
long.’/'Cut it, or change PARAMETER NI1.')
It is noted that N1=500 should be sufficient for most applications where the
values of JE in the range from 100 to 500 have been used.

In the subroutine FINDM, the following statement appears if the parameter
m satisfying Eq. 34 is not obtained:

WRITE(*,2910)
WRITE(29,2910)

2910 FORMAT('‘'From Subr. 9 FINDM: ’/‘'Criterion for parameter M not

satisfied’)

In the function CEL, the following statement appears if QQC = (1-m)1/2
equals zero where the value of m is obtained in the subroutine FINDM:

WRITE(*,*) ‘Failure in Function CEL'’
WRITE(29,%) ‘Failure in Function CEL'’
which stops the computation.

In the subroutine MARCH, the computation stops if h:_l = §, corresponding
to the third step in the numerical procedure dealing the moving waterline in
Section 2.5. The following statement is written:

WRITE(*,2910) U(2,M), DELTA, S, N
WRITE(29,2910) U(2,M), DELTA, S, N
2910 FORMAT (/‘From Subroutine 12 MARCH'/'U(2,S-1) is less than or equal
to DELTA’/‘U(2,S-1) =',D12.3/'DELTA =',D12.3/'S=',I8/ 'N=",
I18/'Program Aborted’)
where U(2,M) = h:—1; DELTA = §; S = waterline node number s; and N = time
level. It is suggested to increase the value of NONE = At™! or the value of §
to avoid the numerical instability which tends to occur near the moving

waterline.
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In the subroutine LANDBC, the following statement is written and the
computation stops if IJOB=1 and S=JE where S = waterline node number and JE =
most landward node number:

WRITE(*,2910) N,S,JE
WRITE(29,2910) N,S,JE
2910 FORMAT (/‘'From Subroutine 13 LANDBC:'/‘N=', I8,';S=',I8, ';End
Node=', I8/'Slope is not long enough to accommodate
shoreline movement'/'Specify longer slope or choose
overtopping computation’)
This statement implies that wave overtopping over the specified structure
geometry occurs even though IJOB=1 is specified. It is suggested to use
IJOB=2 if the structure geometry is given or increase the crest height of the
structure if no overtopping is allowed.

In the subroutine RUNUP, the following statement appears if h: > h:~1 and
the adjustment described in the fourth step of the numerical procedure dealing
with the moving waterline in Section 2.5 is made:

WRITE(*,2910) $S,N,U(2,S), U(2,M)
. WRITE(29,2910) S,N,U(2,S), U(2,M)
2910 FORMAT(/'From Subroutine 14 RUNUP: U(2,S)>U(2,S-1) at’, ‘S=', I8,
‘;N='", I8/' Adjusted values:’',‘'U(2,S)=', E12.3,';U(2,S8-1)=",
E12.3)
where U(2,S) = h:; and U(2,M) = h:_l. This statement does not stop the
computation but suggests the numerical difficulty at the moving waterline
which may eventually lead to the numerical instability.

In the subroutine SEABC for the case of IWAVE=3, the incident solitary
wave profile nj(t) given by Eq. 36 is computed. The maximum and minimum
values of nj(t) denoted by ETAMAX and ETAMIN are set to be equal to Kg and

zero, respectively, in the subroutine INPUT1l. If the computed value of ni(t)

is greater than ETAMAX, the following statement is written and the computation

stops:
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WRITE(*,2910)
WRITE(29,2910)
2910 FORMAT(/‘'From Subr. 16 SEABC:'/
'ETAMAX exceeds KS')
If the computed value of nj(t) is less than ETAMIN, the computation stops
after writing the following statement:
WRITE(*,2920)
WRITE(29,2920)
2920 FORMAT(/‘From Subr. 16 SEABC:'/
‘ETAMIN is less than zero')
In the subroutine STABNO, the following statement is written and the
computation stops if the condition given by Eq. 74 is not satisfied:
WRITE(*,2910) N,J
WRITE(29,2910) N,J
2910 FORMAT('From Subr. 19 STABNO'/‘Armor Stability impossible’/'N=',
18,';J=",18)
where N = time level; and J = node number. This statement implies that the
values of AMIN = a_. ' and AMAX = a specified as input do not satisfy the
min max
conditions given by Eq. 76.
In the subroutine DOCl, the following statement is written if the values
of ALPHAS given by Eq. 88 is less than unity:
WRITE(*,2910) ALPHAS
WRITE(29,2910) ALPHAS
2910 FORMAT(/‘From Subr. 33 DOCl’'/'Stability Indicator=', F9.3/'May
cause numerical instability. Increase NONE')
Furthermore, if NONE/NJUM1 and NONE/NJUM2 are not integers, the written
statements instructing the changes of NJUM1 and NJUM2 appear in the manner
similar to that for ALPHAS. The computation stops if the requirements for
ALPHAS, NJUM1 and NJUM2 are not satisfied.
The subroutine CHEPAR checks whether the values of N1, N2, N3, N4 and N5

used to specify the sizes of matrices and vectors in the main program are

equal to the corresponding values used in the subroutines. If this
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requirement is not satisfied, the computation stops and the instruction to
correct the parameter error is written.

The subroutine CHEOPT checks the options selected by a user as well as
the requirements of 1 < NNOD1 < N5, 1 < NNOD2 < N5, 1 < NNREQ < N5, 1 < § <
N1, 1 < NDELR < N3 and 1 < NBSEG < N4. If there is an input error, the
computation stops and the instruction to correct the input error is written.

The subroutine STOPP executes a programmed stop. This subroutine has

already been explained when it is called in the subroutines INPUT1 and BOTTOM.

3.6 Qutput Parameters and Variables

The output of the input and computed results is made in the subroutines
DOC1l, DOC2 and DOC3 before, during and after the time-marching computation
except that if IWAVE = 1, the computed monoéhromatic wave profile nj(t) over
one wave period is written in the subroutine INWAV as follows:

WRITE(34,3410) (ETA(I), I=1, NONE1)

3410 FORMAT (8F9.6)
where ETA(I) = nj(t) with t = (I-1)At and NONE1l=(NONE+1). The unit numbers
and file names used in SBREAK are explained in the subroutine OPENER.

The output parameters and variables from the subroutines DOC1, DOC2 and
DOC3 are summarized in the following. The format statements in these
subroutines are lengthy but self-explanatory. As a result, these format
statements are omitted in the following.

The subroutine DOCl documents the input data and calculated dimensionless
parameters before the time-marching computation. First, the wave conditions
at the seaward boundary specified as input are written depending on whether
IWAVE = 1, 2 or 3. 1If IWAVE = 1, cnoidal or Stokes second-order wave theory

1s used to compute 7j(t) in the subroutine INWAV depending on URPRE > 26 or
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URPRE < 26, respectively, where URPRE is the value of the Ursell parameter
based on linear wave theory. If cnoidal wave theory is used, the following

output is written:
WRITE(28,2813) KC2, ECNO, KCNO

where KC2, ECNO and KCNO are explained in the common /WAVES5/ as well as in the
corresponding format statement. If IWAVE = 3, the following solitary wave
parameters are printed:

WRITE(28,2815) TCSOL, KIWO
where TCSOL and KTWO are explained in the common /WAVE6/. The following

quantities explained in the commons /WAVEl/, /WAVE2/, /WAVE4/, /BOT1l/ and

/BOT2/ are then written

WRITE(28,2816) ETAMAX, ETAMIN .
WRITE(28,2817) TP, HREFP, UL, DSEAP, UL, KSREF, KSSEA, KS
WRITE(28,2818) DSEA, WL, SIGMA, UR, KSI

where UL indicates the unit (m or ft) of the quantity in front of UL. If

IJOB=3, DLANDP included in the common /BOTl/ is written
WRITE(28,2819) DLANDP, UL

The quantities explained in the commons /BOT1l/, /BOT2/ and /BOT4/ are then

written
WRITE(28,2821) FWP, FW, WTOT, NBSEG

If IBOT=1, the width and slope of each segment of the structure as shown in

Fig. 4 are written

WRITE(28,2824) (K,WBSEG(K),TBSLOP(K):,K=1,NBSEG)
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If IBOT=2, the coordinates of the end points of linear segments of the

structure as shown in Fig. 4 are written
WRITE(28,2824) (K,XBSEG(K),bZBSEG(K),K=1,NBSEG+1)

Next, the quantities explained in the commons /CONSTA/, /TLEVEL/, /NODES/ and
/GRID/ are written

WRITE(28,2841) X,T,DELTA,X1,X2,ALPHAS

WRITE(28,2842) NTOP,NONE,JE

WRITE(28,2843) S

WRITE(28,2844) NJUM1

WRITE(28,2845) NJUM2
where ALPHAS is defined by Eq. 88 and the input value of S is written only if
1JOB=1 or 2 since S =JE for IJOB=3. The value of NJUM2 is specified as input
if ISTAB=1 or 2, but it is used only for ISTAB=1 in SBREAK. If ISTAB=1 or 2,
the quantities explained in the common /STABl/ are written

WRITE(28,2851) TANPHI,SG,C2,C3,CD,CL,CM

WRITE(28,2851) AMAX, AMIN

WRITE(28,2853) DAP,UL
where AMAX and AMIN are used and written only for ISTAB=1, while DAP (m or ft)
is required only for ISTAB=2. Moreover, the normalized structure geometry is
written as follows:

WRITE(22,2210) JE

WRITE(22,2220) (XB(J),ZB(J),J=1,JE)
where JE is discussed in the common /NODES/, whereas XB(J) and ZB(J) are
explained in the common /BOT3/.

The subroutine DOC2 stores some of the computed results at designated

time levels during the time-marching computation where use is made hereafter

of N = current time level, S = most landward wet node at this time level, and
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J = node number in the range 1 = J = 8. 1If ICALL=1l, corresponding to the
specified time levels for the case of ISAVA=l, the spatial variations of the
normalized free surface elevation n and the normalized fluid velocity u are
stored

WRITE(22,2210) N,S

WRITE(22,2220) (ELEV(J),V(J),J=1,S)

If ICALL=2 in the subroutine DOC2, the computed temporal variations of

certain quantities at specified nodes are stored every NJUMl time steps

throughout the time-marching computation. If ISAVB=1, the temporal variation

of the normalized water depth h is stored
WRITE(NUNIT,5010) N, U(2,J)

where U(2,J) = value of h at the time level N and at the node J = NODNO1(I)
with I=1,2,...,NNOD1, as explained in the common /FILES/, whereas the unit
number NUNIT = (49 + I) as explained in the subroutine OPENER. If ISAVC=1,
the temporal variation of the normalized displacement of the armor unit, X,,

defined by Eq. 87a from its initial location is stored
WRITE(NUNIT,7510) N,XA(J)

where XA(J) = value of X, at the time level N of the armor unit initially
located at the node J = NODNO2(I) with I=1,2,...,NNOD2 as explained in the
common /FILES/, while the unit number NUNIT = (74 + I) as explained in the
subroutine OPENER. It is noted that XA(J)=0 if ISTATE(J)=0, corresponding to
the stationary armor unit at the node J. Furthermore, the computed temporal
variations at the landward and seaward boundaries at the time level N are
stored every NJUM1 time steps throughout the time-marching computation. If

IJOB=1 or 2, the following quantities at the time level N are written
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WRITE(31,3110) N,S

WRITE(31,3120) (RUNUPS(L), L=1, NDELR)
where NDELR and RUNUPS(L) are explained in the commons /RUNP1l/ and /RUNP2/.
If I1JOB=2, the hydrodynamic quantities at the most landward node JE are

written
WRITE(32,3210) N,U(1,JE),U(2,JE),V(JE),C(JE)

where the hydrodynamic quantities are explained in the common /HYDRO/. It is
noted that if IJOB=2 and wave overtopping occurs, S=JE and the hydrodynamic
quantities at the node JE are non-zero. If IJOB=3, the hydrodynamic

quantities at the fixed landward boundary located at the node J=JE are written
WRITE(33,3310) N,U(1,JE),V(JE),C(JE),ETAT

where ETAT = value of the normalized free surface elevation 5 due to the
transmitted wave. On the other hand, the quantities at the seaward boundary

located at the node J=1 are written as follows:
WRITE(21,2110) N,ETAI,ETAR,ETATOT,V(1),U(1,1)

where ETAI, ETAR and ETATOT are the values of ni, ny and (ni + ny) at the time
level N, respectively, while ni and n, are the normalized free surface
elevations due to the incident and reflected waves, respectively.

If ICALL=3 in the subroutine DOC2, the spatial variations of the
requested quantities are stored at the specified time levels N=NREQ(I) with
I-lf2,...,NNREQ as explained in the common /IDREQ/. If IREQ=1l and the time

level N=NREQ(I) in the .main program, the following quantities are stored in

the subroutine DOC2:
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WRITE(40,4010) N,S

WRITE(40,4020) (ELEV(J),J=1,S)

WRITE(40,4020) (V({J),J=1,S)

WRITE(40,4020) (DUDT(J),J=1,8)

WRITE(40,4020) (SNR(J),J=1,S)
where S indicates the most landward wet node at the time level N. It is noted
that ELEV(J), V(J), DUDT(J) and SNR(J) are stored only if IELEV, IV,IDUDT and
ISNR are unity, respectively, as explained in the common /IDREQ/.

The subroutine DOC3 documents the computed results after the time-

marching computation. The reflection coefficients defined by Eqs. 43, 44 and

45 for I=1,2 and 3, respectively, are written
WRITE(28,2811) (RCOEF(I),I=1,3)

If 1IJOB=1 or 2, the normalized runup, run-down and setup for different values
of 5; as explained in the common /RUNP2/ are written
WRITE(28,2821) JMAX

WRITE(28,2822) UL
DO 110 L=1, NDELR

WRITE(28,2823) L,DELRP(L),RSTAT(2,L),RSTAT(3,L),RSTAT(1,L)
110 CONTINUE

where JMAX is the largest node number reached by the computational waterline

based on h=§ and UL indicates the unit (mm or inches) of DELRP(L) = 6;. If

IJOB=2, the wave overtopping quantities explained in the common /OVER/ are

written

WRITE(28,2831) OV(1),U1lSTAT(1),0V(4),0V(2),0V(3)

where ULSTAT(1l) = value of the time-averaged flux m at the seaward boundary
which should be equal to OV(1l) = value of m at the landward edge if the steady

state is really established. It should also be noted that small time-averaged
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quantities relative to large time-varying quantities are harder to predict
very accurately. If ISTAB=1, the armor stability quantities explained in the
commons /STAB5/ and /STAB6/ are written

WRITE(28,2841) SNSC,JSNSC,NSNSC

WRITE(41,4110) JMAX

WRITE(41,4120) (XB(J),ZB(J),SNSX(J),J=1,JMAX)
where XB(J) and ZB(J) express the normalized structure geometry as explained
in the common /BOT3/. 1If ISTAB=2, the armor movement quantities explained in
the commons /STAB7/ and /STAB8/ are written

WRITE(28,2842) NMOVE,NSTOP

WRITE(42,4210) NMOVE

DO 120 J=1, JMAX

IF(ISTATE(J).GE.1l) WRITE(42,4220)

NODIN(J) ,NODFI(J),NDIS(J),ISTATE(J) ,XB(J),ZB(J),XA(J)
120 CONTINUE

where the armor unit initially located at the node J is stationary, moving or
stopped after its movement depending on ISTATE(J)=0, 1 or 2, respectively. On
the other hand, if IJOB=3, the time-averaged values of ni, Ny and n are

written as follows:
WRITE(28,2851) (ELSTAT(I),I=1,3), DELMWL

where ELSTAT(I) is explained in the common /STAT/ and DELMWL~(7y — ny) is the
mean water level difference at the landward and seaward boundaries. If IJOB=1

or 2, the transmitted wave is not present and the following output is made:
WRITE(28,2852) (ELSTAT(I),I=1,2)

Moreover, if IJOB=3, the wave transmission coefficients defined by Egqs. 54, 55

and 56 for I=1, 2 and 3, respectively, are written
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WRITE(28,2861) (TCOEF(I), I=1,3)
WRITE(28,2861) ULSTAT(1),ULSTAT(JE),QAVER

where ULSTAT(1l) and ULSTAT(JE) are the values of m at the seaward and landward
boundaries, respectively, while QAVER is the average of these two values. The
statistics of the hydrodynamic quantities explained in the common /STAT/ are

written as follows:

WRITE(23,2310) JMAX
WRITE(23,2320) (ULSTAT(J),J=1,JMAX)
DO 130 I=1,3
WRITE(23,2320) (ESTAT(I,J),J=1,JMAX)
WRITE(23,2320) (VSTAT(I,J),J=1,JMAX)
130  CONTINUE

Finally, if IENERG=1, the wave energy quantities explained in the common

/ENERG/ are written

WRITE(28,2872) (ENERB(I),I=1,10)
IF(IJOB.EQ.3) WRITE(28,2873) ENERB(1l1l)
WRITE(28,2874) (ENERB(I),I=12,13)
IF(IJOB.EQ.3) WRITE(28,2875) ENERB(14)
WRITE(35,3510) JMAX
DO 140 I=1,4
WRITE(35,3520) (ENER(I,J),J=1,JMAX)

140  CONTINUE
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4. RUNUP OF BROKEN SOLITARY WAVES

The numerical model described in Section 2 is compared herein with
available experimental data on solitary wave runup on a smooth uniform slope.
Examples of the input and output of the computer program SBREAK explained in
Section 3 are given for a few computed cases.

An emphasis is placed on runup of broken solitary waves since runup of
nonbreaking solitary waves is better understood theoretically (e.g.,
Synolakis, 1987a) and can be predicted well by numerical models based on
potential flow theory (e.g., Liu and Cho, 1993). As for runup of breaking or
broken solitary waves, no general empirical formula exists unlike Hunt's
formula for monochromatic waves (Battjes, 1974; Ahrens and Martin, 1985).
Numerical models based on potential flow theory are not applicable to broken
waves. Boussinesq wave models such as a Lagrangian finite-element model of
Zelt (1991) may be used to predict runup of broken solitary waves if the
effects of wave breaking and bottom friction are included empirically. The
Boussinesq models include an additional nonhydrostatic pressure correction in
the momentum equation given by Eq. 2. However, it is not obvious whether the
nonhydrostatic pressure correction based on the potential flow assumption of
weakly nonlinear and relatively long waves is really valid for broken solitary
waves. In any case, Fhe present numerical model is the simplest time-

dependent, one-dimensional model for breaking or broken waves.

4.1 Sensitivity Analysis for Incident Solitary Wave Parameters

The incident solitary wave profile nj(t) has been assumed to be expressed
in the normalized form of Eq. 36. In this report, the representative wave
height H} used for the normalization is taken as the incident solitary wave

height H' at the toe of a uniform slope located at x=0. As a result, the
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following computation is limited to the case of Kg = H'/Hy = 1. Then, the
variation of nj(t) with respect to the normalized time t = t’/T; depends on
the two parameters Ky and t,. The parameter Kj is given by Eq. 38 with Kg =1
where nj(t) = §; in the unit duration (t; - 0.5) = t < (t, + 0.5) about the
normalized crest arrival time t..

Fig. 5 shows K = K3/2 as a function of the small parameter §;. The
parameter K decreases from K = 2.99 at é; = 0.01 to K = 1.82 at §; = 0.1, The
parameter K is related to the complete elliptic integral of the first kind
associated with the cnoidal wave profile given by Eq. 31. The range K = 1.82
- 2.99 for cnoidal wave theory corresponds to the Ursell parameter U, = 8 -
46. Fig. 5 indicates that the parameter Ky = 2K is not very sensitive to §;
in the range 6 = 0.1 - 0.01, although the selection of §; is somewhat
arbitrary.

Fig. 6 shows nj(t=0) given by Eq. 40 with Kg=1 as a function of §; for t,
= 0.5, 1.0 and 1.5. The initial value of n; at t=0 is essentially zero for
the range 6; = 0.01 - 0.1 if the normalized crest arrival time t, is taken as
;C = 1. The use of t, = 1 will ensure a smooth transition from the initial
conditions of no wave action in the computation domain x = 0. Moreover, the
computed temporal variations starting from t = 0 can be interpreted easily by
selecting the crest arrival time t, = 1.

Fig. 7 shows the parameter o = Tf}é?ﬁT defined in Eq. 5 and given by Eq.
39 with Kg = 1 as a function of the normalized water depth, d = d{/H', for §;
= 0.01, 0.05 and 0.1. The present numerical model assumes that 02>>1 and de
is of the order of unity. Fig. 7 indicates that the assumption of o2>>1
should be valid as long as di is larger than about 2, for which the incident
solitary waves at the toe of the slope are non-breaking. If d¢ becomes much

greater than unity, the dispersive effects neglected in the present numerical
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model may not be negligible in the region between the toe of the slope and the
point of wave breaking. This is one of the reasons why the numerical model is
compared with only breaking solitary wave data of Synolakis (1987a) in the

following.

4.2 Runup Data of Broken Solitary Waves on Smooth Uniform Slopes

Synolakis (1987a) conducted experiments in a wave tank whose dimensions
were 37.73 m x 0.6l m x 0.39 m. At a distance‘of 14.68 m from the wave
generator a beach of a uniform slope with cot 4§’ = 19.85 was constructed of
aluminum panels with a hydrodynamically smooth surface. The wave generator
produced near-perfect solitary waves. Wave heights in the constant depth
region were measured by resistance-type wave gages. The runup gage consisted
of an array of capacitance wave probes mounted on a frame. The tip of each
probe was 0.1 cm from the bottom surface, corresponding to the physical water
depth 63 = 0.1 cm used in the numerical model for predicting wave runup as
explained in Section 2.5.

Synolakis (1987a) listed the values of df, dzl = H'/dt and R'/d{ for each
of 77 tests in his experiments where d{ = water depth below the still water
level (SWL), H' = incident solitary wave height measured at a certain distance
from the toe of the slope, and R’ = maximum runup elevation above SWL. The
measured wave height is assumed herein to be the same as the wave height H’' at
the toe of the slope to reduce the computation domain. Breaking on the
1:19.85 slope occurred during backwash when d;l > 0.044, that is, dy < 22.7
and during uprush when d;l > 0.055, that is, d¢ < 18.2. The comparisons
between the measured and computed runup in this report are limited to breaking
solitary waves during uprush since the present numerical model may not be

applicable for very large dg. Table 2 summarizes the 43 tests for which dzl =
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TABLE 2. Broken Solitary Wave Runup Data of Synolakis (1987a)

Test | 4, | A'/d, | R/d, g d: R

No (m) (m)
11 0.0625 | 0.250 0.506 | 0.015625 4.0000 | 2.0240
2 | 0.0625 | 0.072 0.233 | 0.004500 | 13.8889 | 3.2361
3 | 0.0801 | 0.448 0.723 | 0.035885 2.2321 | 1.6138
4 10.0979 | 0.078 0.251 | 0.007636 | 12.8205 | 3.2179
5 | 0.0979 | 0.384 0.621 | 0.037594 2.6042 | 1.6172
6 | 0.0981 | 0.097 0.274 | 0.009516 | 10.3093 | 2.8247
7 | 0.0984 | 0.462 0.659 | 0.045461 2.1645 | 1.4264
8 | 0.0989 | 0.236 0.467 | 0.023340 4.2373 | 1.9788
9] 0.1317 | 0.294 0.542 | 0.038720 3.4014 | 1.8435

10 | 0.1454 | 0.610 [ 0.780 | 0.088694 | 1.6393 | 1.2787
11 | 0.1454 | 0.591 | 0.790 | 0.085931 | 1.6920 | 1.3367
12 | 0.1454 | 0.607 | 0.805 | 0.088258 | 1.6474 | 1.3262
13 | 0.1454 | 0.607 | 0.780 | 0.088258 | 1.6474 | 1.2850
14 | 0.1550 | 0.601 | 0.801 | 0.093155 | 1.6639 | 1.3328
15 | 0.1567 | 0.090 | 0.270 | 0.014103 | 11.1111 | 3.0000
16 | 0.1572 | 0.259 | 0.519 | 0.040715 | 3.8610 | 2.0039
17 | 0.1576 | 0.590 | 0.810 | 0.092984 | 1.6949 | 1.3729
18 | 0.1562 | 0.298 | 0.551 | 0.046548 | 3.3557 | 1.8490
19 | 0.1565 | 0.322 | 0.591 | 0.050393 | 3.1056 | 1.8354
20 | 0.1569 | 0.170 | 0.407 | 0.026673 | 5.8824 | 2.3941
21 | 0.1670 | 0.273 | 0.487 | 0.045591 | 3.6630 | 1.7839
22 | 0.1753 | 0.276 | 0.495 | 0.048383 | 3.6232 | 1.7935
23 | 0.1942 | 0.633 | 0.842 | 0.122929 | 1.5798 | 1.3302
24 | 0.1942 | 0.625 | 0.825 | 0.121375 | 1.6000 | 1.3200
25| 0.1947 | 0.626 | 0.862 | 0.121882 | 1.5974 | 1.3770
26 | 0.1956 | 0.283 | 0.527 | 0.055355 | 3.5336 | 1.8622
27 | 0.1962 | 0.286 | 0.513 | 0.056113 | 3.4965 | 1.7937
28 | 0.2080 | 0.323 | 0.555 | 0.067184 | 3.0960 | 1.7183
29 | 0.2092 | 0.188 | 0.409 | 0.039330 | 5.3191 | 2.1755
30 | 0.2092 | 0.271 | 0.513 | 0.056693 | 3.6900 | 1.8930
31 0.2092 | 0.416 | 0.686 | 0.087027 | 2.4038 | 1.6490
32102101 | 0.159 | 0.384 | 0.033406 | 6.2893 | 2.4151
33.1 0.2144 | 0.160 | 0.384 | 0.034304 | 6.2500 | 2.4000
34 | 0.2147 | 0.143 | 0.366 | 0.030702 [ 6.9930 | 2.5594
35| 0.2349 | 0.394 | 0.641 | 0.092551 | 2.5381 | 1.6269
36 | 0.2638 | 0.267 | 0.507 | 0.070435 | 3.7453 | 1.8989
37 ] 0.2940 | 0.075 | 0.258 | 0.022050 | 13.3333 | 3.4400
38 | 0.2954 | 0.073 | 0.248 | 0.021564 | 13.6986 | 3.3973
39 | 0.2962 | 0.065 | 0.228 | 0.019253 | 15.3846 | 3.5077
40 | 0.2972 | 0.056 | 0.207 | 0.016643 | 17.8571 | 3.6964
41 1 0.3093 | 0.188 | 0.425 | 0.058148 | 5.3191 | 2.2606
42 | 0.3138 | 0.094 | 0.288 | 0.029497 | 10.6383 | 3.0638
43 1 0.3535 | 0.193 | 0.426 | 0.068226 | 5.1813 | 2.2073
max | 0.3535 | 0.633 | 0.8620 | 0.122929 | 17.8571 | 3.6964
min | 0.0625 | 0.056 | 0.2070 | 0.004500 | 1.5798 | 1.2787
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H'/df = 0.056 where the normalized runup R is defined as R = R'/H’ to be
consistent with the normalization given by Eq. & with H’ = H/. The maximum
and minimum values of d{, H'/d¢, R'/d¢, H', d¢ and R for the 43 tests are
listed in Table 2 to indicate the ranges of these parameters associated with
the broken solitary.wave runup data of Synolakis (1987a).

Synolakis (1987a) stated that the shoreline assumed a parabolic shape in

plan view, possibly due to sidewall effects. His formula for maximum runup

based on the maximum position of the shoreline can be rewritten as

B = 1,109 42416 (89)

The average position of the shoreline resulted in the following formula

R = 0.918 42-3% (90)

Egqs. 89 and 90 are plotted in Fig. 8 together with the 43 tests in Table 2
which lists the value of R based on the maximum shoreline position for each
run. The correlation coefficient r between the measured and empirical values
of R is calculated to be r = 0.996, indicating the good fit by Eq. 89.
However, Fig. 8 also suggests the difficulty and uncertainty in comparing the
present one-dimensional numerical model with the data affected by sidewall
effects. In the following, the measured runup based on the maximum shoreline
position is assumed to correspond to the computed runup based on the
assumption of alongshore uniformity. Eq. 89 is limited to breaking or broken
solitary waves on the smooih 1:19.85 slope. For non-breaking solitary waves,
Synolakis (1987a) also analyzed other available data for different slopes and

proposed the following formula including the slope effect

R = 2.831 Joot o7 ag/* (91)

103



4.5 T I )
O  Tabulated data
40F —— R=1.109 d;%4'® (maximum) i
r =0.996 _—
- - =0. * average A
Bk R=0.918 d, (average) -
3.0r i ]
2.5F .
R _
2.0r
1.5} !
1.0f )
0.5r |
0'00 5 10 19,
d
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Shoreline Positions on Smooth 1:19.85 Slope.
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Consequently, an attemﬁt is made hereafter to extend Eq. 89 and develop an
empirical formula for R including the slope effect.

The continuity and momentum equations normalized as Eqs. 6 and 7 as well és
the normalized incident solitary wave profile given by Eq. 36 with Kg = 1 are
used to identify the dimensionless parameters involved in this problem.

Eqs. 6 and 7 involve the normalized slope gradient, # = o tan 4’ and the
normalized bottom friction factor, f = ¢ £'/2 where o = T{:(g/H’)l‘/2 for Kg =
1. For uniform slopes, f can be replaced by the surf similarity parameter ¢ =
9/(2r)1/2. Eq. 36 with Kg = 1 requires the parameters Ky and t, where Ky can
be found for given §; and t, = 1 has been assumed in Section 4.1. The
normalized slope geometry described by Eq. 8 reduces to z = (#x - dy) in the
region x = 0 for uniform slopes. For solitary waves, the parameter ¢ given By
Eq. 39 with Kg = 1 depends on d¢ and Kj. Consequently, the parameters
involved in the solitary wave motion on uniform slopes may be taken as 4, f,
6j and dr. Alternatively, the four parameters £, f', §; and dy may be
selected to be the independent parameters. The normalized runup R = R'/H’ may
thus be regarded to be a function of £, di, £’ and §;. The following data
analysis is limited to smooth slopes and the friction factor f’ is not
considered explicitly, assuming that R is not very sensitive to f' in the
‘range of f' expected for smooth slopes. This assumption has been shown to be
appropriate for monochromatic waves (Kobayashi and Watson, 1987).

For each of the 43 tests listed in Table 2, the value of ¢ is computed
using Eq. 39 for §; = O.ﬁl, 0.05 and 0.1 corresponding to Ky = 5.986, 4.357
and 3.637, respectively. The representative wave period is then computed
using T4 = o(H'/g)/? and the surf similarity parameter given by £ = o tan 8’

/(2::-:)1/2 with cot ' = 19.85 for these runs. The calculated values of TL, o

and £ for each run are listed in Table 3 where these value increase with the
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decrease of §;. The calculated representative wave periods are of the order
of 1 sec and may be reasonable for the small-scale experiments. The
calculated values of o are of the order of ten or greater and satisfy the

2

assumption of ¢ >> 1 made in the present numerical model. The surf
similariéy parameter £ for breaking or broken solitary waves is less than
about two, which approximately corresponds to the breaking condition of
monochromatic waves (Battjes, 1974). The use of the surf similarity parameter
for solitary waves allows the comparisons between solitary and monochromatic
waves, although the representative wave period depends on the small parameter
6i, which is somewhat arbitrary.

The following empirical formula for the normalized runup R for breaking

monochromatic waves on smooth uniform slopes is well established (Battjes,

1974; Ahrens and Martin, 1985)

R=§-"7t‘;—:—9'— for 0.1 < £ < 2.3 (92)
The normalized runup R for solitary waves on smooth uniform slopes depends on
§, dp and 65. The surf similarity parameter £ includes the effects of both
tan §' and o in the single parameter where o given by Eq. 39 depends on d¢ and
6. In view of Eq. 92, the normalized runup of breaking solitary waves on
smooth uniform slopes may be assumed to be a function of £ .only for given 81,
provided that the normalized toe depth d. is sufficiently large and its direct
effect on R is negligible. For the 43 tests listed in Table 2, 1.57 < de <
17.86. |

The empirical relationship between R and £ is estimated using Eq. 89. For

the range 1.57 < dy < 17.86, Eq. 39 with Kg = 1 suggests that o is
approximately proportional to d¢. Then, £ is approximately proportional to de

for given tan §’. Fig. 9 shows the relationship between ¢ and dy for the 43
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TABLE 3. Calculated Values of Ty, o and § for §; = 0.1, 0.05 and 0.01 for
43 Tests listed in Table 2.
Test 1} (sec) a I3
No [# =0.1]8=005]8=00L&=01]6§=005[&=001]8=01]6=005]4&=0.0l
1| 0.5996 0.7183 0.9870 | 15.0247 | 17.9977 | 24.7311 | 0.3020 0.3617 0.4970
2 1.2065 1.4453 1.9860 | 56.3339 | G67.4810 | 92.7275 1.1322 1.3562 1.8636
3| 04711 0.5644 0.7755 | 7.7900 9.3315 | 12.8226 | 0.1566 0.1875 0.2577
4| 1.4468 1.7331 2.3814 | 51.8556 | 62.1166 | 85.3561 | 1.0422 1.2484 1.7155
51 0.5755 0.6893 0.9472 | 9.2961 | 11.1356 [ 15.3017 | 0.1868 0.2238 0.3075
G| 1.2874 1.5421 2.1191 | 41.3357 | 49.5150 | 68.0399 | 0.8308 0.9951 1.3675
71 0.5118 0.6130 0.8424 | 7.5177|. 9.0053 | 12.3744 | 0.1511 0.1810 0.2487
8| 0.7807 0.9352 1.2851 | 16.0058 19.1730 26.3462 | 0.3217 0.3853 0.5295
9| 0.7889 0.9450 1.2985 | 12.5570 15.0417 20.6692 | 0.2524 0.3023 0.4154
10 0.5159 0.6180 0.8492 | 5.4257 6.4993 8.9309 | 0.1090 0.1306 0.1795
L1 | 0.5273 0.6316 0.8679 | 5.6335 6.7482 9.2729 | 0.1132 0.1356 0.1864
12| 0.5177 0.6201 0.8521 | 5.4576 6.5375 8.9834 | 0.1097 0.1314 0.1805
13| 0.5177 0.6201 0.8521 | 5.4576 6.5375 8.9834 | 0.1097 0.1314 0.1805
14 [ 0.5381 0.6446 0.8858 | 5.5224 6.6152 9.0901 | 0.1110 0.1330 0.1827
15| 1.6946 2.0299 2.7894 | 44.6935 | 53.5372 | 73.5669 | 0.8982 1.0760 1.4785
16 | 0.9310 1.1152 1.5324 | 14.4506 17.3101 | 23.7862 | 0.2904 0.3479 0.4781
17 | 0.5496 0.6583 0.9046 | 5.6448 6.7618 9.2915 | 0.1134 0.1359 0.1867
18 | 0.8520 1.0206 1.4025 | 12.3693 | 14.8169 | 20.3603 [ 0.2486 0.2978 0.4092
191 08130 0.9738 1.3382 | 11.3430 | 13.5875 | 18.6710 | 0.2280 0.2731 0.3752
201 1.1909 1.4265 1.9602 | 22.8380 | 27.3571 ( 37.5921 | 0.4590 0.5498 0.7555
21 | 0.9295 1.1134 1.5299 | 13.6340 | 16.3318 | 22.4420 | 0.2740 0.3282 0.4510
22 | 0.9460 1.1332 1.5571 | 13.4699 | 16.1353 | 22.1720 ( 0.2707 0.3243 0.4456
23 | 0.5812 0.6962 0.9566 | 5.1916 6.2189 8.5456 | 0.1043 0.1250 0.1717
24 | 0.5863 0.7023 0.9651 | 5.2710 6.3140 8.6762 | 0.1059 0.1269 0.1744
25| 0.5864 0.7024 0.9652 | 5.2610 6.3020 8.6597 | 0.1057 0.1267 0.1740
26 | 0.9841 1.1788 1.6199 | 13.1009 | 15.6932 | 21.5645 | 0.2633 0.3154 0.4334
271 0.9793 1.1731 1.6119 | 12.9483 | 15.5105 | 21.3134 | 0.2602 0.3117 0.4284
28 | 0.9354 1.1205 1.5398 | 11.3036 | 13.5403 | 18.6061 | 0.2272 0.2721 0.3739
29 | 1.2977 1.5544 2.1360 | 20.4943 | 24.5497 | 33.7344 | 0.4119 0.4934 0.6780
30 | 1.0449 1.2517 1.7200 | 13.7454 | 16.4653 | 22.6254 | 0.2763 0.3309 0.4547
31| 0.7990 0.9571 1.3152 | 8.4835| 10.1622 | 13.9641 | 0.1705 0.2042 0.2806
32 | 1.4317 1.7149 2.3565 | 24.5336 | 29.3882 | 40.3831 | 0.4931 0.5906 0.8116
33| 14411 1.7262 2.3721 | 24.3697 | 29.1919 | 40.1134 | 0.4898 0.5867 0.8062
34| 1.5367 1.8408 2.5295 | 27.4689 | 32.9043 | 45.2147 | 0.5521 0.6613 0.9087
35| 0.8769 1.0504 1.4433 | 9.0276 | 10.8139 | 14.8597 | 0.1814 0.2173 0.2986
36 | 1.1840 1.4183 1.9489 | 13.9733 | 16.7383 | 23.0006 | 0.2808 0.3364 0.4623
37| 2.5604 3.0670 4.2145 | 54.0051 | 64.6913 | 88.8941 [ 1.0854 1.3002 1.7866
38 | 2.6038 3.1190 4.2860 | 55.5363 | 66.5256 | 91.4146 | 1.1162 1.3370 1.8372
39| 2.7735 3.3223 4.5653 | 62.6054 | 74.9935 | 103.0505 | 1.2582 1.5072 2.0711
40 | 3.0058 3.6006 4.9477 | 72.9760 | 87.4161 | 120.1209 | 1.4667 1.7569 2.4142
4] 1.5779 1.8901 2.5072 | 20.4943 | 24.5497 | 33.7344 | 0.4119 0.4934 0.6780
42 | 2.3422 2.8056 3.8553 | 42.7133 | 51.1652 | 70.3075 | 0.8584 1.0283 1.4130
13 | 1.6614 1.9901 2.7346 | 19.9215 | 23.8635 | 32.7915 | 0.4004 0.4796 0.6590
max | 3.0058 3.6006 4.9477 | 72.9760 | 87.4161 | 120.1209 | 1.4667 1.7569 2.4142
min | 0.4711 0.5644 0.7755 | 5.1916 6.2189 8.5456 | 0.1043 0.1250 0.1717
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FIGURE 9. Relationship between £ and d¢ with §; = 0.1, 0.05 and 0.01 for 43
Tests Listed in Tables 2 and 3.
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tests with cot #' = 19.85 listed in Tables 2 and 3. Linear regression
analyses based on { = cdy yield the coefficient ¢ = 0.0802, 0.0961 and 0.1320
for 65 = 0.1, 0.05 and 0.01, respectively. Substitution of d{ = £/c into Eq.

89 results in

R="z8¢ (93)

Eq. 93 suggests the empirical relationship between R and ¢ in the following
form:

R =a¢b ' (94)

where a and b are empirical constants. Figs. 10, 11 and 12 show the
relationship between R and ¢ for the 43 runs with 6 = 0.1, 0.05 and 0.01,
respectively. The results shown in Figs. 10-12 are plotted together in Fig.
13 to clarify the differences among §; = 0.1, 0.05 and 0.01. The runup
formula for monochromatic waves given by Eq. 92 is also plotted to show the
differences between solitary and monochromatic wave runup. For monochromatic
(regular) waves, downrush from the preceding wave reduces runup of the
subsequent wave.

The values of a and b in Eq. 94 for §; = 0.1, 0.05 and 0.0l are obtained
for a linear regression analysis based on fog(R) = [Zog(a) + b Log(&)]. The
fitted values of a and b as well as the correlation coefficient r between the
measured and empirical valges of R are listed in Table 4. The values of r for
6§ = 0.1, 0.05 and 0.01 are the same because §{ is proportional to Ko in view
of Egs. 39 and 92, while Ky given by Eq. 38 with Kg = 1 depends on §; only.
The values of b in Table 4 are very close to b = 0.418 based on Eq. 93.
Comparing Eqs. 93 and 94, a = 1.109/c0'a18, which is a good approximation for

the 43 tests. This implies that the runup relationsh{p expressed in the form
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of Eq. 94 is no better than the simpler relationship given by Eq. 89 for these
43 tests with cot §’' = 19.85. Nevertheless, the use of the surf similaricy
parameter may make Eq. 94 applicable to smooth slopes with different

gradients.

TABLE 4. Fitted Values of a and b in Runup Relationship R = a £b for 43 Tests

with §; = 0.1, 0.05 and 0.01.

A a b r c 1.109/c°-418
0.10  3.174  0.395  0.996  0.0802 3.184
0.05  2.955  0.395  0.996  0.0961 2.952
0.0l  2.607  0.395  0.996  0.1320 2.585

In order to examine whether Eq. 94 is applicable for different values of
cot §', the solitary wave runup data of Hall and Watts (1953) for which cot §'
= 1.00 - 11.43 is analyzed in the same way as the data of Synolakis (1987a)
listed in Tables 2 and 3. The following data analysis is limited to the case
of §; = 0.05 since the degree of agreement in Fig. 13 is independent of the
specific value of 6;. Table 5 lists the dimensionless parameters for the 177
runs of Hall and Watts (1953) where the term "run" is used herein to
differentiate their experiments from those of Synolakis (198?;). In Table 5,
solitary waves are simply assumed to be breaking for £ < 2 and nonbreaking for
€ > 2. The ranges of the dimensionless parameters listed at the end of Table
5 may be compared with those listed in Tables 2 and 3 as well as in Table 6
which lists the dimensionless parameters for the 34 nonbreaking solitary wave
tests of Synolakis (1987a).

Fig. 14 plots the normalized runup R as a function of the surf similarity
parameter § for all thé solitary wave runup data analyzed herein. Fig. 14

indicates that the surf similarity parameter £ alone is not sufficient for
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TABLE 5.

Solitary Wave Runup Data of Hall and Watts

(1953) with

§§ = 0.05.

Run dy
No |
41 | 13.8889
42 | 20.0893
43 | 6.6225
44 | 8.2645
45 | 10.9890
46 | 11.6279
47 | 17.8571
48 | 5.9932
49 | 7.5431
50 | 9.1146
51| 9.6154
52 | 10.1744
53 | 15.6250
54 | 5.6180
55 | 5.9524
56 | 7.8125
57 | 10.5634
58 | 11.3636
59 | 14.7059
60 | 4.7710
61 | 6.1881
62 | 8.8028
63 | 13.5870
64 | 3.8911
65| 3.9683
66 | 7.0423
67 | 7.2993
68 | 9.8039
69 | 12.1951
70 | 3.3784
71| 4.1209
72 6.1475
73| 9.1463
74 | 2.3585
75| 3.0864
76 | 4.9020
77| 7.4627
78 | 7.4503
79 | 9.6983
80 | 12.3626

67.4810
98.6342
31.0525
39.2666
52.9246
56.1304
87.4161
27.9099
35.6557
43.5254
46.0356
48.8386
76.2010
26.0387
27.7064
37.0039
50.7894
54.8043
71.5842
21.8222
28.8830
41.9632
65.9648
17.4587
17.8406
33.1505
34.4358
46.9808
58.9772
14.9285
18.5962
28.6804
43.6846

9.9424
13.4934
22.4734
35.2533
35.1915
46.4511
59.8180

tan @'

0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.1763
0.2679
0.2679
0.2679

4.7469
6.9383
2.1844
2.7622
3.7229
3.9485
6.1492
1.9633
2.5082
3.0618
3.2383
3.4355
5.3603
1.8317
1.9490
2.6030
3.5727
3.8552
5.0355
1.5351
2.0318
2.9519
4.6402
1.2281
1.2550
2.3319
2.4224
3.3048
4.1487
1.0501
1.3081
2.0175
3.0730
0.6994
0.9492
1.5809
2.4799
3.7618
4.9655
6.3943

3.1852
2.9375
3.5762
2.9174
2.7967
2.9593
2.7500
3.3185
3.0603
4.8802
2.8407
2.9884
2.9464
3.3296
3.5278
3.3698
3.2183
3.4621
2.9804
3.2023
3.1733
3.3592
3.1848
3.2529
3.2024
3.4366
3.4526
6.6569
3.1829
3.2387
3.2143
3.4836
3.0610
2.9481
2.8395
3.0588
3.6269
2.8079
2.7759
2.6154

Condition

non-breaking

non-breaking
non-breaking
non-breaking
non-breaking
non-breaking
non-breaking
breaking

non-breaking
non-breaking
non-breaking
non-breaking
non-breaking
breaking

breaking

non-breaking
non-breaking
non-breaking
non-breaking
breaking

non-breaking
non-breaking
non-breaking
breaking

breaking

non-breaking
non-breaking
non-breaking
non-breaking
breaking
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TABLE 5. (Continued)
Run dy o tan ¢’ £ R Condition
__EO___________I___I_____.—/
81 | 13.0814 | 63.4264 | 0.2679 | 6.7800 | 2.5988 | non-breaking
82 | 13.8889 | 67.4810 | 0.2679 | 7.2135 | 2.6852 | non-breaking
83 | 18.4426 | 90.3583 | 0.2679 | 9.6590 | 3.1803 | non-breaking
84 | 20.0893 | 98.6342 | 0.2679 | 10.5436 | 3.4643 | non-breaking
85| 6.4103 | 29.9922 | 0.2679 | 3.2061 | 2.8878 | non-breaking
86 | 7.9365 | 37.6246 | 0.2679 | 4.0219 | 2.6706 | non-breaking
87 | 10.9890 | 52.9246 | 0.2679 | 5.6574 | 2.6319 | non-breaking
88 | 16.3934 | 80.0616 | 0.2679 | 8.5583 | 2.5492 | non-breaking
89 | 5.4348 | 25.1257 | 0.2679 | 2.6858 | 2.8727 | non-breaking
90 | 7.2314 | 34.0964 | 0.2679 | 3.6448 | 2.8347 | non-breaking
91 | 9.8870 | 47.3974 | 0.2679 | 5.0666 | 2.7797 | non-breaking
92 | 10.1744 | 48.8386 | 0.2679 | 5.2207 | 2.9360 | non-breaking
93 | 14.3443 | 69.7679 | 0.2679 | 7.4579 | 2.5492 | non-breaking
94 | 5.3191 | 24.5497 | 0.2679 | 2.6243 | 2.9823 | non-breaking
95| 6.7568 | 31.7233 | 0.2679 | 3.3911 | 2.9910 | non-breaking
96 | 9.2593 | 44.2505 | 0.2679 | 4.7302 | 2.8333 | non-breaking
97 | 14.7059 | 71.5842 | 0.2679 | 7.6521 | 2.6275 | non-breaking
08 | 4.4326 | 20.1418 | 0.2679 | 2.1531 | 3.1206 | non-breaking
99 | 5.6306 | 26.1018 | 0.2679 | 2.7902 | 2.9730 | non-breaking
100 | 7.2674 | 34.2766 | 0.2679 | 3.6640 | 2.7093 | non-breaking
101 | 12.2549 | 59.2773 | 0.2679 | 6.3365 | 2.2353 | non-breaking
102 | 4.1322 | 18.6524 | 0.2679 | 1.9939 | 3.0537 | breaking
103 | 4.9505 | 22.7147 | 0.2679 | 2.4281 | 2.9752 | non-breaking
104 | 7.0423 | 33.1505 | 0.2679 | 3.5437 | 3.0986 | non-breaking
105 | 9.8039 | 46.9808 | 0.2679 | 5.0221 | 2.6667 | non-breaking
106 | 3.2328 | 14.2121 | 0.2679 | 1.5192 | 3.2888 | breaking
107 | 4.1209 | 18.5962 | 0.2679 | 1.9879 | 3.1264 | breaking
108 | 5.2817 | 24.3631 | 0.2679 | 2.6043 | 2.9648 | non-breaking
109 | 9.7403 | 46.6616 | 0.2679 | 4.9880 | 2.8571 | non-breaking
110 | 2.1552 | 8.9603 | 0.2679 | 0.9578 | 3.0991 | breaking
111 | 3.2895 | 14.4910 | 0.2679 | 1.5490 | 3.1974 | breaking
112 | 4.4643 | 20.2989 | 0.2679 | 2.1699 | 3.2321 | non-breaking
113 | 4.9020 | 22.4734 | 0.2679 | 2.4023 | 3.0490 | non-breaking
114 | 8.0645 | 38.2654 | 0.2679 | 4.0904 | 3.1290 | non-breaking
115 | 6.9876 | 32.8771 | 0.4663 | 6.1161 | 2.3323 | non-breaking
116 | 8.9286 | 42.5933 | 0.4663 | 7.9236 | 2.2619 | non-breaking
117 | 12.3626 | 59.8180 | 0.4663 | 11.1279 | 2.1484 | non-breaking
118 | 18.4426 | 90.3583 | 0.4663 | 16.8093 | 2.0820 | non-breaking
119 | 6.4103 | 29.9922 | 0.4663 | 5.5794 | 2.5064 | non-breaking
120 | 8.2645 | 39:2666 | 0.4663 | 7.3048 | 2.3554 | non-breaking |
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TABLE 5. (Continued)

Run dy o tan 6 £ R Condition
No

121 | 11.6279 | 56.1304 | 0.4663 | 10.4419 | 2.3314 | non-breaking
122 | 16.3934 | 80.0616 | 0.4663 | 14.8938 | 2.0820 | non-breaking
123 | 6.6794 | 31.3367 | 0.4663 | 5.8296 | 3.0649 | non-breaking
124 | 7.5431 | 35.6557 | 0.4663 | 6.6330 | 2.4569 | non-breaking
125 | 9.6154 | 46.0356 | 0.4663 | 8.5640 | 2.2637 | non-breaking
126 | 14.3443 | 69.7679 | 0.4663 | 12.9789 | 2.0820 | non-breaking
127 | 5.3191 | 24.5497 | 0.4663 | 4.5670 | 2.6241 | non-breaking
128 | 7.0755 | 33.3166 | 0.4663 | 6.1979 | 2.4434 | non-breaking
129 | 9.8684 | 47.3042 | 0.4663 | 8.8000 | 2.3618 | non-breaking
130 | 13.3929 | 64.9902 | 0.4663 | 12.0901 | 3.1607 | non-breaking
131 | 4.5956 | 20.9508 | 0.4663 | 3.8975 | 2.5625 | non-breaking
132 | 6.1881 | 28.8830 | 0.4663 | 5.3731 | 2.5099 | non-breaking
133 | 8.2237 | 39.0624 | 0.4663 | 7.2668 | 2.2961 | non-breaking
134 | 4.5045 | 20.4985 | 0.4663 | 3.8133 | 2.7568 | non-breaking
135 | 5.8140 | 27.0159 | 0.4663 | 5.0258 | 2.7035 | non-breaking
136 | 8.9286 | 42.5933 | 0.4663 | 7.9236 | 2.6429 | non-breaking
137 | 13.8889 | 67.4810 | 0.4663 | 12.5535 | 2.6389 | non-breaking
138 | 3.5377 | 15.7138 | 0.4663 | 2.9232 | 2.8396 | non-breaking
139 | 4.6296 | 21.1199 | 0.4663 | 3.9289 | 2.7407 | non-breaking
140 | 6.6964 | 31.4219 | 0.4663 | 5.8454 | 2.6429 | non-breaking
141 | 10.4167 | 50.0536 | 0.4663 | 9.3115 | 2.0556 | non-breaking
142 | 1.7730 | 7.1320 | 0.4663 | 1.3268 | 3.2199 | breaking

143 | 2.9070 | 12.6140 | 0.4663 | 2.3466 | 3.1919 | non-breaking
144 | 4.0984 | 18.4847 | 0.4663 | 3.4387 | 3.1148 | non-breaking
145 | 6.9444 | 32.6615 | 0.4663 | 6.0760 | 2.3472 | non-breaking
146 | 6.7771 | 31.8250 | 1.0000 | 12.6964 | 1.9157 | non-breaking
147 | 9.2975 | 44.4422 | 1.0000 | 17.7299 | 1.9008 | non-breaking
148 | 13.0814 | 63.4264 | 1.0000 | 25.3035 | 1.8488 | non-breaking
149 | 18.4426 | 90.3583 | 1.0000 | 36.0478 | 1.7377 | non-breaking
150 | 6.4103 | 29.9922 | 1.0000 | 11.9651 | 2.0962 | non-breaking
151 | 8.2645 | 39.2666 | 1.0000 | 15.6651 | 2.1198 | non-breaking
152 | 11.6279 | 56.1304 | 1.0000 | 22.3928 | 2.0581 | non-breaking
153 | 16.3934 | 80.0616 | 1.0000 | 31.9399 | 1.8852 | non-breaking
154 | 5.7947 | 26.9199 | 1.0000 | 10.7395 | 2.1656 | non-breaking
155 | 7.5431 | 35.6557 | 1.0000 | 14.2246 | 2.0603 | non-breaking
156 | 10.8025 | 51.9888 | 1.0000 | 20.7405 | 1.8580 | non-breaking
157 | 15.6250 | 76.2010 | 1.0000 | 30.3998 | 2.0536 | non-breaking
158 | 5.3191 | 24.5497 | 1.0000 | 9.7939 | 2.2553 | non-breaking
159 | 7.2464 | 34.1713 | 1.0000 | 13.6324 | 2.0483 | non-breaking
160 | 9.8684 | 47.3042 | 1.0000 | 18.8716 | 2.0921 | non-breaking |

117




TABLE 5. (Continued)

Run dy o tan @’ £ R Condition
No

161 | 15.4639 | 75.3918 | 1.0000 | 30.0770 | 2.0103 | non-breaking
162 | 4.7710 | 21.8222 | 1.0000 | 8.7058 | 2.3626 | non-breaking
163 | 6.5104 | 30.4925 | 1.0000 | 12.1647 | 2.2083 | non-breaking
164 | 9.4697 | 45.3053 | 1.0000 | 18.0742 | 2.2803 | non-breaking
165 | 12.2549 | 59.2773 | 1.0000 | 23.6482 | 2.0784 | non-breaking
166 | 4.1322 | 18.6524 | 1.0000 | 7.4412 | 2.4835 | non-breaking
167 | 4.7170 | 21.5538 | 1.0000 | 8.5987 | 2.1698 | non-breaking
168 | 8.5470 | 40.6817 | 1.0000 | 16.2296 | 2.2650 | non-breaking
169 | 14.9254 | 72.6866 | 1.0000 | 28.9978 | 2.3731 | non-breaking
170 | 3.3784 | 14.9285 | 1.0000 | 5.9556 | 2.7072 | non-breaking
171 | 4.1209 | 18.5962 | 1.0000| 7.4188 | 2.5275 | non-breaking
172 | 7.3529 | 34.7043 | 1.0000 | 13.8450 | 2.4216 | non-breaking
173 | 10.4167 | 50.0536 | 1.0000 | 19.9685 | 2.4583 | non-breaking
174 | 1.9841 8.1387 | 1.0000 | 3.2469 | 2.5952 | non-breaking
175 | 3.2895 | 14.4910 | 1.0000 | 5.7811 | 2.5592 | non-breaking
176 | 6.9444 | 32.6615 | 1.0000 | 13.0301 | 2.9444 | non-breaking
177 | 7.4627 | 35.2533 | 1.0000 | 14.0640 | 2.3731 | non-breaking |

max | 21.7391 | 106.9271 | 1.0000 | 36.0478 | 6.6569

min | 1.7730 7.1320 | 0.0875 | 0.3291 | 1.7377
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TABLE 6. Nonbreaking Solitary Wave Runup Data of Synolakis (1987a) with

§; = 0.05.

Test dy o tan ¢ £ R
No

44 | 27.7778 | 137.2869 | 0.0504 | 2.7592 | 3.4444
45| 27.7778 | 137.2869 | 0.0504 | 2.7592 | 3.3611
46 | 20.8333 | 102.3740 | 0.0504 | 2.0575 | 3.7917
47 | 25.6410 | 126.5433 | 0.0504 | 2.5432 | 3.8974
48 | 25.0000 | 123.3204 | 0.0504 | 2.4785 | 3.9000
49 | 47.6190 | 237.0715 | 0.0504 | 4.7646 | 3.6190
50 | 71.4286 | 356.8326 | 0.0504 | 7.1716 | 3.5000
51| 19.6078 96.2144 | 0.0504 | 1.9337 | 3.7451
52 | 18.1818 89.0477 | 0.0504 | 1.7897 | 3.7636
55| 29.4118 | 145.5031 | 0.0504 | 2.9243 | 4.2353
54 | 55.5556 | 276.9907 | 0.0504 | 5.5669 | 4.1111
55 | 111.1111 | 556.4465 | 0.0504 | 11.1834 | 4.0000
56 | 55.5556 | 276.9907 | 0.0504 | 5.5669 | 4.1667
57| 37.0370 | 183.8495 | 0.0504 | 3.6950 | 4.0000
58 | 26.3158 | 129.9359 | 0.0504 | 2.6114 | 3.8421
59 | 21.2766 | 104.6021 | 0.0504 | 2.1023 | 4.1489
60 | 21.2766 | 104.6021 | 0.0504 | 2.1023 | 4.1489
61 | 52.6316 | 262.2834 | 0.0504 | 5.2713 | 4.1053
62 | 52.6316 | 262.2834 | 0.0504 | 5.2713 | 4.0000
63 | 111.1111 | 556.4465 | 0.0504 | 11.1834 | 4.5556
64 | 200.0000 | 1003.5950 | 0.0504 | 20.1701 | 3.8000
65 | 166.6667 | 835.9135 | 0.0504 | 16.8001 | 3.6667
66 | 142.8571 | 716.1414 | 0.0504 | 14.3929 | 3.7143
67 | 35.7143 | 177.1972 | 0.0504 | 3.5613 | 4.3929
68 | 125.0000 | 626.3127 | 0.0504 | 12.5875 | 3.6250
69 | 43.4783 | 216.2449 | 0.0504 | 4.3461 | 3.7826
70 | 58.8235 | 293.4283 | 0.0504 | 5.8973 | 3.7059
71| 41.6667 | 207.1335 | 0.0504 | 4.1629 | 4.0833
72 | 83.3333 | 416.7159 | 0.0504 | 8.3751 | 4.0000
73 | T71.4286 | 356.8326 | 0.0504 | 7.1716 | 3.7143
74 | 111.1111 | 556.4465 | 0.0504 | 11.1834 | 4.0000
75| 22.7273 | 111.8945 | 0.0504 | 2.2488 | 4.1364
76 | 45.4545 | 226.1848 | 0.0504 | 4.5458 | 4.4545
77 | 25.6410 | 126.5433 | 0.0504 | 2.5432 | 4.1538
max | 200.0000 | 1003.5950 | 0.0504 | 20.1701 | 4.5556
min | 18.1818 89.0477 | 0.0504 | 1.7897 | 3.3611
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predicting R for nonbreaking solitary waves in the range of £ exceeding about
two. This may also be shown using Eq. 91 where cot §' = o/[§(2r)1/2] and o is
approximately proportional to dy. This finding is also consistent with the
empirical formula by Ahrens and Martin for the normalized runup R of
nonbreaking monochromatic waves, which is not based on the surf similarity
parameter. Fig. 15 shows the data points in Fig. 14 in the range of £ < 5
together with the empirical relationship given by Eq. 94 with §; = 0.05 which
has been based on the 43 tests of Synolakis (1987a) in the range 0.125 < ¢ <
1.757. The data points of Hall and Watts (1953) in this range of ¢ tend to
follow the empirical formula, R = a fb, for breaking or broken solitary wave
runup. Consequently, this empirical formula may be applied to predict
breaking or broken solitary wave runup on smooth uniform slopes of arbitrary

gradient.

4.3 Computed Solitary Wave Runup for Selected Tests

The numerical model described in ?ection 2 is compared with the broken
solitary wave runup data of Synolakis (1987a) listed in Tables 2 and 3. It is
noted that the solitary wave generation technique employed by Hall and Watts
(1953) may not have produced near-perfect solitary waves. Table 7 lists some
-of the input and computation parameters for the 43 tests from which 9 fests
are selected for the subsequent computation and comparison. 1In Table 7, df =
water depth below SWL at the toe of the 1:19.85 slope where the incident
solitary wave profile is specified as input to the numerical model; H} =
representative wave height taken as the incident solitary wave height H'; T} =
representative wave period computed using Eq. 39 with §; = 0.05; and R’ =

measured runup height above SWL. The values of these parameters for each test
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TABLE 7. Input and Computational Parameters for 43 Tests by Synolakis

(1987a).
“Test dy "l 17 r Az’ Az WBSEG | WBSEG/ | (NONE) i | mas
No (n) (m) (sec) (m) (m) (m) Az’

1100625 | 0.016625 | 0.718277 | 0.0316 0.0062 | 0.0221 2.182259 351.8 22007 6.4117
2| 0.0625 | 0.004500 | 1.445285 | 0.0146 | 0.0062 | 0.0204 1.674223 269.9 37442 4.1925
3| 0.0801 | 0.035885 | 0.564378 | 0.0579 | 0.0079 | 0.0237 3.314324 416.9 169.99 8.3563
4| 0.0979 | 0.007636 | 1.733052 | 0.0246 | 0.0097 | 0.0205 2.674973 275.3 361.83 4.2884
5 | 0.0979 | 0.037594 | 0.689342 | 0.0608 | 0.0097 | 0.0232 3.753513 386.3 182.22 7.7532
6 | 0.0081 | 0.009516 | 1.542135 | 0.0269 | 0.0097 | 0.0207 2.747619 282.2 329.73 4.5744
7 | 0.0984 | 0.045461 | 0.613027 | 0.0648 | 0.0098 | 0.0239 | 3.884018 3971.7 167.62 8.4860
8 | 0.0989 | 0.023310 | 0.935212 | 0.0462 | 0.0098 | 0.0219 3.338362 340.1 225,62 6.2623
9 | 0.1317 | 0.038720 | 0.941994 | 0.0714 | 0.0131 | 0.0224 4.739626 362.6 205.07 6.8677
10 | 0.1454 | 0.088694 | 0.617990 | 0.1134 | 0.0144 | 0.0250 | 6.263032 434.0 147.40 0.8209
11 | 0.1454 | 0.085931 | 0.631583 | 0.1149 | 0.0144 | 0.0249 | 6.306325 437.0 149.60 9.6526
12 | 0.1454 | 0.088258 | 0.620093 | 0.1170 | 0.0144 | 0.0250 | 6.371265 441.5 147.74 9.7944
13 | 0.1454 | 0.088258 | 0.620093 | 0.1134 0.0144 | 0.0250 | 6.263032 434.0 147.74 9.7944
14 | 0.1550 | 0.093155 | 0.644629 | 0.1242 | 0.0154 | 0.0250 6.773465 440.3 148.43 9.7413
15 | 0.1567 | 0.014103 | 2.020911 | 0.0423 0.0156 | 0.0206 | 4.370245 281.0 340.41 4.4718
16 | 0.1572 | 0.040715 | 1.115169 | 0.0816 | 0.0156 0.0221 | 5.549667 355.7 216.72 6.5065
17 | 0.1576 | 0.092984 | 0.658310 | 0.1277 | 0.0156 | 0.0249 6.929317 443.0 149.72 9.6437
18 | 0.1562 | 0.046548 | 1.020639 | 0.0861 | 0.0155 | 0.0225 5.663191 365.3 203.86 6.9082
19 | 0.1565 | 0.050393 | 0.973847 | 0.0925 | 0.0155 0.0227 | 5.860459 377.3 197.03 7.1490
20 | 0.1569 | 0.026673 | 1.426498 0.0639 | 0.0156 | 0.0213 | 5.015846 322.1 259.72 5.5196
21 | 0.1670 | 0.045591 | 1.113371 | 0.0813 | 0.0166 | 0.0223 5.736521 346.1 211.81 6.6524
29 | 0.1753 | 0.048383 | 1.133152 | 0.0868 | 0.0174 | 0.0223 6.063386 3485 21081 6.6834
23 | 0.1942 | 0.122929 | 0.696156 | 0.1635 | 0.0193 | 0.0252 8.723571 452.6 144.85 10.0237
24 | 0.1942 | 0.121375 | 0.702320 | 0.1602 | 0.0193 | 0.0252 8.625272 447.5 145.72 9.9533
95 | 0.1947 | 0.121882 | 0.702445 | 0.1678 | 0.0193 | 0.0252 8.861976 458.6 145.61 9.9621
26 | 0.1956 | 0.055355 | 1.178840 | 0.1031 | 0.0194 | 0.0223 6.951903 358.1 208.52 6.7554
97 | 0.1962 | 0.056113 | 1.173067 | 0.1007 | 0.0195 | 0.0224 6.891442 353.9 207.56 6.7861
28 | 0.2080 | 0.067184 | 1.120540 | 0.1154 | 0.0206 | 0.0227 7.566026 366.5 196.77 7.1589
29 | 0.2092 | 0.039330 | 1.554428 | 0.0856 | 0.0208 | 0.0215 6.700253 322.7 248.79. 5.7296
30 | 0.2092 | 0.056693 | 1.261700 | 0.1073 | 0.0208 | 0.0222 7.348061 353.9 21249 6.6317
31 | 0.2002 | 0.087027 | 0.957149 | 0.1435 0.0208 | 0.0235 | B8.425660 405.8 - |- 175.78 8.0670
32 | 0.2101 | 0.033406 | 1.714943 | 0.0807 | 0.0209 0.0212 | 6.572684 315.2 267.23 5.3878
33 | 0.2144 | 0.034304 | 1.726237 | 0.0823 | 0.0213 0.0212 | 6.707204 315.2 266.52 5.3999
a4 | 0.2147 | 0.030702 | 1.840780 | 0.0786 | 0.0213 0.0211 | 6.601521 309.8 279.58 5.1900
35 | 0.2349 | 0.092551 | 1.050362 | 0.1506 | 0.0233 | 0.0233 9.146013 392.3 180.13 7.8487
6 | 0.2638 | 0.070436 | 1.418308 | 0.1337 | 0.0262 | 0.0222 9.218736 352.1 213.87 6.5901
37 | 0.2940 | 0.022050 | 3.067014 | 0.0759 | 0.0292 | 0.0205 8.094394 277.4 367.94 4.2409
38 | 0.2954 | 0.021564 | 3.119040 | 0.0733 | 0.0293 | 0.0204 8.044983 2744 37222 4.2087
30 | 0.2962 | 0.019253 | 3.322294 | 0.0675 | 0.0294 | 0.0204 7.890383 268.4 391.19 4.0764
40 | 0.2972 | 0.016643 | 3.600604 | 0.0615 | 0.0205 | 0.0203 | 7.731190 262.1 417.07 3.9191
41 | 0.3093 | 0.058148 | 1.890078 | 0.1315 | 0.0307 | 0.0215 10.053603 3215 248.79 5.7296
42 | 0.3138 | 0.029497 | 2.805633 | 0.0904 | 0.0311 | 0.0206 | 8.910828 286.4 334.16 4.5308
43 | 0.3535 | 0.068226 | 1.990090 | 0.1506 | 0.0351 | 0.0215 11.500822 327.8 246.01 5.7868
max | 0.3535 | 0.122929 | 3.600604 | 0.1678 | 0.0351 | 0.0252 | 11.500822 458.0 417.07 10.0237
min 1 0.0625 | 0.004500 | 0.564378 | 0.0146 | 0.0062 | 0.0203 | 1.674223 202.1 114.85 3.9191
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are used to estimate appropriate values of computational parameters as
described below.

The computer program SBREAK requires the specification of the integer é
as input where S determines the number of spatial nodes from the seaward
boundary to the wet node next to the initial shoreline at SWL for the
computation of wave runup corresponding to IJOB=1. The physical grid size Ax’
for the uniform slope with cot §' = 19.85 is then given by Ax’' = (df{ cot §')
/S. The corresponding normalized grid size Ax is computed as Ax =
Ax‘/[Tf(ng)l/z]. The values of Ax’' and Ax for the case of S = 200 are listed
in Table 7. To provide a sufficient spatial resolution for a breaking
solitary wave, Ax' should be of the order of its height H' or less and Ax
should be much smaller than unity. The selection of S = 200 guessed from the
range S = 100 - 400 used in previous computations appears to be reasonable.
Our previous experiences also indicate that the computed results are
essentially independent of S as long as S is sufficiently large.

The horizontal distance of the computation domain denoted by WBSEG in
Table 7 needs to be specified as input to SBREAK. 1In Table 7, WBSEG = (dt +
1.5 R') cot 4§’ for each test where the factor 1.5 for R’ is added to ensure
that the computed runup will remain in the specified computation domain. This
is required for the wave runup computation witﬁ IJOB=1. The total number of
spational nodes in the computation domain is given by JE=[1+ integer
(WBSEG/Ax')]. The integer JE must not exceed the integer N1 where N1 = 500 in
SBREAK. Table 7 indicates that this requirement is satisfied for all the
tests.

The computer program SBREAK requires the specification of NONE =1/At as
input where NONE = even number of time steps in one representation wave

period; and At = time step-size normalized by the representative wave period.
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The minimum value of NONE required for the numerical stability may be

estimated using Eq. 88 with ALPHAS = 1

(NONE) . = % [+ 2—2)1/2 -5 (95)
where dy = d{/Hy; and ¢ = greatest coefficient of the numerical damping
coefficients €3 énd €9. The minimum value of NONE given by Eq. 95 with ¢ = 1
is listed for each test in Table 7. Since the numerical stability criterion
given by Eq. 27 does not consider the numerical stability at the moving
shoreline, which tends to cause more numerical difficulties, the value of NONE
is simply taken as NONE = 1000 as a first attempt.

It is required to estimate the duration G of the computation starting
from the normalized time t = 0 when the incident solitary wave arrives at x =
0. The integer NTOP = (NONE) — is specified as input to SBREAK. The wvalue
of t for each test must be large enough to simulate at least the entire

max

process of wave uprush and resulting runup. The value of tax listed in Table
7 is given by B ™ (2te + 2df cot 8'/(T4/gdf ]) with the crest arrival time
te = 1. The term (2t,) is the normalized time required for the passage of the
incident sﬁlitary wave at x =0, while the other term is the travel time
normalized by Ty where the travel time is crudely estimated as the horizontal
distance (2d{ cot #') divided by the velocity JEEE. On the basis of the
values of tmax listed in Table 7, NTOP is simply taken at NTOP = 10 (NONE).
For the calibration and verification of the numerical model, 9 tests are
selected to represent the entire range of the surf similarity parameter £ =
0.125 - 1.757 for the 43 tests plotted in Fig. 11 with §; = 0.05. 1In the
following, detailed computed results are presented for tests 23, 32 and 40

corresponding to § = 0.125, 0.591 and 1.757, respectively. The input and

output for test 32 are described in detail to allow users of SBREAK to get
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familiarized with the input and output procedures, although the following
example is limited to solitary wave runup. Other examples associated with
different options provided by SBREAK were given in the report for IBREAK by
Kobayashi and Wurjanto (1989c). For each of the selected 9 tests, the bottom
friction.factor f' = 0.01 and 0.005 are assumed. The value of f' = 0.01 was
the lower bound for the plywood slope used by Kobayashi and Watson (1987).
The aluminum slope used by Synolakis (1987a) must have been smoother than the
plywood slope. As a result, the value of £’ = 0.01 has been employed first
but resulted in slight underprediction of the normalized runup R.
Subsequently, the value of f' = 0.005 has been specified as input in the hope
of better agreement between the measured and computed values of R.

Table 8 shows the primary input data file, FINP1, for test 32 with £’ =
0.005. The input parameters and variables listed in Table 8 are explained in
sequence where Section 3.4 has described the input required for all the
options included in SBREAK. The number of the comment lines proceeding the

input data is 3 in Table 8.
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TABLE 8. Primary Input Data File, FINP1l, for Test 32 with Bottom Friction

Factor f' = 0.005.

FILE syno32: Synolakis (1987)

Test 32 FWP=0.0050

0 10001

100 1000 19
00000 0
10000
1000
10
200
.005000
1.000000
.001000
3
-
1.0
5.0
0.033406
1.000000
0.210100
.050378
1
6.572684

no wave data file

0 0

1.000000

1.714943
1.000000

.050378

-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-—>
-
-—>
-
-—>
-—>

——>
——>
-
-

I1JOB, ISTAB,NSTAB

ISYST (SI units)

IBOT (width-slope representation)
INONCT

IENERG

IWAVE,FINP2
ISAVA-B-C, NSAVA, NTIMES, NNOD1 , NNOD2
IREQ, IELEV, IV, IDUDT, ISNR, NNREQ
NTOP

NONE

NJUM1

)

FWP

X1,X2

DELTA (normalized)

NDELR

DELRP (1) (mm)

DELRP (2)

DELRP (3)

HREFP (meters) , TP (seconds) (will change)
KSREF, KSSEA

DSEAP (meters)

TSLOPS

NBSEG

WBSEG (1) (meters),TBSLOP (1)
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IJOB=1 for wave runup computation.

ISTAB=0 for no computation of armor stability ar movement.

NSTAB=(NTOP+1) set for no computation of armor stability or movement.

ISYST=1 for the metric system.

IBOT=1 for specifying the width and slope of a linear segment of the bottom
geometry.

INONCT=0 for solitary waves where the nonlinear correction term Cy in Eq. 13
and given by Eq. 42 may not be necessary for solitary waves.

IENERG=0 for no computation of the quantities related to wave energy.

IWAVE=3 for the incident solitary wave profile computed using Eq. 36 with t
=1 and §; = 0.05. No wave data file is hence required.

ISAVA=1 for storing the spatial variations of the normalized free surface
elevation n and the normalized depth-averaged velocity'u at specified
time levels.

ISAVB=0 for no storage of the temporal variation of the normalized water
depth h at specified nodes.

ISAVC=0 for no storage of the armor displacement.

NSAVA=NONE set for the time level at the beginning of the storage of the
spatial variations of n and u where NSTAT=NSAVA for IWAVE=3 and the
statistical computation starts at t=1 when the crest of the incident
solitary wave arrives at x=0.

NTIMES = [1 +(NTOP - NONE)/(NONE/2)] set for storing the spatial variations
of m and o ab e 1.0y L5 2905w oy Y where Ear ™ NTOP/NONE.

NNOD1=0 for ISAVB=0.
NNOD2=0 for ISAVC=0.

IREQ=0 for no special storage as explained in the common /IDREQ/.
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IELEV=0 for IREQ=0.

IV=0 for IREQ=0.

IDUDT=0 for IREQ=0.

ISNR=0 for IREQ=0.

NNREQ=0 for IREQ=0.

NTOP=10(NONE) set on the basis of the wvalues of tmax listed in Table 7.

NONE=1000 set on the basis of the wvalues of (NONE)min given by Eq. 95 and
listed in Table 7.

NJUM1=NONE/100 set for storing the computed temporal variations at the
seaward and landward boundaries at the rate of 100 points over one
representative wave period throughout the time-marching.computation.

$=200 set to provide an adequate épatial resolution as explained in relation
to the values of Ax listed in Table 7.

FWP=0.005 for the bottom friction factor f' = 0.005 for the smooth slope
used by Synolakis (1987a).

X1=1.0 for the numerical damping coefficient e1=1.0.

X2=1.0 for the numerical damping coefficient ep=1.0.

DELTA=0.001 set for the normalized water depth § used to define the
computational shoreline on the slope.

NDELR=3 set for the number of different values of the physical water.depth
6y associated with the measured shoreline for which the normalized free
surface elevation Z, is computed as discussed in Section 2.5 where it is
required that 64 > (H}é)

DELRP(1l) = 0.5 for 6y = 0.5 mm.

DELRP(Z) = 1.0 for 67 = 1.0 mm, corresponding to the runup measurement by
Synalakis (1987a)..

DELRP(3) = 5.0 for 64 = 5.0 mm.
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« HREFP = 0.033406 for Hy = 0.033406 m for test 32 in Table 7.

« TP = 1.714943 for Ty = 1.714943 sec for test 32 in Table 7 where the value
of Ty computed using Eq. 39 is used in SBREAK, so any value of TP can be
specified as input for IWAVE = 3.

. KSREF-i for H' = Hy and Kg = 1 as explained in the common /WAVE2/.

+ KSSEA=1 for H' = Hy and Kg = 1 as explained in the common /WAVE2/.

* DSEAP = 0.2101 for df = 0.2101 m for test 32 in Table 7.

« TSLOPS = 0.050378 for the uniform slope tan §' = 1/19.85 used by Synolakis
(1987a) where TSLOPS is the slope used to define the surf similarity
parameter for composite slopes.

* NBSEG=1 for a uniform slope consisting of one linear segment.

« WBSEG(l) = 6.572684 for WBSEG = 6.572684 m for test 32 listed in Table 7.

» TBSLOP(l) = 0.050378 for tan ' = 1/19.85 used by Synolakis (1987a).

As for the output of SBREAK, Section 3.6 has described the output for all
the options. Table 9 shows the contents of the essential output for the
concise documentation stored in the file ODOC. This file is normally used to
check whether there is any error in the input as well as to obtain important
quantities such as solitary wave runup for this computation. The runup,
rundown and setup for given 64 listed in Table 9 are the maximum, minimum and

mean of the normalized free surface elevation, Z, = Z[/H}, during 1 < t < t

max

where Zy is the elevation above SWL of the intersection between the free
surface and the straight line parallel to the uniform slope at the distance of
6r. The computed runup is less sensitive to §; than the computed rundown and
setup in the vicinity of §; = 1 mm corresponding to the runup measurement of

Synolakis (1987a). Consequently, the runup measurement based on the specified
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TABLE 9. Concise Documentation File, ODOC, f "
Factor £' = 0.005. , for Test 32 with Bottom Friction

WAVE CONDITION

solitary Incident Wave at Seaward Boundary

Te = 0.100000000D0401
K2 = 0.435654442D+01
Norm. Maximum Surface Elev. L 1.000000

0.000000

Norm. Minimum Surface Elev.

1.714940 sec.
0.033406 meters
0.210100 meters

Reference Wave Period
Reference Wave Helght
pepth at Seaward Boundary

Shoal. Coef. at Reference Kasl = 1.000
at Seaw. Bdr. Ks2 = 1.000
Ks = Ks2/Ksl - 1.000
Norm. Depth at Seaw. Bdr. - 6.289
Normalized Wave Length - 11,155
"Sigma" - 29.388
Ursell Number - 19.785
surf Similarity Parameter = 0.591
SLOPE PROPERTIES
Frietion Factor - 0.005000
Norm. Friction Factor = 0.073470
Norm. Horiz. Length of '
Computation Domain = 6.690675
Number of Segments - 1

SEGMENT WBSEG (1) TBSLOP (I)
I meters

1 6.572684 0.050378

COMPUTATION PARAMETERS

Normalized Delta x w 0.2124020-01
Normalized Delta t - 0.100000D-02
Normalized DELTA - 0.100000E-02
pDamping Coeff. x1l = 1.000
X2 = 1.000
Num. Stab. Indicator = 3.742
Total Number of Time Steps NTOP = 10000
Number of Time Steps in 1 Wave Period
NONE = 1000
Total Number of Spatial Nodes JE = 316
Number of Nodes Along Bottom Below SWL
§ = 200
Storing Temporal Variations at Every
¢ NJUM1 = 10 Time Steps

REFLECTION COEFFICIENTS

rl = 0.328
r2 = 0.283
£l = 0.240

RUNUP, RUNDOWN, SETUP

Largest Node Number Reached by Computational Naterline
JMAX = 283

I DELTAR(I) RUNUP (1) RUNDOWN (I) SETUP (I)
R

[mm] R Zr
1 0.500 2.577 -0.271 0.714
2 1.000 2.546 -0.448 0.617
3 5.000 2.228 -0.534 0.373

WAVE SET-DOWN OR SETUP

Average value of ETAI = 0.025557
ETAR = 0.053267
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value of 64 is affected very little by small deviations of 64 during the runup
measurement. For test 32 with f' = 0.005, the computed value of the
normalized runup is R = 2.546 as compared to the measured runup R = 2.415
listed in Table 2.

Table 10 shows the contents of the file OMSG which stores the messages
written during the computation as explained in Section 3.5. For test 32 with
f' = 0.005, the adjustment for the case of h: > h:~l was made seven times in
step 4 for the computation of the shoreline movement in Section 2.5. This
adjustment does not stop the computation but suggests the numerical difficulty
at the moving shoreline.

The computed temporal and spatial variations of the normalized free
surface elevation and depth-averaged velocity for test 32 with £’ = 0.005 are
examined in the following. Fig. 16 shows the incident solitary wave profile
ni(t) given by Eq. 36 with Kg =1, tg =1 and §5 = 0.05 as a function of the
normalized time t. Fig. 16 also shows the normalized reflected wave profile
ny(t) at the toe of the slope computed using Eq. 13 with Ct = 0. The temporal
variation of n,.(t) shown in Fig. 16 is similar to the measured variations
plotted by Synolakis (1987b). It is noted that nj(t) and n,(t) are stored in
the file OSEAWAV with its unit number = 21 where the stored time level N is
related to the normalized time t = N/NONE.

Fig. 17 shows the computed temporal variations of the normalized
shoreline elevation Z, above SWL for the water depth 6§, = 0.5, 1.0 and 5.0 mm.
The maximum and minimum values of Zy are the normalized runup and rundown,
respectively, listed in Table 9. During wave uprush, Z, is not very sensitive
to 6y because of the steep front of the uprushing wave. During wave downrush,
Zy is sensitive to §; since a thin layer of downrushing water remains on the

slope due to bottom friction. It is noted that the temporal variations of
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TABLE 10. Contents of Message File, OMSG, for Test 32 with Bottom Friction

Factor f’' = 0.005.

PR ———————eeep e R S DR TRl ittt

FILE syno32: Synolakis (1987) Test 32 FWP=0.0050

i ——

From Subroutine 14 RUNUP: U(2,S)>U(2,5-1) at § = 249 N = 8048
Adjusted values: U(2,8) = 0.102E-02; U(2,5-1) = 0.105E-02

From Subroutine 14 RUNUP: U(2,S)>U{2,5-1) at S = 248 N = 8237
Adjusted values: U(2,S5) = 0.983E-03; U(2,5-1) = 0.102E-02

From Subroutine 14 RUNUP: U(2,S5)>U(2,5-1]) at § = 243; N = B665
Adjusted values: U(2,8) = 0.950E-03; U(2,5-1) = 0.102E-02

From Subroutine 14 RUNUP: U(2,S)>U(2,5-1) at 8 = 240; N = 8825
Adjusted values: U(2,5) = 0.100E-02; U(2,5-1) = 0.107E-02

From Subroutine 14 RUNUP: U(2,S5)>U(2,5-1) at § = 237; N = 9021
Adjusted values: U(2,§) = 0.985E-03; U(2,5-1) =  0.108E-02

From Subroutine 14 RUNUP: U(2,S)>U(2,5-1) at § = 233; N = 9307
Adjusted values: U(2,S) = 0.108E-02; vu(2,s-1) = 0.120E-02

From Subroutine 14 RUNUP: U(2,5)>U(2,5-1) at § = 232; N = 9357
Adjusted values: U(2,8) = 0.965E-03; U(2,5-1) = 0.109E-02
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FIGURE 16. Specified Incident Solitary Wave Profile nj(t) and Computed

Reflected Wave Profile ny(t) at x = 0 for Test 32 with £' = 0.005.
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Z,(t) for the differenﬁ values of 6, are stored in the file ORUNUP with its
unit number = 31.

Fig. 18 shows the spatial variations of - n and ki defined as the
maximum, mean and minimum values of the normalized free surface elevation n at
given x during LEE = e ™ 10. These spatial variations are stored in the
file OSTAT with its unit number = 23. The solid straight line in Fig. 18 is
the normalized bottom geometry stored in the file OSPACE with its unit number
= 22. The spatial wvariation of %oz seaward of the still water shoreline at x
= 4.25 is qualitatively similar to the analyzed data presented by Synolakis
and Skjelbreia (1993). The water depth below the approximately straight
envelope of . decreases gradually landward of the still water shoreline.

Fig. 19 shows the spatial variations of oo u and Uoin defined as the
maximum, mean and minimum values of the normalized depth-averaged velocity u
at given x during 1 < t =< L ™ 10. These spatial variations are stored in
the file OSTAT. The computed velocities of uprushing and downrushing water
near the still water shoreline are very large. The computed mean velocity u
is negative near the still water shoreline as has been shown for monochromatic
waves by Kobayashi et al. (1989).

Finally, Fig. 20 shows the spatial variations of n and wat t = 1, 2, 3,
4, 5, 6, 7 and 8 so as to examine the solitary wave evolution on the uniform
slope. The incident solitary wave appears to be breaking at t=2. The tip of
uprushing water moves upslope at t=4 when the rest of the water flows seaward.
The maximum runup occurslaround t = 4.5 as can be seen from Fig. 17. The
spatial variation at t = 6 indicate wave breaking during wave downrush. The

wave action on the slope is very small at t = 8 and negligible at t = 10, It

is noted that the computed spatial variations of n and u at specified time
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FIGURE 17. Temporal Variations of Normalized Shoreline Elevation Z, above SWL

for 64 = 0.5, 1.0 and 5.0 mm for Test 32 with f£' = 0.005.
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FIGURE 18. Spatial Variations of Maximum, Mean and Minimum Values of

Normalized Free Surface Elevation n for Test 32 with f' = 0.005.
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FIGURE 19. Spatial Variations of Maximum, Mean and Minimum Values of

Normalized Depth-Averaged Velocity u for Test 32 with £’ = 0.005.
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FIGURE 20.

Test 32 with f'=0.005

Spatial Variations of n and u at t = 1, 2,

Test 32 with f’

= 0.005.
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FIGURE 21.

Specified Incident Solitary Wave Profile nj(t) and Computed

Reflected Wave Profile n,(t) at x = 0 for-Test 32 with £’ = 0.01.
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FIGURE 22. Temporal Variations of Normalized Shoreline Elevation Z, above SWL

for 6 = 0.5, 1.0 and 5.0 mm for Test 32 with £’ = 0.01.
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FIGURE 23. Spatial Variations of Maximum, Mean and Minimum Values of

Normalized Free Surface Elevation n for Test 32 with f' = 0.01.
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FIGURE 24. Spatial Variations of Maximum, Mean and Minimum Values of

Normalized Depth-Averaged Velocity u for Test 32 with f' = 0.01.
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FIGURE 25. Spatial Variations of n and u at t =1, 2, 3, 4, 5, 6, 7 and 8 for

Test 32 with £’ = 0.01.
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FIGURE 25.

Test 32 with '=0.01
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levels are stored in the file OSPACE together with the normalized bottom
geometry.

The computation for test 32 is repeated using the bottom friction factér
f* = 0.01 instead of £’ = 0.005 where the rest of the input listed in Table 8
is the séme. The computed results for test 32 with f’ = 0.01 are plotted in
Figs. 21-25. Comparison of Figs. 16 and 21 indicates that the reflected wave
profile ny(t) at x = 0 is affected very little by f' = 0.01 or 0.005, while
the incident wave profile nj(t) given by Eq. 36 is independent of f'.
Comparing Figs. 17 and 22, the increase of f' reduces wave runup noticeably.
The spatial variations of | n and Mmin 2T affected very little by f'
except for the upper limit of Mmax °0 the slope as shown in Figs. 18 and 23.
Comparison of Figs. 19 and 24 indicates that the increase of f’' reduces the
magnitude of Wi slightly where the spikes of U g and U in 2t the landward
limit in Fig. 24 are numerical and could be removed using a finer numerical
resolution (Wurjanto and Kobayashi, 1991). Comparing Figs. 20 and 25, the
effects of f’' are not apparent except that the increase of f’' reduces the
downrushing water velocity slightly.

To elucidate the effects of the surf similarity parameter & on the
solitary wave dynamics on the uniform slope, the computed results with f' =
0.005 for test 23 with £ = 0.125 and test 40 with £ = 1.757 are plotted in
Figs. 26-35 in the same way as Figs. 16-20 for test 32 with £ = 0.591. It is
noted that the normalized slope § = (21)1/25 in Eq. 7 is proportional to £.
The increase of ¢ hence results in the increase of §. Comparison of Figs. 16,
26 and 31 indicates that the increase of ¢ leads to the increase in the
magnitude of wave reflection and the reduction in the normalized arrival time
of the reflected wave at x = 0. The increase of the solitary wave reflection

with the increase of ¢ is qualitatively consistent with available data on the
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reflection of breaking monochromatic waves (Battjes, 1974). Comparing Figs.
17, 27 and 32, the increase of ¢ results in the increase in the normalized
wave runup and the reduction in the normalized dﬁration of wave runup and
rundown. It is noted that the uprushing water on the slope for test 23 has
reaéhed.the maximum elevation before t = 10 in Fig. 27 since the water flows
downslope at t = 10 as shown in Fig. 30. Figs. 18, 28 and 33 clearly show the
increase of the normalized slope with the increase of £. Fig. 28 for test 23
with £ = 0.125 shows the wide zone of wave:.decay, whereas Fig. 33 for test 40
with £ = 1.757 exhibits gradual shoaling and uprushing above the still water
shoreline. Comparison of Figs. 19, 29 and 34 indicates that the increase of ¢
results in the increase in the downrushing water velocity. It should be noted
that the downrushing water velocity for test 23 may become larger after t = 10
since the water still flows downslope at t = 10 as shown in Fig. 30.

Comparing Figs. 20, 30 and 35, the incident solitary wave breaks more clearly
as £ is reduced, although the present numerical model does not predict the

details of wave breaking.
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Reflected Wave Profile n,(t) at x = O for Test 23 with £’ = 0.005.
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FIGURE 27. Temporal Variations of Normalized Shoreline Elevation Z, above SWL

for 64 = 0.5, 1.0 and 5.0 mm for Test 23 with £’ = 0.005.
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Normalized Free Surface Elevation n for Test 23 with f' = 0.005.
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Test 23 with f'=0.005
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FIGURE 31. Specified Incident Solitary Wave Profile nj(t) and Computed

Reflected Wave Profile n.(t) at x=0 for Test 40 with f' = 0.005.
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FIGURE 32. Temporal Variations of Normalized Shoreline Elevation Z, above SWL

for §4 = 0.5, 1.0 and 5.0 mm for Test 40 with £’ = 0.005.
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4.4 Comparison between Measured and Computed Runup

The measured and computed values of the normalized runup R for the
selected tests are listed in Table 11. The bottoﬁ friction factor f' is taken
as f' = 0.01 and 0.005 for each of the 9 tests. The try number for each test
with giveﬁ f'* listed in Table 11 is the number of computations made to
complete the computation for the duration 0 =< t =< - with B ™ NTOP/NONE
where the primary input data file has been explained in relation to Table 8.
The first try using NONE = 1000, 6 = 0.001, €7 = €2 = 1 and Boss = 10 has been
successful for most of the 9 tests with smaller values of the surf similarity
parameter £. The larger shoreline movement associated with larger £ tends to
cause numerical difficulties and result in the termination of the computation
before t = tmax' The second try using the increased value of NONE = 2000 has
not been successful. Consequently, the value of § has also been increased to
§ = 0.002 in the third try. For tests 37 and 39 with £f' = 0.005, the values
of €] and €7 have also been increased to €] = €9 = 2 in order to complete the
computation for the duration 0 = t = i It is noted that the larger
shoreline movement associated with the smaller value of f’ causes more
numerical difficulties. For test 37 with £’ = 0.005, the value of tmax has
been reduced to tmax = 5 since the computed shoreline has reached the maximum
elevation before t = 5. Table 11 lists the value of the numerical stability
indicator ALPHAS given by Eq. 88 for each test with given f'. For the
successful computations, ALPHAS = 2.6 - 6.9, which may be used as a guideline
for the selection of a reasonable value of NONE.

The measured and computed values for the normalized wave runup R with &
- 1 mm are plotted in Fig. 36 for the 9 tests with £’ = 0.01 and 0.005. The

numerical model with f' = 0.0l underpredicts R slightly, whereas the use of £’

= 0.005 results in slight overprediction of R. The computed values of R with
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f' = 0.01 and 0.005 for the 9 tests are also plotted in Fig. 37 together with
the measured values of R for the 43 tests. The empirical formulas given by
Eqs. 92 and 94 for breaking monochromatic and solitary waves, reapectively,‘
are also shown in Fig. 37. The computed values of R using f' = 0.005 and 0.01
tend to give the upper and lower bounds of the 43 data points, respectively.

The computed values of R with £’ = 0.01 and 0.005 are interpolated or
extrapolated linearly to estimate the value of f' corresponding to the
measured value of R for each of the 9 tests. The fitted values of f' for each
test is listed in Table 11 and plotted as a function of £ in Fig. 38. A

linear regression analysis yields the following relationship
f' = 0.0059 + 0.0006 ¢ ' (96)

which indicates that f’' is almost independent of €. As a result, the constant
value of f' = 0.006 or 0.007 is expected to yield very good agreement between
the measured and computed runup for the 43 tests. In conclusion, the present
numerical model yields fairly good agreement with the data on breaking
solitary wave runup and the agreement could be improved by calibrating the

friction factor f’ more meticulously.
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5. CONCLUSIONS

The computer program SBREAK presented herein simulates the interaction of
normally incident waves with a rough or smooth impermeable coastal structuré
or beach in the manner similar to hydraulic model tests in a wave flume. This
numericﬁl model is expected to be less accurate than hydraulic model tests
performed carefully because of various assumptions and coefficients employed
in the numerical model. The advantages of the numerical model are low cost,
little start-up time, and high spatial and temporal resolution. During a
preliminary design, the numerical model may be used together with empirical
formulas, if available, to reduce the number of feasible alternatives. During
a detailed design, the numerical model may be used to reduce the number of
hydraulic model tests as well as to estimate the quantities which can not be
measured directly. Reversely, the hydraulic model test results may be used to
calibrate the empirical coefficients included in the numerical model.

The computations made in this report have been limited to solitary wave
runup on a smooth uniform slope. The numerical model has been shown to be in
good agreement with the data of Synolakis (1987a) on breaking or broken
solitary wave runup with a limited calibration of the bottom friction factor.
The options provided in SBREAK should allow users to compute solitary wave
overtopping over a subaerial structure and solitary wave transmission over a
submerged structure. Furthermore, SBREAK may also be applied to compute the
hydraulic stability and sliding motion of individual armor units under the
action of solitary waves if the structure is protected with armor units. It
is recommended to calibrate and verify SBREAK if it is to be applied to the
othgr problems associated with solitary waves. Reference may be made to the
previous work for monochromatic and random waves described in Section 1. The

comparisons between solitary and monochromatic wave runup on smooth uniform
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slopes have been discussed in Section 4 by introducing the representative wave
period and the surf similarity parameter for solitary waves. The breaking,
runup and reflection of solitary and monochromatic waves on smooth uniform
slopes are qualitatively similar in terms of the surf similarity parameter.
For given surf similarity parameter, breaking solitary wave runup is
definitely larger than breaking monochromatic wave runup affected by the
interaction between wave uprush and downrush on the slope.

The present numerical model is probably the simplest one-dimensional,
time-dependent model for breaking or broken waves on slopes. Various
numerical models are being developed by other researchers (e.g., Zelt, 1991;
Liu and Cho, 1993). It is desirable to compare the capabilities and
limitations of available numerical models for different problems. These
comparisons will provide a guideline for selecting the most appropriate model
for a specific problem. Since such comparisons have not been made yet, users
of SBREAK will need to judge whether SBREAK is appropriate for specific

applications.
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APPENDIX: TLISTING OF SBREAK

The computer program SBREAK is listed in the following.
computer program together with the tabulated input and output for the example
presented in Section 4 is available on a diskette. The computer program
SBREAK has been run using a SUN SPARC-IPC machine.
required if other computers are used.

comoputed tests with f' = 0.01 and 0.005 listed in Table 11 is listed in Table

12 and about 10 min.

TABLE 12. CPU Time Using SUN SPARC-IPC Machine
Test CPU Time in Minutes
No.
f' = 0.01 £f' = 0.005
7 9.1 9.4
15 14.9 14.9
18 8.8 9.1
21 B 7 8.9
. 23 5.2 8.5
32 8.2 8.3
a7 14.6 7.5
39 7.5 14.4
40 14.2 14.3
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Some modifications may be

The CPU time for each of the 9
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Numerical Simulation of
Solitary Waves on Impermeable Beaches and Breakwaters;
Extension of Computer Program IBREAK

Nobuhisa Kobayashi, Entin A. Karjadi and Andojo Wurjanto
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University of Delaware, Newark, Delaware 19716
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FHEHFFFFFEFFFHHFFH A HHHH#  GENERAL NOTES  ###H¥#d#dH444tttddtttttass

The purpose of each of 38 subroutines arranged in numerical order
is described in each subroutine and where it is called.

All COMMON statements appear in the Main Program (Main Program
will be referred to as ‘Main’ hereafter). Description of each
COMMON statement is given only in Main.

DOUBLE PRECISION is used throughout the program.
FOOHHHFHHHHH#4#HF444 4444 MAIN PROGRAM  H#H#H#F444F4FF4H44SRSH1EH

Main program performs time-marching computation using
subroutines

PROGRAM IBREAK

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DOUBLE PRECISION KS,KSREF,KSSEA,KSI

DOUBLE PRECISION KCNO,MCNO,KC2,KTWO
DIMENSION VDUM (N1)

CHARACTER*20 FINP1,FINP2,FNAMEl, FNAME2
INTEGER S

. COMMONs

Name Contents

———————————— — o = o o S o o o

/DIMENS/ The values of the "PARAMETER"s specified in Main.
Note: Most subroutines have their own PARAMETER state-

ments. PARAMETER values specified in subroutines
must be the same as their counterparts in Main.
Subroutine 36 CHEPAR checks this requirement.

/CONSTA/ Basic constants and input to numerical model

/ID/ Identifiers specifying user’s options

/IDREQ/ Integers for special storing for armor stability
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/TLEVEL/
/NODES/
/GRID/
/WAVE1/
/WAVE2/
/WAVE3/
/WAVE4/

‘/WAVES/

/WAVEG/
/BOT1/
/BOT2/
/BOT3/

(see Subroutine 2 INPUT1 for special storing)
Integers related to time levels

Integers for spatial nodes

Time step, grid size, and related quantities
Dimensional wave data

Dimensionless wave parameters

Normalized surface elevations

Max. and min. of normalized incident wave profile
Cnoidal wave parameters (K, E, m and 1-m)
Solitary wave parameters (Tc and K2)
Dimensional parameters related to structure
Normalized parameters related to structure
Normalized structure geometry

/BOT4/ and /BOTS5/ Dimensional structure geometry

/HYDRO/
/MATRIX/

Hydrodynamic quantities computed
Elements of matrices used in numerical method

/RUNP1/ and /RUNP2/ Quantities related to wave runup

/OVER/

/COEFS/
/STAT/

/ENERG/
/STABL/
/STAB2/
/STAB3/
/STAB4/
/STABS/

/STAB7/
/FILES/

/VALUEN/

Quantities related to wave overtopping

Reflection and transmission coefficients

Mean, max. and min. of hydrodynamic quantities
Quantities related to wave energy

Armor stability parameters read as input

Computed armor stability parameters

Armor stability parameters used in Subr. 19 STABNO
Armor movement parameters used in Subr. 20 MOVE

and /STAB6/ Stability numbers and associated quantities

in Subr. 19 STABNO

and /STAB8/ Quantities associated with armor movement

in Subr. 20 MOVE
File names and associated node numbers related to
options ISAVB=1 and ISAVC=1l

Values at time level (N-1l) stored during computation

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R
COMMON /CONSTA/ PI,GRAV,DELTA,X1,X2
COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,

ISAVA, ISAVB, ISAVC

COMMON /IDREQ/ IREQ,IELEV,IV,IDUDT,ISNR,NNREQ,NREQ (N5)

COMMON /TLEVEL/ NTOP, NONE, NJUM1, NJUM2, NSAVA,NSTAB, NSTAT, NTIMES
COMMON /NODES/ S,JE,JEl,JSTAB,JMAX

COMMON /GRID/ T, X; TX; XT,; TTX, TTXX, THOX

COMMON /WAVEl/ HREFP,TP,WLOP

COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI,SIGMA
COMMON /WAVE3/ ETA(N2),ETAIS (N2),ETARS (N2),ETATS (N2)

COMMON /WAVE4/ ETAMAX,ETAMIN

COMMON /WAVES/ KCNO,ECNO,MCNO,KC2

COMMON /WAVE6/ TCSOL,KTWO

COMMON /BOT1/ DSEAP,DLANDP,FWP

COMMON /BOT2/ DSEA,DSEAKS,DSEA2,DLAND, DLAND2 , FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1), THETA (N1),SSLOPE (N1) ,XB(N1), 2B (N1)
COMMON /BOT4/ NBSEG

COMMON /BOTS5/  WBSEG (N4), TBSLOP (N4) , XBSEG (N4) , ZBSEG (N4)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT (N1)

COMMON /MATRIX/ Al(2,N1),F(2,N1),G1l(N1l),GJR(2,N1),S1(N1),D(2,N1)
COMMON /RUNP1/ NDELR

COMMON /RUNP2/ DELRP (N3),DELTAR (N3),RUNUPS (N3),RSTAT (3,N3)
COMMON /OVER/ ov(4)
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COMMON /COEFS/ RCOEF (3),TCOEF (3)

COMMON /STAT/ ELSTAT (3),U1lSTAT (N1),ESTAT(3,N1), VSTAT (3,N1)
COMMON /ENERG/ ENER(4,N1),ENERB(14)

COMMON /STAB1/ C2,C3,CD,CL,CM,SG,TANPHI,AMIN, AMAX,DAP
COMMON /STAB2/ SG1,CTAN(N1)

COMMON /STAB3/ CSTAB1,CSTAB2,AMAXS,AMINS,E2, E3PRE(N1)
COMMON /STAB4/ CSTAB3,CSTAB4,CM1,DA,SIGDA,WEIG

COMMON /STAB5/ JSNSC,NSNSC,NSNSX (N1)

COMMON /STAB6/ SNSC,SNR(N1),SNSX(N1)

COMMON /STAB7/ NMOVE,NSTOP,

+ ISTATE (N1) ,NODIN (N1) ,NODFI (N1),NDIS(N1)
COMMON /STABS8,/ VA(N1l),XAA(N1),XA(N1l)

COMMON /FILES/ NNOD1,NNOD2,NODNOL (N5),NODNO2 (N5),

+ FNAME1 (N5) , FNAME2 (N5)

COMMON /VALUEN/ VSN,USN(2),VMN,UMN (1), V1N, V2N

SAVE K,M,N

. VARIABLES ASSOCIATED WITH THE "PARAMETER"S

Variables specified in PARAMETER statement cannot be passed
through COMMON statement. The following dummy lntegers are
used in COMMON /DIMENS/.

N1R = N1
N2R = N2
N3R = N3
N4R = N4
NSR = N5

.. OPEN FILES AND READ DATA

First call to Subr. 1 OPENER opens files unconditionally
Second call to Subr. 1 OPENER opens files conditionally

Subr. 2 INPUT1 reads primary input data

Subr. 3 INPUT2 reads wave profile at seaward boundary if IWAVE=2

WRITE (*,*) ’‘Name of Primary Input-Data-File?’
READ (*,5000) FINP1

CALL OPENER (1,FINP1,FINP2)

CALL INPUT1 (FINP2)

CALL OPENER (2,FINP1,FINP2)

IF (IWAVE.EQ.2) CALL INPUT2

. PRE-PROCESSING

Subr. 4 BOTTOM computes normalized structure geometry

Subr. 5 PARAM calculates important parameters

Subr. 6 INIT1 specifies initial conditions

Subr. 8 INWAV computes incident periodic wave profile if IWAVE=1l

CALL BOTTOM

CALL PARAM

CALL INIT1

IF (IWAVE.EQ.1l) CALL INWAV
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.. PRE-LOOP DOCUMENTATION

Subr. 33 DOCl documents input data and related parameters
before time-marching computation
Subr. 34 DOC2 is checked using ICALL=0 before computation

aoaoaoan

CALL DOC1
CALL DOC2 (0,0,DUM,DUM)
“IF (IJOB.EQ.3) M=S-1

------------------------ DO LOOP 500 BEGINS —==—===——=m==—mm———— e

For known hydrodynamic quantities at time level (N-1) compute
values of U(i,j) with i=1,2 and V(j) at node j for next time
level N where normalized time t=N*(time step size delta t)
with N=1,2,...,NTOP

DO 500 N = 1,NTOP
..... ESTIMATE U(2,K) AND V(K) WITH K=(S+1l) BY EXTRAPOLATION

S = most landward node at time level (N=1)

The following values at node j are known at time level (N-1)
U(1,3) = volume flux
U(2,79) = total water depth
V(3) depth-averaged velocity

IF (IJOB.LT.3) THEN

M= 8-1

IF (S.LT.JE) THEN
K = S+1
V(K) = 2.D+00*V(S) - V(M)
U(er) = 2.D+00*U(2r8) . U{ZIM)
U(1l,K) = U(2,K)*V(K)
IF (U(2,K) .GT.0.D+00) THEN

C(K) = DSQRT(U(2,K))

ELSE
C(K) = 0.D+00
ENDIF
ENDIF
ENDIF
..... RETAIN SOME VALUES AT TIME LEVEL (N-1) AT LANDWARD AND

SEAWARD BOUNDARIES
VSN = V(S)
USN(1l) = U(1,S)
USN(2) = U(2,8)
VMN = V(M)
UMN(1l) = U(1,M)
V1IN = V(1)
V2N = V(2)

..... CRITICAL VELOCITIES USED IN CHARACTERISTIC VARIABLES

DO 110 J = 1,8

181



ooooaoaan

QOO0 eNeNeNo N

oQaoooaoooo0oooooo0000

IF (U(2,J).LT.0.D+00) THEN
WRITE (*,2910) u(2,J),J,5,N
WRITE (29,2910) U(2,J),J,S,N
STOP

ELSE
C(J) = DSQRT(U(2,J))

ENDIF

CONTINUE

MARCH FROM TIME LEVEL (N-1) TO TIME LEVEL N

Subr. 12 MARCH marches computation from time level (N-1) to N
excluding landward and seaward boundaries

Landward B.C. is in Subr. 13 LANDBC

Seaward B.C. is in Subr. 16 SEABC

CALL MARCH (N,M)
CALL LANDBC (N,K,M,ETAT)
CALL SEABC (N,ETAR)

CHECK IF STABILITY CRITERION IS NOT VIOLATED
T = time step; X = spatial grid size; XT = X/T

Do 120 J = 1,8
IF (DABS(V(J)) .GT.XT) THEN
WRITE (*,2920) Vv(J),XT,J,S,N
WRITE (29,2920) Vv(J),XT,J,S,N
ENDIF
CONTINUE

WAVE ENERGY FLUX AND DISSIPATION
Computed in Subr. 17 ENERGY

IF (IENERG.EQ.1.AND.N.GE.NSTAT) CALL ENERGY (N)
STATISTICS OF HYDRODYNAMIC QUANTITIES

Subr. 31 ASSIGN changes notions from matrix to vector or from
vector to matrix
Subr. 18 STAT1 finds mean, max. and min. values
NSTAT = time level when statistical calculations begin
At node j: .
UlSTAT(j) = mean volume flux
ELEV (3) = surface elevation above SWL
v{3j) = depth-averaged velocity
Mean, maximum, and minimum at node j:
ESTAT(1, j) ,ESTAT(2, j) ,ESTAT(3,j) : for ELEV(]j)
VSTAT (1, ) ,VSTAT (2, j) ,VSTAT(3,3) : for V(j)
JMAX = the largest node number reached by the computational
waterline during N=NSTAT to N=NTOP
Note:
For IJOB=3, JMAX=S was specified in Subr. 6 INIT1 as input

IF (N.GE.NSTAT) THEN
CALL ASSIGN (1,VDUM ,U 1248, 1)
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-----

CALL STAT1 (1,UlSTAT,VDUM,1,S)

CALL STAT1 (2,ESTAT ,ELEV,3,JE)

CALL STAT1 (2,VSTAT ,V +3.8)

IF (IJOB.LT.3.AND.S.GT.JMAX) JMAX=S
ENDIF

COMPUTATION OF ARMOR STABILITY OR MOVEMENT
From N=NSTAB to N=NTOP

NSTAB = time level when computation of armor stability or
movement begins
ISTAB=1: INITIATION OF MOVEMENT OF ARMOR UNITS IN
SUBR. 19 STABNO
Computing SNR at every node at every NJUM2 time steps
SNR(j) = stability number against rolling/sliding at node j
ISTAB=2: SLIDING MOTION OF ARMOR UNITS IN SUBR. 20 MOVE
Tracking individual armor units
NMOVE = no. of units dislodged from their initial locations
NSTOP = no. of units stopped after moving
XAA(j) ,XA(j) = displacement of moving or stopped armor unit
number j from its initial location, normalized by
TP*sqrt (GRAV*HREFP) and DAP, respectively

IF (ISTAB.GT.0.AND.N.GE.NSTAB) THEN
IF (ISTAB.EQ.l) THEN
IDUM = MOD ( (N-NSTAB) , NJUM2)
IF (IDUM.EQ.0) CALL STABNO (N)
ELSE
CALL MOVE (N)
ENDIF
ENDIF

DOCUMENTATION DURING TIME-MARCHING COMPUTATION
Subr. 34 DOC2 documents computed results at designated time
levels

Calling DOC2(1l,...) is for storing "A"
"A" = gpatial variations of hydrodynamic quantities
Storing "A" is performed NTIMES (>1) times at equal
intervals from N=NSAVA to N=NTOP
NTOP = final time level
NSAVA = time level when storing "A"™ begins
Calling DOC2(2,...) is for storing temporal variations at
specified nodes every NJUM1 time steps during N=1 to N=NTOP
Calling DOC2(3,...) is for storing spatial variations at
specified time levels N=NREQ(i) with i=1,2,...,NNREQ

IF (N.GE.NSAVA) THEN

IDUM1 = (N-NSAVA) * (NTIMES-1)

IDUM2 NTOP-NSAVA

IDUM3 = MOD (IDUM1, IDUM2)

IF (IDUM3.EQ.0) CALL DOC2 (1,N,DUM,DUM)
ENDIF
IDUM4 = MOD (N,NJUM1)
IF (IDUM4.EQ.0) CALL DOC2 (2,N,ETAR,ETAT)
IF (IREQ.EQ.1) THEN
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DO 130 I = 1,NNREQ
IF (N.EQ.NREQ(I)) CALL DOC2 (3,N,DUM,DUM)
130 CONTINUE
ENDIF

O HOW FAR THE COMPUTATION HAS BEEN

IDUM = MOD (N, 500)
IF (IDUM.EQ.0) WRITE (*,*) 'N',N
IDUM = MOD (N, NONE)
IF (IDUM.EQ.0) THEN
IDUM = N/NONE
WRITE (*,*) ' Finished ' ,IDUM,’ Wave Period(s)’
ENDIF

@]

500 CONTINUE

POST-PROCESSING

Subr. 23 STAT2 calculates statistical values
Subr. 25 BALANE checks overall energy balance

aoooaoaoan

CALL STATZ2
IF (IENERG.EQ.1l) CALL BALANE

POST-LOOP DOCUMENTATION
Subr. 35 DOC3 documents results after time-marching
computation

eNoNeNeNe!

CALL DOC3

FORMATS

e N Ne]

2910 FORMAT (/' From Main Program: Negative water depth =/,D12.3/
+ r g =r,18,’; S = ,18,°; N = *,I8)

2920 FORMAT (/' From Main Program: Abs (V(J))>(X/T):’,
+ r v(J) =',D12.3,'; X/T =',D12.3/
+ ¢ J =',18,7; S =*,18,'; N = ’,I8)

5000 FORMAT (A20)

0

~00=mmmm—————————————— END OF MAIN PROGRAM ====m-em;meo—— - ——————
FOL#H¥FFFHH ¥R A# ¥4 H4¥% SUBROUTINE OPENER HH¥¥EREHE¥EREFAFERFHRRNHH

This subroutine opens all input and output files

SUBROUTINE OPENER (ICALL,FINP1l,FINP2)

QO aooaooaon

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
CHARACTER*2(0 FINP1,FINP2,FNAME]l, FNAME2
COMMON /DIMENS/ N1R,N2R,N3R,N4R,NS5SR
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COMMON /ID/

+

COMMON /IDREQ/
COMMON /FILES/

+

IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
ISAVA, ISAVB, ISAVC

IREQ, IELEV, IV, IDUDT, ISNR, NNREQ, NREQ (N5)
NNOD1,NNOD2, NODNO1 (N5) , NODNO2 (N5) ,
FNAME1 (N5) , FNAME2 (N5)

IF (ICALL.EQ.1l) THEN

-----

Subr. 36 CHEPAR (k,i,Ni,NiR) checks Ni=NiR with i=1,2,3,4 or 5

in Subr. k

CALL CHEPAR (1,5,N5,N5R)

UNCONDITIONAL OPENINGS

Units 11-19
Units 21-29

reserved for input data files
reserved for unconditionally-opened files

Unit Filename Purpose
11 FINP1 Contains primary input data
21 OSEAWAV Stores quantities at seaward boundary at every
NJUM1 time steps
--> N,ETAI,ETAR,ETATOT,V(1),U(1,1)
22 OSPACE . Unconditionally, stores structure geometry
--> JE, (XB(J),2B(J) ,J=1,JE)

. Conditionally, i.e., if ISAVA=1, stores spatial
variations of flow quantities at designated time
levels from N=NSAVA to N=NTOP
-=-> N, S, (ELEV(J),V(J),Jd=1,58)

23 OSTAT Stores statistics of hydrodynamic quantities
-=-> (Ul1lSTAT(J), J=1,JMAX)
-=> (ESTAT(4i,J) ,J=1, JMAX)
-=> (VSTAT(i,J),J=1,JMAX)
i=1,2,3
28 oDoC Stores essential output for concise documentation
29 OMSG Stores messages written under special
circumstances during computation
OPEN (UNIT=11l,FILE=FINP1, STATUS='OQOLD’ , ACCESS=' SEQUENTIAL’)
OPEN (UNIT=21,FILE='0QOSEAWAV', STATUS='NEW’, ACCESS='SEQUENTIAL’)
OPEN (UNIT=22,FILE='QSPACE’, STATUS='NEW’,ACCESS='SEQUENTIAL’)
OPEN (UNIT=23,FILE=’'0OSTAT’, STATUS='NEW’,ACCESS='SEQUENTIAL’)
OPEN (UNIT=28,FILE='ODOC', STATUS='NEW’ , ACCESS=' SEQUENTIAL’)
OPEN (UNIT=29,FILE='OMSG', STATUS='NEW’ , ACCESS=' SEQUENTIAL")
RETURN
ELSE
..... CONDITIONAL OPENINGS FOR ICALL=2

Units 31-39
Units 41-49

Units 50-74

reserved for files containing hydrodynamic and
energy quantities

reserved for files containing armor stability and
movement quantities

reserved for saving "B"
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Unit

12

31

32

33

34

35

40
41

42

50 FNAME1 (1)
51 FNAME1 (2)

and so on

75 FNAMEZ2 (1)
76 FNAME2 (2)

and so on

Units 75-99 reserved for saving "C"

"B" = temporal variations of normalized total water depth
at specified nodes

"C" = temporal variations of normalized displacement of
armor units from specified initial nodal locations

Filename Purpose

—— o —— — e

FINP2 Contains input data precsribing water surface
elevations at seaward boundary if IWAVE=2
ORUNUP Stores waterline node and runup elevations

associated with (DELTAR(L),L=1,NDELR), if IJOB<3,
at every NJUM1 time steps
--> N, S, (RUNUPS (L) , L=1,NDELR)
OOVER Stores quantities at landward edge node, if
IJOB=2, at every NJUMl time steps
--> N,U(1,JE),U(2,JE),V(JE),C(JE)
OTRANS Stores values at landward boundary, if IJOB=3,
at every NJUM1l time steps
--> N,U(1,JE),V(JE),C(JE) ,ETAT

OINWAV Stores incident periodic wave profile at seaward bounda
if IWAVE=1

OENERG Stores time-averaged energy quantities if IENERG=1
-=> JMAX, (ENER(ir J) J=l' JMAX)

i=1,2,3,4

OREQ Stores spatial variation at designated time levels
(e.g., at time of minimum stability) if IREQ=1

OSTAB1 Stores local stability number at each node

OSTAB2 Stores quantities related to armor movement

Store "B", i.e., temporal variations of normalized
total water depth at specified nodes at every
NJUM1 time steps if ISAVB=1

B rem aem e e

Store "C", i.e., temporal variations of normalized
displacement, XA, of armor units from specified
initial nodal locations at every NJUMl time steps
if ISAVC=1

WAVES AT SEAWARD BOUNDARY

IF (IWAVE.EQ.l) THEN

OPEN (UNIT=34,FILE='O0OINWAV’,STATUS='NEW’,ACCESS='SEQUENTIAL')
ELSEIF (IWAVE.EQ.2) THEN

OPEN (UNIT=12,FILE=FINP2,STATUS='OLD’,ACCESS='SEQUENTIAL')
ENDIF

===== RUNUP-OVERTOPPING-TRANSMISSION

IF (IJOB.LT.3) THEN
OPEN (UNIT=31,FILE='ORUNUP’,STATUS='NEW’,ACCESS='SEQUENTIAL')
IF (IJOB.EQ.2) OPEN
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+ (UNIT=32,FILE='Q0OVER’, STATUS='NEW’, ACCESS=’SEQUENTIAL’)
ELSE
OPEN (UNIT=33,FILE='OTRANS’,6 STATUS='NEW’, ACCESS='SEQUENTIAL")
ENDIF
----- WAVE ENERGY
IF (IENERG.EQ.1)
+ OPEN (UNIT=35,FILE='OENERG’,STATUS='NEW’, ACCESS='SEQUENTIAL")
————— FOR SAVING "B"
IF (ISAVB.EQ.l) THEN
DO 110 I = 1,NNOD1
NUNIT = 49 + I
OPEN (UNIT=NUNIT,FILE=FNAMEl (I),STATUS='NEW',
+ ACCESS=' SEQUENTIAL")
110 CONTINUE
ENDIF
----- ARMOR STABILITY
IF (ISTAB.EQ.l) THEN
OPEN (UNIT=41, FILE-'OSTABI' STATUS='NEW’ , ACCESS=' SEQUENTIAL')
ELSEIF (ISTAB.EQ.2) THEN
OPEN (UNIT=42,FILE='QOSTAB2',STATUS='NEW’' 6 ACCESS='SEQUENTIAL')
--------------- The following is for saving "C"
IF (ISAVC.EQ.1l) THEN
DO 120 I = 1,NNOD2
NUNIT = 74 + I
OPEN (UNIT=NUNIT,FILE=FNAME2 (I), STATUS='NEW’,
+ ACCESS=' SEQUENTIAL")
120 CONTINUE
ENDIF
ENDIF
----- SPECIAL STORING AT SPECIFIED TIME LEVELS
IF (IREQ.EQ.1)
+ OPEN (UNIT=40,FILE='OREQ’, STATUS='NEW’, ACCESS='SEQUENTIAL")
RETURN
ENDIF
END
e END OF SUBROUTINE OPENER —--—-— ———

FO2#HHHFHEFF XX HH¥¥4#4¥4+ SUBROUTINE INPUT1 #######################

This subroutine reads data from primary input data file and
checks some of them

SUBROUTINE INPUT1 (FINP2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
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PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

DOUBLE PRECISION KS,KSREF,KSSEA,KSI,KTWO

CHARACTER*5 COMMEN (14)

CHARACTER*2(0 FINP2,FNAME1l,FNAME2

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA, X1, X2

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /IDREQ/ IREQ,IELEV,IV,IDUDT,ISNR,NNREQ,NREQ (N5)
COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /NODES/ §,JE,JEl,JSTAB,JMAX

COMMON /WAVEl/ HREFP,TP,WLOP

COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR, URPRE,KSI, SIGMA
COMMON /WAVE4/ ETAMAX,ETAMIN

COMMON /WAVE6/ TCSOL,KTWO )

COMMON /BOT1/ DSEAP, DLANDP , FWP

COMMON /BOT2/ DSEA, DSEAKS, DSEA2, DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT4/ NBSEG

COMMON /BOTS/ WBSEG (N4) , TBSLOP (N4) , XBSEG (N4) , ZBSEG (N4)
COMMON /RUNP1l/ NDELR

COMMON /RUNP2/ DELRP (N3),DELTAR(N3),RUNUPS (N3),RSTAT (3,N3)
COMMON /STABl1/ C2,C3,CD,CL,CM,SG, TANPHI,AMIN,AMAX, DAP
COMMON /FILES/ NNOD1,NNOD2,NODNO1 (N5),NODNO2 (N5S),
+ FNAME1 (N5) , FNAME2 (N5)

DATA INDIC /0/

CALL CHEPAR (2,1,N1,N1R)

CALL CHEPAR (2,3,N3,N3R)

CALL CHEPAR (2,4,N4,N4R)

CALL CHEPAR (2,5,N5,N5R)

......... COMMENT LINES
NLINES = number of comment lines preceding input data
READ (11,1110) NLINES
DO 110 I = 1,NLINES
READ (11,1120) (COMMEN(J),J=1,14)
WRITE (28,1120) (COMMEN (J),J=1,14)
WRITE (29,1120) (COMMEN (J),J=1,14)
110 CONTINUE

......... OPTIONS
IJOB=1: RUNUP on impermeable slope
=2: OVERTOPPING over subaerial structure
=3: TRANSMISSION over submerged structure
ISTAB=0: No computation of armor stability or movement
=1: Armor stability computation
=2: Armor movement computation
If ISTAB>0 =--> Must specify NSTAB
Armor stability or movement is computed from N=NSTAB
to N=NTOP
ISYST=1: International System of Units (SI) is used
=2: US Customary System of Units (USCS) is used
IBOT=1: "Type 1" bottom data (width-slope)
=2: "Type 2" bottom data (coordinates)
INONCT=0: No correction term in computing ETAR
=1: Correction term for ETAR recommended for
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regular and irregular waves on’ beaches
IENERG=0: Energy quantities NOT computed
=1: Energy quantities computed
IWAVE=1: Incident periodic waves at seaward boundary computed
=2: Incident waves at seaward boundary given as input
=3: Incident solitary waves at seaward boundary computed
If IWAVE=2 --> Must specify FINPZ = name of input data
file containing the given wave
"A" = Spatial variations of hydrodynamic quantities
"B" = Temporal variations of total water depth at
specified nodes at every NJUMl time steps
"C" = Temporal variations of displacement of armor units
from specified initial nodal locations at every
NJUM1 time steps
ISAVA, ISAVB, ISAVC are identifiers associated with saving
wpn, "B","C", respectively (l=save; 0=no)
NSAVA AND NTIMES:
If ISAVA=1l, "A" is saved NTIMES (>1) times at equal
intervals from N=NSAVA to N=NTOP
If ISAVB=1 --> Must specify NNOD1l, i.e, the number of
nodes for which "B" is to be saved
If ISAVC=1 --> Must specify NNOD2,i.e., the number of
nodes for which "C" is to be saved
IREQ=0: No special storing
=1: Special storing requested
Special storing = storing spatial variations of requested
quantities at time levels N=NREQ (i)
with i=1,2,...,NNREQ
Quantities available for request:
ELEV = surface elevation
i N = depth-averaged velocity
. DUDT = total fluid acceleration
. SNR = stability number against rolling/sliding
--> requested by IELEV=]l, IV=1, IDUDT=1, and ISNR=1l,
respectively
Note: DUDT can be requested only if ISTAB>0
SNR can be requested only if ISTAB=1
READ (11,1130) IJOB,ISTAB,NSTAB
READ (11,1140) ISYST
READ (11,1140) IBOT
READ (11,1140) INONCT
READ (11,1140) IENERG
READ (11,1150) IWAVE,FINP2
READ (11,1160) ISAVA,ISAVB,ISAVC,NSAVA,NTIMES, NNOD1,NNOD2
READ (11,1170) IREQ,IELEV,IV,IDUDT, ISNR,NNREQ

......... CHECK OPTIONS

Subr. 37 CHEOPT is to check if user’s options are within
the ranges available

CALL CHEOPT ( 1,INDIC,IJOB ,1,3)

CALL CHEOPT 2,INDIC,ISTAB ,0,2)

CALL CHEOPT 3,INDIC, ISYST ,1,2)

CALL CHEOPT 4,INDIC,IBOT ,1,2)

CALL CHEOPT 5, INDIC, INONCT,0,1)

CALL CHEOPT 6, INDIC, IENERG, 0,1)

CALL CHEOPT 7,INDIC, IWAVE ,1,3)

—— — — — i~

189



eNeNeNeNeN el

QOO0 0n

e e Ne N RN N N?

CALL CHEOPT ( 8,INDIC,ISAVA ,0,1)
CALL CHEOPT ( 9,INDIC,ISAVB ,0,1)
CALL CHEOPT (10, INDIC,ISAVC ,0,1)
CALL CHEOPT (11,INDIC,IREQ ,0,1)
CALL CHEOPT (12,INDIC,IELEV ,0,1)
CALL CHEOPT (13, INDIC,IV y 05 1)
CALL CHEOPT (14,INDIC,IDUDT ,0,1)
CALL CHEOPT (15,INDIC,ISNR ,0,1)
-IF (ISAVB.EQ.l1l) CALL CHEOPT (16, IDUM,NNOD1,1,N5)
IF (ISAVC.EQ.l) CALL CHEOPT (17,IDUM,NNODZ,1,N5)

......... PRE-PROCESS SPECIAL STORING
Subr. 38 STOPP stops execution of the computation
IF (IREQ.EQ.1l) THEN
IF (ISTAB.EQ.0.AND.IDUDT.NE.O0) IDUDT=0
IF (ISTAB.NE.1l.AND.ISNR.NE.O) ISNR=0
NOREQ = IELEV+IV+IDUDT+ISNR
IF (NOREQ.EQ.0) THEN
CALL STOPP (1,3)
ELSE
CALL CHEOPT (18, IDUM,NNREQ,1,N5)
READ (11,1110) (NREQ(I), I=1,NNREQ)
ENDIF
ENDIF

......... CONSTANTS
PI1 = 3,14159%92...
GRAV = gravitational acceleration
in m/sec**2 if ISYST=1 (SI)
in ft/sec**2 if ISYST=2 (USCS)
PI = 4 .D+00*DATAN(1.D+00)
IF (ISYST.EQ.l1l) THEN
GRAV = 9.81D+00
ELSE
GRAV = 32.2D+00
ENDIF

......... DATA RELATED TO TIME STEPPING
NTOP = total number of time steps for computation
NONE = even number of time steps in one wave period
The wave period is the reference period used for the
normalization of the governing equations :
NJUM1l: Temporal variations at specified nodes are stored
at every NJUM1l time steps
READ (11,1110) NTOP
READ (11,1110) NONE
READ (11,1110) NJUM1

......... IMPORTANT TIME LEVELS INCLUDED IN COMMON /TLEVEL/

NTOP = final time level

NONE = even number of time steps in one wave period

NSAVA = time level when saving "A" begins

NTIMES = number of time levels when "A" is saved

NSTAB = time level when computation of armor stability
or movement begins

NSTAT = time level when statistical calculations begin
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Used: NSTAT=(NTOP-NONE+1l) for IWAVE=1l
NSTAT=NSAVA for IWAVE>1l
Note: The wvalue of NTOP for IWAVE=2 will be adjusted in
Subr. 3 INPUT2
For monochromatic incident waves with IWAVE=1l, use has
been made of the following guideline:

Let tp = normalized time when periodicity is established

Specify:

tp=integer which is 4 or greater for coastal structures

NONE=on the order of 2000

. Calculate:

NTOP= (tp+1) *NONE for (tp+l) wave periods

NSTAB= (NTOP-NONE+1) for armor stability during the last

one wave period

NSAVA= (NTOP~-NONE)

NTIMES=5 to save "A" at normalized time t=tp, (tp+l1/4),
(tp+2/4), (tp+3/4) and (tp+l) where "A"™ at t=tp must
be the same as "A" at t=(tp+l) if "A"™ is periodic

Moreover, NJUMl1 = on the order of NONE/100 so that
temporal variations are stored (NONE/NJUM1l) times in
one wave period

i — ——— o — — T — T

IF (IWAVE.EQ.1l) THEN
NSTAT = NTOP-NONE+1

ELSE

NSTAT = NSAVA

ENDIF

IF (ISAVA.EQ.0) NSAVA=NTOP+1
IF (ISTAB.EQ.0) NSTAB=NTOP+1

.........

READ
READ
READ
READ
READ
CALL

GENERAL DATA
S as input:
for IJOB<3: number of spatial nodes along the bottom
below SWL
for IJOB=3: number of nodes between seaward and
landward boundaries
Note: S should be so large that delta x between two
adjacent nodes is sufficiently small.
S=100 to 300 has been used.

FWP = bottom friction factor

X1,X2 = numerical damping coefficients

DELTA = normalized water depth defining computational
waterline

NDELR = number of "DELRP"s to be specified

DELRP = physical water depth associated with visual or
measured waterline
. in millimeters if ISYST=1 (SI)
. in inches if ISYST=2 (USCS)

(11,1110) s

(11,1180) FWP

(11,1180) X1,%X2

(11,1180) DELTA

(11,1110) NDELR

CHEOPT (19,IDUM,S,1,N1-1)

IF (IJOB.LT.3) THEN
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CALL CHEOPT (20, IDUM,NDELR,1,N3)
ELSE
NDELR = 0
ENDIF
DO 120 L = 1,NDELR
READ (11,1180) DELRP (L)
CONTINUE
......... WAVE PROPERTIES
HREFP = physical wave height at "reference" location
. in meters if ISYST=1 (SI)
in feet if ISYST=2 (USCS)
TP = physical reference wave period, in seconds
TP of solitary wave is computed later if IWAVE=3
HREFP and TP are used to normalize the governing
equations
KSREF = shoaling coefficient at "reference" location
KSSEA = shoaling coefficient at seaward boundary
SIGMA is a measure of wave steepness
READ (11,1180) HREFP,TP
READ (11,1180) KSREF,KSSEA
KS = KSSEA/KSREF
IF (IWAVE.LT.3) THEN
SIGMA = TP*DSQRT (GRAV/HREFP)
ENDIF
......... STRUCTURE GEOMETRY
The structure geometry is divided into segments of
different inclination
NBSEG = number of segments
DSEAP = physical water depth below SWL at seaward
boundary
TSLOPS = tangent of slope used to define
"gsurf similarity parameter"
For segment i starting from the seaward boundary:
WBSEG(i) = physical horizontal width
TBSLOP (i) = tangent of slope (+ upslope, - downslope)
XBSEG(i) = physical horizontal distance from seaward
boundary to the segment’s seaward-end
ZBSEG(i) = physical water depth below SWL (+ below SWL)
at the segment’s seaward-end
DSEAP, WBSEG, XBSEG, ZBSEG are in meters if ISYST=1 (SI),
. feet if ISYST=2 (USCS)
READ (11,1180) DSEAP
READ (11,1180) TSLOPS
READ (11,1110) NBSEG
CALL CHEOPT (21,IDUM,NBSEG,1,N4)
IF (IBOT.EQ.1l) THEN
DO 130 K = 1,NBSEG
READ (11,1180) WBSEG(K), TBSLOP (K)
CONTINUE
ELSE

140

DO 140 K = 1,NBSEG+1

READ (11,1180) XBSEG(K), ZBSEG (K)

CONTINUE

ENDI

F
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DSEA = normalized water depth below SWL at seaward boundary
DSEA = DSEAP/HREFP

For IWAVE=3, the following wave parameters associated with
the incident solitary wave need to be computed.
The normalized crest arrival time tc and the value of
Delta-i associated with the reference wave period TP are
- taken as
IF (IWAVE.EQ.3) THEN

The
and

maximum and minimum incident wave elevations are KS
zero, respectively

ETAMAX = KS
ETAMIN = 0.D+00

TCSOL = 1.D+00
DELTAI = 5.D-02

where
Then,

these values can be modified by changing the above values only.

the parameters K2 and SIGMA are given by

DUM = KS/DELTAI

KTWO = 2.D+00*DLOG (DSQRT (DUM) +DSQRT (DUM~1.D+00))

SIGMA = 2.D+00*DSEA*KTWO/DSQRT (3.D+00* (KS+KS*KS/DSEA) )
The reference wave period TP is thus found

b
ENDIF

= SIGMA*DSQRT (HREFP/GRAV)

DATA RELATED TO SAVING "B", i.e., temporal variations of
total water depth at specified nodes

NNOD1 = no. of nodes for which "B" is to be saved

NODNO1 (I) = I-th node number for which "B" is to be saved

FNAMELl (I) = name of file associated with NODNO1 (I)

IF (ISAVB.EQ.l) THEN
DO 150 I = 1,NNOD1
READ (11,1190) NODNO1l (I),FNAMEL(I)
150 CONTINUE

ENDIF

DATA RELATED TO ARMOR STABILITY AND MOVEMENT
NJUM2 : stability number SNR is computed at every NJUMZ2
time steps (NJUM2=1 has been used)

SG = gpecific gravity
c2 = area coefficient
c3 = volume coefficient
CD = drag coefficient
CL = lift coefficient
CM = inertia coefficient

TANPHI = armor friction factor
AMAX, AMIN = upper and lower bounds of fluid acceleration,
normalized by gravitational acceleration, used
only for ISTAB=1
DAP = physical armor diameter
in meters IF ISYST=1 (SI)
in feet IF ISYST=2 (USCS)
NNOD2 = no. of nodes for which "C" is to be saved
NODNO2 (I) = I-th node number for which "C" is to be saved
FNAME2 (I) = name of file associated with NODNO2 (I)
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"C" = temporal variations of displacement of armor units
from specified initial nodal locations

To compute SNR = stability number against rolling/sliding:

IF (ISTAB.GT.0)

READ

ENDIF

(11,1110)
(11,1180)
(11,1180)
(11,1180)
(11,1180)

THEN

NJUM2
c2,C3,5G
cp,CL,CM
TANPHI
AMAX, AMIN

To compute movement of armor units, additional input is required:
IF (ISTAB.EQ.2) THEN
READ (11,1180) DAP
IF (ISAVC.EQ.l) THEN
DO 160 I = 1,NNOD2

READ

CONTINUE

ENDIF
ENDIF

(11,1190,END=990) NODNO2 (I),FNAMEZ (I)

IF (INDIC.GT.0) STOP

RETURN

CONTINUE
CALL STOPP (4,4)

.. FORMATS

1110
1120
1130
1140
1150
1160
1170
1180
1190

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

END

e s

(I8)
(14A5)
(211, 18)
(11)

(I1,2X,A20)
(311,18,3I4)

(5I1,1I6)
(3F13.6)

(I6,2X,A20)

END OF SUBROUTINE INPUT1 ====-=eesmmeeee——————

FOSH#H###FFHH#H##¥ 4444+ SUBROUTINE INPUT2 FEEEEEEE R R R R RRE S

This subroutine reads incident wave profile data at
seaward boundary if IWAVE=2

SUBROUTINE INPUT2

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
PARAMETER (NICE=500)

COMMON
COMMON
+
COMMON
COMMON
COMMON

/DIMENS/
/ID/

/TLEVEL/
/WAVE3/
J/WAVE4/

N1R,N2R,N3R,N4R,N5R

IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
ISAVA, ISAVB, ISAVC

NTOP, NONE, NJUM1, NJUM2, NSAVA, NSTAB, NSTAT, NTIMES
ETA(N2) ,ETAIS (N2) ,ETARS (N2) ,ETATS (N2)

ETAMAX, ETAMIN
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CALL CHEPAR (3,2,N2,N2R)

ETA = given time series of free surface profile (IWAVE=2)
ETAMAX and ETAMIN are its maximum and minimum, respectively

In order to get 'nice’ time levels for storage of computed
results, NTOP is taken to be a multiplication of NICE specified

in the PARAMETER statement of this subroutine

910

920

100

1210

-03
#04

READ (12,1210,END=910) (IDUM,ETA(I),I=1,N2)
CONTINUE
IDUM = I-1
WRITE (*,2910) IDUM
WRITE (29,2910) IDUM
NTOP = IDUM+1
CONTINUE
NTOP = NTOP-1
IDUM = MOD (NTOP,NICE)
IF (IDUM.NE.0) GOTO 920
ETAMAX = -1.D+03
ETAMIN = 1.D+03
DO 100 I = 1,NTOP
IF (ETA(I) .GT.ETAMAX) ETAMAX=ETA(I)
IF (ETA(I) .LT.ETAMIN) ETAMIN=ETA(I)
CONTINUE
IF (ISAVA.EQ.0) NSAVA=NTOP+1
IF (ISTAB.EQ.0) NSTAB=NTOP+1
FORMAT (I10,F10.6)

2910 FORMAT (/’ From Subroutine 3 INPUT2’/

+’ Incident wave profile has been read from a data file’/
+/ Number of data points read =',I8)

RETURN
END

B -- END OF SUBROUTINE INPUT2 ======—mmmme——m——————
FHHFHFHHFHHHFHH*H¥F¥¥ SUBROUTINE BOTTOM HF¥HHFHK¥HFHFFHHFHFHFHHFHH

This subroutine calculates normalized structure geometry and
delta x between two adjacent nodes

SUBROUTINE BOTTOM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

DOUBLE PRECISION KS,KSREF,KSSEA,KSI

DIMENSION TSLOPE (N1)

INTEGER S -

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA, X1, X2

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE,NJUM1, NJUM2,NSAVA,NSTAB, NSTAT,NTIMES
COMMON /NODES/ S§,JE,JE1l,JSTAB, JMAX

COMMON /GRID/ T,X,TX, XT, TTX, TTXX, TWOX

COMMON /WAVEl/ HREFP,TP,WLOP
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COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI, STGMA
COMMON /BOT1/ DSEAP, DLANDP , FWP

COMMON /BOT2/ DSEA,DSEAKS,DSEA2,DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1),THETA(N1),SSLOPE (N1),bXB(N1),ZB(N1)
COMMON /BOT4/ NBSEG

COMMON /BOTS/ WBSEG (N4) , TRSLOP (N4) , XBSEG (N4) , ZBSEG (N4)
COMMON /STABl1/ ¢2,C3,CD,CL,CM,SG,TANPHI,AMIN, AMAX,DAP
COMMON /STAB2/ SG1,CTAN (N1)

CALL CHEPAR (4,1,N1,N1R)

CALL CHEPAR (4, 4,N4,N4R)

THE FOLLOWING VARIABLES ARE DIMENSIONAL

TSLOPS = tangent of slope used to define
"gurf similarity parameter"

BSWL: . for IJOB<3: physical horizontal distance between
seaward boundary and initial waterline on slope
for IJOB=3: physical horizontal distance between
seaward and landward boundaries

DSEAP = water depth below SWL at seaward boundary

The structure geometry is divided into segments of different
inclination

NBSEG = number of segments

For segment i starting from the seaward boundary:

WBSEG(i) = physical horizontal width
TBSLOP (1) = tangent of slope (+ upslope, - downslope)
XBSEG(i) = physical horizontal distance from seaward boundary

to the segment’s seaward-end
ZBSEG(i) = physical water depth below SWL (+ below SWL)
at the segment’s seaward-end
BSWL,DSEAP, WBSEG, XBSEG, ZBSEG are in meters if ISYST=1 (SI),
feet if ISYST=2 (USCS)

COMPLETE SEGMENT DATA NOT SPECIFIED AS INPUT

IF (IBOT.EQ.l) THEN

DCUM = 0.D+00
XBSEG (1) = 0.D+00
ZBSEG (1) = DSEAP
DO 110 K = 2,NBSEG+1
DCUM = DCUM + WBSEG (K-1) *TBSLOP (K-1)

XBSEG (K) = XBSEG(K-1) + WBSEG(K-1)
ZBSEG(K) = DSEAP - DCUM
CONTINUE
ELSE
DO 120 K = 1,NBSEG
TBSLOP (K) = - (ZBSEG (K+1)-ZBSEG (K) )/ (XBSEG (K+1) ~XBSEG (K) )
CONTINUE
ENDIF

. CALCULATE GRID SPACING X BETWEEN TWO ADJACENT NODES

(dimensional)

The value of S specified as input corresponds to
for IJOB<3: number of nodes along the bottom below SWL
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(4 for IJOB=3: number of nodes between seaward and landward
& boundaries
C
IF (IJOB.LT.3) THEN
K=20
900 CONTINUE
IF (K.EQ.NBSEG) CALL STOPP (5,6)
K = K+1
CROSS = ZBSEG(K) *ZBSEG (K+1)
IF (CROSS.GT.0.D+00) GOTO 900
BSWL = XBSEG(K+1l) + ZBSEG(K+1)/TBSLOP (K)
X = BSWL/DBLE (S)
ELSE
BSWL = XBSEG (NBSEG+1)
X = BSWL/DBLE (S-1)
DO 130 K = 1,NBSEG+1 :
IF (ZBSEG(K).LT.0.D+00) CALL STOPP (7,8)
130 CONTINUE
ENDIF
C
C . CALCULATE STRUCTURE GEOMETRY AT EACH NODE (dimensional)
C
Cc JE = landward edge node (IJOB<3) or landward boundary node
C (IJ0B=3)
(o] U2INIT(j) = water depth below SWL at node j (+ below SWL)
C = total water depth U(2,j) at time t=0
c (physical, later normalized under the same name)
c TSLOPE (j) = tangent of local slope at node j
c
IF (IJOB.LT.3) THEN
DUM = XBSEG (NBSEG+1) /X
JE = INT (DUM)+1
ELSE
JE = §
ENDIF
IF (JE.GT.N1l) THEN
WRITE (*,2910) JE,N1
WRITE (29,2910) JE,N1
STOP
ELSE
JE1 = JE-1
ENDIF
2910 FORMAT (/' End Node =',I8,’; N1 =', I8/
+ . * Slope/Structure is too long.’/
+ ! Cut it, or change PARAMETER N1.')
c
DIST = =X
K =1

XCUM = XBSEG (K+1)
DO 140 J = 1,JE
DIST = DIST + X
IF (DIST.GT.XCUM.AND.K.LT.NBSEG) THEN

K = K+1
XCUM = XBSEG (K+1)
ENDIF

U2INIT(J) = ZBSEG(K) ~ (DIST-XBSEG (K))*TBSLOP (K)
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TSLOPE (J) = TBSLOP (K)

140 CONTINUE

150

. NORMALIZATION

WTOT = normalized width of computation domain

At node 7j:
U2INIT () normalized water depth below SWL (+ below SWL)
THETA(J) = normalized tangent of local slope .
(XB(j),2B(j)) = normalized coordinates of the structure

DUM = TP*DSQRT (GRAV*HREFP)
X = X/DUM
DIST = =X

WTOT = DBLE (JEl1) *X
DO 150 J = 1,JE

U2INIT(J) = U2INIT(J) /HREFP

THETA(J) = TSLOPE(J) *SIGMA

DIST = DIST + X

XB(J) = DIST

ZB (J) = =U2INIT(J)
CONTINUE

QUANTITIES NEEDED FOR COMPUTATION OF ARMOR STABILITY AND

MOVEMENT

160

#05

TSLOPE(j) = tangent of local slope at node j
SSLOPE(j) = sine of local slope at node j
CSLOPE = cosine of local slope

TANPHI = armor friction factor

IF (ISTAB.GT.0) THEN
DO 160 J = 1,JE

ANGLE = DATAN (TSLOPE (J) )
CSLOPE = DCOS (ANGLE)
SSLOPE (J) = DSIN (ANGLE)
CTAN (J) = CSLOPE*TANPHI
CONTINUE
ENDIF
RETURN
END
---------------- END OF SUBROUTINE BOTTOM =====——cmeccecccoeme—-

FHERFFFHFHAHFHHF#4FH# SUBROUTINE PARAM  H##*H##dF¥FFdddttdthidts

This subroutine calculates parameters used in other subroutines

SUBROUTINE PARAM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DOUBLE PRECISION KS,KSREF,KSSEA,KSI

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA,X1,X2
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COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,

+ ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUMZ2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /GRID/ T,X,TX,XT, TTX, TTXX, TWOX

COMMON /WAVEl/ HREFP,TP,WLOP :

COMMON /WAVE2/ KS,KSREF,KSSEA,WL0, WL, UR, URPRE,KSI, SIGMA
COMMON /NODES/ §,JE,JE1l,JSTAB,JMAX

COMMON /BOT1/ DSEAP, DLANDP , FWP

COMMON /BOT2/ DSEA,DSEAKS,DSEA2, DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1), THETA (N1) , SSLOPE (N1),XB(N1), 2B (N1)
COMMON /RUNP1/ NDELR

COMMON /RUNP2/ DELRP (N3),DELTAR (N3),RUNUPS (N3),RSTAT (3,N3)
COMMON /STAB1/ ¢2,C3,CD,CL,CM,SG,TANPHI, AMIN, AMAX,DAP

COMMON /STAB2/ SG1,CTAN (N1)

COMMON /STAB3/ CSTAB1,CSTAB2,AMAXS,AMINS,E2,E3PRE (N1)

COMMON /STAB4/ CSTAB3,CSTAB4,CM1,DA,SIGDA,WEIG

CALL CHEPAR (5,1,N1,N1R)

CALL CHEPAR (5,3,N3,N3R)

.. PARAMETERS RELATED TO FINITE DIFFERENCE GRIDDING

aooooaon0aan
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T = delta t = constant time step

X = delta x = constant grid spacing between two adjacent nodes
NTOP = final time level

NONE = number of time steps in one wave period

T = 1.D+00/DBLE (NONE)
X =T/

XT = X/T

TTX = T*T/X

TTXX = T*T/ (X*X)

TWOX = 2.D+00*X

. PARAMETERS RELATED TO WAVE AND SLOPE CHARACTERISTICS

KSI = surf similarity parameter

WLOP, WLO = deep-water wavelengths, physical and normalized,
respectively

DSEAP,DSEA = water depths below SWL at seaward boundary,
physical and normalized, respectively

DLANDP,DLAND = water depths below SWL at landward boundary,
physical and normalized, respectively
(only for IJOB=3)

FWP,FW = slope friction factors, physical and normalized,
respectively

DELRP,DELTAR = water depths associated with wvisual or measured

waterline, physical and normalized, respectively
Note : KS and DSEA have been computed in Subr.02 INPUT1

WLOP = GRAV* (TP*TP)/(2.D+00*P1I)

WLO = WLOP/DSEAP

KS = KSSEA/KSREF

KSI = SIGMA*TSLOPS/DSQRT (2.D+00*PI)
DSEA = DSEAP/HREFP

DSEAKS = DSEA/KS

DSEA2 = DSQRT (DSEA)
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FW = ,5D+00*FWP*SIGMA
DO 110 L = 1,NDELR
IF (ISYST.EQ.l) THEN
DELTAR(L) = DELRP (L) /(1.D+03*HREFP)
ELSE
DELTAR(L) = DELRP (L)/(12.D+00*HREFP)
ENDIF
CONTINUE

‘'IF (IJOB.EQ.3) THEN

DLAND = U2INIT(S)

DLANDP = DLAND*HREFP

DLAND2 = DSQRT (DLAND)
ENDIF

LINEAR WAVELENGTH AND PRELIMINARY URSELL NUMBER

WL = normalized linear wavelength at seaward boundary
UR = Ursell number at seaward boundary based on linear wavelength

TWOPI = 2.D+00*PI

WL = WLO

FUN1 = WL - WLO*DTANH (TWOPI/WL)

IF (DABS(FUN1) .GT.1.D-04) THEN
FUN2 = 1.D+00 + WLO*TWOPI/(WL*DCOSH{TWOPI/WL))**2
WL = WL - FUN1/FUN2
FUN1 = WL - WLO*DTANH (TWOPI/WL)

GOTO 900

ENDIF

UR = WL*WL/DSEAKS

URPRE = UR

PARAMETERS FOR ARMOR STABILITY AND MOVEMENT

JSTAB = the largest node number for which computation of armor
stability or movement will be performed

SG = specific gravity
c2 = area coefficient
Cc3 = volume coefficient
CD = drag coefficient
CL = lift coefficient
CM = inertia coefficient

TANPHI = armor friction factor

AMAX, AMIN = upper and lower bounds of fluid acceleration,
normalized by gravitational acceleration

E3PRE is prepared for computing E3 in Subr. 19 STABNO

DAP,DA = armor diameters, physical and normalized, respectively,
used in Subr. 20 MOVE

WEIG = normalized submerged weight of armor unit in
Subr. 21 FORCES

IF (ISTAB.GT.0) THEN
SG1 = SG-1.D+00
IF (IJOB.EQ.3) JSTAB=JE
ENDIF
IF (ISTAB.EQ.1l) THEN
CSTABl = 2.D+00*C3** (2.D+00/3.D+00) / (C2*CD)
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CSTAB2 = CM/ (SG1*SIGMA)
E2 = CL*TANPHI/CD
AMAXS = AMAX*SIGMA
AMINS = AMIN*SIGMA

po 120 J = 1,JE
E3PRE (J) = CSTABL1*CTAN(J)
120 CONTINUE
ELSEIF (ISTAB.EQ.2) THEN

CM1 = CM - 1.D+00
DA = DAP/HREFP
SIGDA = SIGMA/DA
CSTAB3 = C2*CD/ (2.D+00*C3*DA)
CSTAB4 = C2*CL/ (2.D+00*C3*DA)
WEIG = SIGMA*SG1l

ENDIF

RETURN

END

“)5 e —————— END OF SUBROUTINE PARAM ==-mcccccccceccce—aea-

ROGHHHFHHHFHHFHFH#H4#4#¥% SUBROUTINE INITL #¥#¥FFFFFFFHHFHAHAHHHHHH
This subroutine assigns initial values
SUBROUTINE INIT1

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA, X1, X2

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /NODES/ S,JE,JEl,JSTAB,JMAX

COMMON /BOT3/ U2INIT(N1l),THETA(N1),SSLOPE (N1),XB(N1), 2B (N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)
COMMON /RUNP1l/ NDELR

COMMON /RUNP2/ DELRP (N3),DELTAR(N3),RUNUPS (N3),RSTAT(3,N3)
COMMON /OVER/ ov(4)

COMMON /STAT/ ELSTAT (3) ,U1STAT (N1) ,ESTAT (3,N1) , VSTAT (3,N1)
COMMON /ENERG/ ENER(4,N1),ENERB(14)

COMMON /STABS5/ JSNSC,NSNSC,NSNSX(N1)

COMMON /STAB6/ SNSC,SNR(N1),SNSX(N1)

COMMON /STAB7/ NMOVE,NSTOP,

+ ISTATE (N1) ,NODIN(N1),NODFTI (N1),NDIS (N1)
CALL CHEPAR (6,1,N1,N1R)

CALL CHEPAR (6,3,N3,N3R)

INSTANTANEOUS HYDRODYNAMIC QUANTITIES

Hydrodynamic quantities at node j:

U(l,3j) = volume flux

U(2,3j) = total water depth (not less than DELTA for IJOB=3)
VAG)) = depth-averaged velocity

ELEV(j) = surface elevation above SWL

[eNeNeNeNoRe NN Ne
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DO 110 J 1,JE
U(l1,J) = 0.D+00
IF (J.LE.S) THEN

U(2,J) = UZ2INIT(J)

ELEV(J)= 0.D+00
ELSE

U(2,J) = 0.D+00

ELEV(J)= ZB(J)
ENDIF

v(J) = 0.D+00
IF (IJOB.EQ.3.AND.U(2,J) .LT.DELTA) U(2,J)=DELTA

110 CONTINUE

HYDRODYNAMIC QUANTITIES FOR STATISTICAL CALCULATIONS

Subr. 7 INIT2 is used to specify initial values for statistical
quantities
ELSTAT (1) = mean surface elev. of incident wave at seaw. bdry.
At node j:
U1lSTAT(j) = mean volume flux
Mean, maximum, and minimum at node j:
ESTAT(1,3),ESTAT(2,3) ,ESTAT(3,3): for ELEV(J)
VSTAT(1,3j),VSTAT(2,3),VSTAT(3,3): for V(j)

ELSTAT (1) = 0.D+00

CALL INIT2 (1,UlSTAT,1,JE)
CALL INIT2 (2,ESTAT, 3,JE)
CALL INIT2 (2,VSTAT, 3,JE)

RUNUP

JMAX = the largest node number reached by computational
waterline

RSTAT (1) ,RSTAT (2) ,RSTAT(3) = mean, maximum, and minimum RUNUPS

(See Subr. 13 LANDBC for RUNUPS)

JMAX = §
IF (IJOB.LT.3) CALL INIT2 (2,RSTAT,3,NDELR)

OVERTOPPING
Computed during N=NSTAT to N=NTOP in Subr. 15 OVERT

OV(l) = normalized average overtopping rate

ov(2) normalized time when OV (4) occurs after time of N=NSTAT
OV(3) = normalized overtopping duration

OV(4) = normalized maximum overtopping rate

OvV(2) and OV(3) will eventually be normalized in Subr. 23 STAT2

IF (IJOB.EQ.Z2) CALL INIT2 (1,0V,1,4)
ARMOR STABILITY AND MOVEMENT
Stability numbers:
SNR(3j) = stability number against rolling/sliding at node j

SNSX(j) = local stability number = minimum of SNR at node j
SNSC = critical stab. number = min. of SNSX along the slope
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Armor units movement:
NMOVE = no. of units dislodged from their initial locations
NSTOP = no. of units stopped after moving
ISTATE (j) indicates the state of armor unit initially located
at node j: O=stationary, l=moving, 2=stopped

IF (ISTAB.EQ.l) THEN
SNSC = 1.D+03
DO 120 J = 1,JE
SNSX(J) = 1.D+03
CONTINUE
ELSEIF (ISTAB.EQ.2) THEN
NMOVE = 0
NSTOP = 0
DO 130 J = 1,JE
ISTATE(J) = 0
CONTINUE
ENDIF

WAVE ENERGY (normalized time-averaged quantities)

At node j:
ENER(1,3j) = energy per unit surface area
ENER(2,j) = energy flux per unit width
Rate of energy dissipation, at node j:
ENER (3, j): due to bottom friction, per unit bottom area
ENER(4,3j): due to wave breaking, per unit surface area

IF (IENERG.EQ.1) CALL INITZ2 (1,ENER,4,JE)

RETURN
END

------------------ END OF SUBROUTINE INIT1 ——— ——————
FREEEREEASHASH444444F SUBROUTINE INIT2 #EF##FHEEt#t 44t

This subroutine facilitates assignment of initial values in
Subr. 6 INIT1

SUBROUTINE INIT2 (MODE,VAL,ND1l,ND2)

IMPLICIT DOUBLE PRECISION (A-H,0-32)
DIMENSION VAL (ND1l,NDZ2)
IF (MODE.EQ.1l) THEN
DO 120 I = 1,ND1
DO 110 J = 1,ND2
VAL(I,J) = 0.D+00

CONTINUE
CONTINUE
ELSE
DO 130 J = 1,ND2
VAL(1,J) = 0.D+00
VAL(2,J) = -1.D+03
VAL(3,J) = 1.D+03
CONTINUE
ENDIF
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------------------ END OF SUBROUTINE INIT2 =———=-=-—————m———m————
FHARFF RS ESEHFE##444##4 SUBROUTINE INWAV  #####¥#H4FFH-HFHFFFFREH®H

This subroutine computes incident wave profile at seaward
boundary if IWAVE=l
Wave Profile: Stokes II if UR<26

Cnoidal otherwise

SUBROUTINE INWAV

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

DOUBLE PRECISION K,M,KC2,KC,KS,KSREF,KSSEA,KSI

DIMENSION ETAU (N2)

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA, X1,X2

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,

+ ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /GRID/ T,X,TX,XT,TTX,TTXX, TWOX

COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI, SIGMA
COMMON /WAVE3/ ETA(N2),ETAIS (N2),ETARS (N2),ETATS (N2)

COMMON /WAVE4/ ETAMAX,ETAMIN

COMMON /WAVES/ K,E,M,KC2

COMMON /BOT2/ DSEA,DSEAKS,DSEA2,DLAND,DLAND2,FW, TSLOPS, WIOT
CALL CHEPAR (8,2,N2,N2R)

CONSTANTS

TWOPI = 2.D+00*PI
FOURPI = 4 .D+00*PI
HALFPI = PI/2.D+00
NONE1 = NONE+1
NHALF = NONE/2
NHALF1l = NHALF+1

COMPUTE HALF OF WAVE PROFILE (unadijusted)

ETAMAX = normalized maximum surface elevation

ETAMIN = normalized minimum surface elevation

ETAU = unadjusted surface elevation

N0 = approximate time level at which surface elevation is zero

UR based on linear wave theory is used in the following
criterion

IF (UR.LT.26.) THEN

-- Stokes II Wave Profile

ARG = TWOPI/WL
ARG2 = 2.D+00*ARG
DUM =

16 .D+00*DSEAKS*DSINH (ARG) **3 .D+00
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AMP2 = ARG*DCOSH (ARG) * (2.D+00+DCOSH (ARG2) ) /DUM

DO 110 N = 1,NHALF1
TIME = DBLE (N-1) *T
ETAU(N) = .5D+00*DCOS (TWOPI*TIME) +AMP2*DCOS (FOURPI*TIME)
ETAU (N) = KS*ETAU(N)
IF (N.GT.1l) THEN

IF (ETAU(N) .LE.0.D+00.AND.ETAU(N-1) .GT.0.D+00) NO=N

ENDIF

CONTINUE

ETAMIN = ETAU (NHALF1)

ETAMAX = ETAU(1)

ELSE

120

Cnoidal Wave Profile

FINDM is to find the parameter M of the Jacobian elliptic func.
See Func. 10 CEL and Subr. 11 SNCNDN

CALL FINDM (M)

KC2 = 1.D+00-M

KC = DSQRT (KC2)

K = CEL(KC,1.D+00,1.D+00,1.D+00)
E = CEL(KC,1.D+00,1.D+00,KC2)
UR = 16.D+00*M*K*K/3.D+00

WL = DSQRT (UR*DSEAKS)

ETAMIN = (1.D+00-E/K)/M - 1.D+00

ETAMIN = KS*ETAMIN

ETAMAX = ETAMIN + KS

DO 120 N = 1,NHALF1l
TIME = DBLE (N-1) *T

TETA = 2.D+00*K*TIME
CALL SNCNDN (TETA,KCZ2, SNU,CNU,DNU)
ETAU (N) = ETAMIN + KS*CNU*CNU
IF (N.GT.1l) THEN
IF (ETAU(N).LE.0.D+00.AND.ETAU(N-1) .GT.0.D+00) NO=N
ENDIF
CONTINUE
ETAU (NHALF1l) = ETAMIN

ENDIF

. THE OTHER HALF OF WAVE PROFILE

DO 130 N = NHALF+2,NONE1l

ETAU(N) = ETAU(NONE+2-N)

130 CONTINUE

. ADJUST WAVE PROFILE
so that elevation=0 at time=0 and decreases initially with time

ETAU
ETA

unadjusted surface elevation
adjusted surface elevation

NMARK = NONE-NO0+2
DO 140 N = 1,NONEl
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IF (N.LE.NMARK) THEN
ETA(N) = ETAU(N+NO-1)
ELSE
ETA(N) = ETAU(N-NMARK+1)
ENDIF

140 CONTINUE

. SAVE COMPUTED WAVE PROFILE

WRITE (34,3410) (ETA(I),I=1,NONE1l)

3410 FORMAT (8F9.6)

----------------- END OF SUBROUTINE INWAV =====m=—e-————e——e————

FOOHFHAH##H#FH4###H4H¥44 SUBROUTINE FINDM #d###ddddddddtrtrtissts

This subroutine computes the parameter M (MLIL<M<MBIG) of the
Jacobian elliptic functions

SUBROUTINE FINDM (M)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION K,M,KC2,KC,MSAV,MLIL,MBIG

DOUBLE PRECISION KS,KSREF,KSSEA,KSI

COMMON /CONSTA/ PI,GRAV,DELTA, X1, X2

COMMON /WAVEZ2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI,SIGMA
COMMON /BOT2/ DSEA, DSEAKS,DSEA2,DLAND, DLAND2, FW, TSLOPS, WTOT
DATA SMALL,MLIL /1.D-07,.8D+00/

DATA INDI,I /0,0/

SIGDT = DSQRT(2.D+00*PI*WLO)

MBIG = 1.00D+400 - 1.00D-15

M = ,95D+00
900 CONTINUE
I = T+1
MSAV = M
KC2 = 1.D+00-M
KC = DSQRT (KC2)
K = CEL(KC,1.D+00,1.D+00,1.D+00)
E = CEL(KC,1.D+00,1.D+00,KC2)
UR = 16.D+00*M*K*K/3.D+00
WL = DSQRT (UR*DSEAKS) :
F = 1.D+00 + (-M+2.D+00-3.D+00*E/K) /(M*DSEAKS)
F = SIGDT*DSQRT (F) /WL - 1.D+00
IF (F.LT.0.D+00) THEN
MBIG = M
ELSEIF (F.GT.0.D+00) THEN
MLIL = M
ELSE
RETURN
ENDIF
M = (MLIL+MBIG) /2.D+00

DIF = DABS (MSAV-M)
IF (DIF.LT.SMALL) RETURN
IF (INDI.EQ.0) THEN
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IF (I.EQ.S50) THEN
SMALL = 1.D-13

INDI =1
ELSE
IF (M.GT..9999D+00) THEN
SMALL = 1.D-13
INDI =1
ENDIF
ENDIF
ENDIF

IF (I.LT.100) GOTO 900
WRITE (*,2910)
WRITE (29,2910)

2910 FORMAT (/’ From Subr. 9 FINDM:’/

aoaonoaoaoo0ao00n

(@]

o+ f Criterion for parameter M not satisfied’)

------------------ END OF SUBROUTINE FINDM =======—e——e————————

$FLO###F#F###4###44¥# DOUBLE PRECISION FUNCTION CEL ##¥##4¥#k#*H¥¥H4¥H

This function computes the general complete elliptic integral,
and is a double precision version of the "Function CEL" from
the book:

William H. Press, et. al.

Numerical Recipes: The Art of Scientific Computing.

Cambridge University Press, New York, 1986.

Pages 187-188.

DOUBLE PRECISION FUNCTION CEL (QQC,PP,AA,BB)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (CA=1.D-06,PI02=1.5707963268D+00)

IF (QQC.EQ.0.D+00) THEN
WRITE (*,*) ’'Failure in Function CEL’
WRITE (29,*) 'Failure in Function CEL’
STOP

ENDIF

QC DABS (QQC)

AA

BB

PP

= QC

1.D+00

.GT.0.D+00) THEN

DSQRT (P)

B/P

MW
HE o
S0
e

w v
o

ELSE

QC*QC
1.D+00-F
1.D+00-P
F-P

Q* (B-A*P)
DSQRT (F/G)
(A-B) /G

PROORMQ@OM
nnn
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900

B = -Q/ (G*G*P) +A*P
ENDIF
= A
= A+B/P
E/P
B+E*G
B+B
G+P
EM
QC+EM
DABS (G-QC) .GT.G*CA) THEN
QC = DSQRT (E)
QC = QC+QC
E = QC*EM
GOTO 900
ENDIF
CEL = PIO2* (B+A*EM)/ (EM* (EM+P))

F
A
G
B
B
P
G

EM
IF

~ 0

RETURN
END

------------- END OF DOUBLE PRECISION FUNCTION CEL =========—==

FLLE#FHFFFH#FFHEFF #4444 SUBROUTINE SNCNDN  #ddtd bbb ddddads

This subroutine computes the Jacobian elliptic functions,
and is a double precision version of the "Subroutine SNCNDN"
from the book:

William H. Press, et. al.

Numerical Recipes: The Art of Scientific Computing.

Cambridge University Press, New York, 1986.

Page 189.

SUBROQUTINE SNCNDN (UU,EMMC,SN,CN,DN)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (CA=1.D-06)
DIMENSION EM(13) ,EN(13)
LOGICAL BO
EMC = EMMC
U = UU
IF (EMC.NE.0.D+00) THEN
BO = (EMC.LT.0.D+00)
IF (BO) THEN

D = 1.D+00-EMC
EMC = -EMC/D
D = DSQRT (D)
u = D*U
ENDIF

A = 1.D+00
DN = 1.D+00
DO 110 I = 1,13

L=1I

EM(I) = A

EMC = DSQRT (EMC)
EN(I) = EMC

c = ,5D+00* (A+EMC)

208



[eNeReReReRe N Ne!

0O

110
910

120

920

IF (DABS (A-EMC).LE.CA*A) GOTO 910
EMC = A*EMC
A=C
CONTINUE
U = C*U
SN = DSIN(U)
CN = DCOS (U)
IF (SN.EQ.0.D+00) GOTO 920
A = CN/SN
C = A*C
DO 120 II = L,1,-1
B = EM(II)
A = C*A
C = DN*C
DN = (EN(II)+A)/(B+A)
A = C/B
CONTINUE
A = 1.D+00/DSQRT (C*C+1.D+00)
IF (SN.LT.0.D+00) THEN
SN = -A
ELSE
SN = A
ENDIF
CN = C*SN
IF (BO) THEN
A = DN
DN = CN
CN = A
SN SN/D
ENDIF
ELSE _
CN = 1.D+00/DCOSH (U)
DN = CN
SN = DTANH (U)
ENDIF

RETURN
END

B e —— END OF SUBROUTINE SNCNDN ==mm==m=m—e———mme—ee

#12#

+

FEFFRFFF AR HFHH#H4H SUBROUTINE MARCH H#H¥H¥FFHHFHFFFRNFEEFSRH

This subroutine marches the computation from time level (N-1)
to time level N excluding seaward and landward boundaries
which are treated separately

SUBROUTINE MARCH (N,M)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,NSR

COMMON /CONSTA/ PI,GRAV,DELTA, X1, X2

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
ISAVA, ISAVB, ISAVC

COMMON /NODES/ S,JE,JEl,JSTAB,JMAX
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COMMON /BOTZ2/ DSEA,DSEAKS, DSEA2, DLAND, DLAND2,FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1) , THETA (N1) ,SSLOPE (N1) ,XB (N1), 2B (N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1l),C(N1),DUDT(N1)

IF (N.EQ.1l) CALL CHEPAR (12,1,N1,N1R)

C .
C U(1l,3) and U(2,j) at time level N are computed as follows:
C at j=2,3,...,JDAM : WITH numerical damping term
C . at j=(JDAM+1), (JDAM+2),...,JLAX : NO numerical damping term
& "JEl1=(JE-1) indicates the node next to the landward edge node
C
IF (IJOB.LT.3) THEN
JDAM = S§-2
JLAX = 8
IF (IJOB.EQ.2.AND.S.EQ.JE) JLAX=JEl
ELSE
JDAM = JE1
JLAX = JE1
ENDIF
JLAX1 = JLAX+1
C
C ... COMPUTE ELEMENTS OF MATRICES
e
e Subr. 26 MATAFG computes non=-constant elements of Matrices A
o and G, and the elements of Matrix F
C Subr. 28 MATS computes the first element of Matrix S
C Subr. 27 MATGJR, Subr. 29 MATD, and Subr. 30 MATU compute
C the elements of Matrices g, D, and U, respectively
< Subr. 30 MATU computes values of U at time level N using
& the results obtained from the other four subroutines
Cc
CALL MATAFG (N,1,JLAX1)
CALL MATGJR (N, 1,JLAX)
CALL MATS (N, 2, JLAX)
CALL MATD (N, JDAM, JLAX)
CALL MATU (N, 2, JLAX)
C
C ... ABORT COMPUTATION IF WATER DEPTH AT (S-1) <or= DELTA
C

IF (U(2,M) .LE.DELTA) THEN
WRITE (*,2910) U(2,M) ,DELTA,S,N
WRITE (29,2910) uU(2,M),DELTA,S,N
STOP

ENDIF

2910 FORMAT (/' From Subroutine 12 MARCH’/
+/ U(2,5S-1) is less than or equal to DELTA’/’ U(2,S-1) =',D12.3/
+’ DELTA =',D12.3/" § =',18/" N =',18/' Program Aborted’)

... COMPLETE THE COMPUTATION OF HYDRODYNAMIC QUANTITIES

Water depth h is taken to be not less than DELTA
for submerged structures

aoooaonn

DO 100 J = 2,JLAX
IF (IJOB.EQ.3.AND.U(2,J) .LT.DELTA) U(2,J)=DELTA
V(J) = U(1,J)/0(2,J)
ELEV(J) = U(2,J)-U2INIT(J)
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100 CONTINUE

----------------- END OF SUBROUTINE MARCH ====—meemmeemeee

FL3#F#4#4 #4444 #### SUBROUTINE LANDBC H#¥HHHFFF#FHFHFHFFHHHFHHH

. This subroutine manages the computation for
landward boundary conditions

SUBROUTINE LANDBC (N,K,M,ETAT)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

INTEGER S

COMMON /DIMENS/ N1R,NZ2R,N3R,N4R,N5R

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUMZ2,NSAVA,NSTAB,NSTAT, NTIMES
COMMON /NODES/ §,JE,JEl,JSTAB,JMAX
COMMON /GRID/ . X SO, el YRR, THOX
COMMON /WAVE3/ ETA(N2),ETAIS (N2),ETARS(N2),ETATS (N2)
COMMON /BOT2/ DSEA,DSEAKS, DSEA2, DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT (N1), THETA (N1) ,SSLOPE (N1) ,XB(N1),ZB (N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)
COMMON /RUNP1/ NDELR
COMMON /RUNP2/ DELRP (N3),DELTAR(N3),RUNUPS (N3),RSTAT (3,N3)
COMMON /OVER/ ov(4)
COMMON /VALUEN/ VSN,USN(2),VMN,UMN(1),V1N, V2N
IF (N.EQ.1l) THEN

CALL CHEPAR (13,1,N1,N1R)

CALL CHEPAR (13,2,N2,N2R)

CALL CHEPAR (13,3,N3,N3R)
ENDIF

. MANAGE LANDWARD B.C.

Subr. 14 RUNUP computes shoreline movement if computational
waterline is on the slope (IJOB<3)

Subr. 15 OVERT computes hydrodynamic quantities at landward edge
node if overtopping occurs (IJOB=2)

ALPHA = landward-advancing characteristics

ETAT = surface elevation due to transmitted wave at

landward boundary (IJOB=3)
DLAND = norm. water depth below SWL at landw. boundary (IJOB=3)
S used in Subr. 14 RUNUP is the value at time level (N-1)

IF (IJOB.EQ.l1l) THEN

CALL RUNUP (N,K,M)

IF (S.GT.JEl) THEN
WRITE (*,2910) N,S,JE
WRITE (29,2910) N,S,JE
STOP

ENDIF

ELSEIF (IJOB.EQ.Z2) THEN
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IF (S.LT.JE) THEN
CALL RUNUP (N,K,M)

ELSE
CALL OVERT (N,M)
ENDIF
ELSE
For IJOB=3: Wave Transmission over Submerged Breakwater
DUM = TX* (VSN+C (S)) * (VSN=VMN+2.D+00* (C(S)-C(M)))
ALPHA = VSN+2.D+00*C(S) - DUM = T*THETA(S)
ETAT = ALPHA*DLAND2/2.D+00 - DLAND
U(2,8) = DLAND + ETAT
vV(S) = ALPHA - 2.D+00*DSQRT(U(2,5))
U(i,8) = U(2,8)*V(S)
ELEV(S) = U(2,8) = UZINIT(S)
ENDIF

2910 FORMAT (/’ From Subroutine 13 LANDBC:’/
+ f N =',18,’; § =',18,'; End Node =',I8/
+ * Slope is not long enough to accomodate shoreline movement’/
+ * Specify longer slope or choose overtopping computation’)

... CONDITIONS LANDWARD OF NEW WATERLINE NODE S AT TIME LEVEL N

IF (IJOB.LT.3) THEN

L = S+l

U(1,L) = 0.D+00

U(2,L) = 0.D+00

V(L) = 0.D+00

ELEV (L) = ZB(L)
ENDIF '

... COMPUTE RUNUPS ASSOCIATED WITH DEPTHS (DELTAR(L),L=1,NDELR)

(Assume water depth decreases landward and U(2,5+1)=0.)

If IJOB<3, NDELR>0, DO 100 performed

If IJOB=3, NDELR=0, DO 100 woid

NSTAB = time level when computation of armor stability or
movement begins

JSTAB = the largest node number based on DELTAR(1)
for armor stability or movement
Note:
For IJOB=3, JSTAB=JE was defined in Subr. 5 PARAM

DELTAR = water depth associated with visual or measured
waterline

RUNUPS = free surface elevation where the water depth equals
DELTAR

NDELR = number of DELTARSs

IF (NDELR.GE.1l) THEN
DO 100 L = 1,NDELR
IF (IJOB.EQ.2.AND.S.EQ.JE.AND.U(2,S).GE.DELTAR(L)) THEN
IF (L.EQ.1.AND.N.GE.NSTAB) JSTAB=S
RUNUPS (L) = ZB(S) + U(2,8)
ELSE
INDIC = 0
J = =1
900 CONTINUE
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J=J+ 1
IF (U(2,S-J).GE.DELTAR(L)) THEN
INDIC = 1
NRUN1 = S-J
NRUN2 = S§-J+1
IF (L.EQ.1.AND.N.GE.NSTAB) JSTAB=NRUN1
DELl = U(2,5-J)
DEL2 = U(2,8-J+1)

RUN = (ZB(NRUNZ2)-ZB (NRUN1)) * (DEL1-DELTAR (L))
RUN = RUN/ (DEL1-DEL2)
RUN = RUN + ZB (NRUN1)
RUNUPS (L) = RUN + DELTAR(L)
ENDIF
IF (INDIC.EQ.0) GOTO 900
ENDIF
CONTINUE
ENDIF

STATISTICAL CALCULATIONS

NSTAT = time level when statistical calculations begin
IJOB<3:
RSTAT (1,L) ,RSTAT(2,L) ,RSTAT(3,L) = mean, max. and min.
RUNUPS (L), respectively
IJOB=2: Overtopping computed during N=NSTAT to N=NTOP

OV(1l) = normalized average overtopping rate

OV(2) = normalized time when OV (4) occurs after time of N=NSTAT
OV(3) = normalized overtopping duration

OV(4) = normalized maximum overtopping rate

OV(2) and OV(3) will be normalized in Subr 23 STAT2
IJOB=3:
ETAT = surface elevation due to transmitted wave at
landward boundary
ETAT is saved in a time-array as ETATS starting from N=NSTAT

IF (N.GE.NSTAT) THEN
IF (IJOB.LT.3) THEN
CALL STAT1 (2,RSTAT,RUNUPS, 3,NDELR)
IF (IJOB.EQ.2) THEN
ov(l) = OovV(l) + U(1,JE)
IF (U(1,JE).GT.0.D+00) OV(3)=0V(3)+1.D+00
IF (U(1,JE).GT.OV(4)) THEN
OV(2) = DBLE (N-NSTAT+1)
ov(4) = U(1,JE)
ENDIF
ENDIF
ELSE
ETATS (N-NSTAT+1) = ETAT
ENDIF
ENDIF

RETURN
END

------------------ END OF SUBROUTINE LANDBC ======—=mm=————————

C #14###H#HH44F44444444#4# SUBROUTINE RUNUP  H#H¥H¥##FH#FFF4H4HHHF444
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This subroutine computes waterline movement for IJOB=1 and if
no overtopping occurs for IJOB=2

SUBROUTINE RUNUP (N,K,M)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
' DIMENSION USN2(2),US1N1(2)

INTEGER S, SNEW

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA,X1,X2

COMMON /NODES/ S,JE,JEl,JSTAB,JMAX

COMMON /GRID/ T,X,TX,XT, TTX, TTXX, TWOX

COMMON /BOT3/ U2INIT(N1l), THETA(N1),SSLOPE (N1),XB(N1), ZB(N1)
COMMON /HYDRO/ U(2,N1l),V(N1l),ELEV(N1l),C(N1),DUDT(N1)

COMMON /MATRIX/ Al(2,N1),F(2,N1),G1l(N1),GJR(2,N1),S1(N1),D(2,N1)

COMMON /VALUEN/ VSN,USN(2),VMN,UMN(1),V1IN,V2N
IF (N.EQ.1l) CALL CHEPAR (14,1,N1,N1R)

. ADJUST VALUES AT S IF U(2,S)>U(2,S8-1)

IF (U(2,S).GE.U(2,M)) THEN
V(s) = 2.D+00*V (M) - V(S-2)
U(2,8) = 2.D+00*U(2,M) - U(2,5-2)
IF (ABS(V(S)).GT.ABS(V(M))) V(S)=.9*V(M)
IF (U(2,S).LT.0.D+00) U(2,85)=.5*U(2,M)
IF (U(2,S).GT.U(2,M)) U(2,8)=.9*U(2,M)
U(l,8) = V(8)*U(2,8)
ELEV(S) = U(2,8) - U2INIT(S)
WRITE (*,2910) S,N,U(2,8),U(2,M)
WRITE (29,2910) S,N,U(2,8),U(2,M)

ENDIF

2910 FORMAT (/' From Subroutine 14 RUNUP: U(2,S8)>U(2,S-=1) at’,
+ r s =*,18,"; N =',IB/' Adjusted values:’,
+ f U(2,8) = ,E12.3,7; U(2,8-1) =’ ,E12.3)

. DETERMINE THE NEXT WATERLINE NODE

IF (U(2,S).LE.DELTA) THEN

SNEW = M

ELSE
V(K) = 2.D+00*V(S) - V(M)
U(2,K) = 2.p+00*U(2,8) - U(2,M)

U(1,K) = V(K)*U(2,K)

IF (U(2,K).LE.DELTA) THEN
SNEW = S

ELSE

i ————————

* USN2 (i) ,VSN2 = U(i,S) and V(S), respectively,
at time level (N+1), i=1,2

CALL MATAFG (2,M,K)

CALL MATGJR (2,M,S)

CALL MATS (2,5,8)

DUM1 = TX*((F(1,K)-F(1,M))/2.D+00+X*G1(S))

DUM2 = TTXX* (GJR(1,S)-GJR(1,M))
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DUM3 = TX*(F(2,K)-F(2,M))

DUM4 = TTXX* (GJR(2,S)-GJR(2,M))

USN2 (1) = U(1,S)-DUM1+(DUM2-TTX*S1(S))/2.D+00
USN2(2) = U(2,S)-(DUM3-DUM4) /2.D+00

VSN2 = USN2 (1) /USN2(2)

* US1IN1(i),VS1IN1 = U(i,S+1) and V(S+l), respectively,
at time level N, i=1,2
Vs = V(8)

IF (DABS(VS).LT.DELTA) VS=DSIGN (DELTA,VS)

VS1N1 = V(M) - (XT* (VSN2-VSN) +U(2,K)-U (2, M) +TWOX*THETA(S) ) /VS
US1N1(1l) U(l,M) - XT*(USN2(2)-USN(2))

US1N1(2) US1N1 (1) /VS1N1

————————

IF (DABS (VS1N1l) .LE.DELTA) THEN
SNEW = S
ELSE
IF (US1N1(2).LE.U(2,S)) THEN
IF (USIN1(2).LE.DELTA) THEN

SNEW = S
ELSE
SNEW = K
U(2,K) = US1IN1(2)
U(1l,K) = USIN1(1)
V(K) = VS1N1
ENDIF
ELSE
IF (U(2,K).LE.U(2,S)) THEN
SNEW = K
ELSE
SNEW = S
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
IF (SNEW.EQ.K) ELEV(K)=U(2,K)-U2INIT (K)
S = SNEW

S at time level N has been found

RETURN
END

----------------- END OF SUBROUTINE RUNUP ===m=m=-eme——e——————
FLSHHEFRHHFFFAHEFH K4 ##¥4 SUBROUTINE OVERT H#H¥FFHFHNFFHFHFFHSFHEH4H

This subroutine .computes quantities at landward-end node for
IJ0B=2 if overtopping occurs, that is, S=JE and M=(S-1)=JEl

SUBROUTINE OVERT (N,M)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

INTEGER S
COMMON /DIMENS/ N1R,N2R,N3R,N4R,NSR
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COMMON /ID/  1IJOB,ISTAB,ISYST,IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /CONSTA/ PI,GRAV,DELTA,X1,X2

COMMON /NODES/ S,JE,JE1l,JSTAB,JMAX

COMMON /GRID/ T,X,TX,XT,TTX,TTXX, TWOX

COMMON /BOT3/ U2INIT(N1),THETA(N1),SSLOPE(N1),XB(N1),ZB(N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT (N1)

COMMON /MATRIX/ Al (2,N1),F(2,N1),G1(N1),GJR(2,N1),S1(N1),D(2,N1)
COMMON /VALUEN/ VSN, USN(2),VMN,UMN (1), V1IN, V2N

DATA INDI /0/

SAVE INDI

IF (INDI.EQ.0) THEN

CALL CHEPAR (15,1,N1,N1R)

INDI = 1
ENDIF
IF (VMN.GT.C(M)) THEN
U(l,8) = USN(1l) - TX*(F(1,S)-F(1,M)) - T*(THETA(S) *USN(2))
U(2,S) = USN(2) - TX*(USN(1l)=-UMN(1))
v(s) = U(1,8)/U0(2,8)
ELSE
VCS = VSN + 2.D+00*C(S)
VCM = VMN + 2.D+00*C (M)

V(S) = (VCS-TX* (VSN+C(S))* (VCS-VCM)~-T* (THETA(S)))/3.D+00
U(2,8) = V(S)*V(S)
U(1,8) = V(S)*U(2,S)
ENDIF
IF (U(2,S).LE.DELTA) THEN
S =M
ELSE
ELEV(S) = U(2,S) - U2INIT(S)
ENDIF

RETURN
END

----------------- END OF SUBROUTINE OVERT ===m=se—eeece———————

#LE#FH#FHAFHAF#FHF#4F#4F SUBROUTINE SEABC ######*FHFHHHHFFHHFHFHHH

This subroutine treats seaward boundary conditions at node j=1
SUBROUTINE SEABC (N,ETAR)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

DOUBLE PRECISION KS,KSREF,KSSEA,KSI,KTWO

COMMON /DIMENS/ N1R,N2R,N3R,N4R,NSR

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,

4 ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE, NJUM1,NJUMZ2, NSAVA, NSTAB, NSTAT, NTIMES
COMMON /GRID/ T,X,TX,XT, TTX, TTXX, TWOX

COMMON /WAVEZ2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI,SIGMA
COMMON /WAVE3/ ETA(N2),ETAIS(N2),ETARS(N2),ETATS (N2)

COMMON /WAVE4/ ETAMAX,ETAMIN

COMMON /WAVE6/ TCSOL,KTWO

COMMON /BOT1/ DSEAP, DLANDP , FWP

COMMON /BOTZ2/ DSEA,DSEAKS,DSEA2,DLAND, DLANDZ2,FW, TSLOPS, WTOT
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COMMON /BOT3/ U2INIT(N1), THETA(N1), SSLOPE (N1) ,XB(N1),ZB(N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1l),C(N1),DUDT (N1)
COMMON /VALUEN/ VSN,USN(2),VMN,UMN(1), V1N, V2N
IF (N.EQ.1l) THEN
CALL CHEPAR (16,1,N1,N1R)
CALL CHEPAR (16,2,N2,N2R)
ENDIF

. ESTIMATE ETAR

BETA = seaward-advancing characteristics

ETAR = surface elevation due to reflected wave at
seaward boundary

A correction term included in ETAR if INONCT=1 tco improve
prediction of regular or irregular wave set-down
and setup on beach

VCl = =-V1IN+2.D+00*C(1)

VC2 = =V2N+2.D+00*C(2)

BETA = VC1 = TX*(VIN=-C(l))*(VC2=-VCl) + T*THETA(1l)
ETAR = BETA*DSEA2/2.D+00 - DSEA

IF (INONCT.EQ.l) ETAR=ETAR-KS*KS/(16.D+00*DSEA)

. VALUES AT NODE ONE

IF (IWAVE.EQ.l) THEN
NWAVE = MOD(N,NONE) + 1
u(z,1) DSEA+ETAR+ETA (NWAVE)
ELEV (1) = ETA (NWAVE)+ETAR
ELSEIF (IWAVE.EQ.Z2) THEN
U(2,1) = DSEA+ETAR+ETA (N)
ELEV (1) = ETA(N)+ETAR
ELSE

For IWAVE=3, the normalized solitary wave profile is given by

DUM = KTWO* (N*T-TCSOL)
ETA(N) = KS/(DCOSH (DUM) **2)
U(2,1) = DSEA+ETA(N)+ETAR
ELEV(1l) = ETA(N)+ETAR

The maximum and minimum value of ETA should be equal to KS and zero,

respectively
IF (ETA (N) .GT.ETAMAX) THEN
WRITE (*,2910)
WRITE (29,2910)
STOP
ELSEIF (ETA(N) .LT.ETAMIN) THEN
WRITE (*,2920)
WRITE (29,2920)
STOP
ENDIF
ENDIF
V(1) = 2.D+00*DSQRT (U(2,1) ) -BETA
U(1l,1) = U(2,1)*V(1l)

STATISTICAL CALCULATIONS

NSTAT = time level when statistical calculations begin
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surface elevation associated with incident wave at

seaward boundary

ETAR = surface elevation associated with reflected wave at
seaward boundary

ETAI is saved in a time-array as ETAIS starting from N=NSTAT

ETAR is saved in a time-array as ETARS starting from N=NSTAT

ETAI

IF (N.GE.NSTAT) THEN
IF (IWAVE.EQ.l1l) THEN
NWAVE = MOD (N,NONE) +1
ETAI = ETA(NWAVE)

ELSE
ETAI = ETA(N)
ENDIF
ETAIS (N=-NSTAT+1) = ETAI
ETARS (N-NSTAT+1) = ETAR
ENDIF
2910 FORMAT (/' From Subr. 16 SEABC:’/
+ ’ ETAMAX exceeds KS')
2920 FORMAT (/’ From Subr. 16 SEABC:’/
+ f ETAMIN is less than zero’)
RETURN :
END
---------- ——m=mm=== END OF SUBROUTINE SEABC ====cc—cccccmcccaaa———
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This subroutine computes quantities related to wave energy
SUBROUTINE ENERGY (N)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DIMENSION E(3)

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,NS5SR

COMMON /ID/ I1J0B, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /NODES/ S,JE,JEl,JSTAB,JMAX

COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)

COMMON /BOT2/ DSEA,DSEARKS,DSEA2, DLAND, DLAND2, FW, TSLOPS, WIOT
COMMON /ENERG/ ENER(4,N1l),ENERB(14)

IF (N.EQ.NSTAT) CALL CHEPAR (17,1,N1l,N1R)

E’s are instantaneous quantities, ENER’s time-averaged
quantities

At node j:
E(1) ,ENER(1l,j) = norm. energy per unit surface area
E(2) ,ENER(2,j) = norm. energy flux per unit width
Normalized rate of energy dissipation at node j:
E(3) ,ENER(3,3j): due to bottom friction, per unit bottom area
ENER (4, j) : due to wave breaking, per unit surface area
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DO 120 J = 1,8
E(1l) = (U(1,J3)*V(J)+ELEV(J) *ELEV(J))/2.D+00
IF (U(2,J).LT.ELEV(J)) E(l)=E(1)~-(U(2,J)=-ELEV(J))**2/2.D+00
E(2) = U(1,J)*(V(J)*V(J)/2.D+00+ELEV (J))
E(3) = FW*DABS(V(J)) *V(J) *V(J)
DO 110 I = 1,3
ENER(I,J) = ENER(I,J) + E(I)
110 CONTINUE
120 CONTINUE

ENER’s are time-averaged in Subr. 25 BALANE

RETURN
END

17 m————————————— END OF SUBROUTINE ENERGY ====m=mm=—ccee—————
FLEBHHHHAANFHFHF ¥4 ##¥# SUBROUTINE STATL #¥##¥FH##44HFHFEFHFHFH44

For MODE=1, VAL1l(l1,J) is sum of VAL2(J)

For MODE=2, VALl1(1l,J) is sum of VAL2(J)
VAL1(2,J) is maximum of VAL2 (J)
VAL1(3,J) is minimum of VALZ2 (J)

SUBROUTINE STAT1 (MODE,VAL1l,VALZ2,ND1,ND2)

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
DIMENSION VALl (ND1,ND2),VALZ2 (ND2)
IF (MODE.EQ.1) THEN
DO 120 I = 1,ND1
DO 110 J = 1,ND2
VAL1(I,J) = VALl (I,J)+VAL2(J)
110 CONTINUE
120 CONTINUE
ELSE
DO 130 J = 1,ND2
VAL1(1,J) = VAL1(1,J)+VALZ(J)
IF (VAL2(J).GT.VAL1(2,J)) VALl(2,J)=VAL2(J)
IF (VAL2(J).LT.VAL1(3,J)) VAL1l(3,J)=VAL2(J)
130 CONTINUE
ENDIF

RETURN
END

-18 - END OF SUBROUTINE STAT] ====—==m-e-e—————————
#19#################### SUBROUTINE STABNO ########H#H¥F#4F4H#HHHH44H#

This subroutine computes stability number against
rolling/sliding, SNR

SUBROUTINE STABNO (N)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

INTEGER S
COMMON /DIMENS/ N1R,N2R,N3R,N4R,NSR
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COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA, NSTAB, NSTAT, NTIMES
COMMON /NODES/ §,JE,JEl,JSTAB, JMAX

COMMON /BOT2/ DSEA,DSEAKS, DSEA2, DLAND, DLAND2, FW, TSLOPS, WIOT

COMMON /BOT3/ U2INIT(N1), THETA (N1), SSLOPE (N1),XB(N1),ZB(N1)

COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)

COMMON /STAB2/ SG1,CTAN(N1)

COMMON /STAB3/ CSTAB1l,CSTAB2,AMAXS,AMINS,E2,E3PRE(N1)

COMMON /STABS/ JSNSC,NSNSC,NSNSX(N1)

COMMON /STAB6/ SNSC,SNR(N1),SNSX(N1)

IF (N.EQ.NSTAB) CALL CHEPAR (19,1,N1,N1R)

. FLUID ACCELERATION
Computed in Subr. 22 ACCEL

CALL ACCEL (N)
STABILITY NUMBER SNR

SNR(j) = stability number against rolling/sliding at node j
SNR is computed for j=1,2,...,JSTAB where JSTAB is defined
in Subr. 13 LANDBC

DO 110 J = 1,JSTAB

IF (DABS(V(J)).LT.1.D-03) THEN
------------ Avoid having very small velocity values
SNR=1000 indicates very stable units
SNR(J) = 1.D+03
ELSE
------------ Impose lower and upper bounds of fluid
acceleration
IF (DUDT(J) .GT.AMAXS) DUDT (J)=AMAXS
IF (DUDT(J) .LT.AMINS) DUDT (J)=AMINS
———————————— SNR=-1000 indicates that AMAX and AMIN
specified in Subr. 2 INPUT1 needs to be
modified
VALUE = CSTAB2*DUDT (J)~-SSLOPE (J)
ABSV = DABS (VALUE)
IF (ABSV.GT.CTAN(J)) THEN
SNR(J) = =-1.D+03
WRITE (*,2910) N,J
WRITE (29,2910) N,J
STOP
ENDIF
------------ Compute SNR
El = VALUE*CSTAB1/ (V(J) *DABS (V(J)))
E3 = E3PRE(J)/ (V(J)*V(J))
E1E2 = =E1*E2
IF (E1.LT.0.D+00.AND.E2.GT.1.D+00.AND.E3.LT.E1E2) THEN
SNR(J) = (E3+4El)/(E2-1.D+00)

ELSE
SNR(J) = (E3-El)/(E2+1.D+00)
ENDIF
ENDIF
2910 FORMAT (’ From Subr. 19 STABNO'’/’ Armor stability impossible’/
+ * N=',18,"; J =',18)
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110 CONTINUE

120

110

FIND SNSX

SNSX (3)

= loca

1 stability number = minimum of SNR at node j

NSNSX(j) = time level when SNSX(j) occurs

-DO 120 J = 1,JSTAB
IF (SNR(J) .LT

SNSX (J)
NSNSX (J)

ENDIF

CONTINUE

RETURN
END

----------------- END OF SUBROUTINE STABNQ == mmmmmm e o e
F20H#$H#4FH#H# 444 H4##444#% SUBROUTINE MOVE #¥HF#HH#FHFFFFFFHHHFFF##

.SNSX(J)) THEN
SNR (J)
N

This subroutine computes movement of armor units

SUBROUTINE MOVE (N)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DOUBLE PRECISION KS,KSREF,KSSEA,KSI

INTEGER §

COMMON
COMMON
+
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
+
COMMON

/DIMENS/
/ID/

/NODES/
/TLEVEL/
/GRID/
/WAVE2/
/HYDRO/
/BOT3/
/STAB1/
/STAB2/
/STAB4/
/STABS/
/STAB6/
/STAB7/

/STABS8/

N1R,N2R,N3R,N4R,NSR

IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
ISAVA, ISAVB, ISAVC

S,JE,JE1, JSTAB, JMAX

NTOP, NONE, NJUM1, NJUM2, NSAVA, NSTAB, NSTAT, NTIMES
T, X, TX, XT, TTX, TTXX, TWOX

KS, KSREF, KSSEA, WLO, WL, UR, URPRE, KSI, SIGMA
U(2,N1),V(N1),ELEV(N1),C(N1),DUDT (N1)
U2INIT(N1), THETA (N1), SSLOPE (N1),XB (N1), 2B (N1)
c2,c3,CcDp,CL,CM, SG, TANPHI, AMIN, AMAX, DAP
SG1,CTAN (N1)

CSTAB3,CSTAB4,CM1, DA, SIGDA, WEIG

JSNSC, NSNSC, NSNSX (N1)

SNSC, SNR(N1) , SNSX (N1)

NMOVE, NSTOP,

ISTATE (N1) ,NODIN (N1) ,NODFI (N1) ,NDIS (N1)

VA (N1), XAA (N1) , XA (N1)

IF (N.EQ.NSTAB) THEN
CALL CHEPAR (20,1,N1,N1R)
CALL CHEPAR (20,5,N5,N5R)

DO 11
NOD

0 J =

NODF1I (J)

VA (J)

XAA (J)
CONTINUE

ENDIF

1,
IN(J) =

JE

J

J
0.D+00
0.D+00
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FLUID ACCELERATION
Computed in Subr. 22 ACCEL

CALL ACCEL (N)

GENERAL TERMS

‘Counters:

NMOVE

number of armor units dislodged from their initial
locations
NSTOP = number of armor units stopped after moving
Node numbers:
JSTAB = the largest node number for which armor movement
is computed
For moving/stopped armor unit number j:
NODIN(j) = node number where it was initially located
NODFI(j) = node number closest to the armor unit at the end
of each time step
Dynamics:
FDES = normalized destabilizing force
FR = normalized resistance force
FDES and FR are computed in Subr. 21 FORCES
ISTATE (j) indicates the state of armor unit initially located
at node j: O=stationary, l=moving, 2=stopped
For moving/stopped armor unit number j:
VA(j) = normalized velocity
XAA(j), XA(j) = displacement from its initial location,
normalized by TP*sgrt (GRAV*HREFP) and DAP, respectively
NDIS(j) = time level N when it starts moving the first time
It is assumed that once an armor unit is dislodged from a node,
no other unit will be dislodged from the same node.

DO 120 J = 1,JSTAB
IF (ISTATE(J).EQ.0) THEN
ceseseses STATIONARY ARMOR UNIT ...... SRS e s AE S RNN S EeEE e
Check whether the unit at node j starts moving
CALL FORCES (V(J),J,FDES,FR,DUDT, SSLOPE,CTAN)
IF (DABS (FDES) .GT.FR) THEN
IF (FDES.LT.0.D+00) FR==FR

NMOVE = NMOVE+1

ISTATE(J) = 1

NDIS(J) =N

VA (J) = (FDES-FR) *T/ (SG+CM1)

XARA(J) = .5D+00*VA(J) *T

NCGDFI(J) = J + NINT(XAA(J)/X)
ENDIF

ELSEIF (ISTATE(J) .EQ.1l) THEN
o MOVING ARMOR UNIT ........... T S S P A
Follow the moving unit initially located at node j
NOD = NODFI(J)
VREL = V(NOD) - VA(J)
CALL FORCES (VREL,NOD,FDES,FR,DUDT, SSLOPE, CTAN)

FR = FR* (VA(J) /DABS (VA (J)))
DVA = (FDES=FR) *T/ (SG+CM1)
DXAA = (VA(J)+.5D+00*DVA) *T
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VA (J) = VA(J) + DVA
XAA(J) = XAA(J) + DXAA
NODFI (J) NODIN (J) + NINT (XAA(J)/X)
Check whether the moving unit identified by the
initial node j stops at the end of each time step
IF (DABS(VA(J)).LT.1.D-06.AND.DABS (FDES) .LT.DABS (FR)) THEN
ISTATE(J) = 2
NSTOP = NSTOP+1
ENDIF
ELSE
......... STOPPED ARMOR UNIT ...ccscssssvsnossnsssoccnssscnsans
Check whether the stopped armor unit located
initially at node j resumes movement
NOD = NODFI (J)
CALL FORCES (V(NOD),NOD,FDES,FR,DUDT,SSLOPE, CTAN)
IF (DABS (FDES) .GT.FR) THEN
IF (FDES.LT.0.D+00) FR=~FR

VA (J) = (FDES~FR) *T/ (SG+CM1)
XAA(J) = XAA(J) + .5D+00*VA(J)*T
NODFI(J) = NODIN(J) + NINT (XAA(J)/X)
NSTOP = NSTOP-1
ISTATE(J) =1
ENDIF
ENDIF

120 CONTINUE
. COMPUTE XA

DO 130 J = 1,JSTAB
IF (ISTATE(J) .GE.l) XA (J)=XAA(J)*SIGDA
130 CONTINUE

RETURN
END

) B — END OF SUBROUTINE MOVE ——=————==———————————ee
F2LEHHHF#HFFH#4FH##4###4¥# SUBROUTINE FORCES #####H#*HH#HHFHHFHFHHH44

This subroutine computes destabilizing force FDES
and resistance force FR used in Subr. 20 MOVE

SUBROUTINE FORCES (VELO,NODE,FDES,FR,DUDT, SSLOPE,CTAN)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION KS,KSREF,KSSEA,KSI

DIMENSION DUDT (N1R) ,SSLOPE (N1R),CTAN (N1R)

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI, SIGMA
COMMON /sTAB1l/ cC2,C3,CD,CL,CM,SG,TANPHI,AMIN, AMAX,DAP
COMMON /STAB4/ CSTAB3,CSTAB4,CM1,DA,SIGDA,WEIG

WEIG = normalized submerged weight of armor unit defined in
Subr. 5 PARAM

WSIN = component of WEIG parallel to local slope

WCOS component of WEIG normal to local slope

FD = normalized drag force
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FL = normalized lift force

FI = normalized inertia force due to fluid only
FDES = normalized destabilizing force = FD+FI-WSIN
FR = normalized resistance or friction force

0 if (WCOS-FL)<0; no contact with other units
Note: FR returned to Subr. 20 MOVE is positive or zero

WSIN = WEIG*SSLOPE (NODE)

WCOS = WEIG*CTAN (NODE) /TANPHI

FD = SIGMA*CSTAB3*VELO*DABS (VELO)
FL = SIGMA*CSTAB4*VELO*VELO

FI = CM*DUDT (NODE)

FDES = FD + FI - WSIN

FR = (WCOS~-FL) *TANPHI

IF (FR.LE.0.D+00) FR=0.D+00

RETURN
END

---------------- END OF SUBROUTINE FORCES =m==m=mmee-eeoee—————

$22HH A AR A SRS A SFH#A###  SUBROUTINE ACCEL  ##4¥H#H#Fttdabddttdtiss

100

H2IFHARFFAAFERFF AR

This subroutine computes total fluid acceleration using
Subr. 31 ASSIGN and Subr. 32 DERIV

SUBROUTINE ACCEL (N)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

DIMENSION VDUML (N1),VDUM2 (N1)

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /NODES/ S,JE,JEl,JSTAB,JMAX

COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /GRID/ T, X, TX,XT, TTX, TTXX, TWOX

COMMON /BOT2/ DSEA,DSEAKS, DSEA2, DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1), THETA (N1),SSLOPE (N1),XB(N1),ZB(N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT (N1)

IF (N.EQ.NSTAB) CALL CHEPAR (22,1,N1,N1R)

CALL ASSIGN (1,VDUM1,U,2,S5,2)

CALL DERIV (VDUM1,VDUM2,X,S)

DO 100 J = 1,8

DUDT (J) = =VDUM2 (J)-THETA (J) -FW*V (J) *DABS (V(J) ) /U(2,J)
CONTINUE
RETURN
END
------------------ END OF SUBROUTINE ACCEL ========—mm=————————

SUBROUTINE STATZ #####¥H¥FAHAFAAEFFHHEFRS

This subroutine computes statistical values after time-marching
computation

SUBROUTINE STATZ2
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IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

INTEGER S
COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R
COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,

ISAVA, ISAVB, ISAVC
COMMON /TLEVEL/ NTOP,NONE,NJUM1, NJUM2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /NODES/ S,JE,JEl,JSTAB, JMAX

‘COMMON /WAVE3/ ETA(N2),ETAIS (N2),ETARS (N2),ETATS (N2)

COMMON /RUNP1/ NDELR

- COMMON /RUNP2/ DELRP (N3),DELTAR(N3),RUNUPS(N3),RSTAT (3,N3)

COMMON /OVER/ ov(4)

COMMON /COEFS/ RCOEF (3),TCOEF (3)

COMMON /STAT/ ELSTAT (3),U1lSTAT (N1) , ESTAT (3,N1), VSTAT (3,N1)
COMMON /STAB5/ JSNSC,NSNSC,NSNSX (N1)

COMMON /STAB6/ SNSC,SNR(N1),SNSX(N1)

CALL CHEPAR (23,1,N1,N1R)

CALL CHEPAR (23,2,N2,N2R)

CALL CHEPAR (23,3,N3,N3R)

NDENOM = NTOP-NSTAT+1

DENOM = DBLE (NDENOM)

. REFLECTION AND TRANSMISSION COEFFICIENTS AND

MEAN SURFACE ELEVATIONS AT BOUNDARIES
Using Subr. 24 COEF

RCOEF (i) = reflection coefficient of the i-th kind
TCOEF (i) = transmission coefficient of the i-th kind
i=1,2,3 for monochromatic incident waves
Mean surface elevations:
ELSTAT(l) : due to incident wave ETAIS (Subr. 16 SEABC)
ELSTAT (2) : due to reflected wave ETARS (Subr. 16 SEABC)
ELSTAT(3): due to transmitted wave ETATS (Subr. 13 LANDBC)

CALL COEF (1,DUM ,ELSTAT(1l),ETAIS,NDENOM)
CALL COEF (2,RCOEF,ELSTAT(2), ETARS, NDENOM)
IF (IJOB.EQ.3) CALL COEF (2,TCOEF,ELSTAT(3),ETATS, NDENOM)

. WAVE SETUP ON SLOPE COMPUTED FROM WATERLINE MOTION

110

(Subr. 13 LANDBC)

IF (IJOB.LT.3) THEN
DO 110 L = 1,NDELR
RSTAT(1,L) = RSTAT(1l,L)/DENOM
CONTINUE
ENDIF

.. OVERTOPPING

120

Computed in Subr. 13 LANDBC
OV(2) and OV(3) are relative to the interval of N=NSTAT to
N=NTOP which is taken to be unity

IF (IJOB.EQ.2) THEN
DO 120 I = 1,3
OV(I) = OV(I)/DENOM
CONTINUE
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ENDIF

. MEAN HYDRODYNAMIC QUANTITIES

Mean value at node j (from Main):
U1STAT(j) : volume flux
ESTAT (1, j): surface elevation above SWL
VSTAT (1, j) : depth-averaged velocity

DO 130 J = 1,JMAX
U1STAT(J) = UL1STAT (J)/DENOM
ESTAT (1,J) = ESTAT(1l,J)/DENOM
VSTAT(1,J) = VSTAT(1l,J)/DENOM
CONTINUE

. CRITICAL STABILITY NUMBER, SNSC

SNSC = critical stability number = min. of SNSX along the slope
NSNSC = time level N when SNSC occurs

JSNSC = node number where SNSC occurs

SNSX(j) = local stability number (Subr. 19 STABNO)

NSNSX(j) = time level N when SNSX(Jj) occurs

SNR(J) = stability number against rolling/sliding at node j

IF (ISTAB.EQ.1l) THEN
DO 140 J = 1,JMAX
IF (SNSX(J) .LT.SNSC) THEN

SNSC = SNSX(J)
JSNSC = J
NSNSC = NSNSX(J)
ENDIF
CONTINUE

ENDIF

RETURN

END

————————————————— END OF SUBROUTINE STAT2 =—======—==—m————————
FHFEFHFFHFRFHFAFAFEHF  SUBROUTINE COEF  #H#FH#HFHFHFHFFHFHFRH4F4#

This subroutine computes:

. time-averaged value of given quantity, VAL (MODE=1)
reflection or transmission coefficients (three kinds) (MODE=2)
for monochromatic incident waves

SUBROUTINE COEF (MODE,COE,AVER1,VAL,ND)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION KS,KSREF,KSSEA,KSI
DIMENSION COE (3),VAL (ND)
COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI,SIGMA
SUM1 = 0.D+00 '
DO 110 I = 1,ND
SUM1 = SUMl + VAL(I)
CONTINUE
AVER1 = SUM1/DBLE (ND)
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IF (MODE.EQ.2) THEN

VALMAX = -1.D+03
VALMIN = 1.D+03
SuUM2 = 0.D+00
SuM3 = 0.D+00

DO 120 I = 1,ND
IF (VAL(I).GT.VALMAX) VALMAX = VAL(I)
IF (VAL(I).LT.VALMIN) VALMIN = VAL(I)
SUM2 = SUM2 + VAL(I)*VAL(I)
SUM3 = SUM3 + (VAL(I)-AVER1l) **2
CONTINUE
AVER2 = SUM2/DBLE (ND)
AVER3 = SUM3/DBLE (ND)
Monochromatic incident wave profile is assumed to be
given by ETAI=(KS/2)COS[2*PI*(t+t0)] since linear
wave theory is normally used to estimate reflection
and transmission coefficients
COE (1) = (VALMAX-VALMIN) /KS
COE (2) = DSQRT(8.D+00*AVER2) /KS
COE (3) = DSQRT(8.D+00*AVER3) /KS
ENDIF

RETURN
END

T ———— END OF SUBROUTINE COEF ====mm==mee—ee———————
#25# 4 H#4 ¥4 # 444 #4F4## SUBROUTINE BALANE ####FF#FF#FFFFFFHFSFHEHS

This subroutine checks overall energy balance
SUBROUTINE BALANE

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DOUBLE PRECISION KS,KSREF,KSSEA,KSI
DIMENSION VDUML (N1) ,VDUM2 (N1)

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUMZ2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /NODES/ §,JE,JE1l,JSTAB,JMAX

COMMON /GRID/ T, X, TX,XT, TTX, TTXX, TROX

COMMON /BOT2/ DSEA,DSEAKS,DSEA2, DLAND, DLAND2 , FW, TSLOPS, WTOT
COMMON /WAVE2/ KS,KSREF,KSSEA,WL0,WL,UR,URPRE,KSI,SIGMA
COMMON /COEFS/ RCOEF (3),TCOEF (3)

COMMON /ENERG/ ENER(4,N1),ENERB(14)

CALL CHEPAR (25,1,N1,N1R)

CALL CHEPAR (25,3,N3,N3R)

All quantities involved herein are time-averaged quantities
At node j:
ENER(1l,j) = norm. energy per unit surface area

ENER(2, j) = norm. energy flux per unit width
Norm. rate of energy dissipation, at node j:
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ENER(3,j) : due to bottom friction, per unit bottom area
ENER(4,3j) : due to wave breaking, per unit surface area

DENOM = DBLE (NTOP-NSTAT+1)
DO 120 J = 1,JMAX
po 110 1 = 1,3
ENER(I,J) = ENER(I,J)/DENOM
110 CONTINUE
120 CONTINUE
----------- Use Subr. 31 ASSIGN and Subr. 32 DERIV
CALL ASSIGN (1,VDUM1,ENER, 4, JMAX,2)
CALL DERIV (VDUM1,VDUMZ, X, JMAX)
DO 130 J = 1,JMAX
ENER (4,J) = -VDUM2 (J)-ENER(3,J)
130 CONTINUE

Normalized energy flux at boundaries:
ENERB (1) : at seaward boundary
ENERB (2) : at landward boundary
Normalized rate of energy dissipation in the computation domain:
ENERB(3) : due to bottom friction
ENERB (4) : due to wave breaking

ENERB (1) = ENER(2,1)
IF (IJOB.EQ.1l) THEN
ENERB(2) = 0.D+00
ELSE
ENERB (2) = ENER(2, JMAX)
ENDIF
DO 150 I = 3,4
ENERB(I) = (ENER(I,1)+ENER(I,JMAX))/2.D+00
DO 140 J = 2,JMAX-1
ENERB(I) = ENERB(I) + ENER(I,J)
140 CONTINUE
ENERB(I) = ENERB (I)*X
150 CONTINUE

ENERB (5) = ENERB(1l) - ENERB(2)
ENERB (6) = ENERB(3) + ENERB (4)
ENERB (7) = ENERB(6) - ENERB(5)
ENERB (8) = 100.D+00*ENERB (7) /ENERB (5)

Approximate energy flux based on linear long wave:
ENERB (9) : due to incident wave at seaward boundary
ENERB(10) : due to reflected wave at seaward boundary
ENERB (11) : due to transmitted wave at landward boundary

ENERB(9) = KS*KS*DSEA2/8.D+00
ENERB (10) = DSEA2* (KS*RCOEF (3))**2/8.D+00
ENERB (12) = ENERB (9)-ENERB (10)
ENERB (13) 100.D+00* (ENERB (12) ~ENERB (1) ) /ENERB (1)
IF (IJOB.EQ.3) THEN
ENERB(11) = DLAND2* (KS*TCOEF (3))**2/8.D+00
ENERB(14) = 100.D+00* (ENERB(11) -ENERB (2) ) /ENERB (2)
ENDIF
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----------------- END OF SUBROUTINE BALANE —=m—=—me——e—————————
H$HFRFFFFSH S F S ##F## SUBROUTINE MATAFG HHHF#FHFREHF R ARHSHHSH#

This subroutine computes, for each node,
the elements of the first row of Matrix A (2x2)

- -=> Al(l,j) and Al(2,3)
the elements of Matrix F (2x1) -=> F(1,3) and F(2,])
the first element of Matrix G (2x1) =--> G1l(J)

j=node number

SUBROUTINE MATAFG (N,JBEGIN,JEND)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

COMMON /DIMENS/ N1R,N2R,N3R,N4R,NSR

COMMON /BOTZ2/ DSEA,DSEAKS,DSEA2, DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1), THETA (N1) ,SSLOPE (N1),XB(N1) ,ZB(N1)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)

COMMON /MATRIX/ Al(2,N1l),F(2,N1l),G1l(N1l),GJR(2,N1),S1(N1),D(2,N1)
IF (N.EQ.l1) CALL CHEPAR (26,1,N1,N1R) -

DO 100 J = JBEGIN, JEND

Al(1l,J) = 2.D+00*V(J)
Al(2,J) = U(2,J0)-V(J)*V(J)
F(1,J) = V(J)*U(1,J) + U(2,J)*U(2,J)/2.D+00
F(2,J) =1U(1,J)
Gl (J) = THETA(J) *U(2,J) + FW*DABS (V(J)) *V(J)
CONTINUE
RETURN
END

----------------- END OF SUBROUTINE MATAFG =—=—=====m==-————————
FHEHFFFEHFHF #4444 SUBROUTINE MATGIR #¥###F¥#FFH##FHHFFHFHHHHH

This subroutine computes, for each node, the elements of
Matrix g (2x1) --> GJR(1l,3j) and GJR(2,3j), j=node number

SUBROUTINE MATGJR (N,JBEGIN,JEND)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
COMMON /DIMENS/ N1R,N2R,N3R,N4R,NS5R
COMMON /GRID/ T, X, TX,XT, TTX, TTXX, TWOX
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)
COMMON /MATRIX/ Al(2,N1l),F(2,N1),G1l(N1l),GJR(2,N1),S1(N1),D(2,N1)
IF (N.EQ.l) CALL CHEPAR (27,1,N1,N1R)
DO 100 J = JBEGIN,JEND
FGl1 = F(1,J+1)-F(1,J) + X*(G1l(J+1)+G1l(J))/2.D+00
FG2 = F(2,J+1)-F(2,J)
DUM = (Al1(1,J+1)+Al1(1,J))*FGl + (Al(2,J+1)+Al(2,J))*FG2

GJR(1,J) = DUM/2.D+00
GJR(2,J) = FG1
CONTINUE
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----------------- END OF SUBROUTINE MATGJR ====m====—oom———————
FHEFFEFFAEAFFH S S HHF  SUBROUTINE MATS ##HF###4FE44FFEHS44444

This subroutine computes, for each node, the first element of
Matrix S (2x1) =--> S1(3j), j=node number

SUBROUTINE MATS (N, JBEGIN,JEND)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /GRID/ T,X%X,TX,XT,TTX, TTXX, TWOX

COMMON /BOT2/ DSEA,DSEAKS,DSEA2,DLAND,DLAND2,FW, TSLOPS, WTOT
COMMON /BOT3/  U2INIT(N1),THETA(N1),SSLOPE (N1),XB(N1),ZB(N1)
COMMON /HYDRO/ U(2,N1),V(N1),ELEV(N1),C(N1),DUDT (N1)

COMMON /MATRIX/ Al(2,N1),F(2,N1),G1(N1),GJR(2,N1),S1(N1),D(2,N1)
IF (N.EQ.1l) CALL CHEPAR (28,1,N1,N1R)

DO 100 J = JBEGIN,JEND

DUM1 = (V(J)*V(J)=-U(2,J))*(U(2,J+1)=U(2,JT-1))/TWOX
DUM2 = V(J)*(U(1,J+1)-U(1,J-1))/TWOX

DUM3 = THETA(J) *U(2,J)

DUM4 = FW*DABS (V(J)) *V (J)

DUMS5 = 2.D+00*FW*DABS (V(J)) /U(2,J)

EJN = DUMS* (DUM1-DUM2-DUM3-DUM4)
S1(J) = X*EJN - THETA(J)*(U(1,J+1)-U(1,J-1))/2.D+00
CONTINUE

RETURN
END

—————————————————— END OF SUBROUTINE MATS =====m==—=—e———mmeee
FHEXFHFHAFFHAFHFHH444# SUBROUTINE MATD #####FH#H#FFFH#H#4S44544#

This subroutine computes, for each node, the elements of
Matrix D (2xl) --> D(1l,3j) and D(2,3j), j=node number

SUBROUTINE MATD (N,JDAM,JEND)

IMPLICIT DOUBLE PRECISION (A-H,0-32)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DIMENSION Q(2,2,N1),UU(2,N1)
COMMON /DIMENS/ N1R,N2R,N3R,N4R,NSR
COMMON /CONSTA/ PI,GRAV,DELTA, X1, X2
COMMON /GRID/ T, X, TX, XT, TTX, TTXX, TWOX
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT (N1)
COMMON /MATRIX/ Al(2,N1l),F(2,N1),G1(N1l),GJR(2,N1),S1(N1),D(2,N1)
IF (N.EQ.l) CALL CHEPAR (29,1,N1,N1R)
DO 120 J = 1,JDAM
CCl = C(J+1)+C(J)

CC2 = C(J+1)-C(J)
VCl = V(J+1)+V(J)+CC1l
VC2 = V(J+1) -V (J)+CC2
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VC3 = V(J+1)+V(J)~-CC1

VC4 = V(J+1)-V(J)-CC2

PPP = (~-X1*DABS (VC2)*VC3+X2*DABS (VC4) *VC1) /(2.D+00*CC1)
000 = (X1*DABS (VC2)-X2*DABS (VC4))/CC1l

Q(1,1,J) = QQQ*(Al(1,J+1)+Al1(1,J))/2.D+00 + PPP
Q(1,2,J) = QQQ*(Al(2,J+1)+A1(2,J))/2.D+00

Q(2,1,J) = QQQ

Q(2,2,J) = PPP

DO 110 I = 1,2

uu(I,J) = U(1,J+1)-0U(I1,J)
110 CONTINUE
120 CONTINUE

DO 150 I = 1,2
DO 140 J = 2,JDAM
D(I,J) = 0.D+00
DO 130 L = 1,2
D(I,J) = D(I,J) + Q(I,L,J)*UU(L,J) - Q(I,L,J-1)*UU(L,J-1)
130 CONTINUE

D(I,J) = TX*D(I,J)/2.D+00
140 CONTINUE
150 CONTINUE
IF (JEND.GT.JDAM) THEN
DO 170 I = 1,2
DO 160 J JDAM+1, JEND
D(I,J) 0.D+00
160 CONTINUE
170 CONTINUE
ENDIF

RETURN
END

“20mmmmme e ———— END OF SUBROUTINE MATD ===mm==mmme———————————
H30HHHHHHEFHHHEHFF#H4444¥ SUBROUTINE MATU HHHH¥FFHHFRRFFFFFFFHEFF4#

This subroutine computes the elements of Matrix U (2x1)
--> U(1,3) and U(2,3) with j=node number at next time level

SUBROUTINE MATU (N, JBEGIN,JEND)

QO oo

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R
COMMON /GRID/ T, %, TX, XT, 1T%, TTHX, TWOX
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1),C(N1),DUDT(N1)
COMMON /MATRIX/ Al(2,Nl1),F(2,N1),G1l(N1l),GJR(2,N1),S1(N1),D(2,N1)
IF (N.EQ.1l) CALL CHEPAR (30,1,N1,N1R)
DO 100 J = JBEGIN,JEND
DUM1 = TX*((F(1,J+1)-F(1,J-1))/2.D+00+X*G1 (J))
DUM2 = TTXX*(GJR(1l,J)-GJR(1,J-1))
DUM3 = TX*(F(2,J+1)-F(2,J-1))
DUM4 = TTXX* (GJR(2,J)-GJIR(2,J-1))
U(1l,J) = U(1,J) - DUMl + (DUM2-TTX*S1l(J))/2.D+00 + D(1,J)
U(2,J) = U(2,J) - (DUM3-DUM4)/2.D+00 + D(2,J)
100 CONTINUE
c
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#31

110

120

-31
#32

100

#33

RETURN
END

------------------ END OF SUBROUTINE MATU ========e——em————————
SHEHFFFEF S F R ESS SUBROUTINE ASSIGN  ##Hddddddsddddtdaddtisis

This subroutine changes notations from matrix to vector or
from vector to matrix

SUBROUTINE ASSIGN (MODE,VALl,VAL2,ND1,ND2,NROW)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION VAL (ND2),VAL2 (ND1,ND2)
IF (MODE.EQ.1) THEN
DO 110 J = 1,ND2
VAL1 (J) = VAL2 (NROW,J)
CONTINUE
ELSE
DO 120 J = 1,ND2
VAL2 (NROW,J) = VAL (J)
CONTINUE
ENDIF

RETURN
END

————————————————— END OF SUBROUTINE ASSIGN =—=--===—=-=————————=-
FEEE#EEASEHFAE4ER44#  SUBROUTINE DERIV  ##H##HhEHHHFHEFHHFHFF#H

This subroutine computes the first derivative, DER, of given
quantity, FUN, with respect to given variable, VAR, for
J=1,2,...,ND

SUBROUTINE DERIV (FUN,DER,VAR,ND)

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
DIMENSION FUN (ND),DER (ND)
VAR2 = 2.D+00*VAR
DER (1) (FUN(2) -FUN (1) ) /VAR
DER (ND) (FUN (ND) =FUN (ND-1) ) /VAR
DO 100 J = 2,ND-1

DER(J) = (FUN(J+1)~FUN(J-1)) /VAR2
CONTINUE

won

RETURN
END

------------------ END OF SUBROUTINE DERIV =======—=———————————
FHEFFFAHFAEHFER 444444  SUBROUTINE DOCL  ####FHH4FRHHFFFF1HHHFES

This subroutine documents input data and related parameters
before time-marching computation

SUBROUTINE DOC1

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
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PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
DOUBLE PRECISION KCNO,MCNO,KC2,KTWO
DOUBLE PRECISION KS,KSREF,KSSEA,KSI
CHARACTER*7 UL
INTEGER S
COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R
COMMON /CONSTA/ PI,GRAV,DELTA,X1,6X2
COMMON /ID/ IJOB, ISTAR, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ . ISAVA, ISAVB, ISAVC
COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA,NSTAB, NSTAT, NTIMES
COMMON /NODES/ S,JE,JEl,JSTAB,JMAX
COMMON /GRID/ T, X, TX,XT, TTX, TTXX, TWOX
COMMON /WAVEl/ HREFP,TP,WLOP
COMMON /WAVE2/ KS,KSREF,KSSEA,WLO,WL,UR,URPRE,KSI, SIGMA
COMMON /WAVE4/ ETAMAX,ETAMIN
COMMON /WAVES5/ KCNO,ECNO,MCNO,KC2
COMMON /WAVE6/ TCSOL,KTWO
COMMON /BOT1/ DSEAP, DLANDP , FWP
COMMON /BOT2/ DSEA,DSEAKS,DSEA2, DLAND, DLAND2, FW, TSLOPS, WTOT
COMMON /BOT3/ U2INIT(N1),THETA(N1), SSLOPE (N1),XB(N1), 2B (N1)
COMMON /BOT4/ NBSEG
COMMON /BOTS/ WBSEG (N4) , TBSLOP (N4) , XBSEG (N4) , ZBSEG (N4)
COMMON /STAB1/ €2,C3,CD,CL,CM,SG,TANPHI, AMIN, AMAX, DAP
CALL CHEPAR (33,1,N1,N1R)
CALL CHEPAR (33,4,N4,N4R)
ISTOP = 0

SYSTEM OF UNITS

IF (ISYST.EQ.l) THEN
UL = ' meters’
ELSE
UL = ' feet '
ENDIF

. NUMERICAL STABILITY INDICATOR, ALPHAS

EPSI = DMAX1 (X1, X2)

DUM1 = 1.D+00 + EPSI*EPSI/4.D+00

DUM2 = DSQRT (DUM1) - EPSI/2.D+00

ALPHAS = DUM2*X*DBLE (NONE) / (1.D+00+DSQRT (DSEA) )

. WAVE CONDITION

WRITE (28,2811)
IF (IWAVE.EQ.l) THEN
IF (URPRE.LT.26) THEN
WRITE (28,2812)
ELSE
WRITE (28,2813) KC2,ECNO,KCNO
ENDIF
ELSEIF (IWAVE.EQ.2) THEN
WRITE (28,2814)
ELSE
WRITE (28,2815)TCSOL,KTWO
ENDIF
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WRITE (28,2816) ETAMAX,ETAMIN
WRITE (28,2817) TP,HREFP,UL,DSEAP,UL,KSREF,KSSEA, KS
WRITE (28,2818) DSEA,WL,SIGMA,UR,KSIT

IF (IJOB.EQ.3) WRITE (28,2819) DLANDP,UL

2811 FORMAT
2812 FORMAT
2813 FORMAT
+
+
+
2814 FORMAT
2815 FORMAT
+
4
2816 FORMAT
+
2817 FORMAT

+ 4+ +++

2818 FORMAT

+ + + +

2819 FORMAT

(/"WAVE CONDITION')

(/'Stokes II Incident Wave at Seaward Boundary')
(/'Cnoidal Incident Wave at Seaward Boundary'/

f1-m = *,D20.9/

‘E = ’,D20.9/

K = r,D20.9)

(/" Incident Wave at Seaward Boundary Read as Input’)
(/"Solitary Incident Wave at Seaward Boundary’/

"Tc = 7,D20.9/

rK2 = ',D020.9)

(Norm. Maximum Surface Elev. = ! ,F12.6/
'Norm. Minimum Surface Elev. = ’,F12.6/)

(" Reference Wave Period = f,F12.6,' sec.'/
‘Reference Wave Height = f F12.6,A7/
‘Depth at Seaward Boundary = ' ,Fl12.6,A7/
*Shoal. Coef. at Reference Ksl = ’,F9.3/

’ at Seaw. Bdr. Ks2 = 7,F9.3/

' Ks = Ks2/Ksl = r,F9.3)
(*Norm. Depth at Seaw. Bdr. = ',F9.3/
'Normalized Wave Length =r,F9.3/
'"Sigma" p— ',FQ.B/
‘Ursell Number = ' F9.3/
fSurf Similarity Parameter = ’,F9.3)
('Depth at Landward Boundary ="',Fl2.6,A7)

c
C ... STRUCTURE PROPERTIES
C

WRITE (28,2821) FWP,FW,WTOT,NBSEG
IF (IBOT.EQ.1l) THEN
WRITE (28,2822) UL
WRITE (28,2824) (K,WBSEG(K), TBSLOP (K), 6 K=1,NBSEG)

ELSE

WRITE (28,2823) UL,UL
WRITE (28,2824) (K,XBSEG(K),bZBSEG(K),K=1,NBSEG+1)

ENDIF
2821 FORMAT (/'SLOPE PROPERTIES’//
+ ‘Friction Factor = ' F12.6/
+ ‘Norm. Friction Factor = ! ,F1l2.6/
+ "Norm. Horiz. Length of’/
+ ’ Computation Domain = ’,F12.6/
+ 'Number of Segments = ',18)
2822 FORMAT (/ ==—====—=—=o== ——— ———
+ f SEGMENT WBSEG(I) TBSLOP(I)'/
- ’ I r A7/
+ P ——————— r)
2823 FORMAT (/ ====—m e e e
+ f SEGMENT XBSEG(I) ZBSEG(I)'/
+ ’ I LR Y U ¢ A7/
+ T o e o e e i o e e f)
. 2824 FORMAT (I8,2F12.6)
4
C ... COMPUTATION PARAMETERS
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WRITE (28,2841) X,T,DELTA,X1l,X2,ALPHAS

WRITE (28,2842) NTOP,NONE,JE

IF (IJOB.LT.3) WRITE (28,2843) S

WRITE (28,2844) NJUM1

IF (ISTAB.GT.0) WRITE (28,2845) NJUM2
2841 FORMAT (/’COMPUTATION PARAMETERS’//

+ f'Normalized Delta x =7’ ,D14,.6/
+  ’Normalized Delta t =7',Dl4.6/
+ 'Normalized DELTA = ',E1l4.6/
+ ’Damping Coeff. xl ="',F9.3/
+ - x2 = ',F9.3/
+ "Num. Stab. Indicator = ',F9.3)
2842 FORMAT (
+ 'Total Number of Time Steps NTOP = ’,I8/
+ ’Number of Time Steps in 1 Wave Period’/
+ 7 NONE = ’,I8/
+ ’Total Number of Spatial Nodes JE = ',18)

2843 FORMAT (

+ "Number of Nodes Along Bottom Below SWL'/

L S =17,18)
2844 FORMAT (

+ 'Storing Temporal Variations at Every’/

+ ! NJUM1 = 7,I8,’ Time Steps’)
2845 FORMAT (

+ fArmor Stability Number Computed’/

+ ! at Every NJUM2 = f,I8," Time Steps’)

. PARAMETERS FOR ARMOR STABILITY AND MOVEMENT

IF (ISTAB.GT.0) WRITE (28,2851) TANPHI,SG,C2,C3,CD,CL,CM
IF (ISTAB.EQ.l) WRITE (28,2852) AMAX,AMIN
IF (ISTAB.EQ.2) WRITE (28,2853) DAP,UL

2851 FORMAT (/’PARAMETERS FOR ARMOR STABILITY AND MOVEMENT’//

+ ' Armor Friction Factor ="',F9.3/
+ fSpecific Gravity =',F9.3/
+ "Area Coefficient c2 ="',r9.3/
+ *Volume Coefficient c3 = v 19,3/
+ 'Drag Coefficient ¢co ="',F9.3/
+ rLift Coefficient CL = ',F9.3/
+ rInertia Coefficient CM = ',F9.3)

2852 FORMAT (’Norm. Upper and Lower Bounds of du/dt’/
+ ¢ AMAX = ' ,F9.3/
+ ’ AMIN = ',F9.3)
2853 FORMAT ('Armor Diameter = '’ F12,.6,A7)

. NORMALIZED STRUCTURE GEOMETRY

File 22 = "QOSPACE’

(XB(j),2B(j)) = normalized coordinates of the structure
at node j

ZB negative below SWL

[eNeReNeNrNeNeNel

WRITE (22,2210) JE
WRITE (22,2220) (XB(J),ZB(J),Jd=1,JE)
2210 FORMAT (2I8)
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2220 FORMAT (6D12.4)

OQ0OQOn

SOME CHECKINGS

--—- Numerical stability criterion requires ALPHAS > about 1

IF (ALPHAS.LE.l.) THEN

WRITE (*,2910) ALPHAS
"+ WRITE (29,2910) ALPHAS
ISTOP = ISTOP+1

ENDIF

2010 FORMAT (/' From Subr. 33 DOC1l’/’ Stability Indicator =’,F9.3/

+

’ May cause numerical instability. Increase NONE')

--- Temporal variations are stored at every NJUMl time steps.
Stability number SNR is computed at every NJUM2 time steps
(SNR is stability number against rolling/sliding).

For plotting the results, the values of NONE/NJUM1 and

NONE/NJUM2 should be integers.

noaoaooaa

VALl = DBLE (NONE) /DBLE (NJUM1)
RES1 = DMOD (VAL1,1.D+00)
IF (RES1.NE.0.D+00) THEN
WRITE (*,2920) NONE,NJUM1, VALl
WRITE (29,2920) NONE,NJUM1, VALl
ISTOP = ISTOP+1
ENDIF
IF (ISTAB.EQ.l) THEN
VAL2 = DBLE (NONE) /DBLE (NJUM2)
RES2 = DMOD (VAL2,1.D+00)
IF (RES2.NE.0.D+00) THEN
WRITE (*,2930) NONE,NJUM2,VAL2
WRITE (29,2930) NONE,NJUM2,VALZ2
ISTOP = ISTOP+1
ENDIF
ENDIF
2920 FORMAT (/
+
+ * Change NJUM1')

r
r

From Subr. 33 DOCLl’/’ NONE =',I8/’ NJUM1l =’,I8/
NONE/NJUM1 =’,F12.3,’, not an integer’/

2930 FORMAT (/' From Subr. 33 DOC1l’/’ NONE =',I8/’ NJUMZ =’,6I8/
r

+ NONE/NJUM2 =’,F12.3,’, not an integer’/
+ f Change NJUM2')
2
IF (ISTOP.GT.0) STOP
c
c . CONDITIONAL STOP BEFORE TIME-MARCHING COMPUTATION
(2

WRITE (*,6010Q) ALPHAS
WRITE (*,6020)

READ (*,*) ISTOP

IF (ISTOP.EQ.1l) STOP

6010 FORMAT (’ Numerical stability indicator =’,F7.2)
6020 FORMAT (’ Time-marching computation is about to begin’/

+ * 1 = stop here, else = proceed’)
&z
RETURN
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33 - —————— END OF SUBROUTINE DOCl ==========m————eeeeee
#3 44444 FFF#F R E 44444 SUBROUTINE DOC2 ####H¥#HdFHdHdastastsaassst

This subroutine stores computed results at designated time
levels during time-marching computation

‘SUBROUTINE DOC2 (ICALL,N,ETAR,ETAT)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)
CHARACTER*20 FNAME1l, FNAME2

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /ID/ IJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /IDREQ/ IREQ,IELEV,IV,IDUDT,ISNR,NNREQ,NREQ (N5)
COMMON /TLEVEL/ NTOP,NONE,NJUM1,NJUM2,NSAVA,NSTAB,NSTAT, NTIMES
COMMON /NODES/ §,JE,JEl,JSTAB,JMAX

COMMON /WAVE3/ ETA(N2),ETAIS(N2),ETARS (N2),ETATS (N2)
COMMON /HYDRO/ U(2,N1),V(N1l),ELEV(N1l),C(N1),DUDT (N1)
COMMON /RUNP1l/ NDELR :

COMMON /RUNP2/ DELRP (N3),DELTAR(N3),RUNUPS (N3),RSTAT (3,N3)
COMMON /STABS5/ JSNSC,NSNSC,NSNSX(N1)

COMMON /STAB6/ SNSC,SNR(N1),SNSX(N1)

COMMON /STAB7/ NMOVE,NSTOP,

+ ISTATE (N1) ,NODIN (N1) ,NODFI (N1),NDIS (N1)
COMMON /STAB8/ VA(N1),XAA(N1),XA(N1)

COMMON /FILES/ NNOD1,NNOD2,NODNO1 (N5), NODNO2 (N5),

+ FNAMEL (N5) , FNAME2 (N5)

DATA ZERO /0.D+00/

IF (ICALL.EQ.0) THEN
..... CHECKING PARAMETERS

CALL CHEPAR (34,1,N1,N1R)
CALL CHEPAR (34,2,N2,N2R)
CALL CHEPAR (34,3,N3,N3R)
CALL CHEPAR (34,5,N5,N5R)

ELSEIF (ICALL.EQ.1l) THEN

..... STORING "A"
"A" = gpatial variations of hydrodynamic quantities

File 22 = "OQOSPACE’
N = current time level
S = waterline node (IJOB<3) or landward-end node (IJOB=3)
At node j:
ELEV(j) = surface elevation above SWL
V(3j) = depth-averaged velocity

WRITE (22,2210) N,S
WRITE (22,2220) (ELEV(J),V(J),J=1,5S)
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ELSEIF (ICALL.EQ.2) THEN

110

210

STORING IIB " )
"B" = temporal variations of total water depth at specified
nodes

IF (ISAVB.EQ.1l) THEN
DO 110 I = 1,NNOD1
NUNIT = 49+I
J = NODNO1 (I)
WRITE (NUNIT,S5010) N,U(2,J)
CONTINUE
ENDIF

STORING "C" ;
"C" = temporal variations of displacement of armor units
from specified initial nodal locations

IF (ISAVC.EQ.1l) THEN
DO 210 I = 1,NNOD2
NUNIT = 74+I
J = NODNO2 (I) .
IF (ISTATE(J) .EQ.0) THEN
WRITE (NUNIT,7510) N,ZERO
ELSE
WRITE (NUNIT,7510) N,XA(J)
ENDIF
CONTINUE
ENDIF

STORING VALUES AT LANDWARD-END NODE

File 31 = ’'ORUNUP’
File 32 = ’'QOVER'

File 33 = ’'QTRANS’

JE = landward-end node

N = current time level
S = waterline node
RUNUPS = free surface elevation where the water depth equals
DELTAR
DELTAR = water depth associated with visual or measured
waterline
NDELR = number of DELTARSs
ETAT = surface elevation due to transmitted wave at
landward boundary
At node j:
U(1l,3) = volume flux
U(2,j) = total water depth
v(3) = depth-averaged velocity
cii3) = critical velocity

IF (IJOB.GT.l) C(JE)=DSQRT (U(2,JE))
IF (IJOB.LT.3) THEN
WRITE (31,3110) N,S
WRITE (31,3120) (RUNUPS(L),L=1,NDELR)
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c
2 s STORING VALUES AT SEAWARD BOUNDARY
c
(5 File 21 = ’OSEAWAV’
o N = current time level
G Surface elevations at seaward boundary:
c ETAI --> due to incident wave
2 ETAR --> due to reflected wave
c ETATOT = ETAI+ETAR
c At node j:
c v(3) = depth-averaged velocity
a U(l,]3) = volume flux
C
IF (IWAVE.EQ.1l) THEN
NWAVE = MOD(N,NONE) + 1
ETAI = ETA (NWAVE)
ETATOT = ETAI+ETAR
ELSE
ETAI = ETA(N)
ETATOT = ETAI+ETAR
ENDIF
WRITE (21,2110) N,ETAI,ETAR,ETATOT,V(1l),U(1,1)
C.
ELSE
C
& aeies SPECIAL STORING IF ICALL=3
C
e File 40 = ’OREQ’
C S = waterline node (IJOB<3) or landward-end node (IJOB=3)
G At node j for specified time level N:
c ELEV(j) = surface elevation above SWL
C V(3j) = depth-averaged velocity
e DUDT(j) = total fluid acceleration
C SNR(j) = stability number against rolling/sliding
C
WRITE (40,4010) N,S
IF (IELEV.EQ.l) WRITE (40,4020) (ELEV(J),J=1,5)
IF (IV.EQ.1) WRITE (40,4020) (V(J),J=1,8)
IF (IDUDT.EQ.l) WRITE (40,4020) (DUDT(J),Jd=1,8S)
IF (ISNR.EQ.1l) WRITE (40,4020) (SNR(J),J=1,58)
&
ENDIF
C
C ... FORMATS
2]

IF (IJOB.EQ.2) WRITE (32,3210) N,U(1,JE),U(2,JE),V(JE),C(JE)

ELSE
WRITE (33,3310) N,U(1,JE),V(JE),C(JE),ETAT
ENDIF

2110 FORMAT (I8,5D12.4)
2210 FORMAT (21I8)

2220 FORMAT (6D12.4)
3110 FORMAT (21I8)

3120 FORMAT (6D12.4)
3210 FORMAT (I8,5D12.4)
3310 FORMAT (I8,5D12.4)
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4010 FORMAT (21I8)

4020 FORMAT (6D12.4)
5010 FORMAT (I8,D12.4)
7510 FORMAT (I8,D12.4)

RETURN
END

34— END OF SUBROUTINE DOC2 =======memce—me—ee———
F3SHFHEEFFRRHEFRSFHH444#H  SUBROUTINE DOC3  #¥####H###HAF#FFHFHFFEIHS

This subroutine documents results after time-marching
computation

SUBROUTINE DOC3

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (N1=500,N2=30000,N3=3,N4=100,N5=25)

CHARACTER*7 UL

INTEGER S

COMMON /DIMENS/ N1R,N2R,N3R,N4R,N5R

COMMON /CONSTA/ PI,GRAV,DELTA,X1,X2

COMMON /ID/ TJOB, ISTAB, ISYST, IBOT, INONCT, IENERG, IWAVE,
+ ISAVA, ISAVB, ISAVC

COMMON /NODES/ S,JE,JE1l,JSTAB,JMAX

COMMON /BOT3/ U2INIT (N1) , THETA (N1) , SSLOPE (N1) ,XB(N1) ,ZB (N1)
COMMON /COEFS/ RCOEF (3),TCOEF (3)

COMMON /STAT/ ELSTAT (3) ,ULSTAT (N1) ,ESTAT (3,N1) , VSTAT (3,N1)
COMMON /RUNP1l/ NDELR

COMMON /RUNP2/ DELRP (N3),DELTAR(N3),RUNUPS (N3),RSTAT(3,N3)
COMMON /OVER/ ov(4)

COMMON /STABS5/ JSNSC,NSNSC,NSNSX(N1)

COMMON /STAB6/ SNSC,SNR(N1),SNSX(N1)

COMMON /STAB7/ NMOVE,NSTOP,

+ ISTATE (N1) ,NODIN (N1) ,NODFI (N1),NDIS (N1)
COMMON /STAB8/ VA(N1l),XAA(N1),XA(N1)

COMMON /ENERG/ ENER(4,N1),ENERB(14)

CALL CHEPAR (35,1,N1,N1R)

CALL CHEPAR (35,3,N3,N3R)

SYSTEM OF UNITS
IF (ISYST.EQ.1l) THEN
UL = ' [mm] *
ELSE
UL = ' [inch]’
ENDIF

. REFLECTION COEFFICIENTS

WRITE (28,2811) (RCOEF(I),I=1,3)
2811 FORMAT (/’REFLECTION COEFFICIENTS’//

+ frl = *,F9.3/
* ryg e 59 37
3 3 ! LF9,3)
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RUNUP, RUNDOWN, SETUP

IF (IJOB.LT.3) THEN
WRITE (28,2821) JMAX
WRITE (28,2822) UL
DO 110 L = 1,NDELR
WRITE (28,2823)L,DELRP (L) ,RSTAT (2,L) ,RSTAT(3,L) ,RSTAT(1,L)
CONTINUE
ENDIF

2821 FORMAT (/’RUNUP, RUNDOWN, SETUP’//

+’ Largest Node Number Reached by Computational Waterline’/

+f JMAX = ':Ia)

2822 FORMAT (
G e e e — e ———— — — ————— r/
+7 I DELTAR(I) RUNUP (I) RUNDOWN (I) SETUP(I)'/
+7 r,a7,’ R Rd zr’ /

2823 FORMAT (I8,1X,F9.3,3(3X,F9.3))

Cc
c
c

aooaooaoooooaoaooooo000a0

. OVERTOPPING

IF (IJOB.EQ.2) THEN
WRITE (28,2831) OV(1l),Ul1STAT(1l),0V(4),0V(2),0V(3)
ENDIF

2831 FORMAT (/’OVERTOPPING’//

+ 'Norm. Avg. Overtopping Rate = ’,D14.6/
+ 'Norm. Avg. Flow at Seaw. Bdr. = ’,Dl1l4.6/
+ Norm. Max. Overtopping Rate = r,D14.6/
+’Max. Rate' Occurs at *,F8.6," Within Interval [NSTAT,NTOP]’/

+’Overtopping Duration = ’,F8.6,’ Within Interval [NSTAT,NTOP]'/
+’The last two quantities are relative to the specified’/
+’ interval taken as unity’)

QUANTITIES FOR ARMOR STABILITY AND MOVEMENT

File 41 = 'OSTABL’
File 42 = 'OSTAB2'
(XB(j),2B(j)) = normalized coordinates of the structure at
node j
ISTAB=1:
SNSX(j) = local stability number = minimum of SNR at a node j
SNR(j) = stability number against rolling/sliding at node j
ISTAB=2: .
ISTATE(j) indicates the state of armor unit initially located
at node j: O=stationary, l=moving, 2=stopped
For moving/stopped armor unit number j:
NODIN(j) = its initial location (i.e., node number)
NODFI(j) = node closest to its final location
NDIS(j) = time level N when it started moving
XA (3) = displacement from its initial location,
normalized by DAP

IF (ISTAB.EQ.1l) THEN
WRITE (28,2841) SNSC,JSNSC,NSNSC
WRITE (41,4110) JMAX
WRITE (41,4120) (XB(J),ZB(J),SNSX(J),J=1,JIMAX)
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ELSEIF (ISTAB.EQ.2) THEN
WRITE (28,2842) NMOVE,NSTOP
WRITE (42,4210) NMOVE
DO 120 J = 1,JMAX
IF (ISTATE(J).GE.l) WRITE (42,4220)

+ NODIN (J) ,NODFI (J) ,NDIS (J),ISTATE (J),XB(J),ZB(J),XA(J)
120 CONTINUE
ENDIF
2841 ‘FORMAT (/' STABILITY NUMBER'’// .
+ fCritical Stability Number Nsc = ’,F9.3/
+ * At Node Number J = "',19/
+ fAt Time Level N="',19)
2842 FORMAT (/’ARMOR UNITS MOVEMENT’//
+ "Number of Units Moved = ',18/
+ fNumber of Units Stopped ="'1,18)

4110 FORMAT (I8)

4120 FORMAT (6D12.4)

4210 FORMAT (I8)

4220 FORMAT (3I8,I3,3D12.4)

C
C ... WAVE SET-DOWN OR SETUP
Cc

IF (IJOB.EQ.3) THEN

DELMWL = ELSTAT(3) - ELSTAT (2)
WRITE (28,2851) (ELSTAT(I),I=1,3),DELMWL

ELSE
WRITE (28,2852) (ELSTAT(I),I=1,2)
ENDIF
2851 FORMAT (/’WAVE SET-DOWN OR SETUP’//
+ rAverage value of ETAI = ' ,F12.6/
e ) ETAR = ' ,F12.6/
+ ” ETAT = ' ,F12.6/
+ MWL Difference =',F12.6)

2852 FORMAT (/’WAVE SET-DOWN OR SETUP’//

+ Average value of ETAI = ' ,F12.6/
+ ¢ ETAR = ' ,F12.6)
C
C ... TRANSMISSION
c

IF (IJOB.EQ.3) THEN
QAVER = .5%* (ULSTAT(1)+ULlSTAT (JE))
WRITE (28,2861) (TCOEF(I),I=1,3)
WRITE (28,2862) ULSTAT(1),UlSTAT (JE),QAVER
ENDIF
2861 FORMAT (/' TRANSMISSION’//

+ *Transmission Coefficient T1 = 7,F9.3/

+ 4 T2 = ',F9.3/

+ ’ T3 = 7,F9.3)
2862 FORMAT (’Norm. Avg. Flow at Seaw. Bdr. = 7,F12.6/

+ ‘Norm. Avg. Flow at Landw. Bdr. = ' ,F12.6/

- " Average of the Above Two = V. F12.6)

STATISTICS OF HYDRODYNAMIC QUANTITIES

File 23 = "OSTAT'
JMAX = the largest node number reached by computational

aOOoonao
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waterline
At node 3J:
ELEV(3) = surface elevation above SWL

v(3) = depth-averaged velocity
U1STAT(j) = mean volume flux
Mean, maximum, and minimum at node j:
ESTAT (1, j) ,ESTAT (2, j) ,ESTAT (3, j) : for ELEV(J)
VSTAT (1, §) , VSTAT (2, §) , VSTAT(3,3) : for V(J)

aooaoaoao0an

WRITE (23,2310) JMAX
WRITE (23,2320) (UlSTAT(J),J=1,JMAX)
DO 130 I = 1,3
WRITE (23,2320) (ESTAT(I,J),J=1,JMAX)
WRITE (23,2320) (VSTAT(I,J),J=1,JMAX)
130 CONTINUE
2310 FORMAT (I8)
2320 FORMAT (6D12.4)

. QUANTITIES FOR TIME-AVERAGED ENERGY BALANCE

File 35 = ’OENERG’

At node j:
ENER(1,j) = norm. energy per unit surface area
ENER(2,3) = norm. energy flux per unit width

Normalized rate of energy dissipation at node j:
ENER(3,j): due to bottom friction, per unit bottom area
ENER (4, j): due to wave breaking, per unit surface area

aooaoaoaooaoaan

IF (IENERG.EQ.1l) THEN
WRITE (28,2871)
WRITE (28,2872) (ENERB(I),I=1,10)
IF (IJOB.EQ.3) WRITE (28,2873) ENERB(11)
WRITE (28,2874) (ENERB(I),I=12,13)
IF (IJOB.EQ.3) WRITE (28,2875) ENERB(14)
WRITE (35,3510) JMAX
DO 140 I = 1,4
WRITE (35,3520) (ENER(I,J),J=1,JMAX)
140  CONTINUE
ENDIF
2871 FORMAT (/’TIME-AVERAGED ENERGY BALANCE’//
+ "Normalized Energy Flux:’)
2872 FORMAT (’. at Seaw. Boundary A =',D14.6/

o+ f, at Landw. Boundary B =',D14.6/

+ ‘Normalized Rate of Energy Dissipation’/

+ ‘in the Computation Domain, Due to:’/

+ . bottom friction C =',Dl4.6/

+ ’ . wave breaking D =',D14.6/

+ ‘Calculation 1:’/

+ ¢ E = A-B =',D14.6/

-+ o F = C+D =',D14.6/

+ * Must G=0, but G = F-E =',D14.6/

+ ‘ % error 100G/E =',F14.2/

+ ’ Approximate Energy Flux, Based on’/

+ ‘Linear Long Wave, Due to:’/

+ * . incident wave at seaw. boundary P =',D14.6/
+ r . reflected wave at seaw. boundary Q =',D14.6)

243



2873 FORMAT ('. transmitted wave at landw. bndry. R =',D14.6)
2874 FORMAT (’/Calculation 2:'/

+ 'Net Energy Flux at Seaw. Bndry. § = P-Q =’,D14.6/
+ % Error at Seaward Boundary 100(S-A)/A =',F14.2)

2875 FORMAT ('% Error at Landward Boundary 100 (R-B) /B =’ ,F14.2)
3510 FORMAT (I8)
3520 FORMAT (5D15.6)

c

O acoaoaoaoan
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436HEFFSEFEESH4S4F444444 SUBROUTINE CHEPAR ###iddddddddiabhasiitis

RETURN
END

—————————————————— END OF SUBROUTINE DOC3 ===--———=======——=—==-

This subroutine checks PARAMETER NCHEK=N1,N2,N3,N4,N5 specified
in given subroutine (ICALL) match NREF=N1R, N2R,N3R,N4R, N5R

SUBROUTINE CHEPAR (ICALL,NW,NCHEK,NREF)

CHARACTER*2 WHICH(5)

CHARACTER*6 SUBR(38)

DATA WHICH /’N1’,’N2’,’N3’,’N4’,’'N5"/

DATA SUBR /’OPENER’,’INPUT1’,’INPUT2’,’BOTTOM’,’PARAM ',
rINIT1 *,’INIT2 ’,’INWAV ’,’FINDM ’,'CEL ',
r SNCNDN’ , MARCH ’,’ LANDBC’ ,’RUNUP ’,’OVERT ',
*SEABC ’,’ENERGY’,’STAT1 ’,’STABNO’,’MOVE ‘,
' FORCES’ , ' ACCEL ’,’STAT2’ ,’COEF ',’BALANE’,
*MATAFG’ , 'MATGJR’ , "MATS ',’MATD ','MATU ',
' ASSIGN’,’DERIV ’,’DOCl1 ’,’DOC2 ‘,'DOC3 /,
' CHEPAR' , ' CHEOPT' , ' STOPP '/

IF (NCHEK.NE.NREF) THEN

WRITE (*,2910)

SR

+ WHICH (NW) , NCHEK, ICALL, SUBR(ICALL) , WHICH (NW) , NREF
WRITE (29,2910)
+ WHICH (NW) , NCHEK, ICALL, SUBR (ICALL) , WHICH (NW) , NREF
STOP
ENDIF
2910 FORMAT (/
4+f PARAMETER Error: ’,A2,’ =',18,' in Subroutine’,I3," ’,A6/
+f Correct Value: r,A2,’ =',18)
c
RETURN
END
a4
C =36~==- - END OF SUBROUTINE CHEPAR ======—=—ee——m————--
C #37H##FF#RFFEE##EH#$4## SUBROUTINE CHEOPT  #####¥HH#FHddFHFFuttdtds
C
c This subroutine checks user’s options
&

(@]

SUBROUTINE CHEOPT (ICALL,INDIC,ITEM,ILOW,IUP)

CHARACTER*2 WHICH (6)

CHARACTER*6 OPTI(21)

DATA WHICH /’N5',’N57,’N5’,’'N1",’'N3','N4"/

DATA OPTI /’IJOB ',’ISTAB ’,’ISYST ’,’IBOT ',’INONCT',
1 * TENERG' ,IWAVE ' ,"ISAVA ’,"ISAVB ’,’ISAVC ',
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"IREQ ','IELEV ','IV r,’IDUDT ' ,"ISNR ',

2
3 "NNOD1 ', NNCD2 /,’NNREQ ’,’S ’ ,'NDELR ’,
4 *NBSEG '/

IF (ICALL.LE.15) THEN
IF (ITEM.LT.ILOW.OR.ITEM.GT.IUP) THEN
WRITE (*,2910) OPTI(ICALL),ITEM,OPTI(ICALL),ILOW,IUP
WRITE (29,2910) OPTI(ICALL),ITEM,OPTI(ICALL), ILOW,IUP
INDIC = INDIC + 1
ENDIF
ELSE
IF (ITEM.LT.ILOW.OR.ITEM.GT.IUP) THEN
I = ICALL-15
WRITE (*,2920) OPTI(ICALL), ITEM,OPTI (ICALL),IUP,WHICH (I)
WRITE (29,2920) OPTI(ICALL),ITEM,OPTI (ICALL),IUP,WHICH(I)

STOP
ENDIF
ENDIF
2910 FORMAT (/' Input Error: ',A6,'=",Il/
+ * Specify ’,A6,’ in the range of [’,I1,',’,I1,’]1")

2920 FORMAT (/' Input Error: ',A6,'=',I8/
+ " Specify ’,A6," in the range of [1,',I8,717/

+ ’* Change PARAMETER ’,A2,’ if necessary’)
c
RETURN
END
c
C 37— END OF SUBROUTINE CHEOPT ~=====————————ee——aa
C #38HH#HHHHFHH#HFH4#F 44 ##¥ SUBROUTINE STOPP H#H#HHHFH*FHFFHFFFHHEHH#H
e
c This subroutine executes a programmed stop
c

SUBROUTINE STOPP (IBEGIN,IEND)

(¢]

CHARACTER*55 MSG(8)
DATA MSG /
' Special storing requested,’,
but pertinent identifiers not specified correctly.’,
Check identifiers IREQ, IELEV,IV,IDUDT,ISNR.’,
Need more data.’,
SWL is always above the structure.’,
RUNUP/OVERTOPPING computation can not be performed.’,
Part of the structure is above SWL.’,
TRANSMISSION computation can not be performed.’/
100 I = IBEGIN, IEND
WRITE (*,2910) MSG(I)
WRITE (29,2910) MSG(I)
100 CONTINUE
WRITE (*,2920)
WRITE (29,2920)
2910 FORMAT (AS55)
2920 FORMAT (' Programmed Stop.’)
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c
sTop
END

c

o E e — END OF SUBROUTINE STOPP ===mmmmmme————————————
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