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Abstract

Wave propagation models for linear and weakly nonlinear waves are developed
based on mild-slope equations. The pseudospectral Fourier approach is used to re-
duce mild-slope equations to a set of ordinary differential equations in terms of the
modified potential, ¢,/CCj, , at the collocation points in the on-offshore direction.
The wave field is then decoupled into a series of angular modes including all the for-
ward and backward propagation modes. Both forward and backward wave fields are
taken into account in the case of linear waves. For weakly nonlinear waves only the
forward scattering is considered. Linear and nonlinear small-angle parabolic models
are also developed for comparison. The effects of energy dissipation, which are non-
linear, are directly included in the formulation. Numerical results are presented for
wave refraction over an equilibrium beach profile and wave focusing over submerged
shoals: an elliptic shoal on a sloping beach and a circular shoal on a flat bottom. The
importance of the backward scattering is illustrated by the latter example.

1 Introduction

In recent years parabolic approximations have been employed to develop efficient and
practical models for computing propagation of water waves over a varying topography. Liu
(1990) gave a detailed account of the development and the capability of various parabolic
approximation models. The early versions of parabolic approximation models require that
waves propagate nearly along a predetermined direction. In other words, these models can
only provide accurate solutions in the forward propagation wave field within a relatively
narrow range of angular spectrum; this is called small-angle approximation. Efforts have
been made by several researchers to relax this limitation with various degrees of success.
Most recently, Dalrymple & Kirby (1988) and Dalrymple et al. (1989) developed a wave
propagation model valid for a large angle of incidence. In their models the wave field
is decomposed into an angular spectrum via a Fourier transformation in the alongshore

direction. Ignoring the backward scattering field, Dalrymple and his associates retained



all the angular modes in the forward propagation wave field independent of the angle of

incidence.
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Fig. 1a Sketch of the axisymmetry of the wave Fig. 1b Forward propagation modes at a point P’

field behind a submerged circular shoal. with respect to different coordinate systems.

For many refraction-diffraction problems, the existing wide-angle parabolic models,
without including the backward propagation wave field, do not necessarily give accurate
solutions. For instance, consider the scattering of a small amplitude wave train by a
submerged circular shoal. As shown in Figure 1a, the z-axis coincides with the on-offshore
direction. Independent of the angle of incidence, the existing wide-angle models calculate
the forward propagation angular modes with propagation directions covering the range
from —90° to 90°, e.g. wave field at a point P shown in Figure la. If the height of the
submerged shoal is not very large in comparison with the depth, the reflection is indeed
weak and can be neglected. The existing wide-angle models provide accurate solutions for
the normal incidence (6o = 0). On the other hand, for an oblique incidence, the direction of
wave propagation coincides with 2'—axis and the wave field at point P’ is exactly the same
as that at point P due to the axisymmetry of the circular shoal (i.e. line A'B’ corresponds
to line AB in Figure la). Hence, the wave field at point P’ should be expressed as the

linear combination of forward propagation modes with respect to coordinate system (z',y'),
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whose propagation directions span from a’ to b’ in Figure 1b. However, the existing wide-
angle parabolic models express the wave field at point P’ in terms of forward propagation
modes with respect to the coordinate system (z,y), whose propagation directions span
from a to b as shown in Figure 1b. Therefore, the accuracy of the existing wide-angle
parabolic models depends on the significance of angular modes ranging from b to ¥, which
in turn depends on the variation of the topography in y-direction. If the contribution from
these modes is not small, the existing wide-angle parabolic models can not give accurate
results, even if the reflection is negligible. Furthermore, because the angular span from b
to b’ is directly proportional to the angle of incidence, less accurate results are expected
from the existing wide-angle parabolic models for the cases with larger angle of incidence.
In summary, for a large angle of incidence, a portion of the forward propagation wave field
in terms of the coordinate system (2z',y') is actually in the backward propagation field
in terms of the coordinate system (,y), which is adopted in numerical computations.
Hence, the existing wide-angle models, which ignore the backward propagation wave field,
can not simulate this situation accurately. One possible remedy is to rotate the coordinates
such that the direction of incident wave propagation always coincide with the z-axis (a
similar idea has been suggested by Dodd (1989) who treated the reflected wave as a part
of the forward propagation wave field). However, for a general problem with a complex
topography one does not necessarily know how to choose the z-direction. A more formal
way to deal with this problem is to include the backward propagation wave field in the
model. In so doing, the weakly reflection is also included in the computation.

Based on the small-angle approximation, Liu & Tsay (1983) developed an iterative
numerical model which included the backward propagation wave field. McMaken (1986)
pointed out that Liu & Tsay’s approach can not be extended to the wide-angle approxi-
mation, i.e. the iterative scheme diverges if higher order derivative terms are included in
the parabolic approximation. Therefore, a new approach is needed to model the forward
and backward wave fields without the constraint of the small-angle approximation.

Because the Fourier transformation was used in Dalrymple’s and his associate’s models,



only linear problems can be solved directly. Although the nonlinearity of Stokes waves was
incorporated in their cdmputations by using an empirical nonlinear dispersion relationship,
their approach cannot be extended to include other types of nonlinearity in governing
equations. Using a method of multiple scales and Stokes expansions for the velocity
potential and free-surface displacement, Suh et al. (1990) developed an angular spectrum
model for the propagation of Stokes waves over a mildly-varying topography. This model
includes nonlinearity in a more rigorous fashion, but it still can not incorporate nonlinear
terms due to energy dissipation.

In this paper we would like to accomplish two objectives. First, we shall present a
mathematical model to calculate both forward and backward propagation wave fields for
linear waves. The angular spectrum scheme is used. Therefore, the model is valid for all
angles of incidence. Secondly, we shall consider some nonlinearities in the model. The
nonlinearity may be contributed from the finite amplitude effects of Stokes waves or from
energy dissipation, such as bottom friction and wave breaking. Because these nonlinear
terms are derived either analytically or empirically for the forward propagation modes,
the nonlinear model ignores the backward scattering wave field.

In the following sections we begin with the introduction of a nonlinear mild-slope
equation. We then apply the pseudospectral Fourier method by representing the wave
field in terms of trigonometric polynomials in the alongshore (y-) direction. (A similar
pseudospectral method has been used by Panchang & Kopriva (1989) who employed the
Chebyshev collocation pseudospectral method in both horizontal directions to solve the
Euler’s equations.) The mild-slope equation is converted into a set of coupled nonlinear
ordinary differential equations for the modified potential at the collocation points. Because
the coupling matrix is real and symmetric, the wave field can be decoupled into a series
of angular modes including all the forward and backward propagation components. For
linear waves both forward and backward scattering wave fields are solved by constructing a
Bremmer series. Only the forward scattering is considered for weakly nonlinear waves (the

corresponding model is called wide-angle parabolic model). This is primarily because of our




ignorance in splitting the nonlinearity between the forward and the backward propagation
wave fields. For comparison, small-angle models are also derived for both linear and
nonlinear waves.

Several numerical examples are presented to demonstrate the validity of both small-
angle and wide-angle parabolic models and the importance of the backward scattering
field. In the first example, the wave refraction over an equilibrium beach profile (parallel
depth contours) is examined. It is shown that the wide-angle parabolic model produces
the same results as those of ray theory for all angles of incidence up to 90°. The small-
angle model can be employed only when the angle of incidence is less than 30°. The
nonlinear effects due to breaking and bottom friction are also examined. In the second
and the third examples, wave focusing over a submerged shoal is investigated. For the
case of an elliptical shoal, the comparison between numerical results and experimental
data (Berkhoff, Booij & Radder 1982) shows that nonlinearity is important in the focal
region and the small-angle model produces excellent numerical results for this particular
experimental set-up. To examine the importance of the backward scattering field and the
range of validity of the nonlinear wide-angle parabolic model, the wave focusing behind
a circular shoal resting on a flat bottom is studied. Because of the axisymmetry of the
circular shoal, the wave pattern behind the shoal should be independent of the angle of
incidence. For linear waves, if backward scattering is ignored, the wave pattern for a large
angle of incidence (6o = 60° in the numerical example) shows significant difference from
that for the normal incidence. However, if both forward and backward scattering are taken
into account, the numerical results show that the wave pattern indeed is independent of
the angle of incidence. For nonlinear waves, only forward scattering is considered and the
nonlinear wide-angle parabolic model can produces satisfying results for angles of incidence

up to 60°.



2 Linear and nonlinear mild-slope equations

The propagation of small amplitude water waves over a slowly varying topography can
be described by the following linear mild-slope equation (Berkhoff 1972, Smith & Sprinks
1975)

V- (CCV$)+ kCCup=0 (2.1)

where ¢(z,y) is the velocity potential on the mean free surface (z = 0), k(z,y) is the wave
number, C' = w/k and C; = dw/dk are the phase and group velocities respectively, w is
the wave angular frequency, which is related to the wave number k(z,y) and the water

depth h(z,y) by the dispersion relation

w? = gk tanh kh (2.2)

where g is the gravitational acceleration.

The corresponding non-linear mild-slope equation has not been formally derived. How-
ever, if the direction of wave propagation can be predetermined (e.g. forward propagation
only), the mild-slope equation with a weak nonlinearity caused by the finite amplitude

can be written approximately as (Liu 1990):

2
V-(CC,V¢)+kCCyp - K (g) 19’6 =0 (2.3)
in which
K= —&(s + cosh 4kh — 2tanh®kh) (2.4)
" 8sinh*kh ‘

We reiterate here that the cubic nonlinear term was derived based on the assumption that
the dominant wave propagation direction coincides with z-axis. Therefore, the applica-
tion of the mild-slope equation in the nonlinear form should be restricted to the forward
propagation wave field.

The effects of energy dissipation have also been included in the mild-slope equation
by many researchers (Booij 1981, Dingemans 1983, 1985, Liu 1986, Liu & Tsay 1985,



Dalrymple et al. 1984). Denoting W as the rate of energy dissipation per unit wave

energy, we introduce the dissipative term into the mild-slope equation

2
V. (CC,V¢)+ K*CC,pp +iwW¢ — K (%) /’¢ =0 (2.5)

where i = /~1. The dissipation function W is usually defined empirically according to
different dissipative processes, and is a function of wave amplitude, i.e. W = W(z,y; ¢).
This adds another nonlinear term to the mild-slope equation. Once again, the empirical
forms for the dissipation function W are largely developed for forward progressive waves.
The nonlinear mild-slope equation, (2.5), should be used for the forward propagation
modes.

Introducing the transformation

¢ = ¢\/CC, (2.6)

into linear and nonlinear mild-slope equation (2.1) and (2.5), we obtain

V% + k¢ + G(z,y;£)¢ =0 (2.7)
where .
k2 =k - L (2.8)
cc,
and
G(z,y;6) =0 (2.9)
for linear waves, or
G(z,y;¢) = c'lc, iwW (z,y;£/,/CC,) — )c(ﬁ) %} (2.10)

for nonlinear problems with the explicit expression depending on the specific form used



for the dissipative function W.

3 Pseudospectral Fourier method

In this paper we consider periodic problems in the alongshore (y-) direction with a length
L. We map the interval y € [0, L] into § € [0,27]. The variables in the new domain are

indicated by an overbar, i.e.

(2,y) = &(2,9), k(z,y) = ke(z,3), G(z,¥;¢) = C(z,7;§) (8.1)

The mild-slope equation can be rewritten as (after overbars have been dropped for
simplicity) -

. (%) B K raE=o0 (3.2)

922 ay?
for y € [0,2r]. Because ¢ is a periodic function in the y-direction, it can be interpolated

by trigonometric polynomial interpolants

o) = gV - wleot(U5Y)  (G=01,..2-1)  (3)

at the following set of collocation points (Gottlieb et al. 1984)

] ;
y,-=-1§ (j=0,1,...,2N —1) (3.4)
Thus, ¢ has the form
IN-1
(2,9) = E £(2,95)9i(v) (3.5)

For later use, the m-th order derivative of ¢ with respect to y, evaluated at the collo-

cation point y = y, is given here

m 2N -1 IN-1
Tl =Y e T2 SN e e

Oy™ .
Y=Un i=0 V=un =0



where

¥i(z) = &(=,v;) (3.7)
and
d"g;(y)
Dy 3.8
[ ]n,; dy"‘ -~ ( )
which is a 2N x 2N matrix. Specifically (Gottlieb et al. 1984),
1(_1\n+7 Un—¥i :
[Dl]n,j - { :( 1)™* cot( 2 ), J?En (3.9)
0, j=n
and
1(_1\ntitl npp2(¥n—¥i\
[Diluj={ 3( 1)+ ::sc( 2 3 J?én (3'10)
— 8 J=n

From (3.9) and (3.10), D, is a real anti-symmetric matrix and D, is a real symmetric

matrix. In general, the m-th order (m > 2) spectral differentiation operator can be

written as the m/2-th power of D, if m is even or as the m-th power of D, if m is odd.
Substituting (3.5) into (3.2) and evaluating the resulting equation at each collocation

point, ¥, , we obtain

d*y, 2 (2“.) 2IN-1

o = Ea [Da),, ;i + kiYn+ Gapn=0 (n=0,1,...,2N - 1) (3.11)

where

hn(z) = kc(zsyn)’ G“(Z,‘gb,,) = G(z, Yn; "pn) (3.12)

It is remarked here that g;(yn) = §;» has been employed. We have converted the mild-
slope equation into a system of coupled nonlinear ordinary differential equations for 1,(2).
The coupling is provided by the second derivative of the modified potential function with
respect to the y-axis (the alongshore direction). Since the coupling matrix D, is symmetric,

the solution to (3.11) can be expressed as a linear combination of a series of forward and



backward propagating modes. In the following section, for a linear wave system, we take
both forward and backward wave propagation into account by constructing the Bremmer
series from the resulting Helmholtz-like equations. On the other hand, only the forward

propagation shall be considered for weakly nonlinear waves.

4 Fourier decomposition

To decompose the wave field into a series of wave modes which consist of a complete

discrete angular spectrum, we rewrite (3.11) in the following form:

22N-1
d;f:" * (?E) J_Zzg [Da], ;%5 + K*%n — K*Vithn + Gup = 0 (4.1)
where
2 2 2 2 1 o=,
vi(@) = 1= ki(z,u)/K*(=),  K'2)= 5= [ Ki(z,y)dy (4.2)

in which K? denotes the averaged value of k? over the computational domain in the y-
direction. This transformation was first used by Dalrymple et al. (1989).

Because D; is a real symmetric matrix, there exists an orthogonal matrix @ such that

QTD,Q = 1{-»?*} (4.3)

where QT is the transpose of Q, I is a 2N x 2N identity matrix and {—A?} is a 2N column
vector called the spectrum of D;, whose n-th element, —A3(n = 0,1,...,2N — 1), is the
n-th eigenvalue of D;. The eigenvalues and the corresponding eigenvectors can be given

analytically. The spectrum of D, can be written as:

{-21} = {o,-1,-1,...,—(N - 1)%, -(N -1)", —N’}T (44)

Therefore, with the exception of the first and the last eigenvalues, —A2 = 0 and —N?,

10



the other eigenvalues of D, have double multiplicity. The corresponding 2N mutually

orthogonal eigenvectors are

Vi = {expli(n — N)yol, expli(n — N)yi], ..., expli(n — N)yan_1]}* (4.5)

with n = 0,1,...,2N — 1. Hence, the matrix Q in (4.3) can be written explicitly as

:}; €08 Yo sin yo =+ cos[(N — 1)yo] sin[(N — 1)yo) ﬂ; cos Nyo
\/I_\FQ . :}; cos yy siny, -+ cos[(N — 1)y] sin[(N — 1)y1] d;cog Ny,
j; cosyanN-1 sinyan-1 -+ cos[(N — 1)yan-1] sin[(N — 1)yan_1] j;cos Nyan-1 |
(4.6)

We introduce the following non-singular transformation

aIN-1

Ya(z) = Y. Qumim(2) (rn=0,1,...,2N —1) (4.7)

m=0
Substituting (4.7) into (4.1) and multiplying the resulting equations by Q7, noting that
QTQ =1, yield

d”?n 2 27\ ? 2 = —
dz? * [K = (L) Anl e+ jz=t:) Hpjn; =0 (4.8)
where
IN-1 2N-1
Hoj= 3 Qmn [Gm(z; > Qmim) = K| Qm,; (4.9)
. m=0 =0

We now split the wave field into the forward propagation and the backward propagation
fields

T = 0% + 7 (410)

11



dpt 2r\? _ _
p =z\/K’— (T) AR M+ Pa(ng - MiN_1i M6+ 2 M) (4.11)

dn,, ) 2x\? _ - -
T;?;" — "‘t\/K"" (E") /\: Mn — Pn(ﬂg's---:ﬂ;]v_liﬂu:---:ﬂm_x) (4'12)

Substituting (4.10)-(4.12) into (4.8), we obtain

2 _ IN-1
Tt 50 IR BT
2\/1(: ,\z z 2¢K’ ) A =0

Equations (4.11) and (4.12) are coupled first-order nonlinear ordinary differential equa-

tions. The coupling between the forward and the backward propagation is represented by
Py

4.1 Wide-angle parabolic model

Neglecting the backward scattering 7, as a first approximation, (4.8) can be simplified as

+ . " "
%‘_ - i‘/K’ _ (2;) A2t + —.__' - 1%_—%__5_
? 2/ K? - ()22 2/ K? - ()22
2N -1
E ﬂl.’q’ (“‘ — 0! 11 ke :2N e 1) (414)
j=0
where
aN-1 aN-1
Hij= 3 Qmn [Gm("’i Y Qmunt) - K*3| Qmy; (4.15)
m=0 =0

Note that for each forward propagating mode #;} the direction of wave propagation can

be expressed as

12



() A
i

The corresponding forward propagating wave field at each collocation point 1, includes

(n=0,1,...,2N — 1) (4.16)

contributions from 2N modes whose angles sweep from —90° to 90° (see (4.7)). Therefore,
(4.14) with (4.7) is called “wide-angle” parabolic model. We remark that the derivation of
the wide-angle model is independent of the angle of incidence. In the appendix we show
that if the angle of incidence coincides with one of 8, in (4.16) the linear wide-angle model
gives the same result as the ray theory does.

On the right-hand side of (4.14), the first term represents either a progressive mode
or an evanescent mode depending on whether [K? — (355)’4\:] is positive or negative.
The second term represents the shoaling and refraction effect of each wave mode. The
third term denotes the wave diffraction due to uneven topography in the y-direction and

nonlinearities due to finite wave amplitude and/or energy dissipation if G # 0.

4.2 Bremmer series solution to linear wave propagation

As discussed in the introduction section, for a large angle of incidence the backward
scattering may become important if the variation of the topograph in y-direction is not
small (see (4.9), (4.13) and (4.12)) . In this section we derive Bremmer series solutions to
(4.8) to include both the forward and backward wave field.
Let 77o(z) satisfy
Mo =0 (n=0,1,...,2N - 1) (4.17)

dz \/K’ A’ Mo + Pa(M50: - - s 13N -1,01 Moj00 - -» Mav—-1,0)
7e(0)=an (n=0,1,...,2N 1) (4.18)

13



and n%,.(2) (m > 1) satisfy

AN m ; N e - -
“d_zl—— = _'\/Kz - (f) A s — Pn('ktm—n ee v'-'?;N-1,m-1i"Io,m: v s MaN=1,m)

Tom(®) =0  (n=0,1,...,2N —1) (4.19)

dnt . 2r\? - -
_d’;& = ‘\/K: - (?) ’\3: nttm + Pﬂ(qg:m: b :W;N—‘l,m; ﬂo,m: LS :ﬂm-1.m)

Tim(0)=0  (n=0,1,...,2N —1) (4.20)

where a, is the n-th forward propagating mode of the incident wave at z = 0 and b is the

length of computational domain in the z-direction, then

n(e) = ion;mtz) (n=0,1,...,2N ~ 1) (4.21)
7 (2) = in;,m(z) (n=0,1,...,2N - 1) (4.22)

yield solutions to (4.11) and (4.12), provided that these Neumann series converge abso-

lutely and uniformly. Furthermore, if we define

Unam(2) = Npm(2)s Unamir = ymys(2) (m=0,1,...) (4.23)

then
M(@) = 3 Unml@) = f(2) +75(s)  (n=0,1,...,2N 1)  (424)

m=0
are the Bremmer series and will, subject to absolute and uniform convergence, give the
solution to (4.8). Note that the first term (m = 0) in the series (4.24) indeed is the solution
to (4.14), which is the parabolic approximation to equation (4.8).
In the study of one-dimensional wave propagation in an inhomogeneous medium, Atkin-
son (1960) gave the specific necessary and sufficient condition, in terms of the variability

of the medium, for the absolute and uniform convergence of the Bremmer series. Loosely

14



speaking, the series will converge if the variations in the medium (equivalently, the vari-

ations of wave number) are not too large. In the case when the bathymetry contours

are straight lines, parallel to the alongshore direction, without taking any nonlinear ef-

fects into account, equation (4.8) is automatically decoupled into 2N one-dimensional

Helmholtz equations, governing the wave propagation of each mode in the discrete angu-

lar spectrum. Therefore, we expect the 2N Bremmer series in (4.24) will converge because

of the mild-slope assumption.

5 Small-angle parabolic model

For the purpose of comparison, we also derive a small-angle parabolic model and record

it here. Assume that the forward and the backward waves propagate primarily in the

+z-direction, respectively. The wave field can be split in the following way:

=¥n +¥n
Wo — ik + P
‘Z”—j = —ik¥; ~ P,

Substitutions of (5.1),
(5.2) and (5.3) into (3.11) yield

Pn. 2kn

j=0

ot —92)+ ()T (Dal s + Gl 1»,.)«».]

Ignoring the backward wave 1, which usually is small, we have

dyt 1 22N-1
%'- = tkatpy + 2;" ! kn¢+ ( L) g [Da], %7 + G,(z;¢:)¢:]

(n=0,1,...,2N — 1)

15
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(5.3)

(5.4)

(5.5)



which is a system of first-order ordinary differential equations for the forward wave field.
When G = 0 (linear theory), (5.5) recovers the parabolic equation for the forward propa-
gation wave field derived by Radder (1979).

We can further factor out the fast variable in ;" by introducing

¥a(2) = U3 () exp(ik;z) (5.6)
into (5.5)
dd\]:' (k,.. k*)'l"‘. e s 2kﬂ !dkn + ( )3 g [D,]ng'l’:'i‘G ,I,+

(n=0,1,...,2N-1) (5.7)

where kg is a constant reference wave number.

6 Energy dissipation

When waves propagate into shallow water, the effects of bottom friction and wave breaking
may become significant. To incorporate these energy dissipation effects into the mild-slope
equation, analytic expression for W in terms of ¢ must be specified. For different physical
processes, different forms of empirical expression of W have been proposed. When energy
dissipation is caused by the bottom turbulent boundary layer, the dissipation function W
may be expressed as (Liu & Tsay, 1985)

31rg(2kh + sinh 2kh) sinh kh '

where f, is the friction factor, which should be related to wave parameters and bottom
conditions. For simplicity, we choose f, as a constant.

In the case of wave breaking, the wave height decay model developed by Dally et al.
(1984) is applied and the dissipation function W can be expressed as (Kirby & Dalrymple

16



1986)

w= T2 [1 - (5%)’] (6.2)

where J and T' are empirical constants. Calibrating with laboratory data, Dally et al.
recommended that J = 0.15 and T' = 0.4 should be used. For convenience, the “0.78
criterion” is used to provide prediction of incipient breaking, i.e. waves start breaking

when f > 0.78, where H is the wave height.

7 Numerical examples

To solve the first-order ordinary differential equations (4.14) and (5.7), initial conditions
are needed. For a uniform incident wave the free surface displacement ¢ is given along
z=01e

¢ = Ao exp(iko sin boy) (7.1)

where Ao, ko and 6, are the incident amplitude, wave number and the angle of incidence
along z = 0, respectively. For the small-angle model, the free surface displacement of the

incident waves is converted into a set of initial conditions as:

w L
Tr(0) =91 (0) = —-i;Ao\fCoC,o exp {iko sinﬂu;—N} (n=0,1,...,2N-1) (1.2)

where Cp and Cyo are the phase and the group velocity along z = 0, respectively. For the
wide-angle model, the corresponding initial conditions are
aN-1

mm(0)= 3 Qin¥f(0) (n=0,1,...,2N 1) (7.3)

j=0
where ¥ (0) are the same as (7.2). Note that in (4.18) a, = 7;7(0). When 8, # 0, the

periodic condition in the y-direction requires

_ 2r
- kosinﬂop

(7.4)

5 f



where p # 0 and is an arbitrary integer.

The fourth-order Runge-Kutta method is employed to solve equations (5.7) and (4.14)
and to obtain the Bremmer series solutions ((4.18) to (4.20)). To test the capability of the
present models for various physical phenomena such as refraction, diffraction, nonlinearity
caused by finite amplitude and energy dissipation and to examine the importance of the
backward scattering field for a large angle of incidence, we apply the models to several
different cases. These include wave refraction over an equilibrium beach, and wave focus-
ing behind submerged elliptic and circular shoals. Bottom friction and breaking are not

considered in the following examples unless specifically indicated otherwise.

7.1 Wave refraction over an equilibrium beach profile

When the bathymetry contours are parallel to the alongshore direction and there is no
obstacle inside the domain, the diffraction effect vanishes. Furthermore, if the reflection
is ignored, results from the ray theory should be recovered from the mild-slope equation
(Berkhoff, 1976). To verify this point with present models, we have chosen an equilibrium
beach profile, which represents a typical natural beach profile along the east coast of the
U.S. (Dean, 1977). The equilibrium beach profile used in numerical experiments is given
as

h(z) = 0.15(1000 — z)*/* (7.5)

in which both the on-offshore coordinate z and depth h have a unit in meter. The incident
wave period is T' = 8 second and wave amplitude Ay = 1.0m. The computational domain
in the z-direction is 1000(m) and in the y-direction L = [Jm%"‘h] X hTzui_a.T (m) in which
(f] denotes the nearest integer to the real number f inside the bracket, 6, is the angle of
incidence and ky is the incident wave number. When the incident wave is normal incident,
L = 1000(m). We have taken N = 20, Az = 10m and the reference wave number in (5.7)
as ko. The comparison among results from the wide-angle and the small-angle parabolic
models and the ray theory is shown in figure 2. In this figure, the wave amplitude has

been normalized by the incident amplitude for different angles of incidence. The numerical

18



results obtained from the wide-angle model show excellent agreement with those from the
ray theory for angles of incidence up to 89° (the analytic proof of this agreement is given
in the appendix). The small-angle model, on the other hand, can give good approximation
only when the angle of incidence is less than 30°. In fact, when water depth varies only in
the z-direction, the amplitude given by the linear small-angle model are independent of

the angle of incidence. This can be proved from (5.5) and is shown in the following.

2.0
1.8 |
i — Ray Theory
6 O Wide-Angle Model
= A Small-Angle Model | 4m0®
| 6,=30°
[ 0=45"
1Al L 6,=60"
TAyl
| 05=75°
2] 0,=88°
________ it 0=89°
0.0 [ L L L 1
0 200 400 600 800 1000
x (m)

Figure 2: Amplitude variation over an equilibrium beach profile for different
angles on incidence.

Because the wave amplitude is uniform in the y-direction in this case, the solution to
(5.5) can be written as:
aN-1

é(e,3) = A(e) exp [y (e37] = 3 n(o)onty) (1:6)

where ky(z) is a real value. The second derivative of (7.6) with respect to y evaluated at

Yn becomes:
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1

8¢(z,y) _ (’%%) P [ k.,(z)y—] ’:"_o [Dal, ;i(=) (7.7)

dy?
We want to show that || = |A| is independent of the angle of incidence.
Substituting (7.6) and (7.7) into (5.5), and noting that k, = k., we obtain

ud nL dky A dk,
[k°_2Ndz 2k]A 2k, dz (:8)

V=Un

Integrating the above equation yields
nLd k’
Ale) = [f (k° - 5‘1\7% "~ 2k, ) d’] (0)

where D is a constant. Therefore, the amplitude ratio with respect to the incident ampli-

tude can be written as

% B % (7.10)

which is independent of the angle of incidence, i.e. the angle of incidence has impact on
the phase of { but not on the amplitude of £. Furthermore (7.10) can be shown as a good
approximation to the shoaling formula. Using the relationships among ||, |#|, and |£], we

have

Kl _ 10l _ IE//CC1  14/\/CC,]  \/kaCCr -

ol b0l " [¢0/\/CoCool  |40/(/CuCral ~ \JCC,
The second term on the right-hand side of (2.8) is usually very small. Neglecting it, we
have kCo = k.C and (7..11) becomes

1¢l _ YOG

ol = /e ()

which is the well-known shoaling formula.
Figure 3 shows numerical results using different friction factors (fe = 0.0,0.02,0.05)
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Figure 3: Numerical results of normalized wave amplitude using different
friction factors for different angles of incidence.
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for different angles of incidence (6 = 0°,45°,75°). The bottom friction reduces the wave
amplitude significantly in the shallow-water region, especially when fe is large, and there-
fore postpones wave breaking. Comparing figure 3a, 3b and 3c, we observe that for the
same friction factor, the dissipation function W in (6.1) reduces the wave amplitude more
quickly for the wave with a small angle of incidence than the wave with a large angle of
incidence. For a normal incident wave, both small-angle and wide-angle models agree very
well (figure 3a).

Figure 4 gives the results of breaking wave height variation in the surf zone. The wave
is normal incident and the bottom friction is also taken into account (f. = 0.02). The
breaking criteria (%)5 = 0.78 is used to locate the position of incipient wave breaking.
Equation (6.2) is then employed in the models. This figure shows that after breaking the

wave amplitude decreases dramatically.

2.0

— Wide-Angle Model
A Small-Angle Model

1.4

| Breaking
0.6

04

02}

0.0 i 1 N 1 i [ M L i
0 200 400 600 800 1000
x (m)

Figure 4: Prediction of breaking wave amplitude in surf zone for a normal
incident wave with friction factor f, = 0.02.
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7.2 Wave focusing behind an elliptic shoal on a sloping beach

To test the present models for an irregular topography, we have used the experiment
reported by Berkhoff, Booij & Radder (1982). The experimental bathymetry consists of
an elliptic shoal situating on a plane beach with a slope 1:50. The slope rises from a region
of constant depth A = 0.45m and the entire slope is rotated clockwise at an angle of 20°
as shown in figure 5, where the solid lines indicate bottom contours and dashed lines are
the transects (labelled from 1 to 8) along which data from the experiment of Berkhoff et
al. (1982) are available. To give more detail of the geometry of the shoal, we introduce
slope-oriented coordinates (z',y’) as shown in figure 5 , which are related to computational

coordinates (z,y) by

2’ = (z — 10.5) cos 20° — (y — 10.0) sin 20°

(7.13)
¥’ = (2 — 10.5) sin 20° + (y — 10.0) cos 20°

*'--._\ i ~——

92y 4 Qg

1 10 =(m

¥ ()

Figure 5: Bathymetry of the computational domain for the experiment by
Berkhoff et al. (1982). Dashed lines indicate the transects of wave measure-
ment.
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The origin (2’,y’) = (0,0) corresponds to the center of the shoal and the boundary of the
shoal is given by

(='/3)" + (¥'/4)* =1 (7.14)

Outside the shoal region, the water depth is given by

(7.15)

% ho = 0.45m, z' < —5.84m
ho —0.02(5.84 + 2')m, 2z’ > —5.84m
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Figure 6: Comparison between the small-angle model results with the exper-
imental data by Berkhoff et al. (1982) at section 1-8 (see Fig.5) in terms of
normalized wave amplitude: nonlinear model; - - - linear model; 00 0
experimental data.
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In the shoal region the depth is modified according to

h=h+03-05/1—(2//3.75) — (y/5)? (7.16)

resulting in a depth at the center of the shoal of 0.1332m.

The initial conditions specify normal incident waves with a period T = 1s and an
amplitude Ao = 0.0232m. For the small-angle model, we have taken Az = 0.5m and
N =20 (i.e. Ay = 0.5m). Both linear and nonlinear (due to finite amplitude) models are
used to calculate the transformation of the incident wave. Comparisons among numerical
solutions from these models and the laboratory measurements along the transects 1-8 are
shown in figure 6. Again the wave amplitude has been normalized by the incident wave
amplitude. In figure 6 numerical results from the nonlinear and linear small-angle model
are indicated by solid and dotted lines, respectively, while measured data are indicated
by open circles. The nonlinear small-angle model shows excellent agreement with the
measured data. The nonlinearity due to finite amplitude clearly plays an important role
in wave focusing behind the shoal.

For the wide-angle model, we have taken Az = 0.5m and N = 15 (i.e. Ay = 0.67m).
The nonlinear results are shown in figure 7 by the solid lines, while the measured data
are indicated by open circles. Very good agreement between numerical results and exper-
imental data is observed.

Following Dalrymple et al. (1989), we present quantitative comparison between ex-
perimental data and numerical results using a statistical parameter proposed by Willmott
(1981). As a measure of the degree to which a numerical model’s predictions are error-free,

Willmott introduced a dimensionless quantity, d, as an index of agreement

251(&' =" 0.')’ =
TE (1P - 0i] + |0; - O)2

d=1- (7.17)

where O is the mean of the observed variates O; and P; (i=1,..., M) are the predicted

variates. The values for d vary between 0.0 and 1.0, where 1.0 indicates perfect agreement
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between observations and predictions and 0.0 indicates complete disagreement. The indices
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Figure 7: Comparison between the nonlinear wide-angle model results with
the experimental data by Berkhoff et al. (1982) in terms of normalized wave
amplitude: —— model results; 0 0 0 experimental data.

of agreement between numerical results from each nonlinear model and the experimental
data along each transect shown in figures 6 and 7 as well as for total measurement points
are given in table 1. Numerical results from the Dalrymple et al.’s (1989) wide-angle model
and from the nonlinear parabolic small-angle model of Kirby & Dalrymple (1983) are also
presented for comparison. The small-angle model gives better results than the wide-angle
does for this particular case. This may be explained that in the small-angle model the wave
number, ky,, is determined locally while in the wide-angle model the wave number, K, is
calculated by averaging k. along the y-direction. Therefore, the wide-angle model is more

sensitive to the imposed periodicity condition. Comparing our models against Dalrymple
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et al.’s (1989) model and nonlinear parabolic model (Kirby & Dalrymple, 1983) the indices

of agreement do not show large differences among them indicating that all the models work

quite well for this particular case.

Section Dalrymple
No. M | Wide-Angle | Small-Angle | M et al. Parabolic
1 26 0.864 0.953 28 0.923 0.928
2 26 0.962 0.978 28 0.945 0.973
3 26 0.981 0.985 28 0.986 0.983
4 26 0.984 0.995 27 0.991 0.993
5 26 0.970 0.988 28 0.980 0.990
6 20 0.926 0.987 20 0.981 0.988
7 20 0.967 0.989 20 0.962 0.985
8 20 0.880 0.955 20 0.799 0.951
Total | 190 0.977 0.991 199 0.983 0.990

Table 1: Indices of agreement for comparing the numerical model results
against the measurements for the experiment of Berkhoff et al. (1982).
“Parabolic” in last column refers to the nonlinear parabolic model of Kirby

& Dalrymple (1983).

7.3  Wave focusing behind a circular shoal resting on a flat

bottom

For the purpose of demonstrating the importance of the backward scattering field for large

angles of incidence and the applicability of the wide-angle parabolic model for the case

of a large angle of incidence over an uneven topography, we investigate the focusing of a

monochromatic wave train behind a circular shoal resting on a flat bottom. Owing to the

axisymmetry of the circular shoal, the wave focusing pattern behind the shoal should be

independent of the angle of incidence.

The water depth for the first series of tests is given by

h=

{ ho +a — By/1 - (a'/5) - (y'/5), r<R

ho,

r>R
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where ho = 0.336m and R = 4m is the radius of the shoal. The coordinates (2',y') with
the origin at the crest of the shoal and z'-axis aligning with the incident wave direction
are used and r = \/m We denote the shoal with a = 0.12,8 = 0.2 in (7.18) as
Case A and o = 0.18,8 = 0.3 as Case B. The corresponding shoal height at the crest for
Case A is 0.08m and for Case B is 0.12m. The same wave period and amplitude as those

of Berkhoff et al. (1982) are used in the following numerical studies.

7.3.1 The Bremmer series solution for linear wave propagation

To obtain both forward and backward wave propagation fields, we shall solve equations
(4.18) to (4.20) and generate the Bremmer series solution. In the following numerical
computations, Neumann series (4.21) and (4.22) are truncated at m = M according to

the following condition:
Mse(2)| < Gmae X 107*  (n=0,1,...,2N — 1) (7.19)

where @mas = max{ao,...,a;x-1}.

The computational domain in the z-direction is 25m and in the y-direction is L, which
has to satisfy the periodicity requirement (7.4). The marching step length is Az = 0.1m
for all following numerical tests. For normal incidence, the computational domain (both
Case A and B) is L = 30m, N = 30 (i.e. Ay = 0.5m) and the center of the shoal
is located at (z,y) = (15m,7.5m); for incident wave with angle of incidence 6, = 60°,
L = 89.60m, N = 90 (i.e. Ay = 0.498m) for Case A and L = 131.95m, N = 128 (i.e.
Ay = 0.515m) for Case B and the center of the shoal is located at (z,y) = (7.5m, 7.5m).
Figure 8(a,b) show the contour lines of wave amplitude normalized with respect to the
incident amplitude for normal incidence. Solid lines indicate the results by the Bremmer
series solution (M = 2 in (7.19) for Case A and M = 3 in (7.19) for Case B), while
dotted lines indicate the results given by the linear wide-angle parabolic model. The
comparison shows that for normal incidence, the backward scattering field indeed can be

ignored and the linear wide-angle parabolic approximation can give very accurate results.
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Figure 8: Contour lines of normalized amplitude for normal incidence:
Bremmer series solution; - - - - linear wide-angle model. (a) Case A; (b) Case

B.
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Figure 9: Contour lines of normalized amplitude for 6, = 60° : —— Brem-
mer series solution; ---- linear wide-angle model. (a) Case A; (b) Case
B.
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Figure 10: Contour lines of backward scattering wave amplitude normalized
with respect to the incident amplitude for 8, = 60°. (a) Case A; (b) Case
B.
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However, if the angle of incidence is large, the backward scattering is no longer small

and should be taken into consideration. Figure 9(a,b) compare the contour pattern of
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Figure 11: Comparison between normalized amplitude given by the linear
wide-angle model along sections (I) and (II) for difference angles of incidence
for Case A: 0o =0° .-+ 6 = 60°.

the Bremmer series solution results for 8, = 60° (solid lines; M = 3 for Case A and
M = 4 for Case B) against the pattern of wide-angle parabolic approximation (dotted
lines). The difference is quite obvious. Comparing figures 8 and 9, we observe that the
Bremmer series solutions, which include the backward scattering field, give almost the
same focusing patterns behind the shoal for §, = 60° as those for 6§y = 0°. To show the

region in which the backward scattering field is important, we plotted the contours for the
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backward scattering amplitude (¢7(z) = 25 Qnsn; (2)) normalized with respect to
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Figure 12: Comparison between normalized amplitude given by the Bremmer
series solution along sections (I) and (II) for different angles of incidence for
Case A: 6o =0° ... Gy = 60°.

the incident amplitude in figure 10(a,b). These figures show that the backward scattering
is important only inside the narrow strip region as shown in the figures, with maximum
value about 0.28 for Case A and 0.59 for Case B located on the left-hand side near the
center of the shoal. Outside ihis region the backward scattering can be ignored. For more
quantitative comparison, we compare the wave amplitude along sections (I) and (II) which
are Tm and 14m away from the shoal crest. Figure 11(a,b) show the results given by wide-
angle model for Case A with 8, = 0° and 60°. Solid lines indicate the results for normal
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incidence and dotted lines indicate the results for 6o = 60°. Except on the right-hand

side, the difference is large. Figure 12(a,b) and 13(a,b) show the Bremmer series results
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Figure 13: Comparison between normalized amplitude given by the Bremmer

series solution along sections (I) and (II) for different angles of incidence for

Case B: —— 90—"-00; SHatER 90 = 60°.
for 6o = 0° and y = 60° for Case A and B along sections (T) and (II). Again, solid lines
indicate the results for 8, = 0° and the dotted lines represent the results for 8, = 60°; the
agreement between two different angles of incidence is excellent for both cases. Therefore,
the Bremmer series solution which we constructed can be used to simulate the linear wave
propagation accurately for large angles of incidence, and the rate of convergence rate is

very fast for all examples given here (M < 4).
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7.3.2 Test of nonlinear wide-angle parabolic model for large angles of inci-

dence

Three different angles of incidence are used to test the nonlinear wide-angle parabolic
model: 6, = 0° 6, = 45° and 6, = 60°. The computational domain in the z-direction is
still 25m and in the y-direction is L, which has to satisfy the periodicity requirement (7.4).
The marching step length is Az = 0.1m for all following numerical tests. For the normal
incident wave, L = 25m, N = 25 (i.e. Ay = 0.5m); the center of the shoal is located
at (z,y) = (12.5m,7.5m). For the incident wave with 8, = 45°, L = 63.84m, N = 64
(i.e. Ay = 0.499m); the center of the shoal is at (7.5m,7.5m). For the incident wave
with 8o = 60°, L = 94.48m, N = 96 (i.e. Ay = 0.492m); the center of the shoal is also
located at (z,y) = (7.5m,7.5m). For Case A, the contours of the normalized amplitude
with respect to the incident wave amplitude are shown in figure 14(a,b,c) for each angle of
incidence. The overall wave focusing pattern behind the shoal for 0o = 45° is very similar
to that for 6p = 0°, while the wave pattern for 8, = 60° has some distortions on the left
side of the centerline. For more quantitative comparison, the variations of the normalized
amplitude along sections (I) and (II) are plotted in figure 15(a,b). Solid lines indicate the
results for §o = 0° while circles and triangles indicate the results for 6o = 45° and 6, = 60°
respectively. Along section (I), which is just behind the shoal, the agreement among the
results of three different angles of incidence is very good; along section (II), the results
for 8o = 45° still agree very well with those for 8, = 0°, but on the left-hand side of the
centerline, the results for 6, = 60° do not agree very well with those for 6, = 0°.

The height of the shoal crest in Case A is about 1/4 of the water depth on flat bottom.
In order to examine the effect of the magnitude of the bottom variation, we have tested the
model for a higher shoal—Case B which is about 1/3 of the water depth on the flat bottom.
The same computational parameters are used as the previous tests. Figure 16(a,b,c) show
the amplitude variations for 8y = 0°, 6, = 45° and 6, = 60° respectively. The wave pattern
for o = 45° still looks very similar to that for 6§ = 0°. But distortion of the focusing

pattern for the 60° incidence becomes severe, and the wave amplitude near the centerline
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Figure 14: Wave focusing pattern predicted by the nonlinear wide-angle
model for Case A: (a) 6p = 0° (b) 8 = 45°; (c) 6o = 60°.
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of focusing tends to be over predicted.
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Figure 15: Quantitative comparison among the results of normalized ampli-
tude given by the nonlinear wide-angle model along section (I) and (II) for
different angles of incidence : 6o = 0% 000 By =45° AAA 6, = 60°.

The above numerical tests show that for a large angle of incidence (> 45°), to obtain
accurate results, the backward scattering field can not be ignored. Intuitively, the wave
field in the constant depth region before the shoal should be affected by the presence of the
shoal if a large angle of incidence is modelled. The higher the shoal is, the greatar this effect
is. But this is not detected by the wide-angle model since it does not include backward
scattering wave. Comparing figure 14 and its counterpart figure 16, we found that the

greater the bottom variation in the y-direction, the bigger the error of the nonlinear wide-
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angle parabolic model for the same angle of incidence. Comparing the results from linear
and nonlinear parabolic wide-angle model (see figure 9a and 14c), we found that since the
nonlinearity increases the diffraction effect, for a large angle of incidence the contribution

from the backward modes for nonlinear waves is not as great as that for linear waves.

8 Concluding Remarks

Using the pseudospectral Fourier approach, Bremmer series solution which includes both
the forward and backward scattering fields is obtained for linear waves and “wide-angle”
and “small-angle” parabolic wave propagation models are developed. The effects of non-
linearities due to finite wave amplitudes, bottom friction and wave breaking are included
directly in the models. The success for deriving the Bremmer series solution and wide-angle

parabolic model hinges on the fact that the coupling matrix Djy:

(D = L8i2)
dy?
is a real symmetric matrix when the wave field can be assumed to be periodic in alongshore
direction. This guarantees the existence of a global transformation matrix Q used to
decompose the wave field into a series of propagation modes which consist of a complete
discrete angular spectrum. If other kinds of interpolation functions are used to relax the
limitation of periodic lateral boundary condition, such as Chebyshev polynomials, this
property may not be preserved. Then only the small-angle model can be derived.

For linear waves, all the backward propagation modes are included in the Bremmer
series solution. Through a numerical example it is shown that the backward propagation
modes could become significant when the angle of incidence is large. This is true even
if the reflection is negligible. In the Bremmer series solution because the entire discrete
angular spectrum is included in both forward and backward wave fields, the converged
numerical solution satisfies the original linear mild-slope equation. Therefore, not only

the refraction and diffraction, but also the reflection are included in the solution.
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For nonlinear waves, only the forward propagation modes are included. This is because
all the nonlinear effects considered in the nonlinear mild-slope equation are derived, either
analytical or empirically, from the assumption that waves are forward propagating. A
rigorous derivation of a nonlinear mild-slope equation is needed. Questions concerning the
splitting of nonlinear effects, such as breaking, bottom friction and finite amplitude, be-

tween forward and backward propagation modes are interesting topics for future research.
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Appendix

Considering the multiplicity of the eigenvalues of D, and noting that A2 = n?, the direc-
tions of forward propagation modes can be explicitly given as (from (4.16))

()~

R Wi

(-N+1<n < N) (A.1)

If the angle of incidence coincides with one of 8, in (A.1), say 6y (~N +1< M < N)

) M
()'m

(x
Op = tan™? J (A?)
K3 -
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where Ko = K(0), then the incident wave can be expressed as

£(0,y) = €oexp{i Koy sin Op}

with £ being a constant.

The initial values for 9;(z) (j = 0,1,...,2N — 1) are given by (3.7)

, ) L _ 2 L _
¥;(0) = éo exp{i Ko sin 9M‘2';y5} = o exp{t*EM —7i}

2
= §o[cos(My;) + isin(M7;)]

From (7.3) the initial values for 9,,(0) become

2N -1

mm(0) = D Qjm;(0) (m=0,1,...,2N - 1)

j=0

(A.3)

(A.5)

Because the column vectors of Q in (4.6) are mutually orthogonal, the summation in (A.5)

can be expressed explicitly as the follows:

V2N &, m=0
ml(0) = Sy : i M=o,
0, otherwise
V2N &, m=2N -1
7m(0) = b, m ; if M=N;
0, otherwise
VN &, m=2|M|-1
Mm(0) = | sgn(M)iv/N &, m = 2|M| ; if 1<|M|<N-1

0, otherwise

(A.6)

The linear version of (4.14) has an analytical solution if A is a function of z only, i.e.

() = nm(o)[ E:;:i:] exp{ I \/K’ 2—” A2 dz} (A7)

41



Thus

aN-1

Ya(z) = Z Qnmlm(2)

m=0
N-1
= @n, om0 + Z [@n2m-172m-1 + Q@namMam] + Qnan-1M2N-1 (A.8)

m=1

Substituting (A.6) and (A.7) into (A.8), we have

¥alz) = éo [ Ky - (E)M ’J N exp {s fo ) ‘/K’ = (-'f’l_‘l)=l Midz + ng,,} (A.9)

K = ()
Therefore
&(2,y) = &[ﬁ = Eg;:g:} lhexp {zjo \/K’ - (27"’)2 M?dz + i-z—EMy} (A.10)
and
lel _ 1ol _ | €//G | _ {LE (E)’M’]Céc‘:o}”‘
ol |0l €0/1/CoCyo [K? - (3)2M?|C2C?

1/2
[ cos Oa KoCoClyo ] (A.11)

vi-(EriEKCG,

Since ky = 2rM/L remains constant, we have

Substituting (A.12) into (A.11) and neglecting the difference between K = k. and k
(see(2.8)), we have

|_C-L _ [COSOHCQ} M (A13)

[¢o| | coséC,
which is the well-known refraction formula and can also be derived from the ray theory.
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