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Abstract

Modified Boussinesq equations are derived in terms of the velocity potential on an
arbitrary elevation and the free surface displacement. Phase velocity and group velocity
associated with the linearized modified Boussinesq equations are compared with those
given by the Stokes first-order theory over a wide range of water depths. To determine
the optimal elevation where the velocity potential should be evaluated, the summation of
relative errors of phase and group velocities over a range of depths from zero to half of the
equivalent deep water depth is minimized. For regular waves propagating over a mild-
slope topography, a small-angle parabolic approximation model is developed and solved
by the pseudospectral Chebyshev method. The pseudospectral Fourier method used by
Chen & Liu (1993) is employed to derive a wide-angle parabolic approximation model
for multi-directional wave propagation. The small-angle model is examined by comparing
numerical results with the experimental data of Whalin (1971). The wide-angle model
is tested by comparing numerical results with the refraction theory of cnoidal waves
(Skovgaard & Petersen, 1977) and is used to study the impact of the directed wave angle

on the oblique interaction of two identical cnoidal wavetrains in shallow water.

1 Introduction

Boussinesq-type equations, which are conventionally expressed in terms of the depth-averaged
horizontal velocity (Peregrine, 1967), have been commonly used to describe weakly nonlinear
and dispersive wave propagation in shallow water. They are capable of modelling the combined
effects of shoaling, refraction, reflection and diffraction of finite amplitude, irregular waves
propagating over a complex topography. These equations are derived based on the assumption
that the weakly nonlinearity represented by the ratio of wave amplitude to water depth,
€ = ag/ho, is in the same order of magnitude as the frequency dispersion denoted by the
square of the ratio of water depth to wavelength, u? = (ho/lo)>.

A major limitation of Boussinesq-type equations is that they are only applicable to a

relatively shallow water depth. For example, to keep errors of the phase velocity estimated



by linearized Boussinesq equations in terms of the depth-averaged velocity within 5% of that
determined from the Stokes first-order theory, the water depth has to be less than about
one-fifth of the equivalent deep water wavelength (McCowan, 1987). When the velocity on
the mean free surface or on the bottom is used in Boussinesq-type equations, the restriction
on depth is even more severe. Boussinesq-type equations actually become unstable in the
range of short waves or intermediate depths. This behavior poses two difficulties in modelling
wave propagation. First, these Boussinesq-type equations can not be used to simulate wave
propagation from an intermediate depth to a shallow depth accurately. Secondly, even in the
shallow water region numerically generated short waves could cause numerical instabilities
and give erroneous results.

Recently, numerous attempts have been made to extend the range of the applicability of
Boussinesq-type equations to deep water by improving their linear dispersion characteristics.
Witting (1984) used a set of conservative equations to investigate wave propagation in a
constant depth channel bounded by two rigid impermeable walls. The depth-averaged and
mean free surface velocities used in the Boussinesq-type equations were expanded into a Taylor
series in terms of a pseudo velocity. Coefficients in the series were then determined to yield a
Padé approximation to the Taylor expansion of the dispersion relation described by the linear
Stokes wave theory. Using (2,2) Padé approximation, Witting obtained good results for both
short and long waves. However, it is difficult to extend Witting’s approach to two horizontal
dimensions with a varying depth.

McCowan & Blackman (1989) modified the conventional Boussinesq equations (Peregrine,
1967) by intfoducing an effective depth and a dispersion tuning parameter. Again, the effective
depth and the dispersion tuning parameter were chosen to match the dispersion properties
of the first-order Stokes waves. In shallow water the effective depth is identical to the actual
depth while in deeper water the effective depth is restricted to the upper part of the water
where most of the wave action occurs. Such an approach is, however, only applicable to
monochromatic waves and it is not clear if it is applicable to a varying topography.

Madsen & Sorensen (1992) formulated the conventional Boussinesq equations in terms



of depth-integrated velocity components (i.e. fluxes) instead of depth-averaged velocity com-
ponents. With the mild slope assumption, they included some higher order terms, which
were neglected in the process of deriving Boussinesq equations, to the momentum equations
and obtained a new form of the Boussinesq equations. Because those additional higher or-
der terms have a common factor B, by choosing a proper value for B, the linear dispersion
characteristics of the resulting Boussinesq-type equations can be remarkably improved.

Nwogu (1993a) formally derived an alternative form of the Boussinesq equations using
the horizontal velocity on an arbitrary elevation as the velocity variable in the equations. He
showed that in the intermediate and deep water, the linear dispersion characteristics of the
new set of equations were strongly dependent of the choice of velocity variable. The linear
dispersion properties can be significantly improved by selecting a velocity close to mid-depth
as the velocity variable. This makes the new set of equations applicable to regular or irregular
waves travelling from a relative deep water to a shallow water.

The highest order of spatial derivatives in the equations derived by Nwogu is one order
higher than that in the conventional Boussinesq equations (Peregrine, 1967). This creates
a difficulty in specifying appropriate boundary conditions and increases the numerical effort
for solving these new equations. On the other hand, the parabolic approximation has been
developed rapidly as an efficient and practical tool for modelling wave propagation over a
varying topography. The parabolic approximation, typically converting an elliptic equation
into a parabolic equation, not only reduces the computational efforts dramatically but also
alleviates the burden of imposing the down wave boundary conditions, which usually are
unknown @ priori for most coastal hydrodynamic problems. For regular waves consisting
of a finite number of harmonics, Liu, Yoon & Kirby (1985) developed the first parabolic
approximation model for the conventional Boussinesq equations. In their model waves must
propagate in a dominant direction. Therefore, it is a small-angle parabolic approximation
model. Recently, Kirby (1990) used the discrete angular spectrum method to develop a wide-
angle parabolic model for the conventional Boussinesq equations, in which the topography is

allowed to vary only in the on-offshore direction. The approaches used to develop parabolic



models for the conventional Boussinesq equations can not be directly applied to Nwogu’s
new Boussinesq-type equations, in which the horizontal velocity components and the free
surface displacement are coupled together. The reason is that in the process of combining the
governing equations into one equation in terms of the free surface displacement the improved
dispersion properties can not be preserved.

In this paper, modified Boussinesq equations are derived by employing the velocity po-
tential on an arbitrary elevation instead of horizontal velocity components used in Nwogu’s
paper. Dispersion properties of the linearized modified Boussinesq equations are compared
with those given by the Stokes first-order theory. The optimal elevation of the velocity po-
tential is determined by minimizing the summation of the relative errors of phase and group
velocities over a range of water depths from zero to half of the equivalent deep water wave-
length. Using the velocity potential on this optimal elevation, the maximum relative errors of
phase and group velocities are 1.37% and 6.80%, respectively. Thus, the modified Boussinesq
equations can be used to model wave propagation from relative deep water to shallow water.
Because the governing equations can be combined into one equation in terms of velocity po-
tential while the improved linear dispersion properties are maintained, we are able to apply
the parabolic approximation. For regular waves propagating over a mild-slope topography,
a small-angle parabolic approximation model is developed and solved by the pseudospectral
Chebyshev method. On the other hand, by assuming that the deviation of the actual water
depth from a reference depth (which varies only in the on-offshore direction) is in the same
order of magnitude as the typical wave amplitude, the pseudospectral Fourier method used
by Chen & Liu (1993) is extended to derive a wide-angle parabolic approximation model for
multi-directional wave proba.ga.tion. The small-angle model is tested by comparing numeri-
cal results with the experimental data (Whalin, 1971). Good agreements are observed. The
wide-angle model is examined by comparing the model results with the refraction theory of
cnoidal waves (Skovgaard & Petersen, 1977) and then is used to study the impact of the
directed wave angle on oblique interaction of two identical cnoidal waves propagating over a

shallow flat bottom.



2 Derivation of Modified Boussinesq Equations

Consider a wave field bounded by a free surface 2 = ('(2/,4,#') and a stationary bottom
z' = —h'(2',y'). A Cartesian coordinate system is adopted, with z'-axis and y'-axis locating
on the still water plane and 2'-axis pointing vertically upwards. Let ho,lo and ao denote the
characteristic water depth, wavelength and wave amplitude, respectively. Following dimen-

sionless variables are defined:
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where g is the gravitational acceleration and @ is the velocity potential; primes are used to

denote dimensional variables.

The dimensionless governing equations and boundary conditions for a potential flow are

2
y’v’@+%§=0 —h<z<el (2.1)
g—f = (% +eVe. VC) at z=¢( (2.2)
%% = —p’Ve.Vh at z=—h (2.3)

(G+c)+s [(V@)’ +3 (%) ] —0 ats=e (2.4)

where € = ao/ho and p? = (hq/l;)? are small parameters measuring nonlinearity and frequency
dispersion, respectively, and V = (£, ;‘%) We assume that O(e) = O(p?) < 1.
Integrating (2.1) from z = —h to z = £( and applying the kinematic boundary conditions

(2.2) and (2.3), we obtain
el 8C
V-[/_hV@dz]+a=0 (2.5)



Expanding the velocity potential ® as
®(z,y,2,t) = D 4" ®n(2,y,2,1) (2.6)
n=0

and substituting (2.6) into (2.1) and (2.3), we collect terms with multiplies of like order of

even powers of p

O(p°) : %3‘1=0 ~h<z<el; =90 at 2 =—h
O(u?): 2% =-V® -h<z<el; & =_V& Vh at z=—h (2.7)

The general solution to ®, (n =0,1,...) in (2.7) can be expressed as
‘50 = M(z:ylt)

& = ¢(z,9,t) — 2V - (Vo) — & Voo (2.8)

where ¢oo(2,y,t), d10(z,y,t), etc. are constants of integration with respect to z. Hence, the

expansion (2.6) can be rewritten as
2
B(z,y, z,t) = doo + p* |$10 — 2V - (AV oo) — %v%.m +O(ut) (2.9)

Denoting ®,(z,y,t) as the potential on an arbitrary elevation z = z,(z,y), from (2.9) we

obtain

‘I’a(a:,y,t) = @(z, y:zu(zsy):t)
= ¢oo + 4’ [h10 — 2aV * (AV o) — z—;V:gboo + O(p*) (2.10)

Subtracting (2.10) from (2.9) and noting that &, = ¢go + O(p?), we can express & in terms



of ®,:
& = By + p? (70 — 2)V - (AVBL) + %(z: — V.| + 0(u*) (2.11)

Substituting (2.11) into the mass conservation equation (2.5) and the dynamic free surface
boundary condition (2.4) and neglecting O(ep?, u*) terms, we obtain a new set of Boussinesq
equations, called modified Boussinesq equations, expressed in terms of the free surface dis-

placement { and the velocity potential ®, on elevation z = z,(z,y)

g‘i + V- [(e¢ + h)Va] + w2V - {AV [ZaV'("V“a)
& %V"@ l ¥ "’V[v - (hV®,)] - —vv’& } 0 (2.12)

0%, 0%q 20%a
= (v«b )2+ { V- (hvw)wu—;v &] 0 (2.13)

From (2.11), the horizontal velocity at z = z4, denoted as u,, is

= (V®),,. = V& + 4? [V2aV - (hV&a) + 2aVz V80 + O(pf)  (2.14)

Replacing V&, by u, and noting that V&, = u, + O(p?), we write (2.12) and the gradient
of (2.13) in the following form:

9¢

3¢ TV [(e¢ + h)ud] ]+ p?V . {(;g_;ﬁ) hV(V - u,)
h
*3

( 26

Ou, Ou, Ou,

o T V¢ +e(ua V)ug + 4t {%V (V T) + 24V [ (ha-)]} =0 (2.16)

which is the alternative form of Boussinesq equations derived by Nwogu (1993a), who demon-

strated that (2.15) and (2.16) can simulate the nonlinear shoaling, refraction, diffraction and

) AV [V - (:m.,)]} =0 (2.15)

reflection of irregular multi-directional waves from intermediate to shallow water (Nwogu,

1993a,b).



Only two unknowns appear in the modified Boussinesq equations (2.12) and (2.13), &,
and (, instead of three unknowns when horizontal velocity components are used in (2.15) and
(2.16). Furthermore, (2.12) and (2.13) can be combined into one equation in terms of ®,.
Therefore, in the remaining of this paper we shall carry out analyses and discussions based

on (2.12) and (2.13).

3 Discussion about the linear dispersive characteris-
tics

In the case of constant depth, the corresponding linearized dimensional equations of (2.12)

and (2.13) become

%ti +hV?®, + (a +1/3)h°V*®, = 0 (3.1)
0%, 2520% _
% AN =0 e

where a = 2(2a/h)? + (za/h) is a constant.
Consider a small amplitude periodic wave with frequency w and wave number k, propa-

gating in z-direction:
¢ = ap exp{i(kz — wt)}, . = ¢oexp{i(kz — wt)} (3.3)

Substituting above expression into (3.1) and (3.2), and letting the discriminant vanish for a

non-trivial solution yield the linear dispersion relation as

. W [L—(a+1/3)(kh)?
O =% = | T otk

(3.4)

where C'is the phase velocity. The group velocity, C,, which is associated with the propagation
of wave energy (or wave envelope), is also a very important physical quantity in the process

of wave propagation. The group velocity for the linearized modified Boussinesq equations is



given by

w [ (kh)?/3
ak = ¢ {1 L= (kR [L— (a + 1/3)(kh)=]} (38)

From the Stokes first-order theory, the phase velocity, Cy, and group velocity, C,r, are

w? tanh krh

3__=
GL‘k; gh kh

(3.6)

_de _ Gyl 2k
Cot = gy =2 |1 5iuh 2::,,:;]

1.2
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Figure 1: Comparison of normalized phase velocities for different values of
a.

The phase velocity C' and group velocity C, ((3.4) and (3.5)) for different values of a,
normalized by Cy, and C,y, respectively, are plotted as a function of relative depth in figures
1 and 2. The relative depth is defined as the ratio of the water depth, k, to the equivalent deep
water wavelength Ao = 2rg/w?. The “deep water” depth limit corresponds to h/Ae = 0.5.
When the velocity potential on the still water surface (zo = 0 ) is used in the governing
equations, o takes a value of zero. Alternatively, when the velocity potential on seabed
(2« = —h) is used, @ = —1/2. The conventional Boussinesq equations which use the depth-

averaged velocity potential (Wu, 1979) corresponds to & = —1/3 while « = —2/5 represents

9
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Figure 2: Comparison of normalized group velocities for different values of
a.
the Padé approximation to the fourth-order Taylor expansion of tanh kh/kh in (3.6).
To extend the range of applicability of the modified Boussinesq equations, we define the

sum of relative errors of phase and group velocities over the range 0 < h/Xp < 0.5 as
0.5 2 2
1(a) = [ [(€/C1— 1)+ (Cy/Cur — 1] d(h/ o) (3.7)

An optimal value of a for the range 0 < h/A¢ < 0.5 is obtained by minimizing I(c). This
results in & = —0.3855, which corresponds to the elevation z, = —0.522h. The maximum
relative errors of phase and group velocities are 1.37% and 6.80%, respectively. Nwogu (1993a)
minimized the sum of the relative errors of phase velocity only and determined that a =
—0.390. Using this a value , Nwogu showed that the maximum relative error in group velocity
over the range 0 < h/A¢ < 0.5 is 12%.

Figures 1 and 2 show the remarkable improvement of the dispersive characteristics of the

modified Boussinesq equations over the conventional Boussinesq equations if the optimal «

10




value is adopted. Thus, within the linear theory framework the modified Boussinesq equations
are applicable to deep water. In other words, they can be extended to the water depth three
to five times deeper than the water depth allowable by the conventional Boussinesq equations.

The discussion given above ignores the nonlinearity. Because of the shoaling effect the wave
amplitude, hence the nonlinearity, decreases as the depth or u? increase. Therefore, as long
as the wave amplitude in the deep water is so small that the weak nonlinearity assumption is
still valid when the wave reaches the shallow water region, the modified Boussinesq equations

can model wave propagation from deep water to shallow water.

4 Parabolic Approximation

In this section we shall apply the parabolic approximation to the modified Boussinesq equa-
tions in the frequency domain to develop both small-angle and wide-angle parabolic models.

Consider regular waves, we can expand &, and ( as Fourier series in time and then truncate

the series:
®.(z,y,t) = Z ¢,.(z y) e ) (4.1)
N z .
oyt = 3 2B pmimt 4 o (42)
n=0

where c.c. represents the complex conjugate.

Substituting (4.1) and (4.2) into (2.12) and (2.13), we obtain

—mw(,,+V (hVén 4+ 2V {2C1v¢n s

N-n
+ Z [E’V¢ﬂ+l + Cn+¢V¢:']} + pﬁv - ﬁﬂ =0 (43)
and
C 1W¢n + ‘"Wﬂ fn =g [Z V¢I V‘#ﬂ*—l + 2 Z V¢l V¢ﬂ+! (44)
=1 =1

where 1 < n < N. The zero-th harmonic ¢, has been ignored since it corresponds to a slowly

11



varying steady state, i.e. O(V¢o) = O(e). In (4.3) and (4.4) overbar is used to indicate the

corresponding complex conjugate and

Fa(2,9) = 2V - (hV ) + %;V’qb,, = ah* V3¢, + 2aVh - Vi (4.5)

2 3
Pa(,9) = WV a4 SV (V- (494,)] - Svvg, (4.6)

To apply the parabolic approximation to (4.3) and (4.4), we first combine these equations
into one equation in terms of velocity potential only.

Substituting (4.4) into (4.3) and neglecting O(e?) terms, we obtain:

V- (594a) + 02 + 42fa) + BV - s = —inws |3 Vg, - Vs

N-n n—1 .
+2 Z; v, Vtﬁ,..l_,] - iw%V : {2 8(ds + 2 £.)V s
= =1
N-n
- Z [3(‘51 + ﬂzfl)v¢n+a —(n+ 3)(¢n+: + ﬂzfn+l)v§;a]} (47)

For the n-th harmonic, the linear dispersion relation of (4.7) is

nw? hl — (a4 1/3)p*(kah)?

k2 1 — ap?(kah)? (4:8)

When n = 1, the dimensional form of (4.8) is exactly the same as (3.4). Therefore, the
improved dispersive characteristics of the modified Boussinesq equations with the optimal
value of a are preserved. On the other hand, if we eliminate ¢, from (4.3) and (4.4) to obtain
a combined equation for (,, the corresponding linear dispersion relation is given by (4.8)
with a = 0, which is worse than the linear dispersion relation of the conventional Boussinesq
equations (a = —1/3, see figures 1 and 2). In Nwogu’s paper (1993a), the alternative form
of Boussinesq equations is expressed in terms of horizontal velocity components and the free
surface displacement (see (2.15) and (2.16)). If the velocity components are eliminated to

obtain one equation for the free surface displacement, the resulting linear dispersion relation
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also corresponds to (4.8) with a = 0 . This is one of the primary reasons why the velocity
potential is used in this paper. The parabolic approximation can then be applied to the

equation for ¢,.

Assume that the topography varies slowly, i.e. h = h(ez, ey), (4.7) can be further simplified
after O(e?) terms have been dropped:

ﬁ"vz"bﬂ T n2w2¢n ¥ (ﬂ: + 1/3)#:h3v4¢n e a#thVh . Vv2¢n
n-1
P T,.Vh . V¢“ — iw% Z 8 [2 V¢' % V¢n—; 4 aﬂ'!hzvvlqs‘ . Vﬁbn—a
=1

+ (¢l + aﬂzhzvzﬁb-)vqun-—l] - i“"% NZ_:“ [‘"’(2V‘$l - V¢u+t (4'9)
+ aﬂzhzvz¢n+lvz¢_«!) EE s(&,vzcﬁ,ﬂ_, + aﬁ‘zhzvvzqgl * V¢“+,)
+(n+ 8)(bntaV?hs + ap*h?V V0, - VE,)| (1< < N)

where
Bn =h + ap?n®®h?, 1, =14 z.4*0%? Ca=1+5a++V1+2a (4.10)

In (4.9), the last term on the left-hand side and the first term on the right-hand side come
from p?V - g, in (4.7). The leading order terms in (4.9), i.e. all terms on the left-hand side,
describe the propagation of linear dispersive waves over a constant depth. The frequency
dispersion is represented by the coefficient 3, as well as the fourth-order derivative terms on
the left-hand side of (4.9). The first two terms on the right-hand side of (4.9) denote the effects
of the varying topography, while the rest of terms on the right-hand side are contributed by
nonlinearity. We remark that the fourth-order derivative terms vanish in the conventional
Boussinesq equations for & = —1/3. Once we solve (4.9) for ¢n(z,y) (n =1,..., N), the free
surface displacement (a(2,y) (n = 1,..., N) can be computed immediately from (4.4).

13



4.1 Small-Angle Parabolic Model

To develop a small-angle parabolic model, we assume that the primary wave propagation
direction is in z-direction. Rewrite ¢, as

bn(2,3) = Up(z, y)e' ] Knleadle (4.11)

where K,(ez) is the wave number of the n-th harmonic corresponding to a reference water

depth H(ez) (If h is a function of z only, H = h). The explicit expression of K, is (from
(4.8))

K? 1+ ap?*n®w?H — \/(1 + ap®n?w?H)? — 4(a + 1/3)p?n2w?H
®= 2(a + 1/3)u2 H?

(4.12)

In (4.11) the amplitude function ¥,(z,y) varies slowly in both z- and y-direction because of
the mild slope assumption. We assume that

orv, oy,
~ P — .
OzP O(e?), By? (p=1,2,3,4) (4.13)
Substituting (4.11) into (4.9), and using
? dK, 3'1'
a:: [(‘ - K¢, " Bz ] '] Krde 1 O(e?) (4.14)
4
‘?93" = [(GzK:df - K, + 4K l i Knde 4 0(e?) (4.15)
0*¢n 20°¥n et [ Kndz 2
B270y? = —Ki—— By? + O(e%) (4.16)
we obtain
0¥, i 6*"1',; ak 0h 0%,
4+ sz% (nz One ¥V y + Z qn.ﬁ.wn+.)]} (4.17)
=1 =1

14



where

W = Bn — 2(a + 1/3)u*h*K? (4.18)
Rn =Tn — CaﬁahaK: (419)
3, .23 21374 | . 23 73] 9Kn
Po = —BuK2 +n'w® + (a+ 1/3)u?h° KA + i [Bn — 6(c + 1/3)u* K3 K2 - (420)
One = 8Ky, et [t Kn-a=Kndds [0 2R3 K3 (K, 1 K,,_,) — (2K, + Kn-u)| (4.21)
Yns = el'f{Ku+l~'K¢-Ku)d¢ [nK.K,,+,(2 A apzh’K,Kn+.)
+ 8Ky s(Knts + ap’h’K2) — (n + 8)K,(K, + apzh’Kﬁ+,)] (4.22)
In the dimensional form, (4.17) becomes (after primes have been dropped)
ov,, i [8%Y, 1 . Oh 0h 0V,
= T Pn ngo_ n AL
0z 2K, { dy? = Wa [( Tl Bz) 5 +R"ay Oy
w [l T =
™ (Z One¥e¥ns+ ) -ru.'If.'I'..J,.)” (1<n<N) (4.23)
=1 =1

The corresponding dimensional forms for B,, Tn, Ons, Yne, Kn, Wa, P, and R, are given in ap-
pendix A.

We reiterate here that the amplitude function ¥,(z,y) has been assumed to be O(1)
and to be a slowly varying function of z and y. Therefore, the phase functions appeared
in the coefficients of the nonlinear terms in (4.17), o,, and 4,,, must also vary slowly, i.e.
the integrands in the expressions of oy, and 7,,, (4.21) and (4.22), must be small. Hence, a
nearly triad resonance is anticipated. For instance, if only two harmonics are considered, in
the governing equation for ¥, the forcing term on the right-hand side of (4.17), iweoy; ¥3/2, is
generated by the self interaction of the first harmonic. The integrand in o3, is 2K; — K3, which
indeed is the phase mismatch between the bound and free second harmonic wave numbers.
In the shallow water, the phase mismatch is small (from (4.12)). However, in intermediate

depths, the mismatch becomes large, and the assumption (4.13) for the second harmonic is

15




not valid. A special treatment for this situation is presented in section 5.1.
After solving (4.17) for ¥,(z,y) (n = 1,...,N), we can obtain free surface displacement
(n(2,y) up to O(e) by substituting (4.11) and (4.14) into (4.4).
ov, 0¥
2 . n n
Kn) v, + 21.K,.—az + _Byz

. Oh OhOV, g |22 i [(KitKn—s—Kn)da
+ 24 (3ann6a 8y Oy )} + 2 [E K,Kn-,¥,9,,¢

dK,

C,,e"fx“d’ = inwV¥,, + inw,u.’ {ah’ [(; Iz

N-n
2% KoKW, 0,6 U‘Hf"f’“”’] (1<n<N) (4.24)

=1

The dimensional form of the above expression is also given in appendix A.
For waves propagating within a channel bounded by two parallel vertical walls, we apply
the pseudospectral Chebyshev method to solve (4.23). Details are given in appendix B.

4.2 Wide-Angle Parabolic Model

To develop a wide-angle model for multi-directional wave propagation, first we apply the
pseudospectral Fourier method to decompose the wave field into a series of modes including
all the discrete forward and backward propagation modes (Chen & Liu, 1993).

Equation (4.9) can be rewritten as

B,V?¢n + nw?dn + (a + 1/3)p H*V4¢, = —U, — iw%l/;. (4.25)

where

B, = H + ap’n*w*H? (4.26)

Un = (Bn — Bn)V?¢n + (a +1/3)u’(h* — H*) V4,
+ Cap’h’Vh - VV?¢p + 1,Vh -V, (4.27)

16



n—1

Va=) 3 [2 Ve Vns + ap’h®V V2P, - Vdu_, + (¢s + ap’h*V?¢,)

=] .
Vzﬁbuw:] e z [n(2V¢", = V¢ﬂ+‘l + apzhzvz¢n+lvz¢‘;l) S s($IV2¢ﬂ+l+

PRV, - Vnis) + (0 + 8)(bnta V2, + ap? IV, - V)| (4.28)

We assume that the wave field in the along-shore direction (y-direction) is periodic with a

period L. After a linear transformation from interval y € [0, L] to § € [0, 2x] is taken, (4.25)

becomes
0*¢n 0 ¢n
B, l B2 + Ao o7 ] + n*w?d, + (a + 1/3)p’ H®
64¢ﬂ 64¢n 64¢n % E
[W + 240 azzay_z + Ag 8}74 ] =-U, - :wEVu (4.29)
where
Ao = (27/L)?

Now we use trigonometric polynomials to interpolate ¢,(z,%) in §-direction at the following

set of collocation points (Gottlieb et al. 1984):

=2 (0<j<aM—1) (4:30)
bl i) = 2 9i0)6(2) (43)

where o
$(2) = dne ) 5(3) = 537 inlM (3 — 35)] cot(L5 ) (432)

The interpolant g;(#)(0 < j < 2M — 1) are trigonometric polynomials of degree M and at
each collocation point §m, gj(#m) = 8jm. The p-th order derivative of ¢(z,§) with respect to
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i, evaluated at the collocation § = §,, is given by

Pou(zd)| | RSy Pe@)] NS |
oyr s - J_;o $n(z) &P s = E [Dp]mj‘ﬁ:(”) (4.33)
where
&g;(§)
Delm; = g5 43
[ p]m: dyr -y (4.34)

which is a 2M x 2M matrix. Specifically

1) cop(Bmziiy 7 4m
[Dll,,.,-={ N Y e (4.35
) J=m
and
_1\m+i+1 cscz Im—ii 3 m
[D:]m,-={ = iM( A jfm (4.36)

When p > 2, the p-th order spectral differentiation matrix D, can be written as a power of
D, if p is even and as a power of D, (or D, times a power of D,) if p is odd.

From (4.35) and (4.36), D, is a real anti-symmetric matrix and D, is a real symmetric
matrix. Hence, D,, is also a real symmetric while D,,,, is a real anti-symmetric matrix for
g1

Substituting (4.31) and (4.33) into (4.29) and evaluating the resulting equation at each

collocation point § = §m (0 < m < 2M — 1), we obtain

m 2M -1 4 1m
B“{d’tﬁn +4o Y (D,]qus;’;} + n?w?¢™ + (a + 1/3)u* H® {E".‘ﬁ_n

dz T & dz
2M -1 dﬂ¢g 2M-1 . e
$280 3 [Dalmi S22 + A3 Y [Difmsth § = —UP —iwVP  (430)
j=0 dz 3=0 2

where the superscript m denotes that the corresponding variable is evaluated at § = .
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Because D, is symmetric, there exists an orthogonal matrix @ such that
QTDaQ = I{-)*/Ao} (4.38)

where I is the 2M x 2M identity matrix and the 2M column vector {—A?/Ao} is the spectrum
of Dy, i.e. its I-th (0 <1 < 2M —1) entry —A}/Ao is the eigenvalue of D;. The transformation
matrix ) and the spectrum of D, can be given analytically (Chen & Liu, 1993).

To decompose the wave field into a series of modes including all discrete forward and

backward propagation modes, we introduce following transformation

)= Y Qi) (0<m<2M-1) (439)

q=0

Substituting (4.39) into (4.37), multiplying the resulting equation by Q. and summing m
from 0 to 2M — 1, we obtain

d*nt din! !
B, l d:, - A?‘qf,l + nwinl + (a+ 1/3)p2 H® [Té’f - 2,\,’}-:—2
2M-1 €
] == Y Qu [U;:' + inV:‘] (0<1<2M—1) (4.40)
m=0
in which the orthogonality of @ and
Q"DsQ = QTD2QQTDaQ = I{-X'/Ac’}, (4.41)

from (4.38) have been used.

To apply the parabolic approximation to (4.40), we impose another assumption for the
topography: (h — H) ~ O(e), i.e. the deviation of the actual depth from the reference depth
is in the same order of magnitude as the typical wave amplitude, then all the terms on the
right-hand side of (4.40) have the same order magnitude of O(e).

Solutions to (4.40) contain both forward and backward propagation fields. In the present
study we assume that the backward propagation field is negligible. Consequently, 7/ represents
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a forward propagation mode whose wave number component in the z-direction is VK2 — A
and propagation direction is tan~'(A;//K2 — A\}) measured from +z-direction. Therefore, 7,

can be expressed as

nh(z) = ¢ (a)e' S VEI-Nda (4.42)
with I
dr
d:i“ ~ O(e?) (p=1,2,3,4) (4.43)

Substituting (4.42) into (4.40) and noting that

dz { : dK? d ] . 3
n~ M

d3 1 2 ! . 2 _1\2
- { [g d;i" +i(K2 - A?)"”] o+ 3(K? - A?J%} e[ VEL-Md2 | O(¢)

d*y! ; dK?
T = {|-uvm -GS 4 2 - ) vt

‘ .
- 4i(R3 - e} VR 4 o)

we have
—r [B,, —2(a +1/3)u* H*(3K2 — 2)\?)] dK'z‘n,',. +2i\/K2 — )} [B,—
2/ K2 — \? dz
) 2M-1
2(a + 1/3)p’H3K:] [% —iy/K2 -\ nf,] == 3 Qut [U;" + iw%V:‘] (4.44)
m=0

where
—BnK> +n*w? + (a+ 1/3)u*H K2 = 0

from (4.12) and
Ay [ /Ki-Nde _ T . 1
¢!/ VE-Ajde _ Cln i/ K2 - A,

r
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have been used.
In the expression of U, + iweV, /2 (see (4.27) and (4.28)), the order of magnitude of all
known coefficients is O(e). Therefore, dP$"/dz? appearing in the expression of U™ +iweV,™ /2

can be approximated as

dgm  IM-1 d 2M—1‘
¢5 E qu ﬂn Z 1y K3 - '\: Qmqnn (4.45)

q=0 q=0
d2 m 2M-1 d2 El aM -1
d:z Z Qma d:: N — Y (K2 —23) Qment (4.46)
=0 q=0
dsqﬁ? 2M -1 43 a oM —
s = 2 @ma d:s 9 = E =23 Qmand (4.47)
q=0 q=0
digm M-l d4 g aM-1
df* 2 Qma77 q ~ D (K= A)? Qmant (4.48)
q=0 q=0

Now terms on the right-hand side of (4.44) can be expressed in terms of 7 (0 < q < 2M —
1;1 <n < N) and do not involve the derivatives of 72. The explicit expressions of U™ and
V™ in terms of 9l are given in appendix A.

Equation (4.44) can be written as

A W ey 1 EudK?] ,
dz [‘VK“"A‘ THK2-N)D, dz | ™

2M -1

1 €
+ Qut [V + iz V7] (4.49)
2Dn\/K2 — N} ,,.Z-o ™ 2
where
D, = B, —2(a+1/3)u*H*K? (4.50)
En = B, —2(a + 1/3)* H}(3K2 — 2)}) (4.51)

In the dimensional form, (4.49) becomes

dE . 3 1 EyudK?]
dz [‘ K“”’\‘“4(K;—A,=)D,. dz |
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2M-1

1 w
+ ol [T —V,:"] 4.52
2D,\/K? — A7 rnZ=0 Do [ 29 ( )

The corresponding dimensional forms for B,,D, and E,; are given in appendix A.

By solving (4.52) for !, (z) (0 <1 < 2M —1;1 < n < N), we can find the velocity potential
for each harmonic ¢a(2z,y) from (4.39) and the corresponding free surface elevation (,(z,y)
from (44) (n=1,...,N).

5 Numerical Examples

Several numerical examples are given in this section to demonstrate the applicability of the
modified Boussinesq equations as well as the parabolic approximation models. For all numer-

ical examples, the optimal value of @ = —0.3855 is used.

5.1 Small-angle parabolic model

Whalin (1971) conducted a series of laboratory experiments concerning wave focusing over a
slowly varying topography. The wave tank was 25.603m long and 6.096m wide. In the middle
portion of the wave tank 7.622m < z < 15.242m, eleven semicircular steps were evenly spaced
and led to the shallower portion of the channel.

The equation approximating the topography is given as follows (Whalin, 1971)

0.4572 (0 <z <1067 —Q)
h(z,y) = | 0.4572 + L(10.67 — G —z) (10.67—G <z <18.29 - G) (5.1)
0.1524 (18.29 — G < = < 21.34)
where
Gly) = [y(6.096 —y)'/* (0 <y < 6.096) (5.2)

In both (5.1) and (5.2), the length variables are measured in meters. The bottom topography

is symmetric with respect to the centerline of the wave tank y = 3.048m. A wavemaker was
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installed at the deeper portion of the channel where the water depth is 0.4572m. Three sets of
experiments were conducted for periods 7' = 1.0s,2.0s and 3.0s respectively. Different wave

amplitude was generated for each wave period (table 1).

T(S) a.o(m) €0 = ao/ho €1 = Gu/slh ho/z\l ho//\j\r

1.0 | 0.0097 0.0212 0.0636 0.2931 | 1.1725 (N = 2)
0.0195 0.0427 0.1280
0.0075 0.0164 0.0492

2.0 | 0.0106 0.0232 0.0696 0.0733 | 0.6595 (N = 3)
0.0149 0.0326 0.0978
0.0068 0.0149 0.0446

3.0 | 0.0098 0.0214 0.0643 0.0326 | 0.8142 (N = 5)
0.0146 0.0319 0.0958

Table 1: ho and h, are the water depths in the deeper and shallower portion of
the channel, respectively. A, = zj;% is the equivalent deep water wavelength
for the n-th harmonic.

Because of the symmetry of the problem with respect to the centerline of the wave tank,
the computational domain only consists of one half of the wave tank. The computational
domain in z-direction starts from the wavemaker z = 0 and ends at z = 25m. The no-flux

boundary conditions are used along the side-wall and the centerline of the wave tank, i.e.

%%2 =0; along y =0, 3.048m (5.3)

for 1 < n < N. The wave amplitude for the first harmonic at the wavemaker (z = 0) is
prescribed with the values shown in table 1. The initial condition for velocity potential of the

first harmonic can be obtained from the free surface elevation by using (3.2)

$1(09) = on s cf(hokl)’] G(0:) )

where ho = 0.4572m is the water depth at z = 0 and k; is the incident wave number for the

first harmonic wave component. The initial conditions for higher harmonics are zero. The
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reference depth H(z) is chosen as follows:

0.4572 (0 <z < 7.622)
H(z) = 04572+ L(7.622 —z) (7.622 < z < 15.242) (5.5)
0.1524 (15.242 < z < 21.34)

which indeed is the water depth along the centerline of the wave tank.

In numerical computations, different harmonics, marching steps and collocation points are
tested. Numerical results for T' = 2.0s and 3.0s presented here are obtained by using following
computational parameters: number of collocation points M = 6 (i.e. Ay = 0.508m ), marching
step length Az = 1/3m; five harmonics N = 5 for T' = 3.0s and three harmonics N = 3 for
T = 2.0s.

According to Whalin’s (1971) report, the second and third harmonics grow rapidly in the
focal zone. This phenomenon was also observed in several mathematical models. Using the
Stokes second-order theory, Liu & Tsay (1984) derived a model equation, which is a nonlinear
Schrédinger equation with variable coefficients. They produced numerical results for wave
period of 1 and 2 seconds. Because the Stokes second-order waves theory was used, their
model was unable to obtain more than two harmonics and was not valid in shallow water.
Liu, Yoon & Kirby (1985) discussed two models for nonlinear refraction-diffraction of waves
in shallow water: the conventional Boussinesq equations and the K-P equation (Kadomtsev
& Petviashvili,1970). They presented numerical results for wave period of 3 seconds. These
two models are restricted to shallow water and can not be extended to deal with intermediate
depth cases where T' = 1.0s and 2.0s. Solving conventional Boussinesq equations directly with
a line by line iterative method, Rygg (1988) compared his numerical results with Whalin’s
experimental data for the cases of T = 2.0s and 3.0s. Using finite difference methods in
time domain, Madsen & Sorensen (1992) and Nwogu (1993b) claimed that the new form of
Boussinesq equations they derived are able to simulate all cases in Whalin’s experiments.

The small-angle parabolic model is applied to all three cases from intermediate to shallow
depth: T' = 1.0,2.0 and 3.0 seconds. Figures 3,4 and 5 compare present numerical results
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for wave period T' = 3.0s with experimental data. Numerical results slightly underpredict
the second and third harmonic wave amplitude along the centerline of the wave tank while
overpredict the first harmonic wave amplitude. It is worth mentioning that although the
relative depth of the free fifth harmonic in the deeper portion of the channel ho/As = 0.8142
(see table 1. Ay = gT'?/2xN?, by definition, is the deep water wavelength for the free N-th
harmonic) is beyond the range [0, 0.5], the contribution from the fifth harmonic in the deeper
portion is almost null. Only in the shallower portion of the channel, where h; = 0.1524m and
the relative depth of the free fifth harmonic h,/As is still within the range [0, 0.5], does the
fifth harmonic have a small contribution.

Figures 6,7 and 8 show the comparison between numerical results for wave period T' = 2.0s
with experimental data. For ag = 0.75cm and 1.06cm (figures 6 and 7), numerical results
agree very well with experimental data, especially in the focal zone. From figures 3-8, in spite
of the scattering in the experimental data we may conclude that the small-angle parabolic
model gives a very good prediction of the first, second and third harmonic wave amplitude
along the centerline for 7' = 2.0s and 3.0s.

For cases of T = 1.0s, only two harmonics are considered. The relative depth of the
incident wave, ho/A; = 0.2913 (see table 1), is in the intermediate depth range. As mentioned
in section 4.1, in the intermediate depth, the mismatch between the the bound and free second
harmonic wave numbers, 2K; — K,, becomes large. The solution form proposed in (4.11) with
the assumption (4.13) for the second harmonic is invalid. In this situation, we must separate

the bound second harmonic from the free second harmonic and rewrite
balz,y) = Vag(z,y)e S Kalele o gy (g, )6t 2Ki(ea)ia (5.6)

to replace (4.11) for n = 2, where W54 and Uy are the slowly varying amplitude functions of the
free and bound second harmonic, respectively. After applying the parabolic approximation,
W,y satisfies the homogeneous equation (4.17) (n = 2) while ¥y, is a particular solution to
(4.17) (n = 2) with K, being replaced by 2K;. Because the energy transfer between the first

and second harmonic primarily depends on the magnitude of the phase mismatch (Madsen &
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Sorensen, 1993), for long waves, K; ~ 2K, the the amplitude of the second harmonic is in the
same order of magnitude as that of the first harmonic (so called near-resonant phenomenon).
However, for intermediate or short waves, the magnitude of the phase mismatch is of the
magnitude of one and the amplitude of the second harmonic is one order smaller than that
of the first harmonic. Thus, we can expect that the order of magnitude of W,s and ¥y, to
be O(e). Therefore, in the governing equation for Wy, all the terms involving derivatives are

O(e?) and ¥y can be approximated as
‘I’gb = —iw€021@§/(2P3) (57)

where

Py = —f3(2K1)* + 4w” + (o + 1/3)u’ h* (2K, )*

and oy is given by (4.21) with K; being replaced by 2K;. The amplitude function for the
free second order harmonic, ¥y, can be obtained by solving the homogeneous equation (4.17)
(n = 2) with an appropriate boundary condition. However, it should be stressed that the
modified Boussinesq equations and the associated parabolic equations are derived for the
relative depth within the range [0, 0.5]. If accurate free second harmonic is needed, the
relative depth for the free second harmonic ho/A; should be within this range. For the cases
of T' = 1.0s (see table 1), although ho/A; = 0.2913 is within the range [0, 0.5], ho/A; = 1.1175
is far beyond this range. When the optimal value a = —0.3855 is used, the maximum relative
errors of phase and group velocities over [0, 1.1725] are 18.12% and 73.02%, respectively.
Thus, the modified Boussinesq equations and their associated parabolic equations are unable
to describe the free second harmonic accurately for cases of T' = 1.0s in Whalin’s experiments.
In following numerical computations, we neglect the free second harmonic.

Figures 9 and 10 show the comparison of the model results with experimental data for
T = 1.0s,a0 = 0.97cm and aq = 1.95cm (N = 2,Az = 0.1m), respectively. Only bound
second harmonic are considered. Figure 9 shows that the agreement between numerical results

and experimental data is good. This indicates that the free second harmonic indeed can
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be neglected for ay = 0.97cm case. However, if the nonlinearity increases, the free second
harmonic may become as important as the bound second harmonic. As shown in figure 10,
the underestimation of numerical results for ap = 1.95¢m in the focal region indicates that
in this case the free second harmonic can not be neglected. The coexistence of the free and
bound second harmonic for ag = 1.95¢m case will cause the amplitude to oscillate as observed
in the experiment because each one propagates with a quite different speed. This oscillation
phenomenon was not shown in Nwogu’s numerical results (Nwogu, 1993b). Although Madsen
& Sorensen showed this oscillation phenomenon, the accuracy of their numerical results for
this case is doubtful because their new form of Boussinesq equations, which have the same
linearized dispersion relation as the modified Boussinesq equations do, can not simulate the
propagation of the free second harmonic accurately for T' = 1.0s cases in Whalin’s experiments

either.

5.2 Wide-angle parabolic model

The wide-angle model is applied to study the refraction of a cnoidal wave and the oblique
interactions of two identical cnoidal wavetrains in a constant depth.

To construct a cnoidal wavetrain, infinite number of harmonics should be used. In actual
numerical integration, we can, however, only include a finite number of harmonics. Yoon
& Liu (1989) have demonstrated that a degree of unsteadiness exists when the first several
harmonics in Fourier series of the cnoidal wave solution to the KdV equation are retained as
an input to their parabolic model. This is true for any parabolic model. Therefore, to study
cnoidal waves with the wide-angle model, we must choose appropriate initial conditions for
the numerical integration that lead to permanent cnoidal wave forms in the constant depth
region.

Kirby’s (1991) approach is adopted here to obtain a uniform cnoidal wave that comprise

only finite harmonics in a constant depth. We expand the velocity potential ®, and the free
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surface displacement ( in finite series

Ba(z,t) = Y pnsin[n(kz — wt)), ((z,t) = ) ancos[n(kz — wt)] (5.8)

n=1 n=1

which represent a permanent cnoidal wave with ¢,, a, and k to be determined. A set of
nonlinear algebraic equations for ¢,, a, and k can be derived from the parabolic equation,
(4.23), the corresponding dimensional expression for the free surface displacement, (4.24), and
the relation between the wave height of a uniform cnoidal wave and the amplitude of each
harmonic. Newton-Raphson method is used to obtain ¢, a, and k for given wave period T,
wave height H and water depth h. Details are given in appendix C.

The initial conditions of a uniform cnoidal wave with an angle of incidence 0, for the

wide-angle model are given as

2M-1

$a(0,y) = —ipue™vinte  pl(0) = Z_Z Qmidi(0) (5.9)

When 6, # 0, the periodicity condition in the y-direction requires

B 2r
T

(5.10)

where p(# 0) is an arbitrary integer.

Figure 11 shows the contour lines of {(z,y,0) = 0 for a uniform cnoidal wave with an angle
of incidence 6y = 60°. The corresponding wave parameters are T' = 3.0s,h = 0.6317m and
H = 0.0522m. Seven harmonics (N = 7) are considered. The wide-angle model maintains the
uniformity of the incident wave as the wave propagates toward the shoreline. To obtain more
quantitative details, we plot the free surface elevation and velocity potential along the straight
line perpendicular to the wave crests (the dashed line in figure 11) as well as the analytical
results from expressions (5.8). They agree very well as shown in figure 12. For comparison,
the exact free surface elevation obtained directly from the cnoidal wave solution to the KdV

equation is also plotted in figure 12 (dashed line). The wavelength given by the cnoidal wave
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Figure 11: Contour lines of {(z,y,0) = 0 for a cnoidal wave with angle of
incidence 6 = 60°.
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Figure 12: The comparison among the results obtained from the wide-angle
model (——), the expressions (5.8) (---+) and the cnoidal wave solution to
the KdV equation (- - - -).
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theory is L = 2w /k = 7.087m while the wavelength obtained by Newton-Raphson technique
is L = 2w [k = 7.146m. The relative error is within 1%.

Skovgaard and Petersen (1977) developed a theoretical solution for the depth refraction
of first-order cnoidal waves for a quasi two-dimensional situation, i.e. for a gently sloping
bathymetry whose contour lines are straight and parallel to the shoreline. With the basic
assumption that the energy flux is constant between adjacent wave orthogonals, they derived
two nonlinear algebraic equations for the wave height and the elliptic parameter.

To compare our wide-angle model with the cnoidal wave refraction theory, we have cho-
sen the top row in table 1 in Skovgaard and Petersen’s (1977) paper as the incident wave
parameters:

ho Hy

=2 = 0.045, o =00826, 6o =259 (5.11)

where Hy and hg are the wave height and water depth at z = 0, respectively, and Lo = g7?/27
is the deep water wave length. For incoming cnoidal wave with period T' = 3.0s, the following
parameters are used: Lo = 14.04m, ho = 0.6317m and Hy = 0.0522m. The topography is
given as

h(z) = 0.6317 — 0.03z (m) (5.12)

N =7 and M = 16 are used and the numerical integration is carried out from z = 0 to
z = 17m with marching step Az = 0.1m. The computational domain in the y-direction is
L =16.35m (p = 1in (5.10)). The comparison of numerical results with theoretical results is
shown in figure 13. The agreement is very satisfactory when H/h < 0.4, i.e. the nonlinearity
is not too strong. When the beach slope, 0.03 (in the expression (5.12)), is replaced by a
gentler slope, 0.025, numcﬁcal results do not change. This is consistent with the assumption
of the cnoidal wave refraction theory that the wave height is independent of the slope of
the topography (as long as it is very mild). For the same wave condition, figure 14 shows
the dimensionless wave height H/h as a function of the dimensionless water depths h/L, for
different angles of incidence: 6y = 0°, 8, = 30° and 6y = 45°. The wave height decreases as

the angle of incidence increases.
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Figure 13: Refraction of a cnoidal wave over a mild-slope plain beach.
, cnoidal wave refraction theory results (Skovgaard and Petersen, 1977);
- - - -, wide-angle model results.
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Figure 14: Dimensionless wave height H/h as a function of dimensionless
water depth h/Lg for different angles of incidence: —— , 6y = 0°; ---- ,
302300;--- ,90=45°.
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Comparing the genus 2 solution to the K-P equation with the solution based on the linear
superposition of two cnoidal waves, Hammack et al. (1989) showed the importance of nonlinear
interactions between two identical cnoidal waves over a constant depth with directed wave
angles +6,. The K-P equation can only correctly describe the long wave propagation with
modest transverse modulation. If the directed wave angle is large, e.g. 6, > 30°, the K-P
equation becomes inadequate for modelling wave propagation. In this situation, one may use
the wide-angle model instead.

Now we apply the wide-angle model to study the influence of the directed wave angle
10 on the oblique interaction of two identical cnoidal waves. The wave parameters used in
our computations are very close to those of Hammack et al.’s experiment (KP1515 in table
1 in their paper): T = 2.55s, h = 0.3m and H = 0.02m. Two different directed angles are
considered: 8y = 22.5° and 6y = 45°, which represent small and large directed wave angles
respectively. N =5, M = 25 and p = 2 are used in numerical computations. The domain of
computation covers two spatial periods. Figures 15 and 16 show the comparison of the contour
plots of the free surface displacement for the nonlinear interaction and linear superposition of
two cnoidal waves with directed angles 8y = +45° and 6, = +22.5° respectively. The values
of contour lines are from —1.5¢m to 2.0cm with an increment 0.5¢cm. In figure 15, for large
directed wave angles, the difference between the nonlinear solutions and solutions from the
linear superposition is very small. On the other hand, for a smaller directed wave angle, figure
16 shows that the difference is quite large and nonlinear numerical solutions evolve along the
z-direction. From the perspective pictures shown in figures 17 and 18, we observe that the
nonlinear interaction increases the length of a crest. This was also observed in laboratory

experiments (Hammack et al., 1989).

6 Concluding Remarks

We formally derive the modified Boussinesq equations in terms of the velocity potential,

®4(z,y,t), evaluated on an arbitrary elevation z = z,(z,y), and the free surface displace-
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Figure 15: The comparison of contour plots of {(z,y,0) for linear superposi-
tion and nonlinear interaction of two cnoidal waves with directed wave angles
6o = +45°: , linear superposition; - -- -, nonlinear interaction.

Figure 16: The comparison of contour plots of {(z,y,0) for linear superpo-
sition and nonlinear interaction of two identical cnoidal waves with directed
wave angles 6, = £22.5°: , linear superposition; - ---, nonlinear inter-
action.
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teraction of two identical cnoidal wavetrains with directed wave angles
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of two identical cnoidal wavetrains with directed wave angles 6, = +22.5°.
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ment. We show that when ®,(z,y) is evaluated at z = —0.522h, the corresponding modified
Boussinesq equations have almost the same dispersive behavior as that for the first-order
Stokes wave for water depths ranging from h/Aq = 0 to 0.5, where Ao represents the wave-
length in deep water.

Both small-angle parabolic model, (4.17), and wide-angle parabolic model, (4.49), for
regular waves are derived. They can also be applied to simulate irregular wave propagation
by discretizing the power spectrum of the incident wave evenly (Freilich & Guza, 1984). The
wide-angle model is restricted to the situations where the deviation of the actual topography
from a reference water depth (which varies in the on-offshore only) is in the same order of
magnitude as the typical wave amplitude.

Although we have shown in many examples that the modified Boussinesq equations can
be extended to simulate wave propagation from deep water to shallow water, the velocity field
calculated from (2.11) does not give accurate results in deep water. When the velocity field
is essential, we suggest an empirical formula to calculate the vertical variation of the velocity

potential water once the velocity potential ®4(z,y,t) is found.

cosh k(z + h)
cosh k(2o + h)

®(z,y,2,t) = ®u(z,y,t) (6.1)

For an infinitesimal amplitude, periodic wave propagating in the z-direction over a constant
depth, the maximum relative errors between the velocity components (u,w) given by above
empirical formula and exact velocity components (ur,wy) (without considering the nonlin-

earity) given by the Stokes first-order theory over the range h/)Xo € [0,0.5] and z/h € [—1,0)

are
max tul | = 9.03% (6.2)
h/20€[0,0.5),2/he(-1,0] | |ug|
max ol ] —204% (6.3)
h/X0€[0,0.5),z/he[-1,0] | |wy|

In deep water, the nonlinearity should be very small to ensure the weakly nonlinearity as-

sumption is still valid in the shallow region. Therefore, as long as the the bottom variation is
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small, the empirical formula (6.1) is a plausible way to find the velocity field in deep water.
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Appendix A

This appendix gives the corresponding dimensional forms of the expressions mentioned in

sections 4.1 and 4.2. All variables shown in this appendix are dimensional, however, primes

have been dropped for simplicity.

The dimensional quantities appeared in (4.23) can be given as:

nlw?

Bn=h+a h?
g

n?w?

Ta =14 24
W = Bn — 2(a + 1/3)R*K?

Ro=17n— CahaK:

g+ an®w?H — \/(g + an?w?H)? — 4(a + 1/3)gn?*w?H

2
“ 2(a+1/3)gH?
3,.,2 K
Po=—PuK? + 2 4 (a+1/3)R°KS +i [ﬁ,. —6(a +1/3)A* K2 ‘;—;

Ons = 8Ky ool [ErtEar-Bude [y 3 g3 K, 1 K, ) - (2K, + Kn-l)]

Yna = eif(Ku+-—K.—Kn)dw [HK,Kﬂ+,(2 + ﬂh’K,Kn+,)
+ 8Knss(Knis + ah?K?) — (n + 8)K, (K, + ah?K2,,)|
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The corresponding dimensional expression for the free surface displacement, (4.24), is

given as

dK,

ov,, i 6%*v,,
dz

Bz Oy?
-1

P 8h 3h 3\1' l if(K.+K,._..—K,.)dm
+ 24 (1K,,'I' "3p B Oy )} + 1 [; K,K,.,9.9, ,e

gCﬂe“fK" = inw¥, + 1nw {ahz [( K:) v, + 2K,

N-n
-9 Z o Kw“ﬁ‘ ‘I’,,.,.,e" f(Kn-q-.-K. --K.)da] (Ag)

=1

The dimensional expressions for B,,,D,,En, U™ and V,™ appeared in the wide-angle model

(4.52) are given as follows:

B =H+ a";“’z H? (A.10)
D, = B, —2(a +1/3)H*K? (A.11)
Eni = Bn —2(a + 1/3)H*(3K2 — 2)}) (A.12)
Uz = (B — Ba) [Mm + Aoa;‘f:‘] + (a+1/3)[(A™)* — H?] [%J,
o 2 38;¢:] [BnddE ) 2065) , imy
(S5 0E) i (S 0E)] o

Vﬂm = ni s {2 [djz d :I.n—.l $ Aoa¢ma n—:] & (hm)3 [(M +A 68‘#‘“ )

et de 8y 067 de3 " "0 8202
dm—l asm aam am—l m m d’ i
ks (Féf“ < )—"b"—“l [45 ik )’( <

ooy \| [, 6’¢"‘ agy ey,
Aoa~=)][dz= Pl (-

6" By dz? dy?
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o oG + pa 0 Wy p (T O
¢m(—$u+1\08?.:‘:')] + (n + 3) [a(h“‘ (¢+A a—gf;')dw 4
(Gt + hoT i) D00, s g (EO 1 0, T ) (A1)

where

e 2§l[ollm, : ‘%’ 22[ AL

g:g: ‘uil[ ’]""d ' 3‘3;'2: 2?:“)’]""(1 2

and N )
o =Tl e=1239

are given by (4.45)-(4.48) and (4.33) (since the dimensional forms for (4.45)(4.48) and (4.33)

do not change).

Appendix B

In this appendix, we apply the pseudospectral Chebyshev method to solve the small-angle
model for wave propagation within a channel bounded by two parallel vertical walls.

Assume the computational domain in the y-direction is [0, L], the following transformation
y=(7+1)L/2 (B.1)

maps the interval y € [0, L] into § € [—1,1], which is the standard interval adopted by the
pseudospectral Chebyshev method. Under the above mapping, equation (4.23) becomes

0%, i [, 8w, 1 oh 0h 8,
a3 {A 5 R [(P +iR. K, ) oy
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TR T =
o (Z o'mlpc‘pn—l + Z 'THI'IJI'I'H‘i‘!)]} (Bz)
29 =1 =1
where
A = (2/L)

Now we approximate ¥,(z,7) in j-direction by a M-th degree polynomial at the following
Chebyshev extreme points (Gottlieb et al. 1984):

§;=cos 3t (0<j<M) (B.3)
M .
Vo(2,9) = 3 0;(3)¥i(2) (B.4)

where ¥/ (z) = ¥,(2,7;) and the interpolant g;(§) is defined as

(1 = #*)(=1)* dTu ()
M (5 —9;) dy

9;(¥) = (B.5)

with & =2y = 2,6 =1 (1 < j < M — 1) and Tx(§) = cos(M cos™'§) is the M-th order
Chebyshev polynomial. It is readily verified that

95(9r) = & (B.6)

The p-th order partial derivative of ¥,(z,§) with respect to § evaluated at the collocation

point §, can be expressed as the linear combination of ¥J (0 < j < M)

o M (= M -
Thled) . S e %4l - $p,) e (B.7)
¥ I=fm =0 g=fm  §=0
where
o
[Dyl,n; = g;}gy) " (B.8)




which is a (M + 1) x (M + 1) matrix and has an analytical expression:

Dy = (D4 ) (B.9)

and )
[ % (m# 7) (B.10)
D=~ g7 gy (Dilon = 2552 = D1l (B.1)

It should be noted from the above explicit formulas that the matrix D; is not anti-
symmetric and D, is not symmetric. These features prevent us from extending the pseu-
dospectral Chebyshev method to develop a corresponding wide-angle parabolic model. Fortu-
nately, for waves propagating in a straight channel the small-angle approximation is adequate.

Substituting (B.4) into (B.2) and evaluating the resulting equation at § = §i, (1 < m <
M — 1), noting (B.6) and (B.7), we have

dym 1' 1 - ™\
= {AE (D3], %2, + [(P +iRy K, dz)w

§=0

+AR™ S (Di], b Z (D), ¥ + 5 (E omumYT

j=0 =1

+ Z g vk nm,)]} (1<m<M-1) (B.12)

=1

where the superscript m indicates that the corresponding variable is evaluated at § = ¥

and

h(z,§) = Zy:(‘y)h’ (B.13)

For each harmonic (B.12) provides (M — 1) ordinary differential equations for (M + 1) un-
knowns ¥ (0 < m < M), the other two equations are provided by the no-flux boundary
conditions

O iyt 3=t (B.14)
9y
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Replacing the differentiation operator by the differentiation matrix in (B.14), we have

M
3" (D], ¥, = 0; Z [D1]0; % = 0 (B.15)
i=0 =0
Since )
2M? +1 1
det = DDl = (DibelDileo = - (P52) 4320 w1y
¥ and UM can be expressed in terms of ¥i(1<j < M —1)
. M-1 M-1 _
¥ =L {[Dllm > (Diaes ¥~ Dilse 3. [Dllo,-‘I‘f.} (B.17)
i=1 i=1
1
i=1 i=1

By solving (B.12) with boundary conditions (B.17) and (B.17), we can find ¥,(z,y) (n =
Liias s N )i

Appendix C

This appendix gives the detail procedure to find a uniform cnoidal wave from the small-angle
model.

We rewrite (4.1) and (4.2) as

N N
Z ﬁ =l L e Z _iPn gin(ka—ut) + c.c. (C1)
n=1 2 n=1 2
C z: (“ —lﬂw‘ + c.c. = Z ‘u(k'“wt) + C.C (0.2)
n=1

where ¢, and a, are real constants, k is the wave number of the uniform cnoidal wave.
From (4.11), we have
U, = __icpnei(nh—lf.)a (0.3)
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Hence the small-angle model (4.23) reads

n—1 N-n
{2KaWa(nk — Wy) — Pa} pn — ';ig (Z OnePePr—s — Z 'T:..‘P-‘Pn-é-a) =0 (C.4)

=1 =1

where

ohy = 8Kn_, [ah?KX(K, + Kn_s) — (2K, + K,_,)] (C.5)

'T:“ —2 ‘nK.Kn+l(2 + athlKﬂ+l) * 3Kn+:(Kn+| o ah,Kf)
—(n+9)K,(K, + ah®K},,) (C.6)

and K,,, W,,, P,, are given in appendix A.
Substituting
(o = ane™™ (C.7)

and (C.3) into the dimensional form of (4.24), i.e. (A.9), we have

an = 5 {[1+ ah?(K? - 20kK,)| nwen,

1 n—1 N-n
= Z (Z KJK —8PsPrn—s + 2 Z KaKn+l‘Pl‘Pn+l)} (08)

=] =1

The relation between the wave height of a uniform cnoidal wave and the wave amplitude

of each harmonic can be expressed as:
H=a1+as+a5+--- (Cg)

i.e. the sum of amplitude of all odd harmonics. For given wave period T, wave height H and
water depth h, we use Newton-Raphson method to solve (N + 1) equations: (C.4) and (C.9)
(after the substitution of (C.8)) for (N + 1) unknowns: @a(n =1,...,N) and k. Then

N N
B,(z,t) = Y pnsin[n(kz — wt)), {(=,t) = ) an cos[n(kz — wt)) (C.10)

n=1 n=1
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will give a uniform cnoidal wave.
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