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This paper reviews two different approaches for deriving shallow water
equations. The Hamiltonian approach is first used to obtain the Boussinesq
equations in terms of the horizontal velocity on the free surface. A direct
perturbation method is introduced to derive a general nonlinear shallow wa-
ter equation. Various forms of Boussinesq equations are discussed. Some
of these Boussinesq equations are shown to be unstable subject to short
wave disturbances. The dispersion characteristics, both linear and nonlin-
ear, of the shallow water equations are compared with those of the Stokes’
wave theory. As far as the linear dispersion is concerned, an optimal form
of the Boussinesq equations is identified, which is applicable even in deep
water. However, if the nonlinearity is important in deep water, none of the
equations discussed in this paper can provide an adequate description of
nonlinear dispersion in deep water.

1. Introduction

To design a coastal structure in nearshore region, engineers must have
a means to estimate wave climate. Numerical models are often used to
calculate wave propagation from an offshore location, where wave data
are available, to the nearshore area of concern. Waves, approaching the
surf zone from offshore, experience changes caused by combined effects of
bathymetric variations, interference of man-made structures, and nonlinear
interactions among wave trains. Inside the surf zone, where wave breaking
is a dominating feature, waves undergo a much more rapid transformation.
Eaily efforts to model this wave evolution process were based primarily on
the geometrical ray theory, which ignores both diffraction and nonlinearity.

Significant research accomplishments were made in the *70s and ’80s
to overcome the shortcoming imbedded in the ray theory. To include the
wave diffraction, mild-slope equations are derived from the linear wave the-
ory by assuming that evanescent modes can be ignored and the bathymetric



changes are small within a typical wavelength. Furthermore, the vertical
structure of the velocity field is assumed to be the same as that for a pro-
gressive wave over a constant depth. Therefore, mild-slope equations are
two-dimensional (in the horizontal space) partial differential equations of
the elliptic type, which require boundary conditions along the entire bound-
aries of the computational domain. Numerical solutions have demonstrated
that mild-slope equations give adequate description of combined refraction
and diffraction for small amplitude waves. The general mild-slope equation
for nonlinear waves is still not available.

In applying mild-slope equations to a large coastal region, one encoun-
ters the difficulty in defining the location of breaker line a prioi. One of
the most important developments in wave modeling during the last decade
was the application of the parabolic approximation to mild-slope equations.
The parabolic approximation can be viewed as a modification of the ray
theory. While waves propagate along ”rays”, wave energy is allowed to " dif-
fuse” across the "rays”. Therefore, the effects of diffraction are included
approximately in the parabolic approximation. Although the parabolic
approximation models have been used primarily for forward propagation,
weakly backward propagation modes can be included by an iterative pro-
cedure (Liu and Tsay 1983, Chen and Liu 1993). Nonlinearity can also be
included in the forward propagation mode. More detailed discussions on
mild-slope equations and the associated parabolic approximations can be
found in Liu (1990) and Mei and Liu (1993).

As waves approach the surf zone, wave amplitudes become large and
the Stokes’ wave theory is no longer valid. A more relevant approach is
based on Boussinesq equations for weakly nonlinear and weakly dispersive
waves. Peregrine (1967, 1972) provided several versions of the Boussinesq
equations, written in terms of either the depth-averaged velocity or the
velocity along the bottom or the velocity on the free surface. Because
the dispersive terms in the Boussinesq equations are of higher order, they
can be further manipulated by replacing the time derivative or the spatial
derivatives by the lower order relations (e.g., see Mei 1989). Although
all these different forms of Boussinesq equations have the same order of
magnitude of accuracy, their dispersion relations and the associated phase
velocity are different.

The major restriction of the Boussinesq equations is their depth limita-
tion. The best forms of the Boussinesq equations, using the depth-averaged
velocity, break down when the depth is larger than one-fifth of the equiva-
lent deep water wavelength, corresponding to a five percent phase velocity
error (McCowan 1987). For many engineering applications, a less restric-



tive depth limitation is desirable. Moreover, when the Boussinesq equations
are solved numerically, high frequency numerical disturbances related to the
grid size could cause instability. The search for a new set of two-dimensional
governing equations which can describe the wave propagation from a deeper
depth to a shallow depth is currently an active area of research (Witting
1984, McCowan and Blackman 1989, Murray 1989, Madsen, Murray and
Sorensen 1991, Nwogu 1993). :

In this paper, we first review the derivation of Boussinesq equations
using the Hamiltonian approach and the direct perturbation procedure. In
the direct perturbation approach, shallow water equations for highly non-
linear waves are also derived. The Boussinesq equations become a special
case. The dispersive characteristics of nonlinear shallow water equations
and Boussinesq equations are then compared with those of Stokes’ waves.
The possibility of extending the range of applicability of nonlinear shallow
water equations into a deeper water is discussed. Different methods for
improving the dispersive characteristics are also discussed.

2. Governing Equation and Boundary Conditions

In this section, the governing equation and boundary conditions for
water waves propagating in a varying depth are summarized. Denoting
x' = (2',y’) as the horizontal coordinates and z’ the vertical coordinate,
we define the flow domain as a layer of water bounded by a free surface
z/ = 7/(x',t) and a solid bottom 2’ = —h'(x'). Using the characteristic
wavelength, (k')~! as the horizontal length scale, the characteristic depth,
h!, as the vertical length scale, and (k'\/ghl,)~" as the time scale, we
introduce the following dimensionless variables:

]
x=Fkx, z=2/h,

h = h'/H,, t=Fk\gh,t (2.1)

Assuming that the flow field is irrotational, we represent the velocity field
by the gradient of a velocity potential, ®’. Denoting al, as the character-
istic wave amplitude, we normalize the free surface displacement 7’ and
the associated potential function and obtain the following dimensionless
variables:
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The dimensionless continuity equation becomes
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where
e = dfHy, W= (KK (24)

are parameters representing nonlinearity and frequency dispersion, respec-
tively. The no-flux boundary condition along the bottom requires

u’Vh-V@+aa—f=0,z=—h (2.5)

in which V = (8/8z,0/08y) denotes the gradient vector on a horizontal
plane. On the free surface, both the kinematic and the dynamic boundary
conditions must be satisfied. The dynamic condition specifies the continuity
of pressure across the free surface. Setting the atmospheric pressure at zero,
the Bernoulli equation applied on the free surface becomes

2 1 3@’+(%’+-=(@;‘
at * 2°|\%= By b \%z
+n=0,2 = ¢y (2.6)

The kinematic boundary condition states that the free surface is a material
surface. Thus, following the free surface movement, the rate of change of
the free surface, F = z — n = 0, must vanish. The dimensionless kinematic
boundary condition is expressed as

8
% e = gl
0z

p z = e (2.7)



3. Approximate Governing Equations on the Horizontal Plane

The main objective of deriving approximate equations is to reduce the
three-dimensional governing equations and boundary conditions to two-
dimensional forms so that lesser computational efforts are required in mod-
eling wave propagation in a large domain. Several different methods can
be used to achieve this goal. In this section, we will discuss two of them: a
Hamiltonian approach and a direct perturbation approach.

3.1 Hamiltonian Approach

The total energy of a flow field is the sum of kinetic and potential energy.
Denoting (2 as the projection of flow domain on the horizontal plane, we can
express the total energy, which is also called Hamiltonian, in the following

dimensionless form:
dz + n“} dzdy
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in which the total energy has been normalized by a factor pga/?/k'. Be-
cause the total energy (Hamiltonian) must be finite, we assume that 7, ®
and their derivatives vanish along the lateral boundaries of the horizontal
domain.

The canonical theorem states that the free surface boundary conditions,
(2.6) and (2.7), are equivalent to the following canonical equations (Broer
1974, Zakharov 1968, Miles 1977):

o _ 6 09 _ M

S -G " B- "% (3.2)

in which & denotes a variational derivative and ¢(x, t) represents the po-
tential evaluated on the free surface

d(x,t) = ®(x, en(x,t),1) (3.3)

To use the canonical equations, we need to know the relation between @
and ¢. In other words, the vertical distribution of the potential function
must be derived first. This task can only be achieved approximately. In



the following section, an approximated Hamiltonian will be obtained by
adopting the Boussinesq approximation, i.e. 0(¢) = 0(p?) << 1.
3.1.1 An approzimate Hamiltonian

The Hamiltonian can be rewritten as the sum of kinetic energy, Ej, and
the potential energy E,, i.e.,

H=F+E (3.4)
where
1 2
E, = ¢ 7’ dedy (3.5)
2 o
Ey = Exo + Epy (3.6)
with

e LG+ @) 4 ()] s
Eyy = %[/;fom l(g—i)z 4 (%)2 + p? (%)2] dzdzdy (3.8)

Applying the Green’s theorem to the volume integral on the right-hand
side of (3.7) and using the continuity equation (2.3) as well as the no-flux
boundary condition on the bottom, (2.5), we obtain

Eyo = % f '[n [p-z (c}%i:i)]mo dady (3.9)

where the integrand is evaluated on the still water level, z = 0. We remark
here that up to this point, no approximation has been made.

The kinetic energy above the still water level, z = 0, given by (3.8) can
be approximated by using the Taylor’s series expansion
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=0
(3.10)
The approximate Hamiltonian can be written as
H_lff 2 (502 & a@)‘
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To continue the derivation of Boussinesq-type equations, we must find
the vertical structure of the potential function, ®(x, z,t), such that the
approximate Hamiltonian can be evaluated at the still water surface, z = 0.

3.1.2 Vertical structure of the potential function

Many approaches can be taken to find the vertical structure of the
potential function. Here we follow the procedure originally developed by
Lin and Clark (1959). Expanding the potential function in a power series
in terms of (z + h)

B, 2,1) = 3 (= + B 6 (x, 1 (3.12)

n=0

we can obtain recursive relations among ¢(™)(x,t) by substituting (3.12)
into the continuity equation, (2.3), and the bottom boundary condition

(2.5)
29k . VO
ay - _ K Vh-V¢
g 1 + p?|Vh|? (3.13)
gty o B[P0 4 e+ 1)VR - D 4 (a4 1) V2he(+Y)

(n+1)(n+2) (1 + p2|VA[])
(3.14)



where 7 = 0,1,2, ... . From the recursive relations, #™) can be expressed
in terms of ¢(9), which is the potential along the bottom. For instance, up
to 0(u*) the potential function can be written as

2
B(x, z,1) = ¢© — u? [th . Ve© + %v%{"i + zV - (R V©)
z!
e v=¢(°)] + 0(u*) (3.15)

For later use, we introduce ®,(x, ) as the potential at an arbitrary elevation
z = zo(x). From (3.15) @, can be expressed as

hz
&, = ¢ — p? [th . V@ + Tv%s("}

2
424 V- (AV3?) + f,f-v’qbf"]] + 0(u*) (3.16)

Subtracting (3.16) from (3.15) and using &, = ¢(%) + 0(u?), we can write
the potential function in terms of ®,

B(x, z,1) = Balx,t) — 4 [(z — 2a) V. (RV®,)

(2> = 22)

: Vzrba] + 0(p*) (3.17)

+
From (3.16) we can also express () in terms of ®4:

2
© = &, + u? [th . Vd, + %-v”«}a

2
+2a V- (AVBa) + %v*@a] + 0(u*) (3.18)

Along the still water surface, zo = 0, and $,(x,0,t) = &,. From (3.18) we
obtain

¢ = Me, (3.19)



where
B2
M-t =1+ p4? [th -V + ?v’*] + 0(u?) (3.20)
To evaluate the integrand in (3.11), we need to find the expression for

the gradient of @ on z = 0. From (3.12) ~ (3.14) and (3.19), we have

= s]
%? =3 (0 + DA ) = SM1 G, + 0()  (3.21)

n=0

z2=0
where

g = _,ﬁ{u — u? |Vh]?) V(- V)

_p3[2th-V(Vh.V) + hV?R(Vh.V) + h? (% V3(Vh.V)

+(Vh-V)V? ¢ %v’w’) + %h"' viv? ] } (3.22)

The first term in the Hamiltonian or (3.9) can be evaluated as

-2
B = E f / &, SM~' &, dedy
2 a
1 w2h?
- Eff {hv&,.v¢o+ -V (V& (Vh - V&)
1]

2h3
LB

Ve, - (V2V @o)} dzdy + 0(pu*) (3.23)

Finally, the approximated Hamiltonian, (3.11), can be expressed in terms
of &, and 7 in the following form:

_1 : 2 , MR o ;
3 = 2/L{(h+ MIVE P + V. [V (Vh - V&)



pzhs

+ Ve, - VI(VS,) + nz} dedy + O(u*, eu?, %) (3.24)

We note that from (3.17) with z, = 0,

08 _ 03, .
% = B8z +0(ﬂ')|

¢ 9%,
dy = Ay

+0%), 3 = ()

which have been used in deriving the Hamiltonian (3.24).

To apply the canonical theorem, we first recognize that the potential on
the actual free surface (z = en) , ¢, is different from that on the still water
level, ®. However, the difference is small and can be shown by using the
Taylor’s series expansion

¢ = &(z,en, 1) :‘I’(m,o,t)+ﬁ

az 5n+

z=0

Hence
&, = & + 0(ep?) (3.25)

Therefore, within the limit of accuracy for the Hamiltonian ¢ and ®, are
exchangeable.

Applying the canonical theorem, (3.2), to the Hamiltonian, (3.24), yields

an _
a = -V '[(h + E?})V@o}
s 4 h®
—sH V- |k V(v-(hV@o))—TV(v-Wo) (3.26)
0%, ¢ 2
g | V&, — 7 (3.27)

Introducing the horizontal velocity vector on the still water surface as
u, = V&, (3.28)

10



we can rewrite (3.26) in the following form

%—;Z + V- [(h + en)u,] + E-;V- [hz V(V - hu,)
- %3 V(V - u,) ] = 0(ep®, pt, &%) (3.29)

which represents the continuity equation. Taking the gradient of (3.27), we
obtain the momentum equation in terms of the velocity u,

du,

5 + eu,- Vu, + Vy = 0(ep®, ut, €?) (3.30)

Equations (3.29) and (3.30) are the conventional Boussinesq equations
expressed in terms of the horizontal velocity on the still water surface.
These equations can be rewritten in terms of horizontal velocity on the
bottom or the depth-averaged velocity. We will discuss these alternative
forms in section 3.2.2,

3.2 A Direct Perturbation Approach
3.2.1 Governing equations for finite amplitude waves

In the Hamiltonian approach, we have to employ the Boussinesq ap-
proximation, i.e., 0(¢) ~ 0(px?) << 1. Moreover, the knowledge of the
vertical structure of the potential function is essential and is obtained via
a perturbation method. In this section, we present a direct perturbation
approach, which allows the parameter ¢, representing the nonlinearity, to
be arbitrary.

To facilitate the perturbation procedure efficiently, we integrate the con-
tinuity equation (2.3) from the bottom, z = —h, to the free surface, z = en.
Using the kinematic boundary conditions (2.5) and (2.7), one may obtain
the depth-integrated continuity equation

e
v.[/ vwz] " (3.31)
) at

which is an exact equation. Following the perturbation procedure given in

section 3.1.2 and substituting (3.17) into the continuity equation (3.31), we
obtain

11



o
5+ V- len + h) Ve

+u?V . {(en + h) [V(za V - (hV®,)) + %(h
—en)V(V - (A V®)) + -;-V(zg V2i3,)

- % (’7° — enh + B?)V V2 %]} = 0(u*) (3.32)

We reiterate here that the parameter € is assumed to be an arbitrary con-
stant. Substitution of (3.17) into the dynamic free surface boundary con-
dition, (2.6), yields

9%,

ad )
at

—= 494+ §|V‘I’a|2 + p? [(za —en) V- (AV

at

(2 — ) vz(%)] — p? VB, - [~ Vza(V - (AVEL))

B3| =

+
+(en = 2a)V (V - (AV®a)) — 2aVza V284
F i - 2vel)] + L (v - (Ve

+2enV - (RV®,) V38, + €207 (V28,)?] = 0(n?) (3.33)

From (3.17) the horizontal velocity at z = z, can be defined as

u, = (V) = V&,

=i

+12[V2aV (A V) + 2o Vza VEa] + 0(u?) (3.34)

Equivalently,

V&, = ug — p2[Vzo V - (h Vu,)

12



+ 24 V2o V 2uq] + 0(1?) (3.35)
Replacing V&, by the right-hand side member in (3.35), we can rewrite

the continuity equation (3.32) as

% V.[(en + h)ua] + u*V-{(% - %2-) hV(V -uq)

+ (zn + %) h V[V - (h ua)]} + NL1 = 0(p?) (3.36)
where

NL1 = 2V -{sﬂ[(za - -;-En) V(V - huy)

STCR P R N

The terms in N L1, (3.37), are of the order of magnitude of 0(u?). Notice
that these terms are the combination of cubic and quadratic nonlinearity.

Taking the gradient of (3.33) and using (3.35) in the resulting equation,
we obtain

dug du,
; + Vi + euy - Vuy + u? {zﬂV [V (hW]
Ouq
+%z§V(V - ; )} + NL2 = 0(u?) (3.38)

where
NIL2 = ,u.gs{[ua Vza) V(V - hua) + 2o V [ua - V(V -hua)]
23
+24 (Vg + V2o) V(V - ua) + -227[11‘, - V(V - uq)]

o ouaty - o (+55)]}

13



— u2e? {%v [n’ (v 4 3;“)] + V[ug - (n V(Y - hug)]
SV (Y - hua)V - }

—pletw {3’; [V(V « ug) = (V- u.,)’}} (3.39)

We reiterate that similar to those terms in N L1, the terms in N L2 are non-
linear in both quadratic and cubic forms. By allowing the wave parameter
¢ to be arbitrary, we permit finite amplitude waves in very shallow water.

3.2.2 Summary of conventional Boussinesq equations

In the Boussinesq approximation, the Ursell number is assumed to be of
the order of magnitude of one. In other words, 0(e) &~ 0(u?) << 1. Conse-
quently, the members of NL1 and N L2 in (3.37) and (3.39) are in the same
order of magnitude as or smaller than 0(u*). Therefore, the Boussinesq
equations written in terms of the horizontal velocity components, uq, and
free surface displacement, 7, are given in (3.36) and (3.38) without N L1 and
NL2. These equations are accurate up to 0(u*, u?c). When the velocity is
evaluated on the still water surface, z, = 0 and u, = u,, the Boussinesq
equations can be reduced to (3.29) and (3.30) which were derived from the
Hamiltonian approach.

The limitations of the Boussinesq equations are two-folds: In very shal-
low water where waves are close to breaking, the nonlinearity is important
and the nonlinearity parameter ¢ could become as large as 0.3 ~ 0.4. At the
same time the dispersion parameter u? becomes smaller as depth decreases.
Therefore, free surface profiles for a near breaking wave obtained from the
Boussinesq equation are usually more symmetric with respect to the wave
crest than that observed in the laboratory (Liu, 1990). This shortcoming
can be overcome by relaxing the restriction on nonlinearity parameter .
In other words, some terms in N L1 and N L2 given in (3.37) and (3.39),
such as 0(p?e) terms, can be included in the Boussinesq equations. The
second limitation of the Boussinesq equations is their inadequate behavior
in the intermediate depth region. We will illustrate this point by examining
the dispersion relations corresponding to different forms of the Boussinesq
equations in the following section.

14



The conventional Boussinesq equations appear in different forms. They
can be expressed in terms of the velocity on the free surface, as shown in
(3.29) and (3.30). They can also be written in terms of velocity vectors
on the bottom or the depth-averaged velocity (Peregrine, 1972). For later
uses, we present these well-known Boussinesq equations here. In terms of
the velocity along the bottom, zo = —h, (3.36) and (3.38) becomes

d 1
E:!! + V [(em + h)up) + p? {V --ghsV(V - uy)

- % R V[V -[hub)]} = 0(n?) (3.40)
duy 2 duy
-T%—+Vn+eua-\7ub+,u {—hv (V-h—g;:—)

1.4 duy _ 4

where u; denotes the velocity on the sea bottom. To write the Boussinesq
equations in terms of the depth-averaged velocity

1 i
3= 3.4
sl f_;. V&dz (3.42)

We first rewrite the continuity equation (3.31) as

% +V - [(h+en)a] = 0 (3.43)

which is exact. Secondly, from (3.17), we obtain

)

- hh+ 22V 8) | 4 0 ) (3.49)

= e

Ve, = % - g + #2{%(:&2 —~ 333)V (

Substituting (3.34) and (3.44) into (3.38), we obtain after a lengthy manip-
ulation,

15



2 4
%+Vﬂ+su-Vﬁ+p [%V(Va—u)

” 52‘. vV . (h i—“)] = 0(u*, &%) (3.45)

We remark here that different forms of the Boussinesq equations can be
further deduced by replacing the higher order time derivative terms in the
momentum equations, (3.41) and (3.45) by the spatial derivative of 7.

8.8 Dispersion Relation and Phase Velocily of Nonlinear Shallow-water
Equations

The major difference among the conventional Boussinesq equations is
in the higher order derivative terms. These higher order derivative terms
affect the dispersive properties and the stability of the equations. In this
section, we examine the dispersion relations for the nonlinear shallow-water
equations as well as the conventional Boussinesq equations. To simplify the
discussion, we only investigate one-dimensional constant depth case. From
(3.36) and (3.38), we can write the continuity and the momentum equation
as

n
5t

a *u, a 3%
2., 13 a) _ 2 07q
+AR {,u. sk dz ( 0zt ) kR h oz (7? dz? )
p, e? 5 Oty
(B2 () o

Oun an 5 Py
v 5 tHel ooy e

8 8%u Bu, 6%u ] 8%y
2 B i, % gy, oM Se o
”’“{h oz (““ 33:3) WS e (” Bzat)}

2 a2 2 2
gl [P P (6‘_“_)]

b2 fen + W] + 42 (a +y)w i

i

dx | 2 O8zdt dz? Oz
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— Bue o {"? [%fz_ - (%=) ]} <D (3.47)

where & = (2a/h)?/2 + (2a/h) and B = 1. If the terms in the order of u’¢,
p?e? and p?e® are ignored (i.e. B = 0), the above equations are reduced to
the Boussinesq equations.

We look for a solution of (3.46) and (3.47) in the expansion

n = m0) + ena(8) + en3(6) + ... (3.48)
ve = u1(0) + €uz(8) + 2uz(6) + ... (3.49)
0 = kz — wt (3.50)

w = wy + 2wy + ... (3.51)

where € = a/h denotes the small parameter for nonlinearity. Substituting
(3.48) ~ (3.51) into (3.46) and (3.47), we obtain the hierarchy

ot + khul + g+ RS = 0 (3.52)

—woul + kn} — plak’hiw.uy’ = 0 (3.53)

1
—wony + khuy + pg(a+§)k3h3u§" = —k(mu) - Bulak®h?(muy) (3.54)
m

—wouh + kuhy — plak®hPw.uy = —kujuy

— Bu? {ak®R?(uruf) + k*h’uiu) + wok®h(muy)'} (3.55)

17



1
~wony + khu + p?(a+ g)kshs‘“g' = —k(muz 4+ mwn) +wan
2
— Butak®h?((muf)’ + (mu)] + Bk h(nfuy)  (3.56)

—wouy + kny — plak?hiw,uy = —k(ugup) +wauy
—Bu’{k“h’a[(m'; "+ wpuf] + ER? [uug + ] + wok?A[(muz)’

1 () I
+(mul)] + swok? (njuf) — kh(mmuy)’ + [m(ﬂ1)3]'} (3.57)
The solution for the leading order equations, (3.52) and (3.53) represents a
periodic wave

k 1
71 = Ccos 6 y U = ;‘; (m-k:—hi') cos @ (3-58)

with the linear dispersion relation

02 - (3.59)

w_g _ 1— p?(a+ 3)k?R?
k2 1 — p2ak?h?

If the above equation becomes negative, the frequency and the phase
velocity become imaginary. This implies that the solution grows in time
and becomes unstable. Hence, the instability condition requires

1\.
[1 = p® (a+§) kshz] (1 — p?ak®h?) > 0
However, because —% < a < 0 the above condition becomes

- (a+ %) k*h? > 0 (3.60)

18



For a < —1/3 the stability condition is always satisfied for all kh. On the
other hand, if 0 > & > —1/3, the relative depth is limited by the following
condition

”kh < _1..
1/a+§

for the stability requirement. For example, the conventional Boussinesq
equations using the velocity on the free surface, u,(a = 0), become unstable
when p(kh) is greater than V3.

As we mentioned before, the higher derivative terms (dispersive terms)
in the Boussinesq equations can appear in different forms; we can replace
the spatial derivative by the time derivative vice versa through the leading
order approximation. For instance, (3.47) can be rewritten as

(3.61)

8 8 a®
e I i 3ah2—-§-+sua

ot oz dz

Oy
y il 0 (3.62)
The dispersive properties of the new set of Boussinesq equations, (3.46) with
B = 0 and (3.62) are different from those of (3.46) and (3.47). Substituting
(3.48) ~ (3.51) into (3.48) and (3.62), we find the following linear dispersion
relation

2
c? = % =h [1 —_ (cx + -:1;) k*h’] (1 + p?ak’h?) (3.63)

Comparing (3.59) and (3.63), we observe that (3.63) is the truncated bi-
nomial expansion of (3.59) for small k%h%, To ensure that the system is
stable, the kh value must satisfy the following condition

[1 - p? (a + %) k’h’] (1 + plak?h?) > 0 (3.64)

This is a more restrictive condition than (3.60). With a = —1/3, the
conventional Boussinesq equations using the depth-averaged velocity also
become unstable when pkh is greater than /3. Hence, the form of Boussi-
nesq equations expressed in (3.46) and (3.47) are preferred as far as the
instability is concerned.
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Substituting (3.58) into (3.54) and (3.55), we find that the right-hand
side terms are proportional to sin2 8. Therefore, the solution for (3.54) and
(3.55) can be written as

7y = Bcos 260 , u; = Decos 20 (3.65)
where
_ Woi a2 a2np _ LK 1
B =3 (- %ek'm)D - 3 03 G- wawh?y
{1 - Bu? [(2a+ 1) k?R? + 202k (1 — p?ak’h?)]} (3.66)
1 K 1 { AL gidi
- - ~ k*h
¥ = o, Topaie L0~ e

— Bp®(4a + 3)k*h? + 2Bu* (% + a + 4a3) k*h* } (3.67)

The right-hand side of the equations for 3 and ug can be written as

3
RHS of (3.56) = {—wz & %k{D + BU) + Bu? [kTU

_g (mk*th + ak®h’BU — %k‘hU)]}sin 0 + Ljsin 30 (3.68)

RHS of (3.57) = {—ng + %UDk - Bu? [% k2hw, BU

i k*h?  Ba—2
8 1 — p2ak?h?

1
2w, 1— plak?h? s kahwo) D& Eks

1 k5h 1

where
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k 1

U= — — 8
we 1 — p2ak?h?

(3.70)

and L; and Ly are some complicated coefficients. The terms in sin 36 can
be accommodated by solutions 73 and ug which are proportional to cos
30, but the sin # terms resonate with the operators on the left. There is
a secular solution which is proportional to 6 sin @ and is unbounded in
6. To eliminate the resonant term, we first combine (3.56) and (3.57) by
eliminating 75. Thus, the right-hand side of the resulting equation becomes

k (RHS of (3.56)) + w, (RHS of (3.57)) = { — wa(k + w,U)

k*h? b5a — 2
2 1—p2ak?h?

1
+ %kZ(D + BU) + 5 kwoUD — fy’ [ (

2
+ 2k*hw? + 2ak4h2)p + % (ak®h® + w2h)BU — -:—k“hU

& 3k3w,
8(1 — p2a k?h?)  2w,(

kSh . _
1— pPak?h?)? ] }sm 0 + (kLy +woLz)sin 36

We now make the coefficient of sin 8 be zero so that the resonant term
vanishes. The final result for w, is

k k? 1 2 k%h?
£2 = 2 2 m 2 — p2ak?h? B.=op 2 — p2ak?h?

3% [T = 14 [ -ﬁ) (1 - p*ak®h®)| D
4 k?h

p2o g 0 g o B fy ’i") - }
" e 8 h? w2 ) T 2woh(l — pak?h?)
(3.71)
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where B and D are defined in (3.66) and (3.67). w; represents the depen-
dence of the dispersion relation on amplitude. If the Boussinesq approxi-
mation is adopted (i.e. # = 0), w2 can be simplified to be

i 1 | 2 7212 21212

k* 1 1 (3.72)
8w3 1 — p2ak?h? | (1 — p2ak?h?)(2 — p?ak?h?) '

Returning to dimensional variables, we can express the dispersion rela-
tion, (3.51) as

i 1 1/2
i [1 - (a+§) k*h"] (1 — ak?h?)"1/?

+(%)2{§k:7(3 — ak?h?) (3 — 5ak?h?) — % [1 B (a N %) k’hg]_i}

-1/2
[1 - (a - %) k’h’] (1 — ak?h?)~Y2 (2 — ak?h?)"!  (3.73)

For the special case a = 0, i.e., the Boussinesq equations written in terms
of the free surface velocity, the dispersion relation can be expressed as

2 1/2 3 4
= _ B g JRE i T
w_wﬁ(l 3kh) +e (16 o PEE " a3 O™

in the dimensionless form, and
@ _(; 1,;,;)* 5 el
Vahk — 3 h/ | 16k2h?

1 1 - 1 3
= (1 - Ek’hz) (1 - Ekzhz) (3.75)

in the dimensional form.
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4. Extension of Shallow-Water Equations to Deep Water

From the analysis shown in the previous section, we know that the
Boussinesq equations are unstable subject to high frequency disturbance if
0 > a > —1/3 (see equation (3.60)). Even if the Boussinesq equations are
stable for all kh (for example, a = —1/3), the accuracy of these equations
in the intermediate and the deep water depth is in question. A simple
way to evaluate the accuracy of various forms of the nonlinear shallow
water equations is to compare the dispersion relation derived from the these
equations to that from Stokes’ wave theory in the intermediate and deep
water.

4.1 Comparison Between Shallow-Water Equations and Stokes’ Wave
Theory

For a uniform Stokes’ wave train in a constant depth, the dispersion
relation can be written as (Whitham 1974):

w? 9 tanh® kh — 10 tanh® kh + 9 5.
gk tanh kh =1 ( atanh‘! Eh ) k‘a® + ... (4.1)

where ka denotes the wave slope and is considered as a small parameter.
The dispersion relation can be further approximated as

4 2
w = T _1_ (Qtanh kh — ID:anh kh + 9) Ka?  (42)
\/gk tanh kk 2 8 tanh® kh

The first term on the right-hand side of the above equation represents the
linear wave dispersion relation, while the second term denotes the amplitude
effect on the dispersion. In the shallow water limit, kh << 1, the dispersion
relation becomes

9
16 k2h?

=1- %Jc“h2 + (%)2

w

v/ ghk

Once again, the shallow water limit of the Stokes’ wave theory is valid
only if 0(a/h) << 0(kh)?> (Whitham 1974). Hence, the Stokes’ theory
works well in the shallow water only for extremely small amplitude waves.

& 55 (4.3)

23



Because the Boussinesq equations are derived from the assumption that
0(a/h) = 0(kh)? which covers the special case when the nonlinearity is
weak. Therefore, it is not surprising to observe that the dispersion relation
for the conventional Boussinesq equations, (3.75), after the higher-order
terms in kh are dropped, is the same as (4.3).

However, we are more interested in knowing if the dispersion relation
derived from the nonlinear shallow-water equations can be matched with
that from the Stokes’ wave theory in the intermediate and the deep water.
Denoting w and w* as the frequencies associated with the nonlinear shallow-
water equations and the Stokes’ theory, respectively, we can define the ratios
between these frequencies at two separate orders:

wo _ [ Fh[1=(a+ PR (4.4)

wt ~ V tanhkh 1 — ak?h? ’
w2 _ . kh ( 1 ) 2 tanh® kh (45)
wiy ~ 2 Vtanhkh \k2h%?/ 9tanh*kh — 10 tanh® kh+ 9 '

where

1 — ak?h? ] 1

1 1
Ll e * _'B‘
“2 2D t3 [1 — (a + })k2h?] 2 — ak?h?

Bk2h? 50— 2 1 — (a + 3)k%h? o
~T=emp Ll i g e L R

1 — ak?h? & o 8 1 — ak?h?
1 B+ & (L= 1
1 — (a: <+ E)kzha 8 1 - (0.' -+ '3')]!',2}1.2

_l[ 1 — ak?h? ]’} 1 } (46)

21— (a¢+ )kzhz 1 — ak?h?

1 14+ a
2

1 [1 = («+ K73 212
2a
akh? (1 - akzhz)a {3 - 2a%

-B [(m + 3)k2K? + 2 («m bk )k“h‘] b e

¥ =
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P [1 — (a + -;-)mzrpt 1
- 1 — ak?h? T4l = (o + DR
R S PR L TE _ 12,2
e {1 R (20 + 3) - 2e + AL (49)

When 8 = 0, the leading order frequency ratio remains the same as
(4.4). But the second order frequency ratio can be simplified to be

ot = {(3 — ak?h?)(3 — 5ak?h?) 1 }
8 = k2h? 1— (o + 3)k2h2

1 -1/2
[1 — (a + E)kzhz] (1 — ak?®h?)~Y? (2 — ak?h?)"! (4.9)

These two frequency ratios are calculated for different kh, a and g values.
In Figure 1, we show the leading order frequency ratio, (4.4), for the con-
ventional Boussinesq equations with & = 0. The agreement degenerates
quickly for kh ~ 1.5. On the other hand, the agreement becomes much
better if the velocity along the bottom (a = —0.5) is used in the Boussi-
nesq equations; roughly 20% differences occur in the deep water. As far as
the conventional Boussinesq equations are concerned, the best agreement
occurs when the mean velocity is used, i.e. @ = —1/3. Since any value
between 0 and —0.5 can be used for a without reducing the accuracy in
Boussinesq equations, one can find the optimal a value such that the dif-
ferences in phase velocities and group velocities derived from w, and wg,
respectively, are minimized over the entire range of water depth. Chen
and Liu (1993) reported that the optimal value is @ = —0.3855. Using a
different approach, Madsen et al. (1991) derived a set of Boussinesq-type
equations whose linear dispersion relation has the same form as that given
in (3.59). Madsen et al. suggested that the optimal value for a should be
—8/21 = —0.381. The approach used by Madsen et al. will be discussed in
section 4.3.

The second order frequency ratio is also calculated for the conventional
Boussinesq equations (8 = 0) and the nonlinear shallow water equations
( B = 1). Figure 2 shows that the conventional Boussinesq equations un-
derestimate the second order frequency in the intermediate and the deep
water. The second order frequency for the Boussinesq equation is insensi-
tive to the a value when it is less than —1/3. Moreover, the second order
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frequency is practically zero for kk > 1.5. On the other hand, the nonlinear
shallow water equations give slightly better estimations of the second order
frequency (Figure 3). Using the optimal a value determined from the first
order frequency comparison, we show that the second order frequency for
the nonlinear shallow water equation is about twenty five per cent of that

from the Stokes’ wave theory.

1.2
— a=0
—a=13 e
uf —-— a=821 e
— a=03855
@y | eS0T
310
‘-.B - - - — — —— = - Jr— —
3 --""'--.,____-
b
.
09 } TS
S
0.8
0.0 0.5 1.0 1.5 2.0 2.5 3.0
kh

Figure 1. First order frequency ratios between the Stokes wave theory

and Boussinesg-type equations.
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0.8 ———= o=-0.3855
"""" o=-0.5

et ara s

0.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2. Second order frequency ratios between the Stokes wave theory
and conventional Boussinesq equations (8= 0).
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Figure 3. Second order frequency ratios between the Stokes wave theory
and the nonlinear shallow water equations (f= 1).



4.2 Hamiltonian Approach

As shown in section 3.1, the Boussinesq equations derived from the
Hamiltonian given in (3.24) becomes unstable when pkh is greater than
+/3. The instability occurs when the Hamiltonian becomes negative. The
remedy is to reconstruct the Hamiltonian into a quadratic form, which is
always positive and definite. First, the Hamiltonian, (3.24), is rewritten as

H = % f f [V&, - (dRV®,) + n°] dedy + 0(u*, ep?, €) (4.10)
0

where R is a two by two symmetric tensor operator defined by

R = [ :s":‘;l; e ’i&:{, pule (8:47)
G %‘%25 _ ’%3 aa_; (4.12a)
— %}9‘:_;3," _%za% (4.12b)
35 g;_; - %3;3"_’55 (4.12¢)

and d = en + h is the total depth. Following the approach suggested by
Broer et al. (1987) and Mooiman (1991), we seek for a positive definite
Hamiltonian in a quadratic form:

H = -;-f[ﬂ [d(F v&,)? + .,?3] dzdy + 0(e? , ep?, ut) (4.13)

where F is another tensor operator to be found from the following relation-
ship

V&, - (RV®,) = (FV&,) - (FV&,) + 0(u*)
Using (4.11) and (4.12), we obtain
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Fyy Fis
F = 4.14
[ F Fy ] (4.14)

Fu = g+ & @+ (4.150)
Fa= 2 [1+ 5 6+0) (1.150)
= -gs[i+ 5 a—b)] (4.15¢)
Fa= 25 [1- 49 (4.154)

where a, b, and c are operators defined in (4.12). The Hamiltonian defined

n (4.13) is always positive and has the same accuracy as those given in
(4.10) and (3.24). However, the Hamiltonian, (4.13), becomes unbounded
for short waves, u? — co. We must further approximate the operator F in
the following manner

Fl = v T é_,(a+b]] = Fy; + 0(p?) (4.16a)
F, = 73l é_, i Fiz + 0(u?) (4.16b)
F = = oy é_,(awb)] = Fy + 0(u*) (4.16¢)
Fy, = 4 = Fag + (Y (4.164)

V2[1 - E(b- )]

The canonical equations given the final form of the stable Boussinesq-
type equations:

% = -V.[FT(dFV3,)]
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9 * * . * * .
—a—z'[Fu d(Ffyuo + Fyyve) + Fyy d(Fiue + F350,)]

a - - - * - "
= 3_y[F1:e d(Fiyuo + Fyyve) + Fya d(Fyyue + Fipv,)] (4.17)
for continuity equation and

23,

5 = —g (FV&,)? — 7 (4.18)

for momentum equations. Taking the gradient of the momentum equation,
we obtain

du,
ot

(Fyuo + Fy3vo)

. "y 2
= -y [{Fu U + Fi3%0) 5- 9z

a
-+ (F;lﬂo + F;g'ﬂ'o) (thug + Fzgﬂg)] n (4.19)
dv,
5 - ¢ (Friuo + Fn”o) (Fu“o + Fyyv,)
_ On
+ (Fa1u0 + Fzz"o) (Fm“o + Fzz‘”o) ~ By (4.20)

Equations (4.17), (4.19) and (4.20) represent the modified Boussinesq equa-
tions which are stable for short waves.

Because the differential operators appear in the denominators on the
right-hand side of (4.17), (4.19) and (4.20), numerical schemes for solving
these equations must be designed with special care (Mooiman 1991). To
demonstrate the improved characteristics of the modified Boussinesq equa-
tions, we examine the one-dimensional waves (v, = 0, 8/8y = 0) over a
constant depth. From (4.17) and (4.19), we obtain

3 a ” * * *

3—2 = “%[Fu(df'u“a) + F3,(dF3u,)] (4.21)
du, . a8 . = 8 i an
57 = ¢ |Fiivey; (Fiyto) + Fi1 tom (Fhuo)| — o (4.22)
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where

1 1
y=-Fh = s—mm (4.23)
V2i1-828
The linearized version of the above equations becomes
2p2 32 \2
peh* @ 31',0 - du,
(] 6 az=) 5= (29
du, an
Sl il 4.25
ot oz (a.35)

For a small amplitude periodic wave given in (3.58) the dispersion relation
can be determined from (4.24) and (4.25) as

Tl

2
1
=h|—m—m—m—m— 4.26
(1+%n‘k3h3) (426)

It is quite obvious that the quantity on the right-hand side is always pos-
itive. Therefore, the system is stable for all kh values. The ratio of the
frequency calculated from (4.26) to that from Stokes’ wave can be expressed

as
W, kh 1
—_ = 4.27
w)  V tanhkh (1 + %kzhz) (4.27)

Following the same procedure presented in section 3.3, we derive the
second order frequency ratio defined in (4.5) with the following parameters:

2k2h2\ 72 k2h2\ "2
2 (1 + 3 ) - (1 + T) ]

1 e\ 7', k2h%\ . 2k2h2\
+Z(1+T) [B (1+ 6) +D(]+ 3)

(4.28)

D*
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- | 15 e SN k2h2 - 2k?h?
D_4k=h=(1+§kh) (1+ 5 3+ k*R°)(1+ 3
(4.29)

k2h? 2k2p2\ "t [1 2k2h2\ "t
(1+T)(1+ - ) §+(1+ = ) D*| (4.30)

In Figure 4 the first order frequency ratio, (4.27), is plotted for differ-
ent kh values, As a reference the frequency ratio derived from the original
Hamiltonian (a = 0) is also plotted. The improvement made by the modi-
fied Hamiltonian is rather significant. However, the behavior of the shallow
water equation with the optimal a value is still slightly better than that of
the modified Boussinesq equations in the deep water limit (see Figure 1).
The characteristics of the second order frequency for the modified Boussi-
nesq equations are more or less the same as those of the original Boussinesq
equations with a < —1/3 (see Figures 2 and 5).

Bl'

I

4.8 Other Approaches

Madsen et al. (1991) took a different approach and derived a set of
Boussinesq-type equations. They rewrote the conventional Boussinesq equa-
tions in terms of the depth-averaged velocity, (3. 43) and (3.45), in the fol-
lowing conservative form:

an aP aQ
s 2 bl 3 —_— = 4.3
ot ¥ dz * dy (439

p? PQ an
—)+€6—y(d)+d-a-;

d
8°P 2 \ _,
— =

_E g2
3 4 29t * dzdyot (133)
aQ a (PQ o an
5 5 (T) +an(d +d5
2 3 3
B pa (_O°P Q \ _
= k (39:33;31‘ * dy2at) — . (4.33)
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Figure 4. First order frequency ratios between the Stokes wave theory
and the Boussinesq equation derived from the modified Hamiltonian.
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Figure 5. Second order frequency ratios between the Stokes wave theory
and the modified Boussinesq equation.



where d = en + h is the total depth and P = ti(en+ h) and Q = #(en+h)
are the volume flux component in the 2— and y—direction, respectively.
From the leading order terms in the momentum equations we obtain

8P 8%Q 8%y 8%y i
3030t T dzdyot i (3;3‘ * —“3333;3) = 0(e, ) (4.34)
°Q 3P oy 9%y ,

dy?at + dzdydt +h (ay.s 5;@;) = 0(e, ) (4.35)

Madsen et al. (1991) argued that because the above quantities are in the
same order of magnitude as the truncation errors in the Boussinesq equa-
tions, one can add a portion of these quantities into the Boussinesq equa-
tions without affecting the accuracy of the resulting equations. Hence, they
multiplied (4.34) and (4.35) by —u?Bh? and added them to the momen-
tum equations (4.32) and (4.33), respectively. The resulting model equation
becomes

Sl g S 2 (4.36)
oP 8 (P d (PQ an
w5 (7) k- (T) il >
2 1), (&P #Q \_ 2pps 38 B\ _
= (B+ 3)" (8:2(% il ) Sl ¥ e e
(4.37)
aQ o (PQ 8 (Q? an
at +€'5;( d ) +‘ay(d) ek

- l) 2 ( °Q P ) _2ps (00 O\ _
i (B+ 3 A dyot ® dzdyot #-BR ay® * 82:333; =0
(4.38)

where B is an empirical coefficient. The linear dispersion relation for the
above equations can be written as
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w, [ kh [ 1+ Bk?h? ]‘*‘” -

ws ~ Vtanhkh [1+(B+ L)k?A? ($3%)
Comparing (4.39) and (4.4), we find B = —(a + 1/3). Madsen et al.
suggested that choosing the value B = 1/21 (or a = —8/21 = —0.381) leads
to phase velocity errors less than 3 % for the entire range 0 < h/A, < 0.75
and to group velocity errors of less than 6% for the range 0 < h/X, < 0.55,
where ), is the wave length in deep water. The frequency ratio, (4.39),

is plotted in Figure 1 and is very close to the curve created by using the
optimal o value, —0.3855.

5. Concluding Remarks

Nonlinear shallow water equations are derived based on the assumption
that the frequency parameter, p, is small, while the nonlinearity parame-
ter, €, is an order one quantity. The Boussinesq equations become a subset
of the nonlinear shallow water equations, i.e., 0(¢) ~ 0(u?). It is shown
that the Boussinesq equations can take on several different forms with the
same order magnitude of accuracy. However, some of these equations are
unstable in the range of short waves, which not only limits the applications
of these Boussinesg-type equations to very shallow water, but also makes
these equations vulnerable to any numerical disturbances. Several differ-
ent methods for extending the shallow water equations to deep water are
discussed.

Based on analyses for the constant depth, the linear dispersion charac-
teristics of the Boussinesq-type equations can be matched with those of the
Stokes’ waves in deep water by either using an appropriate velocity variable
in the governing equations, or adding some of the higher derivative terms
in the equations. A modified Hamiltonian has also been derived, which is
always finite and positive. The associated modified Boussinesq equations
also show significant improvements in the linear dispersion characteristics.
However, all of these Boussinesq-type equations have very poor nonlin-
ear dispersion characteristics in deep water. The nonlinear shallow water
equations seem to give a better match with the Stokes’ wave theory in deep
water. Nevertheless, the second order frequency (amplitude dispersion) is
still significantly under-estimated.

The future research efforts should continue on identifying the most suit-
able model equation describing wave propagation from deep water to shal-
low water. The nonlinearity needs to be properly included. Moreover, the
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issue concerning the vertical structure of velocity field in the deep water
should also be addressed.
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