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Abstract

The prediction of wave fields in domains with complicated geometries may be aided
by the use of conformal mapping, which simplifies the shape of the domain. In this
conformal domain, parabolic models have been used previously to treat wave problems.
In Cartesian coordinates, the angular spectrum model, based on a Fourier transform in
the direction perpendicular to the principal propagation direction, has been shown to
handle, in principle, a wider range of wave directions than the parabolic model.

Here, the extension of the angular spectrum model to conformally-mapped domains
with impermeable lateral boundaries is shown. Next, the Fourier-Galerkin method is
developed; this is identical to the angular spectrum model in Cartesian coordinates, but
differs in the conformal domain. Finally, a Chebyshev-tau model is developed, based
on using Chebyshev polynomials rather than trigonometric functions as a basis. For all
models, forward-propagation equations are derived, by splitting the governing elliptic
equations into first-order equations. Examples of all methods are shown for a simple
conformal mapping that permits the study of waves in a diverging channel and in a
circular channel. The forward-propagation models are shown to be optimal for methods
that use eigenfunctions for the lateral transform and less accurate for others.

1 Introduction

Wave modelling in regions where the boundaries are uncomplicated can be easily carried
out by a variety of means. For over a decade, parabolic modelling, based on finite-difference
methods, has been used with success to examine refraction, diffraction and shoaling of short
waves over large coastal areas [24], [17], [18]. More recently, angular spectrum modelling
has been used [26], [7], [8], [11]. As originally conceived [2], the angular spectrum model
involves the decomposition of an incident wave field into plane waves, which then are al-
lowed to propagate into the domain. The resulting wave field is the superposition of these
plane waves. This technique is carried out by Fourier transforming the governing equation
and initial condition in the lateral direction, and then solving the resulting one-dimensional
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equations for the Fourier modes, which are then superimposed for the final wave field. This
method of expressing the wave field as a Fourier integral or a trigonometric series has the po-
tential advantage of permitting wider angles of wave approach when compared to parabolic
modelling, which is constrained by a preferred propagation direction. Also, the angular spec-
trum methodology (see [9] for a review) can be applied to weakly nonlinear water waves [28],
shallow water Boussinesq waves [16], and directional spectra [14], [27].

For problems that are periodic in one direction, the Fourier trigonometric basis is optimal
for the series expansion of the solution in that direction. For other problems, Chebyshev
polynomials are usually preferred. For example, Boyd [3] has treated a number of nonlinear
wave problems with these polynomials, whilst Panchang and Kopriva [23] have used them in
both horizontal directions in a collocation method for solving the elliptic mild-slope equation.
However, the Chebyshev polynomials do not satisfy our lateral boundary conditions, so an
equivalent method to the Fourier-Galerkin method will not be possible; a Chebyshev-tau
method overcomes this difficulty by using two additional equations to enforce the boundary
conditions and is very similar in application [20].

Wave prediction in realistic coastal situations is often complicated by the layout of break-
waters and other hard structures coupled with variable depths and currents. These compli-
cated situations can often be simplified if a coordinate transformation is used that conforms
to the physical boundaries. Hence, we consider a general class of conformal transformations
from the Cartesian coordinates (,y) into boundary-fitted coordinates (u,v), so that no-flow
boundary conditions can be applied on coordinate lines. We then investigate models for
forward wave propagation, developed in the transformed domain.

Boundary-fitted coordinates have been used extensively in other fields with good suc-
cess [29], [30]. In the field of wave propagation, Liu and Boissevain [21] transformed the
parabolic model into a non-orthogonal coordinate system to examine the propagation of
waves in a diverging channel (harbor entrance). Kirby [15] showed that it is important
to determine the parabolic model within the mapped domain. Tsay et al. [31] developed
low-order parabolic approximations for several geometries, while Kirby et al. [19] developed
parabolic models for a general conformal case for both small- and large-angle parabolic ap-
proximations. They also show results for two specific geometries and presented laboratory
results for the case of the diverging breakwater.

Here we develop the forward-propagation equations for Fourier-Galerkin, angular spec-
trum and Chebyshev-tau models in conformal domains, and compare the results to exact
solutions for two simple planforms — waves between diverging breakwaters and waves in a
circular channel; these are the same geometries as used in [19].

2 Theory: Cartesian coordinates

The governing equation for the propagation of linear waves in constant water depth is the
two-dimensional Helmholtz equation,

¢  0*¢

8?+W+k?qs=v2¢+k2¢:0, (1)
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where (2,y) are the horizontal Cartesian coordinates and the total wave potential is

coshk(h+2) _;,
Re {o(e, ) 2D i}

The mean free surface is at z = 0 and the bottom is at z = —h. The wavenumber k is related
to the water depth h and the angular frequency of the wave w by the dispersion relationship,

w? = gk tanh kh.

We are interested in situations in which waves are primarily propagating in the +z direc-
tion within a domain of given width. As an example, for a straight channel of width 2b, with
impermeable walls at y = 4b, we can use separation of variables to solve for the velocity
potential. Assuming ¢(z,y) = X ()Y (y), yields two equations

X"+ (k- 22X = 0, (2)
Y'+ MY = 0. (3)

For no-flow lateral boundary conditions, we have Y'(y) = 0 at y = +b; therefore we have a
Sturm-Liouville problem in the y-direction. The eigenvalues are A\, = %m’/b and the eigen-
functions are {cos[A,(y + b)]}, n = 0,1,2,.... The corresponding solutions of (2) are easily

shown to be exponential functions. Finally, summing all the possible solutions together, we

obtain
Pz, y) = Z @y exp {:Eia;\/fﬂ - }\31} cos[An(y + )], (4)

where the a, are constants. The forward-propagating waves will be associated with the
positive sign in the exponent. Also, note that for values of A,, > k, the forward-propagating
wave modes decay exponentially with +z.

Another method of solving the two-dimensional equation (1) is to use a transform in the
lateral direction (y), thus reducing it to one-dimensional equations. A general transform pair
can be described by

b
V(@) = T ol= [ denb@e@dy, =012, ()
Hey) = T'W@]= Y Ua@)uly)  for—b<y<b (6)
n=0

where {%,(y)},n =0,1,2,..., is a set of functions that are orthogonal (with weight w) over
the range —b < y < b, and ¥, («) are the amplitudes of these orthogonal functions. Two
common choices for 1,(y) are trigonometric functions (Fourier transforms) and Chebyshev
polynomials.

To proceed, we transform (1) into a set of equations for the amplitudes:

V(@) | - lazi;—l[w]

da? 83‘]2 l +k2q’n(m)=(]; n=1,1.2.. ... (7)

Once these equations have been solved for ¥,,, the inverse transform (6) is used to find the
solution, ¢(z,y).
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2.1 Angular spectrum and Fourier-Galerkin modelling

Here, we will use the Fourier transform for a domain of width 2b, so that 9, = cos[A,.(y+0)],
with ¥, = fp, w =1, and A, = %mr/b. This gives

@) = Tloel= o [ ) eobhau 4Dy, n=0,1,2,0 (9

¢’($a 3)") = TF_I[f] = Z fnfn(:ﬂ) COS[’\n(y o+ b)]: for —b < y < b, (9)

n:D

where ¢ = 1 and ¢, = 2 for n > 1. The f,(z) are the Fourier modal amplitudes. Since

D%¢
TF |:a_y2.| = ‘—quzfns

the governing equations for the Fourier modes simplify. Thus, transforming the Helmholtz
equation (1), we obtain

d? fn(x + (k2= A2)fu(z) =0, n=0,1,2.... (10)

This equation shows that each Fourier mode evolves independently of all the others. Solv-

ing (10) gives
ful®) =0y 6xp {:I:is;w,/k'z—/\ﬁ}, forn=0,1,2,..

we take the + as we are interested in propagation in the +a direction. Only those modes for

which A\, < k represent progressive wave trains; the remainder decay with @. Therefore, the

solution procedure is simplified (in the far field) by determining only the progressive modes.
The inverse Fourier transform, (9), provides the final solution,

o(z,y) = i €nly €XP {11\/@} cos[An(y + b)].

n=0

The constants a, are found from the Fourier transform of the ‘initial condition’, ¢(0,y):
an = Tp[$(0,y)]. This solution comprises the angular spectrum, which is the superposition
of many plane wave trains, each travelling in a direction given by tan='()\,//k% — A2). It
can also be viewed as the superposition of the fundamental modes of the Laplace equation.
This is the angular spectrum model for a channel.

The angular spectrum model is indistinguishable in Cartesian coordinates from the sep-
aration of variables solution, or an eigenfunction expansion method, since the Fourier series
are in fact the eigenfunctions in the lateral direction. Dalrymple [6] used these series ex-
pansions for ¢ to examine waves past channel transitions, and Dalrymple and Martin [10]
examined waves through a line of offshore breakwaters.

The Fourier-Galerkin model assumes that the potential can be expanded in a trigonomet-
ric series (here, cosines) in the lateral direction. Orthogonality of the trigonometric functions
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is used to develop the equations governing the modal amplitudes. A Fourier transform in
the lateral direction gives an identical result, therefore we will use the Fourier transform to
derive the equations below. In Cartesian coo1dma,tes the Fourier-Galerkin method is also
the same as the angular spectrum model.

2.2 Chebyshev-tau method
This method begins with

Yn(y) = Tu(Y) where Y =y/b, (11)
and T, is a Chebyshev polynomial. The Chebyshev transform and its inverse are

L g(z,0Y) T(Y)

cn(ﬂ:) = %[qﬁ(m,y)]— — » m dY, n=0,12,..., (12)
d(z,y) = T5'e(2)) = i enlz) Tu(Y), for-1<Y < 1. (13)
n=0

For the Chebyshev polynomials, the second derivative does not behave as conveniently as in
the Fourier transform. However it can be rewritten in a form which is computationally more
convenient (and accurate) for large values of n [5, p. 69]:

qub — dzT,,(Y)

where -
B =26, Y l(n+1)(n+2l) cpya(2). (15)
=1
The transformed equation is now
den + ke, () + LY - 0, n=0,1,2 (16)
d n b? T ? R TE A ]

which is a coupled (through the second derivative) system of equations for the modal ampli-
tudes.

Note that 1, (y), defined by (11), does not satisfy the no-flow conditions on the walls; in
fact,

Yh(=b) = Ti(—=1) = n?(=1)"*! and o,(b) = Ti(+1) = n?.

In order to enforce the boundary conditions, we use the Chebyshev-tau method [5], which is
discussed in § 4.3.

The Chebyshev-tau method does not offer any advantages for the Helmholtz equation
in Cartesian coordinates since all modes are progressive implying that, numerically, many
terms must be retained in (13). However, the situation may be different for other coordinate
systems or for other equations. Before investigating these possibilities, we introduce the
forward-propagation models.
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2.3 Forward-propagation models

The governing equation (7) is a second-order ordinary differential equation that requires
two boundary conditions. The initial conditions for the amplitudes are readily found by
transforming the initial condition, while the other boundary condition, for large 2, say, is
often unknown a priori. Dalrymple and Kirby [8], using Fourier transforms, surmounted this
problem by splitting the Fourier amplitude f,(z) into forward-propagating and backward-
propagating terms: f, = ft + f7; these are associated with the positive and the negative
signs in the exponent of (4). This leads to first-order differential equations in the split
variables, which are also faster to solve numerically than the original second-order equation.
Assume that

+
Yo _ W £ 4 Fafe),

dz
Ny - A

where the function F), is unknown @ priori. Substituting into (10) gives F,(z) = 0, so that
the second-order equation is split exactly and the forward-propagating mode is correctly
given by

+
%%-:ivkz—Azﬁt

The solution to this first-order equation depends on the initial condition only (meaning we
can neglect the unknown downwave boundary condition). Moreover, it is exactly the same
as that given by separation of variables applied to the Helmholtz equation, showing again
that the splitting procedure is exact for this equation.

For the Chebyshev-tau method, the splitting in the transform domain follows the same
procedure as before, except that the assumed splitting is different because of the nature of
the second derivative in y:

det
2 = ik ef + Fu(a),
d —
i%:-mq-mwy

Substituting into (16), the forward-propagating equation is found to be

det(z)

L (@) _
da =0,

W, K, o O
— 1;“ cn (:L) + 2kb2 cn

where only the ¢ are used to calculate ct?). 1f we used the first form of the second derivative
in (14), this equation would be

def(z)
da

iket(e) o A7 | 2T _
= ik Cn(.’ﬂ) T zkﬂ l ayi! =0.



SPECTRAL METHODS FOR WAVE PROPAGATION 7

The inverse transform of this equation is

0 . i 0%
%_lk¢+ﬁw_0

which is the small-angle parabolic representation of the Helmholtz equation. Small-angle
parabolic models are known to be inaccurate for waves that propagate at large angles to
the @-axis. This appears to be a serious consequence of splitting the Chebyshev equation,
potentially limiting its effectiveness in forward-propagating models. This same result applies
to the variable-depth (mild-slope) equation.

3 Theory: conformal mapping

In the physical domain, the velocity potential, ¢(z,y) is found by solving the Helmholtz
equation in the given complicated geometry. Alternatively, we can map the problem into
a conformal domain, which is identified with the independent variables, u(z,y) and v(z,y).
The dependent variable becomes ¢(u,v). The mapping procedure is described in the Ap-
pendix (following [19] or, more generally, [12]). For all cases, the channel sidewalls will be
mapped into v = L.

The resulting governing equation in the conformal domain is much the same as that in
Cartesian coordinates,

¢ %9

L 4ot BT = 3 )
3u2+602+ Ll (17)
with the exception of the presence of J, which is the Jacobian of the transformation, defined
by

_Odzdy Oxdy
)= dudv  9vdu’ (18)
We can only obtain separated solutions of (17) if k?J is of the form

k2 J(u,v) = Ji(u) + Ja(v).
Then, with ¢(u,v) = U(u)V(v), we obtain the following equations for U and V:

U'+(h-2)U = o, (19)

V'+(L+ 2V = 0. (20)
In particular, if 7, = 0, the lateral eigenmodes for the channel are

Va(v) = cos[Ap(v+w)]  with XA, = inr /v, (21)

just as for the Cartesian case. Alternatively, if J; = 0, then we obtain U(u) = ¢ as a
propagating mode; here, we have replaced A\? by —A?, giving

V'+(J= )V =0

as the equation for the lateral modes.
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3.1 Examples

A logarithmic conformal mapping will be used here to illustrate the various spectral ap-
proaches to wave modelling. This mapping converts radial lines and circles about the origin
in the physical domain into orthogonal straight lines in the mapped domain.

3.1.1 The diverging channel

The first example is a constant depth, radially diverging channel with straight vertical im-
permeable sidewalls. The mapping is w = In(2/ro), where w = u + iv, 2z = & + iy and rg is
the distance from the origin to the mouth of the channel. The mapping can be rewritten as
u = In(r/ro) and v = 6, which, with the exception of the presence of the logarithm, looks
like a polar-coordinate transformation. The channel sidewalls lie on v = +v, = +6;,. In
terms of # and y, the inverse mapping gives z = roe", or, & = rge” cosv and y = rg e"sin v.
In the z-plane, the waves are supposed to propagate in the positive z-direction, while in the
mapped domain, the waves will travel primarily in the positive u-direction. See Figure la.
The Jacobian of the transformation is J = 72 e?*, which is a function of u only. Thus,

J2 = 0, whence V(v) = cos[A(v + )] and
U" + [(kroe*)? — MU =0,
which has the general solution
U(u) = Adx(krg e") + BYy(kroe"),

where Jy and Y are Bessel functions. For rigid walls at v = 8 = +6; (so that v, = 6;), and
for waves propagating in the direction of u increasing, we readily obtain the solution

é(r,0) = i an H ) (kr) cos B(0 + 0e), (22)

n=0

where Hil) = J) +1iYy and A = B,, with 8, = %ﬂ,?r/()g.
Given the potential at r = rg as G/(6), the modal amplitudes are

a
€m £

- 26, H};‘)(&"Fg) —0,

Ay

G(0) cos B,,(0 + 0;) do ool TET O U T (23)

IFor the case of a planar wave train entering into a diverging channel centered about ¢ = 0,
we take G(0) = exp(ikrp cos ), corresponding to normal incidence.

We note that (22) is the exact linear solution; it can also be obtained by separation of
variables of (1) in plane polar coordinates [19].

3.1.2 The circular channel

The second example is a constant depth channel with vertical sidewalls laid out in a circular
planform. Let ry and ry be the inner and outer radius of the channel, respectively. The waves
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are supposed to propagate primarily counter-clockwise in the axial (#) direction, from the
mouth of the channel located at # = —7 /2. In the mapped domain, the channel is straight,
with the waves again propagating in the positive u-direction, as shown in Figure 1b. Here the
conformal map is somewhat different (to keep the same u principal propagation directions):
w = 7/2—iln(z/ry), where ryy = /F173. This corresponds to u = /2460 and v = In(r, /7).
The outer sidewall of the channel is mapped to v = —v, = In(ry/r2) = —§In(ry/ry), while
the inner wall is mapped to v = v. In terms of z, we have z = rm@(Y~/2) which leads to
2 =rme Vsinw and y = —rpe”? cos u.
The Jacobian of this transformation is J = rZe~?", which is a function of v only. Thus,
J1 =0, whence
Uu) = e™ (24)

for propagation in the direction of u increasing. V(v) satisfies
V" + [(krme™")? = A%V =0, (25)

which has general solution

V(v) = AJy(krme™) + BY; (krme™).
At the outer wall r = 7o, we have v = %111(7'1/1‘2) = —vp and V/(—w) = 0; therefore

V(v) = Yi(kra)Ja(krme™") — J5(kr2)Ya(krme™).

At the inner wall » = ry < ry, we have v = v, and V'(v) = 0, giving

Yy (kry)J\(kra) — J3(kr)YS(kr2) = 0. (26)

This is an equation for A. It is known that (26) has discrete roots; call them A = a,,
with n = 0,1,2,.... There are only a finite number of real roots (0 < a, < kry); these
give the propagating modes. Equation (26) also has an infinite number of purely imaginary
solutions; those with positive imaginary parts give the evanescent modes. For a discussion
of these solutions, see [4] in the context of curved electromagnetic wave guides, or [25] in the
context of acoustics.

Ordering the real eigenvalues from the largest to the smallest, we find that the first
eigenvalue corresponds to the zeroth mode, which has no zero crossing in the transverse
(radial) direction. Therefore the mode looks like a propagating wave train, but confined to
the outer wall; it is the annular equivalent of the ‘whispering gallery mode’ as it is large on
the outer radius and decays rapidly and monotonically in the (negative) r-direction. The
next eigenvalue corresponds to the first mode, with one zero crossing, and so on.

In Figure 11, the exact linear solution for the wave field is shown for waves incident into
a 180° turn. As the waves enter the channel, they begin to reflect from the outer wall and
diffract in the vicinity of the inner wall.

The problem of solving (25), together with V/(+v,) = 0, is a Sturm-Liouville problem.
Let V,(v) be a solution corresponding to A = a,,

Va(v) = Ap {Y,, (kr2) o, (krme™") — I, (krg)Ya, (krme™)} (27)

n
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(recall that r = rpe™). These eigenfunctions are orthogonal,
Up
f Vin(0)Vo(v)dv = 0 for ay, # an,
i
and the constant A, can be chosen so that
Up
Vi(v)dv = 1.
i

They are also complete, so that we have

d(u,v) = Z an €97V, (v). (28)
n=0
At the beginning of the channel, « = 0 (# = —7/2) and ¢(0,v) = G(v), say, whence
up,
a5 = G(v)Va(v) do. (29)
-

Again, this solution is exact; it can also be obtained by separation of variables of (1) in plane
polar coordinates [19].

4 Numerical modelling in the conformal domain

4.1 Fourier-Galerkin approach

As in [11], where a Helmholtz equation with variable coefficients (arising due to bottom
variations) was treated, we define a lateral average of the variable coefficient in the conformal
Helmholtz equation (17) by

By = o K0 db. (30)

204 J—v,

Substituting this into the governing equation (17) gives

¢ ¢ = - :
W-l-w—kko'(l—v)gb-—ﬂ, (31)
where o
v(u,v) = 1—k*J[k2J (32)

incorporates the lateral variability of the original coefficient, k2.J.
We suppose, as before, that the boundaries at v = +v, are impermeable (so that d¢/dv =
0). Then, the appropriate Fourier-transform pair is the following (cf. (8) and (9)):

fa(w) = Te[d(u,v)] = ;Tb /j: d(u,v) cos[Ap(v+ vp)]dv, n=0,1,2,... (33)

T ()] =Y enfalu) cos[A(v+vp)] for —vp < v < vp. (34)

n=0

$(u,v)
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Transforming (31) yields

d* I
du?

+7§fﬂ“WTF‘[V TF_l[f]] =0, n=0,1,2,..., (35)

where -
Yi(uw)=k2J - A2  and A, = inn/u,.

The set of equations (35) is exactly equivalent to (31), provided the series (34) converges. The
last term in (35), which adds complexity to the solution, results from the Fourier transform
of a product of two functions of v.

To obtain a forward-propagation model, we separate f,, into forward and backward prop-
agating wave modes as before and keep only the forward-propagating modes to yield

+ <13
dils) (i - ;2%%) o I;T:?}[u T, n=0,12....  (36)
This final set of equations governs the propagating Fourier modes. The equations are ap-
proximate due to the neglect of the backward-propagating modes that occur in the last term;
this term couples all the modes and can result in the growth of modes that may have been
originally zero at u = 0.

The initial conditions on f,(u) are provided by a Fourier transform of the given initial
condition, ¢(0,v) = G(v), say, giving

1

f2(0) = = G(v) cos[An(v + vp)]dv s |

va —Up

Suppose that » = 0, that is, k2J is independent of v, the lateral coordinate. Then, as
we have seen in § 3 (the case J; = 0), (31) is separable: the lateral eigenfunctions of the
problem, V,(v), satisfying the sidewall conditions, V'(v) = 0 at v = +uv;, are given by (21).
In other words, for this particular case, the actual lateral eigenfunctions are the same cosines
as used in the Fourier-transform pair, (33) and (34). It follows that the convergence of the
method is guaranteed. However, for other problems, in which » # 0, the solution may not
be separable and, if it is, the actual lateral eigenfunctions will differ from (21); consequently,
we expect some errors in the method.

4.2 Angular spectrum approach

In Cartesian coordinates, the angular spectrum method and the Fourier-Galerkin approach
are the same. However, in other coordinate systems, this may not be true. The angular
spectrum method is then interpreted as an eigenfunction expansion method, with the eigen-
functions determined by the lateral Sturm-Liouville problem (20). The advantage of the
angular spectrum method is that the lateral eigenfunctions are the exact solutions for the
problem. The disadvantage of the method in transformed coordinates is that it is unlikely
that there are fast algorithms (equivalent to the FFT) for obtaining eigenfunction expansions.
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4.3 Chebyshev-tau approach

It is known that the Chebyshev polynomials, T,,(¢), n = 0,1,2,.. ., are a complete orthogonal
basis over the range —1 < ¢ < 1. Their use requires a preliminary scaling of the problem,

C= 1.?/':‘)5,

so that the lateral boundaries are located at ( = +1. The appropriate Chebyshev-transform
pair is (cf. (12) and (13)):

b @, v¢) Tu(C)

en(v) = Te[d(u,v)] = By e dt: =012 (37)
d(u,v) = Tg'e(u)] = Z_:cn(u) T,(¢) for-1< (<1 (38)

As the Chebyshev polynomials do not satisfy the lateral boundary conditions, a straight-
forward Galerkin technique is precluded. The tau method forces the Chebyshev sum to
satisfy these conditions, and will be discussed below.

Introducing k2J and v, defined by (30) and (32), respectively, we find that the Chebyshev
transform of (31) is

d? cn(u

35 k2J cp(u) + cm BIT[v T )] =

The splitting in the transform domain follows as before:

+ | i S
%ﬁ- = (i’m - 2—;%) et(u) + —21% (Uigcg) — k2J Tolv ’}'C‘l[c"']]) =0, (39)
This equation is less accurate than that obtained from the Fourier-Galerkin splitting. Note
that the first term on the right-hand side of (39) is proportional to v instead of 7,,, as the
second derivative of T}, does not yield a term proportional to ¢, directly as occurs with the
trigonometric functions in the Fourier-Galerkin approach.

At |¢| = 1, d¢/I¢ = 0 so as to satisfy the no-flow channel boundary conditions. Since the
Chebyshev polynomials do not satisfy these lateral boundary conditions individually (as the
Fourier modes do), we use the Chebyshev-tau method to enforce them [5]. First, truncate
the series in (38) to give

N
B, v) = 3 enlu) Tu(©).
n=0

With this approximation, the no-flow conditions at ( = +1 yield

N

N
Z nleq,(u) =0 and Z(—l)“nzcn(u) =0.
n=1

n=1

These two equations are used to specify ey—_1(u) and ex(u) in terms of the remaining coef-
ficients, which are themselves determined by integrating (39) for 0 < n < N — 2; we used
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a fourth-order Runge-Kutta scheme. The step size du depended on the number of modes
computed, with a smaller step size required for a solution with more modes.
The Chebyshev transforms are carried out numerica,lly using Gauss quadrature:

') y

The Gauss points (; are the zeros of TM(Q), namely
(‘-:cos(%) =1 B M

and w; = 7 /M for all i [1, Chap. 25]. For all calculations in this paper, M = 41, so that the
quadrature error is negligible.

5 Diverging channel

For the case of the diverging channel, the angular spectrum, Fourier-Galerkin and Chebyshev-
tau methods will be compared to the exact solution, which is given by (22) and (23).

5.1 Fourier-Galerkin and angular spectrum models

With the mapping that we have used, w = In(z/7r), the product k?J is independent of v
and so v = 0; therefore, the last term in the equation for the Fourier modes (36) vanishes.
The remaining terms (with the superscript + dropped for convenience) can be written as

dfz‘f:t) = (i’}‘n = 2 215) fn(u) O T I T (40)

27

L]

Tn =y kz""g gt ﬂia
since A, = B, = %n'ﬂ‘/ﬁ'g.

For this case, modes not present in the initial conditions can not arise subsequently.
Further, the Fourier cosine series in the lateral direction used in the Fourier transforms (33)
and (34) are exact solutions of the associated Sturm-Liouville problem in the v-direction,
guaranteeing convergence and also showing the equivalence of the Fourier-Galerkin and the
angular spectrum (eigenfunction expansion) approaches for this case.

Equation (40) is a first-order equation for each of the Fourier modes. It can be solved
analytically to give

fa(u) = .‘?n‘}’r:uz exp{i(Yn — B tan™ (74/8,))}, n=0,1,2,..., (41)
and then the potential is found from the inverse transform, (34). Note that, for large u and
fixed n, we have 7y, ~ krge* = kr and

fa(u) ~ gu(kr)™2 exp{i(kr — Bar/2)},

which is the far-field approximation to H“)(L‘r‘), apart from a constant factor. Therefore, we
expect an exact correspondence among Lhe angular spectrum method, the Fourier-Galerkin
method, and the exact linear solution for this example.

where
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5.2 Chebyshev-tau method
From (39), the governing equation for each of the Chebyshev modes is

dcn(u) o
du

. i i
("YO = 5) cn(u) + 7 ™ c,(f) =1, =012 (42)
For the case of normal wave incidence, the solution is symmetric about ¢ = 0, and so the
coefficients of all the odd Chebyshev polynomials are zero.

5.3 Results

One possible wave motion in the diverging channel is the axisymmetric case of circular waves
emanating from r = 0, with constant amplitude and phase along any circular arc. The initial
condition is taken as G(#) = 1. The linear wave motion is given analytically in (22) and
most conveniently by the leading term, the Hankel function, Hél)(kr), where 7 = /a? + y2.
All of the numerical methods model this solution correctly in the far field, giving

#d(u,v) = exp (ike“ - %u) ;

which is the far-field expansion of the Hankel function. In the mapped domain, the wave
form is constant along lines of constant u, and no diffraction occurs.

On the other hand, if a plane wave enters the diverging channel, then diffraction occurs as
the physical domain becomes wider in the propagation direction. This situation was modelled
by Kaku and Kirby [13] in a wave tank (see also the description in [19]). In a water depth of
0.15 m, vertical plywood breakwaters enclosed a 90° sector, with a mouth of width 1.74 m.
A planar wave generator sent waves directly down the centerline. Measurements were made
using wavegages at fixed r locations for several wave cases. Here, we use the most linear set
of tests for which the wave period was 0.49 s, and the initial wave amplitude was 0.0085 m.
The measurement stations correspond to r/ro = (1.38,1.87,2.2), where rp = 1.23 m, taken
as the distance from the origin of the polar coordinate system to the breakwaters, and at
10° increments from the centerline.

For the models, the plane wave initial condition of ¢ = exp(ikrgcosf) was used. In
figure 2, the exact water surface elevation is shown for the data of Kaku and Kirby [13]
in the transformed domain, where there is apparent focussing of the wave form down the
centerline, which is due to the widening of the channel with 7 in the physical domain.
In figure 3, the angular spectrum (Fourier-Galerkin) model predictions for water surface
elevations are compared to the exact theory and the data from [13]. The Fourier-Galerkin
model gives, as expected, the same result as the exact solution. In comparing to the parabolic
models of [19], the Fourier-Galerkin model is better, as the parabolic models do not replicate
the exact theory.

The Fourier-Galerkin model was run with a step size corresponding to kdr = 0.2136,
where, for this water depth and wave period, the dispersion relationship (2) gives k =
16.94 m~!. Only the seven progressive modes were used.

For the Cheybshev-tau model, 15 even modes were used (N = 28). For this high number
of modes, a very small step size in u was necessary, du = 0.001787; this required about
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500 steps to span the measurement locations — more than required by the Fourier-Galerkin
method by almost a factor of three. In figure 4, the Chebyshev solution is compared to
the data from [13] and to the exact solution. Clearly, there is a discrepancy between the
Chebyshev solution and the exact solution, due to the presence of a lateral oscillation in the
solution.

6 Circular channel

The exact linear solution for this case is given by (28), with (27) and (29). Again, the Fourier-
Galerkin and the Chebyshev-tau methods will be compared against this exact solution. In
the following examples, the initial condition is a wave train with constant amplitude across
the channel, or G = 1 in (29).

6.1 Fourier-Galerkin model

As J is not a function of u for this case, the governing equation (36) reduces to

dfn(u) . i k2J i _
d‘i‘, ) = Ynfn — 27 Telv T l[f]]a n=0,1,2,... (43)
where
— k2 (ri-r}) 21n (rg/r1) riroe %
By F Ua—1) d = 2/T1) 172
keat 21In(re/r1) o wz) r2 —r? ¢
since v, = In(ry/r1). Now, the Fourier modes, {cos[A,(v + )]}, n = 0,1,2,..., no longer

satisfy the exact Sturm-Liouville problem in the lateral direction, which is (25) together with
V/(+v) = 0; the Fourier-Galerkin method no longer is the same as the angular spectrum
method and the method will have problems with convergence, depending on the size of v;

we have .
1 2r51In (ro/m1)

2 _ .2
Pg =Ty

2?‘?]11 (r2/71)

2 2

< <1-
<v(v) < = e

for ri < r < rg.

6.2 Angular spectrum model

The actual lateral eigenfunctions for this problem are given by (27). The propagating modes
are given by (24). For the present case of a constant depth channel, the angular spectrum
and the exact solution are identical.

6.3 Chebyshev model

The governing equation is obtained from (39):

d(‘.n(ﬂ) - i 1 (2 737 = .
ar 170"3%(”] + 270 (vgcn - k*J TG[V 7.6' [C]] =0 (44)
with 2
Br="N1n sinh(2vy).

2
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6.4 Results

6.4.1 Narrow channel

A narrow channel is defined as a channel with a width smaller than the wavelength of the
incident wave, or k(ry — r1) < 27, where the left-hand side is 27 times the number of
wavelengths that can fit across the channel. This can be rewritten as kr1é < 2w, where § is
the dimensionless channel width: 6 = (79 —71)/ry. In a narrow channel, the waves propagate
around the channel with very little change in wave form. For example, given 7y = 75 m,
ro = 80 m, a water depth of 4 m and a wave period of 4 seconds, krié = 1.5 and the
wave propagates within the channel with little change in form (the wave amplitude along
the outside wall is only 3% greater than elsewhere). The numerical models and the analytic
(exact) model (with only one progressive mode) are indistinguishable for this case.

6.4.2 Wider channel

FFor a wider channel, obtained by increasing ro to 100 m, kryé = 7.53, which corresponds
to a channel wider than a wavelength. For this case, the wave field is significantly different,
largely due to the much greater distance encompassed by the outer radius than the inner.
The ratio of the distances (circumferences) is ro/ry = 6 + 1, which is 1.33 in this case;
therefore, 6 measures the percentage increase in length of the outer circumference over the
inner one, or it is a measure of the longer path followed by waves on the outer side of the
channel than the inside. Figure 5 shows an instantaneous snapshot in the conformal domain
of the free surface (analytical model), which is comprised of the three progressive modes. Of
particular note is the so-called amphidromic point in the wave phase that occurs where the
‘extra’ wave appears along the outer radius (to the right on the figure); for a discussion of
these special points, see [22].

Figure 6 shows the water surface elevation along the outer circumference as predicted
by the Fourier-Galerkin model and the analytical model for 0° < 6 < 90°. The agreement
is quite good, with the Fourier-Galerkin model slightly underpredicting the maxima and
propagating slightly faster than the exact solution. For this case, k2J = 689.8.

In Figure 7, the three lateral eigenfunctions comprising the analytical solution (28) are
shown. In comparison, the Fourier cosines for the Fourier-Galerkin model are shown in
Figure 8. The difference between the general shapes of the eigenfunctions is not large;
however, the behavior of the coefficients multiplying these eigenfunctions is very different.
For the analytical model, the a, values are constant, and the variation of the wave form
with @ is due to the superposition of the different modes comprising the solution. For the
Fourier-Galerkin model, with its imperfect Fourier series, the Fourier coefficients exchange
energy along the channel according to (43).

The Chebyshev-tau comparison for the water surface elevation along the outer wall is
shown in Figure 10. Ten Chebyshev polynomials were used for this solution; the use of only
eight polynomials gives the same solution.
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6.4.3 Wide channel

Waves in a very wide channel begin to experience diffraction and strong reflection. For this
example, ro = 200 m, so kr1§ = 37.6, and § = 1.67. The analytic solution has 12 progressive
modes for this case. The waves in the wide (six wave lengths) circular channel initially
propagate in a straight line, but as the channel bends, the waves start to diffract around
the bend and simultaneously run into the curving channel sidewall to reflect around the
bend. Different parts of the wave crest reflect at different times, leading to a complicated
sea-state far along the channel. The instantaneous water surface from the exact solution in
the physical domain is shown in Figure 11. The water surface is shown in the conformal
domain in Figure 12.

The Fourier-Galerkin model does not yield a very good solution for this case, due to
the large variation in k?J over the channel width. The Fourier-Galerkin method assumes
that the lateral variation of the solution is expressible in terms of the Fourier series in the v
coordinate (which look similar to those in Figure 8). The actual shapes of the eigenfunctions
(obtained from the exact solution) are shown in Figure 13 and are those used in the angular
spectrum model. The very different nature of these eigenfunction imply that trigonometric
bases is not efficient for this case.

The water surface elevations along the outer wall computed by the Fourier-Galerkin
model are compared to the exact solution in Figure 14. Clearly, there is a discrepancy, with
the Fourier-Galerkin waves having a faster phase variation than the exact solution. The
largest discrepancy occurs at about 38°. (The numerical model was run with grid sizes:
du=0.452° , dv=0.0377°).

Figure 15 shows the water surface elevations on the outer wall as predicted by the
Chebyshev-tau model for the wide channel. Here, N = 20, M = 41 and du = df = .00394
radians. Clearly, the model has a phase error, which leads to wide discrepancies at 45° . It
is likely that this error is largely due to the errors developed in the splitting process and
the correspondence to the small-angle parabolic model, which is exacerbated in this case
due to the variable nature of k2.J. Kirby et al. [19] show that a small-angle parabolic model
actually does better than shown here for the Chebyshev-tau model, and that the large angle
parabolic model does better than all of these forward-propagating spectral solutions.

7 Discussion

In Cartesian coordinates, the angular spectrum model, the eigenfunction expansion method
(separation of variables), and the Fourier-Galerkin model are identical. In conformal do-
mains, this is not necessarily true. The angular spectrum model is interpreted as an ex-
pansion of the velocity potential in terms of the eigenfunctions in the lateral (v) direction.
These eigenfunctions are found by separation of variables, (20). For the Fourier-Galerkin
method, the lateral eigenfunctions for a channel are a Fourier cosine series, while for the
Chebyshev-tau method, the lateral functions are Chebyshev polynomials.

For the case of the diverging channel, the lateral eigenfunctions turn out to be cosines;
therefore, for this case also, the Fourier-Galerkin method and the angular spectrum method
are the same. The Chebyshev-tau method, however, does not approach the exact solution
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analytically and, numerically, it is not as accurate as the Fourier-Galerkin method.

For the case of an annular channel, the angular spectrum model (using the eigenfunctions
given by (27)), coincides with the exact solution, while the Fourier-Galerkin method is shown
to become more inaccurate as the channel width increases. The Fourier cosine series differs
drastically from the actual lateral eigenfunctions for the wide channel case. This is also true
for the Chebyshev-tau forward-propagation model. The source of the errors is the increasing
size of v, which causes the last term in (43) and in (44) to become large. Clearly, the use of
the mean value of k%J does not properly model the behavior of the waves for these large v
cases.

Extension of these models to variable depths is relatively simple, as the variable depth
case is treated by a variable coefficient Helmholtz equation, as discussed in [19].
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Appendix. Conformal transformation

To determine the governing equation in the transformed domain, the chain rule operators

d OJdud  0Ovo 0 Jdud  Ovad ,
LI 1Y) N R (A1)
dz  Jdrdu dzdv dy Jdyodu Jyov
are used. Applying these to ¢ for first derivatives, applying them again to obtain the second
derivatives, and, finally, substituting into the governing equation (1) yields

9%¢ ¢ 0%¢ 99 9¢
v ol ., 29 2079 2, U9 s T TS _
(Vu) 502 + 2Vu Vva?m + (Vo) 502 +V u@u + Vv v(’i'u + k¢ =0 (A.2)

While the derivatives of ¢ in this equation are taken with respect to the mapped coordinates,
the coefficients still involve derivatives of u and v with respect to z and y. Applying both
operators (A.1) to dx, we obtain

Qude  wds L dudy 0dy
~dzdu Oz Ov . Oz du  dz v’
This pair of equations can be easily solved to give
Ju 10y )
dv 10y
oz Jou ()
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where J is the Jacobian, defined by (18). The same procedure is repeated for dy, resulting
in

ou 10z
% - T (A.5)
v 10z

For a conformal mapping, the Cauchy-Riemann conditions are required to ensure that
the transformation is holomorphic (that is, derivatives exist everywhere). These are

du B v and du dv

%-—% an 6_9'__%

By taking derivatives of these expressions, it is straightforward to show that VZ u = 0
and V? v = 0. Furthermore, by substituting from (A.4) and (A.6), the Cauchy-Riemann
conditions show that

dz 0y o dy

and — =

ou v dv  Ou’
Utilizing the last two sets of conditions, the general curvilinear coordinate system governing
equation (A.2) is greatly simplified to one valid for conformal coordinate systems: the result
is (17).
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u) Diverglng Chsnnel ) Clrenlnr Channel

©) Confarmally Mapped Chonnel

Figure 1: Schematic Diagram of the Two Examples (top row, a,b) and the Conformed
Channel (c).
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Figure 2: Instantaneous Water Surface of Diverging Channel in Mapped Domain
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10 20 36 16
Figure 3: Comparisons of the Angular Spectrum Model (dashed line), the Exact Solution

(solid line) and the Data of Kaku and Kirby (1988) at »=1.38, 1.87, 2.2m from top figure to
bottom.
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1‘0 2.0 3.0 d‘ﬂ
Figure 4: Comparisons of the Chebyshev Model (dashed line), the Exact Solution (solid line)
and the Data of Kaku and Kirby (1988) at r=1.38, 1.87, 2.2m from top figure to bottom.
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Figure 5: Exact Solution in (u,v) Plane for Waves in a Wider Circular Channel
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Figure 6: Comparison of Water Surface Elevation along Outer Wall Between the Exact
Solution and the Fourier—Galerkin Model (dashed line) for Wider Channel
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Figure 7: Three Analytical Eigenfunctions for the Wider Channel

Figure 8: Eigenfunctions for Waves in a Wider Circular Channel in Angular Spectrum Model
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Figure 9: Variation of the First Five Fourier Modes in the Wider Channel as a Function of
Angle
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Figure 10: Comparison of Water Surface Elevation along Outer Wall Between the Exact
Solution and the Chebyshev—tau Model (dashed line) for Wider Channel
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Figure 11: Exact Solution for Waves in a Wide Circular Channel
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Figure 12: Exact Solution for Waves in a Wide Circular Channel in the Transform Domain



SPECTRAL METHODS FOR WAVE PROPAGATION 29

Figure 13: Analytic Eigenfunctions for Waves in a Wide Circular Channel

Figure 14: Comparison of the Water Surface Variation Along Outer Wall Between the Exact
Solution (solid line) and the Fourier-Galerkin Model (dashed line)
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Figure 15: Comparison of the Water Surface Variation Along Outer Wall Between the Exact
Solution (solid line) and the Chebyshev-tau Model (dashed line)



