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Abstract

A numerical code for the extended Boussinesq equations derived
by Nwogu (1993) is developed. The model utilizes a fourth-order
predictor-corrector method to advance in time, and discretizes first
order spatial derivatives to fourth-order accuracy, thus reducing all
truncation errors to a level smaller than the dispersive terms retained
by the model. The basic numerical scheme is described, and we dis-
cuss unresolved issues pertaining to the application of boundary con-
ditions. The model is applied to several examples of wave propagation
in variable depth, and computed solutions are compared with experi-
mental data. These initial results indicate that the model is capable of
simulating wave transformation from relatively deep water to shallow
water, giving accurate predictions of the height and shape of shoaled

waves in both regular and irregular wave experiments.
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1 Introduction

The ability to accurately predict wave transformation from deep to shallow water is
vital to an understanding of coastal processes. As waves propagate toward shore,
a combination of shoaling, refraction and diffraction effects modify the wave form.
Nonlinear effects induce energy transfers both up and down the spectrum, leading
to the generation of low-frequency surf-beat as well as high-frequency corrections

(enhancements) to the shoaling wave crests.

Boussinesq-type equations, which include the lowest order effects of nonlinearity and
frequency dispersion, have been shown to provide an accurate description of wave
evolution in coastal regions, if used within the bounds of the validity of the underlying
approximations. The first such set of equations for variable depth was derived by
Peregrine (1967), and use the surface displacement n and a depth-averaged horizontal
velocity @ as dependent variables. Using frequency-domain formulations derived from
Peregrine’s equations, Freilich and Guza (1984) and Elgar and Guza (1985) have
demonstrated that the evolution of power spectra of normally incident waves may be
accurately predicted, while Elgar and Guza (1986) and Elgar et al (1990) have shown
that the evolution of bispectra or third-moment statistics is also well predicted. The
latter result amounts to a demonstration that the Boussinesq-type models are capable
of predicting the shape of the underlying waves, which is quantified through accurate
prediction of third-moment statistics for the surface displacement 5 and the Hilbert
transform of 5. Freilich et al (1993) provided evidence that the frequency domain
model also correctly predicts the shoreward evolution of a directional wave train,

using a parabolic equation method similar to that employed by Liu et al (1985).

Similar success has been noted in comparisons between laboratory data and model
predictions. Goring (1978) has shown that the models give good predictions of the
scattering and transmission of solitary waves at depth transitions, while Liu et al
(1985) and Rygg (1988) have demonstrated that accurate predictions of wave refrac-
tion and focussing by underwater shoals may be made (Whalin, 1971). Kirby (1990)
has shown that an angular spectrum formulation of the standard Boussinesq model
gave good predictions of the evolution of a Mach stem measured in the laboratory
(Hammack, Scheffner and Segur, 1990); this example is considered further below.

Due to increasing error in the modelled linear dispersion relation with increasing wa-
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ter depth, the standard Boussinesq equations are limited to relatively shallow water.
Recently, efforts have been made by a number of investigators to derive alternative
forms of Boussinesq equations which can be applied in deeper water regions (Witting,
1984; Murray, 1989; Madsen et al., 1991; Nwogu, 1993). Of these models, the two by
Madsen et al and Nwogu have generated the most interest. Each model is different in
the form and arrangement of dispersive terms, but both lead to a dispersion relation
which may be interpreted as being a Padé approximant of the full linear dispersion
relation. This result is significant for two reasons. First, although the Boussinesq
model equations are derived to provide a correction to O(u?) to the shallow water
theory (where p is essentially a scale for the value of kh), the property of the Padé
approximant is such that the resulting dispersion relation may be interpreted as being
accurate through O(pu*). Secondly, the resulting approximation is almost guaranteed
to be a more robust predictor of the correct result for large p than corresponding
Taylor series to O(u*) or, indeed, to much higher orders. Of these two models, the
Boussinesq equations derived by Nwogu (1993) are obtained through a consistent
derivation from the continuity and Euler equations of motion. In the derivation, the
horizontal velocity at an arbitrary depth is used as the dependent variable. The depth
at which the velocity is evaluated is then determined from the resulting dispersion
relation compared with that of linear theory. As a result, the new form of equations
are found to be able to predict the propagation of waves in water which is relatively
much deeper than allowed by the standard approximation. (This increase in range
of depths within which propagation may be accurately modelled should not be con-
strued as a parallel claim to accuracy in prediction of water particle kinematics. Any
Boussinesq-type approximation is going to be based on a vertical profile of horizontal
velocity which is at most quadratic in z. This level of accuracy in representing the

velocity profile will not be adequate in the deep water limit.)

In this study, we develop a high-order numerical model based on Nwogu’s Boussinesq
equations. We use a fourth-order predictor-corrector scheme for time stepping and
discretize the first order spatial derivatives to fourth-order accuracy. This discretiza-
tion automatically eliminates error terms which would be of the same form as the
dispersive terms, and which must therefore be corrected for if lower order schemes
are used. The model is applied to several cases of wave propagation from relatively
deep to shallow water. Numerical results are compared with experimental data when
available.



2 Governing Equations

The new form of Boussinesq equations derived by Nwogu (1993) are given by

n+ V- [(h+n)u] + V- {(‘%2 - %2) RV(V - u) + (zo, + %) hV[V - (_hu)]} =0 (1)

i+ gVn+ (u-V)u+ z, {%V(V ~uy) + V[V (hui)]} =0 (2)

where 7 is the surface elevation, h is the local water depth, w = (u,v) is the horizontal
velocity at an arbitrary depth z,, V = (9/dz,0/dy) is the horizontal gradiant oper-
ator, and g is the gravitational acceleration. The above equations are statements of
conservation of mass and momentum, respectively. Compared to the standard Boussi-
nesq equations derived by Peregrine (1967), there is an additional dispersive term in
the continuity equation, and the coefficients of dispersive terms in the momentum
equations are different. As will be shown below, it is these differences that improve
the linear dispersive properties of the model and make the new form of equations

usable in relatively deep water regions.

Consider the case of wave propagation in 1-D horizontal direction with constant depth.

The equations then reduce to

M + hug + (qu)e + (@ +1/3) hPuge, = 0 (3)
Uy + gNz + vty + ah*uy, = 0 (4)
where
i) 3 (5)
a=—|— —
2\ h h
Linearizing the system of equations and substituting a trial solution
n= ae:(k;cnwt]
o ez(.{r-—wt} (6)

leads to the linear dispersion relation

[1 — (a+1/3) (kh)’]
1 — a(kh)? (7)

w? = gk*h

Figure 1 shows a comparison between the dispersion relation for full linear theory,
w? = gk tanh kh (8)
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and the model dispersion relation for several values of a. The standard form of
Boussinesq equations corresponds to the choice @ = —1/3. In the shallow water limit
kh — 0, all of the dispersion relations are asymptotically equivalent. However, in
deep water regions where kh increases, the dispersion relation for arbitrary values of
a deviates significantly from the linear theory.

The advantage of Nwogu’s equations is that an optimized values of a can be de-
termined such that the dispersion relation in a certain range of kh values is closest
to the linear theory. A value of @ = —4/10 reduces (7) to the (2,2) Padé approxi-
mant of the exact relation (8), as shown by Witting (1984). The values of @ may be
further refined using an error minimizing criterion; Nwogu (1993) obtains a value of
a = —0.390 which corresponds to a depth of z, = —0.531h. As shown in Figure 1, the
resulting dispersion relation is superior to the standard form of Boussinesq equation
in the deep water limit. The actual value of o chosen will generally be a function of
the range of kh values considered and the definition of the objective function defining

the error estimate.

Figure 1: Comparison of dispersion relation for different values of a with linear theory:
linear theory (—); & = —0.390 (---); @=-0.400 (---); a=-1/3 (- -+); @ =0 (—).



3 Numerical Model

3.1 Predictor-corrector method

The choice of a numerical scheme for equations (1-2) is guided here by two principal
factors. First, as occurs in any Boussinesq equation system, finite-differencing of first
order derivative terms to second-order accuracy leads to leading order truncation error
terms which are of the same form mathematically as the dispersive terms appearing
in the model. These terms are eliminated consistently in the limit as Az, Ay, At — 0,
but usually are large enough in magnitude to interfere with the solution at typical
grid resolutions. Most existing schemes for equations of this type (Abbott et al, 1984;
Nwogu, 1993) treat these terms by back substitution into the initial second-order
accurate scheme, thus incorporating them as intentional distortions to the modelled
dispersive effects. In this study, we seek, instead, to reduce all differencing errors
to a size that is small relative to all retained terms in the model equations. We
therefore adopt a scheme where the spatial differencing in first order terms is done
to fourth-order accuracy, leading to a truncation error of O(Az*/u?) relative to the
model dispersive terms at O(p?). In contrast, the dispersive terms themselves are
finite-differenced only to second-order accuracy, leading to errors of O(Az?) relative
to the actual dispersive terms. Finally, the system of equations is written in a form
that makes the application of a higher-order time-stepping procedure convenient. We
utilize a fourth-order Adams predictor-corrector scheme to perform this updating.

The second factor is the impliciteness of the dispersive terms in the momentum equa-

tions. In order to address this, we rewrite (1-2) as

h = E(??suwv) (9)
U = Flg,uv)+ R (10)
Vi = G(n,u,v)+ [G1(u)] (11)
where
U(u) = u —+h[bihtug, + by(htt)ys) (12)
V(v) = v “h[bihvy + by(hv)y,] (13)

are treated as simple variables in the time stepping scheme. The remaining quantities
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E, F,G, Fy, Gy are functions of n,u and v which are defined as

En,u,0)= — [(b+n)ule—[(b+n)oly
- {ala't‘?’(uM + Vay) + a2h? [(ht) o + (hv)ry]}z

= {@h®(vyy + ) + agh® (o) + (hu)ay]} (14)

F(n,u,v)= — gns — (g + vu,) (15)
G(nyu,v)= — gny, — (vvy + uvy) (16)
Fi(v) = — h[bihvgy + ba(hv)zy) (17)
Gi(u) = — hlbihu,, + by(hu)s] (18)

The constants ay, aq, by, by are given by

aq =ﬂ2/2—]/6, a2=ﬁ+1/2, bl=ﬁ2/2, bg=[3 (19)

where # = z,/h. For the standard form of the Boussinesq equations, the constants

reduce to

011:0, 62:0, 51:1/6, 62:—1X2 (20)

The reason for isolating the time derivative of cross-differentiated terms on the right-
hand side in (10-11) is to make the remaining left hand sides in U and V purely tridi-
agonal in form when we revert to the actual unknowns u and v» and finite-difference
dispersive terms to second-order accuracy. The resulting set of equations are then
solved by sweeping each one in its own direction. The cross-derivative terms are
evaluated using second-order extrapolation in the predictor step and second order

iteration in the corrector step.

The governing equations are finite-differenced on an un-staggered grid in z,y,t. We
discretize the independent variables as @ = 1Az, y = jAy,t = nAt. Level n refers to
information at the present, known time level. The predictor step is the third-order

explicit Adams-Bashforth scheme, given by

il =0k + ~1A—2{ [23}:7;; —16E77! + 5,53;;.-2] (21)
Ui =T + % [28Fy — 16F75 + 55572

+ 2FP —3F}1 4 Fp2 (22)
Ve =V 4+ % [23G;§j — 16G}5" + 5G]

+ 2GT -3GT + G (23)
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where all information on the right is known from previous calculations. The values of

n+1
Ub W

time level, however, requires solution of tridiagonal systems which are linear in the

are straightforward to obtain. The evaluation of horizontal velocities at the new

unknowns at level n 4+ 1. Specifically, for a given j, u““ (¢ =1,2,..., M) are obtained
through tridiagonal matrix solution. Similarly, “H(j =5 1B N) are solved by a
system of tridiagonal matrix equation for given 7. The matrices mvolved are constant

in time and may be pre-factored, inverted and stored for use at each time step.

After the predicted values of 1}:1;'1, :‘;!‘1

responding spatial derivatives £, F7uH G?;"l,( DIt (G from equations (14-
18).

and vn""l are evaluated, we obtain the cor-

The corrector scheme is the fourth-order Adams-Moulton method, given by

At

mift =l + op 9L +19EY; - SE + Efy] (24)
At
n+1 __ n n+1 n n—1 n—2
Ut =0 + o 9FL +19F ~ 5F 4 FY ]
+ FM— BT (25)
INE ;
n+1 __ T n+1 i 1—1 n—2
Vit =V 4+ op [9GI +19GY; - 56T + G
+ Gt -Gt (26)

The corrector step is iterated until the error between two successive results reaches a
required limit. The error is computed for each of the three dependent variables n,u,v

and is defined as

S [

i f

where [ denotes any of the variables and ()* denotes the previous estimate. The

Af = (27)

corrector step is iterated if any of the Af’s exceeds 0.001. The scheme typically

requires no iteration unless problems arise at boundaries.

Then the same procedure is applied to the next time step. Figure 2 shows the flow
chart for the main computer program of the numerical model. Notation for the grid

geometry is shown in Figure 3.
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Initialization
(1) read data
(2) compute depth
(3) compute constants
(4) obtain initial wvalues

Y

do it = 1, itmax

|
Predictor stage

n+l

X={u, V:TI}

itt = 0

>
i

>
A

] no

call subroutines to find
n+l__n+1 _n+l_n+l n+l

L S I S

itt>ittmax ?

yes

Corrector stage
n+l

X={u, V:Tl}

itt=itt+l

A

no

call subroutines to update

n+l_n+l_n+l n+l

En+1F G Fl Y
|

continue

i
stop

A

Figure 2: Flow chart of main computer program.
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0
y=b
(3=N)
y=0
(3=1) *
x=0 x=a
(i=1) (i=M)

Figure 3: Definition of computational domain and boundaries.

3.2 Boundary conditions

Appropriate boundary conditions are needed for the numerical model to run prop-
erly. The examples shown below involve three types of lateral boundaries, which are

discussed here in sequence. These are:

1. Impermeable, reflective vertical walls
2. Incident wave (or wavemaker) boundaries

3. Transmitting or absorbing boundaries

3.2.1 Reflective boundaries

For a general reflective boundary with an outward normal vector n, we would antici-
pate on physical grounds that the kinematic boundary condition would be completely

specified by the statement
u-n=0; xe€aN (28)
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where (2 is the fluid domain, 9Q is the boundary, and x is a position in the do-
main. Unfortunately, owing to the definition of w, this is apparently not a complete

statement. Consider (1) written as

m+V-M=0 (29)
where
2.4 R h
M= (h+n)u+| 5~ | AV(V-u)+ {2+ 5 | V[V (hu)]  (30)

is the volume flux vector. We may integrate (29) over §) to obtain the result

dm ,
E——faQM-ndS (31)

where
m = fn ndA (32)
is the total excess volume in the domain. If the domain is completely enclosed by

impermeable walls, we require that the rate of change of the excess volume be zero.

This requirement is then satisfied by the condition
M:n=0; xe€dfN (33)

which is more complicated than (28). Consider, for example, the case of a wall
parallel to the y-axis fronted by a region of constant depth &, for which the boundary

condition becomes M, = 0 or
g 1
(h+n)u+ k(e + g)[uxr + Vgy] = 0 (34)

Setting u = 0 only covers a portion of the condition. If we consider the leading order

terms in the mass conservation equation, however, we have
ne + hug + hv, =0 (35)
This may be differentiated with respect to z to obtain
(12)e + hlugs + Vgy] = 0 (36)

From (36), it is clear that the overall boundary condition is satisfied by additionally
imposing
Vnp-n=0; xedf (37)

14



which is consistent with the usual physical notion of total reflection at a vertical

barrier. Finally, for the velocity component uy tangent to the boundary, we require

dur
on

This last condition essentially imposes a no-shear condition for the flow along the

0; xe€on (38)

bounding wall, which is not inconsistant with the inviscid flow being considered.
This last condition would not seem to be required by the kinematic constraints on
the system, but it has been used repeatedly in the literature (for example, Rygg
(1988)), and we have not been able to stabilize the computational scheme without
imposing it. This point requires further research, and is considered to be unresolved

al present.

3.2.2 Wavemaker boundaries

For the examples considered below, we impose wavemaker boundary conditions by
specifying the entire signal 77, u, v on the boundary. This step does not allow for treat-
ment of reflected waves arriving at the boundary, but has been seen to be adequate
for the cases under study. The entire question of well - posedness of the incident wave
boundary condition is being considered separately, and we are additionally consid-
ering approximate treatments of the boundary along the lines of the internal source

functions of Larsen and Dancy (1983).

If incident wave elevation 5y is given (as in the example in section 4.4) and the wave
height is small compared to the water depth, then we can use linear theory to obtain

the incident wave velocity:

W =l o L e (39)
vy = A 1/3)(kh0)2]n" sin 0 (40)

where k is the wavenumber, hq is the water depth and 6 is the angle of wave propa-

gation relative to the z-axis.
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3.2.3 Absorbing boundaries

The final type of boundary in the present examples is the radiating or open boundary,
which should absorb all energy arriving at the boundary from within the fluid domain.
Treatment of this boundary is a problem of major interest in the modelling commu-
nity, and we utilize some fairly well established techniques for the cases considered

here.

A perfect radiation boundary should not allow wave reflection to occur. For the case
where the wave phase speed ¢ and the propagation direction # at the boundary are
known, the radiation condition is

ny + ccosbn, =0 (41)

However, the present model is essentially dispersive, and so no single phase speed ¢
exists which fully characterizes the system. Further, in two-dimensional applications,
the wave direction @ is generally not known a priori. To solve the second problem,
approximations to the perfect radiation condition are made. For wave propagation
with the principle propagation direction close to the z-axis, the approximate radiation
boundary condition can be written as (Engquist and Majda, 1977)

2

¢
Nit + Nt — "é“’?yy =0 (42)

which corresponds to the imposition of a parabolic approximation on the outgoing

wave. To treat the first problem, phase speed ¢ is specified by the long wave limit

= 1l gh.

The above approximate radiation condition inevitably introduces wave reflection
along the boundaries and can eventually cause the model to blow up. To reduce
the reflection, a damping layer is applied to the computing domain. Damping terms

are added to the momentum equations as

U = F(n,u,v)+ [Fi(v)]i — wi(2)u — wo(@)(tge + tyy) (43)
Vi = Gn,u,v) +[Gi(u)] — wi(z)v — wo(z)(vaee + vyy) (44)

where the damping terms with v and v are call “Newtonian cooling” and those with
second order derivative are analogous to linear viscous terms in Navier-Stokes equa-

tions (Israeli and Orszag, 1981). The damping coefficients wy () and w;(z) are defined

16



as

; 0 ; ©< T,
wile)= { awf(z) ; &> a, 43)

0 R <
wa(®) = { avf(z) ;3 x>, (0

where «; and ay are constants to be determined for the specific running, w is the
frequency of wave to be damped, z, the starting coordinate of damping layer (the
computing domain is from z = 0 to @ = x;), v the viscous coefficient, and f(z) is

expressed as
exp(%‘;)“ -1

Hm)= ex:;;:(l) —1

The width of the damping layer (i.e. x; — ;) is usually taken to be two or three

(47)

times the wave length. Numerical experiments show that the addition of damping
layer combined with radiation boundary conditions works much better than radiation

conditions alone.
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4 Case studies

Both 1-D and 2-D versions of the numerical model described above have been devel-
oped and applied to a number of cases of wave propagation. For the 1-D model, we
first investigate solitary wave propagation over a very long and flat bottom. Then,
we study solitary wave shoaling on a slope, and compare the present results to results
obtained using a boundary element model (Grilli et al, 1989). To further verify the
model, we then study solitary wave reflection and random wave evolution on a slope
and compare our results with experimental data. For 2-D version of the model, we
first study wave evolution in a closed basin to verify symmetry of computed results
and to test various boundary conditions. Then, the model is applied to simulate
monochromatic wave propagation over an elliptic shoal and to study cnoidal wave
reflection from the side wall in a rectangular wave basin. Comparisons of numerical
solutions and experiment data are presented. The results show that the model is

capable of simulating wave propagation over a wide range of water depths.

4.1 Solitary wave propagation over a flat bottom

The propagation of a solitary wave over a long distance provides a good test of the
stability and conservative properties of the basic numerical scheme. In order to apply
this test, we first need a solitary wave solution for Nwogu’s model equations. Schem-
ber (1982) has described a method for obtaining approximate analytical solutions for
solitary waves, using the standard Boussinesq approximation with depth averaged
velocities. First, an approximate ordinary differential equation (to the same order of
accuracy as the Boussinesq equations) for wave potential ¢ was obtained from the
original coupled equations. The equation of ¢ is a fourth-order nonlinear ordinary
differential equation which admits a closed-form solution, from which the horizontal
velocity u and surface elevation  can be determined. Following the same procedure,
we can obtain an analytical solution for the extended Boussinesq equations. Details
of the derivation are included in Appendix A. The horizontal velocity v and surface

elevation n of a solitary wave are found to be

u = Asech’[B(z — Ct)] (48)
n = Ajsech’[B(z — Ct)] 4 Agsech![B(z — Ct)] (49)

18



where A, B, Ay, A, are constants which are defined as:

2 —
4 = T2 (50)
2 1/2
B — C*—gh (51)
4h?[(a + 1/3)gh — aC?]
2 _
Ay &~ h (52)

3[(a+1/3)gh — aC?)
(C? — gh)? [(a+ 1/3)gh + 2aC?]

< 2ghC?  [(a+1/3)gh — aC? . (53)

and where h is the water depth, ¢ is the gravitational acceleration, and « is the

parameter defined in (5). The phase speed C depends on the a value and the ratio
of wave amplitude a to the water depth k (¢ = a/h) through

C,_2)3 —(Ba+1/3+ 205:3)(61”—2)2 + 2e(a + 1/3)(0—2) +a+1/3=0 (54)
gh : gh gh B

which must be solved numerically. The analytical solution is used to specify the

20

incident wave boundary condition for the numerical model.

The model was used to investigate solitary wave propagation in constant water depth
of 0.45m over a horizontal distance of 450m. Figure 4(a) shows the spatial variations
of a solitary wave with amplitude 0.045m (e = 0.1) at various time steps. The results
indicate that the initial wave pulses specified according to the theory in (48)-(54)
undergo evolution at the start of the wave channel, with the result that a slightly
higher solitary wave is formed together with a small dispersive tail. The amplitude of
the tail and the initial deviation in solitary wave height both increase with increasing
initial wave height. This result is partially due to the fact that the fourth order
equation used to develop the analytical solution is only asymptotically equivalent to
the model being solved numerically, so that the wave being input at the boundary of
the numerical model does not correspond exactly to a solitary wave form as predicted
by the model. Figure 4(b) shows a blow up of a wave with an initial amplitude of
0.135m (e = 0.3), with the solitary wave crests clipped off and the dispersive tail
accentuated. The dispersive tail is seen to lag behind the evolved solitary wave, and
shows a distinct ordering with low frequency waves near the front of the wave train
and high frequency waves near the back, as would be expected for any dispersive wave

train.
The amplitude variations of three solitary waves (amplitudes as 0.045m, 0.090m and
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0.135m) are shown in Figure 5. In Figure 6, the shapes of these solitary waves at
times t = 40s and t = 160s are compared in detail. The important feature of the
numerical solution is that the solitary wave which evolves out of the initial wave form
then propagates for a long distance (at least 1000 water depths) without undergoing
any additional damping or evolution. This indicates that the numerical code is free of
unwanted dissipative effects, which would gradually damage the solitary wave form.
Figure 5 shows that the solitary wave height predicted by the model is quite stable.

Similar results were obtained for the mass contained in the solitary wave.

In Figure 6, solitary wave forms are compared at two widely separated instants in
time. The two wave forms are translated by an amount predicted by the analytical
phase speed C. The figure indicates that the numerically predicted phase speed
is somewhat smaller than the analytically predicted one, and that the difference

increases with increasing wave height.
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Figure 4: Spatial profiles of solitary wave with € = 0.1 (top) and € = 0.3 (bottom)
evolving in water of constant depth (h = 0.45m).
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4.2 Solitary wave shoaling over a slope

All models in the standard Boussinesq approximation are nonlinear only to leading
order, and thus are strictly valid only for relatively low waves. This assumption is
necessarily violated near the wave break point, where the wave height to water depth
ratio is O(1). Models based on the Boussinesq approximation thus are not strictly

valid in the final shoaling region and in the surf and swash zone.

In order to assess the limitations of the model in the final shoaling region, we applied
it to simulate solitary wave shoaling over a slope. Numerical results are compared
with a solution obtained using the boundary element method (BEM) of Grilli et al.
(1989), which has been shown to be an exceptionally accurate predictor of solitary
wave evolution by Grilli et al (1994). The BEM a numerical solution to Laplace’s
equation together with the full nonlinear surface boundary conditions, and is not

limited to small water depth and weak nonlinearity.

A solitary wave with initial wave height to depth ratio of 0.2 was used for the com-
parison. The solitary wave was generated in a region of constant water depth and
then shoaled up a slope of 1:35 before breaking. Figure 7 shows the change of the
wave height to water depth ratio over distance (shown in terms of number of water
depths). The dashed curve, representing the height of the BEM wave, terminates at a
distance of about 26hg, which corresponds to the point of wave breaking. (This point
was determined as being the point where the wave crest reaches a vertical asymp-
tote.) The Boussinesq model exhibits more rapid shoaling, and also does not have
any inherent behaviors that would indicate the onset of breaking. If the breaking
criteria implied by the BEM solution were applied to the Boussinesq solitary wave,
that wave would be judged to be breaking about one water depth further seaward
than the BEM wave.

The computed wave crest speed (C.) and the speed of center of gravity (C,) are
shown in Figure 8. The Boussinesq model is seen to slightly overpredict the crest
speed of the solitary wave up until close to the break point, where the BEM crest
speed increases rapidly. This feature is a result of the wave crest pitching forward in
the fully nonlinear model calculation. It has been observed for some time (see, for
example, Vengayil and Kirby (1986) ) that Boussinesq waves do not exhibit the rapid

steepening that is seen in data just prior to breaking, but instead have wave crests
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that are more rounded than expected. This lack of steepening causes the Boussinesq
crest position to lag behind the position predicted by BEM. In contrast, both models
are seen to predict nearly equivalent values for the speed of the geometric centroid of

the wave form, which is a better indicator of the overall phase speed of the waveform.

Figure 7: Comparison of solitary wave height to depth ratio over distance: Extended
Boussinesq Model (—-); BEM (---)
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Figure 8: Comparisons of wave crest speed and speed of center of gravity over distance:
Extended Boussinesq Model (—); BEM (---)
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4.3 Solitary wave reflection from a slope

The next example addresses the reflection of solitary wave by a slope, studied by
Goring (1978). The experiment layout is shown in Figure 9, where a constant slope
with horizontal length L connects the left and the right ends of constant depths hy
and hy. A solitary wave is generated on the left and propagates to the right. Due to
the presence of the slope, part of the solitary wave is reflected back to the left while
the rest keeps propagating to the right, as shown in Figure 10. The time series of
surface elevation at the gauge 1 are used to obtain the shapes of reflected wave, which
are found to be a function of L, hy, h, and the incident wave height H; (Goring, 1978).
The comparison of the shapes of measured and computed, reflected solitary waves are
shown in Figure 11. In both cases, the constant water depths are hy = 46.62¢m and
hy = 15.54¢m, while the slope lengths L are 3.127m and 6.354m, respectively. The
incident wave height for both cases was 2.5¢m. The agreement between the numerical
results and experimental data are essentially similar to the results of other studies
(for example, Kirby and Vengayil (1988)). The discrepancy between data and model
results for the case of L = 5.354m is not understood at present, and may be due to
the fact that the reflected wave was extremely long and low and therefore difficult to

measure.
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Figure 11: Comparison of reflected solitary waves: (a)L = 3.127m; (b)L = 5.354m.
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4.4 Random wave shoaling on a slope

As a final example using the 1-D version of the numerical model, we study random
wave propagation over a slope and compare numerical results with the laboratory
data of Mase and Kirby (1992). The experimental layout is shown in Figure 12,
where a constant depth of 0.47m on the left connects to a constant slope (1:20) on
the right. Two sets of random waves with peak frequencies of 0.6 Hz (runl) and
1.0Hz (run2) were generated by the wavemaker on the left. The target incident
spectrum was a Pierson-Moskowitz spectrum. Wave gauges at depths A = 47 (two
gages), 35, 30,25,20,17.5,15,12.5,10,7.5,5 and 2.5 cm collected time series of surface
elevation. Further details of the experimental setup may be found in Mase and Kirby
(1992).

Since no wave data is available near the wave maker, the incident boundary for the
numerical model was taken to be the location of the first wave gauge 2m seaward
of the toe of the beach slope (at a depth of 47em). The horizontal velocity u at
the incident boundary was derived from the surface elevation data through Fourier

analysis, based on linear relation between u and 5 as in (39).

The present model does not include wave breaking, which occurs in the larger waves
near the gage at the depth of 17.5em. We thus end the beach slope at a point
shoreward of the gage at h = 17.5 em and introduce a flat bottom. The sponge layer
method described in section 3.2 is used to absorb the waves propagating past the last

gage.

Comparisons of the model and experimental data for the first 60 seconds of runl and
run2 are shown in Figure 13 and Figure 14. In each figure, results are shown for the
initial conditions (bottom trace) and for gage positions 30, 25,20 and 17.5 em going up
the plot. Both figures show that the model reproduces the measured wave form quite
well. There is an apparent discrepancy in arrival time for the wave crests in runl. This
error has been traced to discrepancies in time tagging of data records from separate
data runs, but has not been corrected. The data for run2 shows no such discrepancy.
For this case, the value of kh for the peak wave frequency is about 2.0 at the incident
wave boundary, and thus this case represents a severe test of the applicability of the
model to deeper water conditions. As a comparison, we ran a model based on the

standard Boussinesq equations for the case of run2, and show the results in Figure 15.
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In contrast to the results in Figure 14, Figure 15 shows severe discrepancies between
modelled and measured waves, indicating that the standard Boussinesq model is not

capable of handling the range of depths used in this example.
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Figure 12: Experiment layout for wave shoaling experiment of Mase and Kirby (1992)
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Figure 13: Comparison of time series of surface elevation for runl: model (---); data
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Figure 14: Comparison of time series of surface elevation for run2: model (---); data
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4.5 Wave evolution in a closed rectangular basin

Compared to the 1-D model, the 2-D model involves a number of mixed z and y
derivative terms, which are handled differently in the time-stepping scheme than
terms containing derivatives in one direction only. In order to verify the correctness of
the model and to test its stability and associated boundary conditions in 2-D, we first
use the model to study wave evolution in a closed basin of size (L, = 7.5m) x (L, =
7.5m). This case also gives us the opportunity to test a linearized version of the model
against an analytic result, and to study the robustness of the modelled dispersion

relation in a linear wave field containing a range of wave frequencies.

We consider the domain 0 < 2 < L;,0 <y < L, bounded by reflective vertical walls.
Within this domain, we take the initial condition to be a superelevation of the surface
no(z,y) above an otherwise constant depth hg = 0.45m. The linear analytic solution
is obtained by first extending the domain by the method of images in both z and
y directions, leading to a wave form which is periodic over 2L,,2L, and even about
any image of the reflecting sidewalls. We may then express the spatial dependence
of the solution as a double cosine series, with transform coefficients determined from

the initial conditions according to

N 1 Loz Ly
ot = 0T 600+ 60 EaLy -t [-Ly no(z,y) cos(nAzx) cos(mAy)dzdy  (55)

where d,,, denotes the Kronecker delta function, and where

A== (56)

Fach of the (n,m) modes then has a corresponding natural frequency which is given
by

w2 = gkpm tanh(kp.nho) (57)
where .
B = (A + (mAY = () (0 +m?) (58)
The linear solution is then given by
(@, y,t) =Y. Y fjame™ " cos(nAa) cos(mAy) (59)

n=0m=0

where it is understood that we are interested in the real part of the solution.
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For the runs shown here, the initial surface elevation is of Gaussian shape:
mo(w,y) = Hoexp [—2 (@ — 3.75) + (y — 3.75)?)] (60)

where  and y are defined with the origin in the left and bottom corner of the basin.
The initial superelevation is symmetric about the center (z = 3.75m, y = 3.75m).

We show results for several maximum initial displacements.

We first consider the symmetry and conservation properties of the solution. For
these examples, the initial maximum elevation H, is taken to be 0.045m, with a
corresponding height-to-depth ratio of 0.1. The model was run for 100s, using a
grid size of Az = 0.15m and time step of At = 0.05s. Figure 16 shows the time
series of percent error in the total water volume, and surface elevations at points
(z,y) = (0m,0m) and (3.75m, 3.75m). In order to provide a time scale for this figure,
the natural frequency of the (2,2) linear sloshing mode (which is the lowest symmetric
mode relevant to the form of the initial condition) was computed and found to be
2.64s. The computed solution shows a mix of this and higher modes, all distorted by

the presence of nonlinear effects.

Since no water can escape from the basin, the water volume should remain constant
with time, which is a good criterion to test the stability of the model and associ-
ated boundary conditions. Results in Figure 16 are obtained by using the combined
boundary conditions (28), (37) and (38), which yield results which were more accurate
than were obtained using zero normal velocity conditions and the governing equations
alone. The axisymmetry of the evolving wave form about the origin of the Gaussian
hill is apparent from the contour plot of surface elevation n at ¢ = 1s in Figure 17,
and verifies that cross-derivative terms are being handled correctly. Figure 18 shows
spatial profiles of surface elevation at time ¢t = 0,20, 40,60,80,100s for illustrative

purposes.

Finally, we test the agreement between the linearized model and the linear solution,
and show the effects of large initial nonlinearity on the computed solution. For this
example, we take an initial maximum Hy = 0.45m. This corresponds to an initial
height to depth ratio of 1, which is outside the usual range of validity of the model.
This ratio falls off dramatically as the initial hill of water spreads out, and the ratio
typically takes on values more on the order of 0.2 during the subsequent evolution.
Figure 19 shows a comparison of nonlinear (dash-dot line), linear numerical (dashed

line) and linear analytical (solid line) results for the first 50 seconds after the release
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of the elevation. The effect of nonlinearity is apparent through the more rapid ar-
rival of the initial pulse at the corner point, the progressive increase in phase lead of
the nonlinear crests, and in the apparent steepening of the individual nonlinear wave
crests. (See, in particular, the corner point near ¢ = 10—15s). There is also an appar-
ent, but slight, discrepancy between the two linear solutions. This discrepancy shows
up as an occasional modification of the shape of an individual wave crest or trough,
rather than as a modification or relative drift in the overall solution. It is possible
that the discrepancy is due to the effect of errors in the higher frequency portion of
the solution, which contributes relatively little variance to the overall surface record.
In order to test this, we computed the theoretical natural frequencies corresponding
to the linearized Nwogu equation, which gives

1 — (e + 1/3)(knm ho)?

w0 — (e ho)?

(61)

instead of (57). In Figure 20, we show the ratio of the Boussinesq natural frequency to
the exact natural frequency over the range of mode numbers which are represented in
the analytic and numerical solutions. The ratio dips slightly below 1 for n, m values
below about 10 and then rises gradually. The first 10 modes in each direction account
for essentially all of the variance in the solution, and the errors in the ratio are less
than 1% in this range. For contrast, we show the frequency ratios corresponding to
the standard Boussinesq model in Figure 21. Errors on the order of 5% are seen
for (m,n) pairs in the range of energetic modes, indicating that the present example

should also show sizeable errors if run using the standard Boussinesq approximation.
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Figure 20: Ratio of Extended Bousinesq natural frequencies to exact natural fre-
quencies for the range of mode numbers considered in the analytic and numerical

solution.

0.5

Figure 21: Ratio of standard Bousinesq natural frequencies to exact natural frequen-

cies for the range of mode numbers considered in the analytic and numerical solution.
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4.6 Monochromatic wave propagation over a shoal

We now apply the 2-D version of the numerical model to study monochromatic wave
propagation over a shoal. The geometry used corresponds to the experimental ar-
rangement of Berkhoff et al. (1982). This experiment remains a standard test for
verifying models based on the mild slope equation. See, for example, Kirby and Dal-
rymple (1984) and Panchang and Kopriva (1989). The standard form of Boussinesq
equations is not appropriate in this situation due to the relatively deep water condi-
tions used. The value of kh at the wavemaker in this example 1s about 1.9, making

the example similar in severity to the run2 example in section 4.4.

The experimental geometry and location of measurement transects is shown schemat-
ically in Figure 22. Monochromatic waves with period 1s and amplitude 2.32¢m are
generated by a wavemaker at £ = —10m. The remaining computational domain in-
cludes two side walls (which are located at y = —10m and y = 10m) and an absorbing
boundary at @ = 12m. The bottom bathymetry consists of an elliptic shoal resting
on a plane beach with a constant slope of (1:50). Bottom contours on the slope are
oriented at an angle of 20° to the y - axis. Further details of the geometry may be
obtained in Berkhoff et al (1982) or Kirby and Dalrymple (1984).

Wave heights along eight sections near the shoal were measured in the experiment.
Figure 23 shows the comparisons of the model results and experiment data. Agree-
ment is generally good, but not as good as seen using models based on third-order
Stokes wave dispersion (Kirby and Dalrymple, 1984). The present model predicts a
somewhat lower and broader central focus region, indicating that the effects of non-
linearity in intermediate water depths are somewhat exaggerated, although not by an
amount that damages the overall quality of the prediction. The level of agreement
seen here indicates that the new form of Boussinesq equations may be used with
some confidence in intermediate water depths, but that some effort should be put

into obtaining formulations that produce a more correct level of nonlinear effects.
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Figure 22: Experiment layout for wave focussing experiment of Berkhoff et al. (1982)
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4.7 Mach reflection of Cnoidal waves

As a final example, we study the Mach-stem resulting from the grazing-angle reflec-
tion of a cnoidal wave by a wall. First, for a given wave period T', wave height I
and water depth h, a permanent form solution corresponding to a cnoidal wave is
obtained numerically by solving a system of nonlinear equations obtained from a fre-
quency domain decomposition of Nwogu’s equations (Kaihatu, 1993). The results are
then used as the incident wave boundary condition for the numerical model. Figure
24 shows the experimental layout of Hammack et al. (1990), where cnoidal waves
with direction # were generated at z = 0. Two side walls are located at y = 0
and y = —13.25m. The wave period is T' = 1.4785s , wave height H = 5.366cm,
and water depth A = 20em. Time series of water surface elevation are obtained by
two wave gauge arrays which are parallel (#18,17,16,15,14,13,5) and perpendicu-
lar (#13,9,8,7,6,4,3,2,1) to the y = 0 side wall. Six sets of data were collected,
corresponding to different @ values. Here we present the comparison of model and
experiment results for case 1 with minimum 0 (10.13°) and case 6 with maximum 0
(44.32°). Further details of incident wave conditions may be found in Kirby (1990)

Figures 25 and 26 show results for the smallest angle. In Figure 25, the waves are
seen to be in phase over the first four gages perpendicular to the wall, which indicates
the width of the Mach stem region. Beyond the fourth gage, the waves are appar-
ently incident towards the wall with a small angle of approach. Agreement between

measured and computed wave forms is good both inside and outside the stem region.

Figures 27 and 28 show results for the largest angle of incidence, where the reflection
pattern is essentially regular. Iigure 27 shows what is essentially a simple short-
crested wave pattern, where the individual wave crests have been steepened by non-

linearity. The agreement between model and experiment is again good.
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5 Conclusion

A high order numerical scheme has been developed for a new form of the Boussinesq
equations derived by Nwogu (1993). The scheme has been tested in a number of
examples which illustrate its basic stability and which show that the new Boussinesq

equations may be applied to a wide range of water depths.

Two of the examples studied above point out cases where there are discrepancies
between nonlinear effects in the Boussinesq approximation and corresponding effects
in data or in alternate analytical formulations. In both cases, these limitations are
likely manifestations of the lowest order nature of the model, which does not correctly
represent either the O(1) nonlinearity of waves near breaking or the dominant cubic
nonlinearity of intermediate depth waves. For this reason, we are presently extending
the model equations described here to include higher order terms; results for this

extension of the model capability will be described separately (Kirby and Wei, 1994).

Appendix: Solitary Wave Solution for Extended
Boussinesq Model

For convenience, we rewrite Nwogu’s equations for 1-D horizontal flow in constant
depth

M+ Uz + (u)e + (@4 1/3)RPuUgpe = 0 (A1)
Uy + Ne + Uty + ahug,, = 0 (A2)
where |
Za Za F
=gt (A3)

Instead of the velocity u, we use the velocity potential ¢ (such that u = ¢,) as a
variable. Then equations (A1) and (A2) become

M+ boz + (MPe)s + (@ + 1/3)R%Ppee = 0 (A4)
Bt n 4 5 () + oWy = 0 (A5)

46



Substituting  from (A5) into (A4) and retaining terms which are consistent with the

ordering in the Boussinesq equations, we have

== ¢’tt ‘l" gh¢rz = 2‘351,@61:1 = ‘751?51:1- + 9’13("1 + 1/3)(352::::” = th’? ¢':c:c£t = 0 (Aﬁ)

The truncation in the last step is responsible for the fact that the analytic solitary
waves differ by a small amount from their numerical counterparts, even in the limit of
small step size. Equation (A6) is transformed into an ordinary differential equation
by introducing { = @ — Ct (thus ¢, = ¢' and ¢, = —C¢')

(gh — C*)¢" +3C ¢ ¢" + [(a + 1/3)gh® — ah®C?¥¢"™ = 0 (AT)
Integrating the above equation once results in
(9h — O + SC(#)? + [(a+1/3)gh* — ah*C?g" = Gy (A8)
Multiplying (A8) by 2¢" and integrating again yields
(gh — C*)(¢')* + C(¢)° + [(a + 1/3)gh® — ah®C?)(¢")* = 2G1¢' + G (A9)

The integration constants (G; and Gy are zero for solitary waves since ¢ = ¢/ = ¢" =

¢" =0 as { — oo. Assume the solution form of ¢’ to be

¢' = Asech®(B¢) (A10)

Substituting (A10) into (A9) yields

C? — gh
A = - (A1)

C
C? — gh
B? = 2
4[(a + 1/3)gh® — ah?C?) (Al2)

From (A5), we have
n = Ajsech?( BE) + Ajsech?(BE) (A13)

where

C? — gh
A= ST 3k — " (e

_ (C*=gh)*[(a+1/3)gh + 2aC?]
A = 2ghC?  [(a+1/3)gh — aC?) " (ALE)

A7



From the boundary condition n = a at ¢ = 0, we have

C? — gh (C? — gh)? [(a+1/3)gh +2aC?],
3[(a + 1/3)gh — aC?] b= ghc [(a + 1/3)gh — aC?] h=a (A16)

which can be rearranged as (with ¢ = a/h)

2 02 02
=N g i < | . s
2a(gh) (3a+l./3+2a6)[gh) +Je(a+1/d)(gh)+a+l/3 0 (A17)
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