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1 INTRODUCTION

Surf zone dynamics is a highly complicated topic in hydrodynamics which deals with the
waves and wave generated phenomena in the region between the breaker line on a beach
and the shoreline.

When waves break on a gently sloping beach; large amounts of energy are released
and turned into turbulence. As the waves keep breaking and interacting with the bottom
topography, the momentum flux of the waves also decreases along with the decrease in
wave height. The forcing this represents causes the generation of both currents and
longer waves.

The proper analysis of the dynamics of the surf zone requires a detailed knowledge of
the breaking waves and the turbulence they create. This knowledge is not yet available.
However, significant progress has been made over the last decade or two, in particular,
in the area of understanding wave generated phenomena such as wave set-up, cross-shore
and longshore currents and their stability, turbulence and mixing, and the generation of
long wave phenomena (surf beats, edge waves), also termed infragravity waves.

The present chapter gives a brief account of the basic mechanisms involved in these
phenomena.

Since the phenomena listed are all generated by the waves, and in most cases particu-
larly by the forces released by the breaking process, it is evident that a proper description
of the breaking waves in the surf zone is of crucial importance for an understanding of
these phenomena.

We therefore start with an examination of the basic equations for nearshore circulation
(Section 2) in which we also identify the wave properties (notably the mass flux, radiation
stress, energy flux and energy dissipation due to breaking) responsible for the phenomena
we want to study. In Section 3, a brief review is given of the status of our knowledge of
those wave properties for breaking waves. -

Section 4 reviews important examples of the simplest nearshore models that only
predict wave heights and set-up, and in Section 5 the classical ideas of longshore and cross-
shore currents are examined. That section also briefly covers more general circulation
models. Finally, in Section 6 long wave generation (surf beat, edge waves) is examined
and in Section 7 we discuss the recently discovered phenomenon of very long period waves
[the so-called shear waves| that are believed to be signatures of instabilities of longshore
currents,

Since the topic of surf zone hydrodynamics is very extensive, some of the subjects are
merely covered in a brief descriptive way which primarily aims at referring the reader to
relevant literature.



2 THE BASIC EQUATIONS OF NEARSHORE CIR-
CULATION

2.1 Introduction and Assumptions

The equations describing the wave generated currents and long wave motions in the
nearshore region are based on the classical principles of hydrodynamics of conservation
of mass, momentum and energy. Also, the exact boundary conditions at the bottom
and the free surface are utilized. In order to cast the equations in a useful form for the
purpose of studying nearshore circulation, the basic equations are first integrated over
depth and thereafter averaged over a wave period. The. results of this process will be
discussed in the following to the extent that they are needed for the applications to be
examined later. The reader interested in the detailed derivations is referred to Phillips
(1980) (whose nomenclature and definitions we will largely follow) or Mei (1983) (who
gives a somewhat more detailed account but whose definition of current differs at a, crucial
point from the one used here and by Phillips).

The amount of information supplied by these time averaged models is actually surpris-
ing. Properly formulated they can predict the wave height variation due to an assessed
energy dissipation, the currents generated by the waves and also by the wind if we want
to include that effect in the model. We also get information about the mean water surface
(MWS) which is an important parameter in the nearshore balance. The wave averaged
models can also predict long wave generation and behavior which is one of the most
important topics in coastal research today.

Basic Assumptions

In order to be able to do the time (or wave) averaging, we need to assume that the
(local) time (or “phase”) variation of the wave motion is known. A typical example is
the assumption that this variation is sinusoidal (though, unfortunately, that particular

assumption is not a very good approximation for the breaking waves in a surf zone as we
shall see). '

The wave averaged models are also based on the assumption that the depth varies
gently, as is the case almost (but not quite) everywhere on sandy shores and beaches.!
The gentleness required is used to assume that at each location of the region the local
wave motion corresponds to the wave motion we would have had at that location had
the water depth been constant everywhere with exactly the local depth, and the wave
height and wave period equal to the local values.

It turns out that this concept of gentleness is related both to the bottom slope h, and
to the wavelength L. Analysis of the effect the bottom has on the wave motion shows
that to the first order this effect is proportional to the dimensionless ratio

h. L
=== | (2.1)

!Strictly speaking, this is not a necessary assumption but it highly simplifies the problems.
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Since h; L = Ah is the (first Taylor approximation to the) change in depth over one
wave length, we see that S is the relative change in depth over that distance.

Hence, we may conclude that if we want to be able to neglect the effect which a
sloping bottom has on the local wave motion (i.e., to assume “locally constant depth”),
we should assume conditions that everywhere satisfy the requirement that

S«1 | (2.2)

This will also ensure that the assumption of no reflection of wave energy by the bottom
topography is reasonable. In practice this usually is assumed to be satisfied if S <1
though form some results § < 0.3-0.5 is probably necessary,

The locally-constant-depth assumption has tremendous advantages because it permits
us to use known constant depth theories such as linear wave theory or Boussinesq long
wave theory to describe the local details of the wave motion. All we need then is to
determine the values of the wave parameters required to specify the waves according to
those theories (such as wave height, H, period, T, wave direction, a, etc.) and that is
exactly the information we get from the time averaged models.

In fact, the majority of all nearshore models fall short of achieving a satisfactory
description of the wave and current phenomena because, as we will see, there are many
complications and inadequacies in our knowledge of even the locally-constant-depth phase
motion of the waves. This particularly applies to waves in the surf zone, and unfortu-
nately this is, at the same time, the region which is most important for the littoral
processes and the development of the coastal stability.

2.2 The Equations

It is convenient to some extent to use tensor notation for the final form of the equations.
Usually, in tensor form a vector v is denoted v; (t = 1, 2, 3). Since after the depth
integration, however, only the horizontal coordinates (z, y) are left in the equations, the
usual indices 1, j will be replaced in depth integrated equations by a, B, where it is
understood that a, # = 1, 2 only.

An important element in the analysis is the separation of the velocity components
in a current component, which is termed by U, V, W, an oscillatory part (the "wave”)
denoted u,, v,, w,, and a turbulent fluctuation denoted u', v/, w'. Thus the total
velocity components u, v, w are assumed to be the sum of those three components.

u = U+4u,+u
v = V4o, 4+ (2.3)

w = 04+w,+w

where W = 0 has been assumed. This means we are neglecting the small vertical current
that is typically present. Fig. 1 shows the notation used in the following,.
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Figure 1: Notation.

Since the flow we are dealing with in the surf zone is generally so intensively turbulent
from the wave breaking, the starting point for the derivations are the Reynolds equations
for turbulent flow. We therefore also define the Reynolds (or “turbulent”) averaged
velocities as ‘

u = U+u,
D= Vo, (2.4)
W = w,
In describing the result of the wave- (or time-) averaging we use — to indicate time

averaging, which means that

. 1T .
== /0 dt | (2.5)
where T is the wave period.

We also assume (incorrectly!) that the current is constant over depth. The equations
for a depth varying current are not only much more complicated algebraically but involve
some conceptual complications that we want to avoid here. They will be briefly mentioned
in Section 5 in the discussion of mixing.

Finally, we introduce the definition of the discharge or volume flux Q, in the (horixon-
tal) a-direction given by

¢
Qo = ]—h., Ua + u,, dz (2.6)

Qa is the total volume flux of water through a vertical section of unit width. For a depth
uniform current this becomes -

Qo = Uosh + Qua (2.7)
where Q,, is the volume flux due to the waves only. A is the total water depth.
h=ho+{(= ho +b) (2.8)
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[Note that throughout this treatise both b and ( are used to describe the mean surface
elevation.]

Continuity Equation |

The final equation for conservation of mass (or rather volume since we assume the
water incompressible) is then
3( 0Qa

31‘ Oz

where the so-called “summation rule” is understood which means gf-: ﬂf- + %
(2.9) essentially says that a net change in the z, y directions of the total tlme avera.ged
discharge Q, will result in a change in mean water elevation ((= b).

=0 (2.9)

Horizontal Momentum Equations

Similarly, the horizontal momentum equation becomes

aQa QarQﬁ )__ a_E, s B
P 5 +8:z: ( ” + Sap+ Sip) = pghaxa+rﬂ—ra (2.10)

again with summation over f assumed in the second term. Equation (2.10) (which
actually represents an z and a y component) introduces several new concepts.

In particular, S,p is the so-called radiation stress which represents the net (time
averaged) force the waves excert on a water column.

Similarly, S7,; is the net effect of the turbulent stresses; 75 would represent any shear
stress on the free surface due to, e.g., wind; and rf is the mean bottom shear caused by
the combined wave-current motion.

The physical significance of the terms in (2.10) will be discussed further in Sections
5 and 6. The assessment of the turbulent stress term S’ «p and the mean bottom shear

stress is also discussed further in Section 5. Here we limit the discussion to examining
closer the definition of the radiation stress.

The Radiation Stress, S,z

The radiation stress, S,g is a short notation for a number of terms that emerge from
the derivation of (2.10). Thus S, is defined as

¢ - N
Sep = /h P (umuwﬁ — b (w’ . wm) dz)

Qwa Qwﬂ
h

1 -
+58e0p 917 — p (2.11)

where = ( — ( is the water surface variation measured relative to the mean water
surface. 8o is the Kroenecker symbol (which is 1 if @ = 8, 0 if a # B). Written out in
z,y coordinates, S,s has the following four components:

S = ¢ 2 2 fﬁf? d 1 "3 3::
zzr = /_hup ul, — |wi + w z+§pgq —pT (2.12)
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Figure 2: Wave propagating at an angle a,, to the z- axis.

Seyy = Syz= f(h p Uy Uy, dz — p___thwa ' - (2.13)
< A 1 -  Q? | |

i 2 _ 2 2 = 2 sy
Sw = f_h,p(”‘" (ww+w ))dz+2psm P (2.14)

The Q,-terms are is usually considered small. If we deal with linear waves, they are
O(H*) which is small relative to the magnitude of S,s, which is O(H?). In the surf zone,
however, this is not always the case.

In order to further understand the concept of radiation stress, we look at an example
where a wave approaches a shore and propagates at an angle a,, with the z axis. Fig. 2
shows the situation. In the vertical plane of the wave direction the wave-induced particle
velocities are

u = (u?+02)/? (2.15)
= W, ' (2.16)
and discharge is :
Qu = (Qi:+Q%L)" (2.17)
We then define (the scalars)
" @
- 3 ——. 7]
S ]_ _pu?dz—p (2.18)
¢ ~ 1 —
S, = — \ pw? 4+ w dz+§pgq3 (2.19)
so that
Sr = Srn + Sp (2.20)

~ represents the radiation stress on a vertical surface with the normal vector in the direction
of wave propagation.
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Figure 3: Radiation stress components in different directions. Notice positive directions
are opposite normal stresses.

_ " Then the four components of S,5 that represents the radiation stress elements parallel
and perpendicular to the z, y axes can be written

S:s = Smcos’ay,+35, (2.21)
Szy = Sy =S, sina,cosa, (2.22)
8 = Sasine, 4 Sp (2.23)

Fig. 3 shows the situation described by these expressions. Thus, if we define e, as the
matrix . )
a a
€ap :{ ol oy } (2.24)
wCosa,, sin’‘a,

we can write S,p in the simple form
Sa,g - Sm €ap + S,,Jag (225)

Hence, it is possible from the results S,, and Sp for the radiation stress components on
a surface perpendicular to the direction of wave propagation to determine the radiation
stress S, in any direction.

Note that all results obtained so far apply for any periodic wave train, including surf
Zone waves,

The evaluation of S,z for surf zone waves is discussed in Section 3.

For reference, however, it is noticed that for linear (or “sine”) waves, we get

|

Sm = 1—6—p g Hz(l + G) (226)
1 2

Sp = P9H’G (2.27)
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where G = 2kh/sinh 2kh, and k = 27 /L is the wave number.
The Energy Equation

Also the energy equation for the combined wave and current motion is needed in wave
averaged models and can be derived by the same depth integration and time averaging
process. In its general form, the energy equation is even more complicated than the
momentum equation (2.10).

Reference is made to Phillips (1980). However, the current terms in the energy
equation are usually of minor importance for the simple applications discussed here. We,
therefore, restrict the discussion to the simplified version for wave motion only, which

d
reads 9E,,
Oz,

Here, Ey, is the energy flux of the waves in the « direction and D is the energy dissipation
per unit time and area of bottom. '

=D (2.28)

As in the momentum equation, the energy flux for the waves is an abbreviation for a
number of terms that emerge through the derivation of the equation. It is defined as

< d
Era= [ (poz+p+ 502 +03 +ul)) usuds (2.29)
For sine waves (2.29) yields

E; = Epylc H¥(1+4+G) (2.30)

The dissipation of energy D can be described by the work done by internal (turbulent)
stresses, but this does not lead to a viable means of determining P from our present
knowledge of the wave motion.

Note that energy dissipation (2.28) corresponds to D < 0. The practical evaluation
of Ey, and D is discussed in more detail in Sections 3 and 4.

General Use of the Equation

- Basically, solution of the energy equation will supply information of the variation of
the wave height, H, whereas solution of the continuity and momentum equations are
providing information about water level variations &= ¢) and currents. Examples of the
latter will be given in Sections 5 and 6, whereas, determination of the wave height and
set-up is discussed in Section 4.
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Figure 4: Wave characteristics in the surf zone (from Svendsen et al., 1978).

3 THE WAVE MOTION

3.1 General Description

Fig. 4 shows a schematic of the wave motion from the breaker point of a gently sloping
beach, as most littoral beaches are, to the shoreline. The waves may initially break in
a range of different patterns that reach from the relatively controlled “spilling” to the
violent and relatively sudden “plunging” breaker type, (Galvin 1968). In any type of
breaking there will be a rapid and substantial change in the shape of the wave imme-
diately following the initiation of breaking. This region has been termed the Outer or
Transition Region, which covers a distance of, say 8-10 water depths after the breaker
point (Svendsen et al., 1978).

Shoreward of the transition region, the wave shape and the general velocity field
induced by the wave will change much more slowly. In this region, the broken waves
have many features in common with bores. This is the so-called Inner or Bore Region
which stretches all the way to the shore (or, if the breaking occurred on a longshore bar,
till the waves stop breaking by passing into the deeper water shoreward of the bar).

On many natural beaches the foreshore is much steeper than the rest of the beach.
In the run-up on the shore on such beaches (termed the swash zone), the wave motion
often shows a different pattern from that of the rest of the surf zone.

3.2 The Transition Region

Very little has been published in the literature about the transition region. The results
are almost entirely descriptive and based on photographic and optical methods. Basco
and Yamashita (1986) gives an interpretation of the flow based on such information
particularly for a plunging breaker and shows how the overturning of the wave creates
patterns that look chaotic but are nevertheless largely repeated from wave to wave.



Figure 5: The development of wave profiles in the surf zone (from Svendsen et al., 1978).

Similar interpretations are given by Tallent et al. (1989), and Jansen (1986) has mapped
the variation of the free surface in this region through high speed video recordings of
fluorescent tracers. Finally, Okayasu (1989) gives detailed measurements of the entire
velocity field in the transition region from experiments using laser doppler velocimetry.
Those results have been obtained, however, by repeating the same experiments many
times and each time averaging over several waves and therefore cannot quite be regarded
as a picture of the instantaneous velocity field in a particular wave.

3.3 The Bore Region

Also in the Bore Region the information about the wave properties is almost entirely
empirical since no predictive models of the actual wave motion have been developed so
far. Knowledge about the waves in this region is far more extensive, however, than for
the outer region.

Among the experimental results for the Bore Region it can be mentioned that Svend-
sen et al. (1978) found that the wave surface profiles would develop a relatively steep
front with a much more gently sloping rear side. The shape of the surface profile on the
rear side of the wave will develop from a concave towards an almost linear variation, so
that near the shore of a gently sloping beach the wave is close to a sawtooth shape. Fig.
5 shows the tendency. Measurements of velocity fields using laser doppler velocimetry
have been reported by Stive (1980), Stive and Wind (1982), Nadaoka (1986) and Okayasu
(1989). In all cases, however, the measurements are limited to the regions away from
the crest because none of the measuring techniques available today make it possible to
measure velocities in the highly aerated region near the front of the breaker. That means

10



wave averaged quantities such as radiation stresses, Sy, and energy flux, E;, which get
significant contributions from those regions, can only be determined with limited accu-
racy on the basis of such measurements. Stive and Wind (1982) gives a detailed account
of the problem.

Stive (1984) also analyzed data from his experiments to determine the energy dissi-
pation, D, in surf zone waves extending a theoretical result developed by Svendsen et
al. (1978) and Svendsen and Madsen (1981), and confirmed that the dissipation is likely
to be up to 50% larger than in a bore of the same height. This will be discussed more
explicitly in Section 3.5.

In many of the wave models, various characteristics of the wave motion are used as
parameters. Examples are the rms of the surface profile, By = n?/H?; the wave propa-
gation speed, c; the vertical skewness given as relative crest elevation, n./H, in addition
to breaker data. Hansen (1990) analyzed original data from most of the detailed experi-
ments quoted above and developed an empirical representation for those parameters that
in most cases fit the data remarkably well.

“ For sine waves, By = 1/8 = 0.125. For the surf zone waves, Hansen found the
variation shown in Fig. 6, which is given by

Bo = BOB [l—a(b”h/hg)(l = h/hB)] (31)
a = (1560)™" ; b=1.3=1.0(f — ) (3.2)
§o = ho/\JHi/Lo ; &oo= h./v0.142 (3.3)

0.125 tanh(11.40/,/Us) (3.4)

3
s3]
I

Usg = 10h2%(Ho/Lo)™! (3.5)

Here Ho/Lo is the deep water wave steepness and it is noted that &, is the so-called surf
zone similarity parameter.

The results for the vertical skewness are shown in Fig. 7. The expressions describing

the results are 5
e _ ne) _ B
t was (), 0o (2) z

(;’—;)B =1-0.5tanh (4.85/\/U_B) (3.7)

where

with Up given by (3.5).

These results are utilized in the following.
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3.4 The Main Wave Parameters

As we have seen in equations (2.9), (2.10) and (2.28) describing the wave generated
current and long wave phenomena, the effects of the waves are essentially described by
the volume flux, @, due to the wave motion; the momentum flux or radiation stress, S,z;
and the energy flux, Ey,. An additional, important wave averaged quantity is the energy
dissipation D caused by the wave breaking. Therefore, to be able to predict nearshore
circulation and longwave phenomena from the averaged models, these quantities must be
expressed in terms of wave height, wave period, water depth, etc. for surf zone waves.

The wave model used by Svendsen (1984a) acknowledges that surf zone waves are
non-sinusoidal long waves (length > depth) and especially accounts for the fact that in
breakers a volume of water, the so-called surface roller, is carried with the wave speed ¢,
The situation is illustrated in Fig. 8. Using these assumptions, it is found that in the
wave direction we have the radiation stress

Sr=Sm+ S, - (2.20)
where
A ¢
— 2 L
Sm = pgH (Bo . 2 H? gT) (3.8)
1 2
S, = Eng By (3.9)
1 A ¢
Ey = pch’(Bo-i-E}Fg—T) (3.10)
By defined as o
2

represents the effect of the wave surface profile and may be determined from (3.1)«3.5).
A is the area of the surface roller in the vertical plane. A was measured by Duncan
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(1981) and Svendsen (1984a) found the approximation A/H? = 0.9 constant over the
surf zone based on Duncan’s data. Later Okayasu (1989) has suggested that a more
accurate expression may be A/HL = 0.06. '

As may be deduced from (3.8)-(3.10), in the wave direction we can, without loss of
generality, write the wave parameters the following way '

H2

Q = CTBQ (3.12)
S = pgilP - (3.13)
E; = pgcH'B . (3.14)

= g%q (3.15)

Essentially, these expressions define dimensionless parameters Bq, P, B and D for
the four wave quantities. In a simplified manner, one can say that the dimensional
components h, H, T and c in (3.11)~(3.15) measure the size of the wave motion, whereas
the dimensionless parameters are measures of the shape of the wave motion (understood
as surface profile, velocity and pressure field, etc.).

Both for the sine waves and for the surf zone wave model described above, the values of
these dimensionless quantities can readily be determined. The question of how accurate
they are is discussed below.

The energy dissipation due to breaking is often assumed equal to the dissipation in a
hydraulic jump or bore of height H. Then the dimensionless dissipation D becomes

B2
D= i == 3.16
o= R, 30
where d; and d, are the depths under the wave trough and wave crest, respectively
(Svendsen et al., 1978). For most surf zone waves (3.16) gives values of Dy, ~ 0.9.

Direct Empirical Results for P, B and D

Clearly, the correct prediction or specification of Bq, P, B and D is as important
for the prediction of the averaged quantities Q., S, E; and D as the wave H and water
depth including set-up. The prediction of H is discussed in more detail in Section 4.
Here we briefly concentrate on empirical results for P, B and D.

Recently, Putrevu & Svendsen (1991) used measurements of wave height and set-up
from a large number of laboratory experiments to determine the actual values of P, B
and D in surf zone waves. The results are shown in Figures 9, 10 and 11. In each case,
the results are divided according to the scaled bottom slope Sp at the breaker point. Sg

is defined as AL
Sp = ( ;; ) (3.17)
B
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mentioned earlier. h; is the bottom slope (constant) in the experiments, L the wave
length and hp the water depth at breaking,.

In Figures 9 and 10 are also shown for reference the P and B values corresponding
to the long wave limit of (2.26), (2.27) and (2.30); i.e., linear long wave theory.

Several important conclusions can be drawn from these figures

i. First the (not very surprising) conclusion that sine wave theory is inap-
propriate as approximation for P and B.

ii. The variation of the wave properties such as radiation stress, S,5 and
energy flux, E;, clearly depend not only on the variation of the wave
height, though that remains an important parameter. The variation of
the wave shape represented by P and B is equally important for the
correct prediction of radiation stress and energy flux.

iii. If the breaking were almost equal to that in a bore, we would have D ~
Dyore, that is D ~ 1. Clearly, in most cases the actual dissipation is
substantially larger (from 50% to several hundred percent).

Notice that the sudden growth in D in the nearshore region in Figure 11 is more a
consequence of the definition of D by (3.15) than growth in the physical dissipation D.
It simply signifies that near the shore there is little resemblance with the situations in a
steady bore.

Turbulence

Peregrine and Svendsen (1978) found experimentally that the turbulence generated
by the breaking, while initiated at the toe of the turbulent wave front, spreads downwards
and continues to do so long after the breaker has passed. Pointing to the resemblance
between spilling breakers and waves in the bore region of a surf zone, and bores and
hydraulic jumps, they speculated that the spreading mechanism is similar to that in a
shear layer. ‘

Later, measurements by Battjes and Sakai (1981) indicated closer resemblance with
the turbulence characteristics in a wake. The truth is that the turbulence generated by
wave breaking and ‘its dispersion is different from all other turbulent phenomena. The
distribution of turbulent intensities below wave MWL was reported by Stive and Wind
(1982), Nadaoka (1986), and in more detail by Okayasu (1989).

Data for breaker generated turbulence has also been provided by Hattori and Aono
(1985) who found the turbulent energy spectra have large proportions of the energy at
frequencies only somewhat higher than the wave frequency indicating the existence of
large scale vortices. Nadaoka (1986) identified a regular system of vortices with axes
sloping downwards from the free surface and developing at some distance behind the
front.

Battjes (1975) and later Svendsen (1987) analyzed turbulent kinetic energies under
breaking waves, and the latter found that most of the energy is actually dissipated in the
crest above the MWL.
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3.5 Other Model Results

The details of the highly turbulent area at the front (the so-called “roller”) was analyzed
by Longuet-Higgins and Turner (1974) who assumed that air entrainment played a vital
part in maintaining this roller in position on the sloping front. Later results of experi-
ments and analysis by Duncan (1981), Svendsen and Madsen (1984), Banner (1987) and
Deigaard (1989) all in various ways attribute the support of the roller to turbulent shear
stresses. Longuet-Higgins (1973) also analyzed the nature of the flow in the neighbor-
hood of the toe of roller assuming a separation point here. An alternative flow pattern
was used in the model developed by Svendsen and Madsen (1984).

4 2-D WAVE AND SET-UP MODELS

As shown in Section 3, the important wave parameters depend critically on the wave
height H. Therefore, the prediction of H in particularly inside the surf zone becomes
of particular importance for a successful modelling of all the wave generated nearshore
phenomena. As will be clear, this prediction rests entirely on the correct assessment of
B and D since with these parameters known H follows from the energy equation. It is
therefore interesting to examine the performance of available models.

The simplest model for the wave height H assumes that in the surf zone H is a
constant fraction of v of the water depth (saturated breaker)

H = ~h (4.1)

and invoking linear (sine wave) results for all the time averaged wave quantities. As we
have seen, this is not a very accurate prediction, though it is sometimes meaningful when
studying phenomena where the aim is the principal nature of the problem rather than an
accurate prediction (such as the classical longshore current theories described in Section
9, and the simple analysis of set-up inside the surf zone described below).

Here we concentrate on the so-called H-b models which correspond to modelling the
cross-shore wave averaged momentum and energy balance in the surf zone.

4.1 H-b Models

The H-b models essentially solve simplified versions of the momentum and energy equa-
tions (2.10) and (2.28) by considering only the simple 1D cross shore situation (long,
straight coast, perpendicular wave incidence). These models also assume the currents to
be weak, and neglect the small cross-shore mean bottom friction. The momentum and
energy equations can then be written

Momentum:

d sz
dz

db
= —pg(ho+b) 3 (42)
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Energy:

d Ey,
, dz
where S;; and Ej, are given by (2.20) and (2.29), respectively.

=D (4.3)

Setdown and set-up

The simplest possible versions of H-b models are represented by the solutions to the
momentum and energy equations (4.2) and (4.3) for two simplified cases.

1. Non-breaking sine-waves over a gently varying topography (Longuet-Higgins
& Stewart, 1963).

1i. Waves, normally incident, breaking on a long, straight beach combined
with the assumption that H = v h (Bowen et al., 1968).

In both cases, (4.2) can be solved analytically in spite of the fact that it is a nonlinear
equation because it contains the term b db/dz. , :

In the first case, the solution to (4.2) is obtained by substituting (2.26) and (2.27)
for S,, and S,.

The result is
b=-—-—G (4.4)

in which (4.2) has also been utilized and therefore satisfied with D = 0 (no energy
dissipation).

It is recalled that b is the vertical distance from a chosen reference level (¢ =0in
Fig. 1) to the mean water level (where 7 = 0). (4.4) corresponds to b = 0 at deep
water, and hence (4.4) shows that non-breaking waves create a depression of the mean
water level (“setdown”) as they propagate towards more shallow water. As (4.2) shows,
this is a consequence of the increase in S, predicted by the linear theory as the depth
decreases and the wave height increases. A further consequence of this is the fact that
the largest value of the setdown occurs at the breaker point according to this theory (and
measurements confirm that this is largely true). '

In the situation ii), the energy equation (4.3) is replaced by the assumption (4.1) of
wave heights that correspond to a constant fraction of the local water depth, and the
long wave limit of (2.26)-(2.27) is used for S,,. (4.2) can then be integrated directly
which results in

—342

b=t
8(1 + 342

where hop is the undisturbed depth at the breaking point and bp is the setdown at the
same location. In principle, bg can be determined from (4.4).

(ho(z) - hgg) + bg (45)

As is evident from the discussion of the values of P and B, the setdown (4.4) and the
set-up (4.5) cannot be very accurate because they are based on unrealistic assumptions
for the wave height and for Ey and S,;. The results for b, however, do qualitatively
predict the basic feature that the setdown outside the surf zone is only of the order 1-10
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cm even for large storm waves whereas the set-up near the shoreline can be O (1m) for
large waves. If, for example, we assume 7 = 0.6 (a typical value for surf zone waves) and
neglect bp, we find that at ho = 0 (the undisturbed shoreline), b = 0.12hg or 12% of the
water depth where the waves break.

The more realistic surf zone approximations fdr S:z, Ey. and D suggested by Svend-
sen (1984a) were already described in Section 3.

The model by Dally et al. (1984) is particular by including an empirical threshold in
the energy dissipation that let the waves stop breaking when their height to depth ratio
becomes too small.

This has relevance to actual physical situations such as when a wave passes over
the crest of a longshore bar into deeper water behind.. The sudden increase in depth
reduce the H/h ratio and the wave usually stops breaking. The model, however, has
an empirical constant which is adjusted to fit experimental data for H. It also uses
linear wave theory to predict the energy flux (i.e., B). Hence, the empirical constant
absorbs the error in B and the actual numbers in the energy equation for energy flux
and dissipation become similarly artificial although the wave height is well predicted.
This shows in a less accurate performance of the model in predicting the set-up (i.e.,
the radiation stress) using the empirical calibration constant found for the wave height
(Dally et al., 1985).

This inability to predict both wave height and set-up correctly is in fact characteristic
of the presently known H-b models. Fig. 12 shows the performance of the two models
described above for three different laboratory experiments. Stive & Wind (1982) (1:40),
Okayasu (1988) (1:30) and Visser (1982,1984) (1:10,1:20).

Whereas the models are fairly capable of predicting the wave height variations, the
accuracy in the prediction of the set-up is much less convincing, although the more
realistic wave representation used by Svendsen is somewhat more accurate (in particular
when combined with Hansen'’s By) than the two versions of Dally et al.’s models.

Fig. 13 shows a comparison with the actual P, B and D for four of the experiments.

4.2 Irregular Wave Models

H-b models dealing with irregular waves have only been developed on a statistical basis
(Battjes and Janssen (1978), Roelvink & Stive (1989), Dally (1990)). The latest and most
advanced of these models (Dally, 1990) assumes the incoming waves follow a Rayleigh
distribution and that each wave height is modified through shoaling and breaking as an
individual event in time. In particular, near breaking and in the surf zone, this is often a
realistic assumption and it makes it possible to determine the changes in the wave height
distribution throughout the region.

The difficulty with statistical models is that irregular waves essentially represent time
varying wave conditions, which create time varying set-up and currents. This slow time
variation is in fact the core of the long wave problems discussed in Section 6. The
statistical method cannot predict these phenomena. They essentially assume
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an equilibrium solution exists for each wave frequency or individual wave. The statistical
solution is then established as the average of all these equilibrium solutions. Hence,
statistical methods are unable to predict both the actual time variation of a wave situation
and the complicated long wave phenomena in a realistic manner. Since the surf zone
response to irregular (time-varying) waves is the result of highly nonlinear processes, the
best approach to these problems will be to analyze them as an actual time series. If a
statistical description is wanted for the resulting phenomenon, it may be obtained by
a direct statistical analysis of the resulting time series for the phenomenon in question.
This, however, has not been done yet.

4.3 Time Domain Models

Wave models in the full time domain have primarily been based on'the non-linear shallow
water (NSW) equations. Normally, these equations predict incorrectly that all waves
break, even on a constant depth. This means that they cannot be used to predict the
prebreaking behavior of the waves, including where the waves will break. However,
numerical solutions of the equations using the special dissipative Lax-Wendroff scheme
artificially freeze the wave fronts once the waves are breaking and compensate for this
by a numerical dissipation which equals that of a hydraulic jump or bore of the same
height as the wave. Thus a simplified version of the surf zone motion can be modelled
this way though the realism of the wave shape and particle velocity field is somewhat
limited. The method has been utilized by Hibberd and Peregrine (1979) and later by
Kobayashi and co-authors to study broken waves particularly on steep slopes (such as
structures) and in the swash zone. These models can analyze irregular waves as a time
series (Kobayashi, et al. 1990). They also seem to give useful results for waves in the
swash zone which is a region not covered by the H-b models or other models.

An extension of the NSW-model to include the effect of turbulence and avoiding the
above mentioned deficiencies of the ordinary NSW model was developed by Svendsen
and Madsen (1984) but only for a single bore incident on a beach.

5 NEARSHORE CIRCULATION

Nearshore circulation is the term for the currents created by the breaking waves, and
basically the governing equations are the depth integrated, time averaged equations for
conservation of mass momentum and energy shown in Section 2.

The understanding of nearshore circulation dates from the realization of the fact dis-
cussed above that water waves represent a mean momentum flux, the radiation stress,
and derivation of the wave averaged momentum equation already shown in section 2
(Longuet-Higgins and Stewart, 1960 and subsequent publications). As mentioned in
Section 4, Longuet-Higgins and Stewart (1963) used this to predict the setdown of non- .
breakng waves, and Bowen et al. (1968) measured and computed set-up in the surf zone.
The analysis of set-up inside the surf zone was also discussed in Section 4. '
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Figure 14: Longshore current generation on a long straight coast.

obtained by substituting (5.3) into (5.2).

Bottom Shear Stress

The mean bottom friction ‘rf in (5.1) is the effect of a complicated interaction between
waves and longshore currents in the boundary layer near the bottom. The following
expression was used for weak currents and waves nearly perpendicular to the currents

1
Tf=1—r-pfro | (5.5)

where u, is the bottom velocity amplitude in the waves, f an empirical friction factor.

This expression is based on the assumption that the mean shear stress 72 can be written

as

P = 5 0 f et 0OV F wun D] - (69)

Liu & Dalrymple studied various other cases of EB- derived from this formulation such as
strong currents, and Svendsen and Putrevu (1990) showed that in general 75 obtained
from (5.6) can be written

=30 o Vi By + e ) (57)

where f; and B, are functions of u, = |[uoa| and V = |V,| and of the angle u between the
wave and the current directions. The variation of A1 and B, is shown in Figs. 15 for the
case where

Uy = Uyq COS wi (5.8)

27



0.9 M= 0
————— %
0.4 /"'-—-_'
/
0.3 // "
= V%
/e s
024 [/ _ - '
’
/
0.1 /
/
/i
0 - - - = Ve ° ' H H  a

Figure 15: 8, and f; (from Svendsen & Putrevu, 1990).

Results for Longshore Currents

Thus by substituting all these results into Eq. (5.1), that equation can be written

d dVv 1 B | (f,S'xy .
dz (Vﬁh E) m5d e¥= p dz (5.9)

which is a differential equation for the longshore current V(z) driven by dS,,/dz.

Longuet-Higgins (1970) used linear wave theory also inside the surf zone to approx-
imate S;,. This leads to the solution to (5.9) shown in Fig. 16. The solution contains

the parameter
Nh,

1f

where ¥ = H/h = const and N is a constant in the expression

Vo= Nhi\/g—h | (5.11)

P=-2r

(5.10)

used for the eddy viscosity v,.

 'We see that P expresses the relative strength between the turbulent mixing (measured
by NYand the bottom friction (measured by f).

Fig. 16 shows that for P = 0 (no mixing), there will be no longshore current outside
the surf zone. This is a consequence of the fact that d Szy/dz = 0 for nonbreaking waves
(i.e., outside the surf zone) on a straight coast as shown for periodic potential waves of
arbitrary height by James (1974). '

A large number of improvements and generalizations of this theory have been pub-
lished since 1970. Of particular interest is the fact that the values of the eddy viscosity
v¢ required to make the theory fit experimental data such as Visser (1982, 84) has turned
out to be much larger than what can be defended by turbulence measurements (Svend-
sen & Putrevu, 1990). This suggests that mechanisms other than turbulent mixing are
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the character of a circulation in the vertical plane: substantial amounts of water are
carried shoreward as mass transport in the breaking waves and this volume is returned
as the seaward going undertow currents essentially below trough level of the waves. These
currents (the undertow) have been found to be very strong, generally 8-10% of \/gh near
the bottom. The mechanism was described qualitatively by Dyhr-Nielsen and Sorensen
(1970) and analyzed by Svendsen (1984b).

The forces driving the undertow are caused by the uneven distribution over depth of
the two main terms in (4.2). This equation tells us that in the steady case, a gradient
db/dz on the mean water level is established to create a pressure force p 9(ho +b) db/dz
that balance the decrease in dS,,/dr in radiation stress. This balance, however, is in
average over the depth. However, since the contributions to these two mechanisms are
differently distributed over the vertical a (seaward oriented) net force will act on each
fluid particle below wave trough level and this drives the undertow. Fig. 17 shows this
mechanism.

Since the first analysis, Dally and Dean (1984), Hansen and Svendsen (1984), Stive
and Wind (1986), Svendsen et al. (1987), Okayasu et al. (1988) and Deigaard and Fredsoe
(1989) have, among others, contributed further to the explanation of the phenomenon.

Thus, Hansen & Svendsen (1984) speculated that the higher turbulent intensities
in the main part of the water column produced by the breaking relative to the weak
boundary layer turbulence and damping of the breaker turbulence near the bottom causes
the (mainly oscillatory) bottom boundary layer to act as a low friction lubrication layer
that allows higher velocity shear for the same shear stress than in the rest of the water
column. Using two (very) different, but constant eddy viscosities in the two regions,
Svendsen et al. (1987) showed that this was indeed true and could account for the
remarkably high undertow velocities measured close to the bottom.

Fig. 18 shows the situation. Okayasu (1988) proposed a linear eddy viscosity variation
over depth and Deigaard et al. (1991) used a one equation model to determine Vs
Furthermore, the disturbance of the wave motion by variation of depth and wave height
will modify the shear stress distribution (the effect of wave height variation was addressed
by Deigaard and Fredsoe, 1989). =

Finally, it is noted that the cross-shore circulation and particularly the seaward ori-
ented undertow is thought to be instrumental in coastal erosion during heavy storms.

3-D Currents

The simultaneous existence of cross-shore and longshore currents together combine
to form a vertical distribution of wave generated currents in the surf zone which has a
spiral shape as shown in Fig. 19. This was analyzed by Svendsen and Lorenz (1989) and
Svendsen and Putrevu (1990).

G i Clienlation Model
In cases of longshore (as well as cross-shore) variations in bottom topography, the net

cross-shore flows need not be zero and horizontal circulation patterns such as rip currents
can develop.
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This was acknowledged early and a large number of comprehensive circulation models
were developed. Based on purely depth averaged equations (and hence neglecting the
undertow and cross-shore circulation in the vertical plane), these models analyze only
net flows. In its most general form, such a model encompasses

(a) A wave propagation model that determines wave patterns due to topography
and geometry (refraction, diffraction, interaction with structures) and predicts
wave height variation, including breaking.

(b) A current generation model component based on the wave-averaged momen-
tum equation.

However, models capable of dealing with all these phenomena have yet to be devel-
oped. In the earlier models, the wave component (a) was limited to specifying linear
shoaling outside breaking and H = yh (saturated breaker) inside the surf zone with
7 constant or given by Miche’s formula. Refraction was incorporated using Munk and
Arthur’s (1952) theory for ray tracing (Noda, 1972, 1974) or limiting the models to long
straight coasts and using Snell’s law (Birkemeier and Dalrymple, 1976; Ebersole and
Dalrymple, 1979). Later models often use more advanced models for the pattern of wave
propagation but still the simple saturation model for the wave height inside the surf zone.

A few recent examples are Watanabe (1985) (modified mild slope equation) and Winer
(1988) (parabolic wave model with energy dissipation).
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6 INFRA-GRAVITY WAVES

Long waves (or infra-gravity waves) are waves with significantly longer period than the
peak frequency of the incident wave spectrum. Field measurements show that such
waves occur very frequently and different mechanisms have been considered for their
generation. One is resonant interaction between ordinary waves (Gallagher, 1971; Bowen
and Guza, 1978). Another is the effect of wave height variation in the incident wave
trains, sometimes called “surf beat” (Munk, 1949; Symonds et al., 1982; Schaffer and
Svendsen, 1988).

The long waves occur both as waves bound to the incident wave train and as free
waves which develop by either direct energy transfer from the short wave train or are
formerly bound waves released from the short wave train by changes in that wave train
due to shoaling and breaking. The free waves are often trapped along the coast as edge
waves. Numerous references are omitted here for brevity. '

Basic Equations

‘The strongest of the above mentioned long wave generation mechanisms is the vari-
ation of wave height and period of incident storm waves or swell. This causes a similar
variation in the radiation stress of these waves which acts as a forcing of (long) “setdown
waves” with length and period as the variation in the radiation stress of the incoming
waves. Inside the surf zone, these waves become “set-up waves.”

This mechanism can be modelled by the depth integrated, wave averaged equations
of Section 2 in sufficiently shallow water, by considering these waves as time and space
varying currents with velocity Q. /h and with surface elevation Hzq,t).

The continuity equation remains as (2.12)

ab  aQ,
il . )
ot 4 Oz,
In the momentum equation (2.13), the primary terms a.re.the inertia, the gradient on
the mean water surface and the radiation stress gradient. Thus (2.13) simplifies to

0Q. b 1085,
at + ghoaxa — _p 31:‘3 (61)
From (2.12) and (6.1), we may eliminate Q, to get the following equation for b
b 0 ab 1 8%S.p
oo () = s o ®2

where S5 is supposed known from the short wave motion.  will represent the surface
variation of the long waves. Note that Sap = Sap(za,t) because the shore wave height
varies in space and time.

(6.2) is actually an inhomogeneous version of the mild-slope equation for long waves,
-which corresponds to S,s = 0. The complete solution of (6.2) is a combination of free
waves (homogeneous solutions) and forced waves (inhomogeneous solutions).
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Edge Waves

Among the homogeneous solutions to (6.2) we find edge waves which is a class of
waves that propagate largely along the shore and with amplitudes that decrease rapidly
in the seaward direction.

Analytical solutions are known for these waves on a long straight beach. To find these
solutions, we consider the homogeneous version of (6.2), (written in coordinate form for

convenience).
b a9 ab a ab
0~ 55 (h58) ~ 55 (9155) =1 =
and seek solutions of the form
b(z,v,t) = n(z) exp(i(kyy — iot)) | (6.4)

Substitution of (6.4) into (6.3) leads after some changes (see e.g., Mei, 1983) to the
following equation for n(z) .

2
" +q' + (;;z - zkﬁ) n=0 (6.5)

It turns out that (6.5) has solutions of the form
n=e " f(2k,z) (6.6)

where f is a confluent hypergeometric function, but the physically realistic solutions
require that

w? = gk,(2n + 1)h, (6.7)

when n is a positive integer. This is the long wave version of the general edge wave
dispersion relation. With h; = tan 8, f - the beach slope angle - (6.7) compare well with
the general dispersion relation (arbitrary wave lengths) which reads .

w? = gk, sin[(2n + 1)8) (6.8)

particularly for gently sloping beaches. This general solution was given by Ursell (1952).

The solutions that satisfy (6.7) are edge waves of order n. Fig. 20 shows the variation
of the surface elevation of the lowest order edge waves in the shore normal direction,
normalized relative to their vertical amplitude at the shoreline. It is noted that since the
shore parallel propagation speed ¢, equals w/k, we have

g (2n + 1)k, (6.9)

I

2
Cy—

aﬂ

which can be compared with the deep water propagation speed ¢

C?j = g/kr | (6.10)

for waves of the same length. We see that for (2n + 1)k, < 1 we have ¢y < co.
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n=0

Figure 20: Variation of edge wave amplitude n(z) in the shore normal direction (modified
from Mei, 1983) .

Forced Long Waves

The forced solutions to (6.2) have only been partly explored for the simple case of
shore normal wave motion.

Thus Symonds et al. (1982) analyzed the generation of long waves by the variation
of the break point which occurs due to a simple periodic variation in the height of the
incident short waves (“groupiness”). Schaffer and Svendsen (1988) studied the generation
of long waves by groupiness outside and inside the surf zone. The two assumptions were
combined by Schaffer (1990) who also studied edge waves forced by these mechanisms.

7 VERY LONG PERIOD WAVES, SHEAR WAVES

Recently, some field experiments have shown signs of very long period oscillations in
the horizontal velocity field (Tang and Dalrymple, 1988; Oltman-Shay et al., 1989).
These oscillations are of relative shore length and propagate along the shore at a speed
comparable to that of the longshore current. Hence their propagation speed is lower than
even low order edge waves. They have been attributed to instabilities in the longshore
current (Bowen and Holman, 1989) but the phenomenon is still under investigation. -

Alternative explanations for these observations have been suggested by Fowler &
Dalrymple (1990) and Shemer et al. (1991).
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