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Abstract

The vertical structure of the velocity profiles in infragravity waves is analyzed. It is shown
that while the velocity under free infragravity waves does not vary significantly with the verti-
cal coordinate, the velocity under forced infragravity waves has a substantial vertical structure.

~ The dispersion coefficient (caused by the vertical variations of the velocities in steady currents
and infragravity waves) which plays an important role in determining the horizontal struc-
ture of currents and infragravity waves in the nearshore region is found to have substantial
temporal variation. This temporal variation will contribute to the generation of higher har-
monics of infragravity waves. Additionally, it is found that under forced infragravity waves

the nondimensional horizontal dispersion coefficient will have substantial spatial variations.

1 Introduction

The first observations of infragravity waves in the nearshore region were reported by Munk (1949)
and Tucker (1950). They coined the term “surf beats” to describe phenomena with periods in
the range of two to five minutes. Their observations suggested that the infragravity waves were
correlated with the group structure of the waves. Recent field observations (Huntley et al. 1981;
Wright et al. 1982; Guza & Thornton 1982, 1985; Oltman-Shay & Guza 1987; Howd et al. 1991
to mention a few) have shown that there is significant energy present at infragravity frequencies
in the surf-zone. In some cases the energy at infragravity frequencies exceeds the energy present

at the short wave frequencies (Wright et al. 1982, Guza & Thornton 1982).



Longuet-Higgins & Stewart (1962, 1964) showed that groups of unbroken short waves could
force a long wave at the group period and suggested that these so called bound long waves are
(partly) released at the break point, propagate to the beach where they are reflected at the coast
and propagate back out as free long waves. However, the energy content of bound long waves is
insufficient to account for the observations of significant infragravity energy found in recent field
observations. For example, Herbers et al. (1992) measured the infragravity energy outside the
surf-zone and found it to be much higher than the predictions of bound long waves and concluded
that infragravity waves generated in the surf-zone and radiated out are frequently the dominant

source of energy in the infragravity band (see also Elgar et al. 1992).

Symonds et al. (1982) and Schaffer & Svendsen (1988) proposed mechanisms for the generation
of infragravity waves in the surf-zone due to breaking of wave groups. Symonds et al. assumed
that since the individual waves in a group have different wave heights they will break at different
locations thereby causing a time variation of the break point position. They further assumed that
all the groupiness of the incident wave field is destroyed by the breaking process. Their results
showed that the time variation of the break point generates long waves at the group period and
its higher harmonics. The lack of groupiness in the surf-zone implies that no further long wave
generation takes place there and all the long wave motion inside the surf-zone consists entirely
of free long waves. They also showed that for typical parameter values the higher harmonics are

much smaller than the fundamental.

Schaffer & Svendsen (1988) considered the other extreme situation assuming that all the waves
in a group broke at a fixed location. This implies that the group structure of the incident wave
field is transmitted into the surf-zone. Their results showed that the groups of broken waves
continue the generation of long waves at the group period. The long wave motion in the surf-zone
becomes a combination of free and forced long waves. Recently Schaffer (1993) combined the
models of Symonds et al. (1982) and Schaffer & Svendsen (1988) to allow for a time variation of

the break point as well as a partial transmission of the group structure into the surf-zone.

The works cited in the last two paragraphs started with the depth integrated shallow water
equations averaged over a wave period as given, e.g., by Phillips (1977) or Mei (1983). These
equations do not allow for a vertical variation of the short-wave-averaged horizontal velocity. In

the present paper we determine the vertical variation of the horizontal velocity under infragravity



waves. For simplicity, we limit the analysis to the 2D case of surf-beats (no alongshore variation)
caused by periodic wave groups. The approach used is analogous to the approach used to de-
termine the vertical structure nearshore currents (Svendsen & Lorenz 1989, Svendsen & Putrevu
1990) where the Reynolds averaged equations of horizontal momentum are solved to determine
the local vertical structure of nearshore currents. Although the situations considered are rather
different, the approach also has similarities with the works of Davies (1987) and Jin & Kranenburg
(1993).

Using this approach Putrevu & Svendsen (1992) and Svendsen & Putrevu (1993) demon-
strated that, in the steady case, the interaction of the cross-shore and longshore currents can be
represented by a dispersive term. This term was found to be ten to fifty times stronger than
the lateral mixing caused by the breaker turbulence and to completely control the cross-shore
structure of longshore currents. This effect, which has been completely neglected in all previous
work, would clearly be an important element in the general 3D case in modifying the horizontal
distribution of currents and infragravity wave motions such as edge waves. For that reason, the

temporal variation of the dispersion coefficient is analyzed here.

The paper is organized in the following fashion. Section 2 states the equations governing the
short-wave-averaged velocity in the nearshore region. In section 3 we solve for the local vertical
structure of periodic infragravity motion. The numerical results for the infragravity velocity
profiles and the resulting temporal variations of the dispersion coefficient alluded to above are
presented in section 4. The work is summarized and the major conclusions are restated in section

5.

2 Governing Equations

We consider the situation on a gently sloping long straight coast with no alongshore variations.
Furthermore, we restrict ourselves to shallow water so that the pressure variation in the long waves
is hydrostatic under the free surface. We also note that in the short-wave-averaged approach
used here, the infragravity wave motion is entirely equivalent to a time varying current. The
appropriate equations can therefore be deduced from the general equations derived by Svendsen

& Lorenz (1989). Under the conditions indicated, the depth variations of the cross-shore and



longshore components of the short-wave-averaged velocity are governed by
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Here the turbulent correlations have been parameterized by an eddy viscosity vy, U (z,2,t) and
V(z,2,t) represent the short-wave-averaged velocities, V;, represents the depth averaged value of
V, uy, and v, represent the short wave induced velocity components in the cross-shore (z) and
longshore (y) directions. In (1), (2) and all subsequent equations an overbar denotes a quantity
averaged over a short wave period. C is the short-wave-averaged free surface elevation (equivalent
to the surface elevation in the infragravity waves superposed on the steady set-up). ¢ would

essentially be determined by the continuity equation
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where @ is the volume flux in the cross-shore direction.

Equations 1 and 2 represent extensions to the time varying situation for the usual equations
governing the undertow and longshore currents. Starting from the equations given in Svendsen
& Lorenz (1989), the arguments leading up to (1) and (2) for the steady case (including the
justification for using Vi, in the interaction term in (2)) were given in Putrevu & Svendsen (1993)

and Svendsen & Putrevu (1993) respectively.

In the latter publication, we also derived the equation governing the steady state cross-shore

distribution of the longshore current. The extension of that equation to the unsteady case is
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where the terms containing D., F; and I represent dispersion which arises from the nonlinear
interaction of the longshore and cross-shore short-wave-averaged velocities. It was found that the
dispersive mixing represented by the D, term controls the cross-shore distribution of the longshore
current, exceeding the contribution from the turbulent mixing (represented by the v; term) by at

least an order of magnitude. D, is given by
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Equation 4 shows that temporal variations in D, (which in the case of longshore uniformity
considered here are caused by temporal variations in U) may be important and will generate
higher harmonics in V,,,. The temporal variation of U is governed by (1) which is solved for

periodic infragravity motion in the next section.

3 Solution for Periodic Infragravity Motions

3.1 Boundary Conditions

In general, the solution of (1) requires the specification of appropriate initial conditions and two
boundary conditions. In this paper, we restrict ourselves to periodic infragravity motions and

thereby eliminate the need for initial conditions.

As one boundary condition we relate the bottom shear stress to the velocity profile

au
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and assume that the bed shear stress is related to the near bottom velocity Uy, = U(z = —ho) by
1
™ = 5P futols (7)

where f,, is a friction factor and wug is the amplitude of the near bottom short-wave induced
oscillatory velocity. (6) and (7) lead to the following boundary condition for the velocity profile

(Svendsen & Hansen 1988)
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For the steady case, most undertow solutions specify the depth integrated volume flux as a
second boundary condition. For the time varying case considered here the phase of the depth
integrated volume flux will, in general, be different from the phase of the forcing represented by
the RHS of (1). In a complete solution, the time variation of the depth integrated volume flux
would be deduced from an equation analogous to (4) in the cross-shore direction in combination
with the continuity equation. This step constitutes determining the long wave pattern (see, e.g.,
Symonds et al. 1982, Symonds & Bowen 1984, Schaffer & Svendsen 1988, List 1992, Schaffer

1993). Here we assume that this pattern is known and focus on analyzing the local variation



of the infragravity velocity profiles. However, unless we include an evolution of the long wave
pattern, we will not know the phase relationship between the forcing and the volume flux in
advance. Therefore, instead of the depth integrated volume flux, we use as the second boundary
condition the shear stress 7, at the mean water level. This 7, (discussed further in section 4) is

related to the slope of the vertical profile of the velocity to form the second boundary condition

aou

where (p is the steady mean water surface (see figure 1).

3.2 Solution Procedure

The short-wave-averaged quantities in the surf-zone such as cross-shore currents and set-up may

be separated into steady and unsteady parts as

f(xazat) =f0($,2)+f1(9:,2,t) (10)

where the subscripts 0 and 1 refer to the steady and unstéa.dy (infragravity) parts respectively. For
example, the steady set-up (p corresponds to the set-up caused by the mean short-wave motion,
the unsteady part (; to the set-up caused by the short wave modulation (the wave groupiness).
As indicated earlier, this time varying set-up essentially represents the surface elevation due to

the infragravity wave motion. The same applies to the velocity U and the surface shear stress 7,.
Substituting (10) into (1) and separating into steady and unsteady parts leads to
2 (20 _ s, (, T
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The corresponding boundary conditions are
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At mean water level (z = (o)
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At the bottom (z = —hg)
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Equation 11 subject to (13) and (15)is the usual undertow problem inside the surf-zone. The
solution to this problem has been analyzed extensively in the literature (Svendsen 1984, Dally
& Dean 1984, deVriend & Stive 1987, Svendsen et al. 1987, Roelvink & Stive 1988, Svendsen
& Hansen 1988 and Okayasu et al. 1988 to mention a few) and will be assumed known and not
discussed further here. For the rest of this section, we will concentrate on solving (12) subject to
(14) and (16) which means determining the vertical variation of the velocity for infragravity wave

motion.

In (14) the term 74 (z,t) in the surface boundary condition represents the time and space
variation above the mean water level of the radiation stress due to the wave groupiness. Similarly,
in (12) the (uy,0u,/dz); term represents the variation of the radiation stress between the bottom
and the mean water level. Hence, both these terms are in phase with the short wave height
variation. In contrast, the 8(;/0z term in (12) represents the surface elevation gradient in the
long wave motion which, in general, will not be in phase with (or even phase locked to) the short

wave height variation.

Since the problem is linear and we consider periodic wave groups the infragravity components

of the motion may be expressed as

Ur(z,2,t) = Ud(z,z)exp(—iwt) (17)
Gi(z,1) = by exp(—iwt) (18)
roa(z,t) = Ti(e,t)exp(—iwt) (19)

u};, = Ui(z)exp(—iwt) (20)

—g% — (uw%i: ' = Fi(z)exp(—iwt) (21)
1

where U,,b,, Ty, U, and Fy are in general complex. In (21) F} does not depend on the vertical
coordinate because the shallow water assumption for the short waves implies that u,, does not

depend on depth (except in the boundary layer at the bottom).



Substituting the above into (12) gives
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A direct solution of (22) subject to (23) and (24) is mathematically straightforward. It is done
here by splitting U, into three parts Uy, Uaz and Us,3 as follows:
Ual

TP (25)

w
which represents the the depth uniform response to the depth uniform forcing.
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Thus, U, is the velocity component forced by the surface shear stress.
Uas
azUaa, w
subject to
8Ua3 I
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and
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Uas is forced by the bed shear stress. It is easily verified that the total solution for U, is the linear

superposition of Uy1, Us2 and Usa.



If we let

F

I
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the solutions for Uy1, Uy and U,3 (representing the real parts of U,; exp(—iwt)) are (see appendix

for details)

Uqg = %cos (wt) (34)
U = - { V2L, Fg(z) cos [wt — ¢ — Pa2 (z)]} (35)
U = {é‘;:‘g ;’ Urs F3(z) cos[wt — ¢p — ¢3(z)]} (36)

where the various quantities are defined in the appendix. The parameter

B = (37)

2]’/3

is analogous to the parameter encountered in the solution for wave boundary layers (Longuet-

Higgins 1953). The total solution for U; is then given by

th= % { os (wt) + fT’ﬂ Fy(2) cos [wt — ¢pp — ¢22(2)]
+fw:‘g; U F3(2) cos[wt — ¢p — ¢3(z)]} | (38)

In the above t = 0 is chosen to correspond to the maximum value of U,;.

4 Results for the Velocity Profiles

4.1 Parameter Values

In view of the many parameters that turn out to influence the temporal variation of the vertical
profiles, the most illustrative approach for examining the results is to select two typical situations
and choose the parameter values based on a quantitative estimate of their general magnitude. An
analysis of (38) (see appendix) reveals that the important parameters in the solution for U; are

Bh and T;8/pF,. The parameter F,/w sets the scale of the infragravity velocity and becomes



important when we superpose U; with Up to determine the total solution for the short-wave-
averaged combined current and infragravity wave velocity profiles. In addition, the phase of the
surface shear stress § (relative to the forcing for the U,; component) plays an important role in

the solution.
In the surf-zone, Svendsen et al. (1987) found (see also Okayasu et al. 1988)

vy ~ 0.01h\/gh (39)

to be a reasonable estimate of the eddy viscosity. Using this we get

Bh ~ \/%\ / (T\/,;W)_l (40)

Since T'\/g/h ~ 100 for long waves at typical group periods this means that a typical value for
Bh is
Bh = 0(1) (41)

As mentioned earlier, the parameter 3 is analogous to the similar parameter encountered while
dealing with traditional wave boundary layers — it controls the vertical extent to which the effects
of the bed and surface shear stresses are felt. The length scale (or “boundary layer thickness”)
is typically given by 1/4. In traditional wave boundary layers we typically have Sh > 1 which
means a length scale much smaller than the depth (the boundary layers are thin compared to the
depth). In the present case, since fh = O(1) we can expect the “boundary layer thickness” to
be comparable to the water depth. Particularly, the surface shear stress due to wave grouping

affects the long wave velocity profile over the entire depth.

The value of T;8/pF, represents the ratio of the surface shear stress to the depth uniform

forcing F,. The shear stress at mean water level (z = (o) is given by (Sitve & Wind 1986)
1 on?
T = 5005, (42)

where 7 is the free surface elevation with respect to the mean water level (see figure 1). Therefore,
1 on?
= i 43
To1 = 5PY ( 9 )1 (43)

1 an?
T, = §PQ'| (%)1 | (44)

or
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As (44) shows, the value of T and therefore T,3/pF, depends on the variation of 72 at the
group period. This variation depends on the amount of groupiness in the short waves at the point
in the surf-zone considered. If the groupiness is completely destroyed by the breaking process,
then 72 will be independent of time and 7, = 0. If, on the other hand, some groupiness survives
the breaking process, 2 will have a contribution at the group period (i.e., Ts # 0) in addition
to the steady part. Hence, the parameter T3 /pF, measures the ratio between local long wave
generation by local wave groupiness (represented by T and the W and the already

existing long wave motion represented by d¢;/dz in F, (see equation 20)).

Relatively little information is presently available on the amount of groupiness that survives the
breaking process. List (1991) analyzed field data and found that there is a substantial amount
of grouping present in broken waves though it is somewhat reduced by the breaking process.
Veeramony (1993) measured surface elevations at different surf-zone locations for incident wave
groups in a laboratory wave flume. A representative example of his measurements inside the
surf-zone are reproduced in figure 2. This figure clearly shows that in this experiment almost all
of the groupiness survives the breaking process. The two measurements cited above suggest that
a substantial amount of groupiness survives the breaking process. Thus, quantities like .1';;'2' can be

expected to have a contribution at the group period.

The value of T may be determined by assuming that a certain amount of groupiness exists in

the surf-zone. At any point the total surface elevation 7(z,t) may be written as follows

n(z,t) = é%’—tl exp s(/ kdz — wst) + * | (45)

where ‘+’ represents a complex conjugate and w; refers to the short wave frequency. The amplitude

A varies over a timescale of the group period and is given by

A=ga (exp% + eexp —Tsﬂ) (46)

where a is the mean amplitude of the short waves, € is the groupiness (or modulation) parameter
((@maz — @)/a, where @4, is the maximum wave amplitude in the group) and @ is the phase of
the group motion given by

0 = f 2w —wt (47)
Cg

where ¢, is the group velocity and w is the group frequency. Assuming for simplicity that a = yh

13



inside the surf-zone

(;}5)1 = 72h2€c058 (48)

This leads to

a (n?
( )1 = v2%¢h (th cosf — B sin 9) (49)

dx ¢y
Using T'\/g/h ~ 100 we find that wh/c,siné ~ 0.06 which is comparable in size to the first term
in (49). Therefore, a relevant estimate for (49) is
19(7),
o e G 2chhg (50)

which means that the magnitude of the surface shear stress is given by

Ty ~ pgy*ehh, (51)

The parameter Ts3/pF, also contains the forcing F, which by virtue of (21) contains the
modulation of the short-wave-averaged surface elevation as well as the short-wave induced velocity.
The latter, once again, depends on the group structure of the short waves in the surf-zone and

may be estimated by assuming

By = cg (52)
which leads to .
— 2 —_—
vy _ 8 o (), _ hs | (53)
oz h Oz h :

which, in turn, leads to the following result for (9u2 /dz);

Ou,
I aml | ~ gy%ehh; (54)

Finally we evaluate the magnitude of db,/dz based on the results presented by Symonds et
al. (1982) and Schaffer & Svendsen (1988). These results suggest that for a 10% modulation in

wave height (e = 0.1) we get
db, d¢,
de il dz

where the latter result follows from Bowen et al. (1968) who showed that d(y/dz ~ 0.1k, inside

~ 0.02h, (55)

the surf-zone. This result was later confirmed by Svendsen et al. (1987).

12



The quantities estimated above indicate (for € = 0.1)

F, ~ 0.02gh, (56)
and
T,
~ [3h
e~ g (57)

Finally, the phase of the surface shear stress 75 relative to the depth uniform forcing Fi turns
out to play an important part in the results presented below. The allowable values for this phase
difference depend on magnitudes of 9¢,/dz and On?,/0z. If the dn%, /dz term dominates over
the 0C,/0z term then the phase difference between the depth uniform forcing and the surface
shear stress will be small. Physically, this corresponds to a situation where there is a weak long
wave component but strong groupiness in the short waves. Clearly, that can happen only locally

as the groupiness of the short waves will generate long waves.

If, on the other hand, both terms are of comparable magnitude or if the 0(,/0z term dominates
then the shear stress 7, can have any phase relative to the depth uniform forcing. Since the long
wave is reflected from the shoreline, it is similar to a standing wave. The short wave groups, on
the other hand, are progressive. Therefore, it follows that the phase difference between the two
will change with position. Hence, different values of the phase difference between the infragravity
surface elevation and Ithe surface shear stress (which will be in phase with the short wave groups)
will correspond to different surf-zone locations. In physical terms, the situation considered in this
paragraph is the common one: the wave motion is a combination of short waves with groupiness

and long waves.

4.2 Velocity Profiles

Figure 3 presents the variation of the velocity profiles in the surf-zone for the infragravity waves
alone in a case with very weak grouping. The parameter values used are V2T,B/pF, = 0.01 and
Bh = 1.5. Hence, the profiles presented in figure 3 correspond to velocity profiles of infragravity
waves in a wave system that either has been regular throughout (long waves generated far away)
or where the groupiness has been destroyed at the break point (e.g., the process suggested by
Symonds et al. (1982)). Figure 3 shows the variation, over half an infragravity wave period, of

the long wave velocity profiles for the case when the surface shear stress is in phase with the

13



depth uniform forcing (§ = 7/2). The profiles for other values of phase difference are virtually the
same as those shown in figure 3 and are hence omitted here. This is not surprising since for the
parameter values used, the surface shear stress is negligible in comparison to the depth uniform
forcing and hence the phase of the surface shear stress 7,5, has no discernible effect on the solution.
Consequently, the infragravity velocity profiles have relatively minor variations over depth. The
effect of the bottom friction is seen in the reduction of the near bottom velocity. Overall, the
profiles presented in figure 3 are in line what we would generally expect to find in long waves with

a substantial level of turbulence.

In addition to the infragravity velocity determined above, the short waves also induce steady
motions (undertow) in the surf-zone. Therefore, the total short-wave-averaged velocity in the
surf-zone is a superposition of the velocity under infragravity waves and the undertow. In figure 4
we show a typical undertow profile. This profile is superposed on the infragravity profiles shown
in figure 3 to determine the total short-wave-averaged velocity field in the surf-zone. The profiles
so determined are shown in figure 5 for one infragravity wave period. A value of F,, /w+/gh = 0.10

was used in these calculations.

In figure 6 we present the infragravity velocity profiles generated by increasing the ratio
V2T pF, from 0.01 to 2 so that the velocity profiles would correspond to a situation with both
a significant long wave component present and a strong continued local generation of infragravity
waves (i.e., Ilocal groupiness in the short waves). The profiles are shown for four different values -
of the relative phase between the surface shear stress and the depth uniform forcing (0,7 /3,27 /3
and 7). As suggested towards the end of the last section, different values of the relative phase
between the surface shear stress and the depth uniform forcing would correspond to different
surf-zone locations. Hence, the profiles shown in figures 6 are representative of different surf-zone

locations.

All the profiles shown in figures 6a-d show considerable variation over the depth. Also seen in
these figures is a significant difference in the infragravity velocity profiles as the phase difference
between the surface shear stress and the depth uniform forcing changes. Figure 6a shows that
when the surface shear stress and the depth uniform forcing are in phase, the entire water column
is, over most of the infragravity wave period, accelerating in the same direction as the water at the

surface. In complete contrast, figure 6d shows that when the surface shear stress is exactly out of

14



phase with the depth uniform forcing, the water near the surface is almost always accelerating in
the opposite direction of the water acceleration near the bed. Since the effect of the surface shear
stress is equivalent to an oscillating boundary layer at the surface, only a small fraction of the
response at the bottom can be attributed to the surface shear stress and hence the water near the
bed is almost always accelerating in a direction given by the depth uniform forcing component.

We also notice that the effect of the bottom friction and boundary layer is relatively weak.

Another effect of the surface shear stress and the depth uniform forcing opposing one another
at all times is that at every location the water column is being forced in opposite directions and
hence the net force on the water column is reduced. This leads to a reduced response as can be

seen by the much smaller velocities in general in figure 6d.

The profiles shown in figure 6 would correspond to locally generated (forced) infragravity
motions in the surf-zone and by comparing these profiles with those shown in figure 3 which
correspond to free infragravity motions we conclude that the velocity profiles under forced infra-

gravity waves differ considerably from those found under free infragravity waves.

Figures 7a-d show the superposition of the steady undertow and the infragravity profiles of
figures 6. It is clearly seen from these figures that the short-wave-averaged velocity has substantial

temporal variation.

Next, we investigate the effect of Sh on the velocity profiles. Shown in figures 8a-c are the
velocity profiles for Sh = 0.5,1,2 (see figure 6d for fh = 1.5). These values span the expected
range of variation of the parameter Sh. Figures 8 show that the parameter Sh controls the
response of the water column to the forcing. As in the traditional wave boundary layer solution,
the parameter Sh determines the distance to which the effect of the surface and bed shear stresses
are felt. The smaller the value of 8h the larger the distance that is influenced by the shear stresses.
Thus, figure 8a shows that for Sh = 0.5 (“boundary layer thickness” 2h) the surface shear stress
influences the solution over the entire water column. For example, for 7/10 < wt < 97/10 the
entire water column is accelerating in the same direction as the surface indicating that the surface
shear stress is dominating the response. For fh = 1 figure 8b shows a similar feature only for
27 /5 < wt < 7r/10. Thus the influence of the surface shear stress is less strong in this case. For
Bh = 2 (figure 8c), the water near the bed is always accelerating in the opposite direction to the

acceleration at the surface indicating that the influence of the surface shear stress is very weak
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near the bed. Note that large values of Bh correspond to situations we are accustomed to from

ordinary wave situations (thin boundary layers).

The velocity profiles presented above are of a generic nature. To the best of our knowledge,
there are presently no measurements available for the vertical structure of the velocity profiles
under infragravity waves. The predicted vertical structure of the forced long waves in the surf-zone
are so different from classical long wave theory that these results seem to warrant presentation
and discussion even without experimental data. It is hoped that the results presented above will

motivate measurements of velocity structure under infragravity waves.

4.3 The Dispersion Coefficient

As mentioned in the introduction and section 2, the cross-shore distribution of the longshore ve-
locity is controlled by the dispersion coefficient D,, defined by (5), even in a situation with regular
waves. As (5) indicates, this dispersion coefficient depends crucially on the vertical distribution of
the cross-shore velocity. The expression (5) essentially gives an instantaneous value of D.. Hence,
the results found above for time varying cross-shore currents (infragravity velocities superposed
on the undertow) implies that D, can be expected to vary significantly over an infragravity wave

period.

The variation of Dc- over an infragravity wave period for the two cases considered above are
shown in figure 9. For reference, the steady dispersion coefficient corresponding to the undertow
profile shown in figure 4 is also included in this figure. The curves in figure 9 show that in both
cases D, varies considerably over an infragravity wave period. As could also be expected, the
variability in D, is larger for the infragravity profiles corresponding to T,3/pF, = v/2. In that
case, the dispersion coefficient is also found to have much more temporal variation when the
surface shear stress is in phase with the depth uniform forcing than compared to the case where
the shear stress is out of phase with the depth uniform forcing. When the shear stress i;s opposing
the depth uniform forcing, the temporal variation of D, is relatively mild. D, is p;oportiona.l
to the square of the short-wave-averaged velocity and, as figures 7 demonstrate, the short-wave-
averaged velocities are both much higher and have more temporal variability in the case when the
surface shear stress is in phase with the depth averaged forcing. This, in turn, leads to a much

larger variability in time for the dispersion coefficient.
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Thus, there is considerable temporal variation of D, inside the surf-zone. Furthermore, the
average value of D, over an infragravity wave period is always somewhat higher than the dis-
persion coefficient calculated using the steady undertow. This is because when D, essentially is
proportional to U2. Finally, since the phase difference between the surface shear stress and the
depth uniform forcing varies with position inside the surf-zone, the results shown in figure 9 may

be taken to indicate a variation with position of the nondimensional dispersion coefficient.

Since the dispersion coefficient controls the cross-shore distribution of longshore velocities of
the infragravity wave motion, the results above indicate that the temporal and spatial variations
of D, are important in the proper modelling of phenomena like forced edge waves. This implies
that the inviscid theory normally used to analyze edge waves may not be accurate inside the surf-
zone if the edge waves are locally forced. To the authors’ knowledge this has not been discussed

in the literature.

Also (4) indicates that temporal variations in D, could force higher harmonics of alongshore
infragravity motion. This is in itself not surprising because the dispersive terms arise from the
nonlinear interaction of cross-shore and alongshore short-wave-averaged velocities. It is well known

that such interactions generate higher harmonics.

5 Summary and Conclusions

In this paper we have presented an analysis of the vertical variation of the particle velocity in
periodic infragravity motion. The study has been limited to the simple case of surf-beat due to
normally incident wave groups on a long beach. The results, however, can readily be extended to

arbitrary wave current situations.

An analytical solution was derived for the velocity profiles under free and forced infragravity
waves. These profiles were then superposed on a typical undertow profile inside the surf-zone
to determine the combined long wave and current velocity inside the surf-zone. The resulting
short-wave-averaged velocity profiles were also used to calculate the temporal variation of the

dispersion coefficient D..

The results show that the vertical structure of the velocity profiles depends strongly on whether
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the infragravity waves are free or forced. Under free infragravity waves the velocity profiles show
relatively minor variations over depth and are generally in line with what one expects in long

waves. Forced infragravity velocity profiles, on the other hand, show substantial vertical structure.

The dispersion coefficient which controls the cross-shore distribution of the longshore infra-
gravity velocity field was shown to have substantial variation over the period of the infragravity
waves all across the surf-zone. In the region where the infragravity motion is forced, the nondi-

mensional dispersion coefficient was found to also have a substantial spatial variation.

These findings may be expected to have a profound effect on many infragravity and current
motions in the surf-zone. In particulaf, it is conjectured that the local temporal variation of the
dispersion coefficient will lead to the generation of higher harmonics of infragravity motions with
longshore velocity components (edge waves). These results indicate that the spatial and temporal
variations of the dispersion coefficient may become important in the modelling of the cross-shore

distribution of edge waves.
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Appendix
In this appendix we derive the solutions to equations 26 and 29 subject to (27) and (28) and (30)
and (31) respectively. We first deal with the solution for the U, problem.
Introducing € = z 4+ ho we can write the general solution for (26) as
Uz = Asin[B(1 4+ 1)€] + B cos (B(1 + i)€] (58)
where 8 = \/w/2v;. (28) implies that A = 0. (27) gives
T; ; s i .
5 exp(—i6) = =1 B(1 + i) Bsin [B(1 + 7)h] (59)
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If we let B = |B|exp(i¢p), we get, after some straightforward algebra,

T,
B = ——— 60
|B| PN T (60)
b5 = - (647 +4) (61)
where
A, = y/sin?(Bh) + sinh?(Bh) (62)
_ _, [tanh(Bh) cos(Bh)
% = o [ sin(5h) ] (64)
Returning to z for the vertical coordinate and introducing
-~ \/cos? [B(z + ho)]A +sinh? [B(z + ho)] i
— tanh ho)) si h
o = (R
we can write the solution for U,, as
Uar =~ Filz)expli (65 + g (66)
and U,y = Re{U,z exp(—iwt)} is given by
U = % {_\/f;'iﬁ Fy(2) cos[wt — ¢p — QSzz]} (67)

which completes the solution for U,;. The term in the parenthesis on the RHS of (67) depends

only on the parameters T53/pF, and fSh.

We now turn to the solution for U,3. The solution procedure is similar to the one given above.

Introducing z; = z — (o we write the general solution to (29) as
Uas = Csin [B(1 + )21] + D cos [B(1 + i)z] (68)

The boundary condition at the surface gives C = 0. Introducing E = f,uo/(214) and writing
Ua1 + Ua2(z = —hg) = Uppexp(—iép) the boundary condition at the bed gives

D{B(1 + i)sin[B(1 + i)h] — E cos [B(1 + 1)h]} = EUypexp(—idp) - (69)

Writing D = |D|exp(i¢p) and introducing

F2 2 [sin®(Bh) + sinh?(Bh)] + s |cos?(Bh) + sinh?(Bh))|
B ﬁ2

+-g-sinh(2ﬁh) . %sin(ﬂzﬁh) (70)
—— sin(Bh) cosh(Bh) + sinh(Bh) cos(Bh) + % sin(Bh) sinh(Bh) -
br = A | GR) cosh(Bh) — sinh(Bh) cos(Bh) — E cos(ph) cosh(Bh) (1)
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we get

D] = Zp2 (72)
¢p = —(6B+ ¢r) (73)
Therefore, the solution for U,3 may be written as
Uss = % {%%Ulbps(z) expi [ép + d>3(z)]} (74)
where
\/c(:)s2 [ﬁ(z - ?d)] + sinh? [ﬁ(z - G)]
Fi(z) = - (75)
— i —Co)| tanh —lg
¢3(2) = tan™! { s [ﬁ(z CO)] anm[ﬂ(z CO)] } (76)
cos [ﬂ(z = Cg)]
The above gives the following solution for U,3 = Re {U,3 exp(—iwt)}
Fﬂ w
Ups = — { év:g %;-Uleg(z) cos [wt — ¢p — ¢3(z)]} (77)

The solution for U,3 is now complete. It is clear that since both U,; and U,y are proportional to
Fo/w, Uyp x FyJw and therefore the term in the parenthesis of (77) is independent of Fy, /w. If we
assume that up < \/gh and v; « hy/gh (which are reasonable inside the surf-zone) we find that

the parenthetic term above depends only on Sh and short wave characteristics.
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