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PREFACE

This report presents nine papers that will be presented at the INTERNATIONAL SYMPO-
SIUM ON WAVES — PHYSICAL AND NUMERICAL MODELLING which will be held at Vancou-
ver, Canada during August 21-24, 1994. These papers are based on our ongoing research

efforts to improve nearshore wave and circulation modelling,.
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DERIVATION AND PROPERTIES OF A
FULLY NONLINEAR MODEL FOR WEAKLY DISPERSIVE WAVES

James T. Kirby and Ge Wei
Center for Applied Coastal Research, University of Delaware,
Newark, DE 19716 USA

ABSTRACT

Fully nonlinear equations are derived for the propagation of weakly dispersive, long sur-
face water waves. We study the properties of these equations using Stokes type perturbation
expansions. In this paper, it is shown that the model improves the prediction (at second
order) of amplitudes of bound sub- and superharmonic waves in intermediate water depth,
relative to the predictions given by extended-dispersion models with consistent Boussinesq
ordering. In the presentation, we further demonstrate that the principle features of modu-
lated wave evolution at third order are correctly predicted.

INTRODUCTION

Standard Boussinesq models based on depth-averaged velocities have limitations on their
range of application arrising both from small amplitude assumptions and from the assump-
tion that the modelled waves are long relative to the water depth. The second limitation is
apparent primarily through the linear terms of the model equation, which construct a polyno-
mial approximation to the usual hyperbolic tangent behavior in the wave dispersion relation.
Recent efforts by Madsen et al (1991, 1992) and Nwogu (1993, 1994) have shown that it is
possible to construct rational polynomial dispersion relations that are relatively much more
accurate in comparison to the full result, and which correspond to model equations which
stay within the order of approximation of the standard Boussinesq model.

In this presentation, we extend the model of Nwogu to further include nonlinear effects to
all orders. This leads to a model which should exhibit correct behavior to O(u?) dispersion
at any order of an expansion in small nonlinearity 6. We test the accuracy of the resulting
model by examining its behavior at second-order, in the generation of corrections to a ran-
dom sea. In the presentation, we also examine the evolution of modulated swell waves due
to self-interactions at third order. Tests of the model for strongly nonlinear evolution near



wave breaking in shallow water are described in Grilli et al (1994).

FULLY NONLINEAR MODEL EQUATION

We proceed, using standard techniques, to construct the fully nonlinear form of the governing
equations based on a series solution for Laplace’s equation in the fluid interior. Following
Mei (1982), we use a reference wavenumber ko to scale horizontal distances z,y, a reference
water depth ho to scale the vertical coordinate z and local depth h(z,y), and amplitude a
to scale the surface displacement 5. We then introduce the parameters é = a/ho and jit =
(koho)?. Based on these, we choose a scale of (ko(gho)!/?)~" for time t and 8ho(gho)'/?/u for
velocity potential ¢. Introducing these scales into the boundary value problem for inviscid,
irrotational motion leads to the problem

bus + 12V = 0; —h<z<bn (1)

¢ + p*Vh-Vé = 0; z2=—h (2)

0+ b+ S[(V) + %(@)21 = 0; 2=y (3)
n¢+6v¢-v:}—}%¢z:0; 2= (4)

We develop an equation expressing volume flux conservation by integrating (1) over z from
—h to 61 and using (2) and (4) to obtain

&n
n+V M= 0; M:/ Védz (5)
<h

In the following, we use (5) to obtain expressions for mass conservation, while a momentum
equation is obtained using the gradient of the Bernoulli equation (3).

Approximate expression for the velocity potential

As in previous studies of weakly dispersive shallow water waves, we reduce the dimension-
ality of the boundary value problem by introducing a series expansion for ¢. An expression
for ¢ which retains terms to O(u?) and satisfies the bottom boundary condition is given by

2
¢ = do(x,t) — p*(h + 2)Vh - Vo — ngﬁfgﬁv’% +0(u") (6)

where ¢q is the value of the velocity potential at z = —h. In practice, we may replace ¢p
by the value of the potential at any level in the water column. Any choice will lead to a set
of model equations with the same level of asymptotic approximation but with numerically
different dispersion properties. Following Nwogu (1993) and Chen and Liu (1993), we denote
¢, as the value of ¢ at z = 2,, or

E(h' + za)z

22720 + O(u') (7)

bo = b0 — 2 (h + 24)Vh - Vo — p



This expression is then used in (6) to obtain an expression for ¢ in terms of ¢pq:

¢ = bo + 42 (2a — 2)V - (hV¢a) + %nz(zi — 22) V2, + O(u*) (8)

This form of the velocity potential is then used in the governing equations to obtain the
approximate models.

Two-equation model for  and ¢,

First, a two-equation model for  and ¢, is developed. The expression for M in (5)
becomes

2
M = (h+dn) qu.’)a + p? {V [zaV (hV¢a) + Z—“VZ%]

_ (h? = hén + (é6n)°)
6

+ =y (19a)) v*wu}] (9)

which clearly goes to zero identically as the total depth h 4 67 goes to zero. We note that
Nwogu’s mass conservation equation does not exhibit this property, which makes a specifi-
cation of a shoreline boundary condition potentially difficult for his form of the Boussinesq
approximation.

The corresponding form of the Bernoulli equation (3) becomes
§
1+ bt S8+ [ (o Y - (hT0) + 5002 ()]
#8102 { V0 - [V2aV - (V) + (20 = 6m)V(V - (hVa)) + 2aV 20 V0o
iotad = (anf)v'(v?qsa)] i %[v (V) + 60V - (hVba) V20 + %(an)z(vﬂ%)} 1B

2
(10)

Equations at the order of approximation of the usual Boussinesq theory may be imme-
diately obtained by neglecting terms of O(6) or higher in the O(u?) dispersive terms. The
modified expression for volume flux M is

2
M = (h+60)Va+ 4’ {hv [zo,v (hVéa) + %quba]

h* h®
$5 VAV - (hV¢a)) — FWV%} (11)
and the Bernoulli equation reduces to
1+ boi + ST + 2 [227 - (9600) + 552 0ue] =0 (12)
These results may be compared to the two-equation model of Wu (1981), which uses the

depth averaged value of ¢. The models are the same to within rearrangements of dispersive
terms.



Three equation model based on 7 and ug

We further introduce a horizontal velocity u, as u, = V@|.,. Retaining terms to O(u?)
and to all orders in & gives a fully nonlinear version of the model with volume flux

M = (h+6n) {uﬁu?{[iz;—%(hz—hénﬂén)?)] V(Y - )

+ [rat 300 0] V(7 - (huap)}] + 00 (13)
and momentum equation
o + 8(Ua - V)ug + V + p? V1 + 67 Va = O(n?) (14)
where
Vi = %ﬁV(V gy) 4 2aV(V - (hugy)) = V [%(an)ﬂv Uy + 67V - (h“a:)] (15)
Vo = V(= 6n)(ua - V)V (b)) + 522~ (Bm))(a VIV - u0)
+%v (V- (hua) + 677 - uq)?| (16)

The Boussinesq approximation of Nwogu (1993) is recovered by neglecting terms of
O(ut,6p?), yielding the expressions

M = (h + én)ug + 4 {("—;3— - ’;—3) V(V - ug) + (hza + %2) V(v -(hua))} (17)

and

2
ot + 6(ug - V)ug + Vi + p? {%‘-"-V(V ‘Ug) + 2aV(V - (huat))} = 0(6u?, u*) (18)

STOKES EXPANSION IN POWERS OF §

In intermediate water depths, the first nonlinear correction to a homogeneous random sea
takes the form of a set of bound, non-resonant superharmonics and a corresponding set of
bound, non-resonant subharmonics. Nwogu (1994) has shown that the extended Boussinesq
model gives transfer coefficients which are qualitatively similar to those predicted by the
second-order Stokes theory (Dean and Sharma, 1981), but which differ quantitatively by as
much as 50% within the range of frequencies for which the linearized form of the model is
felt to be accurate. Similar results have been shown by Madsen and Serensen (1993). The
present theory provides O(u?) corrections to the transfer coefficients, and we test whether
the modified coefficients have improved accuracy relative to the full theory.

The derivation in the present case is simpler starting from the two-equation model for
n and ¢,. We proceed by truncating the model equations to O(8%), corresponding to the



retention of cubic nonlinear terms. We then introduce the expansions 7 = 7o + ony and
ba = ¢o + 641 (where subscripts now refer to ordering in the expansions) and order the
resulting set of equations by powers of 6. At 0(8%), the resulting linear system is given by

[
Mot + hV2¢o + ;Lzh3(a + g)Vz(qubo) = 0 (19)
dot + M0 + p2h2aVige = 0 (20)

where a = (za/h)(1 + (2a/h)/2). At O(6), we obtain the set of equations
1 5 :
me+ hV2%e1 + p?h’(a + 5)vﬂ(vzqsl) = _V . (noV¢o) — p*h%aV - (mV(V3¢o))  (21)

0,9 9 9 | e 9
ot 0T 1, =~ T 4 2 (T — WaTn - T(V60) = 5T} @2

These equations differ from the set of perturbation equations obtained by Nwogu (1994) in
the inclusion of O(u?) terms in the forcing terms on the right hand side. It is clear from this
result that the coupling coefficients derived by Nwogu (1993, 1994) or Madsen et al (1993)
are not consistent to O(u?) due to the lack of the appropriate correction in the forcing.

FORCED SECOND-ORDER SEA

Introducing a linear random sea of the form

o= 0nc0s%n, Go= bnsinthn, Pn=kn X—wnl+ten (23)

in (19 - 20 ) gives the results
PR = KL= (ot (k) (1= o (kah)?) (24)
b =t [K20 - i+ (k) (25)

which agree with the linear dispersion relation given by Nwogu (1993). Substituting the
linear solutions in (21) and (22) and evaluating the right hand sides leads to the system

e + V2 + p’h? (o + %)vz(vzm) = %Z " amay [Fsin(m + 1) + Frpysin(hm — )] (26)
m |

1
bre+m+uPh2aVii = 7)) ama (G, cos(Ym + i) + Gy cos(Ym = )] (27)
m 1

where
p Wikl Ewnk? +wlkn ki g
ml — Wi W) ( )
and
GE — —wmwi(km - ki)(1 — p2h?a(kZ, + kF) + P2 h2 (Lwmwik2 k + w2 k2 Kk + otk Kmkm)
™ K Kk ki h?

(29)



The expression for F agrees exactly with the corresponding expression obtained from Stokes
theory (Dean and Sharma, 1981), aside from differences in the evaluation of the wavenumbers
from the true vs. approximate dispersion relations. The expression for G may be rearranged
to the form - g . & i

o m* Ki+ p (Wmwi(wyy, +w; ] + wy,wi ) Y O(uq)
W

me - (30)
This is equivalent to the form obtained from Stokes theory after neglect of the O(p*) terms,
which may be done consistently owing to the level of approximation in the governing equa-
tions. We compare results obtained both with and without this last step below. Finally, we
obtain an expression for the bound second order water surface 1 given by

1 1
n = § X T nGhy ol + 90+ 5 2 S anaGyycoshn =) ()
1 m i

m

where the first term represents superharmonic components and the last term represents

subharmonics, and where 2 i
+ 8. Sy g
LwoF o = kT Gmi

Gt =< 32)
t4 (Wit)gfg_kitTffl (
Other terms used in the expressions above are defined according to
Kn = kn(l-p2(at H)knh)) (33)
Wk = Wk (34)
kit = |km £ ki (35)
f= 1xy::2 kd: h)?2
T: = kb (ot W (Fiuth) (36)

1= auz(kirh)z

We proceed by comparing values of G* to values obtained from full Stokes theory (Dean
and Sharma, 1981) and the extended Boussinesq model of Nwogu (1994). In Figure 1, we
show the normalized superharmonic coupling coefficient as a function of depth for the case
where the two linear component waves have a frequency separation of 10%. lo denotes
the deepwater wavelength corresponding to the center frequency of the pair of linear wave
components. In the figure, solid curves denote full Stokes theory, dashed curves indicate the
extended Boussinesq theory of Nwogu, and the dash-dot curve denotes the present theory.
The upper set of curves corresponds to the case where the two linear waves are propagating
in the same direction, while the bottom set corresponds to the case of a separation of 40°
between the two components. In both cases, it is seen that the present theory (based here on
the expression (29) for G) provides a more consistent approximation to the full theory except
at large depths, where the form of the error in the Nwogu theory leads to a fortuitously better
prediction. We remark that if the expression (30) for G is used, then the maximum error
over the entire range is on the order of 2%.

In Figure 2, similar results are shown for the subharmonics, with similar overall conclu-
sions.



Figure 1: Superharmonic coupling coefficient for waves with 10% frequency separation. Solid
line - Stokes theory; Dash line - Nwogu (1994); Dash-dot line - present theory. Upper curves
- A@ = 0°. Lower curves - Af = 40°.

Figure 2: Subharmonic coupling coefficient for waves with 10% frequency separation. Solid
line - Stokes theory; Dash line - Nwogu (1994); Dash-dot line - present theory. Upper curves
- A8 = 0°. Lower curves - Af = 40°.



In Figure 3, we show an alternate view of the accuracy of the prediced coupling coefficients
for three versions of the weakly dispersive theory. In each plot, we show the ratio of the
value of G predicted by the weakly dispersive theory to the value predicted by the theory of
Dean and Sharma (1981), where we vary the frequencies of the two component linear waves
over a wide range with water depth held fixed. All the results shown are for the case where
the linear component waves are propagating in the same direction. The column of results
on the left refer to superharmonics, while the column on the right refers to subharmonics.
Figures 3a and b give results for transfer coefficients derived from Nwogu'’s equation, where
errors of O(p?) appear in the second-order forcing terms. Figures 3¢ and d show the same
results for the present theory with G given by (29). We see that the prediction of the transfer
function is generally more accurate for the present theory except for large values of w, where
the form of the transfer function obtained from Nwogu’s equations leads to fortuitously
better agreement. In Figures 3e and f, results are shown for G computed using the form
(30) of G. These results show close agreement between the Stokes and present theories, with
maximum errors overall on the order of 2%, which coincides with the level of errors in the
model-predicted dispersion relation.

CONCLUSIONS

We have shown here that a fully nonlinear variant of the extended Boussinesq theory of
Nwogu (1993) provides better predictions of bound second-order components of a random
wave train over the range of validity of Boussinesq theory. We have shown that this range
can be extended by a consistent rearrangement of terms to give results which are accurate
over the claimed extent of validity of the extended Boussinesq theory. However, we caution
that this extension involves the effective rearrangement of higher-order dispersive terms in
the original governing equation, and thus the accuracy of those results will not be reproduced
by direct numerical simulations based on the given equations.

This paper and the companion paper by Grilli et al (1994) show that several of the
deficiencies remaining in the Boussinesq theory may be improved by the simple retention of all
nonlinear effects, leaving weak dispersion as the only asymptotic approximation in the theory.
This step does not conceptually complicate the resulting model equations and appears to
be worth the effort involved. We have further evidence that significant improvements may
be obtained by retaining dispersive properties to O(u*), and work in this direction is being
pursued.
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A HIGH ORDER TIME-DEPENDENT NUMERICAL
MODEL FOR THE EXTENDED BOUSSINESQ
EQUATIONS

Ge Wei and James T. Kirby
Center for Applied Coastal Research, University of Delaware,
Newark, Delaware 19716 USA

ABSTRACT

A numerical code for the extended Boussinesq equations derived by Nwogu (1993) is
developed. The model utilizes a fourth-order predictor-corrector method to advance in time,
and discretizes first order spatial derivatives to fourth-order accuracy, thus reducing all
truncation errors to a level smaller than the dispersive terms retained by the model. The
basic numerical scheme is described and the model is applied to several examples of wave
propagation in variable depth. These initial results indicate that the model is capable of
simulating wave transformation from relatively deep water to shallow water, giving accurate
predictions of the height and shape of shoaled waves. :

INTRODUCTION

The ability to accurately predict wave transformation from deep to shallow water is vital to
an understanding of coastal processes. As waves propagate toward shore, a combination of
shoaling, refraction and diffraction effects modify the wave form. Nonlinear effects induce
energy transfers both up and down the spectrum, leading to the generation of low-frequency
surf-beat as well as high-frequency corrections (enhancements) to the shoaling wave crests.

Boussinesq-type equations, which include the lowest order effects of nonlinearity and
frequency dispersion, have been shown to provide an accurate description of wave evolution
in coastal regions, if used within the bounds of the validity of the underlying approximations.
The first such set of equations for variable depth was derived by Peregrine (1967), and use the
surface displacement 7 and a depth-averaged horizontal velocity U as dependent variables.
Using frequency-domain formulations derived from Peregrine’s equations, Freilich and Guza

& i |



(1984) and Elgar and Guza (1985) have demonstrated that the evolution of power spectra of
normally incident waves may be accurately predicted, w hile Elgar and Guza (1986) and Elgar
et al (1990) have shown that the evolution of bispectra or third-moment statistics is also
well predicted. Freilich et al (1993) provided evidence that the frequency domain model also
correctly predicts the shoreward evolution of a directional wave train. Similar success has
been noted in comparisons between laboratory data and model predictions. Goring (1978)
has shown that the models give good predictions of the scattering and transmission of solitary
waves at depth transitions, while Liu et al (1985) and Rygg (1988) have demonstrated
that accurate predictions of wave refraction and focussing by underwater shoals may be
made (Whalin, 1971). Kirby (1990) has shown that an angular spectrum formulation of the
standard Boussinesq model gave good predictions of the evolution of a Mach stem measured
in the laboratory (Hammack et al, 1990).

Due to increasing error in the modelled linear dispersion relation with increasing water
depth, the standard Boussinesq equations are limited to relatively shallow water. Recently,
efforts have been made by a number of investigators to derive alternative forms of Boussi-
nesq equations which can be applied in deeper water regions (Witting, 1984; Murray, 1989;
Madsen et al., 1991; Nwogu, 1993). Of these models, the two by Madsen et al and Nwogu
have generated the most interest. Each model is different in the form and arrangement of
dispersive terms, but both lead to a dispersion relation which may be interpreted as being
a Padé approximant of the full linear dispersion relation. This result is significant since
the resulting dispersion relation may be interpreted as being accurate through O(p*), even
though the Boussinesq model equations are derived to provide a correction to O(p?) to the
shallow water theory (g = O(kh)). Of these two models, the Boussinesq equations derived
by Nwogu (1993) are obtained through a consistent derivation from the continuity and Euler
equations of motion. In the derivation, the horizontal velocity at an arbitrary depth is used
as the dependent variable. The depth at which the velocity is evaluated is then determined
from the resulting dispersion relation compared with that of linear theory. As a result, the
new form of equations are found to be able to predict the propagation of waves in water
which is relatively much deeper than allowed by the standard approximation.

In this study, we develop a high-order numerical model based on Nwogu’s Boussinesq
equations. We use a fourth-order predictor-corrector scheme for time stepping and discretize
the first order spatial derivatives to fourth-order accuracy. This discretization automatically
eliminates error terms which would be of the same form as the dispersive terms, and which
must therefore be corrected for if lower order schemes are used. The model is applied to
several cases of wave propagation from relatively deep to shallow water. Numerical results
are compared with experimental data when available.

GOVERNING EQUATIONS

The new form of Boussinesq equations derived by Nwogu (1993) are given by

7.0 B
e+ V- [((h+nu]l+ V- {(% - %) hV(V - u) + (za + %) hV [V -(hu)]} =0 (1)
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w9V (e V)ut 20 { F (Vw4 V19 (huolf =0 (@)

where 7 is the surface elevation, h is the local water depth, w = (u,v) is the horizontal
velocity at an arbitrary depth zo, V = (9/0x, 0/0y) is the horizontal gradiant operator, and
g is the gravitational acceleration. The above equations are statements of conservation of
mass and momentum, respectively, Compared to the standard Boussinesq equations derived
by Peregrine (1967), there is an additional dispersive term in the continuity equation, and the
coefficients of dispersive terms in the momentum equations are different. As will be shown
below, it is these differences that improve the linear dispersive properties of the model and
make the new form of equations usable in relatively deep water regions.

Consider the case of wave propagation in 1-D horizontal direction with constant depth.
The equations then reduce to

e+ hug + () + (@ +1/3) e = B (3)
w + g + wug + ah’uy, = 0 (4)

where
a=(1/2)8*+B8, B=2zalh (5)

Linearizing the system of equations and substituting a trial solution
n = noexpli(kz —wt)], u=ugexpli(kz — wt)] (6)
leads to the linear dispersion relation

L= (o + 1/3)(kh)?
1 — a(kh)?

w? = gk’h (7)
which varies with the values of @. The standard form of Boussinesq equations corresponds
to the choice @ = —1/3. A value of & = —4/10 reduces (7) to the (2,2) Padé approximant
of the exact full linear relation, as shown by Witting (1984). Figure 1 shows a comparison
between the dispersion relation for full linear theory, and the model dispersion relation for
several values of a. In the shallow water limit kh — 0, all of the dispersion relations are
asymptotically equivalent. However, in deep water regions where kh increases, the dispersion
relation for arbitrary values of a deviates significantly from the linear theory. Using an error
minimizing criterion over the range of kh values from 0 to 5, Nwogu (1993) obtains an
optimized value of e = —0.390 which corresponds to a depth of z, = —0.531h. As shown
in Figure 1, the resulting dispersion relation is superior to the standard form of Boussinesq
equation in the deep water limit.

NUMERICAL MODEL

The choice of a numerical scheme for equations (1-2) is guided here by two principal factors.
First, as occurs in any Boussinesq equation system, finite-differencing of first order derivative
terms to second-order accuracy leads to leading order truncation error lerms which are
of the same form mathematically as the dispersive terms appearing in the model. These

13



terms are eliminated consistently in the limit as Az, Ay,At — 0, but usually are large
enough in magnitude to interfere with the solution at typical grid resolutions. Most existing
schemes for equations of this type (Abbott et al, 1984; Nwogu, 1993) treat these terms by
back substitution into the initial second-order accurate scheme, thus incorporating them as
‘ntentional distortions to the modelled dispersive effects. In this study, we seek, instead,
to reduce all differencing errors to a size that is small relative to all retained terms in the
model equations. We therefore adopt a scheme where the spatial differencing in first order
terms is done to fourth-order accuracy, leading to a truncation error of O(Az*/p?) relative
to the model dispersive terms al O(p?). In contrast, the dispersive terms themselves are
finite-differenced only to second-order accuracy, leading to errors of O(Az?) relative to the
actual dispersive terms. Finally, the system of equations is written in a form that makes the
application of a higher-order time-stepping procedure convenient. We utilize a fourth-order
Adams predictor-corrector scheme to perform this updating.

The second factor is the impliciteness of the dispersive terms in the momentum equations.
In order to address this, we rewrite (1-2) as

n = E(nuv) (8)
U = F(nu,v)+ [Fi(v)) (9)
Vi = G(n,u,v)+[Gi(u) (10)
where
U(u)= u +h[bihugy + by(hu)ss] (11)
V(v)= v +h[bihvgy + ba(hv)y) (12)

are treated as simple variables in the time stepping scheme. The remaining quantities
E,F,G,Fy,G, are functions of 1, u and v which are defined as

E(nu,v)= = [(h+n)ulz = [(h+n)vly
. {alh3(uxr + U:l:y) + a2h’2 [(hu)..":a: + (hv);y]}z
= {ﬂlha(”yy + Uzy) + agh? [(hv)yy + (h“):ry]}y (13)
F(n,u,0)= — gz — (uug + vuy) (14)
Gy u,v)= — gy — (vvy + uvg) (15)
Fi(v) = — hbihvgy + ba(hv)szy] (16)
Gl(u) = — h [blhuzy + bg(h-u)zp-] (17)

The constants ay, az, by, b, are given by
ay=p*12-1/6, aa=p+1/2, by=p%[2, ba=Pp (18)
For the standard form of the Boussinesq equations, the constants reduce to

g =0, az=0, by=1/6, by=-1/2 (19)

The governing equations are finite-differenced on an un-staggered grid in z,y,t. We
discretize the independent variables as @ = 1Az,y = jAy,t = nAt. Level n refers to
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information at the present, known time level. The predictor step is the third-order explicit
Adams-Bashforth scheme, given by

n n A’ R A -1 1] = T
Mt =l + T [28ED - 16BN + 5E; d (20)
n Al [yapm = Fn— n— -2
Wit=U ¢ |23F7; — 16E77" + 5F; 2| + 287 - 3F} 4+ BT (21)
¥ r ¥ At 0 m=— n— - -_ P
Vit =10 ¢ 35 [23(,;; - 16G75 ! +5G7; 2] +2G7 -3GTM+ G (22)
n+l

where all information on the right is known from previous calculations. The values of 7;;

are straightforward to obtain. The evaluation of horizontal velocities at the new time level,
however, requires solution of tridiagonal systems which are linear in the unknowns at level
n + 1. Specifically, for a given j, u}":-rl(i = 1,2,..., M) are obtained through tridiagonal
madtrix solution. Similarly, v:‘:“] (j =1,2,...,N) are solved by a system of tridiagonal matrix
equation for given i. The matrices involved are constant in time and may be pre-factored,

inverted and stored for use at each time step.-

After the predicted values of 1;23“,1:.:-‘;1 and v:-'j'l are evaluated, we obtain the cor-
responding spatial derivatives E}fj-", I"‘-'I’fl ,G’?jl,(Fl):“j",(Gl):‘jl from equations (14-18).
Then the fourth-order Adams-Moulton corrector scheme is applied

At

=l + 2—: O + 19E7; - SE + EE] (23)
At ..

U = UL+ o [OFH0F] -SET A B A Y - (@)
At |

1 Zll 5 'QG‘R;“ + 19G}; - 5G}5" +G}f}‘2] + G - G (25)

The corrector step is iterated until the error between two successive results reaches a required
limit. The error is computed for each of the three dependent variables 7, u,v and is defined

as
1 +1)»
il “.fi(,:‘l il
i
Yo 1T
where f denotes any of the variables and ()* denotes the previous estimate. The corrector
step is iterated if any of the A f’s exceeds 0.001. The scheme typically requires no iteration
unless problems arise at boundaries. Then the same procedure is applied to the next time
step.

Af = (26)

CASE STUDIES

Random waves shoaling on a slope

For the 1-D version of the numerical model, we study random wave propagation over a
slope and compare numerical results with the laboratory data of Mase and Kirby (1992).
The experimental layout consists of a constant depth of 0.47m and a constant slope (1:20).
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Two sets of random waves with peak frequencies of 0.6z (runl) and 1.0H 2 (run2) were
generated by the wavemaker on the end of the constant depth. The target incident spec-
trum was a Pierson-Moskowitz spectrum. Wave gauges at depths h = 47 (two gages),
35,30, 25,20, 17.5,15,12.5,10,7.5,5and 2.5 em collected time series of surface elevation. I'ur-
ther details of the experimental setup may be found in Mase and Kirby (1992).

The incident boundary for the numerical model was taken to be the location of the first
wave gauge 2 m seaward of the toe of the beach slope (at a depth of 47em) where experimental
data is available. The horizontal velocity u(t) at the incident boundary was derived from
the surface elevation data (t) through Fourier analysis, based on linear relation between u
and 1. The present model does not include wave breaking, which occurs in the larger waves
near the gage at the depth of 17.5em. We thus end the beach slope at a point shoreward of
the gage at h = 17.5cm and introduce a f{lat bottom. The sponge layer method is used to
absorb the waves propagating past the last gage.

Comparisons of the model and experimental data for the first 60 seconds run2 are shown
in Figure 2, where the results are shown for the initial conditions (bottom trace) and for gage
positions 35,30, 25,20 and 17.5 cm going up the plot. We see that the model reproduces the
measured wave form (both wave height and wave phase) quite well. For this case, the value
of kh for the peak wave frequency is about 2.0 at the incident wave boundary, and thus this
case represents a severe test of the applicability of the model to deeper water conditions.
As a comparison, we ran a model based on the standard Boussinesq equations for the case
of run2, and show the results in Figure 3. The severe discrepancies between modelled and
measured waves indicate that the standard Boussinesq model is not capable of handling the
range of depths used in this example.

Waves evolution in a closed rectangular basin

Compared to the 1-D model, the 2-D model involves a number of mixed z and y derivative
terms, which are handled differently in the time-stepping scheme than terms containing
derivatives in one direction only. In order to verify the correctness of the model and to test
its stability and associated boundary conditions in 2-D, we use the model to study wave
evolution in a closed basin, where linear analytical solution exists.

Consider a rectangular domain 0 < z < L;,0 <y < L, bounded by reflective vertical
walls. Assuming the initial condition to be a superelevation of the surface no(z,y) above an
otherwise constant depth hg = 0.45m, the linear analytic solution can be found to be

ol nne mn
n(z,y,t) = Z Z Tinm €os(wWpmt) cos(-—L—-) cos( I 3") (27)
I T

n=0m=0

where ijum and wy,, are the Fourier coefficient and the natural frequency corresponding to
mode (n,m) and can be determined from the inital and boundary conditions. For the runs
shown here, the initial surface elevation is of Gaussian shape:

no(z,y) = Hoexp{—2[(z — 3.75)% + (y — 3.75)%]} (28)

where o and y are defined with the origin in the left and bottom corner of the basin. The
initial superelevation is symmetric about the center (z = 3.75m, y = 3.75m).
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To examine the symmetry and conservation properties of the solution, an initial maximum
elevation Hy of 0.045m (with a corresponding height-to-depth ratio of 0.1) is used. The model
was run for 100s, using a grid size of Az = 0.15m and time step of At = 0.05s. Results
from the model show that the surface elevation is symmetric and the total waler volume is
conserved (less than one percent error).

To compare the agreement between the linearized model and the linear solution, and to
show the effects of large initial nonlinearity on the computed solution, we take an initial
maximum Ho = 0.45m. Figure 4 shows a comparison of nonlinear (dash-dot line), linear
numerical (dashed line) and linear analytical (solid line) results for the first 25 seconds after
tlie release of the elevation. The effect of nonlinearity is apparent through the more rapid
arrival of the initial pulse at the corner point, the progressive increase in phase lead of the
nonlinear crests, and in the apparent steepening of the individual nonlinear wave crests.
(See, in particular, the corner point near ¢ = 10— 15s). There is also an apparent, but slight,
discrepancy between the two linear solutions. This discrepancy shows up as an occasional
modification of the shape of an individual wave crest or trough, rather than as a modification
or relative drift in the overall solution. Further analysis show that the discrepancy is due
to the effect of errors in the higher frequency portion of the solution, which contributes
relatively little variance to the overall surface record.

CONCLUSION

A high order numerical scheme has been developed for a new form of the Boussinesq equations
derived by Nwogu (1993). The scheme has been tested in a number of examples which
illustrate its basic stability and which show that the new Boussinesq equations may be
applied to a wide range of water depths.

Like other Boussinesq approximations, Nwogu’s new Boussinesq equations is limited to
the lowest order of nonlinearity. To account for O(1) nonlinearity of waves near breaking
or the dominant cubic nonlinearity of intermediate depth waves, we are presently extending
the model equations described here to include higher order terms; results for this extension
of the model capability will be described separately (Kirby and Wei, 1994).
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Figure 1: Comparison of dispersion relation for different values of @ with linear theory: linear
theory (—); @ = —0.390 (---); a=-0.400 (--); a=-1/3 (-+ -+); a =0 (—).
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Figure 2: Comparison of time series of surface elevation for run2: model (---); data (—)
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Time serles of eta for run2 (Standard BE)
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Figure 3: Comparison of time series of surface elevation for run2 using standard Boussinesq
equations: model (---); data (—)
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Figure 4: Comparison of solutions for initial Gaussian elevation in square box. Nonlinear
(dash-dot line), linear numerical (dashed line) and linear analytical (solid line) solutions.
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PARABOLIC AND ANGULAR SPECTRUM
MODELLING OF A FULLY NONLINEAR
EXTENDED BOUSSINESQ EQUATION

James M. Kaihatu and James T. Kirby
Center for Applied Coastal Research, Department of Civil Engineering,
University of Delaware, Newark, DE 19716

ABSTRACT

In this study we formulate two frequency domain models of a fully nonlinear extended
Boussinesq equation (Kirby and Wei, 1994). Because we use triad interactions between fre-
quency components to treat the nonlinear terms, we must truncate the equations to 0(6pu?),
where § is the nonlinearity parameter and p the dispersion parameter. This truncation still
retains dispersion in the nonlinear terms, which Kirby and Wei (1994) show is important for
proper energy transfer in the deep water limit. The first model, a small-angle parabolic repre-
sentation of these equations, is developed and compared to the experimental data of Whalin
(1971). Tt agrees well with the data and performs better than the Kadomtsev-Petviashvili
(KP) model of Liu, et al. (1985) which has nondispersive Green’s Law shoaling. We then
formulate an angular spectrum version of these equations, in which we assume longshore pe-
riodicity as well as time periodicity, and couple both frequency and longshore wavenumber
modes via triad interactions.

INTRODUCTION

For problems of nonlinear wave propagation, models of the standard Boussinesq equations
of Peregrine (1967) do well in their regions of validity (kh < 1, where k is the wavenumber
and h the water depth). Numerous examples of these models appear in the literature, either
in time domain (e.g., Rygg 1988), or frequency domain (Freilich and Guza 1984; Liu, et
al. 1985; Kirby 1990) formats. Unfortunately, errors in the prediction of wave celerity and
shoaling become evident in intermediate or deep water, primarily due to the inadequacy
of the linear dispersion relation and the shoaling mechanisms inherent in these standard
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Boussinesq equation models. If we look specifically at the "consistent model” of Freilich and
Guza (1984), we see that the shoaling mechanism is Green’s Law:

()= () 0

which is a monotonic increase in wave amplitude a with a decrease in depth. Other standard
Boussinesq models may have at most an O((kh)?) correction to this relation, insufficient for
intermediate or deep water.

Recently there have been several attempts to overcome this limitation while still working
within the Boussinesq format. Witting (1984) formulated a one-dimensional Boussinesq-type
equation for constant depth; it had a linear dispersion relation in the form of a rational poly-
nomial with a free parameter. This free parameter was tuned to match the dispersion relation
from lincar theory from shallow to deep water. Madsen, et al. (1991) and Nwogu (1993)
formulated two-dimensional Boussinesq models with similar dispersion relations. Madsen
and Sgrensen (1993) and Chen and Liu (1993) have developed frequency domain versions
of Madsen, et al. (1991) and Nwogu (1993), respectively. All show improved dispersion
characteristics in deeper water than the standard Boussinesq equation is valid for.

One probable criticism of many of these models is the order of truncation. They are
truncated to O(8, u2), where 6(= a/h) is the nonlinearity parameter and p(= kh) the dis-
persion parameter. This discounts any dispersion effects in the nonlinear terms, which may
affect (for example) the accuracy of nonlinear energy transfer at the deep water limit. Kirby
and Wei (1994) extended Nwogu's formulation to a fully nonlinear extended Boussinesq
equation by assuming § = O(1). They showed that these equations gave transfer functions
for a random second-order sea which agree exactly with those of Stokes theory save for the
differences in calculating wavenumbers. In this study we use these fully nonlinear equations
in the frequency domain.

FREQUENCY DOMAIN FORMULATION

The derivation of the fully nonlinear extended Boussinesq equations can be found in Kirby
and Wei (1994). We wish to make use of triad interactions in the frequency domain while
retaining dispersive effects in the nonlinear terms; thus we need to truncate the system to
O(8u?). These truncated equations of continuity and momentum are, respectively:

M+ V- ((h+0)Véa) + V- [(A+ )V (2aV - (hV¢a))] + (h +m)V (%Vz%)

49 - (5097 (198.)) - V- (E9(T40)) = 0@ LY @)
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bat + g0+ |(2a = M)V - (AV bat) + %%V%m] + %(V'%)2
+V¢a ' (vzov . (hv¢a)) #: VQSQ e (ZGV(V ' (hv¢a)) (3)
FVa - (2aV22V%0) + V00 2V(V9) + 5(V - (WVa))? = O(8%2, 8%, i)

where 7 is the free surface elevation, ¢, is the velocity potential at an arbitrary elevation zq
in the water column, V is the differential operator in the two horizontal dimensions (z,9),
and a is a nondimensional parameter related to z, by:

-
a= ( 513 + ) (4)
Neglecting dispersive effects in the nonlinear terms in (2) and (3) recovers the equations of
Chen and Liu (1993).

The linear dispersion relation associated with (2) and (3) is:

- 1 —(a+ 3)(kh)?
g ( 1 — a(kh)? ) )

and the group velocity is:

2
¢, =% _ [lﬂ(kh) 1

3 (“ —a(k)?) (1~ (@ +3) (khY?) )] @

Nwogu (1993) used a least-squares technique to fit (5) to the dispersion relation from linear
theory in the range 0 < " < 0.5, where L, is the deep water wavelength. He found the
optimal value of a to be —0 390, yielding a 2, of —0.53h. Chen and Liu (1993) performed a
least-squares best fit of both (5) and (6), yielding a refined value of a = —0.3855 with the
corresponding z, = —0.522h. We use this refined a in our study. The reader is referred to
Nwogu (1993) and Chen and Liu (1993) for further details on how well (5) and (6) match
full linear theory.

In order to transform the equations to the frequency domain, it is necessary to assume
periodicity in time for both 7 and ¢4:

E in e~ Wt 4 oe, (7
n=1
- S J’Olﬂ —inwt
Ps = Z 5 ¢ + c.c. (8)
n=1

and use triad resonant interactions between the frequency components to treat the nonlinear
terms. We then use the resulting time-periodic momentum equation to relate ban to i, and
substitute this into the time-periodic continuity equation to eliminate #,. This will give us
a single time-periodic evolution equation for $oan. We can then use the time-periodic mo-
mentum equation to find 7,. These equations are not written out here.
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PARABOLIC MODEL

We wish to formulate a series of parabolic evolution equations for the amplitudes of ban
and #,, one for each frequency component, which are then coupled by the triad resonant
interactions used for the nonlinear terms. We assume the following form for qﬁm and 7y:

Q;an o 1‘“‘1..,,1(:.,,"1 y)eifkn(f,y)d: (9)

fin = Bu(z,y)e’ baleadés (10)

where A, and B, are slowly-varying functions of z. Substituting these expressions into the
time-periodic equations, making use of the parabolic approximation:

Anze K 21Anz (11)

and using a reference phase function (Kirby and Dalrymple 1983) to factor out the y-
dependent part of the phase function:

y—— [ Fno(e)dz— [ kn(zy)dz) (12)

B, = bye'l/ Fno(@)dz—[ kn(z:y)dz) (13)

(where ky, is a y-averaged wavenumber) yields:

2,,2

1 .
+2ikn (c,. — 2k2h® [a + ED Gz — 2 (kncn -2 [a + §] kﬁfﬁ) (Fno — kn)an  (14)
+i(knn — rﬂk3h2)hzan +1 (C,, -6 [a -+ é—]) Kot

49. (Z RGJGH !e' f(ho"‘kn—-la—kno}dx +2 Z Sﬂ{ Gﬂ+le‘ f(kn-}lo—‘klo—kno)d-r) =0

=1

where

Gt T (15)

™ =1+5a+V1+ 2a (16)

= (n — )k} + 2nkikn—i + 1k%_; - (17)
ah?[(n — Dk + 20k kot + nkPk2_; + 2nkik3_; + lky_)
hz(n D)2 +Il(n-0)+1?

I(n—1)

Ktk
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S = (n+ Dk — 2nkiknp — k2, - (18)
ah?[(n+ )k — 2nkPkngt + nkik2 ) - 2nkikl . — 1k ]
nh2(n+l)2—l(n+1)+lz 2,2
i(n+1)

+

and the asterisk denotes the complex conjugate. From the a, we can calculate the b, (the
amplitudes of the free surface elevation) from:

2nwah?®k
bn - ﬁw_ah2anyy |- L%hyﬂ.ny = 'ﬂg'__ianx
. 2 3 ¥ h2 5
_ 2inwah kﬂ(km . nwzakn . Lo E(l — akh?)a, (19)
g

n— N_-n
= . o
. (Z Rajay_ie f FiotFn-to=Fro)ds _ 5 S~ glgrq, ¢ T FutorTio=Fao) d,-,)
- =1

where:

= DRl = D 4
I(n—1)

R = kiknt — h? (Kik3_, + kP kn-t) kP kn (20)

_hz(n+1)2—1(n+l)+12
I(n+1)

The linear terms of (14) and (19) are essentially identical to Chen and Liu (1993) with slight
differences due to the choice of a y-averaged wavenumber in the reference phase function. We
use the Crank-Nicholson method to discretize the equations, employing iteration to center
the nonlinear terms.

8" = kiknyt — ah? (kikS 4+ kknsr) kPkE 4 (21)

COMPARISON TO EXPERIMENT OF WHALIN (1971)

Whalin (1971) conducted a series of experiments to investigate harmonic generation and
the limits of linear refraction theory. He ran initially sinusoidal waves over a topographical
lens and measured the amplitudes of the first three harmonics at various locations down
the centerline of the tank. The reader is referred to Whalin (1971) for the details of the
experiments.

We will restrict ourselves to the 2 second experimental case; this gives a kh value of 0.73
for the fundamental harmonic, which may test the limits of standard Boussinesq theory. The
three initial wave amplitudes for this wave period are a, = 0.75¢m, 1.06¢mn and 1.49¢m. We
compare the resulting free surface amplitudes of the present parabolic model, the parabolic
model of Chen and Liu (1993) and the parabolic Kadomtsev-Petviashvili (KP) model of Liu,
et al. (1985) to Whalin’s data. The KP model is a weakly two-dimensional form of the
standard Boussinesq equations and has Green’s Law shoaling; thus we expect it to compare
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relatively poorly to the other two models. We only show comparisons for a, = 0.75¢m and
a, = 1.49cm; the case a, = 1.06cm shows similar agreement to data. Figures 1 and 2 show
the comparisons to Whalin’s data. We see that, while the present parabolic model and the
model of Chen and Liu (1993) compare reasonably well to the data, the KP model overshoals
the fundamental and second harmonic for both cases. In the case of the third harmonic, it
can be seen that neither model compares especially well to the data. This may be due to the
fact that " — (.66 in the deep portion of the tank for this harmonic, which is well beyond
the limit of validity for Green's Law shoaling and also beyond the calibration range for (5)
and (6). Generally, it can be seen that the present model compares to data as well or better
than the Chen and Liu (1993) model. This is particularly evident in the second harmonic.
The added dispersiveness in the nonlinear shoaling process can be seen in the second and
third harmonics, as the present model does not shoal as fast as the model of Chen and Liu
(1993).

ANGULAR SPECTRUM MODEL

The parabolic model of the previous section performs well in situations where the angle of
incidence is small. In instances where this is not the case, however, the parabolic approx-
imation breaks down rapidly. Angular spectrum modelling (e.g., Kirby 1990) involves no
assumption about angle of approach, and so is theoretically valid for any angle of incidence.

The essential assumption in the angular spectrum approach is periodicity in the longshore
(y) direction. We thus assume the following forms for 7 and ¢, in (2) and (3):

Z Z Am(z) a{f kndntdz+mAy—nwt) 4 o o (22)
m=—M n=1

M m

Z Z B (3) ,(fk“-y dz+mAy—nwt) + c.c. (23)
m=-—M n=1

where the longshore wavenumber A is

A=ksinf (24)
and
i = (1= (R = cost (25)

and use triad interactions for the A modes as well as the frequency modes in the nonlinear
terms. This yields:
nw?z,

2ikn i (cn — 2knFh3(a + %)g::‘) A™ 4 ik, (1 + o h%,,gg‘) he A™
+i (6 - ORI + IS - 202Nk D) (BA)eAT (26)

(2 > AP0 +2Y 3 JATA ) -

I=1 p=—M =1 p=—M
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and

. . =m 2

B = 2 (1 anter) A - " A - P AT (20
y 21, ~Am n-1 M . N-n M .
g 49 I=1 p=—M =1 p=—M
where

0 = [[(kii} + kneri = ki )da (28)
Y= [(enrii? = kAT~ ki )do (20)
£ = (ka2 + m*A%) (30)

and I,J,I' and J' are complicated interaction coefficients. ((n and 7, were defined in the
previous section.) Given 2M + 1 longshore wavenumber modes and N frequency modes, we
model (2M + 1) x N ordinary differential equations. We will employ a second-order Euler
differencing scheme with iteration for the nonlinear term, and intend to show model-data
comparisons during the conference presentation.

CONCLUSIONS

In this paper we transformed the fully nonlinear extended Boussinesq equations of Kirby and
Wei (1994) in the frequency domain. First we truncate the system to O(6u?) so that triad
resonant interaction can be utilized while still maintaining dispersion in the nonlinear terms.
Then we developed a set of small-angle parabolic evolution equations for the amplitudes of
the velocity potential ¢, and the free surface 7. The model compares well to data. We then
employed the additional assumption of longshore periodicity and derived the angular spec-
trum version of the governing equations. This model overcomes the small angle restriction
of the parabolic model. Future work will consist of the application of this angular spectrum
model to simulate experimental cases. We also intend to use the model to investigate certain
physical processes in wavefield evolution, such as directional interaction.
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A TIME-DEPENDENT MILD-SLOPE EQUATION MODEL
FOR BREAKING WAVES

Changhoon Lee and James T. Kirby
Center for Applied Coastal Research, Department of Civil Engineering,
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ABSTRACT

We develop a time-dependent mild-slope equation model for breaking waves by con-
structing a model for the energy loss based on a bore analogy and including it in the time-
dependent mild-slope equation developed by Radder and Dingemans (1985). The parameter
for the energy dissipation rate y was calibrated against experimental data for one-dimensional
monochromatic waves (Horikawa and Kuo, 1966) and was found to be in the range of 0.4 to
0.9. The model is applied here to cases with two-dimensional monochromatic waves (Vincent
and Briggs, 1989) and also to cases with one-dimensional random waves (Mase and Kirby,
1992). The more general problem of two-dimensional random waves is described in the pre-
sentation.

INTRODUCTION

The combined refraction and diffraction of water waves on a slowly varying bottom was
studied by Berkhoff (1972) using the mild-slope equation:

V- (CC,V$)+ k2CCyd =0 (1)

where C' and C,, are phase and group velocities of a wave with local frequency w, wavenumber
k, and ¢ is the velocity potential at the mean water surface z = 0 with time harmonic term
extracted. Berkhoff’s equation (1) is applicable only to monochromatic waves.

A time-dependent mild-slope equation was first developed by Smith and Sprinks (1975)
by means of Green’s second identities applied to the velocity potential. The model equation
is

¢ o Rve -2 1244\
3~V (CCV9) + (@~ K*CCo)d =0 (2)
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where C' and C, are phase and group velocities, respectively, of a narrow-banded wave with
carrier frequency @, wavenumber k, and ¢ is the velocity potential at the mean water surface
2= ().

A system of time-dependent mild-slope equations was also derived based on the Hamil-
tonian theory of water waves by Radder and Dingemans (1985). The model equations are

O _ o (CCioz , @=KCC: o2

o = V(S + g = R 3)
b

FT‘ = =gn (4)

The water surface elevation 5 may be elimated from (3) and (4) in order to obtain Smith
and Sprinks’ equation (2).

There has been a recent interest in applying time-dependent forms of the mild-slope
wave equation to the modelling of irregular seas in intermediate depth water. Kirby et al.
(1992) presented a number of computations using the time-dependent mild-slope equations
(3) and (4). They studied the propagation of wave groups in order to verify the linear
dispersive properties of the model, and then tested the model against several existing data
sets, including the wave focusing experiments by Berkhoff et al. (1982) (regular waves) and
Vincent and Briggs (1989) (regular and irregular waves). At the same time, Kubo et al.
(1992) developed a model with similar intent but a different governing equation and applied
it to a number of examples of interest. '

Battjes and Janssen (1978) used a bore analogy to study irregular wave breaking, where
the probability of the occurrence of breaking is estimated by Rayleigh distribution with an
upper cut-off. Thornton and Guza (1983) used observed wave distributions in estimating the
probability of the occurrence of breaking. Both of these methods are statistical in nature.
Svendsen (1984) developed a dimensionless energy dissipation rate which depends on both
wave height to water depth ratio and wave crest elevation to wave height ratio. Kubo et
al. (1992) used Isobe’s (1987) wave breaking model which was developed to overcome linear
model’s deficiency in applying to surf zone and which is applicable only for the bottom of
uniform slope.

In this presentation, we extend the model of Radder and Dingemans (1985) to include
surf zone wave breaking effects. We proceed by constructing a model for the energy loss in
a breaking wave based on a bore analogy, as was done in a number of previous studies.

DERIVATION OF MODEL EQUATIONS

Considering the geometry of a hydraulic jump, we write the upstream and downstream water
depths hy and hy as hy ~ (h — |n|) and hg =~ (h 4 |n|) where A is still water depth and |n| is
the wave amplitude. The head loss caused by wave breaking can be estimated as

[+ InD) = h=1DP _p ()2
(h+ Dk~ In]) 1 (L2

(5)

hr, =~
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If the energy loss caused by wave breaking is included in the linear dynamic free surface
boundary condition (4), we obtain the following equation

d¢ " :
a0 = 91~ Dt =G0, ¢) (6)
where the energy dissipation rate Dy is related to the head loss by
h lnly2 |
= T2 - Rl h'l)il - (7)
|| 1- (&
where we use the relation )
L (8)
ol 9

and where 7 is a calibration factor of order one. The energy dissipation rate is proportional
to the carrier wave frequency and is also approximately proportional to the square of wave
height to water depth ratio.

Dally et al. (1985) found, from Horikawa and Kuo’s (1966) experimental data, that the
wave height of the breaking wave attenuates until it reaches a stable wave height, which lies
between 0.35 and 0.40 times the water depth. We use the idea of the wave recovery in our
model, in order to model the effects of wave breaking in waves propagating over bars and
other isolated features.

The energy dissipation rate depends on whether the wave is locally breaking or non-
breaking. Even if the wave height to water depth ratio is locally below the breaking criterion,
wave breaking still continues if the wave is breaking and the wave height to water depth
ratio is above the recovery criterion. The breaking waves can be traced by finding the wave
velocities in # and y directions as

w
Co = k cos 6
w
C, = =
v ksin @ (9)

where the propagation direction @ can be found by

an
+arctan(g%); propagating in positive z direction
= 3 (10)
- a.rctan(-‘éi—); propagating in negative z direction

For the random waves, we separate the whole frequency spectrum into several components
with narrow band widths. At each time we compute the water surface elevations of each
component. We add all the water surface elevations of each component to get the wave
height. If it is determined that wave breaking occurs, the energy dissipation rates Dy are
computed differently at different components by using different carrier wave frequencies w,
so at higher frequency component there would be more energy dissipations than at the lower
frequency component. The propagation directions and the velocities of the breaking waves
are obtained at each component to trace the breaking waves. If the wave height to water
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depth ratio drops below the the recovery criterion, the wave breaking stops and no energy
dissipation would occur.

The sudden increase of the energy dissipation rate at the breaking point causes high
frequency noise in the solution, so we smooth the dissipation rate by averaging several
adjacent point values with slightly different weight.

The fourth order Adams-Bashforth-Moulton predictor-corrector method is used to dis-
cretize (3) and (6). In the predictor step, we have

At

o= gt 4+ o4 55F" - 59F"1 4 37F2 — 9F" %)

4 o - Ot

g+t = ¢"+ 5 {55G" - 59G" T + 37G"2 - 9G™ 3} (11)

and in the corrector step, we have

t
nn+1 o nn + %{gf,ﬂi+1 & 19F" = 5Fn—1 $ Fn—Z}
- . At
ottt = "+ Q{QG"+l 1. 1967 = 56 . G4} (12)

where the superscript n denotes the time step. If the errors between predicted and corrected
values are small enough, we proceed to next time step; otherwise, we repeat correcting until
we get small errors.

PARABOLIC APPROXIMATIONS

For monochromatic breaking waves, if the deviation of the waves from the main direction is
small and there is no reflection, the parabolic approximations can be used with minor errors
but with more efficiency. The sudden increase of the energy dissipation rate Dy at the break-
ing point does not cause any disturbance to upstream waves in parabolic approximations.

We extract the harmonic term with the wavenumber ko from the velocity potential b as

dz,y) = oo,y oo (13)

where ko(z) represents some weighted average of k(z, y) along y-direction. From the assump-
tion of mild slope of O(§?), we get the parabolic mild-slope equation for monochromatic
breaking waves:

99

5, (¥ —K5)CCy + i(a%(koccg) +W?Dy)}e=0 (1)

a o

—(CCy=) + 21k

8y( gay)‘l' ) OCC§
where the energy dissipation rate Dy is

(15)
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The propagation direction of the breaking waves can be found from velocity potential ¢
with error of O(6?) as
29 2$

f = arctan 21] = arctan( .ay. 16
(58 5 (16)

The Crank-Nicolson method is used to discretize the two-dimensional parabolic equation
(14).

For one-dimensional case, equation (14) becomes

9

a >
30 T {5, (koCCy) +w'Dp}é = 0 (17)

2koCC,

A modified Euler predictor-corrector method is used to discretize equation (17).

CALIBRATION OF PARAMETERS FOR WAVE BREAKING MODEL

We apply the parabolic model (17) to several cases with experimental data in order to
calibrate the parameter for energy dissipation rate 7, the breaking criterion (H/h)p, and the
recovery criterion (H/h),.

Horikawa and Kuo (1966) conducted two types of experiment inside surf zone. The first
type of experiment was done for horizontal bottom to determine the reformed wave height
after the stop of breaking. The resulting data was used by Dally et al. (1985) to determine
the recovery criterion (H/h), in which the breaking stops. The incident waves broke on a
1/5 sloping bottom and then propagated to the elevated horizontal bottom. The second type
of experiment was done for sloping bottom to reveal the influence of bottom slope on the
wave transformation inside the surf zone.

For the first case, we considered the experiments with a horizontal bottom of water depth
he = 15 em, a wave period 7' = 1.0 sec, and a ratio of wave height to wavelength in deep
water Ho/Lo = 0.065 — 0.100. The value of (H/h), is found to be in the range of 0.63
to 0.89 with increasing trend with increasing value of Ho/Lo, while the value of (H/h), is
found to be in the range of 0.35 to 0.41 with no particular trends (See Figure 1 (a)). The
optimum value of 4 was chosen to be in the range of 0.4 to 0.9 with increasing trend with
increasing value of Ho/Lo (See Figure 1 (b)). Figure 1 (¢) shows the comparison of the
wave height attenuations with different values of y (0.8, 0.9, 1.0) against the experimental
data for the case with Ho/Lo = 0.100, (H/h)y = 0.89, (H/h), = 0.37. Figure 1 (d) shows
the energy dissipation rate normalized by wave frequency for the case with Ho/Lo = 0.100,
(H/h), = 0.89, (H/h), = 0.37,7 = 0.9.

For the second case, we considered the experiments with bottom slope s = 1/65, a wave
period T = 1.6 sec, and a ratio of wave height to wavelength in deep water Ho/Lo = 0.065.
The value of (H/h)y is found to be in the range of 0.69 to 0.86 with decreasing trend with
increasing value of Ho/Lo (See Figure 2 (a)). The value of (H/h), is fixed to be 0.35. The
optimum value of y was chosen in the range of 0.4 to 0.8 with decreasing trend with increasing
value of Ho/Lo (See Figure 2 (b)). Figure 2 (c) shows the comparison of the wave height
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attenuations with different values of ¥ (0.3, 0.4, 0.5) against the experimental data for the
case with Ho/Lo = 0.065, (H/h), = 0.69, (H/h), = 0.35. Figure 2 (d) shows the dissipation
rate Dy for the case with Ho/Lo = 0.065, (H/h)y = 0.69, (H/h), = 0.35, y = 0.4.

At the wave breaking point, the model underpredicted wave height due to nonlinear
offects which are dominant at the breaking point, while the model used is linear. The
energy dissipation rate decreased until the water depth of about 0.6 times the water depth
at breaking point and then it increased exponentially to the zero depth. This phenomenon
was also found in terms of H/h in Horikawa and Kuo's experiments (1966). It is noticable
that the value of 7 increases with increasing value of (H/h),. The relation between (H/h)y
and v is described as

v = 1.6805( H/h), — 0.7078 (18)

with regression coefficient 0.50.

APPLICATIONS TO MONOCHROMATIC AND RANDOM WAVES

In order to dissipate wave energy at downwave boundaries, we presently use a sponge layer
at the downwave boundary. Equation 6 is modified to

9o -
2 = —gn—(Ds+ D)@ (19)
where
01 S ‘?:3 onge
DS e { an_l T pong (20)
w( e—1 /)» T 2 Tsponge

B o T — Tsponge (21)

Tmazr — Tsponge ’
and the sponge length  ponge is specified as 2.5 times the initial wave length (monochromatic
waves) or as 2.5 times the longest initial wave length (random waves).

Vincent and Briggs (1989) presented a number of experiments for waves with a combi-
nation of monochromatic, narrow-banded or broad-banded frequency spectra and unidirec-
tional, narrow-banded or broad-banded directional spreads.

We apply to the case with a monochromatic unidirectional wave (M3) of a wave height
H = 13.50 em and a wave period T = 1.3 sec. We select the parameters for wave breaking
as (H/h)y = 0.78, (H/h), = 0.35, 7 = 0.6. The grid size is Az = Ay = 0.1905m and time
step is At = T//80 sec which gives a maximum Courant number of 0.18. The average wave
heights are computed between ¢ = 17.7125 sec and t = 39 sec.

Figure 3 shows that the computed normalized wave heights are not close to the measured
data. The computed breaking waves propagated from the shoal to section 4 but only along
the center line of wave propagation with narrow width; while, the data show that wave
breaking happens widely around the center line of wave propagation.
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Mase and Kirby (1992) conducted experiments on one-dimensional random waves shoal-
ing over a plane beach of slope 1/20. The random waves were simulated with a Pierson-
Moskowitz spectrum with peak frequency (f,) of 0.6 Hz and 1.0 H z, referred as Case 1 and
Case 2, respectively. The dominant wave breaking type seen in Case 1 was plunging, while
in Case 2 spilling breakers were dominant.

We consider Case 1 here. The sampling interval is 0.04 sec and total number of sampling
values used is 4096. The incoming energy with extremely low frequencies cannot be absorbed
in the sponge layer, while the values of 7 and ¢ with extremely high frequencies cannot be
resolved numerically in space and in time. So, the spectrum of 2 percent lowest and highest
frequencies were excluded in order to get reasonable solutions. The remaining 96 percent
the sepctral density of water surface elevations recorded at depth of 47 ¢m was separated
into four components with equal energies. We use a weighted average of the frequencies
in each frequency component to determine the representative frequency used to compute
the model coefficients for each component. We select the parameters for wave breaking as
(H/h), = 0.78, (H/h), = 0.35, ¥ = 1. The grid size is Az = 0.04m and time step is
At = 0.0025 sec which gives a maximum Courant number of 0.12. From the chosen grid
spacings, the minimum ratio of wavelength to spatial grid size is 6.75. Variances of water
surface elevation are computed between ¢ = 24.4725 sec and t = 160 sec.

Figure 4 (a) shows the water surface elevations and the wave height to water depth ratio
at t = 160 sec. Figure 4 (b) shows the energy dissipation rate normalized by the highest
wave frequency 9.89 sec™! at t = 260 sec for each frequency component. In Figure 4 (b)
the energy dissipation rate at the sponge layer, which starts from 9 m from the corner, is
included. Figure 4 (c) shows the comparison of computed and measured normalized water
surface elevations at twelve gauge points.

The dissipation rate of the lowest frequency component is the smallest yielding the highest
normalized wave heights, while the dissipation rate of the highest frequency component is
the largest yielding the lowest normalized wave heights. In surf zone, in reality, the super-
harmonics and sub-harmonics of the waves cause the increase of the energy at the high and
low frequencies, respectively.

The computed wave heights at depth of 47 em are found to be 3 percent larger than the
measured wave heights which can be explained by the fact that the wave reflection occurs
from the sudden increase of the energy dissipations in surf zone. The computed wave heights
are normalized by the computed wave heights at 47 em deep. The assumed energy dissipation
parameter 7 = 1 was found not enough to dissipate the energy in surf zone.
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ABSTRACT

An existing modified Boussinesq model (MBM), with improved linear dispersion character-
istics, and a newly developed fully nonlinear version of the same model (FNBM), are used
to compute shoaling of solitary waves over a slope. Computational results are compared to
results of a fully nonlinear potential flow model (FNPF) that provides a reference solution.
Results with the FNBM show significant improvement in accuracy as compared to the so-
lution with the MBM. The FNBM is found to perform better, particularly for waves close to
breaking, in predicting wave shape, height, and particle velocity. Although well predicted in
the FNBM, except close to breaking, wave celerity is slightly better predicted in the MBM.

INTRODUCTION

Dispersion properties of standard Boussinesq models (BM) have recently been improved by
expressing the equations as a function of the horizontal velocity at an arbitrary distance z4
below the still water level (Nwogu, 1993). When using z, = —0.53h, the optimal value,
Nwogu showed that the corresponding modified (or extended) Boussinesq model (MBM)
can approximate the linear dispersion relationship over a much larger range of water depth
than the standard Boussinesq equations. Using his model, Nwogu was able to accurately
calculate surface elevations in intermediate water, up to large wave steepness, for the shoaling
of periodic waves over a gentle slope.
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Nonlinear properties of the MBM, however, are essentially identical to those of a standard
model of identical truncation order (i.e., usually of first-order). Kirby and Wei (1994)
recently extended the MBM to full nonlinearity in the free surface boundary conditions.
This fully nonlinear Boussinesq model (FNBM) conserves the dispersion properties of the
MBM while accounting for nonlinear effects to all orders. Notice, however, that as with
standard Boussinesq models the horizontal velocity in the FNBM is still quadratic as a
function of depth z (which becomes a limitation, the deeper the water).

In parallel with the development of weakly nonlinear or fully nonlinear BM’s and
their application to wave shoaling, another approach has been increasingly successful for
computing wave shoaling up to breaking over a sloping bottom. It is based on solving the
fully nonlinear potential flow equations (FNPF) in the vertical plane, for an arbitrary bottom
topography and for arbitrary incident waves (Grilli er al. 1989; Grilli 1993). Grilli ef al.
(1994) used such a FNPF model to calculate shoaling of solitary waves over a gentle slope.
Comparing their computations to laboratory experiments over a 1:35 slope, they showed that
surface elevations could be calculated to within 1% of the measurements, up to and beyond
the theoretical breaking point for which the wave has a vertical tangent on the front face.
Svendsen etal. (1994), using new adaptive regridding techniques by Grilli and Subramanya
(1994), were able to accurately compute characteristics and kinematics of breaker jets for
solitary waves, up to impact of the jets on the free surface.

ENPF models, hence, provide a “numerically exact” solution of the fundamental equa-
tions, which Boussinesq models only solve approximately, that also appears to model the
physics quite well. FNPF models, however, are computationally expensive, even in their
two-dimensional formulation, and their extension to three dimensions appears even more
prohibitive. Approximate models like BM’s, on the other hand, although limited in ac-
curacy by both their truncation error and their inability to handle overturning waves, are
only one-dimensional (for the two-dimensional problem) and, therefore, are much more
computationally efficient than FNPF models.

It is thus desirable to assess the accuracy of computations with the BM’s versus the FNPF
reference solution, for the important case of wave shoaling over a slope. In this presentation,
the ENPF model by Grilli et al. (1989), with the latest numerical improvements by Grilli
and Subramanya (1994), is used to assess the accuracy of both a computationally improved
version of the MBM by Nwogu (1993), developed by Wei and Kirby (1994), and the FNBM
by Kirby and Wei (1994), for the shoaling of solitary waves over a plane slope. Solitary
waves are used as incident waves both for simplicity, since they do not require using an
absorbing beach in the model (see Subramanya and Grilli, 1994), and because of the recent
experimental validation of the FNPF calculations for solitary wave shoaling and breaking
over a slope (Grilli, et al. 1994).
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Figure 1: Definition sketch for both the FNPF computations and for the Boussinesq models.
NUMERICAL MODELS

Fully nonlinear potential model

Equations for the FNPF model are briefly listed in the following. Details can be found
in Grilli et al (1989) and in Grilli (1993). The velocity potential ¢(, 1) is used to represent
inviscid irrotational 2D flows in the vertical plane (z, z) and the velocity is defined by,
u = V¢ = (u,w) (Fig. 1). Continuity equation in the fluid domain (t) with boundary
I'(t) is a Laplace’s equation for the potential,

Vi =0 in Q(t) 1)

Using the free space Green’s function, G(=z,®;) = —(1 /2x)log| ® — =; |, and second
Green’s identity, equation (1) transforms into the Boundary Integral Equation (BIE),

afa)i(an) = [, (o162 - o) 52N e @

n

in which @ = (z,z) and @ = (=1, 1) are position vectors for points on the boundary, n
is the unit outward normal vector, and a(=;) is a geometric coefficient. Equation (2) is
solved by a Boundary Element Method, using a set of collocation nodes on the boundary
and higher-order elements to interpolate in between the collocation nodes. Integrals in (2)
are evaluated numerically and the resulting algebraic system of equations is assembled and
solved for the equivalent discretized problem.

Along the stationary bottom I'y, and on other fixed boundaries of the domain, like I'z2, a
no-flow condition is prescribed as,

% _

=¥ =1 onT} and T;, 3)
on

Waves can be generated in the model by simulating a piston wavemaker motion on the
“open sea” boundary of the computational domain, I'y4(t), or by specifying the potential and
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the elevation of the incident wave directly on the free surface. For incident solitary waves,
an exact solution of the fully nonlinear equations, obtained using Tanaka’s (1986) method,
is used as initial wave and introduced directly on the free surface.

On the free surface I'y(t), ¢ satisfies the kinematic and dynamic boundary conditions,

%:. =(%+u.v), — on T(t) @)
Dé _ . ilog. we_Pe
B = gz + 2V¢ vVé P on I'y(t) ©)

respectively, with 7, the position vector on the free surface, g the gravitational acceleration,
z the vertical coordinate, p, the pressure at the free surface, assumed zero in the applications,
and p the fluid density. Free surface boundary conditions (4) and (5) are integrated in time
based on two second-order Taylor series expansions, for ¢ and r, expressed in terms of a time
step At and of the Lagrangian time derivative, D/ Dt. Trajectories of individual free surface
particles—identical to nodes of the BEM discretization—are thus calculated based on these
Taylor series. The time step is automatically selected in the model, based on a mesh Courant
number, to ensure optimal accuracy and stability of computations. In the applications, spatial
and temporal discretizations were selected for the errors on wave volume and energy to stay
to within 0.05% during most of the wave propagation (see Grilli and Subramanya, 1994, for
details of typical discretizations, numerical parameters, and computational errors for solitary
wave shoaling in shallow water).

Modified Boussinesq models

BM’s are derived based on the fully nonlinear potential flow equations (1)-(5), expressed
in nondimensional form using two parameters, § = a/h,, which represents nonlinearity, and
p? = (koho)?, which represents dispersion, in which a is a reference amplitude and k, a
reference wave number (see Kirby and Wei, 1994).

An equation expressing volume flux conservation is obtained by integrating the continu-
ity, bottom boundary, and kinematic free surface boundary, conditions (1)-(4) over z, from
—h to &7, as,

On ) Y
74V -M=0, M= [ Vgdz ©6)

In which 7 is the surface elevation, h is the local depth, and M is the volume flux. Equation
(6) is valid for all BM’s provided M has the required expression.

The dynamic free surface boundary condition (Bernoulli) (5) is then used to obtain a
momentum equation. Defining, v, = V ¢|., (the velocity at depth z,), and retaining terms
to O(u?) and to all orders in § gives a fully nonlinear version of the Boussinesq model
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(FNBM), with volume flux,
M = (kb bn) [+ 42 { [522 = 508 = hbn £ (8n))] V(9 - wa)
+ [z‘. + %(h = 571)] V(v (’wa))} |+0(u) )
and momentum equation,
Yot + 6(t - V)a + V) + p2Vy + 542 V2 = O(4*) (8)
where,

Vi = LAY(Y: ) 4 25(T - (huad)

- [L(EPY s + 77 - (bt ©)

Va = [(a - n)(ua VXV - (k) + 52 = () )oka - VUV o)

+%V (V- (hua) + 69V - u,)’] (10)

The modified Boussinesq model (MBM) of Nwogu (1993) is recovered by neglecting terms
of O(u*, 6%) in (7)-(10).

In both the MBM and the FNBM versions of the equations, zo = —0.531A is used in
order to obtain dispersion properties closest to the linear dispersion relation. Equations
(6)-(10) are solved for both BM’s, using an efficient fourth-order predictor-corrector scheme
(Wei and Kirby, 1994).

Wei and Kirby (1994) derived the solitary wave solution for the MBM and showed that
it slightly differs from the standard (sech?) Boussinesq solitary wave. For the FNBM, the
solitary wave solution is numerically obtained by propagating a Boussinesq solitary wave
over a long distance of propagation over constant depth, until it stabilizes in shape and
height. These respective solitary wave solutions are used as initial waves for the present
application with both BM’s.

APPLICATIONS

The shoaling of solitary waves is calculated over a 1:35 slope using the FNPF, MBM, and
FNBM models. The computational domain has a constant depth region h, for z < 0 and the
slope starts at z = 0 (Fig. 1). Since little differences exist in the wave celerities calculated in
the three models for the propagation of a solitary wave over constant depth, incident waves
were synchronized in the models when their crest reaches the toe of the slope, i.e., initial

time t' = ty/g/ho, = Oforz’' = z/h, = 0.
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Figure 2: Comparison between FNPF ( ), MBM (- - - - - ), and FNBM (— - —) results

for the shoaling of a solitary wave on a 1:35 slope, with H} = 0.2 and t' =a: 16.243;b:
22.640; ¢ : 24.032; d: 25.936. The last ENPF profile corresponds to the theoretical breaking
point for which the wave front face has a vertical tangent.
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Figure 3: Last computed FNPF (——) wave profiles for the shoaling of solitary waves on a
1:35 slope, with H! = a: 0.20; b: 0.40; and ¢ : 0.60, and ' = a : 27.829; b: 19.038; and
: 13.096.
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Figure 5: Same comparison as in Fig. 4 for the wave crest celerity c.. (upper curves) and the
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Figure 6: Same comparison as in Fig. 4 for the wave crest celerity c. and the particle velocity
at the crest V/, for an incident solitary wave with H = 0.20.

Fig. 2 shows a comparison of four wave profiles computed with all three models for an
incident solitary wave with height H, = H,/h, = 0.20. The first profile (a) corresponds
to the waves being at a location roughly half way up the slope. Wave asymmetry is not too
pronounced yet and one can see that, except for the height in the MBM, both BM solutions
agree quite well with the FNPF solution. Notice that, although it closely matches the wave
height calculated in the FNPF model, the FNBM solution exhibits slightly larger amplitudes
on both sides of the crest, i.e., a slightly larger initial wave volume. This indicates that the
initial FNBM solitary wave is a little wider than the other two initial waves.

The last profile (d) in Fig. 2 corresponds to the theoretical breaking point in the FNPF
model, for which the wave has a vertical tangent in the front face. This breaking point was
found by Grilli et al. (1994) to also closely correspond to measured breaking location and
characteristics, under well controlled laboratory experiments. Breaking thus occurs in Fig.
2 for t = 25.94 at =}, = 25.90, and with a breaking index Hy/hy = 1.402. Results show
that, with both the MBM and the FNBM models, the waves travel almost at the right speed
in the early shoaling, but too slowly in the upper slope region (z' > 24). With the MBM,
the wave significantly overshoals as compared to the FNPF results, particularly in the upper
slope region, and a spurious secondary trough is predicted behind the main crest forz' > 24.
With the FNBM, however, both overshoaling and spurious trough are almost non-existent
(at least for this slope).

Similar computations were carried out for larger waves (H, =0.40 and 0.60) using all
three models. With the FNPF model, large scale overturning of the crest occurred in all three
cases (plunging breaking) and computations were interrupted when the breaker jet impacted
the free surface (Fig. 3; and see Svendsen et al., 1994, for more information about breaker
characteristics). Using the BM’s, computed wave profiles were qualitatively similar, up to
the breaking point, to those obtained with H. = 0.20. Results for the relative wave height,
H/h, computed with all three models, are given in Fig. 4 as a function of z' (symbols (o)
mark the FNPF breaking point). At the breaking point, wave height is overpredicted by 13-
17% with the MBM, whereas little or no overprediction occurs with the FNBM. Beyond the
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the theoretical breaking point, wave height growth is unbounded in both BM’s. Fig. 4
also shows that, with the MBM, wave overshoaling mostly occurs in the region of high
nonlinearity (i.e., high H/k) closer to the breaking point. This is likely due to insufficient
nonlinear effects in the MBM and seems to be well corrected in the FNBM. It is worth
mentioning that, when using the original numerical algorithm by Nwogu (1993) (and not the
present improved predictor-corrector method), the MBM gives a much worse prediction for
the wave height, with discrepancies of up to 55% at the breaking point, as compared to the
FNPF results.

Shoaling of the same solitary waves as in Fig. 4 was also calculated with the three
models, for both milder (1:100) and steeper (1:15, 1:8) slopes. Results, not reported here,
while confirming the general trend in Fig. 2 and 4, exhibit larger discrepancies between the
surface elevation and the wave height predictions with both BM’s, and the FNPF results. It
seems, hence, that the FNBM works at best for an average slope on the order of 1:35.

Wave celerities were calculated for the three incident wave heights, H =0.2, 0.4, and
0.6, using all three models. The corresponding incident wave celerity ¢, = o/ \/9ho is
almost identical in all three models. Results are reported in Fig. 5, for both the crest celerity
calculated as ¢, = %‘/ v/gho, as a function of crest location z., and for the celerity of the
wave center of mass ¢, as a function of the center of mass location (i.e., slightly behind the
crest). Results show that both BM’s slightly underpredict the wave crest celerity as compared
to the FNPF results, for most of the shoaling propagation, with a larger discrepancy close to
the breaking point. This was already observed in Fig. 2 for H, = 0.2. Similar discrepancies
also occur for ¢,,. In fact, although its dispersion characteristics should be identical to those
of the MBM, the FNBM, here, gives a slightly worse celerity prediction than the MBM. This
could be due to the slight difference in incident solitary wave profiles.

Particle velocities at the crest, V., calculated in all three models for H, = 0.2 are
compared in Fig. 6, where corresponding crest celerities have also been reproduced from
Fig. 5. The FNPE model predicts, as expected, that V! > c. at breaking (in fact slightly
beyond the breaking point). The particle velocity at the crest in the MBM starts diverging
from the FNPF solution, about half way up the slope, whereas the particle velocity in the
FNBM stays quite close to the FNPF prediction with a maximum discrepancy of 16% at the
breaking point. In fact, despite the discrepancies at breaking in the FNMB, V! = c; (i.e.,
breaking) roughly occurs at the same location as for the FNPF model. This observation is
also true for the other tested slopes (not reported here).

CONCLUSIONS

Computational results using a MBM and a FNBM were compared to a FNPF reference
solution, for the shoaling of solitary waves over a slope. Results with the FNBM show
significant improvement in accuracy as compared to the solution with the MBM. The FNBM
is found to perform better, particularly for waves close to breaking, in predicting wave
shape, height, and particle velocity. Although well predicted in the FNBM, except close to
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More results will be presented during the conference that confirm these conclusions.
Acknowledgements

SG and RS acknowledge support for this work of the NRL-SSC, grant N00014-94-1-
G607, from the Department of the Navy, Office of the Chief of Naval Research. JK and
GW acknowledge support of the University Research Initiative grant DAAL 03-92-G-0116
from the Army Research Office. The information reported in this work does not necessarily
reflect the position of the Government.

REFERENCES

Grilli, S., 1993, “Modeling of Nonlinear Wave Motion in Shallow Water.” Chapter 3 in
Computational Methods for Free and Moving Boundary Problems in Heat and Fluid Flow
(eds. L.C. Wrobel and C.A. Brebbia), pps. 37-65, Computational Mechanics Publication,
Elsevier Applied Sciences, London, UK.

Grilli, S., Skourup, J., and Svendsen, L.A., 1989, “An Efficient Boundary Element Method
for Nonlinear Water Waves.” Engineering Analysis with Boundary Elements, 6(2), 97-107.

Grilli, S.T. and R. Subramanya, 1994, “Numerical Modeling of Wave Breaking Induced by
Fixed or Moving Boundaries.” Journal of Computational Physics (submitted).

Grilli, S.T., Subramanya, R., Svendsen, I.A., and Veeramony, J., 1994, “Shoaling of Solitary
Waves on Plane Beaches.” J. of Waterway Port Coastal and Ocean Engng., (in press).

Kirby, J.T. and Wei G., 1994, “Derivation and Properties of a Fully Nonlinear Extended
Boussinesq Model”, this conference.

Nwogu, O., 1993, “An alternative form of the Boussinesq equations for nearshore wave
propagation”, J. Waterway, Eort, Coastal and Ocean Engineering, 119(6), 618-638.

Svendsen, L.A., Grilli, S.T., and Subramanya, R., 1994, “Breaking Criterion and Breaking
Patterns for Solitary Waves on Beaches.” J. of Waterway Port Coastal and Ocean Engng.,
(submitted).

Subramanya, R. and Grilli, S.T., 1994, “Kinematics and Integral Properties of Fully Nonlin-
ear Waves Shoaling over a Slope”, this conference.

Tanaka, M., 1986, “The Stability of Solitary Waves.” Phys. Fluids,29(3), 650-655.

Wei, G. and J.T. Kirby, 1994, “A Time-dependent Numerical Code for Extended Boussinesq
Equations.” J. of Waterway Port Coastal and Ocean Engng., (submitted).

50



VELOCITY STRUCTURE IN IG WAVES
Ib A. Svendsen! and Uday Putrevu?

ABSTRACT

The vertical structure of the velocity profiles in infragravity waves is analyzed. It is shown
that while the velocity under free IG waves does not vary significantly with the vertical
coordinate, the velocity under forced IG waves has a substantial vertical structure. The
dispersion coefficient (caused by the vertical variations of the velocities in steady currents
and infragravity waves) which is an important part of the lateral mixing in the nearshore
region is found to have substantial temporal variations and an increased mean value.

1 INTRODUCTION

Recent field observations have shown that there is significant energy present at infragravity
frequencies in the surf-zone. In some cases, the energy at infragravity frequencies exceeds
the energy present at the short wave frequencies (Wright et al. 1982, Guza & Thornton
1982). Herbers et al. (1992) measured the infragravity energy outside the surf-zone and
found it to be much higher than the predictions of bound long waves created by the short
wave motion observed at the same time. They concluded that infragravity waves generated
in the nearshore region and radiated out are frequently the dominant source of energy in the
infragravity band (see also Flgar et al. 1992).

Though several mechanisms have been proposed for the generation of infragravity waves,
the dominating mechanism in the nearshore region is probably associated with the wave
breaking.

Symonds et al. (1982) and Schaffer & Svendsen (1988) proposed such mechanisms for
the generation of infragravity waves in the surf-zone and particularly studied the breaking

!Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark,
DE 19716, U.S.A.
?NorthWest Research Associates, P.O. Box 3027, Bellevue, WA 98009, U.S.A.
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of wave groups. Symonds et al. assumed that since the individual waves in a group have
different wave heights they will break at different locations thereby causing a time variation
of the break point position, and that all the groupiness of the incident wave field is destroyed
by the breaking process. The lack of groupiness in the surf-zone implies that no further long
wave generation takes place so that all the long wave motion inside the surf-zone consists
entirely of free long waves.

Schaffer & Svendsen (1988) considered the other extreme assuming that all the waves in
a group broke at a fixed location. This implies that the group structure of the incident wave
field is completely transmitted into the surf-zone. Their results showed that the groups of
broken waves continue the generation of long waves at the group period, and the long wave
motion in the surf-zone becomes a combination of free and forced long waves.

In the present paper we consider a situation where the short waves in the surf zone show
a wave height variation (groupiness) due to the presence of different wave components.

At first glance one would expect that, since the infragravity waves are long waves, the
horizontal particle velocities in the waves would be largely uniform over depth. This actually
also turns out to be true for cases where the long wave motion predominantly consists of
free long waves with no or very little local long wave generation. However, if the short wave
motion in the surf zone shows even a moderate variation (10% in the case of regular wave
groups considered here), the horizontal velocities in the long wave motion have a very strong
variation over depth.

The basic equations and boundary conditions for the problem are outlined in Section 2.
Section 3 presents a brief description of the solution and Section 4 gives numerical results
that illustrate the nature of the possible flow situations, conclusions are offered in Section 5.

2 GOVERNING EQUATIONS

For simplicity, we limit the analysis to the case of 2D surf-beats (no along-shore variation)
generated by periodic wave groups on a gently sloping plane beach. Furthermore, we restrict
ourselves to shallow water so that the pressure variation in the long waves is hydrostatic
under the free surface. We also note that in the short-wave-averaged approach used here, the
infragravity wave motion is equivalent to a time varying current. The appropriate equations
can therefore be deduced from the general equations derived by Svendsen & Lorenz (1989).
Under the conditions indicated, the depth variations of the cross-shore component of the
short-wave-averaged velocity is governed by

o _0 (000 T "
ot 9z \ oz 95~ g

Here the turbulent stresses have been parameterized by an eddy viscosity v, U(z,z2,t)
represents the shore-wave-averaged velocities, u,, represents the short wave induced velocity
component in the cross-shore (z) direction. In (1) and all subsequent equations, an overbar
denotes a quantity averaged over a short wave period, ¢ is the short-wave-averaged free
surface elevation (equivalent to the surface elevation in the infragravity waves superposed on
the steady set-up).
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Eq. (1) represents an extension to the time varying situation for the usual equations
governing the undertow and longshore currents, and hence requires boundary conditions
similar to what has been used for example for undertow models. We restrict ourselves to
periodic infragravity motions and thereby eliminate the need for initial conditions.

As one boundary condition, we relate the bottom shear stress to the velocity profile

au
=2 - 2
PVt e )z=—hc| Th (2)
and assume that the bed shear stress is related to the near bottom velocity Uy = U(z = —hg)
by 1
Ty = §wa“0U6 (3)

where f,, is a friction factor and ug is the amplitude of the near bottom short-wave induced
oscillatory velocity. (2) and (3) lead to the following boundary condition for the velocity
profile (Svendsen & Hansen 1988)

aUu 1
vy ‘5;)2=_h0 = §fw“0Ub (4)

For the steady case, most undertow solutions specify the depth integrated volume flux Q
as a second boundary condition. Normally, that will also be the appropriate condition for
the unsteady case we are locking at here. This requires, however, that we determine Q and
¢ either from a 2D numerical model (see e.g. List, 1992) or from an analytical solution for
the long wave pattern (see e.g. Symonds et al. (1982) or Schaffer & Svendsen (1988)). In
the present paper, this complication is avoided by using as the second boundary condition
the shear stress 7, at the mean water level. This 7, is related to the derivative of the velocity
profile by 5

Ts = PV % (5)

which thus constitutes the second boundary condition for (1).

3 SOLUTION PROCEDURE

All shore-wave-averaged quantities f in the surf-zone are written as

f(z,z,t) = fo(z,z) + fi(z,z,t) (6)

where the subscript 0 and 1 refer to the steady and unsteady (infragravity) parts respectively.
Thus, for example, the steady set-up {p corresponds to the set-up caused by the mean short-
wave motion, the unsteady part (; to the surface elevation in the infragravity wave motion.
The same applies to the velocity U and the surface shear stress r,.

Substituting (6) into (1) and separating into steady and unsteady parts by assuming

Tgroup > Tshort lea.ds to
0 (000 _ &G (T
0z (y‘ 0z ) =9 + (u‘” du )0 (7
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and U d oU d¢y d
U 1) = g% _(, Otw
o 9z (vf' 9z ) - Yz ooy 1 (8)
The corresponding boundary conditions are

At mean water level (z = C_o)

oU, S
g = (9)
aUl _ Ts,1
vb* az - P (10)
At the bottom (z = —hy)
U, 1
Vi "5;0 = §fw uoUos (11)
AU 1
vy 3_::1 = §fwﬂoU1b (12)

Equation (7) subject to (9) and (11) is the usual undertow problem inside the surf-zone.
The solution to this problem has been analyzed extensively in the literature and will be
assumed known and not discussed further here. We will concentrate on solving (8) subject
to (10) and (12) which means determining the vertical variation of the velocity for infragravity
wave motion.

In (10) the term 7, (2,1) in the surface boundary condition represents the time and
space variation above the mean water level of the radiation stress due to the wave height
variation (groupiness). In (8), the (u,duy,/dz); term represents the equivalent variation
of the radiation stress between the bottom and the mean water level. Hence, both these
terms are in phase with the short wave height variation. In contrast, the d¢;/dz term in
(8) represents the surface elevation gradient in the long wave motion which, in general, will
not be in phase with (or even phase locked to) the short wave height variation because it
consists of the sum of the bound long wave motion (which is phase locked) and the free long
wave motion (which can have any phase relative to the short wave variation).

The solution is developed by assuming each of the variables Uy, (3, Ts,1 and (uw%“;ﬂ)l
have in principle the form

F(z,z,t) = Fi(w,z)exp (—iwt) (13)

though F; for (uw 3—55151) . is assumed independent of z. The complex F; includes the phase of
each variable.

If we define the parameter
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then the results for U; become (after extensive algebra)

v =2 {cos(w-c) + \/E?ﬁFz(z) cos [wt — ¢ — hua(2)]
+£‘::‘5 %U;ng(:) cos [wt — ¢p — ¢>a(z)]} (14)

In the above t = 0 is chosen to correspond to the time when the entire right hand side of (8)
attains its maximum, the value of which is termed F,. (For details, see Putrevu & Svendsen
(1993) which also gives the values of the other parameters in (14)).

4 RESULTS

4.1 Velocity Profiles

An analysis of (14) reveals that essentially there are three important parameters that influ-
ence the solution. They are Bh, Ts3/pF, and 6. Here T, is the amplitude of the (oscillatory)
shear stress, 7y, of the mean water surface. This shear stress represents the surface part of
the variation in radiation stress caused by variations in short wave height. 7, is phase shifted
relative to the flow created by the sum of the total long wave motion and the radiation stress
variation between bottom and mean water surface (the right hand side of (1) (RHS), which
represents the forcing), and é is a measure of that phase shift. Since RHS is assumed depth
uniform, this part of the flow is depth uniform.

The effect of 7, is to modify the flow created by the RHS of (1). This modification
is equivalent to an oscillatory (surface) boundary layer with a thickness parameter S~1.
Hence, the parameter (#h)~! measure over how large a fraction of the water depth the flow
is modified by the surface boundary layer. And, in fact, (8h)~! also measures the vertical
scale of influence of the bottom shear stress, 7,;. In view of the relatively complicated
solution (14) for the temporal variation of the vertical profiles, the most illustrative approach
for examining the results is to select two typical situations and choose values of the three
parameters based on a quantitative estimate of their magnitude in those two situations.

The first of the two situations considered in the following represents a short wave motion
in the surf zone with virtually no variation in wave height. This means there is no generation
of infragravity motion in the surf zone, all long wave motion is free wave motion incident
from somewhere else. In covsequence, T is very small, and F, is dominated by the 01/ 0x
of the free long wave motion (758/pF, = 0.01). With realistic estimates of v, (0.01h+/gh)
and a group period of T\/g/h = 100 we get Sh = O(1). Hence the effect of the surface as
well as the bottom shear stresses cover nearly the entire depth.

The resulting flow is the sum of the steady undertow Uy and an almost depth uniform
Uy (Fig. 1): The infragravity part of the total velocity is almost constant over depth as one
should expect. This also implies that the value of §, the phase between the depth uniform
forcing (free long wave) and the surface shear stress, makes no difference.

In the second situation, there is a moderate modulation of the mean short wave height of
+ 10%. Whereas this does not change F, significantly, T is now noticeable and T oFy = 2.
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The phase angle § can take any value because the infragravity wave is reflected from the
shoreline and hence essentially is a standing wave, whereas the short wave motion and its
variation propagates toward the shore. Thus different values of § may simply occur at
different positions.

As Figs. 2a-2d show the resulting velocity profiles are very different from the depth uni-
form motion normally associated with long waves. The four parts of this figure corresponds
to§ =0, /3, 27/3 and 7 respectively. It is seen that there are even times where significant
velocities occur in opposite directions at the surface and the bottom at the same time.

4.2 Dispersive Mixing

On a long straight coast it has been found that the primary source of lateral mixing is
caused by cross-shore transfer of longshore momentum (see Svendsen & Putrevu 1994).
This dispersive mixing is provided by the cross shore circulation and is usually 20-50 times
stronger than the lateral mixing caused by breaker turbulence. The mixing coefficient D, is
given by

D 1/6 U]El " Udsdad (15)
O ity ke T gy

where U is the undertow velocity. In the situations studied here where U changes sub-
stantially with time (15) results in an equivalent time variation of D.. Figure 3 shows the
variation of D; over a long wave period for the case analyzed in Fig. 2. The constant value
of D, = 0.2 represents the value of D, for the average (i.e. steady undertow) profile. The
other curves are for each of the four situations in Fig. 2. It is clear that not only is there a
noticeable variation of D. over a long wave period, but the mean value is also much larger
than in the steady case with the same mean cross-shore circulation.

5 SUMMARY AND CONCLUSIONS

In this paper we have presented an analysis of the vertical variation of the particle velocity
in periodic infragravity motion.

For the case of surf-beat due to normally incident wave groups on a long beach, an
analytical solution was presented for the velocity profiles for a combination of free and
forced infragravity waves. Combined with the steady undertow profile inside the surf-zone
this represents the long wave and current velocity inside the surf-zone.

The results show that the vertical structure of the velocity profiles depends strongly on
whether the infragravity waves are predominately free waves or a combination of free and
forced waves.

Under free infragravity waves, the velocity profiles show relatively minor variations over
depth and are generally in line with what one expects in long waves. Forced infragravity
velocity profiles, on the other hand, show substantial vertical structure.
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The dispersion coefficient which controls the cross-shore distribution of the longshore
infragravity velocity field was shown to have substantial variation over the period of the
infragravity waves and was found also to have a substantial spatial variation across the
surf-zone.
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Figure 1: Total short wave averaged velocity field inside the surf-zone for

V21,8/pF )= 0.01, fh = 1.5 and Fy/ (wy/gh) = 0.1. This corresponds Lo a case with little
short wave variability in the surf zone. Ilence the local generation of long wave energy is

small and the infragravily waves are alimost exclusively free long waves.
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NUMERICAL MODELLING OF SOLITARY WAVE BREAKING,
RUNUP AND REFLECTION
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Newark, DE 19716, USA

ABSTRACT

A numerical model for breaking solitary waves is developed by expanding the available
one-dimensional time-dependent model which has been used succesfully to predict regular
and irregular wave dynamics on slopes. For an efficient comparison of the expanded model
with a large number of available laboratory tests on smooth uniform slopes, the dimensionless
parameters involved in the problem are identified using the normalized governing equations
and incident solitary wave profile. The representative solitary wave period and associated
surf similarity parameter are introduced to examine the similarity and difference between
solitary and regular waves. The breaking, runup and reflection of solitary and regular waves
are qualitatively similar in terms of the surf similarity parameter. For given surfl similarity
parameter, breaking solitary wave runup is definitely larger than breaking regular wave runup
which is affected by the interaction between wave uprush and downrush. The expanded
numerical model is shown to be capable of predicting the normalized wave runup as a [unction
of the surf similarity parameter.

INTRODUCTION

Solitary wave runup has been studied in relation to coastal flooding and damages caused by
tsunamis, whereas regular and irregular wave runup has been investigated for the design of
coastal structures against wind waves. Although these two problems are related, separate
empirical and numerical methods are generally used to predict wave runup partly because
solitary waves do not have specific wave periods.

Kobayashi and Watson (1987) developed a numerical model based on the nonlinear shal-
low water wave equations. This model has been used succesfully to predict regular wave
dynamics on slopes. This model is expanded herein for solitary waves by introducing a rep-
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resentative solitary wave period on the basis of the normalized solitary wave profile. The
representative wave period and associated surf similarity parameter are then used to facilitate
the comparisons of the characteristics of solitary and regular waves.

An emphasis is placed on runup of breaking solitary waves since runup of nonbreaking
solitary waves is better understood theoretically (e.g., Synolakis, 1987a) and may be pre-
dicted well by numerical models based on potential flow theory. Moreover, unlike Hunt’s
formula for predicting runup of breaking monochromatic waves on smooth uniform slopes
(Battjes, 1974; Ahrens and Martin, 1985), no general empirical formula exists for breaking
or broken solitary wave runup.

Numerical models based on potential flow theory are not applicable to broken waves.
Boussinesq wave models such as a Lagrangian finite-element model (Zelt, 1991), which in-
clude nonhydrostatic pressure correction, may be used to predict runup of broken solitary
waves if the effects of wave breaking and bottom friction are included empirically. However,
it is not obvious whether the nonhydrostatic pressure correction based on the potential flow
assumption of weakly nonlinear and relatively long waves is really valid for broken solitary
waves. In any case, the present numerical model is probably the simplest time-dependent,
one-dimensional model for predicting the nonlinear breaking or broken solitary waves char-
acteristics on the slopes.

To assess the capability of the expanded numerical model, comparisons are made with
the laboratory data of breaking solitary wave runup (Synolakis, 1987a). The model with a
limited calibration of the bottom friction factor is shown to be in good agreement with the
data. Tn terms of the surf similarity parameter the characteristics of the computed solitary
wave breaking, decay and reflection are shown to be qualitatively similar to those of regular
waves (Battjes, 1974).

NUMERICAL MODEL

Governing Equations

The numerical model developed herein is based on the depth-integrated continuity and hor-
izontal momentum equations (Kobayashi and Watson, 1987). The two-dimensional coor-
dinate system is defined as follows: @’ = horizontal coordinate taken to be positive in the
landward direction with 2 = 0 at the toe of a smooth slope with a constant angle ¢ from the
horizontal; 2/ = vertical coordinate taken to be positive upward with 2’ = 0 at the still water
level (SWL). The prime indicates the dimensional variables. The instantaneous free surface
is located at 2z’ = 7/, and the instantaneous water depth is denoted by h'. The smooth uni-
form slope is located at 2/ = (2’ tan 0’ —d}) in which d} = water depth below SWL at the toe
of the slope. Assuming the vertical pressure distribution to be approximately hydrostalic,
the governing equations may be expressed as

oh' 0

-{'}F -|- %(h’u') =1 (1)
& it o 12 0 TI: 7
8.8 TR o R e e )
('Jt’(hu)+ 83;"("’ W) gh 9w p (2)
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where ¢/ = time; v’ = depth-averaged horizontal velocity; 7y = bottom shear stress; p = fluid
density that is assumed constant; and g = gravitational acceleration. The bottom shear
stress may be expressed as

1
T §f'|u"|u’ (3)
where [’ = bottom friction factor which is assumed constant.

The following dimensionless variables and parameters are introduced to normalize (1)
and (2):

v 2 u g h'
kIR v (v Ul il T )

7 d e 1
nzé—;;d,:1—;;;0=1"}}%;8=ata.119’;f=§af’ (5)

where 1" = representative wave period and H' = incident solitary wave height at @ =
0; ¢ = ratio between the horizontal and vertical length scales; 0 = normalized gradient
of the slope; and f = normalized bottom friction factor. The present numerical model
assumes that o2 > 1 and (cot8)? > 1 (Kobayashi and Wurjanto, 1992). In terms of
the normalized coordinate system, the smooth uniform slope is located at z = (0z — dy) for
a > 0. Substitution of (4) and (5) into (1) and (2) yields

oh 0

7t -55(!:.&) =0 (6)
0 d g damn  am
;,)—t(.-'m) + }-)_;Q(fm + Eh )= —0h — flu|u (7)

Eqs. (6) and (7) are solved numerically in the time domain to obtain the variations of h and
u with respect to ¢ and @ for given @ and f (Kobayashi and Karjadi, 1993).

The surf similarity parameter £, which has been used successfully to describe the char-
acteristics of regular waves on uniform slopes (Battjes, 1974), is given by { = 0/+/2r and
proportional to the normalized slope gradient #. The normalization of (1) and (2) using 1"
and H' clearly shows that ¢ expresses the normalized slope effect in (7).

Solitary Wave Profile and Representative Wave Period

Solitary wave theory corresponds to cnoidal wave theory as the Ursell parameter U, ap-
proaches infinity. In the numerical model, the normalized incident solitary wave profile 7;(1)
at @ = 0 is derived by normalizing the dimensional solitary wave profile using (4) and (5)
and is given by (Kobayashi and Karjadi, 1993)

ni(l) = sech?[K(t — tc)] for t>0 (8)

with

. V3o  1)\%

in which ¢, = normalized arrival time of the solitary wave crest such that 7 = 1 at ¢ = i;
and K = solitary wave parameter.
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In order to estimate the representative wave period 7", the unit duration (¢, —0.5) <t <
(te + 0.5) about the crest arrival time ¢, may be selected such that 7;(t) > 6; in this unit
duration where 6; is a small parameter. Substituting this requirement into (9) yields K as a

which yields ' = 3.64,4.36 and 5.99 for §; = 0.1,0.05 and 0.01, respectively. For given
dy, I given by (9) is proportional to o defined in (5) and hence the representalive wave
period T". The computed results for § = 0.1,0.05 and 0.01 in the report of Kobayashi
and Karjadi (1993) have indicated that the choice of 6; does not effect the essential results
presented hereafter for §; = 0.05. The crest arrival time &, in (8) is taken as t. = 1 since
(8) yields 7;(t = 0) = 0.00066 for t, = 1 and § = 0.05. The initial time ¢ = 0 may hence
be regarded as the time when the incident solitary wave arrives at & = 0. In addition, the
computed temporal variations starting from the initial time ¢ = 0 can be interpreted easily.
In summary, 7;(t) given by (8) with ¢, = 1 and K = 4.36 (& = 0.05) is the same for any
solitary wave, and o computed using (9) is used to estimate 7" for given d;.

Computer Program

Kobayashi and Karjadi (1993) developed a computer program called SBREAK to solve (6)
and (7) numerically. The incident solitary wave at the seaward boundary of the computation
domain given by (8) needs to be specified as input. The variations of & and u are computed
as a function of ¢ and @ starting from ¢ = 0 when no wave action is present in the region
@ > 0. The normalized reflected wave profile 7,(t) at the toe of the slope is computed from
the characteristics advancing seaward (Kobayashi et al., 1987).

The computation duration is taken to be long enough to simulate at least the entire
process of wave uprush and the resulting runup. The numerical method as well as the
seaward and landward boundary conditions are the same as those used by Kobayashi et
al. (1987). The dimensionless parameter involved in this problem are { = 0/v/2r,d; and
[ = 0.50f" where o is given by (9). Alternatively, £,d; and [’ are selected as the three
independent parameters since the assumption of constant f’ for given slope roughness has
been satisfactory in previous applications (Kobayashi et al., 1987, 1989).

COMPARISON WITH AVAILABLE DATA

To assess the capability of the expanded numerical model, comparisons are made with the
breaking solitary wave data of Synolakis (1987a). For his experiments the assumption of
02> 1 is valid as long as d; is larger than about 2, for which the incident solitary waves at
the toe of the slope are non-breaking (Kobayashi and Karjadi, 1993). If d; becomes much
larger than unity, the dispersive effects neglected in the present model may not be negligible
in the region between the toe of the slope and the point of wave breaking. This is one of the
reasons that the numerical model is compared herein with only the breaking solitary wave
data of Synolakis (1987a).
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Synolakis (1987a) conducted a series of laboratory experiments using a uniform slope
of cot @' = 19.85 constructed of aluminum panels with a hydraulically smooth surface. The
wave generator produced near-perfect solitary waves. The wave heights in the constant depth
region measured by resistance-type wave gages are assumed herein to be the same as the
incident solitary wave heights H' at the toe of the slope. The runup gage consisted of array of
capacitance probes whose tips were 1 mm from the bottom surface. The measured maximum
runup R’ may hence be assumed to correspond to the maximum value of 7" at the location
where the instantaneous physical water depth A’ = 1 mm. The computed normalized runup
R = R'/H’ has been shown to be not very sensitive to this water depth (Kobayashi and
Karjadi, 1993).

Synolakis (1987a) tabulated 77 tests with d; = 1.58—-200,0 = 6.22— 1004, R = 1.28—4.56
and & = 0.125 — 20.2 for which the assumption of ¢2 > 1 made in the numerical model is
satisfied. In his experiments, breaking on the slope occurred during backwash when d; < 22.7
(€ < 2.25) and during uprush when d; < 18.2 (£ < 1.79). These conditions are similar to
the conditions of & $ 2.3 for regular wave breaking (Battjes, 1974) which is affected by both
uprush and backwash. For 43 tests, wave breaking occurred on the slope during wave u prush.

The use of the surl similarity parameter for solitary waves allows the comparisons between
solitary and monochromatic waves. Hunt’s empirical formula gives the relation between I
and £ for breaking monochromatic waves on smooth uniform slopes (Battjes, 1974; Ahrens
and Martin, 1985)

tan 6’
- “;’% for 0.15€52.3 (11)

The dimensionless parameters associated with the numerical model indicate that the nor-
malized runup R for solitary waves depends on & and d; for given slope roughness. The surfl
similarity parameter ¢ includes the effects of both tan 6’ and o where o depends on dy in view
of (9) and (10) for given ;. The normalized runup of breaking solitary waves on smooth
uniform slopes may be assumed to be a function of £ only provided that the normalized
water depth at the toe, dy, is sufliciently large and its direct effect on R is negligible. The
relationship between R and £ fitted to the 43 tests for solitary wave breaking during uprush
is expressed as (Kobayashi and Karjadi, 1994)

R = 2.955¢%%%  for 0.125 < € < 1.757 (12)

The empirical formula (12) is as good as the formula R = 1.109d94'8 proposed by Synolakis
(1987a) for his breaking solitary wave data. The advantage of (12) is that it may not be
limited to the 1:19.85 smooth slope only.

The numerical model is compared with 9 tests out of 43 tests of Synolakis(1987a) for
breaking solitary wave runup. The 9 tests are selected to represent the range of parameters
for the 43 tests, i.c., dy = 1.58 = 17.9,0 = 6.22 —87.4,£ = 0.125 - 1.757, and R = 1.28 —3.70.
Two values of the bottom friction factor f/ = 0.01 and f’ = 0.005 are assumed. The value of
f' = 0.01 was the lower bound for the plywood slope used by Kobayashi and Watson (1987).
The aluminum slope used by Synolakis (1987a) must have had a smaller friction factor since
it was smoother than plywood. As expected, the value of f’ = 0.01 slightly underpredicts
the normalized runup R. The value of f’ is then reduced to f' = 0.005 in the hope of better
agreement. The measured and computed values of R with f' = 0.01 and f' = 0.005 are
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shown in Table 1 as a function of £, together with the empirical formula R = 2.955£0-%9
where Hunt’s formula for breaking regular wave runup is given by R = £. Table 1 shows
that the values of f/ = 0.01 and f’ = 0.005 give the approximate lower and upper bounds
of the 43 measured I, respectively. As a result, the value of f' = 0.006 or 0.007 should
give very good agreement with the data. Table 1 also indicates that for given surf similarity
parameter, breaking solitary wave runup definitely larger than breaking regular wave runup
which is affected by the interaction between regular wave uprush and downrush on the slope.
Comparisons of the computed results using f/ = 0.01 and f’ = 0.005 show that the reflected
wave profile 7, at the toe of the slope is affected very little by f’ and that the increase of f'
reduces wave runup noticeably.

As an example, the computed results for test 32 with & = 0.591 and /' = 0.005 are
discussed briefly in the following. Figs. 1 and 2 show the spatial variations of the maximum,
mean and minimum values of the normalized free surface elevation 7 and the normalized
depth-averaged velocity u, respectively. The spatial variation of the maximum normalized
free surface elevation, fmax, seaward of the still water shoreline is qualitatively similar to
the analyzed data presented by Synolakis and Skjelbreia (1993). In the wave uprush zone
landward of the still water shoreline, the water depth below the approximately straight
envelope of fmax decreases gradually. Near the still water shoreline, the computed velocities
of uprushing and downrushing water are very large and the mean velocity is negative as has
been shown for monochromatic waves by Kobayashi et al. (1989). To examine the solitary
wave evolution on the uniform slope, the spatial variations of the computed free surface
elevation 77 and the depth-averaged velocity u are plotted at t = 1 to t = 8 in Fig. 3. The
incident solitary wave appears to be breaking at ¢ = 2. At ¢ = 4, the tip of uprushing water
moves upslope while the rest of the water flows seaward. The maximum runup occurs around
{ = 4.5. Wave breaking during the downrush is apparent at t = 6.

To elucidate the effects of the surf similarity parameter £ on the solitary wave dynamics
on uniform slopes, the computed results for £ = 0.125 (test 23), 0.591 and 1.757 (test 40)
using f’ = 0.005 are plotted in the same figures. The computed incident and reflected wave
profiles at & = 0 are plotted in Fig. 4. The spatial variation of the normalized maximum free
surface elevation fnax corresponding to the envelope of the solitary wave crest is plotted in
Iig. 5. Fig. 4 shows that the increase of ¢ leads to the increase in the magnitude of wave
reflection which is qualitatively similar to the reflection of breaking regular waves (Battjes,
1974). Fig. 4 also shows the decrease of wave reflection duration with the increase of €. The
temporal variations of reflected waves are similar to the measured variations presented by
Synolakis (1987b). Fig. 5 shows that the region of wave decay becomes narrower as & is
increased. It is apparent in Fig. 5 that the normalized slope gradient @ increases with the
increase of €.

CONCLUSIONS

Introduction of a representative solitary wave period has been shown to allow the develop-
ment of the one-dimensional time-dependent numerical model for breaking solitary waves
by expanding the existing model for regular and irregular waves on slopes. The modified
numerical model has been shown to be capable of predicting breaking or broken solitary wave
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runup with a limited calibration of the bottom friction factor. The surf similarity parameter
for solitary waves on slopes is shown to be useful in interpreting the breaking solitary wave
characteristics in comparison with the regular wave characteristics.
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Table 1: Measured and Computed Normalized Runup for 9 Tests.

Test & R = 2.955£0-395 Computed R Measured
No f7=0.01] f" =0.005 R
710.181 1.50 1.28 1.48 1.43
15| 1.076 3.04 2.86 3.21 3.00
18 | 0.298 1.83 1.62 1.87 1.85
21| 0.328 1.90 1.70 1.95 1.78
23 | 0.125 1.30 1.12 1.29 1.33
32 | 0.591 2.40 2.22 2.55 2.42
37 | 1.300 3.28 3.13 3.46 3.44
39 | 1.507 3.48 3.30 3.63 3.51
40 | 1.757 3.69 3.47 3.84 3.70
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Pigure 1: Spatial Variations of Maximum, Mean and Minimum Values of Normalized I'ree

Surface Elevation 7 for Test 32 with f' = 0.005.
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Figure 2: Spatial Variations of Maximum, Mean and Minimum Values of Normalized Depth-
Averaged Velocity u for Test 32 with f* = 0.005.
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ABSTRACT

A numerical model for a network of one-dimensional channels is applied to predict flooding of
a roadway between relatively small bays due to storm surge and spring tide through an inlet.
A small-scale experiment for steady flow over an obstacle was conducted to assess whether
a simple term for flow contraction and expansion added to the standard one-dimensional
momentum equation is appropriate or not for vertical contraction and expansion. The nu-
merical model with the contraction-expansion coeflicient K = 0.5 is shown to be capable of
predicting the overall free surface variations over the obstacle, although it does not predict
well the free surface dip at the crest of the obstacle and the computed discharge may not be
very accurate. The numerical model with I = 0.5 is then applied to predict the stillwater
elevations at the existing and raised roadways for different storms. The computed results
indicate that the raised Roadway will not increase the essentially horizontal stillwater eleva-
tions in the vicinity of the rcadway as a dam in a river might. The computed peak stillwater
elevations are compared with limited available data.

INTRODUCTION

For large-scale phenomena such as storm surge and tides, physical modelling is generally
expensive and difficult due to scale effects. Numerical models calibrated using field data are
hence widely used to simulate large-scale phenomena. However, large-scale numerical models
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may not predict local hydraulic phenomena very accurately as compared to physical mod-
elling. As a result, a hybrid approach based on numerical and physical modelling together
with field data may be employed to make the best use of available modelling techniques and
solve practical problems. Such a hybrid approach is used herein to investigate flooding of a
roadway between two bays where one bay is connected to an ocean through an inlet.

Delaware State Route 54, which is simply called the Roadway hereafter, runs between
Little Assawoman Bay in Delaware and Assawoman Bay, which are called the North and
South Bays, respectively, for brevity. The South Bay is connected to the Atlantic Ocean
through the inlet at Ocean City, Maryland as shown in Fig. 1. A relatively narrow con-
nection, called the Ditch, exists between the North and South Bays. The entire area along
the Roadway between the North and South Bays is low with an elevation of less than 1 m
above the mean sea level. Although the Roadway is supposed to be an evacuation route for
the residents along the Roadway and the Atlantic shoreline, even minor storms flood the
Roadway, rendering it impassable.

One of the Roadway improvement alternatives considered by the Delaware Department
of Transportation is to raise the elevation of the Roadway with fill and a new pavement. The
frequency and duration of no vehicle passage on the raised Roadway during storms needs to
be predicted to determine an appropriate elevation of the raised Roadway. One of the major
concerns of the residents along the Roadway is whether the raised Roadway would increase
the stillwater elevations during storms in a manner similar to the backwater effect behind a
dam in a river. To address these hydraulic problems, the stillwater elevations on the existing
and raised Roadways need to be predicted and compared for storms of different recurrence
intervals and different elevations of the raised Roadway.

NUMERICAL MODEL

Because the relatively small bay system shown in I'ig. 1 may be regarded as a network
of one-dimensional channels, the following one-dimensional continuity and momentum equa-
tions without lateral flow and wind (e.g., French, 1985; Amein and Kraus, 1991) may be
adopted:

0A  0Q
i +5; = ) (1)
9 9 (@) _ QE@K"’(Q)Q
0£+3.1:(/1) - _Q’I[a;ﬁc'?*zg% A @)
with
M o 478
c=3 = A;RY (3)
ol

in which ¢ = time; @ = horizontal coordinate following the channel alignment; A = cross-
sectional area; ) = discharge; ¢ = gravitational acceleration; 7 = water surface elevation
which is assumed to be horizontal in the direction normal to the x-axis; C = conveyance; and
K = contraction-expansion coefficient. The conveyance C, based on the Manning formula
for a composite cross section with M subsections of different roughness and depths, is given
by (3) with @ = 1 for SI units and a = 1.49 for English units in which nj, A; and R; are
the Manning coeflicient, area and hydraulic radius of subsection j, respectively. The mass
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conservation equation based on @ and the continuity of the water surface elevation n are
applied at each junction of channels. Eqs. (1) and (2) with (3) are solved using the weighted
four-point implicit finite difference method employed by Amein and Kraus (1991) together
with appropriate initial and boundary conditions.

EXPERIMENT

In order to assess whether the numerical model based on (1) and (2) with a constant value
of I can predict the converging and diverging flows over an obstacle such as the Roadway,
a steady flow experiment was conducted in a horizontal flume, which was 5 m long, 7.6 cm
wide and 25 em high. An available triangular obstacle was used in the experiment. The
triangular obstacle was Scm high and 37.5 cm long at its base. The side slopes were 1:1.8
and 1:5.7. Three tests were conducted: no obstacle in the flume, with the steeper 1:1.8 slope
of the obstacle facing upstream, and the steeper slope of the obstacle facing downstream.
The bottom of the flume turned out to be somewhat irregular and could not be used as the
datum; therefore the horizontal stillwater level of approximately 8 cm depth in the flume
was used as the horizontal datum. At 28 horizontal locations within the fully developed
flow region, a point page was used to measure the steady free surface and bottom elevations
relative to the datum. The errors of the elevation measurements were estimated to be £
0.01 cm. The measured free surface and bottom elevations for the three tests are shown
in Fig. 2 where the horizontal coordinate = 0 is located at a distance of 2.2 m from the
flume entrance. The relatively small free surface variations are enlarged in Fig. 2 to discern
the water level increase upstream of the triangular obstacle and the water level dip in the
vicinity of its crest. The discharge measured by a flow meter was @ = 1.0 (/s for the three
tests.

For the numerical computation, the measured steady free surface elevations at @ = 0
and = = 260 cm are specified as the upstream and downstream boundary conditions. The
measured steady free surface elevations and discharge in the computation domain 0 < @ <
260 cm are specified as the initial conditions of the time-dependent numerical model so as
to obtain the steady flow solution corresponding to the specified boundary conditions in an
efficient manner. The computed and measured steady free surface elevations and discharge
are compared to assess the degree of the agreement. The test with no obstacle in the flume
was used to estimate the value of n in this specific experiment so as to separate the frictional
effect from the effect of the flow contraction and expansion. Fig. 3 shows the computed
and measured free surface variations for this test with ' = 0. The computed free surface
variations for n = 0.01, 0.005 and 0.003 are very similar to that shown in Fig. 3 for n = 0.002
partly because the measured free surface elevations at @ = 0 and & = 260 cm are specified as
the boundary conditions. The computed steady discharge is @ = 0.23, 0.45, 0.79 and 1.07
(/s, respectively, in comparison with the measured discharge Q@ = 1.0 £/s. Consequently, n
= 0.002 is used for the other two tests for the flow contraction and expansion.

The typical values of I =~ 0.5 for both contraction and expansion recommended by Amein
and Kraus (1991) may be reasonable for large-scale horizontal contraction and expansion but
it is not certain whether K =~ 0.5 is reasonable for vertical contraction and expansion of the
flow such as the Roadway would produce. The computed and measured free surface variations
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for the tests with the steeper 1:1.8 slope of the triangular obstacle facing downstream and
upstream are shown in I'igs. 4 and 5 for K = 0.5, respectively. The computed {ree surface
variations and discharge are not very sensitive to & in the vicinity of &' = 0.5. The computed
discharge for the test shown in Flig. 4 is @ = 0.79, 0.85 and 0.91 for K = 0.6, 0.5 and 0.4,
respectively. For the test shown in Pig. 5, Q@ = 0.57, 0.62 and 0.62 £/s for K = 0.5, 0.4 and
0.3. The computed discharge for these values of I is smaller than the measured discharge 1
¢/s. Figs. 4 and 5 indicate that the constant value of I = 0.5 yields reasonable agreement
between the computed and measured {ree surface variations except for the dip in the vicinity
of the sharp crest of the triangular obstacle. The free surface dip for an obstacle with a
rounded crest may not be as pronounced as those shown in I'igs. 4 and 5. In summary,
these limited comparisons suggest that K =~ 0.5 may be used as a first approximation for
predicting the overall [ree surface variations over an obstacle, although the details of the free
surface variations may not be predicted well, and the computed discharge may not be very
accurate. The calibration of K for different obstacle shapes and orientations may somewhat
improve the agreement between the computed and measured results but the last term on the
right hand side of (2) added to the standard one-dimensional momentum equation may be
too simple and crude to describe the detailed converging and diverging flows over an obstacle
such as the Roadway.

STILLWATER ELEVATIONS ON EXISTING AND RAISED ROADWAYS

The numerical model based on (1) and (2) with K = 0.5 is applied to the bay system shown
in Fig. 1, which is represented by 35 cross sections, 7 channels and 3 junctions. The length
between node 1 and the North Bay is approximately 71,000 ft (22,000 m). The Roadway
is located at node 32. The bathymetry at each cross section is specified as input. It is
easy to account for the wetting and drying of subsections at each cross section in the one-
dimensional model. The values of n; for subsections are taken to be 0.02 for deep areas, 0.025
for shallow areas, and 0.035 for areas covered with vegetation. The boundary conditions of
zero discharge is assumed at the landward end nodes where fresh water inflow is negligible.
At node 1 seaward of the Ocean City Inlet, the temporal variation of the water surface
elevation 7 is specified as input. The computation is initiated as a cold start and the initial
conditions are taken as a horizontal water surface and zero discharge at t = 0. To account
for the initial transition, the computation is started from the measured spring tide at node
1 before storm surge is added to the spring tide as explained below. Using the available
storm tide data (Ilo et al., 1976), 10 synthetic hydrographs at node 1 due to the measured
spring tide and estimated storm surge of 40 and 60 hr durations are developed to represent
the 10, 20, 50, 100 and 500 yr storms with two different temporal variations. The stillwater
elevation used lerealter is the water surface elevation in the absence of waves above the
mean sea level (the Nationai Geodetic Vertical Datum of 1929). It is noted that the length
unit in the following figures is in feet (1 ft = 0.305 m) for the convenience of users of these
figures. Fig. 6 shows the specified temporal variations of the stillwater elevation at node 1
for the 50 yr storm where the 40 and 60 hr durations of the storm surge are in the intervals
t = 35-75 hr and t = 25-85 hr, respectively. The peak stillwater elevation at node 1 in Fig.
6 occurs at ¢ = 55 hr and is the same for both 40 and 60 hr durations.

Five different cross sections at node 32 are examined to represent the existing Roadway
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and raised Roadways with the minimum elevations of 3.5, 4.0, 4.5 and 5.0 ft. The temporal
variation of the stillwater elevation al node 32 is computed for these 5 cross sections at node
32 driven by each of the 10 synthetic hydrographs at node 1. I'ig. 7 shows the temporal
variations of the stillwater elevation at node 32 corresponding to the 50 yr storm at node 1
for the existing Roadway and the Roadway raised to a minimum elevation of 5 {t as depicted
in Ilig. 8. The 50 yr storm hydrograph used to drive the system at node 1 is depicted in
I'ig. 6. The water depth in the Ditch, shown in I'ig. 8, is 6 ft below the mean sea level. It is
noted that both sides of the Ditch are high because of abutments for the bridge spanning the
waterway. I'ig. 7 and the other computed results for 10, 20, 100 and 500 yr storms indicate
that the stillwater elevation at node 32 is practically the same for the existing Roadway
and the raised Roadways with the minimum elevations of 3.5, 4.0, 4.5 and 5.0 ft. This is
because the stillwater elevation in the vicinity of the Roadway is essentially horizontal for
storm surge and tides whose horizontal length scale is much larger than the length of the
flooded Roadway. On the other hand, Iig. 7 and the other computed results indicate that
for the storm with the same peak stillwater elevation at node 1, the increase of the storm
surge duration from 40 hr to 60 hr does result in a slight increase of the stillwater elevation
at node 32.

Fig. 9 shows the peak stillwater elevations as a function of the horizontal distance from
node 1 along the main channel as depicted in IMig. 1 for the 10, 20, 50 and 100 yr storms with
40 and 60 hr durations. The computed peak stillwater elevations along the main channel
are practically the same for the existing Roadway and the Roadways raised to a minimum
elevation of 3.5, 4.0, 4.5 and 5.0 ft. The peak stillwater elevations computed for the 500 yr
storm are not shown in I'ig. 9 because breaching of the barrier island separating the Atlantic
Ocean and the Bays may occur during the 500 yr storm and increase the peak stillwater
elevations in the Bays. In the absence of breaching of the barrier island, the peak stillwater
elevations decrease rapidly in the vicinity of the Ocean City Inlet and remain almost the
same in the South and North Bays for each storm with a specified duration. For the same
peak stillwater elevations at node 1, the 60 hr storm surge increases the peak stillwater
elevation at node 32 by about 0.3 ft in comparison to the 40 hr storm surge. There is little
historical storm surge data for the Bays. I'or the 1991 IHHalloween Storm, the peak elevation
recorded at the NOAA tide gage at Ocean City, Maryland was 5.5 {t, while the Delaware
Department of Natural Resources and Environmental Control reported a peak elevation of
4.0 ft in the North Bay. The recurrence interval associated with this storm was considered
to be about 10 yr. The computed results for the 10 yr storm shown in Flig. 9 are at least
qualitatively consistent with this limited data.

CONCLUSIONS

The numerical model for a network of one-dimensional channels is applied to examine flooding
of the Roadway between the Bays due to storm surge and tides through the Ocean City
Inlet. A small-scale experimnent for steady [low over an obstacle was conducted to assess
the capability of the numerical model based on a constant contraction-expansion coefficient
K. The numerical model with &' = 0.5 is shown to be capable of predicting the overall free
surface variation over the obstacle, although the detailed free surface variation and discharge
may not be predicted very accurately. The numerical model with K = 0.5 is then applied
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to predict the stillwater elevations at the existing and raised Roadways for different storms.
The computed results indicate that the raised Roadway with the minimum elevation of 5 ft
or less will not increase the essentially horizontal stillwater elevations in the vicinity of the
Roadway such as a dam located on a sloping channel bottom might. The computed peak
stillwater elevations seem to be consistent with limited available data but need to be verified
using more comprehensive and quantitative data.
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Assawoman Bay due to Storm Surge and Tide through Ocean City Inlet, Maryland.
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Abstract

Short waves in a channel can present navigational problems and may excite har-
bor oscillations. Channel sidewalls may reduce much of this wave energy, if they are
sufficiently porous or they are sloped. Here we present a model for wave propaga-
tion in prismatic channels of arbitrary cross-section utilizing a numerical eigenfunction
expansion. Sloping sidewalls are shown to produce edge wave motions.

Introduction

Long waves in channels have served to provide much of the impetus for the study of
waves. Kelland (1839, as cited in Lamb, 1945) provided a wave equation for waves in
prismatic channels of arbitrary cross-section. Scott Russell (1844) provided evidence
for the presence of solitary waves in channels. More recent work is Peregrine (1968,
1969), who examined nonlinear long waves in narrow channels, and Mathew and Akylas
(1990), who examined the wide channel case, noting the three-dimensional nature of
the waves.

Here we treat short waves, such that the depth/wave length ratio can exceed 1/20.
For straight channels with rectangular cross-sections of width 2b, the wave propagation
problem can be viewed as a summation of simple wave modes, whose amplitudes are
determined at the mouth of the channel. For example, Dalrymple (1989), examining
waves in rectangular channels past abrupt changes in cross-section, expanded the wave
field in cross-channel eigenmodes,

cos(Any),n =10,1,2,..., (1)
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where A, = n7r/b. Each of these modes satisfies a no-flow boundary condition at the
vertical sidewalls. The total (forward-propagating) wave potential satisfies the Laplace
equation and is given by
a(mj il cosh k(h + 2) it
cosh kh

where -

&(:L‘, y) = eik:: | Z An ei y K2 =Ahe cos ’\ny (2)

n=1

and k is the wave number, given by the usual linear theory dispersion relationship.
This methodology is a discrete form of the angular spectrum modelling methodology
(e.g., Dalrymple and Kirby, 1992). Dalrymple and Kirby (1988, §3.3) used this angular
spectrum approach for waves diffracting into a wide channel.

Dalrymple (1992) examined dissipation of wave energy into channel sidewalls (mo-
tivated by the experimental results of Melo and Guza, 1991, which showed dramatic
decreases of wave energy). He used an impedance boundary condition at the sidewalls,

b . - :
a—y—27¢5 (3)

where v is k (the wave number) times the specific admittance /3 of the jetties, which is
determined empirically. The lateral eigenfunctions that satisfy the boundary conditions
at the sidewalls are the same as before (1), but a new relationship establishes the values
of A\,:

— A tan A b =iy (4)

For channels that are narrow with respect to a wave length, he obtained an exponential
wave height decay along the channel centerline depending on the real part of g divided
by b (so that the wave decay is less for wider channels). In addition, the effect of
uniform currents in the channel was discussed.

Most navigational channels do not have prismatic cross-sections. For example,
jettied channels are often trapezoidal in cross-section. Isaacson (1978) has empirically
studied the attenuation of waves along a trapezoidal channel with rubble sidewalls.
For this case, a mathematical treatment involves lateral eigenfunctions other than the
cosines used for a rectangular channel. In this paper, a numerical approach is presented
to find the eigenfunctions and the resulting wave motion in prismatic channels. (For
non-prismatic channels, the change of the eigenfunctions along the channel also must
be taken into account.)

Theory

The wave motion in a channel (for which all of the fluid lies under the free surface; no
overhanging banks) is governed by the mild-slope equation (Berkhoff, 1972), which is
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transformed into a variable coefficient Helmholz equation (Radder, 1979):

04 (24 = o) = k2 vzm
a:?"i'"a?‘l‘f‘ ¢ = 0, where K(y) = k* — 0a,

with , the propagation direction, y across the channel, and z vertically upwards from
the still water level. Again, k is the wave number, and C' and C; are the phase and group
velocity, corresponding the dispersion relationship, w? = gk tanh kh. Kirby (1994) has
shown that this form of the mild slope equation avoids singularities at the shoreline
for sloping channel sidewalls. Introducing K? as a cross-channel averaged value of K?,
this equation may be written as

¥ 2 2'-' R . ’2
%+ %+?ﬁ(l —v)¢ =0, where v(y) =1 — %
Separation of variables, @ = X(2)Y(y), leads to two equations:
Y o ) r
dy? + (/\2 — K? U(y)) Y =0 (5)
0*X _ i
57 H P - X)X = =0 (6)

For a rectangular cross-section, v, which measures the cross-channel variation in K?,
is zero, and the cosine cross-channel modes given in (2) result from Eq. (5). For non-
rectanguler cross-sections, the second term in Eq. (5) for Y has a variable coefficient.
There are few analytical representations.

For arbitrary prismatic cross-section, (5) may be solved numerically by finite dif-
ferences. Representing the y axis as y = jAy and Y(y) as Y}, we can represent (5)
as ;

Yier — (K%0; — A)Ay? +2)Y; 4+ Y1 =0 j=1,2,...,N
J J 3 b

and we use the finite difference equivalent of the no-flow (or impedance) boundary
conditions at the sidewalls. The resulting numerical eigenvalue problem has as many
eigenvalues (),) and eigenfunctions as there are interior grid points (). Each of these
numerical eigenfunctions is then used with the solution of the X equation, which is

simply
A’(;I?) — Anei\/ K2-)\2 »

where A,, is the contribution of mode Y, to the initial condition at = 0 (the channel
mouth), which is found by using the orthogonality of the eigenfunctions. (Numerical
accuracy precludes using much more than N/2 modes; therefore N is chosen to be
large.)

If K? varies down the channel (that is, the channel is not prismatic), then the
solutions for X and Y must be obtained at each location down the channel.
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Results

Rectangular Channel

To test the methodology, a comparison was made to the analytic model of Dalrym-
ple (1992) for waves in a straight channel with rectangular cross-section of width
2b. An impedance boundary condition (3) was used to permit wave energy dissi-
pation in porous channel sidewalls. Figure 1 shows the instantaneous wave field
(n(z,y) = —(iw/g)¢(x,y,0)) and the absolute value of 5 in a channel with the fol-
lowing characteristics: [ = 2000m, b = 120m, h = 8m, T" = 12s, and the specific
admittance is 0.156, which gives v = 0.012m~'. ( The numerical model was run with
grid sizes: dz = 3.3389m, dy = 4.m, N = 61) Note the decay of the wave height with
distance along the channel and the curvature of the wave crests due to the propaga-
tion of the waves into the dissipative boundaries. (Another analytic treatment of this
problem is in Martin and Dalrymple, 1994.)

3 \

Lamgin of

Figure 1: Plan View of Instantaneous Water Surface Elevation (left) and Absolute
Value of Water Surface Elevation (right) (Contours Intervals in Contour Plot are 0.1)

The absolute magnitude wave height decay down the channel centerline for this
example is given by Dalrymple (1992: H = Hyexp(—I'z), where I' = v/(2kb)). The
difference between this and the numerical results is not large, if an initial focussing
of the waves near the mouth of the channel (z ~ 200m) is neglected. The assumed
initial condition of normally incident waves with unit amplitude across the channel
mouth (that is, neglecting the diffraction of the incident waves by the breakwater tips)
leads to a forced phasing of all the modes which comprise the wave field, such that, as
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the waves propagate down the channel, there is an (unrealistic?) focussing after one
wavelength for this wave period.

Also, there were no discernable differences between the numerically-determined
eigenfunctions for the numerical solution and exact cosine eigenfunctions, Eq. (1).

Triangular Channel

Kelland (1879, as cited in Lamb, Art. 261, 1945) considered an infinitely long straight
channel with a triangular cross section with the sidewalls inclined at 45 to the vertical.
He obtained an analytical solution for arbitrary water depth, which, for shallow water,
corresponds to a zero mode edge wave on the channel sidewall. Macdonald (1894, also
cited in Lamb, 261, 1945) treats sidewalls with a 60° angle analytically.

The left part of Figure 2 shows the instantaneous wave field in a triangular channel,
which has the following characteristics: width=16 m, length=100 m, height(deepest)=8
m, T' = 2.05s. (The numerical model was run with grid sizes: dz = 0.2506m, dy =
0.1333m, N = 121.) Clearly the incident wave train has excited shorter wavelength
edge waves along the sloping side walls, while the incident wave train persists in the
center of the channel. The corresponding numerical eigenfunctions are also shown in
Figure 2. For each of the eigenmodes, there is an even and an odd shape about the
centerline. The magnitude of all the odd modes is (numerically near) zero, while the
amplitudes of the even modes decrease rapidly. For this case, the zero mode even edge
wave amplitude is 1.0, the next eigenmode has a magnitude of 0.443, and the third
mode has an amplitude of only 0.013. Therefore only three of the eigenmodes account
for most of the wave motion.

Trapezoidal Channel

The third example consists of a straight channel with a trapezoidal cross-section. The
channel is 150m long, 26.72m wide, 3m deep. The sidewalls are (mildly) inclined at
80¢ from the vertical (downward) direction. The wave period T' = 2.2s. Figure 3 shows
the instantaneous wave field. Again, with the sloping sidewalls, edge wave modes are
excited. This time, as seen in lower part of Figure 3, edge wave modes zero through
five are excited; however, the higher modes merge across the channel. (The numerical
model was run with grid sizes: dz = 0.75188m, dy = 0.5041m, N = 124.)

Arbitrary Channel Cross-section

The first example is a straight channel with cross section seen in Figure 4. The channel
is 8.2m wide, 40m long, 2m deep at the largest depth, 1m at the smallest depth. The
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wave period is 2s. Figure 5 shows the instantaneous wave field and the first five
eigenfunctions. This channel cross-section is similar to the analogous case of a circular
channel with a flat bottom, conformally mapped to a straight channel. For the arbitrary
cross-section channel, the waves are refracted to the right side of the channel, for the
circular channel analog, the waves propagate towards the outer side wall due to the
curvature of the channel (which bends to the left for this case), cf. Kirby et al., 1994;
Dalrymple et al., 1994. (The numerical model was run with grid sizes: dz = 0.0802m,
dy = 0.328m, N = 25.)

The second example has the same cross section as the previous example. The
channel is now wider (50m), 100m long, 2m in the largest depth, 1m in the smallest
depth, wave period is 5s. Figure 6 shows the instantaneous snapshot of the free surface.
Clearly the effect of the different wave period and cross-sectional width leads to more
refraction to the right sidewall. In the analog to a circular channel, this corresponds
to a wider channel, with diffraction on the inner wall, as the wave curve around the
bend and reflection from the outer sidewall. (The numerical model was run with grid

sizes: dz = 0.2004m, dy = 1.m, N = 50.)

The third example is a straight channel with cross section seen in Figure 7. Channel
is 8.2m wide, 60m long, 3m in the largest depth, wave period is 2.5s. Figure 8 shows
the instantaneous wave field and the first five eigenfunctions. (The numerical model
was run with grid sizes: dz = 0.12024m, dy = 0.341667Tm, N = 25.)

Figure 4: Cross Section of Arbitrary Channel (Case 1)

Conclusion and Discussion

Examples of a numerical methodology for computing short wave fields in prismatic
channels have been given for several channel geometries: a straight rectangular channel
(to compare with the simple analytic solution), a triangular channel, a trapezoidal
channel, and finally a channel with arbitrary cross-section.

For each case, the water surface displacement created by a uniform wave train
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Figure 5: Wave Field and Eigenfunction for Waves in Arbitrary Channel (Case 1)

Figure 6: Wave Field and Eigenfunctions for Waves in Arbitrary Channel (Case 2)
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Figure 2: Instantaneous Wave Field and Eigenfunctions for Waves in a Triangular
Channel
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Figure 3: Wave Field and Eigenfunctions for Wave in Trapezoidal Channel
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normally incident on the channel is shown. This surface displacement is a superposition
of the eigenmodes, determined numerically from the lateral eigenvalue problem.

Channels with sloping sidewalls give rise to the presence of edge waves, excited
by the incident wave field. These edge waves have a different wave length than the
incident wave field and they are the largest at the shoreline, hence providing potential
for greater wave damage and erosion there. Wave breaking has been ignored in this
linear analysis, but may be of importance in the field.

Figure 7: Cross Section of Arbitrary Channel (Case 3)

Figure 8: Wave Field and Eigenfunctions for Waves in Arbitrary Channel (Case 3)
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