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1

The Kadomtsev-Petviashvili (KP) equation was first derived to describe weakly nonlin-
ear and weakly dispersive surface water waves propagating over a constant depth in a
predominate direction with a small transversal modulation (Kadomtsev & Petviashvili
1970 and Johnson 1980). The constant depth assumption poses a great limitation
on the practical application of the KP equation. Several extended or generalized KP
equations have been derived to include additional physical and geometrical factors,
such as the Colioris force, a weak steady background current field with non-vanishing
vorticity, and the variation of topography and sidewalls. Moreover, many attempts

have also been made to extend the KP equation to internal waves in stratified fluids

Abstract

In this paper, the propagation of interfacial waves in a two-layered fluid sys-
tem is investigated. The interfacial waves are weakly nonlinear and dispersive
and propagate in a slowly rotating channel with varying topography and side-
walls, and a weak steady background current. An evolution equation for the
wave amplitude is derived for waves propagating predominately in the longitu-
dinal direction of the channel. This new evolution equation is called the unified
Kadomtsev-Petviashvili (uKP) equation because most of the KP-type equations
existing in the literature for both surface water waves and interfacial waves are
special cases of the new evolution equation. The Painlevé PDE test is employed
to find the conditions under which the uKP equation can be solved by the inverse
scattering transform. When these conditions are satisfied, elementary transfor-
mations are found to reduce the uKP equation into one of the completely inte-
grable equations: the KP, the Korteweg-de Vries (KdV) or the cylindrical KdV
(cKdV) equations. The integral invariants associated with the uKP equation for
waves propagating in a varying channel are obtained and their relations with the

conservation of mass and energy are discussed.

Introduction

and interfacial waves in a two-layered system.



Using the Lagrangian equations, Grimshaw (1985) derived a rotation-modified KP
(rmKP) equation for long internal waves propagating in a rotating channel with a
constant depth and width. Katsis & Akylas (1987) gave an informal derivation of
the rotation-modified KP equation for interfacial waves of a two-layered system. They
studied the effect of rotation on the propagation of an originally straight-crested solitary
wave in a rotating channel which has a constant depth and width. In the case of
free surface waves, Grimshaw & Melville (1989) rederived the rotation-modified KP
equation from the Euler equations. They showed that in general, solutions of the
rmKP equation are not locally confined because of the radiation of three-dimensional
Poincaré waves behind. Later, Grimshaw & Tang (1990) studied the rmKP equation
both analytically and numerically to determine the structure of the solutions which are
initially localized.

Starting from the Euler equations, David et al. (1987) derived a generalized KP
(gKP) equation which describes surface water wave propagation in a wide strait or
channel with a slowly varying topography and width, and a weak steady current field
with non-vanishing vorticity. Under certain restrictions on the vorticity and the ge-
ometry of a strait, the gKP equation can be reduced into one of several completely
integrable partial differential equations, such as the KP, KdV and cKdV (cylindrical
KdV) equations (David et al. 1989). lizuka & Wadati (1992) used the potential theory
to derive a variable-coefficient KP (vcKP) equation for surface water waves propagating
over an uneven bottom in an unbounded domain. Imposing some limitations on the to-
pography, they reduced the vcKP equation into the KP equation and found analytical
solutions to describe the deformation of a line soliton due to the depth variation.

In summary, for surface water waves, the existing KP-type equations mentioned
above take either the effect of variation of the topography (David et al. 1987 and
lizuka & Wadati 1992) or the rotation effect into consideration (Grimshaw & Melville
1989), but none of them considers both effects simultaneously. For interfacial waves
in a two-layered system, the KP-type equation has not been rigorously derived. The

primary objective of this paper is to derive a unified KP equation (uKP) for surface and



interfacial waves propagating in a rotating channel or strait with varying topography
and sidewalls. We shall demonstrate that the uKP equation includes most of the
existing KP-type equations in the literature as special cases and shall also investigate
the properties of the uKP equation.

In the next section, we start with the Euler equations for interfacial waves in a
two-layered rotating channel. Assuming that the nonlinearity, dispersion, rotation,
transversal modulation, and the variation of the topography and the sidewalls of the
channel are small and equally important, we derive an evolution equation for the in-
terfacial wave amplitude, called the unified KP (uKP) equation. The effect of a weak
steady current field on wave propagation is also taken into account in the process of
deriving the uKP equation. When the density of the upper layer is zero, the uKP
equation reduces to the evolution equation for a free surface wave propagating in the
same physical and geometrical setting. The uKP equation is expressed in terms of two
stretched horizontal coordinates and one characteristic coordinate moving at the lead-
ing local linear-long-wave speed. In section 3, the Painlevé PDE test is used to find the
complete integrability conditions for the uKP equation, which allow the corresponding
Cauchy problem to be solved exactly by the inverse scattering transform. Moreover,
when the integrability conditions are satisfied, the uKP equation can be transformed
into one of well-known equations: the KP, the KdV or the cKdV equations via elemen-
tary transformations. As a result, for certain topographies and sidewalls, it is possible
to obtain analytical solutions for solitary-wave propagation in the absence of rotation
(which is one of the conditions for the uKP to be completely integrable according to
the Painlevé test). In section 4, the integral invariants associated with the uKP equa-
tion for waves propagating in a varying channel are sought and their relations with the

conservation of mass and energy are also discussed.



2 Derivation of the evolution equation

2.1 Governing equations and approximations

We consider internal waves propagating along the interface of two fluid layers confined
to a channel rotating on the f-plane with a constant Coriolis parameter f/2. The
densities of the upper and lower layers are p* and g~ (p~ > pt), respectively. Cartesian
coordinates are employed with Z-axis pointing vertically upwards, &-axis pointing in
the longitudinal direction of the channel and g-axis in the transversal direction. The
still interfacial surface is defined by Z = 0 and the upper and lower layers are originally
bounded by 7 = H* and 2 = —H (%, §) respectively, where the bottom is allowed to
vary in the &- and §-direction.

The fluid in the channel is assumed to be inviscid and incompressible. The governing

equations for flows in the upper and lower layers are:
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where signs are vertically ordered and the superscripts “ +” and “ —” are used to

identify quantities in the upper and lower layers, respectively; 4*, %% and w* represent
the velocity components and $* is the hydrodynamic pressure. The total pressure p
is written as

P* = —ptgz 4 5t (2.1e)
where g is the gravitational acceleration.

The kinematic and dynamic boundary conditions along the interface, Z = (£, Z, §),



are

— 4+ on zZ =1 (2.1f)
Pt =p- on 7 = 7 (2.1g)
The rigid-lid assumption is adopted to approximate the free surface

@t =0 on 3 =H* (2.1h)

The no-flux boundary conditions on the bottom, 7 = —H~(&,7), and the vertical
sidewalls of the channel, § = §.(2) and § = %i(2), are

. e )
w = —ﬁ_% — v a@ﬁ on z=—H (&%) (2.11)
and
di
it =Y on g =i(&), ii(#) (2.15)
dz
respectively.

We introduce the following dimensionless variables:
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where lo and hq are the characteristic wavelength and depth, respectively; po is the
characteristic density; ao and ¢y are the characteristic amplitude and phase speed of
linear long interfacial waves, respectively.

The corresponding dimensionless version of equations and boundary conditions (2.1)

becomes
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where parameters €, u? and v are defined as:
l
€= Eﬂ, pz = (hoﬂo)z ) Y= _af (2-4)
0 Co

Thus, € measures the nonlinearity, while u? represents the relative shallowness of the
fluid layers. The parameter v is the reciprocal of the Rossby number and measures the
ratio of the Coriolis acceleration to the inertial acceleration.

We shall derive an evolution equation for weakly nonlinear and weakly dispersive

waves in a slowly rotating channel. Explicitly, we assume that

p=ea, y=+ep (2.5)

where ¢ < 1 and a = O(1), B = O(1) are two arbitrary constants. Furthermore, the
weakly three-dimensional effect is also considered (i.e., waves propagate predominately
in one direction, say the +z-direction). According to the linear dispersion relation, if

the weakly three-dimensional effect is as important as the weakly dispersive effect, the



variation of the wave field in the y-direction should be O(p) or O(+/€) by (2.5) (Akylas,
1994). In other words, the wave field in the y-direction is a function of a slow variable
Y defined as

0 1 0

Y =+/ey with 2 7—;5’9‘_ s QL) (2.6)

Therefore, the channel can be viewed as a very wide channel in the sense that its typical
width lo/4/e = O(ho/€) is much greater than the typical depth ho for € < 1.

If the effects of the variation of the topography and the sidewalls of the channel
are as important as the effects of nonlinearity, dispersion, rotation and transversal
modulation, the assumptions (2.5) and (2.6) impose certain limitations on the shapes
of the topography and the sidewalls of the channel. The most general topography and

sidewalls fitting in this framework are

H™ = h™(ez) + eB(ex,Y) (2.7a)
=2 Y, - Y] 2.7b
b= r(ez), w="z L(ex) (2.7b)

In other words, the variation of the topography in the y-direction is both gentle (H~
is a function of slow variable Y') and weak (% = O(€)), while the variation in the
z-direction is only required to be gentle. The channel should be wide and the change of
the sidewalls in the z-direction should be gentle. We remark here that in David et al.’s
paper for surface water waves (1987), the topography in the y-direction is restricted to
a linear function of Y (up to O(e)): h = ho(ez) + ehi(ex)Y + O(e?), which is a special
case of (2.7a).

2.2 Perturbation analysis

We introduce the following transformation

Il

= d
5:/0 = il X =ez, Y = ey, Z

Cleo) z (2.8a)



e (X)) = (h+ + 5= )ﬁl (2.8b)

and h* = HT = const is used. Note that A~ is the leading order term in the expression
for the topography H~ (see (2.7a)). Therefore, C is the leading order of the local linear-
long-wave speed and ¢ = O(1) is the characteristic coordinate moving at the speed of
C. The transformation (2.8a) is simpler than the equivalent one used by David et al.
(1987) for surface water waves (see (2.17) and (2.21) in their paper) because by the
definition of (2.8b), C(X) is independent of € and Y in our new coordinates. Thus,
there is no need to expand C in terms of € in the following perturbation analysis and
the relations among the derivatives in the new and old coordinates are much simpler.

The relations between the derivatives with respect to the old independent variables
(t,z,y,z) and the new independent variables (¢, X,Y, Z) are given as:
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In terms of the new coordinates, equations and boundary conditions (2.3) can be

rewritten as
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where (2.7a) and (2.7b) have been used.
A solution to the governing equations and boundary conditions (2.10) is sought in

the following series forms:
G(¢,X,Y, Z;e) = Go(¢, X, Y, Z) + €Gi(¢, X, Y, Z) + O(€) (2.11a)

vE(E, XY, Z;€) = eVE(E, X, Y, Z) + €2 (¢, X, Y, Z) + O(e"/?) (2.11b)
’7(6: X: Y; E) = ﬂﬂ(erX'.l Y) + 5"?1(5: X: Y) + O(Ez) (211(:)

where G = {u*,w*,p*}. We remark here that the leading order of the z-component
of the velocity, ui, is O(1), while the y-component, vy, is O(y/€). Substituting (2.11)
into (2.10) and expanding the interfacial conditions (2.10e) and (2.10f) at Z = 0 and
the bottom boundary condition (2.10h) at Z = —h~, we obtain a sequence of initial-

boundary value problems by collecting coefficients of .
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2.3 The zeroth-order problem

The zeroth-order problem is

10uf Owy
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From (2.12a)—(2.12h), we obtain the following solution forms
+ c? +
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(2.12€)

(2.12f)

(2.12g)

(2.12h)

(2.12i)

(2.13a)

(2.13b)

(2.13¢)

(2.13d)

(2.13€)



where .7-';': and F are integration constants with respect to £. In view of the transfor-
mation (2.8a), these functions are independent of the physical time ¢£. We could also
integrate (2.13c) with respect to { and introduce another set of integration constants
FE(X,Y,Z). However, to obtain the evolution equation for 7o, a%,g%_ will be used di-
rectly. These integration constants, ¥, F* and .7:;':, represent a background steady
current field (with non-vanishing vorticity), which is in the same order of magnitude as
the velocity field associated with the wave motion. Note that we have already expressed

all zeroth-order solutions in terms of 5o which can be determined from the first-order

problem.

2.4 The first-order problem

The governing equations and boundary conditions for the first-order problem can be

written as . Q " 5
10uy Owy  Oug O
C ot ' 8z 08X oY (3.148)
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£ _ 447 :
v =uo on Y = Yr(X), Yr(X) (2.141)
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in which (2.12d) has been used to obtain (2.14f). Substituting (2.13d) into (2.14d) and
integrating the resulting equations from 0 to Z, we obtain the vertical profiles of the

pressure p;
A 8%
+ = (el )
= plO - - h* ( + h Z) 652 (2'15)

where pi(¢,X,Y) = pi(¢,X,Y,2Z)|z=0. All the other first-order quantities will be
expressed in terms of 7o and pi;.

Substituting the zeroth-order solutions (2.13) and (2.15) into (2.14b), we obtain

dui 1 0pi a 22 .\ Pno C om2 8 (C?
5t~ C o i(;‘hi FhZ) 5es T oy e T ox \rE™

- - Y u L)
Ao T T 3¢ hE B¢ 0Z | 08X
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+
Replacing %‘é— in the continuity equations (2.14a) by (2.16), integrating the resulting
equations with respect to Z from 0 to At for wl and from —h~ to 0 for w;, and
applying the boundary conditions (2.14g) and (2.14h), we obtain both upper- and

lower-layer vertical velocity components evaluated along Z = 0
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where wiy(€, X,Y) = wi (¢, X,Y, Z)|z=0 and
ht 0
ut(x,Y)= [ Frdz, uU-(X,Y)= f | FidZ (2.18)
5 e

which are the volume fluxes of the background current field in the z-direction in the
upper- and lower-layer, respectively. Differentiating (2.17) with respect to ¢ and sub-
stituting (2.13c) into the resulting equations, we find

Quly _ h*0%ply o(h*)Y 'm0 1 Onf ., 00 _,dC On
ot C? H¢2 3C? 0¢* ' 2ht 0¢? 0X8¢ “dX 8¢
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On the other hand, from the dynamic interfacial condition (2.14f), we have
T =p Pro— P Plo (2.20)

Substituting this expression and the zeroth-order solutions (2.13) into the kinematic

interfacial conditions (2.14e), we have

o _0p 0Py _ 1 Oy | Filz=o0mo
ot g ot h: B¢ C ot

(2.21)

wm

Differentiating equations (2.21) with respect to ¢ and repla.cmg by (2.19), w
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obtain
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Multiplying (2.22a) by % and adding the resulting equation to (2.22b), all terms on
the left-hand side are cancelled and all terms on the right-hand side yield

(525 o -2
where

Da(X) =p~ ()" + (-1)"p* (1)" (2.24a)

No(X,Y) = p~U™(h7) ™" + (=1)"p Ut (h*)™ (2.24b)

and (2.13e) has been used.
The boundary conditions for 7o on the sidewalls are obtained by differentiating
(2.12i) with respect to ¢ and substituting (2.13b) and (2.13c) into the resulting equa-

tions

O B 1d¥Y0m o iri o _
57 T 6™~ GIX Be =B (ptFf —p Fy) onY =Ya(X),Y5(X)  (2.25a)
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with

h++£ih“ ﬂ+ﬂ(h+'f”++h‘}")—0 ¥ = Yl X). Yol X 2.25b
aY- u u - on - R( )! L( ) ( )

Both (2.25a) and (2.25b) require that F¥ be independent of Z on Y = Yg(X) and
Y = Y5(X). Thus, from (2.18), F¥ = U%/h* on the sidewalls. Therefore, from the
governing equation (2.23) and the boundary conditions (2.25), the influence of the
steady current field on the wave field is through the fluxes in the z-direction in both
layers, U* (note that the counterparts in the y-direction are O(4/€), see (2.11b)). If

Ut =U~ = 0, the weak current field does not have any impact on the wave field (up
to O(e)).

2.5 Mean interfacial surface displacement and the evolution
equation

When the rotation is present and the averaged mass fluxes of the steady current in the
z-direction are not identical in the upper and lower layers, i.e., @ # 0 and N; # 0 (which
means £ [°,_ FodZ # ,;‘Li Wt F+dZ), equation (2.23) is an inhomogeneous differential
equation for the interfacial displacement 7o, while (2.25a) are inhomogeneous boundary
conditions. Since the terms on the right-hand side of (2.23) are independent of £, the

solution to (2.23) can be written as
where the steady part (independent of the physical time )

(X, Y) = —Bexp(—pY/C) [ : Ni(X,Y")exp (BY'/C) dY’ (2.27)

16



is the particular solution to (2.23) which also satisfies the boundary conditions (2.25a),

while the unsteady part 7 is the solution to the homogeneous equation:

# 2 2,52 2 92~ 2
Vol (Vo) +p B 2p 00, OO £,

o¢ ¢z o6t " 2 0vy2 2
302 L3070, 9%

The boundary conditions for 7 are also homogeneous

% 4 g . éj—;g—g =0on Y = Yg(X), Y5(X) (2.29)
Thus, when the averaged mass fluxes of the steady current in the z-direction are not
identical in the upper and lower layers, the rotation will cause a mean interfacial surface
displacement, Z = 7j(X,Y).

In equation (2.28), X, which is proportional to the spatial variable z, can be viewed
as a time-like coordinate, while ¢ as a space-like coordinate. The “initial” condition
for (2.28) at X = X, corresponds to the interfacial displacement data measured over
a period of the physical time ¢ along the cross-section z = ®¢. The physical meaning
of each term in (2.28) is explained as follows: the first term represents refraction
and shoaling and leads to the Green law; the second (D_, # 0) and the third terms
describe the nonlinear and frequency dispersion effects; the fourth term represents the
modulation in the transversal direction; the fifth term accounts for the rotation effect;
and the last term comes from the difference between the leading order linear-long-wave
speed C and the actual linear-long-wave speed, which is contributed by the deviation
of actual topography from h~, the background steady current field and the mean
interfacial surface displacement. The effect of the sidewalls appears only in boundary
conditions (see (2.29)).

When the channel is not varying (i.e., the bottom is flat and the sidewalls are
straight and parallel), the background current field is absent, and a = 1 (i.e., p? = ),

17



equation (2.28) and boundary conditions (2.29) become (7 = 0 and 5 = 7o)

&0  3C* 8} Dy  C*0nme P

Coxoe T 1 P%e "6 aes T 2oy 2™ =0 L4100
% + gﬂg =0 Y = YR,YL (230]'3)

Because the channel is not varying, it is more straight forward to introduce a slow time

variable T' = et instead of the slow variable X = ez in the transformation (2.8a)
¢=5—t T=et, Y=yey, Z=2 (2.31)

The relation between 7' and X is given by

T = % — €t (2.32a)
With the following changes
d 1 0 0 0 0
equation (2.30a) becomes (after O(e) terms have been dropped)
2 2 202 ). o 2 52 2
v W0, 0 DN OOy B

oro¢ 4 0?2 6 O0¢* 2 8y 2

which is the evolution equation, in terms of (T',¢,Y, Z), for interfacial waves propa-
gating in a constant channel. The boundary conditions for 7o in terms of (7',¢,Y, Z)
remain the same as (2.30b).

For the solid lid assumption on the free surface to be valid, the difference between
the densities in upper and lower layers must be very small. Thus, p* ~ 1 and D,, ~

(A=) + (—=1)**(h*)™. To compare equation (2.33) with the rmKP equation given by

18



Katsis & Akylas (1987), we rescale the variables 7" and £ such that

0 9 0 0

and use the depth of the lower layer as the typical depth (i.e., A~ = 1 and h* = At /h™).

In so doing, equation (2.33) becomes

¥ 2.3 L+ 94 2 2

T ¢ 9¢2 ' gh- 0¢t " 209Y? 202

The rmKP equation given by the Katsis & Akylas (1987) is for the left-going waves. For
the right-going waves, the corresponding rmKP equation can be obtained by changing
signs of all terms except the first term of their rmKP equation (equation (12) in their
paper), which is exactly the same as (2.35) (note that B in their paper is equal to -2%
in this paper). The boundary conditions given by Katsis & Akylas (equation (13) in
their paper) also agree with (2.30b).

For surface water waves, p* = 0,p~ = 1 and h~ = 1, equation (2.33) and boundary
conditions (2.30b) become

O’no 305 10  10°n0 p°

oro¢ Va1 oe: Tooe Taav: 2™ =0 (2.30a)
Omo Do ¥ =¥, ¥ i
3y + Bno = 0 on R VI (2.36b)

which agree with the rmKP equation and boundary conditions derived by Grimshaw
& Melville (1989).

In the absence of rotation, i.e., 3=0, equation (2.28) and boundary conditions (2.29)
can be simplified to (7 = 0 and 7 = 7o)

3 31’_!0 302 8 T;‘n 341}'0 02 621}'0
VOsx (""7 a_g) + = Da + g Dia + gy

* st N’*l

B 52 =0 (2.37a)
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Ono _ 1dY Omo _ _
oy Caxoe ~° oY =Ya(X)Yi(X) (2.37b)

Several further simplifications can be made. We discuss two different situations:

1. For the one-dimensional case without the background steady current, 2% = 0,
F* = 0 and B = 0, equation (2.37a) is reduced to (the integration constant

becomes zero by assuming that o — 0 as £ — o)

0 3 5} o°
\/552‘ (\/5?}0) + EozD_z 'qaai; + %D]_ 3;: =0 (238)

which is a KdV equation with variable coefficients for interfacial wave propagation
and is equivalent to equation (2.7) in Helfrich et al.’s paper (1984) if the cubic

nonlinearity is ignored.

2. For surface water waves, p* = 0,p~ = 1 and C? = h™(X) = ho(X), equation
(2.37a) and boundary conditions (2.37b) become

0 (0no 3 % o 1;263??0 h;ﬂ 827}0
O (ax T o™ T pg )t 2 oy

0 1 dho B 1 0 3’-’10 B
+ o€ l4hoﬁﬂ°+ (2hg”2 L h2 '/;ﬁo fudz) 36] =0 (2.39a)

Ono 1 dY%_ B

If the background current is ignored, F,,=0, (2.39a) agrees with the vcKP equa-
tion given by lizuka & Wadati (1992). On the other hand, when F, # 0 but
B = 0 (i.e., the topography does not vary in the transversal direction), the
transformation used by David et al. (1987) ((2.17) with C = 1 in their paper)
is the same as our transformation (2.8a). The equation and boundary condi-
tions they derived for this situation agree with (2.39a) and (2.39b). (Note that
A; = B; = 0 and ¢ = v/ho F,, in (2.31) and (2.33) in their paper.) The KP equa-
tion (Kadomtsev & Petviashvili 1970) and the variable-coefficient KdV equation
derived by Kakutani (1971) and Johnson (1973) can be also obtained by setting
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Fu=B=0=1and F,=B=0, 5'917 = 0 respectively in equation (2.39a).

In view of the discussions given above, we can conclude that the evolution equation
(2.28) is a general equation and most of the KP-type equations appearing in the litera-
ture are special cases of (2.28). Therefore, we call (2.28) the unified KP (uKP) equation
for surface and interfacial waves in a rotating channel with varying topography and

sidewalls.

3 Complete integrability of the uKP equation

The unified KP equation (2.28), together with the initial condition 7(§,X = 0,Y) =
7°(¢,Y), boundary conditions along the vertical sidewalls (2.29), and appropriate
boundary conditions at ¢ = o0, describes the evolution of the interfacial elevation
7 in a rotating channel with varying topography and sidewalls. In this section, our
investigation focuses on initial value problems.

Because of the variable coefficients and the appearance of the rotation term in the
uKP equation (2.28), in general, no analytical procedure is available for obtaining solu-
tions of the corresponding Cauchy problem. On the other hand, the KP equation, the
KdV equation and the cylindrical KdV equation (cKdV) are completely integrable, i.e.,
with a suitable initial condition they can be solved by the inverse scattering transform.
These equations possess a number of remarkable properties: the existence of soliton
solutions, an infinite number of symmetries and conservation laws, similarity reduc-
tions to the Painlevé equations, Backlund transformations and the Lax representation
(Ablowitz & Clarkson 1991).

A powerful tool to investigate the complete integrability of a nonlinear evolution
equation is the Painlevé PDE test, which also yields other information such as Lax
pairs and Backlund transformations (Weiss et al. 1983, Weiss 1990, Clarkson 1990 and
Brugarino & Greco 1991). The Painlevé PDE test gives the necessary conditions on
the coefficients of a nonlinear evolution equation so that all solutions to the evolution

equation are “single-valued” in the neighborhood of the non-characteristic movable
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singularity manifold (Ablowitz & Clarkson 1991). Moreover, when these conditions

are satisfied, the evolution equation can be reduced to the canonical forms (e.g. KP,

KdV or cKdV) via elementary transformations. In the following subsections, we first

carry out the Painlevé analysis to search for the conditions under which the uKP

equation (2.28) is completely integrable. When these conditions are satisfied, we seek

transformations to reduce the uKP equation into one of known integrable equations.

3.1 Painlevé analysis

To simplify the algebraic manipulation encountered in the Painlevé PDE test, we in-

troduce the following transformation:

r=ofa [ Zlax,  0=\[ojat, A=6/a¥
o C

Under this transformation, equation (2.28) becomes:

8¢ 82¢? 9% 0% 5¢ 8¢ .
5ro6 T3 a6r T gpt T U g YT A gg +elr)gg —dlr)C =0
where
02
aq=—
2D,
1 p~BC? 30?2 )
T Dy [2(}1—)2 +C0M+ =5 D-zn]
—_L p C 2 _§ h- +(h‘)3 dh-
- V6 Dy(h)? Dz 4D D: | dX
af?
&= 12D,

(8.1a)

(3.1b)

(3.2)

(3.3a)

(3.3b)

(3.3¢)

(3.3d)

The Painlevé PDE test for equation (3.2) consists of seeking conditions on the

coefficients a, b, ¢ and d so that the equation admits solutions of the form of a Laurent
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series

((r,0,0) = 3 us(r, ) (3.42)
with
P(7,0,2) =0+ (7, A) (3.4b)

where (7, ) and uj(r,A)(j = 0,1,2,...) are analytic functions of 7 and A in the
neighborhood of a non-characteristic movable singularity manifold defined by ¢ = 0
and p is an integer. Substituting (3.4) into equation (3.2) and equating coefficients
of like powers of ¢, we can determine p and define the recursion relation for u;(j =
0,1,2,...). To pass the Painlevé PDE test, the expansion should be well-defined and
contains the maximum number of arbitrary functions allowed (in this case four) at the
resonances occurring at some j where u; is arbitrary. The compatibility conditions at
each resonance give the conditions under which the coefficients of the equation must
be satisfied in order that the equation will have a solution of the form (3.4).

The analysis of the leading order term requires p = —2 and 4o = —2. Equating the

like powers of ¢ yields the general recursion relation

(G+1)7—4)G—5)(5 —6)u; + W; =0 (3.5a)
where
. . = , , O o\ 2
W; =30 -4l - 5)?:‘;%“54 + (7 —4)(F — 5)uj-a [6_1- +a (-6_)\) +b
. i 62_"!) = 6153'_3 311.5_3@
+ (7 — 5)uj-s (c-l—aa,\z) +(7—5) ( B + 2a )]
2.,

P a‘;f;“ — du;_s (3.5b)

for 7 > 1 (define u;=0 for j < 0). The recursion relation (3.5) defines u; for j > 1
unless j = 4,5,6 where resonances occur (the resonance at § = —1 is usually associated

with the fact that 4(7, ) is an arbitrary function). Therefore, the recursion relation
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(3.5) is consistent provided that W; = 0 for j = 4,5,6, which are the compatibility

conditions. From (3.5), we obtain

U = 0 (363)

U = *—% lg—f‘ -+ a(gi;) + b] (3.6b)
2

Uz = % (c + a(;—;é) (8.6¢)

The compatibility condition for 7 = 4 gives
d=0 1€, B=0 (3.7)

while the compatibility condition for 7 = 5 is automatically satisfied. The compatibility

condition for the resonance occurring at j = 6 yields

pde b () O
2¢ +d1‘ aa)‘2+ 4ac+dT 5/\2_0 (3.8)

Since 1) is an arbitrary function, a,b and ¢ must satisfy the system of equations

da
dac + E =0 (3.9&)
and
de 0%b
2 —1 d— S —
2¢" + I Yo 0 (3.9b)

According to the definitions of a,b and ¢ (see (3.3)), in terms of h~, (3.9a) becomes

d pC® 8 h=  3(h)?| dh
\/;(h“)3D=1‘ lD-z 2.D_1 * D, dx =0 (3.10a)

ie.,

h~ = const (3.10b)
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Consequently, from (3.3¢c), ¢ = 0 and (3.9b) can be simplified as

0%b
N — (3.11a)

whose solution is

b(r, ) = fi(7)A + fo(T) (3.11b)

where fo and f; are arbitrary functions.
In summary, from (3.1) and (3.3), in the moving coordinates (¢, X,Y’), the condi-
tions for equations (2.28) to fulfil the Painlevé PDE test are

B=0 (3.12a)
h~ = const (3.12b)

where Fo(X) and Fy(X) are arbitrary functions. In other words, equation (2.28) is
completely integrable if the rotation is absent, the bottom is flat up to the leading
order, and the difference between the leading order linear-long-wave speed and the
actual linear-long-wave speed is only allowed to be a linear function of Y. Note that in
David et al.’s paper (1987), the bottom is expressed as h = ho(X) + hi(X)Y + O(€?).
The conditions for the gKP equation derived by them to pass the Painlevé PDE test
are: ho = 1 and the flux in the z-direction of the background current is a linear function

of Y only (Clarkson 1990), which are consistent with conditions (3.12b) and (3.12c).

3.2 Reduction to the KP equation
When the conditions (3.12) are satisfied, (2.28) can be simplified as

0o ED 32??3_'_ o Dla o | C 8%no

dX08¢ 6{ 0¢? 6{4 2.0r*
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321}‘0
o0e?

+ [FX)Y + Fo(X)] = =0  (3.13)

where all the coefficients, except the coefficient of the last term, are constant. We seek
a transformation to convert (3.13) into the KP equation.

We find that the following transformation:

4D,
C?D_,

e \E %X (3.14b)
X = \/g {g Iy /0 ¥ Fi(q)dg — /ﬂ * [Fo(q) & % ( /0 . Fl(s)ds) 2] dq} (3.14c)
s %\/% lY+ C/OX f: Fl(s)dsdql (3.14d)

transforms equation (3.13) into the KP equation

a¢ 0°¢ ?¢
(6T -+ 6C6X 3X3) + 3@ =0 (3.15)

o = ¢ (3.14a)

It is known that the KP equation (3.15) is completely integrable and different kinds
of analytical solutions, such as N line-soliton solutions and periodic solutions, can be
obtained (Freeman 1980, Hammack et al. 1989 and Ablowitz & Clarkson 1991).

For initial-boundary value problems, in general, the lateral boundary conditions
(2.29) will interfere with the integrability of the uKP equation. However, under some
circumstances, it is possible that the lateral boundary conditions will not interfere with
the integrability of the uKP equation. Under the transformation (3.14), the boundary

conditions (2.29) become

ﬂ =% [d_YJrof: Fj(q)dq] % (3.16)
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If the solution to the Cauchy problem of the KP equation has the form
(X, Y,T) = (kX +1Y — wT) (3.17)

and the sidewalls are given as

Ya(X) = /0 . % 6D, — C fu ! Fl(s)ds- dg + Yr(0) (3.18a)
YL(X) = ./OX -é 6D1 . GLQ Fl(s)ds- dq + YL(O) (3.18b)

then the boundary conditions (3.16) are automatically satisfied (note that the sidewalls
given by (3.18) are parallel). In this situation, the boundary conditions (2.29) will not

interfere with the integrability of the uKP equation.
The KP equation (3.15) has a solitary-wave solution (Drazin & Johnson 1989)

¢ = yRsech’ E (X +17 —T)],  w=k 432k (3.19)

where k and [ are constants, which can be determined from the amplitude and the
direction of the incident solitary wave. From the transformation (3.14), the solitary-

wave solution for equation (3.13) is

2Dy .5 3|1 |6
o = CED_zk sech !5\/;‘1’] (3.20)

where ® is the phase function defined as

¢=k {f - Y/: Fi(q)dq — Lx [Fo('?) g % (/: Fl(-’)d"-‘)z] d‘:'}
+ é\/a lY-i— C’j;}x j: Fl(.s)dsdq] - w%X (3.21)
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The crest line of the solitary wave is defined as ¢ = 0, i.e.,

ke + [é\/ﬁ - kfnx Fl(q)dq] Y — k[( [Fo(q) + % (f: Fl(a)ds)zl dy

X pq D
+1,/6D, /U fu Fi(s)dsdq — w5 X =0 (3.22)

In the moving coordinates (£, X,Y’), at different X, the crest line still remains a straight
line on (£,Y) plane. However, its direction will change due to the contribution from
F}, whose relations with the topography and the background current are described by
(3.12c). The contribution from Fy only causes the crest line to translate and changes
the speed of the solitary wave in the moving coordinates. In the physical stationary

coordinates (t,z,y), the crest line is given (by the transformation (2.8)) as

[$os b [ in] Ve 1 { & i [ [mta)+ § ([ Ptos) |

ex pg D
+ 14/6D, ./n [; Fy(8)dsdg — wﬁlsm =0 (3.23)

Strictly speaking, the crest line at different time ¢ is no longer a straight line on (z,y)
plane, but the curvature of the crest line is very small.

In the absence of rotation, the background current field has the same effect as the
weak variation of the bottom (see (3.12)). Without loss of generality, we ignore the
background current field in the following discussions. For simplicity, we only consider
a single layer system, i.e., free surface wave propagation.

For an oblique incident solitary wave initially described by (3.20) with & = 1 and
| = 1/4/6 propagating over a bottom topography given by

H=1+¢eB =142 [RY + Fy] = 1 + 4esech? [1.5(X — 2.5)] (Y — 1) (3.24)

with € = 0.05 (see Figure 1), Figures 2 and 3 show the location of the crest line in the
moving and stationary coordinates, respectively. The lateral sidewalls are not present

in this example. In both coordinate systems, the propagation direction of the solitary
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wave continuously changes from positive angles with respect to the +¢-axis (+-axis) in
the moving (stationary) coordinates to negative angles. In the stationary coordinates,
this continuous change of direction may be explained by fact that the wave speed of a

long wave increases as the depth increases.

Figure 1: The shape of the bottom given by (3.24).

1.0 .
=0 =1 X=2 X=3
0.5 -
> 0.0}
-0.5
=5
-1.0 Y
-1 0 1 2 3 4 5
3

Figure 2: The location of the crest line of a solitary wave propagating over the bottom
shown in Figure 1 at different X (X from 0.0 to 5.0 with an increment 0.5).

Figure 4 shows the location of a normal incident solitary wave propagating in a
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t=0 t=50 =90

Figure 3: The location of the crest line of a solitary wave propagating over the bottom
shown in Figure 1 at different time ¢ (¢ from 0 to 90 with an increment 10).

channel bounded by

1 ez pa 1 4
(o) =~ /0 fu Fi(s)dsdq +3:(0) = == [0.003(ez — 5)(ea)* +1]  (3.250)

.3

1 ex  pq i
y;(m)=-—$ fo fo Fy(s)dsdq + y(0) = ﬁ[0.003(sw—5)(sm) ~1]  (3.25b)

which are plotted in Figure 4 (for € = 0.05). In this case the topography is given as
H=1+¢eB=1+¢e{0.12(X* - 3X*)Y — 4sech’ [L.5(X — 2.5)]} (3.26)

which is shown in Figure 5.

From (3.23) and (3.25), the primary direction of the crest line coincides with the
horizontal slope of the sidewalls at @ ~ ¢. If the slope of the sidewalls is positive
(negative), then the direction of the crest line is also positive (negative). This agrees

with the results shown in Figure 4.
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Figure 4: The location of the crest line of a normal incident solitary wave propagating
over the bottom given by (3.26) in a curved channel as shown in this figure at different
time ¢ (¢ from 0 to 90 with an increment 10).

Figure 5: The shape of the bottom given by (3.26).
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3.3 Reduction to the KdV or cKdV equations

When the coefficient of the last term in equation (2.28) is independent of Y, i.e., the
topography and the background current do not vary in the transversal direction, a
solution which is independent of Y may exist (if the sidewalls are present, they should
be straight and parallel). In this situation, the Painlevé PDE test shows that the

conditions for equation (2.28) to be completely integrable are
B=0 (3.27a)

= 4+22=0 (3.27b)

where ¢ is given by (3.3c) and

r=/6/a f D ux (3.27¢)

The solution to equation (3.27b) is either ¢ = 0 or ¢ = (7 + 70)" where 7o is a

constant.

If conditions (3.27) are satisfied, equation (2.28) can be further simplified as

3’:}0 3C (9?}0 a 6 61}‘0 1 dC _
oxt + 3 D-voge + g Piga + FaX)GE + 55 ax =0 (3:38a)
where we have already assumed that o — 0 as §¢ — too and
_ p BC
FX) = gy + Mo (3.28b)

The following transformation:

To = 042?)1_ &= \/%f —“dX; 6= \/6/_06 lf = ./OX Fo(?)dQ} (3.29)
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transforms equation (3.28a) into

BC - 6c—c— + % +e¢=0 (3.30)

Since ¢ = 0 or ¢ = (7 + 7m0)7", (3.30) is either the KdV equation or the cKdV
equation. In either case, (3.30) is completely integrable (Garden et al. 1967, Calogero
& Degasperis 1978). Moreover, the KdV and cKdV equations are essentially equivalent
since their solutions are related by a simple Lie-point transformation (Clarkson 1990).
From the definition (3.3c) and the transformation (3.29), ¢ = 0 corresponds to h™=

const, while ¢ = (7 + 70)™" gives the differential equation for h~

d’h- dH " dh
W (2 o] (8] = 3319
where
20 C 2 3 h (h™)?
- .31b
HA™) = 5.y [D , 1D, " D (8:31k)

For a single layer system, we can find the analytical solution to equation (3.31a).
Substituting p* = 0,p~ = 1,h~ = h, D, = k" and C = v/ into (3.31), we obtain a

simple equation for h

d*h dh
th2+3(dX) =0 (3.32a)
whose solution is
h(X) = (1 + X/Xo)"/* _ (3.32b)

where h(0) = 1 has been used and X, = g\/%'ro can be determined from the slope of
the bottom at X = 0.

We now give close form solutions for one and two solitions propagating over an

arbitrary weakly and slowly varying topography, which is described as

Z=—-H(X)=—h" —eB(X) (3.33)
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where h~ =const. Without loss of generality, we ignore the background current field,
since it has the same effect as the topography (3.33) has (see (3.28)).
With the aid of the transformation (3.29),

= B0 | g8 fe O PR 4D,
M(X,8) = gapysech [\/; (5 ST | Bax - OX)

gives the solution for one soliton propagating over a weakly and slowly varying topog-

(3.34)

raphy, while

(X,¢) = 28D 3+ 4ch (/2 (2¢' — 8X")] + ch [/ (4¢' — 64X")] (3.35)
No( A, c?D_, {3ch [\/g (= 28X')] 4 ok [\/5(35: - 36}(:)] }2 i

with ¢’ = € — 5% JF BdX — &, X' = %’-(X — Xo) (éo and X, are constant) gives the

solution for two solitons propagating over a weakly and slowly varying topography.
One soliton solution (3.34) implies in the moving coordinates the soliton moves with
speed
d p BC 4D,

U=x~omyrt 0

(3.36)
Depending on the sign of U, the soliton will propagate to the right, to the left or
remain still. Therefore, in the moving frame, the effect of the topography (3.33) can
not only change the magnitude of the phase speed but also change the direction of the
wave propagation. For example, if B = —8(h~)*D;/p~C?, (3.34) reduces to a steady

solution

o

(X, 8) = Ciﬂl_zsechz( Ee) (3.37)

which means the soliton remains still in the moving frame. If the topography is

B(X) = { B e (3.382)
ED?‘jg—z)— [cos(nX/4)—1] X >0
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the solution for a single soliton propagating over this topography is

WX, £) = 0821;1_2 sech? [\/g (¢~ fgl sin(1rX/4))] (3.38b)

In the moving coordinates the soliton will bounce forward and backward, as shown in

Figure 6.

Figure 6: A single soliton bounces forward and backward as it propagates over the
weak and gentle topography given by (3.38a) at different X in a one-layer system.

Figures 7 and 8 show two solitons propagating from a constant depth into two

different topographies given as

0 X<0
B(X) = %%}ﬁ [cos(mX)—1] 0<X <1 (3.39a)
nle ) X1
and
0 X<0
B(X) = B2lF [cos(rX)—1] 0<X <1 (3.39b)
D) X>1
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Figure 7: Two solitons collide as they propagate over the weak and gentle topography
given by (3.39a).

Figure 8: The smaller soliton catches up with the larger soliton as they propagate into
the weak and gentle topography given by (3.39b).
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respectively in a single layer system. At the beginning (X = 0), the larger soliton is
behind the smaller one and both solitons propagate to the right. If these two solitons
propagate over the topography given by (3.39a), the smaller one will reverse the di-
rection of propagation and collide with the larger one. After the collision, they move
in opposite directions without changing their own shape and velocity (see Figure 7).
On the other hand, if two solitons propagate into the topography given by (3.39b),
the smaller one reverses its direction first, while the larger one reverses its direction
at a later time. If at the beginning the distance between these two solitons is given
properly, the small one will catch up with the larger one after both have reversed their
directions. The phenomena shown in Figures 6 to 8 cannot be observed if the bottom
is flat. In the constant depth case, a soliton will propagate unidirectionally from the
left to the right; the larger soliton will always catch up with the smaller one.

4 Integral invariants

In this section, we seek the integral invariants associated with the uKP equation, (2.28),
for waves propagating in a varying channel. Under the assumption that the solution
is locally confined, i.e., % and its ¢-derivatives vanish as § — o0, equation (2.28) and

the boundary conditions (2.29) can be rewritten as

o) 1dC. 3C  of 5%
ox Tacax" 1 D +60D1663
p~BC C' 317 cfov. B\ _
* |y A+ gD G+ 7 (or ¥)=0
¢ (o
V(¢ X,Y) = / (a; 4 g ) d¢ (4.1b)
_ é—%ﬁ on Y = Ya(X), Yz(X) (4.1c)
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Letting ¢ — —oo in (4.1), we obtain

V(~00,X,Y) = [: (g—g 4 -g-q) dé¢' =0 (4.2)
which implies
[ e = F(X) exp (-BY/0C) (43)

where F' is an arbitrary function of X. Expression (4.3) shows that [ 7d¢ along each
vertical plane parallel to the ¢-axis must vary exponentially like exp (—BY/C) across
the channel at different X. This rather strong constraint ensures that no wavenumber

components with infinite group velocity are present, and thus disturbances remain

locally confined (Grimshaw 1985, Katsis & Akylas 1987 and Grimshaw & Melville

1989).
Define
YL +o0 »
L(X) = /Y . /_ _idgdy (4.4)
From (4.1), we have
g 1
dX " 30 dX
+o0 [ 87 1 dC vy dYr
/ [_" 2‘55"] K+ | lyn, &~ ix "IH’R d
1dYy, 1dYa
/YR [ vagay + 358 [l de - 3T [ iy de (45)

If the rotation is absent, i.e., 8 = 0, we find that

T=./C/W /Y :" f_ :” Adedy (4.6)

(W =Yy, — Yg is the width of the channel) is the first-order invariant (in amplitude).
Unfortunately, when B # 0, we fail to find the corresponding first-order invariant from
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the uKP equation. However, we do find the second-order invariant defined as
YL 400 ?
g=c[" [ ity (4.7)
YR — 00

for all 8 by multiplying (4.1a) by 7 and integrating the resulting equation over [—oco <
€ < +oo;Yr <Y < Yzl

In the physical coordinates, the dimensionless mass M and energy £ are defined as

+o00 400
M=/ f ] “odady, B=if ] / " P dedy (4.8)
—oo Yr —00 Yr
From the transformation (2.8a), we have dz = Cd¢,dy = %Y;. Thus, in terms of the

moving coordinates, M and £ become
M:GfYL/+m1}d£dY 8=C/YL/+mﬁ2d£dY (4.9)
YR —0o 3 YR —00 '

Therefore, the second-order invariant J measures the energy, while the first-order
invariant Z (when the rotation is absent) measures the mass only if CW is a constant. It
follows that the locally confined solution to the uKP equation (2.28) with the boundary
conditions (2.29) will conserve the energy, but will not in general conserve the mass
when the rotation is absent. (When the rotation is present, we suspect that the first-
order invariant does not exist.) This is a direct consequence of the neglect of the weak
backward propagating wave field excited by the variation of the channel in the uKP
equation. The energy of the neglected backward propagating waves is of a higher order,
whereas the mass of the backward propagating waves is of the first-order and has a
cumulative effect. To ensure that both Z and M are conserved, the neglected weak
backward propagating wave field has to be taken into account (for the KdV equation
case, see Miles 1979 and Knickerbocker & Newell 1985).

If the initial condition is given as

7(£,0,Y) = Cigl_g k®sech? {%M [k{ +1 Gch Y] } exp (—BY/C) (4.10a)
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which represents a normal (I = 0) or an oblique (I # 0) incident solitary wave and
automatically satisfies the constraint (4.3), we can evaluate the invariants Z (when

B = 0) and J analytically

T=VOW [ i(6,0,Y)d = éffg_lz JCWal6  (B=0)  (4.10b)

J = 0/1:' /_J:: 72(€,0,Y)dEdY

16k%D?
= V/a/b3 353 g [exp(~28Ya/C) — exp(~26Yz/C) (4.10c)

where all the functions in (4.10) are evaluated at X = 0.

5 Summary and concluding remarks

Using the multiple-scale perturbation method, we have derived the unified KP (uKP)
equation for surface and interfacial waves propagating in a rotating channel with vary-
ing topography and sidewalls. The effect of a steady background current field on wave
propagation has also been taken into account. The uKP equation includes most of
the existing KP-type equations for surface water waves and interfacial waves as special
cases. The Painlevé PDE test has been employed to search for the conditions for the
uKP equation to be completely integrable. When these conditions are satisfied, trans-
formations have been found to reduce the uKP equation into one of known integrable
equations: the KP, the KdV or the cKdV equations. As a result, for certain topogra-
phy and sidewalls, analytical solutions for solitary-wave propagation can be obtained
in the absence of rotation. The integral invariants associated with the uKP equation
for waves propagating in a varying channel have been obtained and their relations with
mass conservation and energy conservation have been discussed.

The conditions for the uKP to be completely integrable are very restrictive. They
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require that no rotation exist and the topography (and the current field if it exists) in
the transversal direction be a linear function of y only. In addition, the sidewalls usually
will interfere with the integrability. For many geophysical applications, the rotation
effect is of great interest. However, when the rotation effect exists, the uKP equation
can not pass the Painlevé PDE test. This, together with the unsuccessful attempt
to find the first-order (in amplitude) integral invariant, may indicate that no solitary-
wave solutions exist when the rotation effect is considered, which is consistent with the
finding of Grimshaw (1985). To apply the uKP equation to more complex situations,
we need to solve the equation numerically. An efficient and accurate numerical scheme
has been developed to solve the uKP equation by using the Petrov-Galerkin finite
element method and some numerical results have been obtained. The numerical study

of the uKP equation will be reported in the future.
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