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Chapter 1

INTRODUCTION

The propagation of nonlinear water waves in shallow water has been in-
vestigated by numerous researchers during the last several years. The problem
is significant from both a scientific and engineering point of view. It is mathe-
matically and computationally demanding, since certain nonlinear effects which
can be assumed small in deeper water become more important nearer the breaker
line. It is also of considerable engineering importance, since sediment transport

processes and longshore bar formation depend heavily on the nearshore wavefield.

Since Peregrine (1967) formulated one of the first applications of Boussi-
nesq theory in the context of shallow water wave propagation over variable depth,
much progress has been made on wave modeling in this area. Boussinesq theory
is an advance on linear shallow water theory. Its formulation depends on weak
dispersion (weak dependence of wave speed on frequency) and weak nonlinearity
(small but finite amplitude). In contrast as well to the nonlinear long wave prob-
lem, these two weak dependencies are assumed to balance each other identically.

Mathematically, this balance can be expressed by the Ursell number:

)
I
where 6 is the nonlinearity parameter:
Qg
6= — 1.2
2 (1.2



and g is the dispersion parameter:
= kgh(_} (13)

where hg 1s a characteristic water depth, kg 1s a characteristic wave number, ag
is a characteristic wave amplitude and ¢ is gravitational acceleration. Thus, in
shallow water, u?> < 1, and the relative size of § defines the classification of the

wave theory in question:

1. U, << 1 - Linear
2. U, =1 - Boussinesq

3. U, >> 1 - Nonlinear long wave

It is the regime with U, = 1 that is of immediate interest.

1.1 General Definition of Domain of Problem

Before we begin detailing existing theories, it would be prudent to discuss
the domain, the coordinate system and some of the variables used in this study. We
will consider a three-dimensional wave field propagating over a spatially-varying
bottom. The Cartesian coordinate system (z,y,z) is located at the still water
level, with z being positive upwards from the origin. The wave field is denoted
in terms of the free surface elevation n(z,y,t) (where t is time), which is defined
relative to the still water level z = 0. The water depth is denoted h(z,y). The

flow is assumed to be irrotational, and the fluid is incompressible and inviscid.
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1.2 Boussinesq Equations of Peregrine (1967) and Associated Models

Peregrine (1967) formulated the Boussinesq equations for variable depth.
He started from the Euler equations, and then used an asymptotic expansion on
the dependent variables. He carried the derivation to second order in velocity and
free surface elevation, taking care to incorporate second-order terms in the first-
order variables because these second-order effects become important in shallow
water. Substituting these expansions into the Euler equations, integrating the
vertical momentum equation and averaging the horizontal velocity over the depth

leads to an equation for conservation of mass:
2+ V-(h+n)u=0 (1.4)
and an equation for conservation of momentum:
e % aw i h _ h? "
u;+ua- Vhll + gvh?}' — §Vh[vh # (hut)] =5 —6-—Vh[vh 3 u] (15)

where W is the depth-averaged horizontal velocity, V, refers to the the horizontal
gradient operator in (z,y), and the subscript ¢ denotes differentiation with respect
to time. In the context of this study, Equations (1.4) and (1.5) will often be
referred to as the “standard” Boussinesq equations of Peregrine (1967). Implicit
in the derivation of (1.4) and (1.5) is a quadratic variation in horizontal velocity
with depth and a linear decrease in vertical velocity with an increase in depth.
This vertical velocity is much smaller in magnitude than the horizontal velocity.
The dispersion relation for the Boussinesq equations is:

W= L (1.6)

[1 + 4(kh)2

where k is the wave number.

The Korteweg-deVries (KdV) equation and the Kadomtsev-Petviashvili

(KP) equations are wave equations (with 7 as their only dependent variable)
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which are essentially reductions of the Boussinesq equations (1.4) and (1.5). The
KdV equation for variable depth was formulated by Svendsen (1976):

2

%ns + 7z + 2—;1? + %ﬂnx + %nm =D (1.7)
where the subscripts z and y refer to differentiation with respect to z and y,
respectively. This equation is exactly integrable for the case of a flat bottom.
Solutions are expressible in terms of the Jacobian cn elliptic functions; hence,
these permanent-form solutions are called cnoidal waves. The KdV equation is
limited to one-dimensional wave propagation. The variable depth KP equation
was first developed by Liu et al. (1985):

2

1 h. 3 h 1
(z??t + e + Z};’? + z—h???h: s F"‘?zzx)r T E(hny)y =0 (1-8)

This equation is also exactly integrable for a flat bottom; solutions are expressed
in terms of Riemann theta functions (e.g., Segur and Finkel 1985). The dispersion

relation associated with the KdV and KP models is:

w = \[ghk [1 2 %(kh)?] (1.9)

The dispersion relations (1.6) and (1.9) are essentially two-term expansions of the .

dispersion relation from linear theory:
w? = gktanh kh (1.10)

All three dispersion relations are asymptotically equal in shallow water (kh <
1), but exhibit different behavior in intermediate or deep water. Figure (1.1)
shows the ratio of the wave celerity to the shallow water wave speed against the
parameter kh. It is apparent that the three dispersion relations tend toward the

shallow water wave speed (ratio approaching unity) in shallow water but

h

o

diverge rapidly as kh increases.
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Figure 1.1: Comparison of Three Dispersion Relations. Linear Dispersion Re-
lation (-); Dispersion Relation of the Boussinesq Equations (- -);
Dispersion Relation of the KdV Equation (..).



1.3 Implications of the Shallow Water Assumption

The models described in the previous section (and their frequency-domain
counterparts) are fairly robust models of nonlinear water wave propagation in
shallow water as long as kh < 1. Violation of this assumption can produce
erroneous predictions of such first-order quantities as wave shoaling and celerity.
We saw in the previous section that weakly-dispersive wave celerity deviates from
that of linear theory in deeper water. As for shoaling, the mechanism inherent
in a consistent frequency-domain treatment of the Boussinesq equations (e.g., the

“consistent” model of Freilich and Guza 1984) is Green’s Law:

(&)=

which predicts a monotonic increase in wave amplitude with a decrease in depth.
(The word “consistent” in this sense means that all the terms of the equation are
valid to the same order of approximation.) As will be shown in later chapters of
this st_udy, this usually results in an overprediction of amplitude for waves not in
shallow water. This is the situation when a wind-wave spectrum, for example,
has frequency components which are actually in intermediate or deep water (p? =
O(1)), even though the peak frequency component may be in shallow enough

water to validate the use of the Boussinesq equation.

This study investigates two different approaches to circumvent the prob-
lems associated with the assumption of shallow water in these weakly-nonlinear
models. One method (outlined in Chapter 2) involves the formulation of a weakly-
nonlinear mild-slope equation, which uses full linear theory for its dispersion and
transformation properties. The resulting model thus has linear properties which
are applicable to all water depths, and the same degree of nonlinearity found in
the Boussinesq models. The second approach (detailed in Chapter 3) involves

the formulation of a fully nonlinear extended Boussinesq equation. The linear



dispersion relation associated with these extended Boussinesq models is accurate
to O(u*) as with the Boussinesq models of the previous section, but is of such a
form that it can mimic the properties of the full linear dispersion relation (1.10)
for a wide range of water depths. This model represents an advance over exist-
ing extended Boussinesq models in that it is fully nonlinear, so that dispersive
terms are retained in the nonlinear parts of the equations. This has important
implications for modeling superharmonic and subharmonic energy transfer in a
random second-order sea (Kirby and Wei 1994). Both models will be treated in
the frequency domain in one-dimensional and parabolic two-dimensional forms,
and compared to data in Chapter 4. We make an additional assumption of long-
shore periodicity in Chapter 5, and develop both a simplified angular spectrum
model with improved dispersion characteristics and an angular spectrum treat-
ment of the fully nonlinear extended Boussinesq equations. Comparisons to data
will follow in Chapter 6. Conclusions and recommendations for further study will

be discussed in Chapter 7.



Chapter 2

NONLINEAR MILD-SLOPE EQUATION

2.1 Introduction

The principal aim of this chapter is to derive a set of time-periodic, spa-
tially varying nonlinear mild slope equations to govern the evolution of a wavefield
propagating from deep to shallow water. The linear mild-slope equation (Berkhoff
1972; Smith and Sprinks 1975) is well entrenched in the literature, and has been
solved by a variety of methods. Because the equation is elliptic, prior specification
of the conditions on the entire boundary is required. This is generally not possi-
ble for an open coastal region. Additionally, fine resolution is required to resolve
the wave field sufficiently. The parabolic approximation (Radder 1979; Lozano
and Liu 1980) has eased the computational demands somewhat by reducing the
boundary value problem to an initial value parabolic problem, where only lateral
boundaries and the initial condition need be specified and the solution allowed to
march forward in the propagation direction. This solution technique is somewhat
problematic (it is limited by, for example, an assumption of a small angle of ap-
proach), but is sufficiently accurate for modeling waves in a straight wave flume
with two-dimensional topography, which is our primary two-dimensional applica-
tion for both this model and the model to be explained in the next chapter. Sev-
eral investigators have previously worked on models similar to the one described

in this chapter. Bryant (1973, 1974) formulated a model from the boundary value



problem for water waves over a flat bottom by specifying spatially periodic Fourier
expansions for the variables ¢ and 5 which would satisfy the Laplace equation
and the bottom boundary condition, substituting these into the two free surface
boundary conditions, and then integrating to solve for the amplitude coefficients,
which vary slowly in time. The interaction coefficients which would determine
the degree of energy exchange among resonant triads were derived without re-
strictions on the size of the dispersion parameter u. However, the time-varying,
spatially periodic formulafion is not suitable for most applications, since spectral
wave information is usually taken and stored by means of a frequency-domain
Fast Fourier Transform (FFT), which presupposes equal intervals of frequencies
rather than wave numbers. Keller (1988) developed a set of equations describing
the evolution of two interacting wave components. He demonstrated that, in the
nondispersive limit, this same set of evolution equations can be derived from the
exact Euler equations, the nonlinear shallow water equations, and the Boussinesq
equations. The model described in this section would match his model before the
nondispersive limit is taken if the number of frequency components is truncated
to two and slow time dependence is reincorporated. Agnon et al. (1993) derived
a one-dimensional nonlinear shoaling model for time-periodic, spatially varying
waves from the boundary value problem. Their model is similar in form to the
one-dimensional model described in this chapter. Specific differences and similar-
ities between Agnon et al. (1993) and the present model will be described in a

later section in this chapter.
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2.2 Boundary Value Problem

Here we use the water wave boundary value problem for the velocity po-

tential ¢:
v2¢=vi¢+¢:z =0; —hS:ﬁ?} (2.1)
¢. = —Vih-Vie; z=—h (2.2)
1 1
g+ ¢+ 5(Vad) + 5(4:)" =0 z=1 (2.3)
M —¢:+ V- Vig =0; 2= (2.4)

where all pertinent variables were defined in Chapter 1. The water depth is
assumed to be slowly varying to such a degree that local values of wave-related

parameters can be used.

We wish to retain leading order nonlinearity in the free surface boundary
conditions. Rather than scale and nondimensionalize the problem, we retain di-
mensional quantities and implicitly order the problem such that it is understood
that leading order nonlinearity is O(€?), where ¢(=ka, where k is the wave num-
ber and a is a characteristic wave amplitude) is the nonlinearity parameter. The
free surface boundary conditions are both nonlinear and applied at a position not
known a priort; thus we expand these in Taylor series about 2 = 0 and retain

terms to O(€?). The truncated boundary value problem is now:

Vgt o = 0: —h<z<0  (25)

o= =Tk - Tl 2= —h (2.6)

g+ b+ (VP + 58P +ngu =0 2=0 (27
M — s + Vi - Vap — .. = O(%); z2=0 (2.8)

Instead of using the approach of Bryant (1973), whereby he substituted an ap-

propriate form for ¢ that would satisfy the Laplace equation and the bottom
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boundary condition, we instead use the approach of Smith and Sprinks (1975),
who used Green’s second identity to derive a linear mild-slope equation. We first

assume a superposition of solutions:

N
¢(z,y,2,t) = z Jnlkny by 2)n(knywn, 2, y,1) (2.9)
n=1
where w, is the radian frequency and k, is the wave number of the n'* frequency
component, and:
i e cosh k,(h + z) (2.10)

cosh k. h

or the usual depth dependence dictated by linear theory. The frequency w, and

the wave number k, are related by the linear dispersion relation:
w? = gk, tanh k,h (2.11)

It is convenient to combine the two surface boundary conditions (2.7) and (2.8)
into a single equation for ¢ only. Eliminating n from the surface boundary condi-

tions leads to:

1

| 2 1 1 2
¢ = ‘—E [¢tt o E(Vhﬁf’)t T E(ﬁf’z)f - E(‘a‘bt)zt + Vi (¢Vig)|; 2=0 (2'12)

In the manner of Smith and Sprinks (1975), we will use Green’s second identity

on the variables f, and ,, as follows:

Vi ([ £2490dn) ~ [ Frdebo= —fadue lomo +0(e,0?)  (213)

where a is a parameter characterizing the bottom slope. For our purposes it is

assumed that

a < 0(e) (2.14)

In this manner we can eliminate bottom boundary terms in comparison to O(€?)

terms from the free surface. Development of the linear part of the models is
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identical to Smith and Sprinks (1975); reference is made to their paper. We

simply note that:

MO = 1 (2.15)
fnz(o) — % (216)
[ gz = ek (2.17)
= g
0 w? B
[ etz = f(l—%) (2.18)

where C,, is the wave celerity and C,, the group velocity of the nt* component.
The subscript z refers to partial differentiation with respect to z. Substituting
(2.9), (2.12), (2.15), (2.16), (2.17), and (2.18) into (2.13) yields a time-dependent

mild-slope equation with nonlinear coupling between modes:

Chn
2

I,.""],2 g wg L
{ZZ [ l +2wm (b1, bme )t — &Em‘(ﬁﬁ!(ﬁm)z]
[ m g g

5:: = V- [(ch)ﬁvk‘;n} +w? (1 - an) bn
1
2

- 3> [(Vh&: - Vibm)e + Vi (61, Vidm) + Vi - (&m,vh&;)]} (2.19)
| m

T

where the nonlinear summations on the right-hand side contain only terms that
oscillate near the frequency w,. Despite the fact that we have decomposed the
wavefield into individual components, we have not made any assumptions con-
cerning the behavior of these components; they could represent propagating or
standing waves with characteristics that vary slowly in time and space. It is noted
here that as € approaches zero, Equation (2.19) approaches a representation of de-
coupled, independent waves. In the shallow water limit (as k,h approaches zero)
we approach a frequency-domain representation of Boussinesq-type shallow water
" waves. Additionally, Bryant (1974) showed that a system like Equation (2.19),
with coefficients expressed as a power series in ¢, will join smoothly to a solution

for Stokes waves in deep water for N = 3 components.
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2.3 Resonant Triad Interaction

In order to completely transform the equations into the frequency domain,
we must assume periodicity in time and factor out this time dependence. This will
allow us to formulate evolution equations for the spatially varying amplitudes of
the wave components. Thus, it would be in order to embark on a brief discussion
of triad resonant interactions. This discussion is an overview of Section 2.8 of
Phillips (1977); reference is made to his work for more detailed explanations.
Implications of triad resonance interactions will be described later in this chapter.
We note here that the notation and ordering presented in this section applies to

this section only, and will not enter our discussion of the model formulation.

The combined boundary condition (2.8) is truncated to O(e?). This retains
quadratic nonlinearity (squares or products of unknowns). Due to this quadratic
nonlinearity we can investigate the interactions of three wave modes of the wave
field. If we had to retain cubic nonlinearity, we would need to turn to four wave

interactions.

We can symbolically represent small perturbations to the linear approxi-

mation of the water wave problem as:
L(p) = eN(p) (2.20)

where ¢ is a small parameter representing the wave amplitude, £ is a linear op-
erator, N is a nonlinear operator, and p is some local property of the wavefield.
The exact nature of £ and N depends on the problem being considered. We will
assume that the linear part of a spatially uniform solution for p is in the form of

a plane wave:

p= -;- [an(ewt)e‘% | a;;(aut)e-"'f*ﬂ] (2.21)
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where the asterisk denotes the complex conjugate amplitude. This assumption

ensures that p remains real. The phase function ¢ is:

R
o
2

= (k-7 —wt) (9.5

where k is the wave number vector. We allow a and a” to vary slowly in time, and
allow w and k to satisfy the linear dispersion relation. Addressing the nonlinear
problem, we can examine the interaction of three wave modes and presuppose a

solution for p in the following form:
2. 1
ZE[ (éwt)e™™ + @ (éwt)e ™| + eP (2.23)

where éP represents small nonlinear corrections to the linear problem at O(€).
Thus, at O(¢), the quadratic terms in the nonlinear operator N gives rise to

products of amplitudes:

aapm e V1tvm) (2.24)
aa’, et=vm) (2.25)
aFamei(-vrtim) (2.26)
ala’ e'-—vm) (@27

Because the homogeneous solution for P resembles:
bn iy
Ph ~ Ee' "+ e (228)

(where c.c. denotes the complex conjugate) the product terms will oscillate at ¢,

if any of the following conditions are satisfied:

Yo = Y1+ PYnm (2.29)
Yn = Y1 —¥m (2.30)
Yo = —Pi+Ym (2.31)
Yo = —h1—Ym (2.32)
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implying:
kn = Fk+E, (2.33)
kn = ki — ky, (2.34)
kn = —ki+ kp, (2.35)
kn = —k— kn (2.36)
and
Wn = W +wn (2.37)
e = (2.38)
Wp = —w+Wwn (2.39)
Wp = —W— Wny (2.40)

In order to completely factor out the time dependence, (2.37), (2.38), (2.39) and
(2.40) must be satisfied so that the differences in the frequency portion of the
phase function ¢ cancel. This is resonant triad interaction among three frequency
components, and the interaction coefficients that arise from substitution of this
resonance condition into the time derivatives in the nonlinear right-hand side of
(2.19) determine the energy exchange between the three interacting modes. Thus,
transforming a set of equations with quadratic nonlinearities requires resonant
triad interactions among frequency components to factor out the time depen-

dence.

2.4 Time-Harmonic Wave Propagation in Two Dimensions

We wish to develop a series of evolution equations for the propagation of

time-harmonic waves in two spatial dimensions. Hence, we can factor out the time
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dependence by assuming:
7 . _ q;n —iwnt A‘:l fwnt 9
¢n(3':y1t)“‘ 9 € F 5 € [....41)

“

and using the concept of resonant triad interactions discussed in the previous
section. This yields a time-harmonic wave equation with modification by nonlin-

earity:

: n—1
Vi [(COPTad] + BCOIn == |5 26n Vi Vb
i=1

Wiy — Wy

s w:&zvi&?n—z T wn-man_fvi&t = T(wf + wiwn_ + wi—f]&!&n—(

: TN-n

1 A* ~ - A* a* -

= § [Z 2anh¢’f 'Vh¢n+l +wn+!¢n+fvi¢f = W:’Qélviqsnﬂ
=1

W41 o .
- — (W] — i+ wpy) ) %H} (2.42)

g2

. While we have incorporated an assumption for time periodicity into our
problem, we have not explicitly specified the spatial variation of the wavefield.
Equation (2.42) can describe standing or propagating waves, or any combination.
Additionally, (2.42) is elliptic, with the linear terms being essentially the elliptic
mild-slope equation models of Berkhoff (1972) and Smith and Sprinks (1975).
The computational difficulties associated with elliptic models have been discussed

earlier in this chapter.

2.5 Parabolic Approximation

We will restrict the problem to that of a progressive wave field with the

following form:

-

In(z,y) = =L Ap(z, y)et Fnlzn)ie (2.43)
Wy
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r(2,y) = LAz (2, y)e i Fnlewi (2.44)

n

where the complex amplitude A, is assumed to be a slowly varying function of
the spatial coordinates (z,y), and the wave is assumed to be traveling primarily

in the z direction. Substituting (2.44) into (2.42) gives:

[(CCy)nAnzle + 2i(kCCy)nAng + i(kCCy)nz An
+ [(CCg)n (A,le"fkn(w'yldx) ] o=t [ knlzy)da
v

y
1 n—1 1 N-n

T 1 Y RAA, € Patla~halie 9 s SAT Apyiet JGnsi—hi=hn)dz
=1 =1
(2.45)
where
R=—T— [w2kkne + (kt + knet) (@at kit + wikn—)wn]
Wi -1
W 2
F?(wl + Wiwp—i + wi_;) (2.46)
e 2 N
§ = oo [k + (bt = k)b + ik )on
wh o 2
~a(0F — nwnys + ) (2.47)

-

Equation (2.45) is still elliptic, so we need to explicitly invoke the parabolic
approximation. We have assumed that the wave propagates primarily in the z-
direction, so that we retain fast wave-like variations in the z-direction but not in
the y-direction. The fast variations in the z-direction are accounted for by the
complex exponential in Equations (2.43) and (2.44). We use the scaling approach
of Yue and Mei (1980) to order the derivatives of A, as follows:

A, ,
= = 0(c") (2.48)
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J A'n,
dy

= O(c) (2.49)

since the fast variations in 2 have already been factored out. The ordering of
‘the y-derivative in (2.49) allows us to keep Q%gk, thereby allowing us to model
the slow phase-like variations of the wave in the y-direction that occur when it is
turned at a small angle to the z-direction. Additionally, since we assume the wave
to propagate primarily in the a-direction, changes in the amplitude A,, would be
due mostly to z-derivatives of the depth . Thus, the order of bottom slope in
the z-direction (hs), as well as z-derivatives of depth-dependent properties (e.g.,
', C,), should also be O(¢?). This allows us to set the relative amplitudes of the

first two terms of Equation (2.45) as:
A(CC)nAnz)e € €[2i(kCCy)nAns) (2.50)

where the subscript @ refers to differentiation with respect to . Since we are
keeping terms to O(¢?) we drop the first term in Equation (2.47). Additionally,
we need to factor out any y dependence from the phase function. This must be
done since we are only integrating the phase in z, but the wavenumber k, is a
function of both z and y. There are several ways to address this; we choose the
method of Lozano and Liu (1980), whereby they defined a y-averaged wavenumber

Teno(z) as a reference phase function. Thus, we rewrite (2.43) and (2.44) as:

7 i‘g i —nl] Tjar ‘
bal,y) = ——=an(w,y)e Jati (2.51)
A tg * i g olz)dz &
pu(z,y) = —an(z,y)e J Frola)d (2.52)
which gives:
An(2,Y) = tn(@, y)e'S HeIods= [ hn(z)d) (2.53)

and:

Ax(z,y) = a4 (@, y)e~ U Fehods=] knan)ec) (2.54)
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Substituting this into (2.45) yields:

QZ(kCC ) Upgz — 2(&‘6‘(19),‘(*"0 — kn)an + E(kCC )ﬂ-’-—“aﬂ + [(CIC' ) (a“)y]y

1 n—1
4 Z R“m‘? IP‘I(L{D‘*‘kn !0“knn)d$ 2 Z S’ﬂ:: an-l_lei f{k“_'.m—-km nn)dr

=1 =1

This is our parabolic model of the nonlinear mild-slope equation. In Chapter 4
we will compare this model to the parabolic KP frequency-domain model of Liu

et al. (1985), so we write that model here:

k, A, [ink, nik,wih
2ink,Apne + —— e (hAny) + — a. [ Gz — 207 ko(ko — k)G + 3_9216-:—
Snzkko n—1 N-n
= Y AAn+2 Z Al Anyi (2.56)
4G, \i5
where k, is a constant reference wave number and:
n?wh

Tn=h{1— 2.57
G ( 3 ) (2.57)

This model has lowest-order Green’s Law shoaling. We will also use the one-

dimensional version of Equation (2.55) in our applications:

A?1I+ (kcp) A"-—'
i ’ll—-
i e ZRA A Iesf(kwhn i=kn)dz 4 o Z SAT Aspse i [(kngr—ki— kn)d;-:)
8(kCCy)n ( 2.

(2.58)

where we revert back to the A, notation because the reference wavenumber ko is
identical to k,. Equation (2.58) will be referred to as the “fully dispersive nonlinear
shoaling model” in later chapters. Taking Iiquation (2.58) to its shallow water
limit yields:

‘Fw ] 3k3;2 ) N—n
Ans + 4’} A _m - ! A & dén (Z AAn_1+2 Z Af/ ,H_,) =0 (2.59)
=1
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which is essentially the “consistent shoaling model” of Freilich and Guza (1984).
Integration of the first two terms of Equation (2.59) yields Green’s Law (Equation

1.11). We use Equation (2.59) in our data-model comparisons in the next chapter.

The two-dimensional parabolic equation (2.55) was modeled with the Crank-
Nicholson numerical scheme. This scheme is unconditionally stable for linear prob-
lems, and is second-order accurate in 2 and y. The parabolic model (2.55) was
converted to finite differences much like the KP model of Liu et al. (1985), where
the numerical scheme was written out; thus, it will not be shown here. The one-
dimensional shoaling model (2.58) was modeled with a fourth-order Runge-Kutta

scheme with a variable step-size adaptor (Press, et al. 1986).

2.6 Comparison with Agnon et al. (1993)

As mentioned previously in this chapter, Agnon et al. (1993) developed
a one;dimensional shoaling model based on the same concepts employed by the
present model, but using a different approach. They divided the solution into
free waves, which satisfy the linear dispersion relation, and “locked” waves, which
do not satisfy the linear dispersion relation and are forced by the interactions
of two free waves. It was reasoned that the “locked” waves would travel bound
to the sum or difference of the two forcing frequencies in deep water. As the
water depth decreases, the “locked” waves begin to propagate at the same speed
as their free wave counterparts, and the interaction becomes resonant, with the
forced component no longer limited to be smaller in amplitude to the forcing
components. Rather than using a discrete Fourier transform for the frequency-
domain tranformation, they used a continuous Fourier integral, which required

the use of a delta function to pick out the resonant frequencies. For the periodic
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form of their dependent variable ¢, they used:
é = / et gt (2.60)

which is the continuous form of (2.41), except for a factor of 2. After substituting

this into their equations they then assume the following form for ¢:
¢ = Ae' [ iz (2.61)

This is different from (2.43) in that the complex factor E:% present in (2.43) allows
us to model the amplitude of the free surface elevation 5 rather than ¢, at least

to first order. The evolution equation of Agnon et al. (1993) for the amplitudes

of ¢ are:
C
A IZ A, =
.+ 20,
,a‘ n—1 . N=n .
= (z ,JT‘/;AlAn_ielf{kt+kn~I‘—kn)dr sea Z r%AI‘An+;e‘f{kf‘“'k*“k"}d”)
an I=1 =1
(2.62)
where the interaction coefficients are:
1 wiw? kfwn_t  k:_jw  wlww,-
i = rom (2klkn—+l +—p=lp 2 Lo 8, wﬂ: I) (2.63)
T g Wy Wy g
and:
1 2,8 k2 n k2 2 g
Vo = — (2klkn+t + ot w;-’-z -} 1Wn+l _ Bt + wnwf:'" +l') (2.64)
47" g wﬂ wn g

If we use (2.43) to recast (2.62) so that we model the amplitudes of 7 (here

denoted a,) instead of those of ¢, we obtain (after some rearrangement):

d + anx
s
7 n—1 . N-n _ -
- (Z Viaiap_¢ [ Frtkni=kn)iz | o Y Vaajanpet / (kn+!-k:-‘m}da’)
dwnCon \it 1=1

(2.65)
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where:
grwl
P LK (2.66)
Wil |
and
grwh
Vo = Va (2.67)
Wi 4|

It can be shown that V; and V, are exactly equal to R from (2.46) and S
from (2.47), respectively. Allowing for the aforementioned difference of a factor
of 2 from the definition of the Fourier transform of ¢, we find that (2.65) is equal
to (2.58). Thus, our model is an extension of Agnon et al. (1993) in that it
allows for two horizontal dimensions; the characteristics of one-dimensional wave
propagation and nonlinearity are the same between the two models. The one-
dimensional and parabolic two-dimensional models will be compared to data in

Chapter 4.

2.7 Implications of Resonant Triad Interaction Theory

As previously mentioned, we made use of resonant triad interactions to
treat the quadratic nonlinear terms. This assumes that retention of only resonant
interactions between triads of frequency components is sufficient to adequately
describe a wave field. This assumption marks a departure from time-domain
modeling, in which all interactions, resonant or non-resonant, between frequen-
cies are retained, since there is no explicit distinction between them. One of the
consequences of the use of resonant interaction theory is the assumption of slow
variation in time and/or space. Because the nonlinear terms oscillate at the same
frequency as the linear terms (written schematically in Equation 2.23), singular

perturbation theory maintains that we can formulate a multiple-scale solution in
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terms of a slowly varying amplitude and fast varying phase. This was assumed in
(2.43) and (2.44). It would stand to reason, then, that the arguments in the com-
plex exponentials in (2.58) remain small, such that the slowly-varying assumption

is satisfied. These arguments are:
kl' + kﬂa! = kn (268)
and:

k‘."H-f = kl _— kn (269)

If, for the sake of illustration, we wish to look at the interactions between
a frequency component w; and itself for a two-component system, we could write

(2.58) for the amplitude of the second harmonic A, as follows:

(kCClaa , _ 4 (RAfeif(kz—%n]dw) (2.70)

Aut oeC,), 2 = TsGECC),

The phase function k; — 2k, (often referred to as “phase mismatch”) is the
difference in the phases between the free second harmonic ky and the bound second
harmonic 2k;. In order for the slowly-varying assumption to remain valid, this
difference must remain small. In shallow water, it is indeed small, as the bound
second harmonic begins to satisfy the linear dispersion relation and become a
free wave. In deeper water, however, this difference can become quite large. It
is instructive to quantify this difference in terms of a nondimensional mismatch:;

thus we define:

Lk =2k |
= 3 |

= (2.71)

so that we can determine the relative size of the mismatch. Figure 2.1 shows the

trend in y as L% increases. As deep water is approached, y can reach a value

of 2, indicating that the magnitude of the phase mismatch can increase to twice
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Figure 2.1: Relative Magnitude of Phase Mismatch k, — 2k;

the magnitude of the wave number of the first component w;. It is clear that the
assumption of slow variation of A, would not be valid in deep water since the

phase mismatch can oscillate as fast as the wave itself.

Chen and Liu (1993), in comparing their extended Boussinesq frequency
domain model to the deep water case of Whalin (1971), indicate that the size of
the mismatch would preclude modeling both the free and bound second harmonic.
They eliminated consideration of the free second harmonic and reduced the equa-
tion for the second harmonic to evolve only the bound component for this case.
Madsen and Sgrensen (1992), on the other hand, made no such restriction to their

time-domain extended Boussinesq model when modeling the same experimental
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case. However, Madsen and Sgrensen’s model is not subject to possible viola-
tions of the slowly varying assumption because of the time-domain formulation:
they do not exclusively retain only resonant interactions. In contrast, Chen and
Liu’s model is vulnerable to large values of phase mismatch in deep water. The
frequency-domain model of this chapter, and indeed of the next as well, share
the same difficulties with large phase mismatches as the model of Chen and Liu

(1993).

2.8 Summary

In this chapter we derived a frequency domain parabolic nonlinear mild-
slope equation model. We started from the boundary value problem for water
waves, truncated to O(e®) in wave slope, where properties associated with the
wave motion are O(¢). We used the methodology of Smith and Sprinks (1975) to
develop a time-dependent mild-slope equation for ¢ modified by nonlinear cou-
pling between components of the wave field, the exact nature of which have not
yet been specified. The linear dispersion relation associated with this model is the
dispersion relation from linear theory, thus insuring validity of the linear portions
of the equations in arbitrary water depth. We discussed some of the details of
resonant triad interaction, and applied them to the model to reduce the nonlinear
summations and completely factor out the time dependence. We then assumed
that the solution for the Fourier transform of ¢ is expressible as a slowly varying
amplitude and a fast varying phase. We thus develop evolution equations (both
two-dimensional parabolic and one-dimensional) for this slowly varying amplitude.
We showed that the resulting one-dimensional model is equivalent to the model of
Agnon et al. (1993), with the interaction coefficients being exactly equal between

the two models. We finished the chapter with a discussion of the consequences of
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using resonant triad interactions, especially with regards to deep water propaga-
tion problems. In Chapter 4 we will compare the parabolic nonlinear mild-slope

equation model to experimental data and to other models.



Chapter 3

FULLY NONLINEAR EXTENDED BOUSSINESQ
EQUATION

3.1 Introduction

Most shallow water propagation problems can be adequately described by
the standard Boussinesq equations of Peregrine (1967) or related variants. How-
ever, the lack of validity of these equations in deeper water has a marked effect
on the accuracy of the prediction of even the linear properties of wave propaga-
tion. Unlike the approach of the previous chapter, the Boussinesq format has the
advantage of having a convenient time-domain form; thus it would be helpful to
be able to include more dispersion in these Boussinesq-type equations. There are
several precedents in the literature. Witting (1984) developed a one-dimensional
Boussinesq-type equation from the exact, fully nonlinear depth-integrated equa-
tions for incompressible, inviscid flow. He then used a Taylor series expansion on
the velocity variables about the bottom, and selected the coefficients of this expan-
sion such that the resulting dispersion relation (which was in rational polynomial
form) best matched that of full linear theory for a wide range of water depths.
However, his approach would not be straightforward to generalize for two horizon-
tal dimensions. McCowan and Blackman (1989) used a slightly different approach,
and limited the integrated range of the depth to a certain “effective depth.” This

“effective depth” was then chosen to “best-fit” linear theory. Unfortunately, this
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approach would not apply to irregular waves. Madsen, et al. (1991) introduced
additional terms in the momentum equation to recapture the excellent dispersion
characteristics of the rational polynomial form of Witting (1984). Nwogu (1993),
using the inviscid Euler equations, developed a set of extended Boussinesq equa-
tions by choosing an arbitrary depth z, where the velocity variables are taken.
The resulting dispersion relation (which resembled that of Witting 1984) was then
expressed in terms of this arbitrary depth, and thus “best-fit” to the dispersion
relation of full linear theory from deep to shallow water. Chen and Liu (1993)
rederived Nwogu’s equations using the velocity potential ¢, rather than the ve-
locity vector, and transformed the equations into the frequency domain. They
also refined the “best-fit” of the free parameter in the dispersion relation some-
what. All three studies demonstrated improved dispersion and transformation
characteristics compared to those of standard Boussinesq theory. Unfortunately,
the equations of both these investigations were truncated such that dispersive ef-
fects in the nonlinear terms were omitted. Kirby and Wei (1994) determined that
this truncation affected, for example, the accuracy of the energy transfer from a
primary wave to its subharmonics and superharmonics in deep water. Madsen
and Sgrensen (1993) and Nwogu (1994) derived transfer functions based on their
respective equations that dictated this energy transfer, and compared them to
those predicted by second-order Stokes theory (Dean and Sharma 1981). They
found good agreement in intermediate water depth, but differences as high as 50%
in deeper water. Kirby and Wei (1994), as an extension of Nwogu (1993), derived
a fully nonlinear extended Boussinesq equation, and derived transfer coefficients
that essentially matched those of Dean and Sharma (1981), save for differences
in the calculation of the wavenumber between linear theory and this approximate

theory. It is this model that we wish to treat in the frequency domain.



29

3.2 Derivation of a Fully-Nonlinear, Extended Boussinesq Equation

This section highlights the derivation of the fully nonlinear extended Boussi-
nesq equation of Kirby and Wei (1994). Only the primary features of the derivation
will be explained, as it in itself is not the main goal of this chapter. Details can

be found in Kirby and Wei (1994).

We begin from the non-dimensionalized boundary value problem, scaled

for shallow water:

WV + ¢, = 0; —h<z< 6y (3.1)

¢: = p*(n + V¢ - Vn); z =46y (32)

¢. = —p’V¢ - Vh; z=—h (3:3)

¢+ 1+ g [(VW + %(@‘»‘z)z] = 0; z=6n (3.4)

where ¢ and p were defined in Equations (1.2) and (1.3), respectively. Integrat-
ing the Laplace equation (3.1) in the vertical coordinate z yields the continuity

equation:
bn
m+V-/hV¢dz=0 (3.5)

where the bottom boundary condition (3.3) and the kinematic free surface bound-
ary condition (3.2) are used to eliminate boundary terms generated by the Leib-
nitz differentiation. We will derive our momentum equation from the dynamic
free surface boundary condition (3.4). We use the relation of Chen and Liu (1993)

to relate the surface potential ¢ to the velocity potential at an arbitrary depth z,:

b= bat 1(s0 = )V (1 4a) + 572~ AV + O(")  (36)

Substituting (3.6) into (3.5) and integrating yields:

me+ Ve [(h+6n)Va] + 1>V - {(h+ 6n)V[2.V - (hV ¢a)]}
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+(h+ 69)V (Z—“vﬁ%) + 12V {%{;ﬁ — (6n)VIV - (hwn)]}
. {%[hf’ " (67;)3]V(V2d)0)} o) (37)
and substituting (3.6) into (3.4) yields:
1 g
Gou 1+ 1 { (20 = 60)V - (K9 600) + 5122 = (6)1V 60
F2Tha)? + 812 (Vo - [V2aV - (hV)]+

(za - 5"?)(V¢a ! V)[V 4 (hvﬁbcx)] o i vﬁba & (znvzav2¢a)
4390+ 32 = (V1Y (V%60) + 5V - (WW62) + (50)V%6u} = OGu") (3.9

We note here that truncation of (3.7) and (3.8) to O(6, u?) recovers the
equations of Chen and Liu (1993). Further, substitution of u, = (V4¢), into (3.7)

and (3.8) and truncation to O(8, u?) recovers the equations of Nwogu (1993).

3.3 Linear Dispersion

The properties of the dispersion relation of equations similar to (3.7) and
(3.8) have been discussed by Nwogu (1993) and Chen and Liu (1993). The most
straightforward way to derive the dispersion relation from this system is to lin-
earize the one-dimensional versions of the equations and then assume wave-like

forms for the dependent variables  and ¢,, as follows:

= aef[kxwwt} (3.9)

Qsa - bei(kx—wt) (310)
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These are then substituted into (3.7) and (3.8), and the determinant al-
lowed to vanish to ensure non-trivial solutions of the system. The resulting dis-

persion relation is:

1 —(a+ 3)(kh)?
2 = 3 .
C gh[ T— a(kh)? (3.11)
where C' is the wave celerity and:
22 2
=2 4= 3.12
Y= 2he + h (512}
An explicit expression for the wave number k is found by:
g+ aw?h — \/(g + aw?h)? — 4g (o: + %) w?h
k= (3.13)
2gh? (a + %)
The group velocity C, is found by:
Ow (kh)?/3
o e 5 14
=5t = {1~ e (e D .

The one-dimensional equation of Witting (1984) was found to have (3.11)
as its dispersion relation as well. Using Pade approximants to match (3.11) to the
linear dispersion relation, Witting found the optimum a to be a = —2. Nwogu
(1993), using a least squares numerical technique, refined the estimate of an op-
timum « to be —0.390. However, this least squares technique was performed on
the dispersion relation only. Chen and Liu (1993) used a least squares technique
on both the linear dispersion relation (3.11) and the group velocity expression
(3.14) from deep to shallow water. This resulted in a slightly different value of
a, a = —0.3855, corresponding to a value of z, = —0.522h. Figure 3.1 shows the
ratio of g—L and 56;9; (where C is the wave celerity and C,, is the group velocity
from linear theory) against LLD (where Lyg is the linear wavelength in deep water),

for various values of a. The deep water limit is reached when LL‘, = 0.5, while
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shallow water is reached when Lin = 0.02. It is apparent that the best results

(where the ratios 5% and 509; are closest to one) are obtained for the widest range
g

of water depths if a = —0.3855, while the poorest results are obtained when

= which corresponds to the dispersion relation of standard Boussinesq the-

37
ory. Nwogu’s (1993) value of a = —0.390 and Witting’s (1984) value of a = -2

work well, but do not match linear theory as well as Chen and Liu’s (1993) value

of @ = —0.3855. Thus we use Chen and Liu’s value of @ = —0.3855 in this study.

3.4 Frequency Domain Transformation

Equations (3.7) and (3.8) represent an extension of previous work done in
this vein, since the nonlinearity is no longer assumed small. These equations can
be modeled (with some effort) in the time domain. However, we are concerned
here with the frequency domain and the retention of triad interactions; thus,
we must truncate (3.7) and (3.8) to eliminate cubic (O(6?)) and quartic (O(6%))
nonlinearities, since these cannot be treated in this manner. These truncated

equations are (in dimensional form):
e+ Ve [(h+n)Véa] + V- {(h +n)V[zV - (hV0)]}
2
+(h+0)V (""—“vm) +V- [SR9[7 - (W a))
-V

[51°9(v%6.)] = 0(6%%, 8%, ) (3.15)

bt + g0 + (2o — )V - (hV bay) + 22V2¢>az
+%(v¢a)2 + Ve - [V2aV - (RVd6)] +
Voo - 2V(V - (hV8a)] + Véu - (2V20V?0)

F2Vg, - 2V(Va) + 5[V (V)] = 0%, 857" (3.16)
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Figure 3.1: Comparison of Wave Celerities and Group Velocities to Those of
Linear Theory for Several Values of a: a = —0.3855 (—) a =
—0.390 (---);@=-1/3 (. . .);a=—2/5(- . -). (Top) Normalized
Wave Celerity; (Bottom) Normalized Group Velocity.
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The first step in frequency-domain transformation is the assumption of

periodicity in time:

= ﬁ__—mwt }:1 1wt 7
Z 5 5 —e (3.17)
n=1
Qscx — Z %"_"e—inwt s %’:‘iefnwt (318)
=1 *

Substitution of this into (3.15) and (3.16) and making use of resonant interac-
tions between a triad of components (as we did in the previous chapter) yields a

transformed continuity equation:

_inwﬁn +V. (thgan) +V. [hV(SQVh : véan + ah2v2q‘gan)]
2
+ VBT 9| - 9 £

1 n—1 X . A % N-n - & . "
+ —V ” (Z mv‘;ban—a' + Wn—IV¢al +2 Z nrvqf’an+! g nn+fv¢;l)

1=1 {=1
ah?

n—1
+ —v [Z ﬁfv(v2¢5an—!) . ﬁnﬁfv(v2¢af)
=1
N-=n . .
+ 23, ﬁIV(v2¢an+:)+ﬁn+zwv2¢::f)] =1 (3.19)
=1

and a transformed momentum equation:
. 4 ~ . i . 2v—=2 1 st i q
—1NWhan + §ln — 1MWz Vh » Vdon — inwah*V g, + 1 Z Véai* Vdan-t .
=1

N-& h _—— ) R
+ 2Y V- V¢an+1) i+ & [Z(ﬂ — DV 2bon—t + Unet V:Pai

=1 =1
N-n . ahz n—1 .
+ 2 Z (n + DAV bantt — UjusaV tf)a;] + — [Z Ve - V(V%¢an-t)

=1 =1

N-n
+ v‘;bam—f 4 V(Vzég{) + 2 Z v@”;: ) v(v2¢an+!) + V¢0n+l ’ V(VEQSZI)]

=1

h? n-1 N-n
+ (Z V¢t V2 Pan—t + 2 Z V2LV bon— ;) = (3.20)
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The next step involves combining (3.19) and (3.20) into a single equation for
a single variable. This must be done in such as way as to maintain the dispersion
relation (3.11). Here, we use a first order relationship between ¢, and 1, from the

transformed continuity equation (3.19) to eliminate 7, from the nonlinear terms

of (3.20):
fin = —=—V?@an (3.21)

where we have assumed that the bottom slope is small compared to the gradient
of ¢an. Then, we rearrange the momentum equation (3.20) to isolate 7,, and
substitute this into the continuity equation (3.19), always keeping track of the
order of the various terms to insure consistency with the order of truncation. After
rearranging the linear terms somewhat, the following time-periodic equation for
(,z?)an results:

.59 . 2,2 . ' 3,902 .
"g“’ Pon + (1+” ";”) Vh - Véan + (hﬂ-‘*’—gﬁ) V2den

+ (1450 + VI+2a) k2Vh- V(V*dan) + (a 4 %) hP*V2V24,,
nw (=1
-+ 49 z Vﬁbal V¢an e 2 Z V¢q1 V¢QR+I

mwah2 [““1

49 Z V¢t¥f v(vzéan !') +V¢an - V(v ¢C€I)

N-—n = i " "
+ 2 Z v(ﬁ;; . v(v2¢an+l) + v¢an+l' ’ v(vzqs:rf)]
=1

. h2 n— N-n
+ !n:‘; (Z Tnfv d’aiv qscm = 2 E CnIVQ afv ¢an+!)
I= 1

EI’.d

o+ 49 Z I((}sa( + ah2V Qsa!)v¢an 1+ (?‘l e l)(‘ﬁan 1+ ah v (f’an I)vﬁbal

N—=n

4+ 2 E n 'i"l ¢an+1 3+ ah?V? ¢an+l)V¢al ( ;! + ah2v2§?’;t)v‘?3an+1]

i=1
iwah?
4g

V. [,i iq‘;a;V(Vgéan-z) + (n £= I)éan—fv(vzéaf)
=1
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N—n R . .
+ 23 (0 DdanttV(V2B2) = 182V (V2 hanss) | = 0 (3.22)
=1
where:
(=024l n-0+1 £ 12
Tnl = l(n — I) (3..;3)
2 _ 2
Cot = (n+0?=Iln+1)+1 (3.24)

I(n + 1)

Equation (3.22) governs the potential ¢y,. We use (3.20) to determine the trans-

formed free surface elevation 7,.

3.5 Parabolic Approximation

As in the previous chapter, we wish to create a parabolic model which
will evolve the amplitudes of the wave field (in this case, the amplitudes of ¢uy)
throughout the domain. Thus we assume a propagating wave form for ¢., and

iln in terms of an amplitude that varies slowly in space and a fast varying phase:

an = Ba(a,y)e' S Haw)de (3.25)
i, = An(m,y)eifk{x’y)dz (3.26)

Rather than explicitly invoking the parabolic approximation, we substi-
tute (3.25) into (3.20) and neglect By, that arise. This results in the following
evolution equation for the amplitudes of the velocity potential ¢un:

2 .212
[h o B o (a i 1) h%ﬁ] (Bneifknd:c) =i [ knda
g 3

vy

2. ..21.2
+ % [k,, (h e e “"gh O") — 2k3H3 (a 4 %)] Boz
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?'1.2{4)22 . . ;
+ ll +——= — (1 +5a+ M)kjh?] b { Bt te) ]t
9

nw?z |
+ i{kn(l-f- ) [AS (1+5a+ V1 ]}h,

g

2 2]12 1
+ i [h e i (a 4 g) h%ﬁ] ko By
- (HZ RB,B,_ ¢!/ tkithn-i=kn)iz 4 o z SB;B n+le‘f“‘n+i ki “nldr)
=1
= { (3.27)

where:

R = (n— Uk} + 2nkikn_; + Ik2_, — nh?r, k2k2_,
— ah®[(n — Dk} + 2nkPkuey + nkPk2_, 4 2nkik3_, + 1K2]  (3.28)

§ = (n+ )k} — 2nkiknys — k2, + nh2Co k2k2,,
o Ct’hz[(n + I)k4 271&! kn-h' + nﬂ.; kﬂ-}-f 2nk;k,31+; — lk:_‘_!] (329)

Similarly, substituting (3.25) and (3.26) into (3.22) and again neglecting
the A,;, terms yields the following evolution equation for the amplitudes of the

free surface elevation f,:

P %ahz (B eszndx) ¢=i [ bnde z’nr.;zahy (Bneif k,,dz:) e—i [ kndz

vy y

R g e OO e By i,
9 9 9
+ 4]. (Z R BIB fe f{kl'l‘kn— —‘kn]d:l‘.‘ 2 Z S B; Ie‘ f{kn+;~k;—kn)dr)
g =

(3.30)

where:

R = kiknt — ah? (kik3_; + kknot) — h2m k2R2, (3.31)
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Sﬁ = k.ﬂkn+1 — ah® (kilua.,.g + L; n+|l') h? (m J'I' ’z'“-n.+.l’ (3.32)

As we did in the previous chapter, we must employ a reference phase func-
tion to isolate the y-dependence of the wavenumber. We again use the y-averaged
wavenumber k,o(z) in our reference phase function (Lozano and Liu, 1980). The
amplitudes for the velocity potential and the free surface are redefined as b, and

a, respectively, and are related to the original amplitudes B, and A, by:

Bo(z,y) = by(z,y)e! S K@node—[ kn(zw)dz) (3.33)
An(2,y) = an(z,y) 'S F@Imde= [ kn(z)de) (3.34)

Substituting (3.33) into (3.29) yields:

2 2h2 2,212
2o a2

g
i 2
— 2kﬁh3(a+%)]bm—,+ll+nw 1+5a+\/1+26rk2 ]hyny

2. .2
5 a{k (1 ot z‘*) — [K2R2(1 + 5o+ VI F 2a)]} haby

g

2,.212
— 9 [kn (h + %) — k3R (oz + %)] (Fno — k)b

2. 212
+ z‘lfﬂﬁ (a+3)h3k2]k i
g

n-—1
- 1‘0 (Z Rbyb,, le‘f(km+kn—m—kno)d""" +2 Z Sb" n+!e‘f{k"+‘ﬂ"k‘° k"")d‘r)
9 \i=1 =1

= 0 (3.35)

while substituting (3.33) and (3.34) into (3.30) gives:

mw mwz 2nwah?k
Gz = —ahzbnw + —ahybny —_——

g ) g g
nwah? mw

kna‘:bn + T[l — ak:,hz = 2ah2k“(?€"0 - k“)]bn
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n—1 o _ Ly
L (Z R’b! if(klﬂ+kn—ll]_kn0)dr Z: 5‘ ?‘ n+!€1f”\,.+w .‘\.m—.l\.ﬂo)da")
g :
(3.36)

Equations (3.35) and (3.36) are the parabolic evolution equations used to model
the fully nonlinear extended Boussinesq equations of Kirby and Wei (1994). They
are an extension of Chen and Liu (1993) due to the retention of O(64?) terms. The
linear terms are identical to those of Chen and Liu (1993), save for a difference
in the definition of the reference phase function. For later reference, we write the

one-dimensional version of (3.35):

2.2
) [1 pRwTha g (a + 1)] B
g 3
n2w2...
+ ok 11+ . k§h2(1+5a+v’1+2a)]h3
g

2 2h2 1
+ [h +2 2% 6 (a + 5) k§h3} ke By
g

_ 4g (Z RB‘BR Ieif(k:+kn—t ky )dz 49 ; SBJ n+‘esf{kﬂ+; ki—kn)dz ) =B

and the one-dimensional version of (3.36):

A, = .’i“’_ [i(1 — ak2h?)B, — 2k,h?aB,, — W akn, B, — ZaknhsBa]

41 (ZRBIB Ietf(kﬁkn-: kn)dz 9 Z S’B; 1€ f(kn“—kf—kn)dz)
g I=1

(3.38)
where, again, we revert back to the original B, and A, since there is no difference
between the actual and reference wavenumbers in one-dimensional wave propaga-
tion. As with the model of the last chapter, we use the Crank-Nicholson scheme
for the parabolic equation set (3.35) and (3.36), and a step-size adaptive fourth-

order Runge-Kutta method (Press, et al. 1986) for the one-dimensional shoaling

equations (3.37) and (3.38).
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We wish to emphasize here that frequency-domain transformation of the
fully nonlinear extended Boussinesq equations in effect creates a different model,
with properties that do not necessarily match those of the time-domain model
from which it was derived. Indeed, as we will see in the next section, there are
myriad ways to perform the combination and transformation of these equations
to gain the frequency domain formulation. Each method has its own advantages
and disadvantages, and care must be taken in inferring the behavior of the time-
domain model based on the behavior of the frequency-domain model. With this
caveat in mind, we note here that references to the “fully nonlinear extended
Boussinesq equation” in later sections of this work apply to the frequency-domain
form (Equations 3.35 and 3.36 for the parabolic model, and Equations 3.37 and
3.38 for the one dimensional shoaling model), unless explicit reference is made to

the formulation in the time domain.

3.6 Linear Shoaling

We have seen that the dispersion relation (3.11) compares well to that of
linear theory from deep to shallow water. This is no assurance, however, that the
shoaling characteristics would compare equally well to shoaling from linear theory.
In this section we will look at how well the linearized version of (3.37) and (3.38)
compare to the linearized version of the fully dispersive nonlinear shoaling model
(Equation 2.58). We will also examine other linear shoaling models derived from

the fully nonlinear extended Boussinesq equations.
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3.6.1 Shoaling Models Derived from the (7,u,) Form of the Fully Non-

linear Extended Boussinesq Equations

One reason that the fully nonlinear extended Boussinesq equations were
derived in terms of the velocity potential ¢, instead of the velocity vector u,, is that
the resulting equations (3.7) and (3.8) are simpler to treat in the frequency domain.
Transforming these equations involves unfolding every derivative of the vector
differential operators in (3.7) and (3.8), a task made much more tedious if the
gradient of the equations had to be taken to make the substitution Uy = (Vd)s-
Indeed, Chen and Liu (1993) maintain that it is not possible to reduce the (5, 0.
to one in terms of 7 and still maintain the linear dispersion relation (3.11). This
is not true; it is possible, but doing so involves first-order substitutions between n
and u, that are ambiguous. We shall see, however, that by using a free parameter
to circumvent the ambiguities in the linear terms, we will obtain an excellent

linear shoaling model compared to linear theory.

The first step in obtaining the (7, u,) equations from the (7, o) equations
is to take the gradient of (3.6), evaluate z at z,, and substitute u, = (Vé)a. This

results in: .
Voo = s — p*V2,V - (hV ¢,) + %uz(QzaVzavzqﬁa) (3.39)
We then substitute this into the continuity equation (3.7). This yields:
ne+ V- [(h+ én)u,]
+ 0tV [+ 8z + 507~ (61))] VIV - (hu,)

‘_'\f—'

2
Za

+ WV {[(h+5n) =

Substituting (3.39) into the momentum equation (3.8) and taking the gradient

= %(h‘”‘ + (5,?)3)] V(V- uaJ} =] (3.40)

results in:

Ua + V4 6(u, - V)u,
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i {AV(T ) + 2919 - (b)) = ¥ [5(60)9 - e + 69 - (hueo)]}

4

6V {(2a — 61)(Ua - V)[V - (hug)]
+ 31— 1 )a - V)V ) + 51V - (hua) + EpVu]?} = 0
(3.41)

These equations are modeled by Kirby and Wei (1994).

Linearizing (3.40) and (3.41) and neglecting the y-direction yields (in di-
mensional form):

22 h® h
Nt + (hua):r + [(?ﬂ - E) huaxa’: + (za + '5) h(hua)m:] =) (342)
and:
2

Uat + g7z + ""'Qg“ucxtz:c + za(huort)xr =0 (343)

We make use of the following first-order relations to eliminate u, for 7:

m = —(hug)s (3.44)
M = —(huat)s (3.45)
Ut = g7z (346)

We differentiate (3.42) once with respect to time, expand the derivatives (neglect-
ing terms like h,, and (h;)?), and substitute (3.46) to eliminate u, in all but one

term, resulting in:

a )3
Tt + (hurxt)x —4g (305 + 2% + 2) hzha:nzm: =" gh3 (Q‘ C 5) Nzzzz = 0 (347)

We then multiply (3.43) by h, and substitute the z-derivative of (3.45) into the

result. This yields:

2
htuat = —ghns + ah®n.y — gh? (%) Aotien (3.48)
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The z-derivative of (3.46) is taken before substitution because earlier attempts
have revealed that a relatively poor linear shoaling model results if (3.46) were
substituted directly. This is an example of the ambiguous nature of the substi-
tutions used to collapse the two equations into one for 7 only; (3.44), (3.45) and
(3.46) can either be substituted directly into (3.42) and (3.43), or derivatives with
respect to time and/or space can be taken first and then substituted. Each ap-
proach yields a different shoaling model which compares differently to shoaling
from linear theory. In any case, substitution of (3.48) into (3.47) yields the linear

wave equation:

Nt + ghznm S ghnm: + 23}1;13:3?3“ o ahz?}'wz‘t = 9h2(5£¥ -+ 2);3::7?.1::::

Derivation of a shoaling model directly from (3.49) has resulted in extremely poor
comparisons to shoaling from linear theory. This is probably due to incorrectly
choosing the first-order substitutions required to derive the wave equation (3.49).
Rather than iteratively choose different first-order substitutions, we isolate the

terms proportional to hh,:

20:??:.."#1 =y gh(5a + 2)7.3::3:: (3.50)

We add a two-dimensional wave equation to (3.50):

which simply adds zero to these terms (f is a free parameter). We neglect the h,
in (3.51) since (3.50) is already proportional to it. We then obtain the following

term:

(2a + B)naee — gh(5a + 2 + B)gae (3.52)
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which modifies (3.49) to:

Nt + ghate + ghnee + (2a + B)hbhones + ah?*neze — gh*(5a + 2 + B)henzes

1
— gk (a + g) . (3.53)
We obtain a shoaling model, and ascertain whether we have retained the
dispersion relation (3.11), by substituting:
n = Ae'lk==v1) (3.54)

into (3.53) and isolating the bottom slope terms from the flat-bottom terms. The
terms not proportional to bottom slope reduce to the dispersion relation. The

remaining terms make up the linear shoaling model:

A, +QA=0 (3.55)
where:
 Ek,+ Fh, :
Q = . _ (3.56)
E = gh+w*h*a —6gh® (a + %) k? (3.57)
F = gk+ (2a+ B)w?kh — gh*(5a + 2 + B)k* (3.58)
G = 2|gkh+wh2ak — 20k°H3 (a 7 %)] (3.59)

where k is found from Equation (3.13). The linear shoaling model from linear

theory is derived from the conservation of energy flux:
(Cy|A[M):=0 (3.60)

which yields:

Cor'\ , _
A:+ (205.)'4_0 (3.61)
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We can use a least squares best-fit to find the value of # that will best mimic

shoaling from linear theory from deep to shallow water. This involves minimizing

0.5 0, % % o
= ‘/U lQ - (E) Iinear] ‘ ('L_o) (362)

which resulted in f = —0.354 as our optimum value. For comparison, Madsen

the integral:

and Sgrensen (1992) performed a shoaling analysis with their extended Boussinesq
model (Madsen, et al. 1991); their equivalent  was equal to —%. Figure 3.2 shows
a comparison of shoaling coefficient found by linear theory against those found
by (3.55) for several values of 3. It is apparent that # = —0.354 best matches
linear theory from deep to shallow water. In contrast, 8 = 0 performs poorly; this
value of  comes from failing to recognize the ambiguous nature of the first-order

substitutions.

Though this is promising, the ambiguous nature of the first-order substi-
tutions affects the manipulation of the nonlinear terms as well. Model behavior
varied drastically when different first-order substitutions were used. For example,

if nonlinearity had not been dropped, Equation (3.53) would have read:

"?t: + ghxn:r: + ghn;c.r + (20: + ﬂ)hhm"?ﬁ:tt + ahznm:t e gh(50f + 2 + ﬁ)hxn:cm:

1
- ghS (O: o §) Nezzz — h(uauaz):c i (Wucx)::t =0 (363)

We wish to eliminate u, in favor of 5 in the nonlinear terms. We do this by
substituting first-order relations between n and u,. Let us isolate one nonlinear

term:

(Mta)at (3.64)

and examine two possible substitutions. Expanding the ¢-derivative and using

(3.46) as a substitution yields:

(ntucx = gnnx)x (365)
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Taking the Fourier transform of this term and seeking an evolution equation for
the amplitudes of # (as was done for the amplitudes of ¢,) would result in the
following term being present in the resulting interaction coefficient analogous to

the coefficient R of Equation (3.28):

n(lk2_; + nkik,—; + (n — 1)k?)
l(n—1)

(3.66)

The resulting interaction coefficient analogous to 5 of Equation (3.29) would con-
tain:

n(lk2,; + nkikngr — (n + )k?)
I(n+1)

(3.67)

Different terms can be calculated by expanding (3.64) completely in z-and-t-

derivatives:
NztUe + NiUaz <} NzUat + Nuart (368)
Then, making use of the following substitution:

- —% (3.69)

as well as (3.46), the resulting evolution equation for the amplitudes of 5 includes
the following term in the interaction coefficient analogous to 1 in Equation (3.28):
nlkik,; n%w?

I(n-1) gh

(3.70)

and the following term in the interaction coefficient analogous to S in Equation
(3.29):

n’kikny  niw?
l(n+1) gh

(3.71)

It is likely that (3.66) and (3.70) would behave quite differently. This can be said
of (3.67) and (3.71) as well. These are only two ambiguities of many. In addition,
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unlike the linear shoaling problem, we do not have a benchmark model to which we
can compare. However, the derivation of (3.7) and (3.8) involved no ambiguities
in the linear terms, and only one very straightforward ambiguity in the nonlinear
terms which was very easily resolved. Additionally, as stated in Chen and Liu
(1993), the dispersion relation (3.11) was maintained. Thus, we derived the fully

nonlinear extended Boussinesq equations in terms of (7, ¢, ) rather than (7, u,).

3.6.2 Comparison of Linear Shoaling Models

So far, we have four linear shoaling models: that of linear theory (3.61), the
(-dependent model described in the previous section (with f = —0.354), Green’s
Law (1.11), and the linearized version of (3.37) and (3.38). Another linear shoaling
model can be derived by simply changing the group velocity calculation in (3.61)
from linear theory to (3.14):

A+ (C»“) A=0 (3.72)
2C, (3.14)

Figures (3.3) and (3.4) show comparisons between all five shoaling models
for two ranges of water depths. Figure (3.3) shows shoaling coefficents from the
deep water limit of f: to shallow water. It appears that for this case the f-
dependent model of (3.55) exhibits excellent agreement to shoaling from linear
theory. As expected, Green’s Law performs poorly compared to linear theory. This
occurred because we started our simulation in deep water, well outside the range
of validity for this shallow water shoaling model. What is surprising is that the
simple relation (3.72) compares better to linear theory than the linearized version
of (3.37) and (3.38). This clearly indicates that improved linear dispersion does
not guarantee improved linear shoaling characteristics. It may be argued that the

fully nonlinear extended Boussinesq equation, for all the improvements to linear
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dispersion in deeper water, is still limited to at most intermediate water depth
because the horizontal velocity profile is still quadratic with depth. Additionally,
as we outlined in the last chapter, the use of resonant triads, as we have done
here, can be problematic in deep water. Thus we should investigate the behavior
of these shoaling models starting from a point in intermediate water depth rather
than deep water. Figure (3.4) shows a comparison between all five shoaling models
beginning from Ii_: = 0.3. This is the L‘r—: value of the peak frequency of Case 2
of the experiment of Mase and Kirby (1992) at the wavemaker. We will compare
this model to that experiment. The figure shows that all the more dispersive
shoaling models (all except Green’s Law) begin to approach shoaling by linear
theory. In contrast, Green’s Law again does poorly. Thus, we can expect that the

model equations (3.37) and (3.38) would perform well for wave parameters in the

intermediate water depth range.

3.7 Summary

In this chapter we have outlined the derivation of the fully nonlinear ex-
tended Boussinesq equations of Kirby and Wei (1994). We then truncated them to
O(6p?) in order to retain only quadratic nonlinearity, and transformed the equa-
tions into the frequency domain using triad resonant interactions between com-
ponents. We then assumed a propagating wave train, and obtained two parabolic
equations, one for the evolution of the amplitudes of ¢,, Equation (3.35), and
one for the evolution of the amplitudes of 5, Equation (3.36), which is calcu-
lated directly from the amplitudes of ¢,. For completeness we also reduced the
two-dimensional parabolic equations to one dimension, yielding (3.37) and (3.38).
While the linear terms are essentially those of Chen and Liu (1993), it is an

advance on their work due to the retention of O(éu?) terms.
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The final section in this chapter discussed linear shoaling. We saw that a
linear shoaling model based on the fully nonlinear extended Boussinesq equations
expressed in terms of (1, u,) as opposed to (7, ¢, ) required a best-fit free param-
eter B in order to compare well to linear theory. This is because the substitutions
of first-order terms to eliminate u, in favor of 5 are ambiguous, in that these first-
order relations between u, and 7 can be differentiated freely with respect to x or
t before substitution, yielding different shoaling models that compare by varying
degrees to linear theory. This f correction term was input into the wave equation
(3.49), and the shoaling term calculated. This shoaling term was calibrated to
match the shoaling term from linear theory, which occurs if § = —0.354. This
3 factor circumvented the ambiguities in the first-order substitutions used to de-
velop (3.53). We saw in Figure (3.3) that the A-dependent model compared better
to linear theory than the linear shoaling model from (3.37) and (3.38). Despite
this, we will continue to use the (7, ¢,) model. We have shown that the ambi-
guities in the first-order substitutions that were overcome by the f factor in the
(n,u,) affected the nonlinear terms as well, yielding different terms in the nonlin-
ear interaction coefficients that may yield drastically different model behavior. In
contrast, the (7, ¢,) model was derived without any ambiguities in the first-order
substitutions for the linear terms and only one ambiguity in the nonlinear terms.
Additionally, (3.4) shows that the linearized (7, ¢o) model compares as well to
linear theory as the other dispersive shoaling models if started in intermediate
water depth. This is a reasonable restriction, as the quadratic horizontal velocity
profile and the use of resonant triad interactions may preclude the model from
being fully applicable to deep water. Thus we use the (7, ¢,) equations in our

simulations.



Chapter 4

COMPARISONS TO DATA - ONE-DIMENSIONAL
AND PARABOLIC MODELS

In this chapter, we will present comparisons of the models described in the
previous two chapters to experimental data. In addition, we will also compare
them with previously-formulated models to determine the degree of improvement

exhibited by the models in this study.

4.1 Comparison of Parabolic Models to Whalin (1971)

Whalin (1971) conducted a laboratory experiment to investigate the limits
of linear refraction theory. He generated sinusoidal waves of 1, 2, and 3 second
periods and ran them over bathymetry that resembled a tilted cylinder. The bot-
tom contours and tank dimensions are shown in Figure 4.1. We only compare
the 2 and 3 second cases; the 1 second case will be discussed later in this section.
The wave parameters for the cases used in the comparison are shown in Table 4.1,

where the tank depth used in calculating the nonlinearity parameter % and the

dispersion parameter % was chosen to maximize the values of these parameters.
He placed gages at certain locations along the centerline, and calculated the ampli-
tudes of the first three harmonics. This experiment demonstrated the inadequacy

of non-diffractive linear refraction theory as a modeling methodology; a strong

93



Table 4.1: Wave Parameters of Experiment of Whalin (1971) Used In Data-
Model Comparisons. (h; = 45.7 em; hy = 15.2 em.)

a w?h
Vi ag oy L

(sec) | (em) ’

3 0.68 | 0.0446 | 0.2044
0.98 | 0.0643 | 0.2044
1.46 | 0.0958 | 0.2044
0.0490 | 0.4599
1.06 | 0.0675 | 0.4599
1.49 | 0.0949 | 0.4599

po| b0 po| eof o
=
3
o

focal point downwave of the top of the tilted cylinder would indicate an infinite
waveheight per linear refraction theory, which would be impossible. Diffraction is
very prevalent there. Additionally, using a linear sinusoidal wave generates higher
harmonics since the nonlinear boundary conditions cannot be satisfied by a single

harmonic.

We ran the parabolic nonlinear mild-slope model (Equation 2.55) and the
parabolic fully nonlinear extended Boussinesq model (Equations 3.35 and 3.36)
against the data of Whalin (1971) using the parameters shown in Table 4.1. We
also ran the parabolic frequency-domain KP model of Liu et al. (1985) (Equation
2.56) and the extended Boussinesq model of Chen and Liu (1993). We used a
grid spacing of Az = 0.12m and Ay = 0.08m. No substantial improvement was
noted when the stepsizes were halved. Because Equation (3.35) is in terms of
the amplitudes of ¢,, we must convert the initial amplitudes of the free surface
elevation as reported by Whalin (1971) as follows:

- ~4g
b-n() — wn[l _ a(knDhG)Q]ano (41)

This relationship is found from the linear terms of Equation 3.16.
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Figure 4.1: Wavetank Layout of Experiment of Whalin (1971): (Top) Bottom
Contours; (Bottom) Centerline Depth.

Figures 4.2 through 4.4 show the comparisons between the models and
Whalin’s data for the case of T = 3 seconds. It is apparent that neither model
predicts the first harmonic amplitudes particularly well. This seems to be endemic
of most data-model comparisons done in the literature where Whalin’s 3 second
data were used (e.g., Rygg 1988; Madsen and Sgrensen 1992; Nwogu 1994). Liu
et al. (1985) maintain that the relatively short evolution distance for a 3 second
wave period (roughly two wavelengths) may at least partially violate the slowly
varying assumption used to derive their frequency-domain KP model, though they
do allow for some possible inconsistency in Whalin’s data. In any case, all four
models show reasonable comparison with the 3 second data for the second and

third harmonics.

The T' = 2 second case is more demonstrative of the advantages of the
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dispersive models. The value of the dispersion parameter % in the deep portion
of the tank is 0.46, which may violate the shallow water assumption used in the
KP model of Liu et al. (1985). Figures 4.5 through 4.7 show these results. It is
clear that the KP model overpredicts the amplitudes of all the harmonics, most
notably the first. This is most likely due to the effect of Green’s Law shoaling.
Additionally, the parabolic fully nonlinear extended Boussinesq model of Chapter
3 appears to demonstrate the best comparison to data of all the dispersive models
for this case. This is surprising, since the nonlinear mild-slope parabolic model
of Chapter 2 is essentially truncated to the same order in nonlinearity and uses
the ezact dispersion relation of linear theory for the propagation characteristics.
In contrast, the fully nonlinear extended Boussinesq model has a dispersion re-
lation that approzimates that of linear theory. One would expect the nonlinear
mild-slope parabolic model to show the best agreement. Another noticible feature
of the T' = 2 second comparisons is the effect of the retention of O(éu?) terms
on the second harmonic. These terms comprise the primary difference between
Equations (3.35) and (3.36) and the model of Chen and Liu (1993). One would
expect that, as nonlinear effects begin to influence wave shoaling, the water depth
actually increases, so models with insufficient dispersion in their nonlinear terms
would not react to this depth change and would likely overpredict wave ampli-
tudes. This is analogous to the effect of insufficient dispersion in a linear shoaling
wave model when compared to shoaling from linear theory. Figure 4.5, for ex-
ample, shows this occurrence in the second harmonic. The extended Boussinesq
model of Chen and Liu (1993), which is truncated to O(6, u?), overshoals the am-
plitude of this harmonic compared with the fully nonlinear extended Boussinesq
model of Chapter 3, where terms up to O(éu?) are kept for the frequency domain

treatment.

It can be argued that, in order to best demonstrate the superiority of the
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parabolic frequency domain models of Chapters 2 and 3, they should be compared
to Whalin’s 7' = 1 second case. Both Madsen and Sgrensen (1992) and Nwogu
(1994) compare their time-domain extended Boussinesq equations to Whalin’s
data for this case. They both demonstrate what they consider to be reasonable
data-model agreement. The simulations of Madsen and Sgrensen (1992) show a
distinctive oscillation pattern over the shoal in the second harmonic. This is likely
due to the celerity discrepancy between the free and bound second harmonic,
as each component would travel at a significantly different speed at this water
depth (é‘; = 1.118 for the second harmonic). Chen and Liu (1993), because
of their use of resonant triad interactions in their frequency domain extended
Boussinesq model, explicitly separated the free second harmonic from the bound
second harmonic. They then reasoned that the evolution of the bound wave would
occur at a rate an order of magnitude slower than the evolution of the forcing
wave, and thus eliminated all derivative terms for their evolution equation for the
second harmonic. This yielded an explicit relationship between the amplitudes of
this bound harmonic and the amplitudes of the primary forcing harmonic, with
no consideration of the free second harmonic whatsoever. Using this reduced
model, they compared their results to Whalin’s experiment for 7' = 1 second,
and also achieved reasonable agreement. However, since they modeled only the
primary and bound harmonics, they did not achieve the oscillation pattern present
in Madsen and Sgrensens’ model and also present in the experimental data. A
similar treatment could be performed for the present parabolic models, but is
not done here. It is felt that the 7" = 2 second case simulations adequately

demonstrates the utility of a more dispersive nonlinear wave propagation model.
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x10°

Figure 4.2: Comparisons Between Models and Whalin’s Experiment, 7' = 3s,
a, = 0.68cm. Fully Nonlinear Extended Boussinesq Model (-), Ex-
tended Boussinesq Model of Chen and Liu (1993) (- -), Nonlinear
Mild-Slope Model (-.-), KP Model of Liu et al. (1985) (..), Data of
Whalin (1971) (c0). (Top) First Harmonic; (Middle) Second Har-
monic; (Bottom) Third Harmonic.
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Figure 4.3: Comparisons Between Models and Whalin’s Experiment, 7' = 3s,
a, = 0.98cm. Fully Nonlinear Extended Boussinesq Model (-), Ex-
tended Boussinesq Model of Chen and Liu (1993) (- -), Nonlinear
Mild-Slope Model (-.-), KP Model of Liu et al. (1985) (..), Data of
Whalin (1971) (co). (Top) First Harmonic; (Middle) Second Har-
monic; (Bottom) Third Harmonic.
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Figure 4.4: Comparisons Between Models and Whalin’s Experiment, T = 3s,
a, = 1.46cm. Fully Nonlinear Extended Boussinesq Model (-), Ex-
tended Boussinesq Model of Chen and Liu (1993) (- -), Nonlinear
Mild-Slope Model (-.-), KP Model of Liu et al. (1985) (..), Data of
Whalin (1971) (oo). (Top) First Harmonic; (Middle) Second Har-
monic; (Bottom) Third Harmonic.
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Figure 4.6:

Comparisons Between Models and Whalin’s Experiment, T = 2s,
a, = 1.06cm. Fully Nonlinear Extended Boussinesq Model (-), Ex-
tended Boussinesq Model of Chen and Liu (1993) (- -), Nonlinear
Mild-Slope Model (-.-), KP Model of Liu et al. (1985) (..), Data of
Whalin (1971) (00). (Top) First Harmonic; (Middle) Second Har-
monic; (Bottom) Third Harmonic.
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Figure 4.7: Comparisons Between Models and Whalin’s Experiment, T' = 2s,
@, = 1.49cm. Fully Nonlinear Extended Boussinesq Model (-), Ex-
tended Boussinesq Model of Chen and Liu (1993) (- -), Nonlinear
Mild-Slope Model (-.-), KP Model of Liu et al. (1985) (..), Data of
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monic; (Bottom) Third Harmonic.
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Figure 4.8: Experimental Setup of Mase and Kirby (1992) (from Wei and Kirby
1994)

4.2 Comparison to Mase and Kirby (1992)
4.2.1 Introduction

Mase and Kirby (1992) conducted an irregular wave shoaling experiment in
a wave flume with a sloping bottom. This experiment was performed to study the
process of shoaling and breaking of spectral waves in which the peak frequency

component was outside the shallow water range. The experimental setup is shown

in Figure 4.8, which was taken from Wei and Kirby (1994).

They generated a Pierson-Moskowitz spectrum at the wavemaker for two
different values of peak frequency. Case 1 had a peak frequency of f, = 0.6Hz,
resulting in a surf zone where plunging breakers dominated. Case 2, the experi-
ment of interest to the present study, had a peak frequency of f, = 1.0Hz; this
caused spilling breakers to dominate the surf zone. The experiment is useful for
verification because though the peak frequency is in intermediate water depth,
there is significant energy in frequency bands that are in deep water. This would

be a demanding test for the dispersive models detailed so far in this study. We
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will simulate the experiment with three shoaling models: the fully dispersive non-
linear shoaling model (Equation 2.58), which has linear shoaling properties from
linear theory; the consistent shoaling model of Freilich and Guza (1984) (Equation
2.59), which uses Green’s Law for its shoaling mechanism; and the fully nonlin-
ear extended Boussinesq model (Equations 3.37 and 3.38). The results of these

simulations will be compared to the experimental data.

4.2.2 Energy Dissipation

Because we will be operating the shoaling models of this study in the surf
zone, we require a dissipation mechanism by which we can drain energy out of the
system. The basic dissipation model is detailed in Kirby, et al. (1992a) and Mase
and Kirby (1992). We outline the basic features here.

In general, our shoaling models take the following form after linearization:

C
Az + —2—A, =0 4.2
i (4.2)
This is a statement of energy flux conservation. We can include a damping term:
Cgﬂr
ne ar ‘in Nn g = 4.
A +2CgﬂA + and, =0 (4.3)

where &, is a damping coefficient. The form of &, depends on the sort of fre-
quency distribution one would use to spread the dissipation across the spectrum.
If we write an equation like (4.3) for the conjugate amplitudes A%, multiply each
equation by its conjugate amplitude, and add, we obtain a statement of energy
conservation:

N N

> (Con | An 7). =-23"duC, | An ? (4.4)

n=1 n=1
If we take Cy, = \/gh and define the spectral energy content:

I & "
E=5pg) | Anl (4.5)

n=1
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we obtain:

N
(E\/g_h)r = —pgy/gh (Z an | An I2) (4.6)

where p is unit mass density of water. Equation (4.6) is a statement of a change
in energy flux. We know that this change will be due to dissipation, so we still
require a dissipation function that will drain the energy from the system. For this
purpose we use the simple model of Thornton and Guza (1983), which is stated

as a change of energy flux:

(Byoh) =(a) (4.7)

where:

3vx B3 .
<Eb) = 16 pg;,l_h_gﬂrms

(4.8)

is a probabilistic dissipation function based on the assumption of a narrow banded

distribution. H,,s, the root-mean-square waveheight, is defined as:

1 N
H‘rms =2 Z l An |2 (49)

Equation (4.8) contains the free parameters B, f, and 7. They have ostensible
physical meanings, however: B is the percentage of wave height covered in white
water; f is an arbitrarily-defined characteristic frequency, and v is the ratio of
H..pms to water depth in the saturated surf zone. Mase and Kirby (1992) determined

that the best results would be obtained from the following values:

B = 10 (4.10)
? = fpea.k (4.11)
y = 06 (4.12)

Thornton and Guza (1983) determined that a value of v = 0.42 worked well
against their field data. They then used B as a best-fit parameter, and found that
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B = 1.3 — 1.7 for field data and B = 0.8 for laboratory data. The values used in
this study are certainly in the range of those used by Thornton and Guza (1983).
Equating the right-hand sides of (4.6) and (4.7) yields:

& ™ BB pea 2\! nN=1 An o o N 2
Z n [ An I2= 3\/— 4 k( = J I ) = 6($) Z | A, | (4'13J

o 16+/gh y2h3 -

We still require a specification for &,. Mase and Kirby (1992) investigate empir-

ically the trends that a back-calculated &, would have in the data. They found
a strong f? dependence for &,, which would be analogous to the behavior of the
viscous damping term of the Burger’s equations after frequency-domain transfor-
mation. It was postulated by Kirby, et al. (1992a) that a reasonable representation
of the trends of the dissipation across the frequency components can be achieved

by writing &, in the following form:

7 2
Gp = Gpo + ( s ) Gin1 (4.14)
where:

dno = FP(z) (4.15)

~ 2 ~ fzea Zf: IA'I |2
Qny = (ﬂ(x)_anﬂ) pzn;:l f,%lf An |2

It is apparent that &, represents a constant percentage of energy drain over all

(4.16)

frequencies, while @y, weights the drain higher toward higher frequencies, and
thus represents the f? dependence of dissipation exhibited by the data. The
parameter I determines the mixture between the different frequency distributions.
In model tests of the data of Mase and Kirby (1992) using the consistent model
of Freilich and Guza (1984) with this dissipation, it was determined that ' = 0.5
gave the best results. Thus we use this value of F in our simulations of this
experiment. Extensive comparisons against other data sets would be required

to firmly establish the generality of this dissipation model. Its primary purpose
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in this study is to allow us to model the wave propagation into the surf zone

realistically.

For the fully nonlinear extended Boussinesq model (3.37) and (3.38), no
modification is required even though we are modeling the amplitudes of ¢, rather
than of the free surface elevation 7. Thus the dissipation term that is added to

the left-hand side of (3.35) is:

;S (4.17)

4.2.3 Linear Shoaling as Appliéable to Mase and Kirby (1992)

We discussed the problems of linear shoaling in Chapter 3, specifically
with respect to the fully nonlinear extended Boussinesq model. We saw that the
linear shoaling mechanism inherent in the model followed that of linear theory
reasoniably well if the input wave has a ﬁ-}- ratio no greater than 0.3 at the start
of the simulation. This would be true of the peak frequency in Case 2 of Mase
and Kirby (1992). However, it is instructive to determine the linear shoaling
behavior of the fully nonlinear extended Boussinesq model for the range of spectral

frequencies in the experiment. We perform such an analysis here.

As was done in Section 3.6, we use Green’s Law (Equation 1.11), the lin-
earized version of Equation (2.58), which has the correct linear shoaling mech-
anism, and the linearized version of Equations (3.37) and (3.38) to investigate
linear shoaling. However, rather than use only one wave, we use ten frequencies,
spanning much of the range of the truncated Fourier spectra taken from Case 2
of the experiment of Mase and Kirby (1992). We use the same bathymetry as the

experiment, and do not employ dissipation.
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Figure 4.9; Shoaling Coefficients K, from Linear Theory for Same Frequency

Range and Bathymetry as Used in Model Comparisons to Mase and
Kirby (1992)
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Figure 4.10: Shoaling Coefficients K from Green’s Law, for Same Frequency
' Range and Bathymetry as Used in Model Comparisons to Mase
and Kirby (1992)

Figure 4.9 shows the shoaling coefficients (denoted K ) for the ten frequen-
cies at various depths as calculated by linear theory. It demonstrates the shoaling
features we are attempting to mimic with other models, namely the monotonic
increase in amplitude with a decrease in water depth for the lower frequencies
(shallow water) while the higher frequencies actually decrease in height with an

decrease in depth for part of the propagation distance.

Figure 4.10 shows the shoaling tendencies of Green’s Law (Equation 1.11)
as applied to the bathymetry of Mase and Kirby (1992). As expected, there is no
variation in K, with respect to frequency. This tendency would cause overshoaling
in the higher frequencies, as noted previously. Figure 4.11 shows K as predicted

by the linearized version of the fully nonlinear extended Boussinesq equation. We
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Figure 4.11: Shoaling Coefficients K, from Fully Nonlinear Extended Boussinesq
Model, for Same Frequency Range and Bathymetry as Used in
Model Comparisons to Mase and Kirby (1992)

see that, while the desired tendencies seem to be exhibited for frequencies less
than approximately 1 Hz, shoaling of the higher frequencies tend to be grossly
overpredicted. This is symptomatic of model behavior if carried outside its range

of calibration for the dispersion parameter «, which for this case would be f > 1.29

Hz.

In order to better quantify the deviation of the shoaling mechanisms of
Green’s Law and the fully nonlinear extended Boussinesq model, we defined a
percent error as follows:

l -Ks,approa:. - I(s,ts'near I
I{s,linear

e(%) = ( ) x 100% (4.18)

where K, qpproz. denotes the shoaling coefficient from either Green’s Law or the



Figure 4.12: Percent Error Between Green’s Law and Shoaling from Linear The-
' ory

fully nonlinear extended Boussinesq equation.

Figure 4.12 shows the percent error incurred by using Green’s Law for the
experiment of Mase and Kirby (1992). It is apparent that the error climbs rapidly
with an increase in frequency, as one would expect since the peak frequency for this
experiment has a depth parameter fn— of 0.3, well outside the range of shallow water
theory. However, we note that this error curve tends to level off beyond the peak
frequency. Figure 4.13 is a similar plot for the linear shoaling mechanism of the
fully nonlinear extended Boussinesq model. While the error surface is fairly flat for
frequencies up to the peak, it increases rapidly for the higher frequencies, finally
reaching a maximum error of nearly 700% for the highest frequency. However,

this frequency has a water depth parameter }J’-‘; of 2.71, well beyond the calibration



73

Figure 4.13: Percent Error Between Linear Shoaling from Fully Nonlinear Ex-

tended Boussinesq Equation and Shoaling from Linear Theory
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Table 4.2: Table of Frequencies Analyzed for Error Comparison Between Shoal-
ing Models Used for Case 2 of Mase and Kirby (1992)

Frequency Number | Frequency | +-

Lg
(Hz)
1 0.3 0.03
3 0.9 0.24
4 1.2 0.43
5 1.5 0.67
8 2.4 1.73
10 3.0 2.71

range of the dispersion parameter a shown in Section 3.3.

To look at the errors more closely, we chose several frequencies out of the
range investigated, and compared the errors incurred by Green’s Law to those
incurred by the linear version of the fully nonlinear extended Boussinesq model.
Table 4.2 shows the frequencies analyzed and their respective Llﬁ values. Figures
4.14 and 4.15 show these comparisons. It is apparent that the linear shoaling mech-
anism of the fully nonlinear extended Boussinesq model has lower error compared
to shoaling from linear theory than Green’s Law up until f = 1.2Hz. Beyond that
the linear shoaling mechanism of the fully nonlinear extended Boussinesq model
incurs much larger error than Green’s Law, though both become more erroneous
at these frequencies. We would thus expect that any significant deviation from
the data exhibited by both the consistent shoaling model and the fully nonlin-
ear extended Boussinesq model is a result of the partial inapplicability of these
models to the range of E—O of the experimental data. Additionally, based on this
shoaling analysis, we would expect the fully nonlinear extended Boussinesq model
to perform better than the consistent shoaling model for frequencies iess than or

equal to the spectral peak of the data, since the errors in linear shoaling between
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Figure 4.14: Comparison of Linear Shoaling Errors from Green’s Law (-)
and Fully Nonlinear Extended Boussinesq Model (- -). (Top)
f =0.3Hz; (Middle) f = 0.9Hz; (Bottom) f = 1.2H =



76

50

500 T T T T T T T T

(%)
-

5 10 15 20 25 30 35 40 45 50

600 X .

T
!
A1

~— 400
=)

W 200f i .

5 10 15 20 25 30 35 40 45 50

Figure 4.15: Comparison of Linear Shoaling Errors from Green’s Law (-)
and Fully Nonlinear Extended Boussinesq Model (- -). (Top)
f=15Hz; (Middle) f = 2.4Hz; (Bottom) f = 3.0Hz
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this model and linear theory are smaller. Conversely, we would expect the consis-
tent shoaling model to compare better to data than the fully nonlinear extended
Boussinesq model for frequency ranges higher than the peak. This is not because
the consistent shoaling model has small error compared to linear theory in this
range, but rather because its errors are relatively smaller and level off as the fre-
quency increases. The errors with respect to linear theory for the fully nonlinear
extended Boussinesq model, on the other hand, climb almost exponentially with

an increase in frequency.
\

4.2.4 Model to Data Comparison

As mentioned earlier, we compare three different nonlinear shoaling models
to the Case 2 data of Mase and Kirby (1992). These models are: the consistent
shoaling model of Freilich and Guza (1984) (Equation 2.59), the fully dispersive
nonlinear shoaling model (Equation 2.58), and the frequency-domain version of
the fully nonlinear extended Boussinesq model (Equations 3.37 and 3.38). All

three models contain the dissipation mechanism detailed in Section 4.2.2.

Mase and Kirby (1992) took data for their Case 2 at a sampling rate of
At = 0.05 sec, recording a total of 15,000 data points. For our purposes, the data
were divided into seven realizations of 2,048 points each. This number was used
in order to utilize the FFT, which requires that the number of points input equals
a power of 2 (in this case, 2''). The complex Fourier coefficients associated with
the data were calculated and a power spectrum computed and plotted. It was
determined that only the lower 300 frequency components contained significant
energy, so the number of frequency components to be modeled was reduced from
1,024 (which resulted from the FFT) to 300, yielding a frequency range 0.0098
Hz < f < 29297 Hz. As we will see later, this truncation has an impact in
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computing higher-order statistical properties.

The definition of the Fourier transform used in reducing the experimental
data was not equal to that used in deriving any of the models. From the dis-
crepancy of the definitions, it was determined that the data had to undergo the

following transformation:
A, = 2K (4.19)

where F is the conjugate of the complex amplitude taken from the FFT used to
process the time series of the experiment. This transformation was done before the
data was input to the model. For the fully nonlinear extended Boussinesq model,
the A, was then transformed to B, via Equation 4.1 before input. The model
results (in the form of complex Fourier coefficients for A,) were then transformed

back into F,, and the power spectra calculated.

- The resulting comparisons are shown in Figures 4.16 through 4.19. At first
glance, it appears that the fully nonlinear extended Boussinesq model compares
relatively poorly to the data compared to the fully dispersive nonlinear shoaling
model and (at times) the consistent shoaling model. Close inspection, however,
reveals that this extended Boussinesq model actually predicts the peak frequency
energy very well for most of the range of propagation. Not until d = 10 em does
the extended Boussinesq model show more deviation from the data at the peak
frequency than the consistent shoaling model. However, at frequencies higher
than the peak the deviation is significant, even at the first gage (d = 35 cm).
From our discussion of the previous section, it can be concluded that the probable
cause of much of this overprediction is the poor performance of the linear shoaling
mechanism of the fully nonlinear extended Boussinesq model in this frequency
range. As the waves evolve and trade energy between frequencies, nonlinear effects

make up a larger portion of this overprediction than at the start. The nonlinear
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Figure 4.16: Comparison of Shoaling Models to Case 2 of Mase and Kirby
(1992). Experimental Data (-), Fully Dispersive Shoaling Model (-
-), Consistent Model of Freilich and Guza (1984) (. .), Fully Non-
linear Extended Boussinesq Frequency Domain Model (- .). (Top)
Input Spectra at d = 47 cm; (Bottom) d = 35 em.
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Figure 4.17: Comparison of Shoaling Models to Case 2 of Mase and Kirby
(1992). Experimental Data (), Fully Dispersive Shoaling Model (-
-), Consistent Model of Freilich and Guza (1984) (. .), Fully Non-
linear Extended Boussinesq Frequency Domain Model (- .). (Top)
d = 30 em; (Middle) d = 25 em; (Bottom) d = 20 cm.
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Figure 4.18: Comparison of Shoaling Models to Case 2 of Mase and Kirby
(1992). Experimental Data (), Fully Dispersive Shoaling Model (-
-), Consistent Model of Freilich and Guza (1984) (. .), Fully Non-
linear Extended Boussinesq Frequency Domain Model (- .). (Top)
d=17.5 cm; (Middle) d = 15 cm; (Bottom) d = 12.5 cm.
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Figure 4.19: Comparison of Shoaling Models to Case 2 of Mase and Kirby
(1992). Experimental Data (), Fully Dispersive Shoaling Model (-
-), Consistent Model of Freilich and Guza (1984) (. .), Fully Non-
linear Extended Boussinesq Frequency Domain Model (- .). (Top)
d = 10.0 em; (Middle) d = 7.5¢m; (Bottom) d = 5 em
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coupling between the components may be suitably formulated, but is driven by
the spectral amplitudes; thus erroneous predictions of amplitudes in the high
frequency range affect the accuracy of the energy transfer. In contrast, the fully
dispersive nonlinear shoaling model performs very well compared to the data. It
simulates the high frequency end of the spectrum better than both the consistent
model and the fully nonlinear extended Boussinesq model. The consistent model,
on the other hand, begins to pull away from the peak at the first slope gage
(d =35 cm), and then overpredicts most of the spectral range for the remainder
of the propagation distance, at least until breaking becomes significant. At the

final gage (d = 5 em) damping dominates all the models.

4.2.5 Root-Mean-Square Waveheight, Skewness and Asymmetry

While we have seen qualitative comparisons of spectra between our non-
linear shoaling models and data, we wish to establish a more quantitative com-
parison using statistical parameters taken from both the data and model output.
The statistical properties in question are root-mean-square waveheight (or H,,,,),
skewness and asymmetry. Comparisons between data and model using H,,, will
allow us to directly quantify the comparisons shown in Figures 4.16 through 4.19,
since, in our definition, this is an energy-based parameter. Skewness (a measure of
top-to-bottom asymmetry) and asymmetry (used, in this context, to mean front-
to-back asymmetry) will help us determine whether our models are attaining the
proper wave shape. In addition, we will also examine the implications of truncat-
ing the spectra at 300 components for model input. This will be done by direct
comparisons of the statistical properties of the truncated spectra of the experi-
mental data set at each gage to those of the full spectra (all components kept).
We note here that skewness and asymmetry are relevant only to nonlinear waves;

both quantities are identically zero for linear sinusoidal waves.
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The quantity H,,s is calculated by Equation (4.9). Since it is a direct
summation of the energy contained in each spectrum, it is a quantitative analogue
of the comparisons shown in Figures 4.16 through 4.19. This quantity contains no
information about the actual wave shape; skewness and asymmetry are required

for this. Skewness is calculated by :

Skewness =

(4.20)

where 7 is the signal (in our case, the water surface) and the brackets () denote

an average. Asymmetry is found by:

((H(n)3)3) (4.21)

(n?)2

where H(n) denotes the Hilbert transform of the signal 7.

Asymmelry =

For the ensuing comparisons, each of the seven realizations of the model
output was “inverse FFT’d” to recover the time series. Then, H,,s, skewness
and asymmetry were calculated from each time series and averaged over all seven
realizations, with the standard deviation also calculated. This was done for each
gage. The experimental data at each gage were processed as discussed in Section
4.2.4, and then “inverse FFT’d” to obtain a time series based on only the first 300
frequency components. Again H,,,s, skewness and asymmetry were computed, and
then averaged over the seven realizations, taking note of the standard deviation.
To ascertain the effect of this truncation, the full 1,024 component spectrum for
each realization was processed similarly, and the same statistical parameters were

calculated and averaged.

Figures 4.20 through 4.23 show the results for H,,;. Figure 4.20 shows
the average H,,s variation through the shoaling and breaking region of the ex-

perimental data for both the truncated and full spectra. Also shown is the result
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Figure 4.20: Variation of H,,,, of Experimental Data of Mase and Kirby (1992)
with Depth. H,,, Averaged Over Seven Realizations (), Aver-
age H,n, with One Standard Deviation Added or Subtracted (- -).
(Top) Data Truncated At 300 Components; (Bottom) Full Spec-
trum. )
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Figure 4.21:

50

Variation of H,,, of Model Result with Depth. H,,,; Averaged
Over Seven Realizations (-), Average H,,,; with One Standard De-
viation Added or Subtracted (- -). (Top) Fully Dispersive Nonlin-
ear Shoaling Model; (Middle) Consistent Shoaling Model of Freilich
and Guza (1984); (Bottom) Fully Nonlinear Extended Boussinesq
Model
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Figure 4.22: Comparison of Average H,,,. Experimental Data of Mase and

Kirby (1992) Truncated at 300 Components (-); Fully Disper-
sive Nonlinear Shoaling Model (- -); Consistent Shoaling Model of
Freilich and Guza (1984) (. .); Fully Nonlinear Extended Boussi-
nesq Model (- . -)
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Figure 4.23: Effect of Truncation of Experimental Data of Mase and Kirby
(1992) on H,,, Variation. Full Spectra (-); Spectra Truncated at
300 Components (- -)
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after one standard deviation is added and subtracted from the average. It is ap-
parent that the standard deviations become smaller as the wave train dissipates.
This shows that the breaking process acts like a wave height “filter,” gradually
eliminating the randomness in the wave heights that caused H,,,, to vary between
realizations. This trend is also reflected in the results from all three models. I'ig-
ure 4.22 shows comparisons of average H,,,, between the different models and the
truncated data. It is apparent that the fully dispersive model performs better
than both the consistent model of Freilich and Guza (1984) (Equation 2.59) and
the fully nonlinear extended Boussinesq model. Figure 4.23 compares the aver-
age H,,, values between the truncated experimental spectra and the full spectra
throughout the shoaling and breaking region. The close comparison shows that
truncation of the spectrum to 300 components does not result in loss of a signifi-

cant amount of energy.

It is to be noted that the effects of the overprediction of linear shoaling in
the fully nonlinear extended Boussinesq model are still present in these simula-
tions. They are not as prevalent in the results due to the dissipation term, which
essentially damps energy in proportion to the total energy content. If the higher
frequencies were overshoaled, and the energy content overpredicted, the damping
would be stronger than it would be if the energy content of the higher frequencies
were accurately modeled. Thus, the favorable comparison of the H,,,, values of
the fully nonlinear extended Boussinesq models to those of the consistent model of
Freilich and Guza (1984) is misleading, since the dissipation in the former model
is probably higher than is present in either the experimental data or the latter

model.

The next set of data-model comparisons concerns the skewness parameter.

As mentioned before, skewness is a measure of top-to-bottom asymmetry. In the
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Figure 4.24: Variation of Skewness of Experimental Data of Mase and Kirby
(1992) with Depth. Skewness Averaged Over Seven Realizations
(-), Average Skewness with One Standard Deviation Added or
Subtracted (- -). (Top) Data Truncated At 300 Components; (Bot-
tom) Full Spectrum.
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Variation of Skewness of Model Result with Depth. Skewness Av-
eraged Over Seven Realizations (), Average Skewness with One
Standard Deviation Added or Subtracted (- -). (Top) Fully Dis-
persive Nonlinear Shoaling Model; (Middle) Consistent Shoaling
Model of Freilich and Guza (1984); (Bottom) Fully Nonlinear Ex-
tended Boussinesq Model
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Figure 4.26: Comparison of Average Skewness. Experimental Data of Mase
and Kirby (1992) Truncated at 300 Components (-); Fully Disper-
sive Nonlinear Shoaling Model (- -); Consistent Shoaling Model of
Freilich and Guza (1984) (. .); Fully Nonlinear Extended Boussi-
nesq Model (- .)
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context of water waves, this is actually a measure of nonlinearity; both Stokes
and cnoidal waves have sharper crests and flatter troughs than linear waves, and
thus nonzero skewness. Figure 4.24 depicts the variation of skewness with water
depth for the truncated and full experimental spectra. Unlike H,,, there seems
to be no narrowing of the standard deviation band. This may be because skew-
ness is a less stable statistical parameter than H,,s, reliant on the actual shape
of the signal rather than just its energy content. Figure 4.25 shows the skew-
ness variations with water depths for the various models under study. Except for
some possibly coincidental narrowing of the standard deviation band in the fully
dispersive nonlinear shoaling model, this band tends to stay fairly wide. Figure
4.26 compares the average skewness of our shoaling models with the data. While
the fully dispersive and consistent shoaling models at least have the correct trend
(with the consistent model comparing the better of the two), the fully nonlinear
extended Boussinesq model performs quite poorly in comparison. The strong neg-
ative trend in this skewness prediction indicates that the waves have flat crests
and sharp troughs, unrealizable for a typical gravity wave free of surface tension
effects. It can be concluded that the overpredicted high frequency components are
affecting the wave shape predictions to a great degree. This strong negative skew-
ness may also be a function of the spectral truncation. The artifical amplification
of the energy content of the high frequency components by a shoaling mechanism
operating well outside the linear dispersion relation calibration range would seem
to affect the nonlinear energy transfer, as stated earlier. It may be that these
frequency components would interact strongly with components which have been
truncated and are not present in the simulation. This may have a deleterious
effect on the prediction of skewness as well. The possible effect of truncation on
resonant interaction is explained more completely later in this section. Figure

4.27 compares the skewness between the truncated and full data spectra. It is
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evident that the skewness of the truncated spectra is much lower than that of
the full spectra. This is in concert with the findings of Bowen (1994), who main-
tained that the calculation of higher order moments like skewness is affected by
truncation. This effect is usually manifested by a lower skewness value for the
truncated spectra than would be given by the full spectra. In fact, Bowen (1994)
showed plots of measured skewness, in which incrementally increasing numbers
of harmonics of the peak frequency were kept, and the skewness calculated, until
the full spectrum was retained. He found that the skewness values for these data

converged on the values for the full spectrum as more harmonics were kept.

The final comparison addresses asymmetry, here meant as front-to-back
asymmetry. We would expect the asymmetry of breaking waves to be negative,
as this reflects their sawtooth-like shape. Figure 4.28 shows the asymmetry for
the truncated and full experimental spectra. Again, as with the skewness, the
standard deviation band for the asymmetry is fairly wide, and remains so through
the domain. This is evidence of its statistical variability, as was also shown with
the skewness predictions. Figure 4.29 depicts the average asymmetry for the three
models. All show evidence of the effects of dissipation, as they all exhibit negative
asymmetry by the time the last gage is reached, albeit to varying degrees. Figure
4.30 compares the average asymmetry of the three models against that of the
truncated spectra. Of the three models, the consistent model of Freilich and
Guza (1984) compares the best against the data, although no model performs
particularly well. Figure 4.31 compares asymmetry values between the truncated
experimental spectra and the full spectra. Again, as with skewness, truncation of
the experimental spectra to 300 components tends to reduce the asymmetry (in
this case, the negativeness of asymmetry). This is also in accord with the findings
of Bowen (1994), who calculated varying degrees of asymmetry based on keeping

more harmonics of the spectral peak of his laboratory data. He found that, as
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Figure 4.28: Variation of Asymmetry of Experimental Data of Mase and Kirby
(1992) with Depth. Asymmetry Averaged Over Seven Realizations
(-), Average Asymmetry with One Standard Deviation Added or
Subtracted (- -). (Top) Data Truncated At 300 Components; (Bot-
tom) Full Spectrum.
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Figure 4.29: Variation of Asymmetry of Model Result with Depth. Asymmetry
Averaged Over Seven Realizations (-), Average Asymmetry with
One Standard Deviation Added or Subtracted (- -). (Top) Fully
Dispersive Nonlinear Shoaling Model; (Middle) Consistent Shoal-
ing Model of Freilich and Guza (1984); (Bottom) Fully Nonlinear
Extended Boussinesq Model
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Figure 4.30: Comparison of Average Asymmetry. Experimental Data of Mase
and Kirby (1992) Truncated at 300 Components (-); Fully Disper-
sive Nonlinear Shoaling Model (- -); Consistent Shoaling Model of
Freilich and Guza (1984) (. .); Fully Nonlinear Extended Boussi-
nesq Model (- .)
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Figure 4.31: Effect of Truncation of Experimental Data of Mase and Kirby
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cated at 300 Components (- -)
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with skewness, the asymmetry values converged upon the asymmetry of the entire

spectra (all components kept) as more harmonics of the peak were retained.

It is noted here that strict comparisons of model skewness and asymmetry
to data, even the truncated spectra, are misleading. Each component of the data
has experienced all possible resonant interactions with every other component; it
is the result of these processes that is truncated. In contrast, the models only
“see” the truncated spectra as input; thus interactions only take place within the
frequency range of these truncated spectra, neglecting all interactions outside this
range. While this does not seem to have an effect on lower-order quantities such
as H,,,, it may have an influence on the higher-order moments such as skewness
and asymmetry. It would seem that the only true comparisons of higher-order
moments between model and data would be achieved if all frequency components
of the experimental data were retained, which 1s possibly prohibitively expensive

in terms of required computing time.

Despite the qualifications listed above, we can make some general conclu-
sions concerning the abilities of the models to simulate various statistical quanti-
ties associated with the energy level and shape of the wavefield. Figure 4.22 shows
that the fully dispersive shoaling model performs better than either the consis-
tent model of Freilich and Guza (1984) or the fully nonlinear extended Boussi-
nesq model in predicting H,,s. This is reflective of accuracy in modeling the
energy content of the spectral wavefield, and is a quantification of this model’s
performance in the direct spectra-to-spectra comparisons shown in Figures 4.16
through 4.19. However, in modeling higher-order moments, the consistent model
of Freilich and Guza (1984) arguably yields the best comparisons to the data,
both in skewness and asymmetry. It may be asserted, however, that none of the

three models compares exceptionally well to the skewness and asymmetry values
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of the truncated experimental spectra. Additionally, we have also determined that
truncating the experimental spectra and then calculating higher-order moments
tends to lead to underpredictions of skewness and negative asymmetry than if the

entire spectra were used. This is in line with the results of Bowen (1994).

4.3 Summary

In this chapter we have shown comparisons of both our parabolic models
and our one-dimensional shoaling models (developed in Chapters 2 and 3) to data.
Our first comparison was to the experiment of Whalin (1971). We demonstrated
that our parabolic two-dimensional models of both the nonlinear mild-slope equa-
tion (Equation 2.55) and and the fully nonlinear extended Boussinesq equations
(Equations 3.35 and 3.36) compared better to the data than the parabolic KP
model of Liu et al. (1985) (Equation 2.56) for the T' = 2 s wave case. Addi-
tonally, we also demonstrated the effects of retaining O(éu*) terms in the fully
nonlinear extended Boussinesq model by comparing it to the model of Chen and
Liu (1993), which does not contain these terms. It was shown that the fully non-
linear extended Boussinesq model compares better than the model of Chen and
Liu (1993) for the higher harmonics of the T = 2 s case. This is due to the
retention of dispersive effects in the nonlinear terms, the neglect of which causes
the model to overshoal when nonlinear effects become important. For the T' = 3
s case, all models, including the parabolic KP model, perform equally well. All
models evidence the overprediction of the first harmonic amplitudes that seem to

be prevalent among all studies that use this data set for comparison.

Before we compared our one-dimensional shoaling models to the data of
Mase and Kirby (1992) we digressed briefly to discuss two aspects of the com-

parison that affected the models. The first was energy dissipation. We wrote our
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one-dimensional shoaling models with a damping term added, and derived the
energy flux relation, stating that the evolution of the energy flux is a function of
dissipation. We then used the dissipation model of Thornton and Guza (1983)
as our probabilistic dissipation function, and postulated a frequency distribution
function that combines an equal energy drain across all frequencies with a mecha-
nism that attempts to incorporate the f? dependence evident in the data of Mase
and Kirby (1992). Based on tests with the consistent model of Freilich and Guza
(1984), we found that an equal mixture of the two mechanisms worked well for
this data. We also analyzed the linear shoaling tendencies that the consistent
model of Freilich and Guza (1984) and the fully nonlinear extended Boussinesq
model would have relative to the frequency range in this data set. We chose ten
representative frequencies that spanned most of the frequency range of the data,
defined a percent error between the shoaling coefficient found by either of these
two models against that of linear theory, and showed surface plots of these errors
(Figures 4.12 and 4.13). It was shown that the linear shoaling characteristics of
the fully nonlinear extended Boussinesq model worked better than Green’s Law
for the frequency range lower than the peak frequency, which was in intermediate
water depth. The errors between this model and linear theory were much lower
than the corresponding errors with Green’s Law in this range. On the higher fre-
quency side of the peak, however, Green’s Law seemed to perform better relative
to linear theory. This was not because Green’s Law has any validity as a predictor
of linear shoaling tendencies in this range, but because the shoaling errors climbed
quickly and leveled off as the frequency increased. In contrast, the error surface
for the linear shoaling characteristics of the fully nonlinear extended Boussinesq
model was fairly level until the peak frequency, and then exhibited an almost-
exponential increase. Based on this analysis, we expected that the main source

of discrepancy between data and either the consistent shoaling model or the fully
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nonlinear extended Boussinesq model is the partial inapplicability of these models

for the range of frequencies and water depths of the experiment.

This assertion was borne out in the direct data-to-model comparisons
shown in Figures 4.16 through 4.19. The fully dispersive nonlinear shoaling model,
with full linear theory in its linear shoaling mechanism, performed the best of the
three models in predicting the energy content and spectral shape. The consistent
model, on the other hand, began to pull away from the peak of the data at the
first inshore gage (d = 35 ¢m), and overpredicted the higher frequency range of
the data. The fully nonlinear extended Boussinesq model, as expected, exhibited
better comparison to the data than the consistent shoaling model for frequencies
lower than and equal to the peak frequency, and dramatically overpredicted the
energy content in the frequency components higher than the peak compared to ei-
ther the fully-dispersive nonlinear shoaling model or the consistent shoaling model

of Freilich and Guza (1984), in accord with the error analysis described earlier.

We then looked at root-mean-square waveheight (or H,,,,), skewness and
asymmetry. The effect of truncation of the experimental spectra to 300 com-
ponents was also investigated, as Bowen (1994) maintained that this truncation
has an effect on the prediction of skewness and asymmetry. We saw that the
comparisons of H,.,s to data quantified what the direct model-to-data spectra
comparisons showed: that the fully dispersive nonlinear shoaling model predicted
the overall energy content better than the other two models. We also showed that
truncation of the spectra to 300 components incurs no significant energy loss, as
the H.ns values for both the truncated experimental spectra and the full spectra
compare closely at each gage. Skewness comparisons were also shown. It was ob-

served that all three models underpredicted the skewness of the truncated spectra,
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with the consistent model of Freilich and Guza (1984) yielding the best predic-
tion of skewness among the three models. Additionally, the skewness of the fully
nonlinear extended Boussinesq model remained strongly negative for most of the
domain, indicating that the waves have sharp troughs and flat crests, which is not
endemic of a typical gravity wave. We postulated that this can be explained by
the artificially-amplified higher frequency components and the effect of truncation
of the spectra. The overshoaled high frequency components adversely affected the
prediction of wave shape and the top-to-bottom asymmetry (which is quantified
by skewness). Nonlinear energy transfer would seem to have been exacerbated by
these overshoaled components; however, since the spectra were truncated at 300
components, the artificially strong energy transfers that would have taken place
in a full spectrum could not take place here. This may also have had an effect
on the skewness results from the fully nonlinear extended Boussinesq model. We
also showed that skewness calculated from a truncated spectrum could be much
lower than that from the full spectrum, even though only an insignificant amount
of variance is lost with the truncation. This is in agreement with Bowen (1994).
Asymmetry was also calculated in an effort to quantify the effect of dissipation
on the wave shape. A sawtooth-like wave shape, typical of breaking waves, would
carry a negative asymmetry. It was made evident that neither model predicted
asymmetry particularly well when compared to the asymmetry values of the trun-
cated experimental spectra. We also showed that truncation of the spectra tends
to underpredict the negativeness of the asymmetry as compared with retaining
all components. We remarked that direct comparisons of skewness and asymme-
try between data and model may not be altogether valid, even compared to the
truncated spectra. The truncated data has undergone resonant interactions with
all components throughout the entire spectrum. On the other hand, the models

only “see” a number of components smaller than that of the entire spectrum, and
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thus can only interact in that frequency range.

Looking at overall model performance, it appears that the nonlinear mild-
slope equation and its one-dimensional counterpart, the fully-dispersive nonlinear
shoaling model, perform the best on average of the models tested with the exper-
imental data used. It compares reasonably well in the parabolic two-dimensional
form with the data of Whalin (1971), and very well in one dimension against the
data of Mase and Kirby (1992). On the other hand, the fully nonlinear extended
Boussinesq model does very well against the data of Whalin (1971), but relatively
poorly against the data of Mase and Kirby (1992) for frequency ranges beyond
the peak. This apparent dichotomy may be explained by examining the processes
involved. In the case of Whalin (1971), the primary waves are in intermediate or
shallow water depth, the higher harmonics start from zero, and we are modeling
waves in two dimensions, which may serve to mitigate any strong overshoaling
tendencies. However, in Mase and Kirby (1992), more than half the frequency
range is in deep water. Additionally, the energy content in this frequency range
is not insignificant. Thus it seems that the fully nonlinear extended Boussinesq
model does very well compared to the fully dispersive nonlinear shoaling model for
L% < 0.3 (i.e., the frequency peak), but becomes problematic beyond that range.
This may be due to the fact that the dispersion relation is of rational polynomial
form, causing the linear shoaling terms to be ratios of rational polynomials if the
explicit expression for the wavenumber k (Equation 3.13) is substituted in. This
form may lead to poor performance outside the range of calibration for the dis-
persion parameter a. We thus state that the fully nonlinear extended Boussinesq
model does well for situations in which all the frequency components satisfied
I{IE < 0.3. This is clearly not the case for the data of Mase and Kirby (1992), and

so the comparisons may not be entirely appropriate.
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Though the nonlinear mild-slope equation performs well for a wide range
of water depths, it does not have a convenient time-dependent form, since the
model coefficients are all functions of frequency and wavenumber. Additionally,
one cannot make use of the “carrier frequency” concept of subdividing an incident
spectrum into several components about some frequency, as is often done for time-
dependent mild-slope equations (e.g., Kirby et al. 1992b), since all interactions
need to occur. The fully nonlinear extended Boussinesq equations, on the other
hand, do not have coefficients that are functions of wave number or wave fre-
quency, and as such can be modeled in the time domain fairly conveniently. We
are interested in this time-domain-to-frequency-domain correspondence, though
we realize that this correspondence may be limited, as discussed in Section 3.5.
Using the time-domain model, the wave field can be modeled without regard as to
the exact nature of the process (shoaling, refraction, etc.) involved. Using the cor-
responding frequency-domain model, we can analyze each separate process and
deterinine its relative importance. Thus, at this point, realizing the somewhat
restrictive nature of the frequency-domain fully nonlinear extended Boussinesq
model, we take this model into the angular spectrum domain. This will be shown

in the next chapter.



Chapter 5

ANGULAR SPECTRUM MODELING OF EXTENDED
BOUSSINESQ EQUATIONS

5.1 Introduction

So far in this study we have demonstrated the utility of dispersive nonlinear
wave propagation models in spectral wave field evolution. We saw how the im-
proved dispersive properties inherent in these models can potentially increase their
applicability to situations involving deeper water than the range of validity for the
standard Boussinesq equations. However, the suitability of one-dimensional and
parabolic two-dimensional models for open coastal problems is obviously limited

to the case of zero-to-small angle of wave approach.

Angular spectrum modeling is one method for overcoming the limitation
of small wave approach angles without the computational restrictions of solving
the full elliptic problem. The parabolic frequency domain approach decomposed
the wavefield into a series of frequency components, where the problem still re-
quired solution in two space variables. The angular spectrum approach, on the
other hand, decomposes the wave field into both frequency and longshore wave
number components, thus permitting solutions to be found in terms of only one
space variable. This approach essentially reduces the problem to the solution of

a stacked framework of ordinary differential equations. This approach has been

107
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applied to the linear mild-slope equation (Dalrymple and Kirby 1988; Dalrymple
et al. 1989) and to the standard Boussinesq equations (1.5) (Kirby 1990). We will
emulate the approach of Kirby (1990) for the angular spectrum transformation of
the fully nonlinear extended Boussinesq model. Kirby’s development assumed a
bathymetry with no variation in y; our development shares this limitation. We
choose this model over the nonlinear mild-slope equation since it has a convenient
time-domain form where the coefficients are not functions of frequency or wave
number. This advantage allows us to view the fully nonlinear extended Boussinesq
models as a system: the time-dependent form can predict the wave field without
regard as to the nature of the individual components comprising it, and the an-
gular spectrum model can explicitly isolate each relevant mechanism (refraction,

shoaling, and nonlinear interaction) for further analysis.

5.2 Simplified Extended Boussinesq Angular Spectrum Model

As noted previously, a primary advantage of the extended formulation of
the Boussinesq equation is the improved dispersion characteristics in deeper water
than is valid for the standard Boussinesq equations. We saw that the shoaling
mechanism behaves poorly in extremely deep water, but when begun in interme-
diate water depth (Ll0 ~ 0.3) the shoaling behavior improves and more closely
approaches linear shoaling. The calculations involved in developing an angular
spectrum model are straightforward but tedious. It would thus be instructive
to investigate what effect improved dispersion would have on an existing shallow

water wave model.

We begin from the standard Boussinesq equations of Peregrine (1967)
(Equations 1.5), and assume periodicity in both time and longshore (y) direc-

tion. We thus decompose the representation of the free surface elevation n into N
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frequency and 2M + 1 longshore wave number components:

Z Z S(?‘IIK"I dz+mAy—nwt) + c.c. (5.1)

m=—M n=1

where A, the longshore wave number, is:

A= Ksiné (5.2)
and:
im = [1 - (%)2(-’,\5“)2] g (5.3)
where:
K= (5.4)

Vagh
Incorporating this periodicity assumption into equation (1.5) and using triad res-
onant interactions for both the frequency and longshore wave number components
yields:
(KAYT ) 1 . 33,9
ne T aKhap T

) n—-1 P, N-n P,
_ 8‘;& {Z > ImpArAn e Onie Lo S S e ar A IR pd"}

=1 p=P, =1 p=PF3
(5.5)
where:
mp pim-p L P —P Aoy, Aove , (A + (n = )7, 57)?
n,l - 1+[7J'7n— + I(K)] [1+( )(K)—I_ n2 ]
(5.6)
J,T,-‘p = I::’__,p (5.7)
and the phase arguments are:
nt = K3+ (n = DK5P — nKAT (5.8)

w = O (5.9)
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This is the angular spectrum model of Kirby (1990). It is an improvement
over the parabolic KP model of Liu et al. (1985) because there is no small angle
restriction. However, it is still limited by the shallow water assumption in its
shoaling relation. We wish to replace linear terms in the model so as to add
dispersiveness to its linear shoaling and propagation characteristics. First of all,
we replace the shoaling term in the model (the second term on left-hand side in
Equation 5.5) with one gleaned from the conservation of energy flux:

g 610
where C,, is calculated from (3.14), the group velocity expression from the fully
nonlinear extended Boussinesq equation. We saw in Section 3.6.2 that this shoal-
ing relation compares well to linear theory for a wide range of water depths.

Secondly, in the manner of Mase and Kirby (1992), we replace the dispersive term

(the third term on left-hand side of Equation 5.5) with:

kn
2TLK:")”::1 (1 = R) (511)
where the k, is found by Equation (3.13). This results in:

(an;?m)x . ~ kn

A™ AZgnin /T gm il . 4 m _
wi ¥ 2C,Am + nKq, X A;
inK n—1 P " . ‘f@m'pd N-n Py . il
. m, m—p 1 nt 9X 9 m,p Ap* Am+p ‘an,I dx

Sh’?;n {E pg)} In,! AI An—! € + ; p;a Jn,! AI Aﬂ+l' e

(5.12)

where the interaction coefficients I,;* and J;;* and the phase arguments O}
and T remain unchanged. This is the simplified angular spectrum model of
the extended Boussinesq equations. We will show comparisons of this model to

experimental data in the next chapter.
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5.3 Angular Spectrum Model of the Fully Nonlinear Extended Boussi-

nesq Equation
5.3.1 Longshore Periodic Waves

Equation (5.12), though now having improved dispersive properties, is in-
consistent because the nonlinearity is that of shallow water Boussinesq theory.
Thus, we perform an angular spectrum transformation of the fully nonlinear ex-
tended Boussinesq equation. We pick up the derivation of the parabolic version
of the model (developed in Chapter 3) where the time-periodic equation for @ny

and 7) were detailed. We reproduce these equations here for convenience:
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and:
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where 7,,; and (,; from (5.13) are defined as:

(n—=12+1n—1)+10

- 15
ol i(n—1) (3:13)
(n+0)2=1ln+1)+1?
nl = 9.1
o I(n+1) I8
Now we explicitly apply the longshore periodicity assumption:
2 e (5.17)

where ) is our base longshore wave number. Substituting this into (5.13) and
applying the resonant interaction conditions between triads of longshore wave
number components yields:

A
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where:

+ + + + +

_|_

113

=1 p=-M

( Z 2n [éai,z ::n e ( )’\2 qusom. !]

nah’ [Qsaf zz :nhfixx (m —p)*\°¢%, qub::._fi_ a0 p:éan-:m
P = PN dd nt] + H{ P iee = (m = D) N B

ah? [%1 conlipnip <P A %:x‘ﬁ?;-r,z — p(m — p)\* 4% al, x:cgb:tn_ft
p*(m — p)\' ¢l dr z]}"‘ n—1) {¢afa:..~:¢0fﬂ e N A s

ah® [{f}a, xﬁgan—l‘mx—( p)*A? zf:cé?n_ pl,x p(m — P))‘Q Iéanmf,a:z

p(m — p)* Mg, g P]}+2ZZ > on [0

=1 p=—M

p(m + p)A* ] ?:f:] + nah’ [ zcPamitze — DA 1Pt e

(m + )’ N @ oot + P (m+ PN GITE] + (n+ 1) {20 abmt?
PN+ oh® (90 G0 e — (m 4 D) NGB0

2 Ipx Im+ m * Tm
(m + p)/\ 0‘71-:} TT (m + p')a}“i a:—:}] } - l {¢21 Qrm‘zx
(m Lo P) Az ;::ff + ah’z [ al xzr¢rr?r!,x - p2/\2 al xé::fg',z

p(m + p)N G5 oot + °(m + PN Wi Gt E] }) (5.19)

inwah? |21

62 = 49 Z Z ¢§f :c¢cm —lzzz — (m p) A2 al,x¢“ﬂ—:v5

=1 p=—M

o= p(m p)’\ ¢ an—i:c:c + p(m p)a/\4 cm—l + QSal mqusan_—fl,z

2A2 al xqb?n_pl z p(m p)’\z a!,zx¢an I : & p3(m p) ﬂfgﬁg‘n——pf

+ 2 Z Z atl' :l: :l:fl,xzm (m + p)2A2 al,z¢::-|?l,..~: + p(m + p))\z :‘:-lﬂ,xx

=1 p=-M
(m =+ p) Ad ?::I + al xzwé?rm,z = ZA qﬁai,z‘ﬁ:‘l:fl x
p(m + p))? al,um P*(m + )X gL gtz (5.20)

2 | n-1
znwh ZZ"' mp —2)\2”1-;5
n,l al‘,..":..": an—l,zx l om--.l' T

=1 p=—M



114

- ( ) /\ QScxlrr ','J +p2(?n =3 ) )\4 pg'qsom i]

+ 2.7 + 27 Jmtp
= 2 Z Z C’ﬂf [éalx:r :lnfl zx — P )‘ :Ln-l?l zT (m +p) A a.i rr¢an+(
1=1 p=—-M

+ pHm+p)XNelidnitn]} (5.21)

h? n— N .
e {Z Z I[ m'x an—lrx.r - (m p) ’)\2 a-ix¢'an—pf,.r

I=1 p=-—
- p(m - p)’\2 Iq‘(’an lizx g o p(m p) )\4 an ! Iécxn lLixxzr
- 2(m p) /\2 ZIéan l,xz + (m e p)4A4¢ !qscm I] n = ! [¢al TIT om—f o

m—p

== P ’\2 a.l',::¢an~!':r: = p(m p)/\zéﬂf -"-'-’~"¢cm—!

& pS( )/\4 pfqbom ! e qbﬂ! w-'ﬂl'-l'-‘éan i 2})2)!2 al, xzqsau—l’ T p4)\4¢21¢rxn l
N—n M
I 2 Z Tl. + [ af,rxqu?:fi,z - p2/\2 al x¢;n:—fi,x

+ (m + P /\2 al,xzég‘:-il - pS(m + p)/\4 o h:’:fl + crl xzzx‘rbran:-};pi
il 2p ’\2 al x:cqs::-ff 03 p4A4&§T&:’:fi] ! [ crfr Ln:-l?f TIT
s (m g p)2}\2 al xqs?rjfl r:p(m o p))\2 r:—fl rr p(m ;4 p)l’-/\'-l hz: ~::-I?I

t B e — 2Am + PPN+ (m o+ p) NG} (5.22)

To find the time-periodic, longshore-periodic equation for the free surface eleva-

tion, we assume:

z .qm imAy (5.23)

m=—M
and substitute this and (5.17) into (5.14) to obtain:
o MW [~ ~ ah? - o
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5.3.2 Shoaling Waves

Equation (5.18) represents the evolution of time-periodic, longshore-periodic
waves that can travel forward and backward in z. Here we explicitly restrict at-

tention to forward-propagating waves:

bn, = B (z)e' [ iR (5.26)
= Ap(a)et/ nids (5.27)

where 4 is now:

mA\? i
Yo = [1 - (E) ] (5.28)
which is different from (5.3) since we now have a dispersive wave number k,
rather than the nondispersive nK. As before, B and AT are assumed to be

slowly varying functions of z, so that terms like By, and A} . are neglected.

Substituting (5.26) into (5.18) yields:
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and the phase arguments are:

& = [(kAf + ket T — k¥ )da (5.32)
T = [(basiTis? = ki — k¥ )de (5.33)

We wish to exclude evanescent modes, which decay in z, so we need to
keep (5.28) real. This exclusion is done because nonlinearity may cause a mode

which would be evanescent in a linearized wave field to propagate (Kirby 1990).
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Thus we can set our range of longshore modes M differently for each frequency

mode n as follows:

M, < % (5.34)

Therefore, the range of the summations over the longshore modes must be limited
in such a way as to account for different ranges for different frequencies. These

ranges are determined as follows:

Py = max(—M;,—M,_; +m) (5.35)
P, = min(M;, Mu_; +m) (5.36)
Py = max(—M;,—M,4 —m) (5.37)
Py = min(M;, My —m) (5.38)

Equation (5.29) is an angular spectrum model for the amplitudes of ¢,. To
calculate the amplitudes of the free surface elevation 1, we substitute (5.26) and

(5.27) into (5.24) to obtain:
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J' = kil kngist? + p(m + p)A? — ah® {kAf (kus W) + (k) Kot 303
+ plm+ p)N (kAT + (knpiAa? )] + [0 + (m + PP IN kA, kit
+ [p(m 4 p)® + pP(m A+ PN} — W2y [(BAT) (ks )? + PPN (hna ")

+ (m+ p)PN(kAT)? + pP(m + p)* )] (5.41)

Equations (5.29) and (5.39) comprise the angular spectrum model of the

fully nonlinear extended Boussinesq equation.

5.4 Permanent Form Solutions

We will discuss comparisons to experimental data in the next chapter.
Simulation of this experiment, the Mach stem reflection experiments of Hammack,
et al. (1990), requires that a permanent form solution of the model in question
be used as input. In this section we discuss the formulation of these permanent

form solutions.

For the simplified extended angular spectrum Boussinesq model (5.12), we

first write the model in one-dimensional form over a flat bottom:

kn Pl i | N=n
Ane+ink [1 - =) A, = otttk Y AAna+2 Y AAan|  (5.42)
nk 8h \i5 I=1

where the 3 that appears before the nonlinear summations is the one-dimensional
reduction of the interaction coefficients I,;" and J;,;* of equations (5.6) and (5.7),
respectively. Recall that the A, are complex; since the phase functions associated
with the propagating wave form use the linear wave number, the phase of the
complex amplitude is expected to pick up nonlinear distortions to the wave number

due to amplitude effects. This is sufficient for wave field evolution. However, for
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the purpose of calculating waves of permanent form, we find it more convenient

to use the following alternative definition of #:

N
g Z &rgfv"_)em[(kﬁkqx—m] + pee. (5.43)
n=1 =

where the a;, is real, ky is the solution to the dispersion relation (3.11) for the base
frequency w;, and k' is the distortion to the wave number in the phase function

due to nonlinear effects. This is related to A, by:
A, = o gl HE)-Kle (5.44)

Substituting this into (5.42) and dropping the a;, , term (no change in energy flux)
gives:

(n(ky + k') — kn)al, + 3;—}? (E aja;,_; + QNin a}"a;H) =) (5.45)

I=1 1=1

We will solve simultaneously a series of equations of the form (5.45), one for each
harmonic. Our unknowns are the amplitudes a!, and the wave number distortion
k'. We require one more equation to fully close the system. We define the wave
height as being equal to twice the sum of the amplitudes of the odd harmonics,

or:

N
H =2 al, (5.46)

n=1,3,5
This is our last equation. Thus for any given wave period, wave height and water
depth, we can calculate a/, and wave number distortion k. We use the Newton-
Raphson method to solve the equations simultaneously. The resulting amplitudes
a,, and wave number distortion k', when input into the model (Equation 5.12)
for the case of uni-directional wave propagation over a flat bottom, will yield a
wave of permanent form, with no change in the wave shape. The permanent form
solution of the nonlinear mild-slope equation (Equation 2.55) is similar to this

development.
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For the fully nonlinear extended Boussinesq equations, the permanent form
solution is the same in principle, with some differences in the details. The develop-
ment of this solution was done by Chen and Liu (1993); we use their methodology
here. Referring back to Equation (3.27), we note the absence of any term pro-
portional to B, which is not proportional to bottom slope. This is because the
coefficient of this term is the linear dispersion relation, which would cause the
entire term to vanish. In this case, however, the linear dispersion relation will not
be the sole determinant of the wave number, as we have amplitude effects as well.
Thus, we must retain this term. If we write out Equation (3.27) for one dimension

over a flat bottom with the dispersion term retained we obtain:

2.8 2, ,27,2 2 2712
n*w B, - (h+n w?h o:) KB, + 2 lkn (h+nw h a)
g
1
— o (ot )] Buet (et 5) WHEB =
w n—1 _ ) ‘ N-n
b o ( RB;Bn_:etI[kl‘Fkn—t—kn}dI +92 Z S«Ban-Hcif(knq-:—k:—kn)dx)
£ 49 =1 =1
(5.47)
Whereas before we defined our velocity potential ¢, as:
N
bo = ; %-e‘-{fk"d”'““ﬂ + c.c. (5.48)
where B,, was complex, here we use the alternative definition:
N br o
da=2 —z'?“e‘{mt‘”'““’” + c.c. (5.49)
n=1

where K is the wave number including amplitude effects and b]’s are real. This

is related to B, by:
B, = —il,¢i(nKo=[ knde) (5.50)

Substituting this into Equation (5.47) and neglecting the b, , yields:

7 S 2 2h2 v g
l”“’ -(h+—-"“" G)kﬁ—Q(h+—nwha)kn(nh’—kn)

g g g
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313 1 - 1 314 /
+4kRh (a + g) (nkK — k) + (a—i— 5) h kn] b
W Y N-=n )
= (Z Rob,_, —2 > Sb;"b;+,) =9 (5.51)
g =1 =1

This gives us N equations, but since we still have N + 1 unknowns (N number
of amplitudes b], and K’), we require one more equation. As with the permanent
form solution to the simplified extended Boussinesq angular spectrum model, we
use a condition on the wave height. First we write Equation (3.30) for a flat

bottom and reduce it to one dimension:

nw
Ap=—[i (1 - ak2h?) B, — 2knh2aBn,x]
g
1 n—1 N-n - .
4_- (Z R B;B l'e‘ f(kg+k“_ —kp)dz __ 9 Z SrBan.H@i f{kn+¢—k;—k,; }d.’r)
=1

(5.52)

Then, similar to Equation (5.49), we use an alternative definition for the free

surface 7:
N a .
n=Y ?ﬂe'("’“—wﬂ + c.c. (5.53)
n=1
This is related to A, by:
A = a.i' es[n!\m fknd."':} (554)

Substituting this and Equation (5.50) into Equation (5.52) gives:

,  nwbl,
an

N—-n

[1 +ah? (k2 — 2knnh)] e (Z R, +2Y S ,,+,) (5.55)
=1

Using Equation (5.46), we can formulate our final equation:

H =
% 3 n—1 _ Nes
2 ¥ nu;b" [1 + ah? (kf’l - annK)] - 41_9 (Z Rbb,_ +2 ) 5’5I'bn+:)
=1 =1

n=1,3,5...
(5.56)
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Thus we use Equations (5.51) and (5.56) as our system of N + 1 equations, to be
solved using a Newton-Raphson technique for the unknowns b}, and A" given wave
height, water depth and wave period. This gives us the amplitudes of the velocity
potential @, and the nonlinearly-distorted wave number A" required to allow all
harmonics to move at the same speed. The corresponding free surface amplitudes

a!, can be found from Equation (5.55).

One potential difficulty that may arise is the lack of convergence of the
solution for a particular set of input conditions. In many cases, the equations
become stiff and difficult to solve. In these cases a global iteration is done. In
order to achieve a permanent form solution for a particular wave height for which
the Newton-Raphson method may be problematic, we at first choose a lower wave
height, allow this to converge, and then use the amplitudes and wave number
found for this case as input for solving the equations again for a slightly larger wave
height. This is done until the solution for the desired wave height is found. We will
discover, however, that using an iterated wave condition into the corresponding
model can lead to instabilities, since the model, which shares the same interaction
coefficients as the permanent form solution and thus the same stiffness, cannot be

iterated in the same manner.

5.5 Summary

In this chapter, we discussed the recasting of our fully nonlinear extended
Boussinesq model into the angular spectrum format. In this format, we incorpo-
rated the additional assumption of longshore periodicity, thereby decomposing our
two-dimensional time-periodic equations into an entire gridwork of coupled first-
order differential equations, one for each frequency and longshore wave number

mode.
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Before applying this technique to the fully nonlinear extended Boussinesq
equations, we wished to see what effect improved dispersion characteristics have
on the leading order quantities of the angular spectrum model of Kirby (1990),
which is a Fourier domain decomposition of the standard Boussinesq equations of
Peregrine (1967). We simply replaced the shoaling and dispersion terms with ones
that reflect the characteristics of the dispersion relation associated with the fully
nonlinear extended Boussinesq equations. Nonlinear terms were left unchanged.
The result, Equation (5.12), is our simplified angular spectrum model of the ex-

tended Boussinesq equations.

We also applied the angular spectrum technique directly to the equations.
This was done on the argument that the simplfied model, while incorporating
improved dispersion characteristics on the linear side, is inconsistent since the
nonlinear terms are nondispersive. We obtained two time-periodic, longshore-
periodic equations for each frequency and longshore wave number mode, one for
the amplitudes of the velocity potential ¢, (Equation 5.29) and one for the free
surface elevation 7 (Equation 5.39). This system of equations is solved for the
amplitudes of ¢, first, and these amplitudes used to calculate amplitudes of 7.
This is our full angular spectrum model of the fully nonlinear extended Boussinesq

equations.

For the data-model comparisons to be shown in the next chapter, we require
a permanent form solution of these equations. When input into the model from
which it was derived, the solution will propagate through a domain of constant
depth without change in form. We derived two sets of equations for the permanent
form solution, one for the simplified angular spectrum model and one for the full
angular spectrum model. We also discussed a methodology for incrementally

approaching a solution for a specific set of wave height, water depth and wave



124

period conditions if these conditions caused the system of equations to become

too stiff to converge.



Chapter 6

COMPARISONS TO DATA - ANGULAR SPECTRUM
MODELS

6.1 Introduction

As was done in Chapter 4, we will compare our models to experimental
data. We will also compare them to models which have been addressed in the
literature. The purpose of this simulation is to demonstrate the advantages of an
angular spectrum formulation over a small-angle parabolic format when modeling

waves approaching at large angles to the z direction.

6.2 Comparison of Parabolic and Angular Spectrum Models to Ham-

mack et al. (1990)
6.2.1 Introduction

Hammack et al. (1990) investigated the phenomenon of Mach stem reflec-
tion caused by cnoidal waves impinging on a vertical wall. They used a multi-
directional wave paddle to generate a permanent form cnoidal wave train at vari-
ous angles. The experimental layout is shown in Figure (6.1). The constant water

depth in the experiment was 20 em. Table 6.1 shows the gage locations with
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Figure 6.1: Tank And Gage Layout for Experiment of Hammack et al. (1990)

respect to a coordinate system shown in Figure 6.1. Most of the details of the ex-
perim.ent can be found in Hammack et al. (1990) and Kirby (1990), who compared
his angular spectrum model of the standard Boussinesq equations (Equations 1.4
and 1.5) to this data. We will concentrate on the more relevant points of the
experimental setup. Hammack et al. (1990) used the wave generation algorithm
of Goring and Raichlen (1980) to generate cnoidal waves in one dimension. This
was done to ascertain the characteristics of the wave and to determine whether
adjustments should be made in the experimental setup in the case of oblique inci-
dence. It was found that the nominally 4 ¢m high wave actually had a maximum
crest elevation closer to 3.3 em. The wave period was 1.478 s. Oblique incidence
was simulated by phase lagging the adjacent paddles. This phase shift angle, A,
is related to the directed wave angle ¥ by (Kirby 1990):

. AL
U = arcsin (SGOW) (6.1)

where L is the wavelength and W is the width of the individual wave paddles
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Table 6.1: Gage Locations of Mach Stem Reflection Experiments of Hammack
et al. (1990).

| gage | = (m) [y (m) [ gage [z (m) [y (m) [ gage | @ (m) | y (m) |

1 &l -5 7 11 -1.5 | 13 11 —0.07
2 1 —4 8 11 -1 14 10 —0.07
3 1l -3 9 11 —0.5 | 15 8 -0.07
4 11 -2.5 | 10 8 -1 16 6 —0.07
5 12 | -0.07 | 11 6 ~1 17 1 —0.07
6 11 —2 12 10 -1 18 2 —0.07

comprising the directional wavemaker. For this experiment W = 45 ¢m. Phase
angles used in the experiment were A = 14.5, 22, 30, 38.5, 47.5, and 57.6 degrees.
It was not determined whether the maximum crest elevation of 3.3 e¢m varied
with wave direction; however, to attempt to account for the difference between
the velocity of the wavemaker (which is moving along the z-coordinate) and the
velocity of the generated wave (moving in the W direction), we divide our input
spectral amplitudes by cos ¥ when performing the model-data comparisons. Data
were taken at the gage locations; each time series consisted of 1250 points sampled
at 25 Hz. The gage array was arranged to measure the particular characteristics of
the Mach stem reflection pattern near the wall located along ¢ = 0. The gage array
perpendicular to the reflecting wall measured the width of the Mach stem pattern
and any local wavefield structure generated as a consequence of this pattern. The
gage array parallel to the wall measured the propagation characteristics of the

Mach stem.
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6.2.2 Comparison of Models to Mach Stem Experimental Data

We wished to compare both the parabolic models developed in Chapters
2 and 3, and the angular spectrum models discussed in Chapter 5, to this data.
We also wished to compare the frequency domain parabolic KP model of Liu et
al. (1985) (Equation 2.56) and the angular spectrum Boussinesq model of Kirby
(1990) to this data, so that we may investigate the effects of improved dispersion
on the data-model comparisons. In order to perform the comparisons, permanent
form solutions were generated for each model using the techniques described in
Section 5.4. The given input conditions for the permanent form solutions were:
wave period T' = 1.478 s, water depth h = 20 ¢m, and a maximum crest elevation
Nmaz = 3.3 cm. This last condition required some iteration, as different permanent
form solutions would require different input waveheights to achieve the proper
maximum crest elevation. Figure 6.2 shows the different permanent form solutions
in the form of time series spanning two wave periods. It is noted here that the
same permanent form solution was used for both the parabolic KP model and
the angular spectrum Boussinesq model of Kirby (1990). It has been shown by
Kirby (1991) that permanent form solutions of the same type as the KP and the
angular spectrum model of Kirby (1990) in one dimension corresponds exactly to

the solutions of the modified KdV equation:
3 h* .
Nt + CNe — ﬁ????t =2 'ég??m =0 (6.2)
Thus, we used this equation to generate the permanent form solution for both

models.

After the solutions shown in Figure 6.2 were generated, we used the wave-
lengths associated with these solutions to calculate the directed wave angle ¥ by
Equation 6.1. The calculated wave angles for the angular spectrum Boussinesq

model of Kirby (1990) and the simplified extended Boussinesq angular spectrum



% 0.5 1 1.5 2 2.5 3
time (sec)
Figure 6.2: Comparison of Different Permanent Form Solutions for Input to Evo-

lution Models: Permanent Form Solution to KP Model of Liu et al.
(1985) (-); Permanent Form Solution to Fully Nonlinear Extended
Boussinesq Equation of Chapter 3 (- -); Permanent Form Solution
to Nonlinear Mild-Slope Equation of Chapter 2 (. .); Permanent

Form Solution to Simplified Angular Spectrum Model of Extended
Boussinesq Equation of Chapter 5 (-.).
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model (Equation 5.12) are shown in Table 6.2. The wavelength L from the perma-
nent form solution of Equation 6.2 was 1.9977 m, while that of the f)erma,nem form
solution to Equation 5.12 was 1.9792 m. The wave angles used for the parabolic
KP model of Liu, et al. (1985) are the same as those of the angular spectrum
model of Kirby (1990). Unfortunately, both the parabolic model of the nonlinear
mild-slope equation (Equation 2.55) and the parabolic model of the fully nonlin-
ear extended Boussinesq equation (Equations 3.35 and 3.36) became numerically
unstable for the given input conditions. One possible reason for this instability
was the fact that the input conditions to generate the permanent form solutions
to these models for this test had to be incrementally approached by gradual in-
creases in waveheight. This process was described in Section 5.4. Because the
interaction coefficients present in the permanent form solutions are the same as
those of the corresponding model, the same degree of stiffness would be present.
This stiffness, circumvented in the permanent form solutions by iteration with
gradually increased waveheights as the target conditions are approached, cannot
be dealt with in a similar manner in the model. It is hypothesized that this stiff-
ness caused the numerical instability in both parabolic models. It is believed that
the full angular spectrum model (Equations 5.29 and 5.39) would be similarly
problematic, so it is eliminated as well. Thus, we used the parabolic KP model of
Liu et al. (1985), the angular spectrum model of Kirby (1990) and the simplified

extended model (Equation 5.12) in these comparisons.

For the parabolic KP model, reflective walls were placed at = 0 m and
z = 13.25 m. The spectral amplitudes from the permanent form solution and the
wave angles W corresponding to the paddle phase lag A in Table 6.2.2 were used
to generate the amplitudes for oblique incidence along the boundary z = 0 m.
Resolution for this simulation was Az = Ay = 0.0625 m, and N = 9 frequency

components were used. For the angular spectrum models, we used a mirror image
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Table 6.2: Paddle Phase Angles A and Directed Wave Angles ¥. Model 1 is
Kirby (1990); Model 2 is Simplified Extended Boussinesq Angular
Spectrum Model

[Model [A=14.5° A =22°TA=30°[A=385° | A=47.5° | A =57.6° |
1 10.13 1548 | 21.34 27.84 35.18 44.32
2 10.04 15.33 | 21.13 27.56 34.81 43.80

about z = 0, doubling the domain to —13.25 < 0 < 13.25 m. We computed
the incident waveform as with the parabolic model, then Fourier transformed it
over the domain and used the corresponding frequency-longshore wave number
spectrum as input into the models. For these cases, we used N = 9 frequency
components and 2M + 1 = 129 longshore wave number components, thus making
M = 64. The number of longshore wave number components used here insures
that all freely propagating modes of the highest harmonics are kept. We again
used a Az = 0.0625 m. Model runs with more frequency components and finer
resolution showed no significant improvement. We note here that for the angular
spectrum models, we divided the resulting wave form generated by the spectral
amplitudes and the wave angle ¥ by cos ¥, in order to compensate for any pos-
sible variation of the maximum crest elevation Nmaz from the acknowledged value
of 3.3 ¢m as the angle increased. This was done as an attempt to improve upon
the comparisons of Kirby (1990), who did not perform this adjustment and found
the errors between data and model to increase with increasing wave angle, even
though the angular spectrum format has no restrictions on wave angle. Similar
compensation in the input to the parabolic KP model caused some instabilities in
the solution, even after doubling the grid resolution, so we simulated the experi-
mental conditions using this model without making this adjustment. It is unclear

why these instabilities occurred, but we do not expect that this would invalidate
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the general conclusions drawn from this comparison.

6.2.3 Results

Figure 6.3 is a contour plot of the instantaneous free surface generated by
the simplified extended Boussinesq angular spectrum model for the case A = 14.5°.
The appearance of the Mach stem reflection area is evident near the left boundary.
Figure 6.4 is another contour plot of the instantaneous free surface from the same
model, in this case for A = 57.6°. The wave is approaching at such an oblique
angle that it essentially radiates from the wavemaker as a short-crested wave.

Pronounced diffraction effects can be seen near the right side of the figure.

We follow the procedure used by Kirby (1990) to perform the detailed
data-model comparisons. First, we allowed a sufficient time to lapse in the ex-
perimental time series in order to establish nearly periodic motion. Then, a start
time is established at the occurrence of a wave crest at Gage 13. We use this start
time for all other gages as well. After recovering the time series from the spectral
amplitudes in the model output, we mark a start time for the model time series
with the occurrence of a crest at Gage 13. After these start times were estab-
lished, time series of both data and model results were plotted for the gage array
perpendicular to the wall (gages 13, 9, 8, 7, 6, 4, 3, 2 and 1) and parallel to the
wall at y = —0.07 m (gages 18, 17, 16, 15, 14, 13 and 5). We will only show time
series comparisons for the small phase angle (A = 14.5°) and the largest phase

angle (A = 57.6°), as these results show the extremes in data-model agreement.

Figure 6.5 shows the comparison of data to the parabolic KP model of
Liu, et al. (1985) for the transect perpendicular to the wall (A = 14.5°). The
comparisons for each gage are offset by 10 em so that the entire transect can be

shown in one figure. This shows that, while agreement is good in general, the KP
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Figure 6.3: Contours of Instantaneous Free Surface Elevation, Simplified Ex-
tended Boussinesq Angular Spectrum Model, A = 14.5°.
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Figure 6.4: Contours of Instantaneous Free Surface Elevation, Simplified Ex-
tended Boussinesq Angular Spectrum Model, A = 57.6°.
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model slightly overpredicts the width of the Mach stem. Figure 6.6 shows the KP
model results for the gage array parallel to the wall. This shows the propagation
characteristics of the Mach stem region; agreement to data is very good, though
some phase error occurs at Gage 18. Figures 6.7 and 6.8 show the comparisons
for the same case between the standard angular spectrum Boussinesq model of
Kirby (1990) and the data for the gage arrays perpendicular and parallel to the
reflecting wall, respectively. While the comparison between data and model for
the gage array perpendicular to the wall is similar in agreement to that of the KP
model, agreement is improved for the array parallel to the wall. F igures 6.9 and
6.10 show the same sort of comparisons for the same phase angle, with the model
being the simplified extended Boussinesq angular spectrum model. Agreement to

data for both gage arrays is similar to that of the parabolic KP model.

Figures 6.11 and 6.12 show model-data comparisons for the parabolic KP
model of Liu et al. (1985) for the case A = 57.6°. This case would appear to
violate the small-angle assumption inherent in the parabolic approximation. It
is evident that the parabolic KP model compares relatively poorly to the data,
with significant phase and amplitude errors. Figures 6.13 and 6.14 show the
comparisons between the data and the angular spectrum model of Kirby (1990)
for this phase angle. Not only are amplitude and phase predictions improved
over the KP model, but even in the instances where the data and model match
somewhat poorly much of the characteristic local features of the data is reflected
in the model results. This can be seen, for example, in the Gage 2 comparison in
Figure 6.13. Even with the phase error in the prediction of the crests, secondary
crests in the troughs that are seen in the data are also captured by the model. In
contrast, the Gage 2 comparison for the parabolic KP model (Figure 6.11) shows
only a flat water surface with no crest structure whatsoever. Figures 6.15 and 6.16

show the comparisons to the simplified extended Boussinesq angular spectrum
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Figure 6.5: Comparisons of Parabolic KP Model of Liu et al. (1985) to Mach
Stem Reflection Data, A = 14.5°. Gage Array Perpendicular to
Wall. Numbers on Right Side are Gage Numbers. Data (-); KP
Model (- -).
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Figure 6.7: Comparisons of Angular Spectrum Boussinesq Model of Kirby (1990)
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Figure 6.8: Comparisons of Angular Spectrum Boussinesq Model of Kirby (1990)

to Mach Stem Reflection Data, A = 14.5°. Gage Array Parallel to
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Spectrum Model of Kirby (1990) (- -).
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Figure 6.11: Comparisons of Parabolic KP Model of Liu et al. (1985) to Mach
Stem Reflection Data, A = 57.6°. Gage Array Perpendicular to
Wall. Numbers on Right Side are Gage Numbers. Data (-); KP
Model (- -).

model. The model predicts the phase and amplitudes of the wavefield very well
for the gage array perpendicular to the wall (Figure 6.15). Errors in the prediction
of amplitude and phase are somewhat more pronounced in the array parallel to
the wall (Figure 6.16) than they are in the comparison for the angular spectrum
model of Kirby (1990) (Figure 6.14). Overall, however, it can be concluded that,
for this large-angle case, the two angular spectrum models perform better than

the parabolic KP model in simulating the Mach stem phenomena.

Though we have only shown the case for the smallest and largest A, we in
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Figure 6.13: Comparisons of Angular Spectrum Boussinesq Model of Kirby
(1990) to Mach Stem Reflection Data, A = 57.6°. Gage Array
Perpendicular to Wall. Numbers on Right Side are Gage Num-
bers. Data (-); Angular Spectrum Model of Kirby (1990) (- -).
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Figure 6.14: Comparisons of Angular Spectrum Boussinesq Model of Kirby
(1990) to Mach Stem Reflection Data, A = 57.6°. Gage Array
Parallel to Wall. Numbers on Right Side are Gage Numbers. Data
(-); Angular Spectrum Model of Kirby (1990) (- -).
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Figure 6.15: Comparisons of Simplified Extended Boussinesq Angular Spectrum
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Figure 6.16: Comparisons of Simplified Extended Boussinesq Angular Spectrum
Model to Mach Stem Reflection Data, A = 57.6°. Gage Array
Perpendicular to Wall. Numbers on Right Side are Gage Num-
bers. Data (-); Simplified Extended Boussinesq Angular Spectrum
Model (- -).
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fact did use all three models to simulate all six phase angles. Rather than discuss
every case generated by every model, we wish instead to quantify the amount of
data-model agreement. We make use of correlation measures between data and
model results at each of the nine gages located on the array perpendicular to the
wall. We use the following definition of gage correlation:

Chz,i
f o 080 6.3
7 o500 v

where the subscript 1 refers to the data, 2 refers to the model in question, and the
subscript j indexes the gages used and shown in the comparisons (7 = 1,....,9) for
the gage array perpendicular to the wall. It should be noted that the subscript j is
not the gage number as denoted in the previous comparisons. Gage 13 corresponds
to 7 = 1, and gage 1 corresponds to j = 9. The covariance (12 ; and the individual

standard deviations oy ; and o, ; are defined as follows:

I
Cha,j > m,(1)m2,(2) (6.4)

1
Ji
1 : .
oL = \l}‘Zm,j(i)m.j(z) 1=1,2 (6.5)

where 2 = 1,...., I is the index for the discrete time series over two wave periods,
the same condition shown in Figures 6.5 through 6.16. We then compute an

average correlation p:

2 1 ’ !
== (6.6)

The values of correlation coefficients for the data-model comparisons are
shown in Tables 6.3 through 6.5. Table 6.3 details the correlations between data
and model for the parabolic KP model of Liu et al. (1985). Because we were unable
to adjust for the possible variation of 7,,,. with phase angle, as we did with the

other two models we ran, strict comparison of correlation coefficients between the
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Table 6.3: Correlation Coefficients p’ (Each Gage and Average) for Parabolic
KP Model Runs

LA 18] 9 [ 8 [ 7 16] 4] 3T 2T 1 [average]
14.5 | .994 |.992 | .997 | .996 | .959 | .854 | .760 [ .873 [ .924 [ .928
22.0 | .984 | .950 | .923 | .893 | .807 [ .524 | .742 [.931 | .523 | .809
30.0 | .978 | .986 | .971 | .961 [.033 [ .992 [ .933 | .859 | .945 | .856
38.5|.999 | .972 | .892 | -.644 | .952 [ .839 | .871 |.703 [ .901 [ .701
47.5 | .889 | .914 [ -.516 | .894 | .929 [ .873 [-.658 | .938 | .870 | .570
57.6 | .966 | .852 [ .814 | .852 |.729 [ .790 [ .903 | .944 | .866 | .858

parabolic and angular spectrum models may not be applicable. Figure 6.17 shows
the average correlation p’ tabulated in Tables 6.3 through 6.5 plotted against A. It
appears that, except for the rather anomalous increase in correlation for A = 57.6°,
the parabolic model correlations fall off dramatically, even for the small-angle
cases, where the effect of not dividing by cos ¥ is not strong. The last increase
in cofrela.tion may be due to the fact that the standard correlation coefficient p’
is lower for cases of equal amplitude but slight phase differences than for cases of
almost zero phase difference and high amplitude differences. This can be clearly
seen by comparing Figure 6.12 to either Figure 6.14 or Figure 6.16. In the latter
two figures the errors are primarily phasing errors, which are heavily penalized by
the correlation coefficient estimate. On the other hand the parabolic KP model
prediction shows the proper phasing but strong deviation in the amplitudes, an
error treated lightly by the correlation coefficient estimate. Thus the average
correlation coefficient for the parabolic KP model at A = 57.6° may not present
the true picture. Thus, using both the values in Tables 6.3 through 6.5 as well
as the direct comparisons to data for the case A = 57.6° shown in Figures 6.11
through 6.16, we can conclude that the angular spectrum format performs better

than the parabolic formulation when modeling oblique incidence.
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Correlation Coefficients p’ (Each Gage and Average) for Angular
Spectrum Boussinesq Model of Kirby (1990).

A 13987 ]6 [ 4] 3] 2] 1 [average]|
14.5 | .989 | .980 | .986 | .986 | .965 | .923 | .882 | .904 | .937 | .950
22.0 | .962 | .941 | .946 | .937 | .932 | .856 | .978 | .820 | .920 | .921
30.0 { .969 | .953 | .980 | .987 | .881 | .987 | .988 | .988 | .993 | .969
38.5 | .971 | .787 | .750 | .860 | .953 | .904 | .839 | .847 | .960 | .875
47.5 | .968 | .990 | .880 | .996 | .997 | .962 | .827 | .978 | .952 | .949
57.6 | .991 | .980 | .927 | .922 | .672 | .768 | .802 | .531 | .833 | .825

Table 6.5: Correlation Coefficients p’ (Each Gage and Average) for Simplified
Extended Boussinesq Angular Spectrum Model

| A [ 13] 9| 8 [ 7] 6 [ 4] 3] 2] 1 [average]
14.5 | .988 | .983 | .992 | .991 | .979 | .956 | .927 | .933 | .980 | .970
22.0 | .958 | .924 | .904 | .906 | .914 | .865 | .935 | .990 | .853 | .916
30.0 | .944 | .960 | .994 | .958 | .570 | .946 | .935 | .946 | .932 | .910
38.5 | .978 | .973 | .816 | .744 | .988 | .977 | .969 | .971 | .965 | .931
47.5 1 .971 | .945 | .832 | .907 | .792 | .624 | .677 | .833 | .913 832
57.6 | .982 [ .939 | .921 | .993 | .932 | .744 | .984 | 958 | .959 | .935
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Figure 6.17: Comparison of p’ for Three Models: Angular Spectrum Boussinesq
Model of Kirby (1990) (-); Simplified Extended Boussinesq Angu-
lar Spectrum Model (- -); Parabolic KP Model of Liu et al. (1985)
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Our final task of this chapter is to determine which of the angular spec-
trum models matches the Mach stem data best. Figure 6.17 does not quite answer
this question, since it appears that there is no trend concerning the correlation
coefficient p’ with either model as the angle widens, though both have better
correlations than the parabolic model save for the anomalous last angle. To in-
dependently check this result, we use a measure of root-mean-square error (Kirby

1990):

N J F S (72(8) = mi(9)? 67)

¥ 2ha(m(0))?

for each gage. It is apparent that the normalization is with respect to the data
variance. We note also that this is an unbounded error measure, and not per-
centage error, though we can remark that a value of €,ms = 0 is no error and
€yms = 1 can imply no theory (n,; = 0). An interesting feature of this error
measure is that if 7, ; and 7;,; were both random uncorrelated signals with the
same .variance, the error measure would reduce to V2. This is not its maximum
value, since it is likely that the error could climb above this value were the vari-
ances of the signals different. It is best to simply interpret the size of this value;
a lower e,,s would indicate better data-model agreement. We also define a com-
posite error €., by adding the root-mean-square error for all times and all gages
and dividing the sum by the total standard deviation for all times and all gages.
Table 6.6 shows the errors for the angular spectrum Boussinesq model of Kirby
(1990), and Table 6.7 shows the same for the simplified extended Boussineq an-
gular spectrum model. Figure 6.18 is a plot of the variation of €.,; with the
paddle phase angle A. As with the correlation coefficients, there seems to be no
clear indication that the simplified extended Boussinesq angular spectrum model
is an improvement over the angular spectrum Boussinesq model of Kirby (1990),
though this may be a consequence of the fact that the experiment was carried

out in fairly shallow water (% = 0.06), so the benefit of improved dispersion is
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Table 6.6: Root-Mean-Square Error €,,,, (Each Gage and Average) for Angular
Spectrum Boussinesq Model of Kirby (1990)

LA [J1B3] 978776 | 4 [ 3 T2 ] 1 Javerage I
14.5 | .152 | .207 | .169 | .173 | .286 | .408 | .490 [ .461 [ .391 .280
22.0 | .277 | .353 | .351 | .372 | .405 | .617 | .432 | .223 | .606 .361
30.0 | .307 | .339 | .220 | .183 [ 1.26 | .273 | .165 | .157 | .126 271
38.5 | .523 | .702 | .691 | .782 [ .345 | .545 | .583 | .778 | .279 .564
47.5 | .374 | .321 | .742 | .217 | .132 | .275 | .859 | .304 | .306 304
57.6 | .256 | .328 | .520 | .472 | 1.07 | .814 | .817 | .938 [ .712 621

not evident. The general trend, however, seems to be a slight increase in error
with an increase in angle of approach, independent of the individual oscillations
present between different values of A. Though we have shown that these models
are a clear improvement over standard parabolic modeling, it seems anomalous
that this trend in the error is present, since there is no restriction on the angle of
incidence. Moreover, comparison of Table 6.6 to Table 4 of Kirby (1990), where
no accounting for possible variation of the input wave amplitude with increasing
angle was done, reveals that the errors have actually worsened. It appears that
accounting for the variation in fmax by dividing the input amplitudes by cos ¥
has not addressed this unknown effect properly. Perhaps what is most needed is
a model-model comparison, whereby we would run a time-dependent Boussinesq
model at the required angles and consider this to be the “data.” We would then
compare the results. In this manner we would not have to concern ourselves with

any particular variation of wave heights with increasing angle.
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Table 6.7: Root-Mean-Square Error €,.,; (Each Gage and Average) for Simplified
Extended Boussinesq Angular Spectrum Model

A [13] 9 [ 8 [ 7 [ 6 ] 4 [ 3] 2 [ 1 [average]
14.5 | .206 | .220 | .185 [ .191 [ .257 [ .305 | .377 | .394 | .324 | .256
22.0 | .381 | .465 | .478 | .450 | .452 | .636 | .397 | .241 | .560 | .433
30.0 | .468 | .398 | .222 | .288 [ 1.39 | .538 | .419 | .324 | .385 | .412
38.5 | .423 | .304 | .582 [ 2.35 | .598 | .261 | .282 | .563 | .274 | .434
47.5 | .297 | .340 [ 1.05 | .565 | .672 | .852 | 1.41 | .734 | .538 | .630
57.6 | .194 | .449 [ 418 | .146 | .989 | .672 | .262 | .289 | .327 | .349
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Figure 6.18: Comparison of €., for Angular Spectrum Models: Angular Spec-
trum Boussinesq Model of Kirby (1990) (-); Simplified Extended
Boussinesq Angular Spectrum Model (- -).
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6.3 Summary

We used the simplified extended Boussinesq angular spectrum model of
Section 5.2 to compare to the Mach stem experiments of Hammack, et al. (1990).
We also used the angular spectrum Boussinesq model of Kirby (1990) and the
parabolic KP model of Liu et al. (1985) in this comparison. Unlike Kirby (1990),
who did not account for any possible variation in ,,,, with increases in wave
angle, we attempted to remedy this by dividing the incident wave amplitudes by
cos W, where U is the angle from wavemaker normal. This was not done for the
parabolic KP model, since it exhibited some unexplainable numerical instability
even after doubling the grid resolution. We showed several direct comparisons
between data and model along gage array transects. These comparisons were
for the smallest incident angle (paddle phase angle A = 14.5°) and the largest
(A = 57.6°). It is clear that these angular spectrum models are an improvement
over the parabolic KP model, which not only shows strong amplitude errors com-
pared to the data for the llarge-angle case but also fails to capture much of the
local wave shape structures evident in the data. We used a correlation coefficient
to attempt to quantify the data-model comparisons. The result was summarized
in Figure 6.17, which showed a clear decline in correlation between model and
data for the parabolic KP model even at small angles, where the effect of not
dividing the amplitudes by cos ¥ is not as evident as it may be for large angles.
The last correlation coefficient for the KP model shows an anomalous increase,
which is a peculiarity of the calculation of correlation; it appears that slight phas-
ing errors are penalized heavily, while strong amplitude errors are not, thus the
high correlation for the KP model at A = 57.6°. In contrast to this, the two angu-
lar spectrum models show relatively high correlation, though their general trend

is to decline as the wave angle increases. In an attempt to distinguish between
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the angular spectrum model of Kirby (1990) and the simplified extended Boussi-
nesq angular spectrum model, we defined a root-mean-square error between the
model results and the data. This error calculation is unbounded, and should not
be thought of as a percent error. Figure 6.18 summarized this analysis. There
seemed to be no clear indication that the simplified extended Boussinesq angular
spectrum model improved data-model comparisons with respect to the angular
spectrum Boussinesq model of Kirby (1990). This may be due to the fact that
the value of the depth parameter Eh; for this experiment was 0.06, which is fairly
shallow water. Both showed a general trend of increasing error with increases in
wave angle, an occurrence that the division of the amplitudes by cos ¥ actually
worsened for the angular spectrum model of Kirby (1990) when comparison was
made to his results, which were generated without this adjustment. Despite these
qualifications, we can assert that the two angular spectrum models perform better
in modeling oblique wave angles than the corresponding parabolic model. To pro-
vide a definitive account of the relative improvement of data-model comparisons
we would need a similar experimental data set in deeper water than was used for

this comparison.

We stated earlier that we eliminated the more dispersive parabolic mod-
els of Chapters 2 and 3, as well as the full angular spectrum model of the fully
nonlinear extended Boussinesq equations of Chapter 5, from this simulation be-
cause of perceived problems with the stiffness of the equations used to generate
their permanent form solutions for this experiment. Because these permanent
form solutions have identical interaction coefficients to their respective models,
any stiffness of the equations in the permanent form solution would likely also
be present in the model itself. As stated before, this stiffness was overcome in
the permanent form solutions by wave height iteration; no corresponding iteration

technique is applicable for the models. However, due to the uncertain nature of
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quantifying data-model comparisons in the simulations of this experiment, it does
not seem likely that using either the more dispersive parabolic models or the full
angular spectrum model of Chapter 5 would result in dramatic improvement in
the comparisons. What is actually needed for these more dispersive models is
an experimental data set in deep enough water to demonstrate the advantages of
improved dispersion, with wave characteristics that would cause no convergence
problems in the permanent form solutions. Alternatively, we could also look at
experimental simulations that require no permanent form solutions. We have al-
ready seen one such case in Chapter 4 (the experiment of Whalin 1971), but we
could not use these angular spectrum models in that case because the bathymetry
varied in the y (longshore) direction. There are several laboratory studies of non-
linear wave shoaling and refraction over a plane beach (Elgar et al. 1993; Elgar
et al. 1992; Nwogu 1994), and at least one field study (Freilich et al. 1990). It
is expected that simulation of these conditions would be be time consuming, be-
cause all that is known in any of these cases is the energy density (usually denoted
S(f,0)) and no phase information, so that many realizations with random phases
need to be simulated and averaged. Additionally, we have the expected problems
with the linear shoaling characteristics of frequency domain models of the fully
nonlinear extended Boussinesq equations, complications not alleviated by the full
angular spectrum model of these same equations. Thus we end our discussion of
angular spectrum model comparisons to data, with the expectation that future

work will overcome many of these other difficulties.



Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
WORK

In this work we have detailed two different methodologies for modeling the
propagation of weakly nonlinear water waves through water depths that may be
outside the usual range of validity for standard shallow water predictive tech-
niques. We developed these methodologies in the frequency domain, thereby for-
mulating evolution equations for time-harmonic (and, in the case of the angular
spectl."um formulation, longshore-periodic) wave motion. These formulations have
linear dispersive and shoaling properties which can be applied to regions outside

shallow water.

The first approach, the formulation of a nonlinear mild-slope equation,
yielded models with shoaling and dispersion mechanisms that are determined by
full linear theory, thus extending the linear capabilities to areas outside shallow
water. This was an advance on the work of Bryant (1973,1974), Keller (1988) and
Agnon et al. (1993) in that the formulation involved two-dimensional irregular
wave propagation over varying depth. We found, however, that we needed to re-
strict ourselves to water depths where the phase mismatch in the nonlinear terms
remains small. Otherwise, the phase mismatch can oscillate at the same order as
the wave itself, invalidating the slowly varying amplitude assumption. We devel-

oped both one-dimensional and parabolic two-dimensional models for comparison

158
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to data. For the one-dimensional model, we included a dissipation mechanism
based on the work of Thornton and Guza (1983). We found that, overall, the
nonlinear mild-slope model and its one-dimensional counterpart, the fully disper-
sive nonlinear shoaling model, compared very well to the data of Whalin (1971)
and Mase and Kirby (1992). This indicates that the model is an excellent predic-
tor of energy-based quantitites in spectral simulations. However, it performs less
well when higher-order moments like skewness and asymmetry are compared to

data. This is true even if the effects of spectral truncation are accounted for.

The second approach is the fully nonlinear extended Boussinesq equations
of Kirby and Wei (1994), which is an extension of the work of Nwogu (1993) and
Chen and Liu (1993). We developed it in both one-dimensional and parabolic two-
dimensional forms, in terms of ¢, and 5 because this form was more convenient
than deriving it in terms of u, and 5 due to the lack of an extra vector gradient
operation. This was the approach taken by Chen and Liu (1993); our linear terms
are exactly the same as theirs, but we retain dispersive effects in the nonlinear
terms. The derivation of the frequency-domain model was consistent, but the
linear shoaling term that resulted is extremely restrictive in its applicability to
deep water. The two-dimensional parabolic form compared quite well to the
laboratory data of Whalin (1971), but the one-dimensional model (which was
equipped with the same dissipation mechanism as the fully dispersive nonlinear
shoaling model) was far less successful when compared to the shoaling data of
Mase and Kirby (1992). When analyzed for the frequency range of this data, we
found that the linear shoaling mechanism of this model compared better to linear
theory than Green’s Law (the linear shoaling mechanism inherent in the consistent
shoaling model of Freilich and Guza (1984)) for frequencies below the spectral peak
(I{‘—D = 0.3, which is intermediate water depth) . However, for frequencies above

this peak, this linear shoaling model diverged rapidly from linear theory, incurring
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errors far above those exhibited by Green’s Law for this range of frequencies.
While the source of this behavior is unclear, we hypothesized that it may be due
to the rational polynomial formulation of the dispersion relation. The shoaling
terms in this model are essentially ratios of rational polynomials. When carried
outside the range of calibration for the dispersion parameter a, these terms could
behave somewhat unpredictably. This tendency was borne out in the direct data-
model comparisons. The higher harmonics of this extended Boussinesq model were
dramatically overpredicted compared to the data. This overshoaling was reflected
in the statistics as well, as quantities such as skewness and asymmetry were poorly
predicted. However, for frequencies below the peak, the model performed very
well, better than the consistent model of Freilich and Guza (1984). It was thus
recommended that a suitable deep water limit for the model for reliable predictions

should be I-h; <. 0.3,

~ We also discussed linear shoaling models that were realizable from the
(7,u,) version of the fully nonlinear extended Boussinesq equations. There was
difficulty in developing these models, since the first-order substitutions necessary
to obtain a wave equation were ambiguous, with each ambiguity leading to a
very different shoaling model. We circumvented that problem with the use of
a free parameter 3, which was then “best-fit” to the shoaling term from linear
theory. The resulting linear shoaling model compared very well with the shoal-
ing characteristics of linear theory. Unfortunately, the ambiguous nature of the
substitution affected the nonlinear terms as well, leading to different terms with
potentially very different behavior. Unlike the linear terms, we did not have a
benchmark model that we could “best-fit” a parameter to. The consistent na-
ture of the derivation of the frequency-domain model in terms of ¢, and n was
our primary motivation for using this form. We also emphasized that transform-

ing a time-dependent equation into the frequency domain tends to be less than
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straightforward for dispersive models, and thus there may not be a direct corre-
spondence between characteristics exhibited by the frequency-domain models and
those of the time-domain models from which they were derived. Therefore, we
cautioned against inferring time-domain model behavior from frequency-domain

model results.

Despite this, we would still obtain a limited correspondence between the
time-domain fully nonlinear extended Boussinesq model and its frequency-domain
counterpart. Time-domain modeling makes no distinction between the nature of
processes like shoaling, refraction, diffraction or nonlinear interactions. These
characteristics are present in a time-domain model, but they are not explicit. In
contrast, a corresponding frequency-domain model does make these processes ob-
vious, so they can be studied individually. The nonlinear mild-slope equation
does not have a convenient time-domain form; thus, we retain the frequency-
domain fully nonlinear extended Boussinesq equation, being cognizant of the
above-stated depth limitation. To obtain a model with no limitation on the an-
gle of approach, we transformed the frequency domain fully nonlinear extended
Boussinesq equations into the angular spectrum domain, where longshore peri-
odicity was assumed. We developed two models within this format. The first
was a simplified extended Boussinesq angular spectrum model, whereby we took
the angular spectrum Boussinesq model of Kirby (1990) (which was an angular
spectrum transformation of the Boussinesq equations of Peregrine 1967), and re-
placed the shoaling and dispersio. terms to represent the dispersion properties of
the extended Boussinesq equations while retaining lowest-order nonlinearity. We
also developed a full angular spectrum treatment of the fully nonlinear extended
Boussinesq equations. We also developed permanent form solutions of these mod-

els, since we wished to simulate the Mach stem reflection experiments of Hammack

et al. (1990).
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It was desired at first to simulate these experimental conditions with the
parabolic Kadomstsev-Petviashvili (KP) model of Liu et al. (1985), the two
parabolic models developed in this study, the angular spectrum Boussinesq model
of Kirby (1990), the simplified extended Boussinesq angular spectrum model, and
the full angular spectrum model. Unfortunately, the permanent form solutions
of the nonlinear mild-slope equation and the frequency-domain fully nonlinear
extended Boussinesq equations required global iteration on the waveheight to ob-
tain the experimental input conditions. Upon operation of the parabolic models,
instabilities were encountered that were not mitigated by increased grid resolu-
tion. This is possibly because the nonlinear coefficients, which are the same in the
model as in the permanent form solution, caused the model equations to become
too stiff and difficult to solve with these iterated wave conditions as input. We
suspected the same would hold true for the full angular spectrum model of the
fully nonlinear extended Boussinesq equations, since the input condition is shared
with its parabolic counterpart. Thus, simulation of the experimental conditions
of Hammack, et al. (1990) were performed using only the parabolic KP model
of Liu et al. (1985), the angular spectrum Boussinesq model of Kirby (1990),
and the simplified extended Boussinesq angular spectrum model. The results in-
dicate that the two angular spectrum models perform better than the parabolic
KP model as the angle increases. This conclusion was ascertained by defining a
correlation coefficient between data and model, which, as it happened, heavily
penalizes mismatches in phase with little discrepancy in amplitude, more so than
strong discrepancies in amplitude with little phase error. This explains why the
parabolic KP model achieved such a high correlation coefficient for the largest
wave angle, when inspection of the direct time series comparisons reveal no small
amount of amplitude discrepancy between model and data. Comparisons be-

tween the angular spectrum Boussinesq model of Kirby (1990) and the simplified
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extended Boussinesq angular spectrum model proved unrevealing, as it was not
clear which model performed better for this experimental case. This may be due
to the fact that the experiment took place in fairly shallow water (ﬁ- = 0.06).
A slight increasing trend in error with increases in wave angle was also noticed,
which indicates that the attempt to modify the input conditions to account for

variations with wave angle was not entirely successful.

In conclusion, we have attempted to overcome the limitations inherent in
standard Boussinesq shallow water wave theory with these more dispersive mod-
els. One approach, that of the nonlinear mild-slope equation, seems to be fairly
successful in the context of frequency domain modeling. The second approach,
that of the frequency domain treatment of the fully nonlinear extended Boussi-
nesq equations, is somewhat less successful due to the nature of its linear shoaling

tendencies, but still works well when within its recommended depth limitation.

~ Future work could include rederiving the frequency domain model of the
fully nonlinear extended Boussinesq equations by possibly obtaining a wave equa-
tion first (in the manner of the (n,u,) form of the time dependent equations),
and then attempting to obtain an improved shoaling term, either by the use of
a free parameter or by iterating the substitutions until a suitable shoaling term
is found. On a more applications-oriented level, an area that requires addressing
is in the use of these models in ascertaining physical processes. For example, the
angular spectrum format is ideally suited for investigating interaction of waves
propagating at different directions. Freilich et al. (1990) indicate that detuned
non-colinear interactions between directional spectra approaching at distinct mean
angles would yield a non-negligible effect on the evolution of the wavefield. They
use their field data, which consisted of two directional wave spectra as the pri-

mary offshore feature, and indicate the presence of a third peak in the nearshore
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environment. This third peak, they maintain, was generated by the vector-sum
interactions between the two primary peaks. However, Abreau et al. (1992), in
formulating allowable interactions in their collision integral to develop a nonlinear
refraction model, maintain that the third peak noted by Freilich et al. (1990) was
actually a result of colinear resonant interactions due to the directional overlap
between the two directional spectra. They used a digitized version of the data
of Freilich et al. (1990) obtained from their paper to serve as input into their
model; they demonstrate what they term reasonable agreement. Because of its
allowance of interactions between different longshore wave number modes, the
angular spectrum format is ideal for addressing this issue because directional in-
teractions can be included or deleted at will; this is not possible with parabolic or
time-domain models. Kaihatu and Kirby (1992) generated a simplified wave field
consisting of only two monochromatic waves approaching at distinctly different
angles with no directional overlap. They used the angular spectrum Boussinesq
model of Kirby (1990) to propagate this bi-chromatic, bi-directional wave field
and noted the interactions that occurred. They found a significant peak at the
vector sum direction and the sum frequency, indicating a non-colinear vector sum
interaction. With a more dispersive angular spectrum model, we may be able to
simulate the field conditions of Freilich et al. (1990) with some confidence that
the higher harmonics outside the shallow water range are modeled correctly. This
could serve as motivation for further developing and refining the angular spec-
trum model of the fully nonlinear extended Boussinesq equations once the linear

shoaling characteristics are improved.
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