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Abstract

The Hamiltonian for two-dimensional long waves over a slowly varying depth is
derived. The vertical variation of the velocity field is obtained by using a perturbation
method in terms of velocity potential. Employing the canonical theorem, the conven-
tional Boussinesq equations are recovered. The Hamiltonian becomes negative when
the wavelength becomes short. A modified Hamiltonian is constructed so that it re-
mains positive and finite for short waves. The corresponding Boussinesq-type equations

are then given.
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1 Introduction

The development of accurate wave theories is essential for engineering applications in offshore
and coastal environment. Outside of the surf zone, Boussinesq-type equations have been
commonly used to describe weakly nonlinear and weakly dispersive waves in shallow water.
The Boussinesg-type equations are derived based on the assumption that the nonlinearity
represented by the amplitude to depth ratio, € = a/h, is in the same order of magnitude as
the frequency dispersion denoted by the depth to wave length ratio, u? = (h/\)2.

There are various methods for deriving the Boussinesq-type equations. One can integrate
the continuity equation and the momentum equation over the entire water depth and apply
the nonlinear free surface boundary conditions (e.g., [16], [20]). An alternative method is
based on the Hamiltonian theory of surface waves (e.g., [3], [13], [14], [17], [18], [21]). The
Hamiltonian is the total energy of the flow motion; the free surface displacement and the
velocity potential on the free surface are canonical variables in the Hamilton’s sense. One of
the important tasks in the Hamiltonian approach is to determine the vertical distribution of
the velocity field.

Broer and his associates have worked extensively on the derivation of Boussinesq-type
long wave equations based on the Hamiltonian principle (e.g., [2], [3], [4], [5]). Collectively,
they have obtained Hamiltonians for one-dimensional long waves over a constant or a very
slowly varying depth. Benjamin [1| gave the Hamiltonian for two-dimensional long waves

over a constant water depth. The Hamiltonian for two-dimensional long waves over a slowly



varying topography is still unknown.

Broer and his associates further demonstrate that Hamiltonians become negative in the
range of short waves and the corresponding Boussinesq-type equations are unstable. One
might argue that since these short waves are outside the range of validity of the Boussinesq
regime, it should not cause any concern. However, in practical applications, the Boussinesq-
type equations are solved numerically and numerical errors contain disturbances with the
wavelength which is twice of the numerical mesh size. These numerically generated waves
are short waves as far as the Boussinesg-type system is concerned and could cause instability.
Broer and his associates have suggested several ways to modify the Hamiltonians (by adding
some higher order terms) such that the system becomes stable even in the range of short
waves (also in [12], [19]). Specific examples have been given to cases of constant depth.

In this paper we would like to achieve two goals. First, the Hamiltonian for two-
dimensional long waves over a slowly varying depth will be derived. Using the canonical
theorem, the conventional Boussinesq equations are recovered. The second objective of the
paper is to modify the Hamiltonian such that it remains positive and finite for short waves.

The corresponding modified Boussinesqg-type equations are then obtained.



2 The Governing Equations and the Canonical

Theorem

In this section we first summarize the governing equation and boundary conditions for ir-
rotational gravity waves propagating in a layer of inviscid fluid. Denoting @ = (2/,y) as
the horizontal coordinates, and z’' the vertical coordinate, the flow domain is bounded by a
free surface, 2/ = n/(2’,t'), and a solid bottom, z' = -h' (). Introducing the characteristic
wavelength, (k’)~" as the horizontal length scale,, the characteristic depth, h, as the vertical
length scale, and (k’/ \/_ﬂ)_l as the time scale, the following dimensionless variables can be

defined:
F=F e , =2 ;, h= Wik

k' \/gh!
n=1ld , &= Tj“‘l” o &= Hylghtd (2.1)

in which a/, denotes the characteristic amplitude of wave motions, g the gravitational accel-
eration, and ® the dimensionless velocity potential. The dimensionless continuity equation
and boundary conditions are in the following form:
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where
B = (K (2.6)
and
g = %— (2.7)

are parameters denoting frequency dispersion and nonlinearity. In (2.3) and (2.5) V =
(0/0x,0/0y) represents the gradient vector on the horizontal plane.

The total energy of the fluid can be written in the dimensionless form:
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The total energy (or the Hamiltonian) has been normalized by a factor pga,./?/kr*. The
canonical theorem states that the free surface boundary conditions, (2.4) and (2.5), are
equivalent to the following canonical equation [2].
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in which ¢ is the potential function on the free surface, i.e.,

Wi 1) = o 0@ 0,0 (2.10)

To evaluate the canonical equations the velocity potential ® in the Hamiltonian, (2.8),
must be written in terms of the surface potential value, ¢. In the following sections, approx-
imated Hamiltonians will be found based on the Boussinesq assumptions, i.e., 0(¢) = 0(3)

<< 1.

3 An Approximated Hamiltonian

The total energy (Hamiltonian), (2.8), can be written as the sum of kinetic energy, Ej, and

the potential energy, E,, i.e.,

H = E, + E, (3.1)
where
By = Ego + By (3.2a)
with
i 0 0%, P, 1 09, ‘ .
Ejp = 2ffn/_h[(ax) (5t (G, de dady (3.20)



1 o 0b, b, 1 00,
Eiy = 5]/51/0 [(%) 1 (a_y) + = 3 8&)]d~dxdy (3.2¢)

B, = %/ fﬂ n? dzdy (3.2d)

Applying Green’s theorem to the right-hand side of (3.2b) ([7], [9]), we obtain

Bio =3 [ /Q[ o dady (3.30)

where the integrand is evaluated on the still-water level, z=0. Using the Taylor’s series

expansion, we approximate (3.2c) as

L1 00, B0, 1 00, B g
B = 5 [ [l + GV + 5 (G o dody + 06 (33)

We need to replace ¢ and its derivatives in (3.3) by the potential value at z=0.

Because ®(Z, z,t) is an analytical function, we can express it in a power series form:

®(Z, 2,1) = i (z+h)" ¢™ (Z,1) (3.4)

n=0

Note that (z+h) presents the vertical distance measured from the bottom; ¢°) denotes the
potential value at the bottom. The solution form given in (3.4) was first introduced by
Lin and Clark [10] in studying the shallow-water wave theory. Liu and Earickson [11] have
applied the similar approach to study the generation and propagation of tsunamis with a
moving seafloor. Substituting (3.4) into the continuity equation, (2.2), and the bottom
boundary condition, (2.3), we obtain the following recursive relations among ¢,

T
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where n = 0, 1, 2, ... . Using the recursive relations, we can express ¢™ in terms of ¢(¥,

which is the velocity potential on the bottom, z = -h. For completeness, the approximate

formulas for ¢™ (n = 1, 2, 3, and 4) are listed in Appendix A.

The velocity potential at the still water surface, z = 0, can be readily obtained from (3.4)

¢ = ®(@,z2=0,t) = i h® ™ (Z,1)

n=0

Substituting the formulas for ¢ given in the appendix, we find

¢ = Q¢ + 0(5%

where Q is a pseudo-differential operator defined as

p

Q=1=FhVheV - ~2—h2V2 + 0(5%)

We can rewrite equation (3.6) as

¢ = Q7'¢ + 0(8%

(3.7)



with

g

Q=1+ BhVheV + §h2v2 + 0(6?) (3.9)

To evaluate the integrand in (3.3a), we first express d®/9z at z = 0 in the following form:

O om0 = D (1) A 4D = 59O 4 0() (3.10)
~ n=0

where
S = —B(1 — B|Vh|*) VheV — Bh(1 — B|VA|>)V? + 28°hVh e V(Vhe V)

+ B*h V2h (Vhe V) + ﬁ%ﬁ[%W(Vh.-V) + VheV(V?) + —;—Vzh V|

+ % BHVV? (3.11)

Substituting (3.8) into (3.10), we obtain

O |oo = 5@~ + 0) .12
Z

Substitutions of (3.12) and (3.4) into (3.3a) yield, after some lengthy manipulations,
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By, = % [ [ osQ pauty = [ | [h-(v¢)‘* B Gge v (Vhe V)

ﬁh3

+ 292 (whevg) + 2o w2 () o V¢] dedy + 0(F°)

_ % : /Q Voo (hRV$) dzdy + 0(F?) (3.13)

in which hR is a symmetric (self-adjoint) tensor operator, where R is defined by

R=1+ ﬁh[ V (Vhe) + = VhVo | h’vﬂ] (3.14)
or
1+ fa 3b
R = (3.15)
[b 1+ Be
where
h i h? 0?
a = 2 8.1,2} - E 8—3:2' (316(1)
h o8 !12 0? _
s 2 dxdy 6 Oxzdy (3:186)
h 02 h? 02
& E@h_E@ (3.16¢)

10



Mooiman [15] presented an operator R by the straightforward extension of one-dimensional

result of Katopodes and Dingemans ([7], [8]) as:

1+ fBa 0
I (3.17)
0 1+ fBa
where
h 02 0? ht 8° 0?2

g =2 lus b bozh (3.18)

= 2Gaht gt — Gz T ap)
Mooiman'’s choice of R,, leads to an erroneous Hamiltonian. This wil be discussed later.

Equation (3.3b) can be approximated as

By, = % [ [ lenvéevldudy + 0 ep) (3.19)
because
VP T S VRV S
ré;lz:u - E _l_ O(ﬁ)? ay|2'—"0 = ay } O(ﬁ)‘! 83 |Z=U i O(ﬁ) (320)

Finally, an approximate Hamiltonian for two-dimensional waves over a slowly varying depth

can be written as

= = lf / (Voo (hRVY) + enVhe Ve + n’ldudy + 0(*, B, f%)  (3.21)
2 Q

The Hamiltonian given in (3.21) can be simplified to several special cases. For the case
of a constant depth, h = 1, the operator R with (3.16) becomes

11



1+ £V2 0

A (3.22)
0 1+ £v2
and the Hamiltonian (3.21) becomes
= 5 f / (1 + en) (Voo Vo) — = B(V2A)? + o] dady + 0(c?) (3.23)
2 0 3 X

which is the same as that given in Benjamin [1]. For the case of unidirectional waves over a

slowly varying depth, the Hamiltonian, (3.21), can be simplified to be

f[ HZ— | 5?}(%%)2 + 0¥l dx + 0(¢?, €8, §°) (3.24)
with
B Bh 0% 5h2 62

which has been obtained by Katopodes and Dingemans ([7] and [8]).
The conventional Boussinesq equations in two-dimension over variable depth can be ob-

tained using (3.21), (3.16) and (2.9) as:

on

5 = Ve (hRVY) — Ve (e)V4) = =V e|(h+en)i]

- —ﬁVo[h2V(V o (hu)) — !B—V(V )| (3.26)

for continuity equation, and
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¢ £ 2
2 = ~3 (VP —n (3.27)

for momentum equation.
Taking the gradient of the momentum equation yields,
ou

= —ctioe Vi — Vn (3.28)

where 1 is the velocity vector defined by V¢. The irrotationality has been employed in
deriving (3.22). This set of Boussinesq equations, (3.26) and (3.28), can also be obtained
directly using (2.4), (2.5) and (3.4) [6]. Mooiman'’s [15] operator R, given by (3.17), however,

does not give these classical Boussinesq equations.

4 Stable Boussinesq Equations

Broer ([2], [3] and [4]) and his associates [5] demonstrated that for the case of a constant
depth Boussinesq equations derived from the Hamiltonian, (3.23), are unstable for short
waves. These short waves could be introduced either numerically or physically into the
system. The instability occurs because the Hamiltonian, (3.23), becomes negative for short
waves. Many alternate approximations for the Hamiltonian have been suggested. Here, we
follow the approach suggested by Broer et al. [5] and Mooiman [15] and seek for a positive
definite Hamiltonian in a quadratic form.
First, the Hamiltonian (3.21) is modified as
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- % ] /ﬂ (Voo (DRVY) + 1% dzdy + 0(c?, €8, §°)

where

R =1+ 0(8), enR = en + 0(ePh)

(4.1)

(4.2)

is used and D(=h+¢n) is the total depth. The Hamiltonians, (3.21) and (4.1), have the same

accuracy in terms of small parameters ¢ and .

We now rewrite (4.1) in a quadratic form as

i = Ela‘/ /n [D(EVY)* + n°] dudy + O(e, eB, )

where F is another tensor operator to be found from the following relationship:

Ve (RVg) = (FV¢)e (FV¢) + 0(B)*

Using (3.14) and (3.15), we find (see Appendix B)

Fll F22
F e
1[;121 Fl2
1
Fu = 5[l + 5 (@ + 0]
|
Fip = 7 [1 + g(b + ¢))
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(4.6b)



Fyy = \/— 4% (a — b)] (4.6¢)

Fa= sl - 506 -0 (4.6d)
where a, b, and ¢ are operators defined in (3.16). The Hamiltonian given in (4.3) is always
positive and has the same accuracy as those given in (3.21) and (4.1). However, (4.3) becomes
unbounded for short waves. We must further approximate the operator I in the following

manner

] 1
e L SR 4.7¢
s \/§ 1— g(a o i b) ( (I)
F i oy g (4.70)

V21-2(b+ ¢

1 1
B = - T oy (4.7¢)

1
By = ——ge—
W f1+ (b — ¢

The canonical equations (2.9) gives the final form of stable Boussinesqg-type equations:

(4.7d)

o = —V o [FT(DFV¢)]
ot
0 % 1k * * * *
™ FY (D(Ffu + Fiyv)) + F(D(Fyu + Fiv))l
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8 * * * * * #
- a_y [Flz (D(Fllu + Fiyv)) + Fouo(D(Fahu + Fzzv))] (4-8)

for continuity equation and

%% - —%(Fw)? — (4.9)

for momentum equation.

Taking the gradient of the momentum equation, we obtain

du
ot

v
ot

Equations (4.8),

* % 8 * * * ® 8
= —g [(Flju + 12"—’)%(}?11“ + Fiyv) + (Fyu + Fuv) o (4.10)
. . on
(Fou + Fav)] — e
n g * 0 * * * * 9
= —¢ [(Ffju + Flyv) 8_y(F“u + Fiv) + (Fau + Fyv) 6_3; (4.11)
i . on
(Fhu + Fjv)| — 8_y

(4.10) and (4.11) constitute the modified Boussinesq equations which are

stable subject to short wave disturbances.

For later uses, we present the modified Boussinesq equations for one-dimensional waves

(v = 0 and 9/dy = 0) over a constant depth. From (4.8) and (4.10), we get

87' 8 * * * *

5; = " 8z [Fy (D Ffyu) + F; (DF3, u)] (4.12)
ou N - i o B e an .
3¢ = ¢ [Fhugy (Fiw) + Fyuo (Fu)f — o (4.13)
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where

Fi=-Fh= 5—mm (4.14)

5 Phase velocities and linear instability

An effective way to demonstrate that the modified Boussinesq equations have a better stabil-
ity characteristics and wider range of applicabilities in the short waves than the conventional
Boussinesq equations is to examine the phase velocities corresponding to each equation. For
simplicity, we consider the linear version of the equations for one horizontal dimension and

constant depth. From the conventional Boussinesq equations (3.22) and (3.24), we get

g—?:~h%~%ﬁ% (5.1)
% o % (5.2)
On the other hand, from the modified Boussinesq equations (4.12) and (4.13), we get
& s %‘2 %)2% . —hg—i (5.3)
oo -
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Consider a small amplitude periodic disturbance with frequency w and wave number k,

n = Aexpli (kz — wt)] (5.5)

u = Uexpli (kx — wt)] (5.6)

Substituting (5.5) and (5.6) into (5.1) and (5.2), we get the following well-known dispersion
relation
W2

Clo = 25 = hl1 - %ﬁ(kh)z] (5.7)

for the conventional Boussinesq equation. Following the same procedure, we find the disper-

sion relation based on the modified Boussinesq equation, (5.3) and (5.4) as:

% w? 1 3
o = 5 =+ [ o

In terms of dimensional variables, these dispersion relations read
2 1 2
Cep = 73 = gh[l - g(kh)] (5.9)

1

2
2 = — = —_—
Cyp = 1 gh [1+é(kh)2] (5.10)

We note that (5.9) becomes negative when kh > /3. It implies that the phase velocity or

the frequency becomes imaginary for the conventional Boussinesq equations. Therefore, the
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disturbance grows exponentially in time. On the other hand, the dispersion relation for the

modified Boussinesq equation is always positive. Therefore, the solution is always stable.
To compare further the range of applicability for the conventional Boussinesq equations

and the modified Boussinesq equations in terms of the relative water depth, we calculate the

phase velocities, normalized by the phase velocity based on the linear Airy theory,

tanhkh
Cairg = Voh Y= (5.11)

for different relative depth. The results are shown in Table 1. The relative depth is defined

as the ratio of the depth, h, to the deep water wavelength \, = 2wg/w? The deep water
depth limit, corresponds to h/\, &~ 0.5. The phase velocity associated with the modified
Boussinesq equation is roughly within 10% of that associated with Airy theory up to kh =~

0.45. The conventional Boussinesq equations degenerate quickly around kh = 0.2.

6 Concluding Remarks

Two major tasks have been accomplished in this paper. First, a Hamiltonian for two-
dimensional long waves over a slowly varying depth is derived. Using the canonical theorem
the conventional Boussinesq equations are recovered. Because the Hamiltonian becomes
nelgative infinity when the wavelength becomes short, the conventional Boussinesq equations
become unstable in the short wave range (or deep water). Therefore, the conventional Boussi-

nesq equations are susceptible to short waves generated by numerical errors. To improve the
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Table 1: Comparison of phase velocities derived from the Conventional Boussinesq equations,

the Modified Boussinesq equations and the Airy Theory

k/Xo | kh [ Cecp/Chiry | Cus/Cairny
0.01 | 0.253 1.001 1.000
0.02 | 0.362 0.998 1.000
0.04 | 0.523 0.994 0.998
0.06 | 0.655 0.987 0.996
0.08 | 0.774 0.976 0.993
0.10 | 0.886 0.960 0.988
0.15 | 1.152 0.886 0.972
0.20 | 1.414 0.728 0.946
0.25 | 1.683 0.317 0.912
0.30 | 1.961 — 0.870
0.35 | 2.249 — 0.823
0.40 | 2.545 e 0.772
0.45 | 2.847 — 0.720
0.50 | 3.141 = 0.671
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characteristics of the Boussinesq equations, the second task is to derive a modified Hamil-
tonian. The corresponding modified Boussinesq equations contain many higher derivatives.
For the one-dimensional constant depth case, the phase velocity derived from the linearized
modified Boussinesq equations is shown to be a real and finite number. Therefore, the
modified Boussinesq equations are stable for a wide range of water depth. For the general
two-dimensional problems, an accurate numerical scheme needs to be developed for these

equations.
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Appendix A

From the recursive relations, (3.5), the following approximate formulas can be derived:

¢V = —B (1 — BIVA[®) Vhe V@ + 0(8°%) (A1)

4D = _%’(1 _ BIVH) V24O + BPVheV (Vhe V4O

,62

r V2h (Vh e V¢ ) + 0(8%) (A.2)

8 = 5[5V (Vhe V4®) + 3VheV (V2)

+ é V2h V2O + 0(6%) (A.3)
9 = L2 (v240) + o) (A9
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Appendix B
Using the expression given in (3.14) for the operator R, we can rewrite the first integrand

of (4.1) as

1+pBa 1+pb
Ve (RVY) = [uv] {v}
-146b 14 fBc
= u(l + Ba)u + u(l + Bb)v + v(—1 + PBb)u + v(1 + Pec)v (B.1)

where u and v are the x- and y- component of velocity vector. Note that the operator R has
been slightly modified for convenience. We assume that the operator I has the following
form:

A+BI B+BJ
P = (B.2)

C+pK D+pBL

in which A, B, C, and D are constants and I, J, K, and L are differential operators. We can
determine these unknown quantities by satisfying (4.4). The right-hand side of (4.4) can be

expressed approximately as

(FV¢) e (FV¢) = u[A? + C* + 28 (Al + CK)Ju + 2u[AB + B(AJ + CL)Jv
+20[DC + B (DK + BI)Ju + v[B* + D* + 28(BJ + DL)lv + 0(5%) (B.3)

Equating (B.1) and (B.3), we obtain the following set of equations

AL P=1

26



1

AB = -

1

CD = -3
B? 4+ D? = 1,
AT + CK :g
b
AT + CL = 3
. b
DK + BI = 3
. C
DL+ BJ = 7

which leads to the solution

1
A__B:D:HC:E
Pos coalauip®), Jm emalbiid
BT A L
B = e, B o= s i)

= ap e L=t

The operator F can be written as

—_ 14+ 8a+b)  1+50b+c)
V2
~1-8(a-b) 1-E(b-0)
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