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Chapter 1

INTRODUCTION

Two thirds of the earth is covered by the ocean, supplying people with
natural resources such as food, oil, recreation, etc., but also causing troubles such
as storms with big waves. For a long time, people have been interested in how

water waves are generated, how they are transformed, and finally how they break.

Water waves are generated mainly by the wind stress or other sources such
as earthquakes, ship motions, or tides. Gentle winds at first disturb the calm water
from time to time, producing small capillary waves. These local disturbances
quickly die away. If the winds increase in speed, ripples develop on the surface. If
the wind continues, gravity waves may develop. The longer and harder the wind

blows, the larger the waves that are produced.

As waves leave the generation area, they spread out by wave dispersion,
with the longest-period waves traveling the fastest. Viscous damping is important
to the short-period waves but has little effect on the long-period waves. Acting
together, wave dispersion and viscous damping narrow the wave spectrum and
change the complex sea in the generation area to regular swell waves. Nonlinear
effects such as wave-wave interaction continue for a short distance outside the

generation area and are important in wave energy dissipation. Once waves have
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reached a regular swell condition they may travel for thousands of kilometers

across the entire ocean basin with relatively little additional energy loss.

As waves feel the bottom, they undergo the transformations of shoaling,
refraction, and diffraction. The wave velocity and length progressively decrease,
and the height increases with decreasing water depth (shoaling). The direction
of wave propagation changes with decreasing depth of water, as the crests tend
to parallel the depth contours (refraction). If breakwaters or other structures
block the wave propagation, wave energy is shielded by the structures, creating a

shadow zone (diffraction).

As the waves undergo further shoaling, the wave train becomes a series
of peaked crests separated by relatively flat troughs. Finally, the crests become
oversteepened and unstable, and they break. During wave breaking, there is an
energy transformation from mechanical to heat energy resulting in energy dissi-
pation. The breaking waves propagate until they reach a stable condition, after
which they propagate without breaking; otherwise, they break until they disap-

pear.

In the following sections, we review some wave transformation models and
wave breaking models with statements why this study is motivated. Finally, we

describe how this study proceeds.

1.1 Review of Wave Transformation Models

Wave refraction was first studied using a ray method by O’Brien (1942) for
a single wave ray and generalized by Munk and Arthur (1952) for a set of rays.
Wave rays, or lines which are everywhere normal to the wave crests, are assumed to

be in the direction of wave advance and energy propagation. The wave amplitude



is calculated based on the assumption that the energy does not cross the rays,
and so wave shoaling is included in the ray method. The main problem in the ray
method is that because diffraction is not considered, the energy becomes infinite
when the rays cross. Such problems in wave crossings can be overcome by methods
such as that of Bouws and Battjes (1982), who estimated the wave energy from
the rays passing through a number of subregions, each ray being considered as a

carrier of a certain amount of wave power.

Diffraction of water waves around a semi-infinite breakwater was first solved
analytically by Penney and Price (1952) based on Sommerfeld’s (1896) solution
in optics. Approximate solutions for waves diffracted behind a breakwater or a
breakwater gap were also obtained by the method of superposition. If the water
depth changes significantly near the breakwater, refraction is also important. For
this case, ray models solving for each wave ray emanating radially from the break-
water tip have been developed by Larsen (1978) and Southgate (1985). However,

these models cannot be used near ray crossings.

Clombined refraction and diffraction was first studied by Ludwig (1966) in
order to provide locally valid solutions for the Helmholtz equation near a caustic.
The solution uses Airy functions, which are sinusoidal in the illuminated zone,
damp exponentially in the shadow zone, and are transitional between sinusoidal
and exponentially damping behavior in the vicinity of the caustic, with values of
nearly double the incident wave on the caustic itself. The combined refraction and
diffraction of water waves on a slowly varying bottom was studied by Berkhoff

(1972), who derived the mild-slope equation:
V- (CC,V¢)+ kCC,d=0 (1.1)

where V is the horizontal gradient operator, £ is the local wavenumber, C' and

are phase and group velocities, respectively, and the function ¢ is related to the



velocity potential ¢ by
e cosh k(z + h)
~ coshkh

Berkhoff’s equation (1.1) is applicable only to monochromatic waves and is of

pe it (1.2)

elliptic type, so it requires the surrounding boundary conditions and significant

work on efficient solution methods.

A time-dependent mild-slope equation was first developed by Smith and
Sprinks (1975) by means of Green’s second identities applied to the velocity po-

tential. The model equation is
@—v-(é(ﬁ? V) + (@ — k*CCy)¢ =0 (1.3)
(91;.2 g g
where C' and C, are phase and group velocities, respectively, of a narrow-banded
wave with carrier angular frequency @ and wavenumber k. The function ¢ is

related to the velocity potential ¢ by

cosh k(z + h) -

¢ = é (1.4)

cosh kh
The time-dependent mild-slope equation (1.3) reproduces Berkhoff’s equation
(1.1) for monochromatic waves and reproduces the long wave equation in shal-

low water.

A system of the time-dependent mild-slope equations was derived based on
the Hamiltonian theory of water waves by Radder and Dingemans (1985). The
model equations are

o cC i (@ -%CC,)

il —V-(T‘”Vcﬁ) : ¢ (1.5)
a2

where ¢ is the gravitational acceleration. The water surface elevation 5 may be
eliminated from equations (1.5) and (1.6) in order to obtain Smith and Sprinks’

equation (1.3).
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The time-dependent mild-slope equation was extended by Booij (1981) to
include the effects of ambient currents using a variational principle. Some errors

were corrected by Kirby (1984) to obtain the model equation
D*¢ Dé I .
W o O —k*CC,)¢ = ( '
Bz TV U g~V (CCy V) +(6° —k*CCy)p =0 (1.7)

where the total derivative -‘,‘% is
D 0

U(i,y) is the ambient current and & is the wave intrinsic frequency which satisfies

the dispersion relation

52 = (@ — k - U)? = gk tanh kh. (1.9)

Recently, a time-dependent mild-slope equation for linear waves under the
combined effects of depth variation and rotation was developed by Kirby and Lee

(1993). The model equation is

Py dn 2201 2 0N €gw
= =V (g V) + €0° — 4 gFy(1 - €) o — —=—J(h,n) =0 (1.10
a3 V-l Ivé?t) +EP ot + 975 < )(r)!, cosh? \h (B,9)=0 (1.10)
where
D cosh/_\(h + 2) ., o
2 — )l 111
! /—h( cosh A\h i ( )
0 9 coshA(h+2), ., o
by = —{—==2l"s 1.12
’ ]—h (5:: cosh \h ) dz, ( )

¢ = [/w is the inverse Rossby number, J(h,n) is the Jacobian of h and 7, and A
is the inverse length scale of the vertical variation of the pressure and horizontal

velocity fields, and gives the dispersion relation
w? = g\ tanh \h. (1.13)

The model reproduces the usual finite-depth mild-slope equation (1.3) in the ab-

sence of rotation, and also reproduces the long wave equation when the ratio of
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wavelength to water depth is large, either with or without the additional effect of

rotation.

If waves are progressive and the deviation of the wave direction from an
assumed principal direction is small, the parabolic approximation, which is more
efficient than the mild-slope equation (which is either hyperbolic (equations (1.3),
(1.5) and (1.6), (1.7), (1.10)) or elliptic (equation (1.1))), may be used. The
parabolic approximation uses the fact that in the shadow boundary of a scatter,
the modulation of wave amplitude is more rapid in the direction tangential to
wave fronts than in the direction of wave rays. The basic idea was originated for
electromagnetic waves by Leontovich and Fock (1944). For water waves, the first
application was given by Liu and Mei (1976), who found the linearized wave field
in the neighborhood of a breakwater on a beach with parallel depth contours. For
two-dimensional bathymetry the first extension was given by Radder (1979), who
developed a parabolic approximation to Berkhoff’s equation (1.1) based on the use
of a splitting matrix, which divides the wave field into transmitted and reflected
components, and assumes the reflected field is negligible. The nonlinearity which
is significant near the focal region was considered in the parabolic approximations
by Kirby and Dalrymple (1983). The restriction to small angles can be relaxed
by adding higher order derivatives; see Kirby (1986). A model for very wide-
angle diffraction was developed by Dalrymple and Kirby (1988), Dalrymple et al.
(1989) and was extended to nonlinear Stokes waves by Suh et al. (1990). They
decomposed the entire wave field into an angular spectrum by applying a Fourier
transformation with respect to alongshore coordinate to the mild-slope equation.
Therefore, the model is limited to the assumption of periodicity in the alongshore

direction.

Recently, Kirby et al. (1992) presented a number of computations using



Radder and Dingemans’ equations (1.5) and (1.6), and extended those to progres-
sive nonlinear Stokes waves. At the same time, Kubo et al. (1992) have developed

a different type of time-dependent mild-slope equation

9_9¢ ¢

V- (CC,V) + k2CCyhp+1iV - () (CC,)V at)ﬂa—w(zﬁc‘:éy)a:n (1.14)

which was derived by extending the terms C'C, and k*C'C, in Berkhoff’s equation
(1.1) into Taylor series in Aw, and eliminating powers of Aw using the relation
'—;’t‘-’ = —iAwg for narrow-banded spectra. They also showed the propagation of

the wave groups to verify the linear dispersive properties of the model equation.

The analysis of the dispersion relation and modulation of wave amplitudes
(which is described in detail in Chapter 2) reveals that Smith and Sprinks’ equa-
tion (1.3) (or, equivalently, Radder and Dingemans’ equations (1.5) and (1.6)) is
more accurate in shallower water (kh < 0.27) and Kubo et al.’s equation (1.14) is
more accurate in deeper water (kh > 0.27). So, a new time-dependent mild-slope

equation is needed which is most accurate in whole range of water depth.

1.2 Review of Wave Breaking Models

Three types of breakers are commonly recognized; spilling, plunging, and
surging. In spilling breakers the wave gradually peaks until the crest becomes
unstable and cascades down as white water. In plunging breakers the shoreward
face of the wave becomes vertical, curls over, and plunges down as an intact mass
of water. Surging breakers peak up as if to plunge, but then the base of the
wave surges up the beach face so that the crest collapses and disappears. In
general, spilling breakers tend to occur on beaches of very low slope, plunging
breakers are associated with steeper beaches and waves of intermediate steepness,

and surging occurs on high-gradient beaches with waves of low steepness (Patrick



and Wiegel, 1955). Galvin (1968) identifies a fourth type of breaking waves, a
collapsing breaker, which is intermediate between plunging and surging types.
He has established that this sequence (with gradual transitions) corresponds to
increasing values of ﬁg? or HTI};;, where H is the wave height, L is the wavelength,

T is the wave period, s is the beach slope and subscripts 0 and b represents the

value at deep water and breaking point, respectively.

The most basic of the breaking criteria is that if the velocity of the water
at the crest exceeds the phase velocity of the wave form the crest will topple
forward and break. Two breaking criteria can be specified in deep and shallow
water depths. In deep water, the wave steepness is significant in determining the
breaking criteria. Michell (1893) found theoretically the breaking criteria

H
(“E)g, = (0.142 (1.15)

which is valid only in deep water. The limiting steepness for progressive waves in
any depth of water is given by Miche (1944) as

H 2
(7 ) = 0.142 tanh(=)s (1.16)

In shallow water, the wave height to water depth ratio becomes significant in
determining the breaking criteria. McCowan (1891) found the breaking criteria
for a solitary wave to be

H
(I)b =0.78 (1.17)

Field measurements on ocean beaches with very low gradients reported by Sver-
drup and Munk (1947) agreed with the value of McCowan’s breaking criteria, so
this value has been widely accepted. Iversen (1951) found that, on laboratory
beaches, higher breaking criteria exist on beaches with steeper slopes and the

breaker height index i—;{‘]l decreases with increasing incident wave steepness.
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The steady state equation for the wave breaking models is

P
S—(ECy) = ~DyE (1.18)

where F is the wave energy per unit surface area and Dy, is the energy dissipation
rate. Breaking models can be separated into three main categories: those that
resolve the instantaneous state of motion, treating the breaking wave as a bore;
those that give a more global description of the waves in terms of spatial variation
of their integral properties, treating the sea locally as a uniform wave train; and

those that use experimental data.

For the first category, treating the breaking wave as a bore, Lamb (1932)
derived the energy dissipation rate per unit span for breaking waves using conser-
vation of mass and momentum across a bore connecting two regions of uniform
flow. Battjes and Janssen (1978) derived a model to predict the dissipation rate
for random breaking waves using a bore of the corresponding height while the
probability of the occurrence of the wave breaking is estimated by a Rayleigh
distribution with an upper cut-off. Thornton and Guza (1983) derived the energy
dissipation rate for random breaking waves using observed wave distributions.
Svendsen (1984) developed a dimensionless energy dissipation rate which depends

on wave height to water depth ratio and wave crest elevation to wave height ratio.

For the second category, treating the sea locally as a uniform wave train,
Dally et al. (1985) proposed that the energy dissipation rate for regular breaking
waves is proportional to the excess of energy flux over a pre-determined stable
value. This was motivated by Horikawa and Kuo’s (1966) experimental data
where it was observed that the decay of wave heights of breaking waves stops
when they reach a stable wave height, with a wave height to water depth ratio

of 0.35 to 0.4. Dally et al.’s dissipation rate was extended to random breaking
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waves by Dally and Dean (1986) and also was extended to the parabolic mild-slope

equation by Kirby and Dalrymple (1986).

For the third category, Isobe (1987) developed an energy dissipation rate

based on experimental data as

. 5 [g [y—7r [tanhkh :
iy = 43\/; Vs — Vr kh (I +32)

{1 - 5(1 — s2)(1 + s2) + 2s2(8s2 cosh 2kh — 1)
I 5(1 —|—S;;]2

} (1.19)

where
2kh
§g = ————, 1.20
27 sinh 2kh (L20)
s is the bottom slope, v is the ratio of water particle velocity to wave phase
velocity, and «, and 4, are the values at the wave recovery point and on bottom

of uniform slope, respectively, determined by
vs = 0.4(0.57 + 5.3s) (1.21)
7 = 0135 (1.22)
[sobe used a breaking criterion proposed by Watanabe et al. (1984), who employed
the ratio of water particle velocity to wave phase velocity as a breaker index in

order to predict the breaking point accurately in the linear wave analysis. The

breaking criterion is
v = 0.53 — 0.3¢=3V /Lo 4 557 e=45(v/he/Lo=0.1)? (1.23)

Kubo et al. (1992) modified the energy dissipation rate in equation (1.19) as

dimensionless variable given by

' 5] v —Yr 1
= =85 - 24
fp, 2% 7, _,rr\/ o (1.24)
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and used the energy dissipatation rate in the time-dependent mild-slope equation

(1.14) resulting in

V(OO VDR CC, (140, )4V (5(CC,) S+ 2 (OC,) (1+ifo) gy =0
(1.25)

The equations (1.19) and (1.23) were derived semi-empirically for a uniformly
sloping bottom, and were used on non-uniformly sloping bottoms by assuming

the points on the bottoms are locally uniform.

The time-dependent mild-slope equation is applicable from deep to shallow
water. To extend the model to the surf zone, we need a wave breaking model to be
included in the time-dependent mild-slope equation. The breaking model should
be applicable for a complicated bottom slope and should dictate the propagation

of the breaking waves with decay of wave height until a stable condition is reached.

1.3 Description of the Present Study

The natural phenomenon of wave propagation is highly complicated with
nonlinearity and turbulence. So, we need to simplify the problem to get a solution.
[irst, we assume the water to be incompressible and irrotational, which enables us
to use the velocity potential. Second, we neglect the viscous effects of water near
the bottom and the water surface. Third, we neglect the nonlinear wave-wave

interactions.

[n Chapter 2, we compare the two time-dependent mild-slope equations
(1.3) (or, equivalently, (1.5) and 1.6)) and (1.14) in terms of the dispersion relation,
energy transport, modulation of wave amplitudes, and also by theoretical and

numerical analysis for bichromatic waves.

In Chapter 3, we derive two new time-dependent mild-slope equations
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which satisfy the linear Schrodinger equation for the modulation of wave am-
plitudes and compare these equations with the two existing time-dependent mild-
slope equations in terms of the dispersion relation, energy transport, and also
by numerical simulation for bichromatic waves in order to verify that the new

equation is more accurate than the existing equations.

In Chapter 4, we derive an energy dissipation rate caused by wave breaking
using the geometric similarity between a breaking wave and a bore, and include
the dissipation rate in the time-dependent mild-slope equations. A method of
successive 3 point averaging is suggested for use during computation to get stable

solutions.

In Chapter 5, we apply non-breaking and breaking versions of Radder and
Dingemans’ model to several cases including one-dimensional and two-dimensional,

monochromatic and random, and non-breaking and breaking waves.

In Chapter 6, we summarize this study and conclude with some suggestions

for further study.



Chapter 2

COMPARISON OF THE TIME-DEPENDENT
MILD-SLOPE EQUATIONS

The combined refraction and diffraction of water waves on a slowly varying

bottom was studied by Berkhoff (1972) using the mild-slope equation:
V- (CC,V$)+ k*CC,4 =0 (2.1)

where V is the horizontal gradient operator, k is the local wavenumber, C' and C,
are phase and group velocities, respectively, and the function qf) is related to the
velocity potential ¢ by

- (J()S:Oil(;k}t h) Jemivt (2.2)

Berkhoff’s equation (2.1) is applicable only to monochromatic waves.

A time-dependent mild-slope equation was first developed by Smith and
Sprinks (1975) by means of Green’s second identities applied to the velocity po-

tential. The model equation is

P% _ G (CC, )+ (@ - BCCy)p = 0 23
51‘2_ ( g qﬂ:)-{-(w—. -'-'y)qé“ (')

where C' and (', are phase and group velocities, respectively, of a narrow-banded

wave with carrier angular frequency @ and wavenumber k. The function ¢ is

related to the velocity potential ¢ by

_cosh k(z +h) -

cosh kh (24)

13
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A system of the time-dependent mild-slope equations was derived based on
the Hamiltonian theory of water waves by Radder and Dingemans (1985). The

model equations are

an W5 (&% — B*CC,) 3

dt = =V gﬂ'v.;g)) 2 = F'(¢) (2.5)
19
5—? = —gn (2.6)

The water surface elevation  may be eliminated from equations (2.5) and (2.6)

in order to obtain Smith and Sprinks’ equation (2.3).

Kirby et al. (1992) presented a number of computations using the time-
dependent mild-slope equations (2.5) and (2.6). They studied the propagation of
wave groups in order to verify the linear dispersive properties of the model, and
then tested the model against several existing data sets, including the wave focus-
ing experiments by Berkhoff et al. (1982) (monochromatic waves) and Vincent

and Briggs (1989) (monochromatic and random waves).

Kubo et al. (1992) developed a different type of time-dependent mild-slope
equation

9] ()QS a s ()(/}
" 5!)+ (A(( 5 =0 (2.7)

which was derived by extending the terms C'C, and k*C'C, in Berkhoff’s equation

V- (CC, V¢]+KECC’Q¢+JV (—(CC,)V
(2.1) in Taylor series in Aw, and then substituting for Aw using the relation
%? = —ichf) for narrow banded spectra. They also showed the propagation of
wave groups to verify the linear dispersive properties of the model. The last two
terms in equation (2.7) are added in order to correct Berkhoff’s equation (2.1) for
time-dependent problems. The values of the terms =(C'C,) and - (k*C'C,) are
given by

& 0, k"

mlo~1*t7g)

.
a_w ( ¢ (-’g )



_ 3‘)“_ 2n —1 (9 — ok ‘
7 {2(n —1) + = (1—(2n —1)cosh2kh)}  (2.8)
%(%2379) = 2% 4 k*— 4 (('C]
= w{2n+ 271 [J — (272 — 1) cosh 2kh)} (2.9)
2kh )

ég/é == ';'(1 + snhoFh

where n =
,) and L2 (k2CC,) are shown in Figure 2.1, from

The values of (C'
which we see that the seconcl to last term in equation (2.7) becomes zero in very
2 and +‘2id}%% in very deep and

shallow water and the last term becomes +iw

shallow waters, respectively

-5 e .I-1 jlc 1
10 10 ) 10 10
kh/m
Figure 2.1: %%(CC’ ): dashed line, -2 (k2CC,): dash-dotted line

First, we compare the two models (2.3) (or, equivalently, (2.5) and (2.6)
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and (2.7) from a geometric optics point of view, which yields the dispersion relation
and the transport equation for wave energy. Secondly, we compare the two models
in terms of wave kinematics, that is, we see how well the two models approximate
particle velocities u for some examples. Thirdly, we compare the two models
one-dimensionally in the horizontal direction for constant water depth against
the linear Schrodinger equation, which is the equation for modulation of wave
amplitudes accurate to O(Ak)?* and serves as a benchmark for other leading order
envelope equations. Fourthly, bichromatic waves are simulated numerically to see
how well the two models predict the propagation of wave phase and groups against

exact solutions.

2.1 Analytical Comparison of the Model Equations

For the case where variation in the wave train is very slow relative to
variations in the domain topography, the propagation of surface waves is often
treated from the geometric optics point of view, which leads to the usual ray

approximation.

For Smith and Sprinks’ model, the geometric optics approximation is con-

structed by substituting the ansatz
Hz,y,1) = A(z,y, t)e’[ bedot] kydy-ut) (2.10)

where A(z,y,t) is a complex amplitude which modulates in space and time and
k. and k, are local wavenumbers in @ and y directions, into equation (2.3), which

yields

— (W —@N)A+ (k- F)CC,A-V - (CC,VA) - "*,JfoV -(A’kCC,) =0 (2.11)



i/ §

Separation of real and imaginary part of the resulting equation leads to an eikonal
equation for the phase function

W@ o, -, V-(CC,VA) |
e T T O e 2- ;
(?(_—.‘g 8 ; C‘C:HA Sl

and a transport equation for wave energy
V. [Azk(_-*C_Fy) ={ (2.13)

It is usually assumed that for bottom of small slopes, the last term in equation
(2.12) is second order in the small parameter and thus negligibly small (Keller,
1958). Retention of the small term allows for the inclusion of weak diffraction
corrections in grid-based refraction schemes. Neglecting terms that are second-

order small in equation (2.12) leads to the following dispersion relation

(2.14)

For Kubo et al.’s model, the geometric optics approximation is constructed

by substituting the ansatz

-

qiv(:r., y,t] - (?)e‘m - A(.‘I?,'[ ’i)ei(j'kxda:-l-kydyw[w—@l}i) ( :

oo
—
o
e —_

into equation (2.7), which yields

v O 7amm 9 0 =~ 2 TAAA s
(w— w){%(ﬁ(’(:g) - kzé;(ﬁx(:g)}A —(k* = ¥))CC,A+V +(CC,VA)
0 aTa 3 1 2 S - (’j SrTal —
+(w—w)V - (%—((.’(.JH)VA) + aAV JAK{CCy + (w — w)fw(('("")}] =/{)

(2.16)

Separation of the real and imaginary part of the resulting equation leads to an

eikonal equation for the phase function

w—w (rJ 7.2 71 .2 a 1
0C, ‘au 00 = F g 00
i s W{GCTA) V- (55(CC,)VA) |
et P e B e LRI s o 7 237
-k cC,A o) CC,A &)
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and a transport equation for wave energy

-

V- [A%k{CCy + (w — w)d—(C'Cy)}] =0 (2.18)
w
The last two terms in equation (2.17) represent weak diffraction with additional
correcting term obtained by Taylor series expansion. Neglecting diffraction terms
in equation (2.17) leads to the following dispersion relation

= 22— 1)
R J] ! (B~ NE 200, (2.19)

@ Ow

7= 7=

These dispersion relations, equations (2.14) and (2.19), can be compared
against the exact dispersion relation for linear wave:

2 k tanh %i_ch

Wig
pn 1 P = 2.
({J) k tanh kh (2.20)

The exact dispersion relation is shown in Figure 2.2. The percent errors in
k/k for Smith and Sprinks’ model and Kubo et al.’s model are shown in Figures 2.3
and 2.4, which show that Kubo et al.’s model gives closer dispersion relation to the
exact dispersion relation in deep and intermediate-depth waters, whereas Smith
and Sprinks’ model gives closer dispersion relation in shallow water. Figures 2.5
- 2.7 show the dispersion relations for exact solution, Smith and Sprinks’ model,
Kubo et al.’s model, and the linear Schrédinger equation in deep water (kh = 27),
intermediate-depth water (kh = 0.37), and in shallow water (kh = 0.057). The
dispersion relation for the linear Schrodinger equation is described by equation
(2.35) which is accurate to O(Ak)?. At deep water with kh = 27, Smith and
Sprinks’ model has lower valid boundary of w/w = 0.7 and Kubo et al.’s model has
lower valid boundary of w/@ = 0.5. At intermediate-depth water with kh = 0.37,
Smith and Sprinks’ model has lower valid boundary of w/w = 0.45 and Kubo

et al.’s model has lower valid boundary of w/w = 0.35. At shallow water with
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kh = 0.057, Smith and Sprinks’ model has lower valid boundary of w/w = 0.1

and Kubo et al.’s model has lower valid boundary of w/w = 0.5. The upper range

of w/w for valid solutions is much larger than the lower range of w/w for valid

solutions.
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Figure 2.2: Exact linear dispersion relations
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Figure 2.3: Percent errors in k/k for Smith and Sprinks’ model
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2.5 (s

Figure 2.5: Dispersion relations for kh = 27 (dotted line: 2 percent confidence
interval of exact solution, dashed line: Smith and Sprinks’ model,
dash-dotted line: Kubo et al.’s model, solid line: linear Schrodinger
equation)

The transport equations for wave energy can be compared against the

transport equation for the linear wave energy:
V- (AkCC,) =0 (2.21)

The exact linear shoaling coefficient can be obtained from equation (2.21) as

- A Cyo
Ko=—= -+ 2.22
=" c, (2.22)



0
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Figure 2.6: Dispersion relations for kh = 0.37 (dotted line: 2 percent confidence
interval of exact solution, dashed line: Smith and Sprinks’ model,
dash-dotted line: Kubo et al.’s model, solid line: linear Schrodinger
equation)

where the subscript 0 denotes the reference point. The linear shoaling coefficient

for Smith and Sprinks’ model can be obtained from equation (2.13) as

The linear shoaling coefficient for Kubo et al.’s model can be obtained from equa-

tion (2.18) as

A | ko{(CCylo+ (w—@)Z(CCy)o}
- 'J #{CC, + (w — @) 2(CCy)) S
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Figure 2.7: Dispersion relations for kh = 0.057 (dotted line: 2 percent confi-
dence interval of exact solution, dashed line: Smith and Sprinks’
model, dash-dotted line: Kubo et al.’s model, solid line: linear
Schrodinger equation)

The linear shoaling coefficients for reference water depth hy = 1 m and
frequencies from f = 0.6 Hz to f = 1.4 Hz are shown in Figure 2.8 where
the shoaling coefficient decreases and then increases as water depth decreases.
At lower frequencies, the turning starts deeper water, so the maximum shoaling
coefficient at water depth A = 0.01 m is 2.21 at the lowest frequency. Figures
2.9 and 2.10 show the percent errors for Smith and Sprinks’ model and Kubo
et al.’s model, respectively, when the representative frequency is f = 1 Hz with
kho = 1.287 at ho = 1 m and kh = 0.067 at A = 1 em. Smith and Sprinks’

model gives smaller shoaling coefficients at lower frequencies and larger shoaling
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Figure 2.8: Shoaling coefficients for hg = 1 m

coefficients at higher frequencies in all water depths relative to the exact shoaling
coefficients. Kubo et al.’s model gives smaller shoaling coefficients at both lower
and higher frequencies in water depth shallower than 0.4 m and gives singular
solutions of the shoaling coefficients at frequencies higher than f = 1.4 Hz. The
singularity happens when the value of C'C, + (w — )2 (CC,) becomes zero. The
value of Z=(C'Cy) is 0 in shallow water and -w/k? in deep water (see Figure 2.1), so

the singularity of the shoaling coefficients happens always at higher frequencies.
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Figure 2.9: Percent errors in shoaling coefficient for Smith and Sprinks’ model
(hg =Ll'm, f=1 Hz)
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Figure 2.10: Percent errors in shoaling coefficient for Kubo et al.’s model (ho = 1
m, f=1Hz)
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Figure 2.11: Power spectrum of water surface elevations measured at water
depth of 47 em by Mase and Kirby (1992): case 1

We test the shoaling of the two models for a case with experimental data.
Mase and Kirby (1992) conducted two types of experiments measuring the water
surface elevations for fandom waves over a plane beach. The waves were generated
offshore at water depth hy = 47 e and the waves propagated over a 1/20 sloping
bottom. We use the first type of experiment which generates waves with plunging
breakers. The measured power spectrum of water surface elevations at hg = 47
cm is shown in Figure 2.11. We exclude the lower and upper 2 percent spectra
from the whole spectrum to get reasonable solutions, giving a frequency range of
[ =10.38 - 1.61 Hz. We subdivide the spectrum into 2, 4, 6, or 8 components
with equal frequency bandwidths. We select the representative frequencies by a
weighted average or median. For a weighted average case, we get the representative

frequencies by averaging the frequencies with weight of the corresponding spectral
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densities.

First, we compute the squared shoaling coefficients K72 for linear waves
which is shown in Figure 2.12. We then multiply the squared shoaling coefficients
K2, by the power spectrum at hg = 47 em to get the power spectrum over the
whole range of water depths from h = 47 em to h = 1 em. Next, we compute
the squared shoaling coefficients K? from equation (2.23) (Smith and Sprinks’
model) or equation (2.24) (Kubo et al.’s model). We define the percent error
in the squared shoaling coefficient as 100 x (K? — K2)/KZ%. Some plots of the
percent error are shown in Figure 2.13 (Smith and Sprinks’ model) and Figure
2.14 (Kubo et al.’s model) for cases with 4 frequency bands using weight-averaged
representative frequencies. Then, we compute the cumulative sum of the power
spectra from f = 0.38 Hz to f = 1.61 Hz in each water depth using the shoaling
coefficients K% and K?. The cumulative power spectra in each water depth using
K2 are shown in Figure 2.15. The percent error in the cumulative sum of the
power spectrum, 100 x "= (K2 — K2)S(f)Af] Sr=N K2 S(f.)Af, is shown

in Figure 2.16 (Smith and Sprinks’ model) and igure 2.17 (Kubo et al.’s model).

For Smith and Sprinks’ model, the maximum 50 percent error in the
squared shoaling coefficient occurs in the second frequency band and the error
is always negative for frequencies lower than f and is always positive for frequen-
cies higher than f, so the percent error in cumulative sum of the power spectrum
almost cancels in each frequency band. The percent error in the total energy is
positive and below +1 percent in the all water depths, and the error in the total

energy is higher in shallower water depth.

For Kubo et al.’s model, the maximum —10 percent error occurs in the
third frequency band, and the error is negative in almost all water depths. The

percent error in the cumulative sum of the power spectrum becomes larger and



28

0. 0.5
water depth (m) 0 o frequency (Hz)

Figure 2.12: Squared shoaling coefficients K% for linear wave

the percent error in the total energy is negative and above —0.7 percent in all

water depths. The error in the total energy is highest in water depth of 18 em.
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Figure 2.14: Percent errors in squared shoaling coefficients K? for Kubo et al.’s

model
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Figure 2.15: Cumulative sum of power spectra in all water depths using K2
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Figure 2.16: Percent errors in cumulative sum of power spectra in all water
depths for Smith and Sprinks’ model
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E%i:fgf}ﬁg}m in all water depths

for cases with 2, 4, 6, and 8 frequency bands of equal width are shown in Fig-

The percent errors in total energy 100 x

ure 2.18, where the solid line represents Smith and Sprinks’ model using weight-
averaged frequencies, the dashed line represents Smith and Sprinks’ model using
centered frequencies, the dash-dotted line represents Kubo et al.’s model using
weight-averaged frequencies, and the dotted line represents Kubo et al.’s model
using centered frequencies. From Figure 2.18 we can find that the choice of the
representative frequencies for Kubo et al.’s model does not make a considerable dif-
ference in errors in total energy, while the choice of the representative frequencies
for Smith and Sprinks’ model does make a significant difference. If the frequency
bandwidth is large, for example the case with 2 bands, Kubo et al.’s model yields
more error in total energy than Smith and Sprinks’ model. But, as the frequency
bandwidth becomes smaller, Kubo et al.’s model yields less error in total energy
than Smith and Sprinks’ model. The difference in errors between Smith and
Sprinks’ model and Kubo et al.’s model becomes larger and then smaller as the

bandwidth becomes smaller.

We compare the two models in terms of wave kinematics. For irregular

waves, the particle velocity in @ direction can be described as

o Z a"ngkn cosh k”ﬂ-(z + h‘) ei(knﬂ:—wnt] (225)

w Wy cosh k, h

where n represents each frequency component. When the time-dependent mild-
slope equation is used in obtaining the particle velocity in  direction, we get the

following equation

U = Z an’gkn COSh kn’ (-_2: + h) ei(knx—wn ” (2-26)
n Wa cosh ke, h

where the representative wavenumber k, is used in considering the depth effects as

cosh kn(z4+h

~tbLh - Also, the wavenumber k,, in equation (2.26) is obtained from the model
> n
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model using centered frequencies, dash-dotted line: Kubo et al.’s
model using weight-averaged frequencies, dotted line: Kubo et al.’s
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dispersion relations (2.14) and (2.19), and so is different from the wavenumber k,
in equation (2.25). Therefore, there are differences between the particle velocities

u between equation (2.25) and (2.26).

We compare the particle velocities in terms of the variance of the particle
velocities. The squared the particle velocity |u|* can be be obtained by multiplying

u by the conjugate of u. The average of squared the particle velocity W, which
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is variance of u or energy of u, can be obtained as

Jul? =3

angky cosh ky(z + h)

Wh cosh k. h

}2 (2.27)
from equation (2.25). When the time-dependent mild-slope equation is used, the
variance of u can be obtained as

— angk, cosh k,(z + h
= 34 !

=l cosh k, h

}2 (2.28)
We can get the amplitude of water surface elevation from power spectrum as

an = \[2K2S(f,)Af (2.29)

We test the difference of the variance of the particle velocities for the case of
experiments done by Mase and Kirby (1992). We use the first type of experiment
which generates waves with plunging breakers. The measured power spectrum
of water surface elevations at hy = 47 em is shown in Figure 2.11. We exclude
the lower and upper 2 percent spectra from the whole spectrum, so the frequency
range is [ = 0.38 — 1.61 Hz. We subdivide the concerning spectrum into 2, 4, 6,
or 8 components with equal frequency bandwidth. We select the representative

frequencies by a weighted average or median.

First, the wave kinematics at the free surface z = 0 is analyzed. We
compute the amplitude of the particle velocities from equations (2.25) and (2.26)
and compute the percent error. Figure 2.19 shows the squared amplitude of the
particle velocities. Figures 2.20 and 2.21 show the percent errors in the squared
amplitude of the particle velocities for Smith and Sprinks’ model and Kubo et al.’s
model. Figure 2.22 shows the percent errors in the variance of particle velocities
over the whole range of water depths for 2, 4, 6, or 8 frequency bands with equal

bandwidth.



As the bandwidth becomes smaller, the percent errors in variance of particle
velocities become smaller. Smith and Sprinks’ model yields smaller errors when
using weight-averaged frequencies than when using centered frequencies except
with 8 frequency bands. The choice of representative frequencies does not make
a sufficient difference. Roughly, Kubo et al.’s model yields smaller errors than
Smith and Sprinks’ model. When Smith and Sprinks’ model uses 4 frequency
bands and weight-averaged frequencies, the maximum error in variance of u is —2
percent. When Kubo et al.’s model uses 4 frequency bands and weight-averaged

frequencies, the maximum error in variance of u is —1.8 percent.

Smith and Sprinks’ model yields negative errors in deeper water and posi-
tive errors in shallower water. In deeper water, the error in the shoaling coefficient
is almost zero, and the error in wavenumber is negative, so the error in variance
of u is negative. In shallower water the error in the shoaling coefficient is positive,
and the error in wavenumber is almost zero, so the error in variance of u is posi-
tive. On the contrary, Kubo et al.’s model yields positive errors in deeper water
and negative errors in shallower water. In deeper water, the error in shoaling
coefficient is almost zero, and the error in wavenumber is positive, so the error in
variance of u is positive. In shallower water, the error in shoaling coefficient is

negative, and the error in wavenumber is negative, so the error in variance of u is

negative.
Second, we analyze the wave kinematics at the bottom z = —h. The
percent errors in the variance of particle velocities at z = —h in all water depths

are shown in Figure 2.23. As the particle velocities are analyzed from water surface
z = 0 to bottom z = —h, the vertical effect cosh }'s( z + h)/ cosh kh is considered.
So the errors in variance of u at the bottom are different from those at the water

surface.
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For constant water depth, the two models can be compared against the
Schrodinger equation, which is an equation for modulation of wave amplitudes
accurate to O(Ak)? and serves a benchmark for other leading order envelope
equations. We analyze the problems in one dimension horizontally, i.e., @ direction
which is assumed to be the direction perpendicular to the wave crest. The velocity

potential ¢ in Smith and Sprinks’ equation (2.3) can be defined as
$(z,t) = AU ke—wt) = J(g 4)eil) Fdo-at) (2.30)
where A(x,t), which modulates in space and time, is the amplitude obtained by

extracting the harmonic terms with carrier wavenumber £ and frequency @ from

the velocity potential ¢. We have the following relations for the amplitude A:

A = A¢Ut-Rd—w-a)) (2.31)
%’f = —i(w—>)A (2.32)
f;—‘? = i(k—=Fk)A (2.33)
gi’;l = (k= k)*A (2.34)

The local angular frequency w(k) can be approximated by a few terms in the

Taylor series expansion to O(Ak)%:

e 2
w=o+o(k—k)+ @”w (2.35)

where the superscript prime means the derivative with respect to the wavenumber.
After multiplying equation (2.35) by A and rearranging, we have
(k — k)?

(w—@)A = Cg(k—!”é)ﬁ+@”~2—xi (2.36)

where @' is replaced by the group velocity C,. Then, the linear Schrodinger
equation for modulation of wave amplitudes A can be obtained using the relations

(2.31) — (2.34): B _ y
Q_A +C 6_/1 i—”azA
at O ‘Zw Oa?

=0 (2.37)
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This equation and the dispersion relation (2.35) will be used as a reference in
comparing the range of validity of the two mild-slope equations. Substitution
of equation (2.30) into Smith and Sprinks’ equation (2.3) gives the equation for

modulation of wave amplitudes A:

0A . 0A. A . 0%A |
— 280(—— T —I—Oya)+ TE -C j‘qda =0 (2.38)
or _
a/i 0A i C, d*A
y o ! = 2.39
(ya*r ‘2(.'0(C 2 )81'2 - 239
where we use the foliowing relation accurate to O(Ak):
A . 0A
== — i 2.4
o1 +Cy 9 0 (2.40)

The velocity potential r?) in Kubo et al.’s equation (2.7) can be defined as
q’)(l' f) — (L .{)f‘lwt Aez{fkd.t—[w—wjﬂ) . A(L t) f.f\.n':.l. (241)

Substitution of equation (2.41) into Kubo et al.’s equation (2.7) gives the equation

for modulation of wave amplitudes A:

oA PA 9 - PA - PA
¢ (U :_ J" ):I 2! 2
2o+ ‘fa Sy 08 ‘o7 TigglCC Gag; 2k =0 (242)
or
A _ OA . & 9?A
LW 29 (9¢ A2 2.4
=+ Gy —i{e" + 52(20, - O)} 55 =0 (2.43)

where we use the relation (2.40) and neglect the term smaller than O(Ak)?.

Figure 2.24 shows the coefficients of d 3 4 multiplied by k*/@ in equations

(2.37), (2.39), and (2.43). Smith and Sprinks’ model satisfies the Schrodinger

equation in very shallow water (kh ~ 0), and the error becomes larger at intermediate-

depth water with largest error at kh ~ 0.77 after which the error becomes smaller

in deep water and becomes constant in very deep water. Kubo et al.’s model
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satisfies the Schrodinger equation at a point of intermediate depth (kh =~ 0.37)
and, from the point, the error increases in both deeper water and shallower water
with a positive error in deeper water and a negative error in shallower water. The
maximum error occurs in very shallow water for Kubo et al.’s model. The coeffi-
cient of %2;’-}- for Smith and Sprinks’ model is closer to the coefficient for the linear
Schrédinger equation at kb < 0.27 than for Kubo et al.’s model. The coefficient
of ?T‘; for Kubo et al.’s model is closer to the coefficient for the linear Schrodinger

equation at kh > 0.27 than for Smith and Sprinks’ model.

Figure 2.25 shows the percent errors in k/k for the linear Schrodinger
equation, which can be compared with Figure 2.3 for Smith and Sprinks’ model
and Figure 2.4 for Kubo et al.’s model. These figures show that the percent errors
in k/k for the linear Schrodinger equation are much smaller than those for Smith
and Sprinks’ model (2.3) and Kubo et al.’s model (2.7). The dispersion relations
for the linear Schrodinger equation for deep water (kh = 27), intermediate-depth
water (kh = 0.37), and shallow water (kh = 0.057) are shown in Figures 2.5 - 2.7

by the solid line.
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2.2 Comparisons of Model Equations for Bichromatic Waves

We compare the two models analytically and numerically for wave trains

with slightly different wavelengths ky = k+ Ak and k- = k— Ak with Ak/k < 1
(Mei, 1989):

§ = Ap{eithra—wrt) 4 gilhoz-w-1)y (2.44)

where ki satisfies the following dispersion relation
w? = gky tanh kyh (2.45)

Approximating wy to O(Ak)?, we have

2
VS ) (st

so that we have the velocity potential
¢ = 240 cos{Ak(z — &J't]}e"{kx"(w’i’”i%l")t} + O(Ak)? (2.47)

Over the space and time scale O(Ak)™!, the envelope modulates and moves
at @'; however, over the time scale O(Ak)~%, the phase, in particular the fre-
quency, changes. This example suggests that there is a cascade of time scales
O(1),0(Ak)~*, O(Ak)™2,-++, and so on. Substitution of equation (2.47) into

Smith and Sprinks’ equation (2.3) yields

| €

ST TS £ 2 «
— &) — @@"} cos{Ak(z — @'t)}eF-@+ " M 4 o(AkY® =0
(2.48)

2 Ao(Ak)2{@'(

o

v

which becomes zero in very shallow water and non-zero otherwise. The term
w'(§ — ') —ww” in equation (2.48) can be seen in the difference of the coefficients

of %j—g between equations (2.37) and (2.39).

For the present case, the velocity potential q3 in Kubo et al.’s equation (2.7
1 P q

can be written as

% s o AT
b = dei® = 24, cos{ Ak(z — @'t)}eiFe-o" 50 | O(Ak)? (2.49)
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Substitution of equation (2.49) into Kubo et al.’s equation (2.7) yields

| €

2A0(Ak) @' (=—20")—w@"} c.os{Ak:(:ruca’t)}ei{’_‘f“z’*’@TkL‘}+O(Ak)3 =0 (2.50)

a

o

which becomes zero at kh o~ 0.37 and non-zero otherwise. The term &'(% —20') —
e . . . 2 a4 .
ww" can be seen in the difference of the coefficients of 24 between equations

(2.37) and (2.43).

We test the two models numerically. The difference of wavenumber is
specified as Ak/k=0.15. We use Radder and Dingemans’ equations (2.5) and
(2.6) instead of Smith and Sprinks’ equation (2.3).

In order to dissipate wave energy at downwave boundaries, we presently use
a wave damping layer at the downwave boundary. For Radder and Dingemans’
equation, the linear dynamic free surface boundary condition (2.6) is modified to

(Kirby et al., 1992)

d " .
= —m D, =G(d) (2.51)
where

0: T < Lsponge
Dy = L pm (2.52)

’ wﬁe__lla z 2 L sponge
T &£ — Tsponge 3 (253)

Lmaw — "\?-:spon-gfz

the sponge length zg,onge is specified as 2.5 times the wave length at the sponge
layer. Equation (2.51) can be combined with equation (2.5) to yield a modification

of Smith and Sprinks’ equation:
62(}; (Ij(fh) Sral 1 -2 T2 N\ e
S T, =V (C CyV¢) + (@* = k*CC,)dp =0 (2.54)

by using the following relation
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FFor monochromatic waves with the velocity potential ¢ = (,36‘“‘", we obtain the

following equation:

V- (CC,V$) + (k*CC,y 4 iwD,)d = 0 (2.56)
or
& . D, a
V- (CC, V) +KCC(1+i=2) =10 (2.57)

Kubo et al.’s equation (2.7) can include the damping terms as

v. (0(' Vo) + B2CC,(1 +ifp,)d

R ) 29 1
+i1V - (E}E(ccy) 5£)+ % (f’\ P(/g)(l +ifp,) = 5 =0 (2.58)
where
Dy
fn, === (2.59)
wn

Equation (2.58) with fp, in equation (2.59) can be compared to the model for

breaking waves (1.25) with the energy dissipation coefficient fp, in equation (1.24).

A fourth order Adams-Bashforth-Moulton predictor-corrector method is
used to discretize modified Radder and Dingemans’ equations (2.5) and (2.51) in
time. In order to discretize terms with spatial differentiation, we use the fourth

order discretization:

. i (—3ficr — 10fi + 18fiy1 — 6fiya + fiya), =2
[Fﬁ"— S = j_glA_x(fl'—z - Sfi—l o Sfi-H - fi+2)1 32‘3?41 : '1['311'2
12_{31( gf1+1 s lﬂft J-Sfi—'l - ﬁf-i-ll %+ ff—S)-.- 1=I1-1

'W}M—]z(llﬁq —20f; + 6fis1 +4fiva — fiys), 1=2
) . ’ e ; ; ;
[( f] = m("fi—z +16fi—1 — 30f; + 16 fiy1 — fiye), =34, --,1-3,1-2

Oa?
ﬁé;)‘i(llfiﬂ —20f; +6fica +4fi-z — fizs), =Ll
(2.60)
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In the Adams-Bashforth predictor step, we have
nn+1 — n it _{55]#11 59F71_1 s 37Fn—2 - an—-S}

gt = ¢+ a{50@”’ 596" + 31" —9G™ %) (2.61)

and in the Adams-Moulton corrector step, we have
n-1 i At v -l 1 At n—1 A —2
7 = 9"+ E{QF + 19F™ — 5F" 1 4 ™4}

- . AF

¢u+l = an il ﬂ{gGvH—l + L()Gm . SGm—.l + Gm-Z} (262)
where the superscript n denotes the time step. If the errors between predicted and
corrected values are small enough, we proceed to the next time step; otherwise, we

repeat correcting until we get small errors. The wavemaker boundary condition

for the modified Radder and Dingemans’ model is specified as
¢ — b1 = ulz (2.63)

where u(t) is particle velocity in 2 direction which needs to be specified. At the

downwave boundary a reflective boundary condition is used:

¢1— pr-1 =0
nr—ni—1 =0 (2.64)

A modified Kubo et al.’s equation (2.58) is discretized in time by means
of the Crank-Nicolson method which is second order in O(At)%.. The Crank-
Nicolson method is implicit, so is not restricted by the stability criteria. In order to

discretize terms with spatial differentiation, we use the second order discretization:

[ ] == ‘)A (ft-!-l flu) 3.=2,3,"',I-2,I-]_

D% f
5:1:"’-]

Bz )3(f1+1 2fi+ fis1), 1=2,8,++9,12,]1 (2.65)
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In order to discretize terms with time differentiation we use the second order

discretization:

é([(jﬁ{( €2y + OO, +ifp )"

A teleh )‘”’} +R2O0, (1 +if5,)0")

S}([adr j( 00028y + L0, 1+ it )i -
[ (CC )a‘b} + Lo +ip)i) =0 (2660

which gives a tridiagonal matrix with unknowns ¢*', ¢**' and ¢7}'. The un-

knowns, (,‘3""’1, are solved by the Thomas algorithm (Thomas, 1949). The wave-

maker boundary condition for the modified Kubo et al.’s model is specified as
by — 1 = ue™ Az (2.67)
where u(t) is particle velocity in 2 direction which needs to be specified. At the

downwave boundary a reflective boundary condition is used:

br—d1_1=0 (2.68)

First, we test the two models for deep water (kh = 2r). The water depth is
1 m, the wave height is 0.15 m, the carrier wave period (7') is 0.80046 s, the carrier
wavelength (L) is 1 m, and the total length of the computational domain is 20 m.
We use a time step (At) and grid size (Az) small enough to obtain convergent
solutions. It is determined that, for Radder and Dingemans’ model, At = 7'/100
s, Az = L/20 m, and, for Kubo et al.’s model, At = T'/10 s, Az = L/100 m.
Figure 2.26 shows the water surface elevations from ¢ = 507" to t = 557" with
a half wave period interval where the solid lines are exact solutions of equation
(2.44), the dashed lines are results from Radder and Dingemans’ equation and

the dash-dotted lines are results from Kubo et al.’s equation. Kubo ef al.’s model
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yields more accurate solutions than Radder and Dingemans’ model. Figure 2.27
shows the propagation of wave phase and wave groups for Radder and Dingemans’
model and Kubo et al.’s model. The wave phase propagation is plotted through
the zero-up crossings of water surface elevations from ¢ = 507 to ¢ = 557" and
the wave group propagation is plotted through the nodes of wave amplitudes from

t = 50T to t = 55T,

Second, we test the two models for intermediate-depth water (kh = 0.37).
The water depth is 1 m, the wave height is 0.15 m, the carrier wave period
(T') is 2.4085 s, the carrier wavelength (L) is 6.67 m, and the total length of the
computational domain is 150 m. It is determined that, for Radder and Dingemans’
model, At = T/80 s, Az = L/13.33 m, and, for Kubo et al.’s model, At = T/10 s,
Az = L]66.67 m. Figure 2.28 shows the water surface elevations from ¢ = 407" to
t = 45T with a half wave period interval where the solid lines are exact solutions of
equation (2.44), the dashed lines are results from Radder and Dingemans’ equation
and the dash-dotted lines are results from Kubo et al.’s equation. Kubo et al.’s
model yields more accurate solutions than Radder and Dingemans’ model. Figure
2.29 shows the propagation of the wave phase and groups from ¢t = 407" to t = 507"

for Radder and Dingemans’ model and Kubo et al.’s model.

Third, we test the two models for shallow water (kA = 0.057). The water
depth is 1 m, the wave height is 0.15 m, the carrier wave period (7') is 12.8258
s, the carrier wavelength (L) is 40 m, and the total length of the computational
domain is 800 m. It is determined that, for Radder and Dingemans’ model,
At = T/100 s, Az = L/16 m, and, for Kubo et al.’s model, At = T'/10 s,
Az = L/40 m. Figure 2.30 shows the water surface elevations from ¢ = 307" to
t = 35T with a half wave period interval where the solid lines are exact solutions of

equation (2.44), the dashed lines are results from Radder and Dingemans’ equation



and the dash-dotted lines are results from Kubo et al.’s equation. Radder and
Dingemans’ model yields more accurate solutions than Kubo et al.’s model. Figure
2.31 shows the propagation of the wave phase and wave groups from ¢t = 307" to

t = 407 for Radder and Dingemans’ model and Kubo et al.’s model.
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Figure 2.26: Water surface elevations for kh = 2w, Ak/k = 0.15 (solid line:
exact solution, dashed line: Radder and Dingemans’ model, dash-
dotted line: Kubo et al.’s model)
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Figure 2.28: Water surface elevations for kh = 0.37, Ak/k = 0.15 (solid line:

exact solution, dashed line: Radder and Dingemans’ model, dash-
dotted line: Kubo et al.’s model)
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Chapter 3

NEW TIME-DEPENDENT MILD-SLOPE
EQUATIONS

We found in Chapter 2 that neither of the two existing time-dependent
mild-slope equations satisfies the linear Schrodinger equation in all water depths,
from deep to shallow water. It is found that Smith and Sprinks’ model (2.3) is
more accurate in shallow water and satisfies the linear Schrodinger equation in
very shallow water (kh ~ 0) and Kubo et al.’s model (2.7) is more accurate in
intermediate-depth and deep water and satisfies the linear Schrodinger equation
at a point of intermediate-depth water (kh ~ 0.37). Here we suggest two new
time-dependent mild-slope equations both of which satisfy the linear Schrédinger
equation and both of which are more accurate than Smith and Sprinks’ and Kubo
et al.’s models (2.3) and (2.7) in all water depths. The new time-dependent
mild-slope equations are analyzed and compared with the two existing models
from a geometric optics point of view, which yields the dispersion relation and the
transport equation for wave energy. The new time-dependent mild-slope equations
are also analyzed in view of wave kinematics. The case of bichromatic waves is
tested analytically and numerically to see how well the second new time-dependent

mild-slope equation predicts the propagation of the wave phase and groups.



3.1 Derivation of New Time-Dependent Mild-Slope Equations

We found that neither Smith and Sprinks’ model (2.3) nor Kubo et al.’s
model (2.7) satisfies the linear Schrédinger equation in all water depths. We
modify the two models by adding correcting terms in order to derive models
which satisfy the linear Schrodinger equation. The new time-dependent mild-

slope equations are valid one-dimensionally in the horizontal direction.

First, we suggest the following time-dependent mild-slope equation using
Smith and Sprinks’ equation (2.3):
2 0, -~ O¢

. = 9 ¢
W_ﬁ( 0)+( —KCC)p+ a1+ az— + ag—

=0 3.1
ot at? (3-1)
where the coefficients, oy, ap and ag, will be chosen to make equation (3.1) sat-
isfy the linear Schrodinger equation (2.37). Substitution of equation (2.30) into

equation (3.1) yields the equation for modulation of wave amplitudes A:

oA 0A , it &
—2iw(— 5 + Gy 5 ) + (01 — i@ — aa@?)A
dA A . - 9*A .
+(a2 — 2tsw) —— 5 + (1 + a3) 7 57 CCy = 0 (3.2)

or

A _ OA 1 .

Fy + Cy—— % + 1T(al — tw — aaw?) A
2 3 DA 1 d*A
+1§5(CE2 ho:aw]-)? +1 w(agCJ +C, — C)Cuﬁ =) (3.3)

where we use equation (2.40). If equation (3.3) is matched to the linear Schrodinger

equation (2.37), we can find the coefficients as

@y = —(.1’3@2 (34)

g = 23.(‘63(1? (35]
1 - )

s = =={—wa"+Cy(C - Cy)} (3.6)

C?
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So, we get a new time-dependent mild-slope equation

32‘;{’ d Vel 6‘35 2 2 1 i
312_8((( 9)"'( _kcqub
Pé . 0, ;
+03(8t2 + 24 5 @ 24) =0 (3.7)

In very shallow water (kh =~ 0), a3 becomes zero, and the suggested equation (3.7)
is the same as Smith and Sprinks’ equa,tion (2.3). The value of ag can be seen in
the difference of the coefficients of 22 between equations (2.37) and (2.39), and

also in the coefficient of equation (2.48) for bichromatic waves.

Second, we suggest the following time-dependent mild-slope equation using

Kubo et al.’s equation (2.7):

Sral 8'?5 2 ] 1 ()2{;
a](ccgarwk?(cgq&ﬂa {—5—(( d df}
WL @OC) 2 4 bt 1L + 8 0 (3.3)

where the coeflicients, By, f2, and f3, are chosen to make equation (3.8) satisfy the
linear Schrodinger equation (2.37). Substitution of equation (2.41) into equation

(3.8) yields the equation for modulation of wave amplitudes A:

DA o A J A o oA
21w(—+( e )+CC¢82+ B —(CC,)( zat-l—.?zi..a 8t)
E)A 9?A
+hA+ ﬁ.: + by = 52 = 0 (3.9)
or

A . 0A vy C ) C2. 0%A
a-l—(»g%—t{w (ZC C)-!-fj?) )

! dA :

where we use equation (2.40) and neglect the term smaller than O(Ak)*. If
equation (3.10) is matched to the linear Schrédinger equation (2.37), we can find

the coefficients as

B = 0 (3.11)
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fs = az—1
1 = o _
= F,E{—a:a;” + Cy(C —2C,)} (3.13)
g
So, we get another new time-dependent mild-slope equation
& .. 0 , o 0, ... 0%
7 —(CC, "5 —) + k? CC¢5—I—3() {d (Cc)daat}
& epn s O 9% .
-l-raw(k CC )df + 902 =0 (3.14)

The value of f3 is equal to az — 1. The value of 3 is —1 in very shallow water
(kh =~ 0), and increases as depth increases, until it becomes 1.2 at a point of
intermediate-depth water (kh ~ 0.77), and decreases to 1 in deep water (kh > 2r)
asymptotically. At a point of intermediate depth (kh =~ 0.37), B3 becomes zero
and so the suggested equation (3.14) happens to be the same as Kubo et al.’s

equation (2.7) (see Figure 3.1). The value of B3 can be seen in the difference

r‘JA

of the coefficients of between equations (2.37) and (2.43), and also in the

coefficient of equation (2.50) for bichromatic waves.

For the first suggested equation (3.7), the geometric optics approximation

is constructed by substituting the ansatz
$(z,1) = A(z, t)e'lf kdz—wt) (3.15)

into equation (3.7), which yields
i : . : S 8 =~ 0A
—(w—@){(1 + as)w — (1 — az)@}A + (k* = k*)CC, A—a((“("'u(,)—I

+i;'IV(A2kC_ng) =0 (3.16)

Separation of real and imaginary parts of the resulting equation leads to an eikonal

equation for the phase function

(w—w{(l+az)w— (1l —az)} 5, 1 (CC 58
= =K (3.17)
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and a transport equation for wave energy
a 2 Slal 21
()_Q(A kCC,) =0 (3.18)
The last term in equation (3.17) is the weak diffraction, which is small in the
second order. Neglecting terms that are second order in equation (3.17) leads to
the following dispersion relation
; 1M1+ a3)2+1— a:
- \/l . (w ){( + _S)w 3]

n

=~

(3.19)

==

For the second suggested equation (3.14), the geometric optics approxima-

tion is constructed by substituting the ansatz

b, 1) = e = A(z, t)e"[fkd"'_(“’_w}” (3.20)
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into equation (3.14), which yields

b saume § &
—Ba(w —@)?A + (w — w) dw(kz 1Cy) — kza—w (CCy) 1A
2 _ LW\ i 9,90
= At )(_,(,y,H?( Uy )+ )aq: dw( )d }
?——[Azk{(“C‘ + (w — @) 9 (CC,) =0 (3.21)

Ow
Separation of the real and imaginary parts of the resulting equation leads to an
eikonal equation for the phase function

ﬁ'}(&) w)2 w—w 6

3 o
21 . By S A ) i

) 1.2 (( ngﬁ) —_ TDI{%(CCFQ)% a9 0¢
— b2 _ |2 _ Bzl _ (yy — A 3.22
&= 7o R sTo (3:22)
and a transport equation for wave energy
' S 0 = ,
JL-[A k{CCy + (w — w)%(ccg)}] =0 (3.23)

The last two terms in equation (3.22) are the weak diffraction with an additional
correcting term obtained by the Taylor series expansion. Neglecting terms that
are second order in equation (3.22) leads to the following dispersion relation

[ E-DiE-AE-1)
E:_\J1+?i.+(§— _“a(c‘(”)

o

(3.24)

These dispersion relations (3.19) and (3.24) can be compared against the
exact dispersion relation for linear waves (2.20). The percent errors in k/k for
equations (3.19) and (3.24) are shown in Figures 3.2 and 3.3, respectively. Figures
3.4 - 3.6 show the following dispersion relations: for the exact solution, (2.20), for
the linear Schrodinger equation, (2.35), for the first suggested equation, (3.19), and
for the second suggested equation, (3.24), at deep water (kh = 27), intermediate-
depth water (kh = 0.37), and shallow water (kh = 0.057), respectively. Figures

3.2, 3.4 - 3.6 can be compared to Figures 2.3, 2.5 - 2.7. The dispersion relations
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from the new model (3.7) are improved from those of Smith and Sprinks’ model
(2.3) in all water depths, particularly in deep water. Figures 3.3, 3.4 - 3.6 can
be compared to Figures 2.4, 2.5 - 2.7. The dispersion relations from the new
model (3.14) are improved from those of Kubo et al.’s model (2.7) in all water
depths except in deep water with frequencies lower than w. From Figures 2.25,
3.2 - 3.6, we see that the dispersion relations from both new models are not so
improved as those from the linear Schrodinger equation. The dispersion relations
from equation (3.7) are more accurate than those from equation (3.14) in deep
water, and the dispersion relations from equation (3.7) are less accurate than
those from equation (3.14) in intermediate-depth and shallow water; while the
dispersion relations from Smith and Sprinks’ model (2.3) are more accurate than
those from Kubo et al.’s model (2.7) in shallow water and the dispersion relations
from Smith and Sprinks” model (2.3) are less accurate than those from Kubo et

al.’s model (2.7) in intermediate-depth and shallow water.
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Figure 3.4: Dispersion relations for kh = 27 (dotted line: 2 percent confidence
interval of exact solution, solid line: linear Schrodinger equation,
dashed line: new model (3.7), dash-dotted line: new model (3.14))

The shoaling coefficients are not improved from the original equations be-
cause corrections are introduced in the time derivatives. Equation (3.18) is equal
to (2.13) and equation (3.23) is equal to (2.18) one-dimensionally in the horizonal

direction.

We analyze the new time-dependent mild-slope equations, (3.7) and (3.14),
in terms of wave kinematics. For irregular waves, the particle velocity in the the
@ direction can be described by equation (2.25). When the time-dependent mild-
slope equation is used in obtaining the particle velocity in the z direction, we get

the particle velocity in the z direction by equation (2.26).
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Figure 3.5: Dispersion relations for kh = 0.37 (dotted line: 2 percent confidence
interval of exact solution, solid line: linear Schrodinger equation,
dashed line: new model (3.7), dash-dotted line: new model (3.14))

We test the difference of the variance of the particle velocities for the case
of experiments done by Mase and Kirby (1992). We use case 1 of the experiment
where the breaking waves are of the plunging breaker type. We exclude the
lower and upper 2 percent frequency spectra from the whole spectrum, so the
frequency range is f = 0.38 — 1.61 Hz. We subdivide the spectrum in 2, 4, 6,
or 8 components with equal frequency bandwidths. We select the representative
frequencies by a median or weighted average. For the weighted average case,
we compute the representative frequencies by averaging the frequencies with the

weight of the power spectrum.
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Figure 3.6: Dispersion relations for kh = 0.057 (dotted line: 2 percent confi-
dence interval of exact solution, solid line: linear Schrodinger equa-
tion, dashed line: new model (3.7), dash-dotted line: new model

(3.14))

We compute the variance of the particle velocities from equation (2.27)
and (2.28) and then compute the percent error. Figure 2.19 shows the squared
amplitude of the particle velocities. Figures 3.7 and 3.8 show the percent error
of the squared amplitude of the particle velocities at z = 0 for the new model
equations (3.14) and (3.7). Figure 3.9 shows the percent errors of the variance of
particle velocities at z = 0 in all water depths for 2, 4, 6, or 8 frequency bands

with equal bandwidths.

Figure 3.9 can be compared to Figure 2.22. The range of the percent
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errors in variance of the particle velocities from the new models (3.7) and (3.14)
are smaller than those from the original models (2.3) and (2.7) for all frequency
bands, but the percent errors from the new models are not smaller than those
from the original models in all water depths. The percent errors in variance of
the particle velocities from equation (3.14) are smaller than those from equation
(3.7) except when using 2 frequency bands. The percent errors in variance of the
particle velocities at z = —h in all water depths are shown in Figure 3.10. The
comparison of Figures 3.10 and 2.23 shows that the errors from the new models

are not smaller than those from the original models.

Overall, the second suggested equation (3.14) is more accurate than the
first suggested equation (3.7). In the following section, we analyze the second

suggested equation (3.14) in more detail with a numerical simulation.
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3.2 Finite Difference Methods

We discretize equation (3.14), centered in time and in space, as

1 Sral ala in in Vs ala in in
2ADw)? (((CCgJJ‘ + ((JCH)HI](QSJ'H - ‘353) — ((CCy);i + (C’Cy).ivl)(qéj - ¢j—l))
+(K*CC,);d;
b (D(0C,); + o (CO) (B — 1) — (Bid — 1)
4(Az)?Al Ow g Colir) (83 — ¢, i

1 U v 0 Wil Andl n-1_ gn-t
i i A OO0 + g (CON @™ = 9 — (B~ 412h)

10 Ay fAntl -l n 9 4n in—1y _
+e ﬁd—w( F g);(¢j+ ¢;7) + /33?(At)g(¢ i — 247 + ¢} )=0

where the subscript j and the superscript n represents space and time indices.

We analyze the discretized equation (3.25) by the von Neumann method.
The von Neumann analysis is the most commonly used method of determining
stability criteria, and can be used to establish necessary and sufficient conditions
for the stability of linear initial value problems with constant coeflicients (Iletcher,
1988). In the von Neumann method, the errors distributed along grid lines at one
time level are expanded as a finite Fourier series. Then, the stability or instability
of the computational algorithm is determined by considering whether separate
Fourier components of the error distribution decay or amplify in progressing to
the next time level. A solution of equation (3.25) with g?)’?‘ replaced by errors {7 is

sought in a separation-of-variables form as

£ = (G)e?” (3.26)

1

where the time dependence of this Fourier component of the error is contained

in the complex coefficient (G')*, and the superscript n implies (¢ is raised to the
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power n. Substitution of equation (3.26) into equation (3.25) with qb“ replaced by
errors £ produces the following equation

G*liAt{— '1 / C’C’ ) sin - Q + (Az)? ;

+2G‘[(A£) {—4CC, sin’ g+ (A2)*k*CC,} — 2(Ax)* B
—iAt{—éi-a%(@C'g)sinzg-l-(A.B) ad( KCCy)} +2(Az)’ B =0 (3.27)

where all the variables C'C,, k*C'C,, %(C'C:'g), 2.(CC,), and B5 are at spatial point

(K2CCy)} + 2(Az)* Bs]

jAz, and the subscript j is dropped for brevity. When the following condition is

satisfied

[(At)*{~4CC, sin? 9 + (A2)2R2CC, )

d

—[At{ 4—(C'C ) sin? - 2 + (Az)? e (X*CC,)}?

0w
(A

—2[(At)*{—-4CC, sin? g-l— (Az)?k*CC,Y[2(Az)?Bs) < (3.28)

the absolute value of (¢ is 1, that is, the solution is neutrally stable; otherwise, the
solution is unstable. So, the discretized equation (3.25) is conditionally stable and
the stability depends not only on parameters C'Cy, k*C'Cy, 2=(CC,), £(CCy),

Bw

and f#3 but also on the grid size Az and the time step At.

In order to dissipate wave energy at downwave boundaries, we presently
use a wave damping layer at the downwave boundary as discussed in relation to
equation (2.51). Using the von Neumann stability analysis for equation (3.25) with
damping terms, we found a different type of the new time-dependent mild-slope
equation. For 3 > 0 (kh > 0.37), the new time-dependent mild-slope equation

(3.14) can include the damping terms as:

Ta_qs 12010 0,0 ~~,0'
2 (CCIY) + BOC(1 +i2)p + in-(-(CC,) 20)
' ) 9*¢
A (OG0 + );‘f +Bs(1L iz S =0 (3.29)
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For 33 < 0 (kh < 0.37), the new time-dependent mild-slope equation (3.14) can

include the damping terms as:

9 5099, | wap 8.8 50 9%
()1( ))+(z o, +er]¢+? ()
N AL ,
_ ‘2?; —_ = [
—H(aw(f.. CC,) +iD, )(915 + oz =0 (3.30)

3.3 Test of a New Model for Bichromatic Waves

We analyze the new equation (3.14) for the case of bichromatic waves
described by equation (2.44). Substitution of the velocity potential cf: for Kubo
et al.’s equation (2.49) into the new equation (3.14) proves that the new time-

dependent mild-slope equation (3.14) is accurate to O(Ak)?.

First, we test the new model for deep water (kh = 27). The water depth is
1 m, the wave height is 0.15 m, the carrier wave period (7') is 0.80046 s, the carrier
wavelength (L) is 1 m, and the total length of the computational domain is 20 m.
We use equation (3.29) to absorb the incident wave energy. We determine that the
time step (At) and grid size (Axz) are small enough to obtain convergent solutions.
It is determined that At = 7'/40 s and Az = L/200 m. Figure 3.11 shows the
water surface elevations from ¢ = 507" to t = 55T with a half wave period interval.
The solid lines are exact solutions of equation (2.44), dashed lines are results from
the new equation (3.14), and the dash-dotted lines are results from Kubo et al.’s
equation (2.7). The new model (3.14) yields more accurate solutions than Kubo
et al.’s model (2.7). Figure 3.12 shows the propagation of the wave phase and

wave groups for the new model (3.14) from ¢ = 507 to ¢ = 557T".

Second, we test the two models for intermediate-depth water (kh = 0.37).
The water depth is 1 m, the wave height is 0.15 m, the carrier wave period (7')

is 2.4085 s, the carrier wavelength (L) is 6.67 m, and the total length of the
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Figure 3.11: Water surface elevations for kh = 2r, Ak/k = 0.15 (solid line:
exact solution, dashed line: new model (3.14), dash-dotted line:
Kubo et al.’s model)

computational domain is 150 m. We use equation (3.30) to absorb the incident
wave energy. It is determined that At = T'/80 s and Az = L/66.67 m. Figure
3.13 shows the water surface elevations from ¢ = 407" to ¢ = 45T with a half wave
period. The solid lines are exact solutions of equation (2.44), dashed lines are
results from the new equation (3.14), and the dash-dotted lines are results from
Kubo et al.’s equation (2.7). Both the new model and Kubo et al.’s model yield
very accurate solutions. I'igure 3.14 shows the propagation of the wave phase and

wave groups for the new model (3.14) from ¢ = 407" to ¢t = 507
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Figure 3.12: Propagation of wave phase and wave groups for kh = 27, Ak/k =
0.15, new model (3.14) (dashed line: wave phase, dash-dotted line:
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Third, we test the two models for shallow water (kh = 0.057). The water

depth is 1 m, the wave height is 0.15 m, the carrier wave period (7') is 12.8258

s, the carrier wavelength (L) is 40 m, and the total length of the computational

domain is 800 m. We use equation (3.30) to absorb the incident wave energy.

It is determined that At = T/100 s and Az = L/80 m. Figure 3.15 shows

the water surface elevations from ¢ = 307 to ¢ = 35T with a half wave period

interval. The solid lines are exact solutions of equation (2.44), dashed lines are
results from the new equation (3.14), and the dash-dotted lines are results from

Radder and Dingemans’ equations (2.5) and (2.6). Both the new model and

Radder and Dingemans’ model yield very accurate solutions. Figure 3.16 shows

the propagation of the wave phase and wave groups for the new equation (3.14)

from ¢t = 307" to { = 407",
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Figure 3.13: Water surface elevations for kh = 0.3, Ak/k = 0.15 (solid line:
exact solution, dashed line: new model (3.14), dash-dotted line:
Kubo et al.’s model)
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Chapter 4

TIME-DEPENDENT MILD-SLOPE EQUATIONS FOR
BREAKING WAVES

The time-dependent mild-slope equation is applicable from deep to shallow
water. To extend the model into the surf zone, we need to include a model for

breaking waves in the time-dependent mild-slope equation.

The energy dissipation rate with the breaking criterion given by equations
(1.24) and (1.23), respectively, was used in Kubo et al.’s time-dependent mild-

slope equation (1.14), resulting in

V(CC,V$)+k*CC,(1+ifp,)p+iV- (di((*(' V5 ¢ —(A 06.) 1+?:f,gb)% =0

(4.1)
Equations (1.24) and (1.23) were derived semi-empirically from a uniformly sloping
bottom, but were applied to a non-uniformly sloping bottom, assuming that the

bottom at each point is locally uniform.

Dally et al. (1985) found, from Horikawa and Kuo’s (1966) experimental
data, that the wave height of the breaking wave attenuates until it reaches a stable
wave height, which lies between 0.35 and 0.40 times the water depth. We use the
idea of wave recovery in our model, in order to model the effects of wave breaking

in waves propagating over bars or other isolated bathymetric features.

31
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In the following section, we develop a time-dependent mild-slope equation
model for breaking waves by constructing a model for the head loss based on a
bore analogy, and including it in the time-dependent mild-slope equations. The
breaking model would be applicable for a non-uniform bottom slope and would
show the propagation of the breaking waves with a decay in wave height until
stable condition is reached. We suggest a smoothing method in order to get
stable model results. Without smoothing, we would get sufficient reflection due
to the sudden increase of dissipation rates at the breaking point and also we would
get numerical discontinuities in the solution due to the rise and decay of energy

dissipation rates from wave breaking and shoaling, respectively.

4.1 Derivation of a Model for Breaking Waves

In a hydraulic jump, the head loss can be estimated from continuity, mo-
mentum, and energy equations for points on the water surface in a steady state:

[hg et h] )3

4.2
4.11] 3'1.2 ( )

hy =

where hy and hy are water depths before and after the hydraulic jump, respec-
tively. Considering the geometry of a hydraulic jump, we write the upstream and
downstream water depths hy and hy as hy =~ (h — |n|) and hy =~ (h + |7|) where A
is the still water depth and |5| is the wave amplitude (see Figure 4.1). The head
loss caused by wave breaking can be estimated as

Ak = =Dy _ ()2
T [ ) iy “8)

If the head loss caused by wave breaking is included in the linear dynamic free

surface boundary condition (2.6), we obtain the following equation

d ~
X - Did (1.4)
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where the energy dissipation rate D, is related to the head loss by

f laly2
Dy = 2 _ 95 ’*J)ﬂ (4.5)
9] b (S0 )
where we use the relation
T w

and where v is a calibration factor of order one. The energy dissipation rate is
proportional to the carrier wave frequency and is also approximately proportional

to the square of wave height to water depth ratio.

(2 5 E

Figure 4.1: Geometric similarity between a hydraulic jump and a broken wave

So, equations (2.5) and (4.4) are a modified Radder and Dingemans’ model
for breaking waves. Similar to the damping coefficient D, in sponge layer, the

dissipation rate D, for breaking waves can be included in other time-dependent
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mild-slope equations. Smith and Sprinks’ model can be modified by combining

equations (2.5) and (4.4), yielding the following equation:
2 o e ~ —y = =
d—f + Db% —V . (CC,V)+ (&* —k*CCy)p=10 (4.7)

where we use the relation

on l(dzq.‘:

9% 8
Frin 2o + Dy—) (4.8)

ot

For monochromatic waves, we get a modified Berkhoff’s model:

V- (CC,V$) + (K*CC, + iwDy)d = 0 (4.9)
or
¥ (OO, V84 oL, (1+?%)¢: 0 (4.10)

Kubo et al.’s equation (2.7) can include the energy dissipation rate as
q &y

V- (CC,) + BOC, (1 +i20))
%f) + ;——(A, CCH(1+ z’D—f’)% =0 (4:11)

. ' g
o (%(CC{") Ow wn’ ot

The new time-dependent mild-slope equation (3.14) can include the energy dissi-

pation rate as

. 0 %
('3:1( )—I— (*0E, +zwDb)q5+?—(d—(FC )m)
9 5 32923

+i(a—w(kzéé ) +iDy) 7 + (P + =0 (4.12)

4ot

In Appendix A, we develop parabolic approximations of mild-slope equations for

both monochromatic and random waves.

McCowan (1894) suggested the breaking criterion for a solitary wave in
shallow water as

H
() =0.78 (4.13)
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and Miche (1944) suggested the breaking criterion for progressive waves in any

depth of water as

(H/L)y = 0.142 tanh(kh) (4.14)

which vields the limiting value as (H/h)y =~ 0.88 in shallow water. Battjes and

Janssen (1978) suggested a modified version of equation (4.14) as
Hy = 0.88k™" tanh(6kh/0.88) (4.15)

where they use the linear dispersion relation for wavenumber k, and ¢ is a slightly
adjustable coefficient in order to allow the effects of beach slope and to include the
transformation of random waves. Weggel (1972) suggested an empirical breaking

criterion as

H H,
(500 = bls) — als) (4.16)
where a(s) and b(s) are functions of the beach slope s given by
a(s) = 1.36(1 —e™'%)  (sec?/ ft) (4.17)
. 0.64(1 + e79%) (4.18)
b(s)

We specify the breaking criterion in terms of the wave height to water depth
ratio, (H/h),. We do not fix the values of (H/h), for different wave conditions
but adjust the values to fit the experimental data. If there are no experimental
data, we can use the breaking criteria suggested either by Battjes and Janssen

(equation (4.15)) or by Weggel (equation (4.16)).

The recovery criterion is determined in terms of wave height to water depth
ratio, (H/h),, which was found to be 0.35 to 0.4 in the experimental data from
Horikawa and Kuo (1965). We adjust the values of the recovery criterion to fit
the experimental data. If there are no experimental data, we fix the value of the

recovery criterion as 0.35.
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The energy dissipation rate depends on whether the wave is locally breaking
or non-breaking. Even if the wave height to water depth ratio is locally below the
breaking criterion, wave breaking still continues if the wave is already broken and
the wave height to water depth ratio is above the recovery criterion. The breaking

waves can be traced by finding the phase velocities in @ and y directions as

. @
Co = k cos 0
@
To= = 4.19
Gy ksin @ ( )

The wave propagation direction can be found by the angle @ counterclockwise

from the x axis which is given by

+ arctan(
8 = (4.20)

ar
—arctan(4L); propagating in negative x direction
ax

); propagating in positive z direction

2lgjele

Is

At time t = nAt, the breaking wave located at (x,y) = (¢Az,jAy) propagates

with wave speed @/k and the wave direction 0, so at the next time ¢t = (n + 1)At

the wave would be located at (z,y) = (1A + 25AL, jAy + 5 At).

For random breaking waves, we separate the whole frequency spectrum info
several components with narrow bandwidths. At each time, we compute the water
surface elevations of each component. We add all the water surface elevations of
each component to get the total wave height. If it is found that the wave height
to water depth ratio is above the breaking criterion at some point, we assume
that wave breaking occurs at that point, and the energy dissipation rates D are
computed by using the peak frequency w,. The propagation directions and the
velocities of the breaking waves are computed at each frequency component to
trace the breaking waves. If the wave height to water depth ratio drops below
the recovery criterion, the wave breaking stops and no energy dissipation would

occur.
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4.2 Smoothing Energy Dissipation Rate

The sudden increase of the energy dissipation rate at the breaking point
causes considerable reflections outside the surf zone. There are numerical disconti-
nuities in the solution because of two opposing factors: the decrease of the energy
dissipation rate due to wave breaking and the increase of the energy dissipation
rate due to shoaling. As depth decreases, the wave height increases, and the wave
height to water depth ratio increases by the shoaling effect. Therefore, the energy
dissipation rate defined by equation (4.5) increases as depth decreases. So, we
need to smooth the energy dissipation rate by averaging several adjacent point

values with different weights to get a stable solution.

We use a smoothing method of 3-point averaging (Shapiro, 1970). Let
7 = Z(z), —00 < & < 00, and Z; = Z(x;) for discrete values of z; = iAx where 7

is an integer. We define a simple smoothing element:

; _ ) S . , :
Z,‘ — (J. — S)Z{ -|' S(Zi—l + Zi+]_)/2 = Z,; —|— E(Z§_1 + Zi+1 - ZZS) (4.2[)
where S is a smoothing element. It is found that the response function, the ratio

of the smoothed to unsmoothed amplitude, is
R(k) = 1 — 28 sin® kAx/2 (4.22)

With S = 1/2, the waves of length L = 2Az are completely eliminated, and all
features longer than 2Az are damped except {nﬁnitely long features. Successive
application of n smoothing operators of the form of equation (4.21), with smooth-
ing elements S = 1/2, results in a ratio of smoothed amplitude to unsmoothed
amplitude given by

R(k)" = (1 — 28 sin® kAz/2)" (4.23)

We test the smoothing method, equation (4.23), for a case with a delta

function with a magnitude of one. The results before and after smoothing with n
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— 5,10, and 15 are shown in Figure 4.2 (a), from which we find that the original
delta function decreases and spreads out with area being conserved as the value
of n increases. The response functions, the spectral densities, are shown in Figure
4.2 (b) from which we find that more damping happens and that the damping

extends toward waves of lower frequencies as the value of n increases.
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We test the smoothing for a case with supporting experimental data. Horikawa
and Kuo (1965) conducted experiments for breaking waves shoaling over a | /65
sloping bottom. Here we test for a case with a wave period of 1.6 s, and wave
height to water depth ratio in deep water 0.065. The modified Radder and Dinge-
mans’ model (2.5) and (5.12) are used to get solutions. Equation (5.12) is a
modified equation to include the energy dissipation rates caused by wave break-
ing and at sponge layer. The grid size is Az = 0.2 m and time step is At = 0.02
s which give a convergent solution. Breaking criterion is (H/h), = 0.78 and the
factor of wave breaking is v = 0.4. Figure 4.3 shows the wave heights at 1 = 607"
after smoothing with different values of n = 0,5,10, and 15. This shows that
once smoothing is done, the effect of the wave height decay does not change and
that a larger number of successive smoothings are required to get stable solutions.
We select the number of succesive smoothings n = 15 to smooth the dissipation
rate for the one-dimensional case of wave breaking. The number of successive
smoothings n = 15 uses 31 point values for smoothing a value. The weights of

the point values w for n = 15 when applied at point ¢ are given as

w; = 0.144464
wig1 = 0.135435

w;yz = 0.111535

wizs = 8.05531 x 1072
wirg = 5.08756 x 1072
wigs = 2.79816 x 1072
wire = 1.33246 x 1072
wirr = 5.45096 x 107°
wigs = 1.89599 x 1073

Wige = H.52996 x 10~*
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wigro = 1.32719 x 107
wiznn = 2.55229 x 107°
wit1a = 3.78117 % 107%
wigrs = 4.05125 x 1077
Wipra = 2.79397 x 1078

wizys = 9.31323 x 1071° (4.24)
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Figure 4.3: Wave heights with different numbers of successive applications n =
0,5,10, and 15 (o: measured data, solid line: computed results,
dashed line: results from shoaling coefficient)
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The smoothing, equation (4.21), can be applied in two dimensions as

Zij " = (Ziy)
5’ 7 r
= Zij+ Z(Zi—'l.j + Ziyr; + Zij1 + Zij —42;5)
'92 r r ¢
+ (Zicvin + Zivji + Zivrjor + Zicnjo1 — 4Z;;) (4.25)

The ratio of the smoothed to unsmoothed amplitudes R(k,h) corresponding to

the 9-point operator, equation (4.25), is
R(k,h) = (1 — 28 sin* kAz/2)(1 — 25 sin® hAy /2) (4.26)

Since each of the two smoothers on the right of equation (4.26) is of the same form
as equation (4.21), all the development applicable to one-dimensional smoothing
is independently applicable to each of the smoothing operators in equation (4.26).
Successive application of n smoothing operators of the form of equation (4.26)
with smoothing elements S = 1/2 results in a ratio of smoothed amplitude to

unsmoothed amplitude given by

R(k,h)" = {(1 — 25 sin® kAz/2)(1 — 25 sin® hAy/2)}" (4.27)

We test the smoothing method, equation (4.27), for a case with a delta
function with a magnitude of one. The results after smoothing with n = 0,1,2,
and 3 are shown in Figure 4.4, from which we find that the original delta function
decreases and spreads out with equal area as n increases. The response functions
for results along a straight line passing through the center point are shown in
Figure 4.5, from which we find that as n increases more damping happens and the
damping extends toward waves of lower frequencies. It is found that the damping
effect for two-dimensional smoothing is much higher than for one-dimensional
smoothing. We select the number of successive smoothings, n = 2, for smoothing

the dissipation rate for two-dimensional breaking waves. The case with n = 2 uses
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25 point values to smooth a value. The response at the point of two-dimensional
smoothing is 0.140, which can be compared to the reponse at the point of one-
dimensional smoothing which is 0.144. In Figure 4.5, the response function drops
at Az/L = 0 because the considered point values are only along a straight line
passing the point of smoothing; other point values are not considered, so the total
area decreases. The weights of the point values w for n = 2 when applied at point

(i,7) are given as

wi; = 0.140625
wigr; = 0.937500 x 107
wi g = 0.937500 x 107

Wiz ;41 = 0.625000 x 107"
Wit = 0.234375 x 1071
wijer = 0.234375 x 107!

wig1 42 = 0.156250 x 107!

Witz je1 = 0.156250 x 107!

Wito 42 = 0.390625 x 107* (4.28)
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Chapter 5

APPLICATIONS TO SEVERAL CASES

We use the Radder and Dingemans’ model to verify the wide applicability
of the time-dependent mild-slope equations from deep to shallow water, for one-
dimensional and two-dimensional, monochromatic and random, non-breaking and
breaking waves. In section 1, we specify boundary conditions and mention the
dicretization method to be used for applications in section 2 and section 3. In sec-
tion 2, we use the Radder and Dingemans’ model applied to non-breaking waves
for Berkhoff et al.’s shoal experiment (two-dimensional monochromatic waves)
and Vincent and Briggs’ shoal experiment (two-dimensional monochromatic and
random waves). In section 3, we use a modified Radder and Dingemans’ model
applied to breaking waves for the Horikawa and Kuo’s horizontal and sloping bot-
tom experiment (one-dimensional monochromatic waves), the Mase and Kirby’s
sloping beach experiment (one-dimensional random waves), and the Vincent and

Briggs’ shoal experiment (two-dimensional monochromatic and random waves).

5.1 Specification of Boundary Conditions and Discretization

At the wavemaker boundary x = 0 and the free surface z = 0, we specify
the particle velocities u in the 2 direction. The specified particle velocities are
complex valued to compute the wave heights easily by taking the absolute value

of the complex valued water surface elevations 7.

96
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For random wave trains, if we know the Fourier transform of the original
real valued signal ((t), then we may construct the Fourier transform of the causal
signal 7(t). A causal function is a complex function which is entirely known if its
real or imaginary parts are known. The spectral densities of complex valued 7

can be computed by the spectral densities of real valued ¢ and are given by

QFC; w>0
Fo=_ Fy w=0 (5.1)
0; w <0

Mase and Kirby (1992) conducted experiments for one-dimensional ran-
dom waves of Pierson-Moskowitz spectrum shoaling over a 1/20 sloping beach.
We generate complex valued particle velocities u for case 1, which yields plunging
breakers in the surf zone, by subdividing the whole spectrum into 6 frequency com-
ponents with equal bandwidths and inverse Fourier transforming each frequency
component. Figure 5.1 shows generated particle velocities u at the wavemaker
boundary at each frequency component. Here the solid line represents real part

of u and dashed line represents imaginary part of w.

For a two-dimensional random wave train, the water surface elevation may
be written as
LM g p
?}(.‘I?, v, !) — Z Z Tez{hwsﬂmz+!\;mnﬁ‘,“y 21 frt+1im } + c.c. (52)
=1 m=1
where ay,, is wave amplitude, f; is wave frequency, 0,, is wave direction, v, is
random phase independent of frequency and direction, and c.c. represents the
complex conjugate. Instead of using a discrete set of wave angles, we use here a
discretization of the longshore wavenumber spectrum. The longshore wavenumber
Am 1s defined as

Am = kysin 0,, (5.3)
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u (m/sec)

time (sec)

Figure 5.1: Generated particle velocities u(t) at wavemaker boundary z = 0,z =
0 for Mase and Kirby’s (1992) case 1 with 6 frequency components
(solid line: real part, dashed line: imaginary part) (a) first fre-
quency component, (b) second frequency component, (c¢) third fre-
quency component, (d) fourth frequency component, (e) fifth fre-
quency component, (d) sixth frequency component

which determines the wave direction 8,, at each frequency. At the upwave bound-
ary (z = 0), the water surface elevation is given by

L M
“z’m g{\my—zrrfgt+lbtm} 5.4
) =33 3 G Foa -

=1 m=1
For the given frequency f; and longshore wavenumber \,,, we get the amplitude

ol the water surface elevation

St (,\)
27

s = \/231(f)Af A (5.5)
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where S;(f) is the spectral density dependent on the frequency f and Sm(A) is the
directional spreading function dependent on the longshore wavenumber A. We can
get S, (A) from D, (0) (which is the spreading function dependent on the direction

) by the condition

/g D(0)do :f" qy) dr =1, (5.6)

—k

w

and so,

S(A) . D(0)
= D) — =

21 ( )(M k cos 0
The particle velocity in the z direction at x,z = 0 can be obtained from the
velocity potential and is given by

- Z z Al'm. ; {Amy=2m fit+im } + c.c. (58)

I=1 m=1

where the amplitude Ay, is given by
g\ ki — A%
Afm = Oim (59)
2 fi
When the spectral density S(f) and the directional spreading function D(0) are
given, we can get the amplitude of the particle velocity Ajy,. Using a 2-dimensional
inverse FFT from the frequency and longshore wavenumber domain to the time

and y space domain, we can generate the velocity w.

Vincent and Briggs conducted experiments for two-dimensional random
waves using TMA spectrum and directional spreading function as input conditions.
Here, we consider the case N5 which produces breaking waves of narrow-band
spreading. We cut off 2 percent lower and upper frequency components and
subdivide the remaining spectrum into 3 components with equal bandwidths.
We compute the spectral densities of the particle velocity A, from given TMA
spectrum S(f) and directional function D(0) and we generate particle velocities by
inverse Fourier transforming the spectral densities. Figure 5.2 shows the generated

particle velocities at (z,y) = (0 ft, 45 ft).
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Figure 5.2: Generated particle velocities u(t) at wavemaker boundary z = 0,z =
0,y = 45 ft for Vincent and Briggs’ (1989) case N5 with 3 fre-
quency components (solid line: real part, dashed line: imaginary
part) (a) first frequency component, (b) second frequency compo-
nent, (c) third frequency component

We specify reflective boundary conditions at side walls for two-dimensional

problems as

¢

dy s

an .
- = 5.10
By 0 (5.10)

In order to dissipate wave energy at downwave boundaries, we use a wave

damping layer at the downwave boundary. Equation (2.6) is modified to, for



101

non-breaking waves,

d¢ _ 2
a—f = —gn — Dy = G(¢,n) (5.11)
and, for breaking waves,
d¢ . i
8_f = —gn— (Ds + Ds)¢ = G(¢,n) (5.12)

where D, is the energy dissipation rate in the sponge layer described by equa-
tion (2.52) and Dj is the energy dissipation rate for breaking waves described by

equation (4.5).

A fourth order Adams-Bashforth-Moulton predictor-corrector method is
used to discretize (2.5) and (5.11) (non-breaking waves) or (2.5) and (5.12) (break-
ing waves) in time. In order to discretize terms with spatial differentiation we use

the fourth order discretization:

UAE( 3f 1 lﬁf’ ot 18j1+1 - 6j=+). A fs+d) 1=2
12m( —8fi1 + 8fisa — fira); i=3,4,+,1-3,1-2
125 ( rifl.+l = lOf‘ -+ 1“>f3 1 —Gf, 2 + f1 ), 1=I-1

2

dxli

<,
Il
o

12Au( 3fj b lOfJ"’ ISIHI _6IJ+2+fJ+’i)
[3?}] iy (fi-o — 8f3-1 +8f541 — fisa), j=3,4,-,J-3,J-2
|'2Ay( d fy =100 leJ—l - ()fj g f; 3), J=J-1

.a
Il
v

ey (1Lfic1 — 20f; + 6firs + 4fivz — fisa),

o? _ ki .
DT):L = { maap (= fia + 16ficy = 30fi +16fip1 — figa), =34, 13,12
aap (L fint — 20f; + 6fica +4fica — fia),  i=1
92 f i2(1Ty)3(1lf«"-1 —20f; 4+ 6fi1 +4fi42 — firs)y,  5=2
( .
[;)?72- = 12(3&.) (= fi—a+16f;—1 — 30f; + 16 f;41 — fisa), j=34,-,J-3,J-2

g (L fi — 205 + 6fi + 4f5-2 — fi-s),  j=J-1
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In the Adams-Bashforth predictor step, we have

At ; _
,’?ﬂ.+1 = nn + 54—-’{551?71 - 59Fn—1 + 37F71—2 . 9}'1’]’_3}

Al : |
J5{55(}“ — 59G™ 4 31G™? — 9GP (5.13)

141
¢ 24

— (E)n +

and in the Adams-Moulton corrector step, we have

At . ; ;
??n-H e ??n 2 g{an-l'l _I_ lan sia 5Fﬂ~—l =3 Fm—)}

. o A | ‘
= P {96 +19G" - 56 4GP (5.14)

where the superscript n denotes the time step. If the errors between predicted and
corrected values are small enough, we proceed to the next time step; otherwise,

we repeat correcting until we get small errors.

5.2 Applications for Non-Breaking Waves

5.2.1 Berkhoff, Booij and Radder Shoal Experiment (Two-dimensional

Monochromatic Waves)

As an example of the application of the models in two dimensions, we study
the focusing of waves by a shoal, using the geometry and experimental parameters

given in Berkhoff et al. (1982).

The experimental topography consists of an elliptic shoal resting on a plane
sloping bottom with a slope of 1/50. The plane slope rises from a region of
constant depth h = 0.45 m, and the entire slope is turned at an angle of 20°
to a straight wave paddle. Bottom contours are shown in Iigure 5.3 along with

the chosen computational domain. The offshore boundary of the computational
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Figure 5.3: Experimental setup by Berkhoff et al. (1982)

domain is chosen so that water depth is constant along @ = 0. We establish slope-
oriented coordinates (z',y’) which are related to the computational coordinates

(z,y) according to:
¢ = (x—10.5)cos20° — (y — 10)sin 20°
y' = (z—10.5)sin 10° 4 (y — 10) cos 20° (5.15)

The origin (2',y’) = (0,0) corresponds to the center of the shoal. The slope is

described in meters by

0.45; @' < —5.82
h = (5.16)

0.45 — 0.02(5.82 + 2'); ' > —5.82
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The boundary of the elliptic shoal is given by
()2 + (532 =1 (5.17)

and the depth in the shoal region is modified in meters according to

h = hatope — 0.5y/1 — (2/3.75)% — (y'/5)* + 0.3 (5.18)
resulting in a depth at the center of the shoal h(z’ =0,y" = 0) = 0.1332 m.

The initial condition for the wave corresponds to the uniform wave train
generated at the wave paddle with an amplitude ap = 0.032 m and a wave period
T =1 s. The incident waves are dissipated by a breaking process on a gravel
beach at the shallow end. At sections 1 through 8 there are arrays of resistance
type wave gages spaced 0.5 m apart which record time series of water surface

elevations.

It is known from parabolic model computations (Kirby and Dalrymple,
1984) that the waves in this example are significantly affected by wave nonlinearity.
Following the appendix in Kirby and Dalrymple (1984), we provide a heuristic
extension to the mild-slope equation that is appropriate only for progressive Stokes

waves. The resulting modification to equation (2.5) is given by

) A -2 _ 1200 = K'lnl2) -
(,n:—V-(cCQng)—I—(w CCy +wC,K |?}|)q$ (5.19)
ot g g
where - i _
K — kf(? cosh 4kh + 8 — 2tanh? kh (5.20)

g 8sinh? kh

We apply both the linear (equations (2.5) and (5.11)) and nonlinear (equa-
tions (5.19) and (5.11)) model equations to the shoal described by Berkhoff et
al. (1982). The data on wave amplitude was obtained over the entire vicinity of

a refractive focus. The Ursell parameter remains of a reasonably small size over
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the entire domain of interest, thus indicating that Stokes theory should be a valid
representation of the experiment. The grid sizes are Az = Ay = 0.25 m and

At = 1/40 s. We run the models until t = 80 s.

Referring to Figures 5.4 and 5.5, where model results are compared to
measured data along transects 1 through 8, we see that the linear model tends
to overpredict maximum amplitudes in the vicinity of focused waves, where wave
steepness may become large and nonlinear effects become important. In these
regions the nonlinear models give better results. The nonlinear model results
appear to contain some spurious amplitude modulations. These are not a mani-
festation of instability, and the effect may be suppressed by a suitable lagging of

the nonlinear term in the numerical scheme.

When Figures 5.4 and 5.5 are compared to Figure 4 of Kirby and Dalrym-
ple (1984) which shows both linear and nonlinear model results from parabolic
approximations, the normalized wave heights are almost the same with minor
differences. At section 3, the results from the nonlinear model shown in Figure
5.4 are more accurate than those from the nonlinear model shown in Figure 4 of
Kirby and Dalrymple. At section 6, the results from the nonlinear model shown in
Figure 4 of Kirby and Dalrymple are more accurate than those from the nonlinear

model shown in Figure 5.5.

When Figures 5.4 and 5.5 are compared to Figure 4 of Panchang et al.
(1991) which shows both linear and nonlinear solutions of Berkhoff’s model by
iteration, the nomalized wave heights are almost the same with minor differences.
The similarity of our model to Panchang et al.’s model is stronger than the simi-

larity of our model to Kirby and Dalrymple’s model.

When Figures 5.4 and 5.5 are compared to Iigure 7 of Dalrymple et al.
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(1989) which shows both linear and nonlinear solutions for very wide-angle diffrac-
tion, the normalized wave heights are almost the same with minor differences. At
section 6, the results from the nonlinear model shown in Figure 7 of Kirby and
Dalrymple are more accurate than those from the nonlinear model shown in Figure

H.5.

5.2.2 Vincent and Briggs Shoal Experiment (Two-dimensional Monochro-

matic and Random Waves)

A further study of monochromatic and random wave propagation over a
shoal has been performed by Vincent and Briggs (1989). These tests are used
here as a validation of the present numerical scheme as a model for irregular wave

propagation.

The tests were conducted in a 35 m (114 ft) wide by 29 m (96 ft) long
directional spectral wave basin. The center of the shoal was located at coordinates
x = 6.10 m (20 ft), y = 13.72 m (45 ft). The water surface elevations were
measured using an array of 9 parallel-wire resistance-type sensors which were
spaced 76 em (2.5 ft) apart. The boundary of the shoal is defined in meters by

' '

2 )
) ('3.96‘24

T

3.0480

( Pl (5.21)

where 2’ and y' are localized coordinates centered on the shoal denoting minor and
major axes, respectively. The water depth at any point in the shoal cross-section

in meters is given by

h = 0.4572 — 0.76204/1 — (2'/3.8100)2 — (y'/4.9530)2 (5.22)

resulting in the water depth at the center of the shoal 15.24 cm.



107

5 h
2 :
g2 !
o ]
£ 5
o u L i 1 i
-6 -4 -2 0 2 4 6
y - 10 (m)
25 . section 2

normalized wave height

normalized wave height

normalized wave height
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Figure 5.6: Experimental setup by Vincent and Briggs (1989)

Vincent and Briggs (1989) present a number of cases with a combination
of monochromatic, narrow-banded or broad-banded frequency spectra and uni-
directional, narrow-banded or broad-banded directional spreads. Here, we show
results for three typical cases: a monochromatic unidirectional sea (M2), a sea
with narrow frequency and narrow directional spreading (N4), and a sea with
narrow frequency and broad directional spreading (B4). All three cases involve
non-breaking waves. Wave period (M2) and peak period (N4, B4) are 1.30 s.
Wave height (M2) and rms wave height (N4, B4) are 2.54 em. Phillip’s « is taken
to be 0.00047.

Since the model equation (2.3) is not valid for an arbitrarily large range
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Table 5.1: Test conditions considered for Vincent and Briggs’ (1989) shoal ex-
periment (non-breaking waves)

Case ID | Type | period (s) | height (c¢m) o Y | Om
M2 mono 1.30 2.54 — — | —
N4 random 1.30 2.54 0.00047 | 20 | 10
B4 random 1.30 2.54 0.00047 | 20 | 30

of frequencies, we proceed by separating the whole spectrum into several bands.
In each frequency band, we then construct a wavemaker or offshore boundary
condition using the spectral information falling within that band. The fime-
dependent mild slope equation is then solved for the narrow-banded irregular sea
lying within each frequency band. The final solution is obtained by adding the

different bands.

Following Vincent and Briggs (1989), we use the TMA spectrum as the tar-
get frequency spectrum and a wrapped normal function as the directional spread-

ing function. The TMA spectrum is given by

() = ag?(em) ™ exp{-1.25( )" + (1) expl - 720 sz;) Dok (5.2

S(f) depends on the parameters a (Phillip’s constant), f, (peak frequency) v
(peak enhancement factor) and o (shape parameter). The factor ¢(f, k) incorpo-

rates the effect of the depth A and may be approximated by

0.5w3, wp <1
qs = ) n=s 05(2 — w}1)2$ 1 S Wh S, 2 (524)
1, wyp > 2

where w, = 2rf(h/g)"/?. The parameter 7 is assigned values of 2 (broad fre-
quency) and 20 (narrow frequency). For the cases studied here, v was assigned a

value of 20. The directional spreading function D(6) is obtained by assigning the
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values of either 10° (narrow spreading) or 30° (broad spreading) to the spreading

peu‘a.meter ag:

1 1 N (nog)? B 9K
= e = Z exp[— 5 | cosn(0 — 0y) (5.25)

D(0) =

=1
where fy = mean wave direction ( = 0°) and N = number of terms in the series

(= 20).

We separate the whole frequency spectrum into three components with
equal bandwidths of 0.267 Hz (see Figure 5.7). The three components of the
frequency spectra cover 95 percent of the total spectral density in the range of
[ = 0.533 - 1.333 Hz, and, using the grid spacings chosen below, the ratio of
minimum wavelength to spatial grid size is 4.54. We use a weighted average of
the frequencies in each frequency band to determine the representative frequency
used to compute the model coefficients for each band. The grid size is Az = Ay =
0.1905 m and time step is At = 1.3/80 s. We compute until { = 260 s. Variances

of water surface elevation are computed between ¢t = 65 s and ¢ = 260 s.

In Figures 5.8 — 5.10, the water surface elevations in the whole spatial
domain at ¢ = 260 s are shown for cases M2, N4, and B4. The figure for case
M2 shows that the waves are long-crested and symmetric along the line crossing
the center of the shoal parrallel to @ axis. After the waves pass the shoal they
become short-crested because of refractive focusing. When we compare the cases
with directional spreading (N4 and B4) we clearly see that the wave field with
broad directional spreading (B4) is more short-crested than the wave field with

narrow directional spreading (N4).

In Figure 5.11, the computed normalized wave heights along section 4 are
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compared with measured data for cases M2, N4, and B4. For case M2, the nor-
malized wave height near the centerline is greater than 2, which shows the con-
siderable effects of refractive focusing over the shoal. For case N4, the computed
results show underestimation near the centerline and overestimation away from
the centerline. For case B4, the computed results show overestimation all along the
section. The model results and data indicate that increasing directional spreading
leads to much less spatial wave height variation induced by localized topographic
irregularities. This result is seen in all spectral wave studies, and is a manifestation
of the fact that the local minimums and maximums in the diffraction pattern for

each spectral component overlap and experience mostly destructive interference.

Roughly, all three cases show that the model yields reasonably accurate
results compared with the measured data. It is found that for directionally broad
spreading case (B4) the refractive focusing effects are not noticeable behind the

shoal.

When the computed normalized wave heights for case M2 shown in Figure
5.11 are compared with those from Panchang et al. (1990) who use the parabolic
approximation of Radder (1979), our model results are more accurate than those
from Panchang et al. When the computed normalized wave heights for case N4
shown in Figure 5.11 are compared with those from Suh and Dalrymple (1993) who
use a very-wide angle model of the Berkhoff’s equation, the accuracy is almost the
same. Our model underestimated around the center while Suh and Dalrymple’s
model overestimated around the center. When the computed normalized wave
heights for case B4 shown in Figure 5.11 are compared with those from Suh and
Dalrymple (1993), the accuracy is almost the same. Both models overestimated

almost everywhere along section 4.
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Figure '5.10: Water surface elevations at t = 260 s (case B4)
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5.3 Applications for Breaking Waves

5.3.1 Horikawa and Kuo Horizontal and Sloping Bottom Experiment

(One-Dimensional Monochromatic Waves)

Horikawa and Kuo (1966) conducted two experiments inside the surf zone.
The first experiment was done with a horizontal bottom to determine the reformed
wave height after the stop of breaking. The resulting data was used by Dally et
al. (1985) to determine the recovery criterion (H/h), in which the breaking stops.
The incident waves broke on a 1/5 sloping bottom and then propagated to the
elevated horizontal bottom. The second experiment was done for a sloping bottom
to reveal the influence of bottom slope on the wave transformation inside the surf

Zone.

For the first case, we consider the experiments conducted with a horizontal
bottom of water depth h. = 15 em, a wave period T' = 1.0 s, and a ratio of wave
height to wavelength in deep water Ho/Lo = 0.065 — 0.100. The grid size is Az =
0.2 m and time step is At = T'/80 s. The computational domain is 1 m before
the breaking point to 1 m after the breaking point. The values of the breaking
criteria (H/h), are found to be in the range of 0.63 to 0.89 with an increasing
trend with the increasing value of Hy/ Ly, while the value of (H/h), is found to be
in the range of 0.35 to 0.41 with no particular trends (see Figure 5.12 (a)). The
optimum value of the factor of energy dissipation rate ¥ was chosen to be in the
range of 0.4 to 0.9 with an increasing trend with the increasing value of Hy/Ly
(see Figure 5.12 (b)). Figure 5.13 (a) shows the comparison of the wave height
attenuations with different values of v (0.8, 0.9, 1.0) against the experimental data
for the case with Hy/Lo = 0.100, (H/h)y = 0.89, (H/h), = 0.37. Figure 5.13 (b)
shows the energy dissipation rates normalized by wave frequency for the case with

Ho/ Lo = 0.100, (H/h), = 0.89, (H/h), = 0.37, v = 0.9.



119

1 T ] T T T T 1 I
o
0.8 o o )
o
0.6 o R
0.4+ * * % ® * b
0.2F -
1 1 1 1 1

0 L ] 1
0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105

1 T T T T T T T T

0.8

T
“+
1

0.6 .

0.4} + .

0.2 e

0 1 1 1 1 1 1 1
0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105
Ho/Lo

Figure 5.12: Wave breaking parameters for Horikawa and Kuo’s (1965) horizon-
tal bottom with 7' = 1 s, h. = 15 em (a) o: (H/h)y, *: (H/h),,
(b) +: v



120

L i 1 L 1 Il i
" -0.5 0 0.5 1 1.5 2 2.5 3

G 1 L == ) L 1 L
-1 0.5 0 0.5 1 1.6 2 26 3

location from corner (ﬁ)

Figure 5.13: (a) Attenuation of wave height with different values of 7 for
Hy/Ly = 0.100, (H/h)y = 0.89, (H/h), = 0.37 (dashed line:
v = 0.8, solid line: v = 0.9, dash-dotted line: v = 1.0, dotted
line: shoaling coefficient), (b) energy dissipation rates (D;) for
Ho/Lo = 0.100, (H/h), = 0.89, (H/h), = 0.37, v = 0.9
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For the second case, we consider the experiments conducted with bottom
slope s = 1/65, a wave period T' = 1.6 s, and a ratio of wave height to wavelength
in deep water Hy/Ly = 0.065. The grid size is Az = 0.2 m and time step is
At = T/60 s. The computational domain is from h = 1 m to h = 0.01 m. The
value of (H/h)y is found to be in the range of 0.78 to 1.01 with a decreasing
trend with the increasing value of Hy/Lo (see Figure 5.14 (a)). The value of
(H/h), is fixed to be 0.35. The optimum value of v was chosen to be in the
range of 0.4 to 0.8 with a decreasing trend with the increasing value of Hy/ Ly
(see Figure 5.14 (b)). Figure 5.15 (a) shows the comparison of the wave height
attenuations with different values of v (0.3, 0.4, 0.5) against the experimental
data for the case with Hy/Lo = 0.065, (H/h), = 0.78, and (H/h), = 0.35. It
is noticable that even though different values of 4 cause different effects of wave
height attenuation, the wave heights converge to zero value at points near the
shore. Figure 5.15 (b) shows the energy dissipation rates D, for the case with
Ho/Lo = 0.065, (H/h), = 0.78, (H/h), = 0.35, and v = 0.4. At the wave
breaking point, the model underpredicted wave height due to nonlinear effects
which are dominant at the breaking point, while the model used is linear. The
energy dissipation rate decreased until the water depth of about 0.6 times the
water depth at the breaking point and then it increased exponentially to the zero
depth. This phenomenon was also found in terms of H/h in Horikawa and Kuo's

experiments (1966).

It is noticable that the value of 4 increases with the increasing value of
(H/h)y. The relation between (H/h), and #, for the horizontal bottom, is de-
scribed as

v=1913(H/h), — 0.767 (5.26)

with regression coefficient 0.91 and, for the 1/65 sloping bottom, is described as

= 1.693(H/h), — 0.990 (5.27)
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5.3.2 Mase and Kirby Plane Beach Experiment (One-dimensional Ran-

dom Waves)

Mase and Kirby (1992) conducted experiments on one-dimensional random
waves shoaling over a plane beach of slope 1/20 (see Figure 5.17). The random
waves were simulated with a Pierson-Moskowitz spectrum with peak frequency
(fp) of 0.6 Hz and 1.0 Hz, referred to as case 1 and case 2, respectively. The

dominant wave breaking type seen in case 1 was plunging, while in case 2 spilling
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breakers were dominant. Water surface elevations were measured by capacitance-
type wave gauges at the water depth of 47 em, 35 em, 30 em, 25 em, 20 em, 17.5

em, 15 em, 12.5 em, 10 ¢cm, 7.5 em, 5 cm, and 2.5 em over the slope.

Wave Paddle Wave Gauges
<«
1 z2 3 12
v ]
B Y\ // 1 | I I T T T T T 1A
4
wew 1:20
/ //
7/

Figure 5.17: Experimental setup by Mase and Kirby (1992) (Wei and Kirby,
1993)

We consider case 1 here. The sampling interval is 0.04 s and total number
of sampling values used is 16384. We subdivide the whole time series into four
segments each of which has 4096 data points and we take the average of the four
power spectra of the corresponding time series. The averaged power spectrum is
shown in Figure 2.11. The incoming energy with extremely low frequencies cannot
be absorbed in the sponge layer, while the values of 5 and q; with extremely high
frequencies cannot be resolved numerically in space and in time. So, the spectrum
including 2 percent of the lowest and highest frequencies is excluded in order to

get reasonable solutions. The remaining 96 percent of the spectrum is in the range
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of f =0.378 - 1.605 Hz. The remaining 96 percent of the sepctral density of water
surface elevations recorded at depth of 47 e¢m was separated into six components
with equal bandwidths. We use a weighted average of the frequencies in each
frequency component to determine the representative frequency used to compute
the model coefficients for each component. We select the parameters for wave
breaking as (H/h), = 0.8, (H/h), = 0.35, and v = 2. The grid size is Az = 0.04
m and time step is At = 0.0025 s. The computational domain begins horizontally
1 m before the corner and continues horizontally 9 m after the corner. The water
depth 9 m after the corner is 2 em. The sponge layer is put after that point. From
the chosen grid spacings, the minimum ratio of wavelength to spatial grid size is
6.6. Variances of water surface elevation are computed between ¢ = 25.255 s and

t = 160 s.

We compare two cases: 1) a case with 4 frequency bands and 2) a case
with 6 frequency bands, to see how the normalized wave heights are different.
The normalized wave heights computed between t = 25.255 s and 160 s are
shown in Figure 5.18 where the computed wave heights outside the surf zone are
not close to the measured wave heights for the case with 4 frequency bands, while
the computed wave heights for the case with 6 frequency bands are very close
to the measured wave heights. This shows computation with narrower frequency

bands yields a smaller error.

Figures 5.19 and 5.20 show the water surface elevations 5 and energy dis-

sipation rates Dy + D, from t = 16 s to ¢ = 160 s at 16 s interval.
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5.3.3 Vincent and Briggs Shoal Experiment (Two-Dimensional Monochro-

matic and Random Waves)

Vincent and Briggs (1989) also presented a number of experiments for
breaking waves with a combination of monochromatic, narrow-banded, or broad-
banded frequency spectra and unidirectional, narrow-banded, or broad-banded
directional spreads. Here we test three typical cases: a monochromatic unidirec-
tional sea (M3), a sea with narrow directional spreading (N5), and a sea with
broad directional spreading (B5). The input conditions to generate waves are

shown in Table 5.2.

Table 5.2: Test conditions considered for Vincent and Briggs’ (1989) shoal ex-
periment (breaking waves)

Case ID | Type | period (s) | height (em) a Y| om
M3 1Mono 1.30 13.50 — — | —
N5 random 1.30 19.00 0.02620 | 20 | 10
B5 random 1.30 19.00 0.08650 | 2| 30

For a monochromatic unidirectional wave (M3), input wave height is Hl =
13.50 em, and a wave period is T' = 1.3 s. We select the parameters for wave
breaking as (H/h)y, = 0.8, (H/h), = 0.35, v = 1. The grid sizes are Az = Ay =
0.1905 m, and time step is At = T'/80 s. The average wave heights are computed

between t = 17.7125 s and ¢ = 39 s.

Figure 5.21 shows the water surface elevations and wave phase velocities at
t =39 s. Figure 5.22 shows the energy dissipation rates caused by wave breaking

which extends from the shoal to section 4 with narrow width.

Figures 5.23 and 5.24 show water surface elevations 5 and enegy dissipation

rates Dy from ¢ = 3.9 s to t = 39 s at 3.9 s interval along the center line parallel
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Figure 5.21: Water surface elevations at ¢ = 39 s for case M3 with (H//h), = 0.8,
(H/h), = 0.35 and v = | (solid line: contour of water surface ele-
vations, dashed line: contour of bottom topography, arrow: wave
vector)

to @ axis. We see the propagation of breaking waves from Figure 5.24.

Figure 5.25 shows that the computed normalized wave heights are not
close to the measured data because nonlinearity is dominant near the shoal and
the wavelength and phase velocity increase resulting in defocusing of waves behind
the shoal. The linear model used shows the refractive focusing of waves behind the
shoal. This higher phase velocity and wave defocusing was also found by Chawla

(1994).

For cases N5 and B5, we exclude 2 percent lower and upper frequency
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Figure 5.22: Energy dissipation rates (D) at ¢t = 39 s for case M3 with
(H/h)y, = 0.8, (H/h), = 0.35 and v = 1 (solid line: contour of
energy dissipation rates, dashed line: contour of bottom topogra-
phy)

components from the whole spectrum to get stable solutions. So, the frequency
ranges used are f = 0.67 - 1.70 Hz (case N5) and f = 0.62 - 2.26 Hz (case B5).
We subdivide the spectrum into 3 components with equal bandwidths, and we
use weight-averaged frequencies as representative frequencies in computing the
coefficients @, k, C' and C,. The grid sizes are Az = Ay = 0.1905 m, and time
step is At = T'/80 s where the peak wave period is 7' = 1.3 s. We compute until
t = 130 s and compute the variance of water surface elevations between { = 34.125
s and t = 130 s. The water surface elevations at ¢ = 130 s for case N5 are shown

in in Iigure 5.26 where the solid line represents water surface elevation and the
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Figure 5.23: Water surface elevations from t = 3.9 s to 1 = 39 s at 3.9 s
intervals along the center line parallel to z axis for case M3 with

(H/h)y = 0.8, (H/h), = 0.35 and vy =1

dashed line represents bottom topography. The waves shown in Figure 5.26 are
long-crested because the particle velocities u at wavemaker boundary = = 0 are
generated from the condition of narrow directional spreading. Figure 5.27 shows
energy dissipation rates at t = 130 s for case N5. Wave breaking occurs not only

around the shoal but also at the wavemaker and the side walls.

Figure 5.28 shows the comparison of the computed and measured normal-
ized wave heights along section 4 for case N5. The measured data show wave
breaking occurs everywhere along the section, which can be seen also from the

computed data. Around the center line, normalized wave heights are smaller than
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Figure 5.24: Energy dissipation rates (D) from ¢ = 3.9 s to t = 39 s at 3.9 s
intervals along the center line parallel to = axis for case M3 with

(H/h)y, = 0.8, (H/h), =0.35 and v =1

those away from the center line, but the computed results show a little focusing

of waves.

The water surface elevations at ¢ = 130 s for case B5 are shown in Figure
5.29. The waves shown in Figure 5.29 are short-crested because the particle ve-
locities u at the wavemaker boundary @ = 0 are generated from the condition of
broad directional spreading. The energy dissipation rates at t = 130 s for case B5
are shown in Figure 5.30 where wave breaking occurs not only around the shoal

but also at the wavemaker and the side walls.
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Figure 5.25: Measured and computed normalized wave heights along section 4
for case M3 (o: measured data, solid line: computed results).

Figure 5.31 shows the comparison of the computed and measured normal-
ized wave heights along section 4 for case B5. Measured wave heights around the
center for case B5 are smaller than those for case N5 which means wave breaking
occurs more around the center for case B5 than for case N5. The computed wave
heights show that wave breaking happens everywhere along section 4 with almost

equal frequency.
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Figure 5.28: Normalized wave heights along section 4 for case N5 (o: measured
data, solid line: computed results)
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Chapter 6

CONCLUSIONS

We analyze existing time-dependent mild-slope equations which were de-
veloped by Smith and Sprinks (1975) (or, equivalently, Radder and Dingemans
(1985)) and Kubo et al. (1992) in terms of dispersion relation, energy transport,
and wave kinematics. One-dimensionally in the horizontal direction, we compare
the modulation of wave amplitudes for the time-dependent mild-slope equations
against the linear Schrédinger equation which is accurate to O(Ak)*. We test the
Radder and Dingemans’ model and Kubo et al.’s model numerically for bichro-
matic waves in deep, intermediate-depth, and shallow waters. It is found that
Smith and Sprinks’ model is more accurate in shallower water (kh < 0.27) and
satisfies the linear Schrédinger equation in very shallow water (kh ~ 0) and that
Kubo et al.” model is more accurate in deeper water (kh > 0.27) and satisfies the
linear Schrodinger equation at a point of intermediate water depth (kh ~ 0.3).
The numerical comparisons for bichromatic waves confirm the analytical compar-

isons.

We develop two new time-dependent mild-slope equations both of which
satisfy the linear Schrodinger equation by adding correcting terms to the exist-
ing time-dependent mild-slope equations. We test a new model numerically for
bichromatic waves at deep, intermediate-depth, and shallow waters in order to

show the new model’s better accuracy than the existing models.

139
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We develop a model to obtain energy dissipation rates caused by wave
breaking using a bore analogy, and include it in time-dependent mild-slope equa-
tions. Three breaking parameters would be specified to get solutions: the factor of
the energy dissipation rate v, the breaking criterion (H/h);, and the wave recovery
criterion (H/h),. A method of succesive 3-point averaging is used in computation

in order to get stable solutions.

We apply non-breaking and breaking versions of Radder and Dingemans’
model for several cases including one-dimensional and two-dimensional, monochro-
matic and random, and non-breaking and breaking waves. The energy dissipation
rates 7 are in the range of 0.4 to 0.9 from applications of the model to Horikawa
and Kuo’s experiments which are all for monochromatic waves. From applica-
tions of the model to Mase and Kirby’s experiment which is for random waves
with plunging breaker, the value of y is 2. The wave breaking criteria (H/h), are
in the range of 0.63 to 1.01 for Horikawa and Kuo’s experiment. The value of
wave recovery criterion is in the range of 0.35 to 0.41. The relation between v and

(H/h)y is found to be linearly proportional with a positive slope.

The chosen model underpredicts wave heights at the breaking point because
nonlinearity is dominant at the breaking point and the model used is linear. For
random breaking waves, the value of 7 is found to be much higher compared to
the value of 4 for monochromatic waves. Nonlinear wave-wave interactions are

dominant in the surf zone which cannot be considered in the linear model.
For further study, we suggest the following research topics:

First, we can develop a two-dimensional new time-dependent mild-slope
equation which is accurate to O(Ak)?. When we compare the existing time-

dependent mild-slope equations to the linear Schrédinger equation one-dimensionally
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in the horizontal direction, we get the time-dependent mild-slope equations. We

can extend this approach to two dimensions in the horizontal direction.

Second, if currents are included in the wave problem, we can develop a
new time-dependent mild-slope wave equation with currents. The wave-current
interaction problems for Smith and Sprinks’ model are studied by Booij (1981)

and Kirby (1984).

Third, we can apply the time-dependent mild-slope equation for many cases
of breaking waves which have measured data in order to give guidance in deter-

mining the parameters for wave breaking (H/h), and 7.
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Appendix A

PARABOLIC APPROXIMATIONS FOR BREAKING
WAVES

Parabolic Approximations for Monochromatic Breaking Waves

For monochromatic breaking waves, the mild-slope equation (4.9) can be
used to solve the problem. When the deviation of the waves from the main
direction is small and there is no reflection, we can use parabolic approximations
and have only minor errors but great efficiency. The sudden increase of the energy
dissipation rates at the breaking point does not cause any reflection, and the
numerical discontinuities of the energy dissipation rates caused by wave breaking

and shoaling do not cause any numerical problem in the parabolic approximations.

We extract the harmonic term with the wavenumber kg from the velocity
potential q3 as

d(z,y) = Pz, y)e' | ote (A.1)

where ko(x) represents some weighted average of k(x,y) along the transverse y-

direction. The assumption of a mild slope gives the following order of magnitude:

|V h| 5 |22 . |%‘ﬁ| ! .
— =0(8%), B =0(6%), —L=0(6 A.2
= 0w, B o), -0 (A2
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So, when terms to O(6%) are retained, we get the parabolic mild-slope equation
for monochromatic brea,king waves:

I

"By ?(%'C)+wunh&—ﬂ A.3)

CCy
( O

99\ +2ikeC, 28 4 (1 = )CC, + 4

oy Oz

where the energy dissipation rate Dy is

(zl91)”

= 2y —— AA
L 1_(5:.’;'96“ ( )

We need to find the direction of the waves from velocity potential ¢ which

has a relation:
(;)(3,,1 ) = A(m’y)ea’(fkr:ns(»‘rfa:—}-ksiuﬂdy) (z,y)e fam (A.5)

Then we have )
gfi iksin0A + 5 9 ’1

— 6* A.G
%é .'L(mﬂ./l—l— = tan 0 + O(6°) (A.G)
and ; :
dy oy 31; 2
— = + O(6%) A.T)
52{3 —é + ikod ";‘DQS ( (
So, we have '
l":'rr
0 = arctan(—L A8
e dn('ikgtf)) (A.8)

We use the Crank-Nicolson method to discretize the two-dimensional parabolic

equation (A.3) so we get the following equation:
Adiprj1 + Bigrj + Chiyrjpr = D (A.9)
where

= 1z (CC) +(CC )

1

—m{((-'( i+t = (CCg)ii
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B = =gz (OO +(OCuns)
+§{((ﬁ=? — YOO+ (F= BYOC,)as)
i {(koCCy)i + :5(koccg);+l__f}+%iw0bi,j
c = 3 ;y)z{(ccg)‘-,j +(CCy)isns)
+m{(6'(fg)s,j+1 — (CCy)ii-1 + (CCylis1,541 — (CCia,i-1}
D = —(CC)is +(CCy)isnsHisms 2y + b}
~ A (OO = (CCy)ismn

+H(CCyitr,j41 — (CCPligr,jm1 HPijr1 — Pirj—1}
+H1W — B)CC,)ii + (K = R)CC,y)ig s}
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and where the subscripts 2 and j represent the spatial indices in :tAxz and jAy. The
Crank-Nicolson method is implicit and unconditionally stable. The local error is
O(Az)? or O(Ay)?. The energy dissipation rates Dy;; are used in computing the

velocity potentials (;3;_1.1,}‘.

For one-dimensional cases, equation (A.3) becomes

99 _ {Z(keCC)) +wDi}$ _ &)
da 2k, CC,

The Fuler predictor-corrector method is used to discretize one-dimensional eqau-

(A.11)

tion (A.11). In the predictor step, we have
bis1 = i + AzG; (A.12)
and in the corrector step, we have

Pir1 = Cﬁrl-__{G + Gip1} (A.13)
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If the errors between predicted and corrected values are small enough, we proceed
to the next spatial step; otherwise, we repeat correcting until we get the small
errors. The local error of the Euler predictor-corrector method, (A.12) and (A.13),

is O(Az)3.

Parabolic Approximations for Random Breaking Waves

For random breaking waves we can use the parabolic equation (A.3). First,
we separate the whole spectrum into several spectra with density AS( f;) and width
A fi and, if there is directional spreading, separate with several spreading widths

A, (see Figure A.1)

(/)

9

A8, 4T B,

\/ \
\

Figure A.1: Separation of directional power spectra
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So, with each spectrum with each spreading width, we get the amplitude

of water surface elevation as

tim = /25 (/1) A iAO, (A.14)

The initial condition can be specified as

$rj=—i—md j=1,en,d (A.15)

Wi

By using the Crank-Nicolson method to discretize equation (A.3) (two-dimensional)
or the Euler predictor-corrector method to discretize (A.11) (one-dimensional), we
obtain the velocity potential q%i_j. At each step (2), we add the whole wave ampli-

tudes as

) L M
16l =12 buml (A.16)

=1 m=1

and test the breaking criterion; that is, if the ratio of total wave height to water
depth is greater than the criterion, then we compute the energy dissipation rate

Dy, for each wave spectrum with each spreading width by

|7 v 2 w1 2
Dy = 27&;;15—(}‘@ = 27{.‘);_-1—(_% (A.17)
We get the propagation direction waves @ by
%Lm
G = a,rcta.n(m) (A.18)

We compute the velocity potential (331'_;_1'_.,'.



