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Abstract

In this paper, we numerically investigate the unified Kadomtsev—Petviashvili
(uKP) equation derived by Chen & Liu (1995), which describes weakly nonlin-
ear and dispersive surface and interfacial waves propagating primarily in the
longitudinal direction of a slowly rotating channel with varying topography
and sidewalls. This paper focuses on the effect of topography on the propaga-
tion of a solitary wave in a stationary channel and a Kelvin solitary wave in
a rotating channel. We find that in the absence of rotation, an oblique inci-
dent solitary wave propagating over a three-dimensional shelf in a straight wide
channel will eventually develop into a series of uniform straight-crested solitary
waves, together with a train of small oscillatory waves propagating upstream;
with proper phase shifts, the shapes of these final two-dimensional solitary
waves coincide with the shapes of those final solitary waves emerged from a
corresponding normal incident solitary wave propagating over the correspond-
ing two-dimensional shelf. In a two-layered rotating channel, the variation of
topography does not have much effect on the propagation of a Kelvin solitary
wave of depression, whereas it can have a significant influence on the propaga-
tion of a Kelvin solitary wave of elevation. Explanations for these numerical

findings are given.

1 Introduction

Ever since Kadomtsev & Petviashvili (1970) first wrote down their equation as an
evolution equation for weakly nonlinear and dispersive water waves propagating over
a constant depth in a predominant direction, this equation has been a topic of re-
search for a quarter of century. The Kadomtsev—-Petviashvili (KP) equation possesses
a number of remarkable properties and becomes the prototype equation represent-

ing completely integrable evolution equations in two spatial dimensions (Ablowitz



& Clarkson 1991). To extend the applicability of the original KP equation, various
generalizations have appeared (see Akylas’ (1994) review paper on recent advances in
understanding certain three-dimensional, nonlinear free surface long-wave phenomena
which can be described by the KP-type equations). Most recently, Chen & Liu (1995)
(hereafter referred to as CL) gave the derivation of the unified KP (uKP) equation
for weakly nonlinear and dispersive surface and interfacial waves propagating pre-
dominantly in the longitudinal direction of a slowly rotating channel with varying
topography and sidewalls, and a weak steady background current field. Their result
was a generalization of all previous work within the context of surface and interfacial
waves. They also found the complete integrability conditions for the uKP equation
and obtained integral invariants corresponding to conservation of mass and of energy
for waves propagating in a varying channel.

For completely integrable evolution equations, there are several powerful tech-
niques to obtain many classes of analytical solutions (soliton, multisoliton, periodic
solutions, etc.), such as inverse scattering transform, Backlund transformations, Hi-
rota’s method and symmetry reductions. Unfortunately, the complete integrability
conditions for the uKP equation are very restrictive. They require that no rotation
exist, the variation of topography be weak and behave like a linear function in the
transversal direction (so does the background current field if it is present). More-
over, the sidewall boundary conditions usually will interfere with the integrability.
Therefore, to apply the uKP equation to more complex situations, in which it is not
completely integrable, we need to solve the equation numerically.

Although several numerical schemes have been proposed for the KdV equation
(for finite-difference methods and spectral methods see Taha & Ablowitz 1984; for
finite-element methods see Mitchell & Schoombie 1984 ), numerical methods for KP-

type equations do not seem to have been so successful. Pierini (1986) presented an



implicit, three-time level, finite-difference scheme to solve the regularized KP equation
(which is not completely integrable) for weakly three-dimensional wave propagation
in a rectangle channel. Katsis & Akylas (1987a) proposed an explicit, conditionally
stable finite-difference scheme for the KP equation and extended this scheme to the
rotation-modified KP (rmKP) equation (1987b). Grimshaw & Tang (1990) developed
a different numerical scheme for the rmKP equation by using the Petrov-Galerkin
finite-element method. All these numerical schemes made use of the assumption
that solutions are locally confined in an infinite domain. Recently, Wineberg et al.
(1991) presented an implicit spectral method for the KP equation. Because the
Fourier transform was used, their method can only be applied to spatial periodic
wave propagation problems.

All the numerical schemes mentioned above were developed based on the constant-
coefficient KP or rmKP equations. Therefore, the effects of topography on three-
dimensional solitary wave propagation in a wide straight channel (the channel width
is much larger than the water depth) have not been studied before.! In this paper we
study this problem by solving the uKP equation numerically. The Petrov—Galerkin
finite-element method is used to develop an accurate numerical scheme for the uKP
equation. The numerical scheme is first tested through simple examples, in which
either analytical solutions or numerical solutions given by other researchers are avail-
able. Then, it is used to study solitary wave propagation in a stationary channel and
Kelvin solitary wave propagation in a rotating channel. In the numerical study, we
focus on the effect of topographic variation on the wave propagation. We find that in
the absence of rotation, an oblique incident solitary wave (with an angle of incidence

smaller than the critical angle for the Mach reflection to occur according to Miles’

'Mathew & Akylas (1990) derived the KP equation and the sloping sidewall boundary conditions
to study the propagation of long, weakly nonlinear water waves along a uniform cross-section channel
hounded by sloping sidewalls.



theory (1977a, b)) propagating over a three-dimensional shelf in a straight channel will
eventually develop into a series of uniform straight-crested solitary waves, together
with a train of small oscillatory waves propagating upstream. Moreover, with proper
phase shifts, the shapes of these final two-dimensional solitary waves coincide with
the shapes of those final solitary waves evolved from a corresponding normal incident
solitary wave propagating over the corresponding two-dimensional shelf. The two-
dimensionalization is due to the alternating development of a stem wave along the
left- and right-hand sidewall, which gradually reduces the amplitude and speed dif-
ferences between the waves near the left-hand sidewall and waves near the right-hand
sidewall and eventually leads to the formation of uniform straight-crested solitary
waves spanning the entire channel width. We also find that in a two-layered rotating
channel, the topographic variation has little effect on the propagation of a Kelvin
solitary wave of depression: the wave patterns look similar with or without the pres-
ence of a shelf, whereas it can have a significant influence on the propagation of a
Kelvin solitary wave of elevation. The reason is that in the absence of rotation, the
corresponding KdV solitary wave of depression cannot experience fission under the
weak nonlinearity and dispersion assumption, whereas the corresponding KdV soli-

tary wave of elevation can easily undergo fission without violating this assumption.

2 Numerical scheme

In the absence of the background current field, the uKP equation reads (see CL)
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C(X) = (p~/h™ + p*/h*) (2.1b)

Da(X) = p~ (A7) + (=)Dt (RH)",  (n=1,-2). (2.1¢)

In (2.1), n is the departure of the interface from its undisturbed equilibrium level. The
independent variables X and Y are the slow horizontal coordinates in the longitudinal
and transversal directions of a two-layered rotating channel, respectively, whereas ¢ is
the characteristic coordinate moving at the leading-order local linear-long-wave speed
C'. The depth of the upper layer is H* = ht, whereas the depth of the lower layer is
given by H= = h™(X) + eB(X,Y), where € is a small parameter measuring the weak
nonlinearity. The densities of the upper and lower layers are p* and p~, respectively.
Parameters o and  measure the relative importance of the dispersion and rotation

effects to the nonlinear effect. The boundary conditions along the vertical sidewalls

Y =Ygr(X) and Y = Yz,(X) are:

o B 1dY oy B |
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We remark that in (2.1) and (2.2), X can be viewed as a time-like coordinate, whereas
¢ can be viewed as a space-like coordinate.

For initial-boundary-value problems, unless Yr and Y7, are both constant, the
domain of a solution to the uKP equation in the (£, Y )-plane changes at different X
(see (2.2)). To carry out numerical computations in a fixed domain, we introduce the

following transformation:

(=VCn, Y=(Y-Yo)W, (2.3a)



where

W(X) = Yi(X) — Yr(X) (2.3b)

is the width of the channel. Under this transformation, the uKP equation (2.1) and

the boundary conditions along the sidewalls (2.2) become
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where / = d/dX. Note that the domain of a solution to problem (2.4) in the (&,Y)-
plane is fixed and no term involving (h~)" appears in (2.4), which may be significant
in computations if (A~)" is large in some region.

To solve (2.4) numerically as an initial-boundary-value problem, we have to replace
the infinite domain —oo < ¢ < 400 with a finite computational domain £_., < ¢ <
€100 and impose appropriate boundary conditions at ¢ = €4. According to the
linear dispersion relation of the uKP equation, the group velocity is always negative.
Thus, for a sufficient large £, it is permissible to set ¢ and its derivatives equal to
zero at £ = ;... However, at £ = £_,, a radiation boundary condition is needed to
avoid artificial reflection. Since the uKP equation is a nonlinear evolution equation
with variable coefficients for three-dimensional wave propagation, finding a suitable
radiation boundary condition at ¢ = &_. is difficult. Here we adopt an ad hoc
assumption that ¢ and its derivatives equal to zero at £ = ¢{_, i.e. solutions are locally

confined. For any local confined solution, it must satisfy the following restriction (see



CL):

where F'is an arbitrary function of X. Thus, the assumption requires that all initial
conditions should satisfy (2.5) at X = 0. If this constraint is violated, disturbances
may propagate to —oo in finite time according to the group velocity expression (Katsis
& Akylas 1987b; Grimshaw & Melville 1989; Akylas 1994), and thus the ad hoc
assumption is no longer valid. Numerical tests confirm that if the initial condition
satisfies (2.5), we can choose the finite interval {_, < { < {4 sufficiently large to
keep ¢ very small near ¢ = {4, within the ‘time’ interval X € [0, Xo| of interest.
Following Pierini (1986), Katsis & Akylas (1987b) and Grimshaw & Tang (1990),

we first convert equation (2.4a) into an integral-differential equation
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where ( — 0 as £ — 00 has been used. Equation (2.6) has the form of a forced
KdV equation and methods developed for the KdV equation can be modified to deal
with (2.6) in principle. The main difficulty is how to discretize the terms on the
right-hand side of (2.6). For the KdV equation, from the point of view of accuracy
and efficiency, the Petrov—Galerkin finite-element method performs better than finite
difference methods and spectral methods (Sanz-Serna & Christie 1981; Mitchell &
Schoombie 1984). Thus, we use the Petrov—Galerkin finite-element method to develop
a numerical scheme for (2.6). The Petrov-Galerkin finite-element method was also
used by Grimshaw & Tang (1990) for the rmKP equation. The main difference
between their scheme and ours is the treatment for the terms on the right-hand side

of (2.6). We use the extended trapezoidal rule to calculate the integral on the right-



hand side of (2.6) and use second-order central finite differences to approximate the
Y-derivatives (see Chen (1995) for details about the numerical scheme).

The accuracy of the numerical scheme is verified by two tests. The first one is
a normal incident solitary wave propagating over a two-dimensional shelf and the
second one is a solitary wave propagating over a three-dimensional weak and gentle
topography in a curved channel. The former was numerically studied by Johnson
(1972), whereas the latter has analytical solutions (see CL). In both tests, our nu-
merical results agree excellently with the known solutions (see Chen 1995). Thus, we
are confident that our numerical scheme can give accurate results as long as distur-
bances remain localized. We then use the numerical scheme to study the propagation
of a solitary wave in a stationary channel and a Kelvin solitary wave (a KdV soli-
tary wave multiplied by an exponential function in the transversal direction so that
the constraint (2.5) is met) in a rotating channel. In numerical computations, do-
main [€_ oo, &4oo] is always chosen large enough to ensure that the disturbances near
¢ = €400 are very small, at least within the computational ‘time’ interval of interest
X € [0, Xg]. Thus, the ad hoc assumption that ( and its derivatives equal to zero
at € = é_ is held. For each case, the relative errors between the numerical evalu-
ated (by trapezoidal rule) first-order (when the rotation is absent) and second-order
integral invariants (see (4.5) and (4.6) in CL) and the exact values at different X are

never in exceed of 0.5%. The constraint (2.5) is also monitored across the channel.

3 Solitary wave propagation in a stationary chan-
nel

In the absent of rotation, numerical results are presented for surface solitary waves

propagating in a straight channel. For convenience, we set & = 6 in the uKP equation.



The initial condition, which satisfies the constraint (2.5) at X = 0, is given by
?}(‘Sa U; j/) = 853(31]2 (f + '\/6!1//2) : (31)

where [/ is a constant, determining the direction of the incident solitary wave. Com-
putational parameters: A¢ = 0.1, AY = 0.05 and AX = 0.25 x 10~2 are used for
each numerical example presented in this section. We first study the transformation
of an oblique incident solitary wave in a uniform channel and then investigate the

effect of topographic variation on the solitary wave propagation.

3.1 Oblique incident solitary wave propagation in a uniform

channel

Figure 1 shows the transformation of an oblique incident solitary wave given by (3.1)
with [ = 1.0 propagating in a channel with constant depth and width (h =W = 1)
at different X. In the moving frame, at first, a Mach stem wave normal to the left
sidewall develops. The crest along the left sidewall gradually increases, while the
crest along the right sidewall decreases (cf. figure 1 a with 1 b). Due to the nonlinear
effect, the speed of the crest along the left sidewall is greater than that along the right
sidewall. Thus, the wave crest near the left sidewall speeds up, catches up with and
surpasses the rest of the wave crest (see figures 1 ¢ and 1 d). This leads to a smaller
opposite (compared with the original oblique incidence) inclination. Another weaker
Mach reflection along the right sidewall begins to develop. As a result, the speed
of the wave near the right sidewall begins to increase, while the speed of the wave
near the left sidewall decreases. Soon, the maximum wave amplitude switches from
the left to the right sidewall (see figure 1 e). The speed of the wave near the right

sidewall continues to increase until it catches up with the wave near the left sidewall
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Figure 1: Contour plots of an oblique incident solitary wave propagating in a uniform
channel at different X.
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(see figure 1 f). Then, another even smaller inclination (after each catch-up, the
amplitude difference between the crests along the left and right sidewalls is further
reduced) forms and the speed of the crest along the left sidewall begins to increase
due to the Mach reflection, while the speed along the right sidewall decreases (cf.
figure 1 f with 1 g). This process is repeated until a uniform straight-crested solitary
wave forms (see figure 1 7). During this so called 2-D adjustment process, a train
of 3-D small-amplitude waves is generated and propagates upstream (see figure 2).
In the oscillatory tail, the region near the centerline is rather calm compared to the
regions close to each sidewall. Figure 3 shows the elevation along the centerline of
the channel at X = 1.25 and the exact solitary-wave solution given by (3.1) ({ = 0)
with the same peak location. From figures 2 and 3, one can conclude that after the
oscillatory wave disperses towards the upstream, the final state of the oblique incident
solitary wave is a 2-D solitary wave with the same amplitude as that of the incident

wave.
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Iigure 2: Surface displacement of an oblique incident solitary wave propagating in a
uniform channel at X = 1.25.

For the same oblique incident solitary wave propagating in a wider uniform channel
(W = 1.6), similar phenomenon is observed. However, in a wider channel, since the

distance between the crests along the right and left sidewall is larger initially, it takes
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Figure 3: Comparison between the elevation of an oblique incident solitary wave at
X = 1.25 (- - -) and the exact solitary-wave solution (——) with the same peak
location along the centerline of the channel.

a longer time for the wave near the left-hand sidewall to catch up with the wave
near the right-hand sidewall. More importantly, when it happens, the amplitude
difference between the crests along the left-hand and right-hand walls is also larger
in a wider channel, because there is more time for the stem wave to develop before
the interference of the right-hand sidewall. Consequently, it needs more time to form
the final 2-D solitary wave.

For an oblique incident solitary wave given by (3.1), according to Miles’ theory
(1977a,b), the Mach reflection along a vertical wall will occur when the angle of
incidence in the (¢,Y)-plane is smaller than the critical angle arctan(2/6) = 78.46°.
In the previous case (I = 1.0 in (3.1)), the angle of incidence is arctan(v/6/2) = 50.77°.
For the same incident solitary wave with a larger angle of incidence propagating in
the same channel, similar phenomenon is observed: a uniform straight-crested solitary
wave emerges as the result of the 2-D adjustment process described before, followed by
a train of small oscillatory waves propagating upstream. But, as the angle of incidence

gets closer to the critical angle, it takes more time for the final 2-D solitary wave to

14



emerge and the maximum amplitude (achieved at the sidewalls) in the oscillatory tail
increases. The critical angle for the Mach reflection to occur (i.e. for the resonance of
the incident and reflected solitary waves to occur) is proportional to the square root
of the incident wave amplitude (Miles 1977a, b). Thus, if the angle of incident remains
the same, the angle of incidence of a smaller incident solitary wave is relatively closer
to the corresponding critical angle. Therefore, for different size of solitary waves
propagating in the same channel with the same angle of incidence, the emergence
of the final 2-D solitary wave takes a longer time for a smaller incident wave. This
agrees with our numerical results.

In conclusion, for an oblique incident solitary wave propagating in a uniform
channel, as long as the angle of incidence is smaller than the critical angle for the Mach
reflection to occur according to Miles’ theory (1977a, b), the alternating development
of a stem wave along the left-hand and right-hand sidewall will lead to the emergence
of a 2-D solitary wave, together with an oscillatory tail propagating upstream. The
2-D adjustment process takes a longer time for an angle of incidence closer to the
corresponding critical angle and in a wider channel. In other words, if the initial
state is further away from the final 2-D state (but has a limit), it needs more time to
reach the final state. We remark that for an oblique incident Gaussian-shaped wave,
similar 2-D adjustment process was reported by Pierini (1986), who numerically solved
the regularized KP equation to describe the wave propagation in a rectangle channel.

We now further investigate what happens to an oblique solitary wave if it propa-

gates along a channel with 2-D topography.
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3.2 Oblique incident solitary wave propagation in a channel
with 2-D topography

The 2-D adjustment mechanism occurs not only in channels with constant depth, but
also in channels with 2-D varying topography. For an oblique incident solitary wave

given by (3.1) with [ = 1.0 propagating over a varying topography given by

h(X) =1 — 0.2tanh(X/2) (3.2)

in a straight channel, we observe that the same 2-D adjustment mechanism leads
to the formation of a uniform straight-crested solitary wave (which has a higher
amplitude than the incident wave dose due to the decrease of the water depth and
the conservation of energy), together with a train of oscillatory waves (see figure 4).
Note that the depth given by (3.2) deviates significantly from the greatest eigen-depth

4/9 = (.614, predicted by the soliton fission law found by Tappert & Zabusky

value, 3~
(1971), Johnson (1973) and Ono (1972). For a corresponding normal incident solitary
wave propagating over this topography, no fission occurs (the solitary wave deforms
into a taller one, followed by an oscillatory tail).

Now we study the same oblique incident wave propagating over a 2-D shelf which

allows fission to occur. The shelf is given by

I; X £,
h(X) =1 05[1+ D+ (1—D)cos(2rX)], 0< X <0.5, (3.3)
D, X > 0.5,

where D = 3=%% = 0.614 (the greatest eigen-depth value) is chosen so that for a
normal incident solitary wave given by (3.1) with [ = 0 propagating over this shelf,

two solitary waves will eventually emerge in the constant depth region of the shelf

16
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IMigure 4: Surface displacement of an oblique incident solitary wave propagating in a
channel with 2-D topography given by (3.2) at X = 1.25.
according to the fission law.

Figure 5 shows the transformation of the oblique incident solitary wave propagat-
ing over the 2-D shelf at different X. One can see that as the wave propagates into
the decreasing depth region (0 < X < 0.5), first a stem wave develops along the left
sidewall and then the wave near the left-hand sidewall catches up with and surpasses
the wave near the right-hand sidewall (see figure 5 a—¢). Next, a stem wave along
the right-hand sidewall begins to develop, which results in the increase of the wave
amplitude along the right-hand sidewall. In the meantime, fission begins to occur on
each vertical plane parallel to the sidewalls. When the waves arrive at the constant
depth region (X = 0.5), the first wave looks almost two-dimensional, while the sec-
ond one is definitely three-dimensional (see figure 5 d). After entering to the constant
depth region (X > 0.5), these two waves eventually develop into two uniform straight-
crested solitary waves through the 2-D adjustment process (see figures 5 e—f and 6),
trailed by a train of 3-D small oscillatory waves (the maximum wave amplitude is at
the sidewalls) propagating upstream. Figure 7 shows the centerline elevation of the

oblique and the corresponding normal incident solitary wave propagating over the
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Iigure 5: Contour plots of an oblique incident solitary wave propagating over a 2-D
shelf in a straight channel at different X.



Figure 5 (Continued)
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Figure 6: Surface displacement of an oblique incident solitary wave propagating over
a 2-D shelf given by (3.3) at X = 1.125.
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Figure 7: Centerline elevation of a normal and an oblique incident solitary wave
propagating over a 2-D shelf given by (3.3) at X = 1.25. ——, normal incident; - - - -,
oblique incident.
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same shelf at X = 1.25. From this figure, one can see that with proper phase shifts,
the shapes of the two solitary waves evolved from the oblique incident solitary wave
propagating over the 2-D shelf coincide with the shapes of those two solitary waves
emerged from the corresponding normal incident solitary wave propagating over the
same shelf (strictly speaking, the second solitary wave is not a perfect solitary wave
due to the finite length (in terms of X) of the shelf, which generates an oscillatory
tail immediately followed the second solitary wave).

Because of the significant increase in computational work, we do not carry out
further investigation on an oblique incident solitary wave propagating over a shallower
2-D shelf which allows stronger fission to occur. Nevertheless, based on the numerical
results presented in this subsection, it is very logical to expect that in general, an
oblique incident solitary wave (with an angle of incidence smaller than the critical an-
gle for the Mach reflection to occur according to Miles’ theory (1977a, b)) propagating
over a 2-D shelf in a straight channel will eventually develop into a series of uniform
straight-crested solitary waves, together with a train of oscillatory wave propagating
upstream. With proper phase shifts, the shapes of these final 2-D solitary waves
coincide with the shapes of those final solitary waves evolved from a corresponding
normal incident solitary wave propagating in the same channel.

In the following subsection, we further investigate the effect of the transversal

variation of a 3-D shelf on the propagation of a solitary wave in a straight channel.

3.3 Solitary wave propagation in a channel with a 3-D shelf

We first study a normal incident solitary wave given by (3.1) with [ = 0 propagating

over a 3-D shelf described by

H = h(X) + eB(X,Y), (3.4a)

21



where h(X) is given by (3.3) and B is given by

0, X <o,
B(X,Y) =1 16[cos(4rX) —1](Y —¥2), 0< X < 0.5, (3.4b)
0, X > 05.

Note that the shelf has continuous first derivative everywhere (see figure 8).

Figure 8: The shape of the 3-D shelf given by (3.4) (e = 0.02).

Figure 9 shows the transformation of the solitary wave propagating over the 3-
D shelf at different X. The variation of the shelf in the Y-direction in the region
0 < X < 0.5 destroys the original 2-D structure of the solitary wave. But once the
wave passes over this changing depth region and enters to the constant depth region
(X > 0.5), two uniform straight-crested solitary waves emerge as a result of fission
and the 2-D adjustment process. It is worth mentioning that the second solitary wave
is evolved from the wave with strong 3-D structure (see figure 9 b).

Figure 10 shows the centerline elevation of the same normal incident solitary
wave propagating over the 2-D shelf (B = 0 in (3.4a)) and over the 3-D shelf at

X = 1.0 (the maximum amplitude of the oscillatory tail is along the centerline for
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Figure 9: Contour plots of a normal incident solitary wave propagating over a 3-D
shelf at different X.
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Figure 10: Centerline elevation of a normal incident solitary wave propagating over a
2-D shelf given by (3.3) and a 3-D shelf given by (3.4) at X = 1.00. ——, 2-D shelf;
- - -, 3-D shelf.

this particular shelf). Again, with proper shifts, the shapes of the two solitary waves
evolved from the wave propagating over the 3-D shelf coincide with the shapes of
those two solitary waves evolved from the wave propagating over the corresponding
2-D shelf. Thus, the weak transversal variation of the shelf only alters the phase of
each of the final 2-D solitary waves by almost the same amount and does not affect
their number and shapes. This should also be true for any incident solitary wave
propagating over an arbitrary 3-D shelf in a straight channel. Therefore, we can
further generalize the claim given in the previous subsection as follows: an oblique
incident (includes normal incident as a special case) solitary wave (with a smaller
angle of incidence than the critical angle for the Mach reflection to occur according
to Miles’ theory (1977a,b)) propagating over a 3-D shelf (H = h(X) + eB(X,Y))
in a straight channel will eventually develop into a series of uniform straight-crested
solitary waves, trailed by a train of small oscillatory waves propagating upstream.
Moreover, with proper phase shifts, the shapes of these final 2-D solitary waves agree

with the shapes of those final solitary waves emerged from a corresponding normal
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incident solitary wave propagating over the corresponding 2-D shelf (H = h(X)).
In this section, the rotation effect has been ignored. We shall study the effect
of topographic variation on the propagation of a Kelvin solitary wave in a rotating

channel in the following section.

4 Kelvin solitary wave propagation in a rotating
channel

Katsis & Akylas (1987b) and Grimshaw & Tang (1990) used the rmKP equation to
numerically investigate the rotation effect on the development of an initially straight-
crested Kelvin solitary wave of depression and elevation in a uniform channel, re-
spectively. They confirmed that the rotation gives rise to a solitary-like wave whose
wavefront is curved back, in qualitative agreement with the experiments of Renouard,
D’Hiéres & Zhang (1987) and Maxworthy (1983). Katsis & Akylas’ numerical results
also showed that the wave amplitude decays slowly as the disturbance propagates
downstream. This indicates that the solitary-like wave is not a wave of permanent
form and the observed attenuation in experiments is only partly caused by the vis-
cous damping. The constant-coefficient rmKP equations solved by Katsis & Akylas
and Grimshaw & Tang do not include the effect of topography. In this section, we
shall investigate the influence of the topographic variation on the propagation of a
Kelvin solitary wave (of elevation and depression) in a rotating channel by solving

the variable-coeflicient uKP equation numerically.

4.1 Kelvin solitary wave of depression

Note that when D_y = p~/(h™)* — pt/(h*)? < 0, the single solitary-wave solution

to the KdV equation for a two-layered system is a wave of depression. The initial
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condition for a Kelvin solitary wave of depression is given by

C

n(£,0,Y) = —sech? [; (~3sz

Q‘D]

: Je|ew(rre), wa<o. @)

which satisfies the constraint (2.5) at X = 0.
We now study the transformation of a Kelvin solitary wave of depression given by

(4.1) propagating over a 2-D shelf given by

3.25, X <0,
h™(X) =14 1.625[1.2 + 0.8 cos(7X/2)], 0< X <2, (4.2)
0.65, X>2

in a channel with rotation # = 0.6 and upper-layer depth A™ = 0.5. The densities of
the upper and lower layers are assumed to be very close for the rigid-lid assumption
to be valid, i.e. p~ &~ pt = 1.0. For comparison, we also show the results for the
same incident wave propagating over a flat bottom A~ = 3.25 in the same channel.
In numerical computations, A¢é = 0.16, AY = 0.025, AX = % x 1072 and a = 0.781
have been used.

Figures 11(a) and 11(b) show the interfacial displacement of the Kelvin solitary
wave propagating over the flat bottom and the 2-D shelf at X = 3.2 respectively,
where in both cases the leading wave reaches what appears to be a stable shape,
characterized by a curved-back front moving as a whole and trailed by a train of
small-amplitude waves. However, the front does not have a permanent shape because
the wave amplitude attenuates slowly as the disturbance propagates downstream.
Comparing figure 11(a) with 11(b), one can see that the presence of the shelf increases
the value of the maximum amplitude, increases the decay rates across the channel, but
decreases the curvature of the leading wave crest. For more quantitative comparison,

we plot different decay rates across the channel at X = 3.2 and the maximum wave
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Figure 11: Interfacial displacement of a Kelvin solitary wave of depression propagating
in a rotating channel with # = 0.6 at X = 3.2. (a) over a constant depth; (b) over a
2-D shelf.
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Figure 12: The decay rates of the wave amplitude across the channel in a rotating
channel with # = 0.6. (a) over a constant depth; (b) over a 2-D shelf . - - -, in
the plane perpendicular to the right-hand sidewall; - - - -, along the curved wave crest;
, predicted by the linear theory.
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amplitude along the right-hand sidewall for both cases.

Figure 12 shows the decay rates across the channel in the plane perpendicular to
the right-hand sidewall passing through the point of maximum amplitude (dashed
line) and along the wave crest (dotted line). In each case, the dotted line and dashed
line are very close to straight lines; the dashed line is steeper than the dotted line.
This indicates that the variations of the wave amplitude across the channel are nearly
exponential and the decay rate along the plane perpendicular to the sidewall passing
through the point of maximum amplitude is greater than that along the wave crest.
Comparing figure 12(a) with 12(b), we observe that both decay rates increase by al-
most the same amount when the shelf is present. For comparison, the linear decay
rate exp(—pY/C') across the channel is also plotted in the figures (solid lines). The
linear theory gives very good prediction of the decay rate along the wave crest when
the shelf is present, whereas in the absence of the shelf, it gives a pretty good approx-
imation for the decay rate in the plane perpendicular to the right-hand sidewall.

Figure 13 shows the maximum wave amplitude along the right-hand sidewall for
the Kelvin solitary wave propagating over the constant depth and the 2-D shelf.
In case of constant depth, the maximum amplitude monotonously decreases along
the wall. On the other hand, when the shelf is present, the maximum amplitude
along the wall first decreases until it reaches the minimum value at the middle of the
shelf, and then increases until it reaches the maximum value near the top of the shelf.
Once the wave enters to the constant depth region, its maximum amplitude gradually
attenuates along the channel.

Next, we investigate the effect of a weak 3-D topography on the Kelvin solitary

wave propagation in the same rotating channel. The bottom is given by

H™ =3.25+eB(X,Y), (4.3a)
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Figure 14: Contour plots of the interfacial displacement at X = 3.2 (8 = 0.6). ——,
over a weak 3-D topography given by (4.3); - - -, over a flat bottom.
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where

B(X,Y) = 4[cos(r X/2) — 1] (Y — Y?/2). (4.3b)

Figure 14 shows the contour plots of the interfacial displacement at X = 3.2 for the
Kelvin solitary wave propagating in the channel with the flat bottom (H~ = 3.25)
and with the bottom given by (4.3). The variation of the weak topography only
causes a slight time delay in the propagation of the leading wave. Thus, the effect of
the weak 3-D bottom does not have much influence on the wave propagation.

According to the fission law for the variable-coefficient KdV equation in a two-
layered system (Djordjevic & Redekopp 1978), with a small difference in densities, for
a solitary wave of depression to undergo fission by decreasing the lower fluid depth,
the greatest value of the ratio of the upper depth to the lower depth ahead of the
shelf is about 0.07. For such small values of depth ratio allowing fission to occur,
either the dispersion is not weak compared to the lower depth or the nonlinearity is
too strong with respect to the upper depth. Thus, the KdV theory is not appropriate
for describing fission of a solitary wave of depression propagating over a decreasing
bottom. However, for a solitary wave of elevation, there is no strict limitation on the
depth ratio for fission to occur.

It is understandable that the weak 3-D topography does not have much effect on
the propagation of the Kelvin solitary wave of depression (see figure 14): the lower
layer is much deeper than the upper layer and thus the wave barely detects the vari-
ation of the topography. However, comparing figure 11(a) with 11(b), we notice that
the existence of the two-dimensional shelf given by (4.2), which reduces the lower
depth by 80%, does not have a significant effect on the propagation of the Kelvin
solitary wave of depression either, since the wave pattern still looks similar to the
one without the presence of the shelf. Note that in the absent of rotation, the cor-

responding KdV solitary wave of depression does not undergo fission on passing over
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the shelf. This implies that under the weak nonlinearity and dispersion assumption,
the variation of an arbitrary topography does not have much effect on the propagation
of a Kelvin solitary wave of depression in a rotating channel, because it cannot cause
the corresponding KdV solitary wave to undergo fission. In the following subsection,
we shall study how significant influence the topographic variation can have on the
propagation of a Kelvin solitary wave of elevation, which can undergo fission easily
in the absence of rotation without violating the weak nonlinearity and dispersion

assumption.

4.2 Kelvin solitary wave of elevation

For a Kelvin solitary wave of elevation:

7 = sech® |§ (30%12){] exp (—pY/C), (D-3>0), (4.4)

propagating over a shelf given by

0.5, X <0,
h™(X) =14 0.25[1.6 + 0.4cos(2rX)], 0< X <0.5, (4.5)
0.3, X > 0.5,

in a rotating channel with At = 1.0, p* = p~ = 1.0, figure 15 shows the contour plot
and 3-D plot of the interfacial displacement for g = 0.25 at X = 5.4, where the wave
seems to reach a stable pattern: the leading wave is curved back, behind which the
wave crests take turns to appear alternatingly along the left-hand sidewall and the
right-hand sidewall (note that the heights of the first three crests behind the leading
wave are not very small compared to that of the leading wave). However, the leading

wave still decays gradually as it propagates downstream. In numerical computations,
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A¢ =0.2, AY = 0.0417, AX = 0.2 x 1072 and @ = 1.5 have been used. For stronger
rotation, similar wave pattern is also observed. Comparing the wave pattern shown
in figure 15 with the counterpart for a flat bottom, which looks like the one shown
in figure 11(a) under the transformation: 5 — —7, we find that the existence of the
shelf, which will cause the corresponding KdV solitary wave in the absence of rotation
to disintegrate into two solitary waves, has a great influence on the propagation of
the Kelvin solitary wave of elevation. Thus, the variation of topography can have a
great impact on the propagation of a Kelvin solitary wave of elevation in a rotating
channel if the corresponding KdV solitary wave can undergo fission, which, unlike in

the case of Kelvin solitary wave of depression, is rather easy to occur.

5 Concluding remarks

In this paper, we have mainly investigated the effect of topographic variation on
solitary wave propagation in a stationary channel and on Kelvin solitary wave propa-
gation in a two-layered rotating channel by solving the variable-coefficient uKP equa-
tion numerically. The numerical scheme was developed based on the Petrov—Galerkin
finite-element method for the KdV equation.

Through investigating solitary wave propagation in a stationary channel, we con-
clude that an oblique incident solitary wave (with an angle of incidence smaller than
the corresponding critical angle for the Mach reflection to occur according to Miles’
theory (1977a, b)) propagating over a three-dimensional shelf in a stationary straight
channel will eventually develop into a series of uniform straight-crested solitary waves,
trailed by a train of small oscillatory waves propagating upstream. Furthermore,
with proper phase shifts, the shapes of these final two-dimensional solitary waves
coincide with the shapes of those final solitary waves evolved from a corresponding

normal incident solitary wave propagating over the corresponding two-dimensional
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shelf. Therefore, if only the final solitary waves are relevant, we only need to solve
the corresponding KdV equation instead of the uKP equation, which will dramati-
cally reduce the computational effort. The two-dimensional adjustment process in the
wave propagation, which occurs not only in a channel with a flat bottom but also in a
channel with a 2-D topography, is attributed to the alternating development of stem
waves along the left and the right sidewalls, which gradually reduces the amplitude
and speed differences between the waves along both sidewalls and eventually leads to
the formation of uniform straight-crested solitary waves spanning the entire channel
width. The weak topographic variation in the transversal direction (finite portion in
terms of the slow coordinate X') only alters the phase of each of the final 2-D solitary
waves by almost the same amount and does not affect their number and shapes.

By studying the propagation of a Kelvin solitary wave in a two-layered rotating
channel, we have found that in a rotating channel, the variation of topography has
little effect on the propagation of a Kelvin solitary wave of depression: the wave
patterns look similar with or without the presence of a shelf, whereas it may have
a significant influence on the propagation of a Kelvin solitary wave of elevation.
The reason is that in the absence of rotation, the corresponding KdV solitary wave
of depression cannot experience fission under the weak nonlinearity and dispersion
assumption, whereas the solitary wave of elevation can easily undergo fission without
violating this assumption.

Finally we would like to make following comments:

e Through a linear stability analysis of the KP equation, Kadomtsev & Petvi-
ashvili (1970) and Oikawa, Satsuma & Yajima (1974) showed that the single
solitary-wave solution to the KdV equation is neutrally stable subjected to
small, transverse perturbations. Our numerical results have demonstrated that

solitary wave solutions to the KdV equation are stable even with respect to any
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moderate, 3-D disturbance, for which the linear stability analysis is no longer

valid.

e The 2-D adjustment mechanism, which takes a longer time in a wider chan-
nel, is also responsible for the upstream generation of uniform straight-crested
solitary waves in uniform channels by moving three-dimensional sources (Katsis
& Akylas 1987a; Pedersen 1988; Hanazaki 1994) and suggests that no uniform
straight-crested solitary wave will be generated if the width of the channel goes
to infinity. We stress that the formation of uniform straight-crested solitary
waves is the result of alternating development of stem waves along both sidewalls
of the channel. In contrast to the implication of these authors, the adjustment
process usually does not end after the first formation of a straight-crested wave
because the wave is usually not uniform and the adjustment process continues

until uniform straight-crested solitary waves form.

e The greatest limitation of using the uKP equation to study far-field wave be-
havior is that the initial condition must satisfy the constraint (2.5) at X = 0,

which severely narrows the range of application of the uKP equation.

Acknowledgements

This research reported here was supported, in part, by Army Research Office (DAAL
03-92-G-0116) through a grant to Cornell University. YC completed this manuscript

at CCS/SIO while supported by a Mellon Foundation grant.

36



References

Ablowitz, M.J. & Clarkson, P.A. 1991. Solitons, Nonlinear Evolution Equations

and Inverse Scattering. Cambridge University Press.

Akylas, T.R. 1994. Three-dimensional long water-wave phenomena. Ann. Rew.

Fluid Mech. 26, 191-210.

Chen, Y. 1995. Modelling of surface water wave and interfacial wave propagation.

Ph. D. thesis, Cornell University.

Chen, Y. & Liu, . L.-I". 1995. The unified Kadomtsev-Petviashvili equation for

interfacial waves. J. Fluid Mech. in press.

Djordjevic, V.D. & Redekopp, L.G. 1978. The fission and disintegration of internal
solitary waves moving over two-dimensional topography. J. Phys. Oceanogr 8,

1016-1024.

Grimshaw, R. & Melville, W.K. 1989. On the derivation of the modified

Kadomtsev—Petviashvili equation. Stud. Appl. Math. 80, 183-202.

Grimshaw, R. & Tang, S. 1990. The rotation-modified Kadomtsev-Petviashvili

equation: An analytical and numerical study. Stud. Appl. Math. 83, 223-248.

Hanazaki, H. 1994. On the three-dimensional internal waves exited by topography

in the flow of a stratified fluid. J. Fluid Mech. 263, 293-318.

Johnson, R.S. 1972. Some numerical solutions of a variable-coefficient Korteweg-de

Vries equation. J. Fluid Mech. 54, 81-91.

Johnson, R.S. 1973. On the development of a solitary wave moving over an uneven

bottom. Proc. Camb. Phil. Soc. 73, 183-203.

Kadomtsev, B.B. & Petviashvili, V.I. 1970. On the stability of solitary waves in

weakly dispersing media. Sov. Phys. Dokl. 15, 539-541.

37



Katsis, C. & Akylas, T.R. 1987a. On the excitation of long nonlinear water waves
by a moving pressure distribution. Part 2. Three-dimensional effects. J. Fluid

Mech. 177, 49-65.

Katsis, C. & Akylas, T.R. 1987h. Solitary internal waves in a rotating channel: A

numerical study. Phys. Fluids 30(2), 297-301.

Maxworthy, T. 1983. Experiment on solitary internal kelvin waves. J. Fluid

Mech. 129, 365-383.

Methew, J. & Akylas, T.R. 1990. On three-dimensional long water waves in a

channel with sloping sidewalls. J. Fluid Mech. 215, 289-307.

Miles, J.W. 1977a. Obliquely interacting solitary waves. J. Fluid Mech. 79, 157
169.

Miles, J.W. 1977b. Resonantly interacting solitary waves. J. Fluid Mech. 79, 171-

179.

Mitchell, A.R. & Schoombie, W. 1984. Finite element studies of solitons. In
R. Lewis, P. Bettess, and E. Hinton (Eds.), Numerical Methods in Coupled

Systems, pp. 465-488. John Wiley & Sons.

Oikawa, M., Satsuma, J. & Yajima, N. 1974. Shallow water waves propagating

along undulation of bottom surface. J. Phys. Soc. Japan 37, 511-517.

Ono, H. 1972. Wave propagation in an inhomogeneous anharmonic lattice. J. Phys.

Soc. Japan 32, 332-336.

Pedersen, G. 1988. Three-dimensional waves patterns generated by moving distur-

bances at transcritical speeds. J. Fluid Mech. 196, 39-63.

Pierini, S. 1986. Solitons in a channel emerging from a three-dimensional initial

wave. Il Nuovo Cimento 9C(6), 1045-1061.

38



Renouard, D.P., D’Hiéres, G.C. & Zhang, X. 1987. An experimental study of
strongly nonlinear waves in a rotating system. J. Fluid Mech. 177, 381-394.
Sanz-Serna, J.M. & Christie, 1. 1981. Petrov—Galerkin methods for nonlinear dis-

persive waves. J. Comput. Phys. 39, 94-102.

Taha, T.R. & Ablowitz, M.J. 1984. Analytical and numerical aspects of certain
nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J.
Comput. Phys. 55, 231-253.

Tappert, F. & Zabusky, N.J. 1971. Gradient-induced fission of solitons. Phys. Rev.
Lett. 277, 1774-1776.

Wineberg, S.B., McGrath, J.F., Gabl, E.F., Scott, L.R. & Southwell, G.E. 1991.
Implicit spectral methods for wave propagation problems. J. Comput. Phys. 97,

311-336.



